b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | // SPI init/core code |
| 3 | // |
| 4 | // Copyright (C) 2005 David Brownell |
| 5 | // Copyright (C) 2008 Secret Lab Technologies Ltd. |
| 6 | |
| 7 | #include <linux/kernel.h> |
| 8 | #include <linux/device.h> |
| 9 | #include <linux/init.h> |
| 10 | #include <linux/cache.h> |
| 11 | #include <linux/dma-mapping.h> |
| 12 | #include <linux/dmaengine.h> |
| 13 | #include <linux/mutex.h> |
| 14 | #include <linux/of_device.h> |
| 15 | #include <linux/of_irq.h> |
| 16 | #include <linux/clk/clk-conf.h> |
| 17 | #include <linux/slab.h> |
| 18 | #include <linux/mod_devicetable.h> |
| 19 | #include <linux/spi/spi.h> |
| 20 | #include <linux/spi/spi-mem.h> |
| 21 | #include <linux/of_gpio.h> |
| 22 | #include <linux/gpio/consumer.h> |
| 23 | #include <linux/pm_runtime.h> |
| 24 | #include <linux/pm_domain.h> |
| 25 | #include <linux/property.h> |
| 26 | #include <linux/export.h> |
| 27 | #include <linux/sched/rt.h> |
| 28 | #include <uapi/linux/sched/types.h> |
| 29 | #include <linux/delay.h> |
| 30 | #include <linux/kthread.h> |
| 31 | #include <linux/ioport.h> |
| 32 | #include <linux/acpi.h> |
| 33 | #include <linux/highmem.h> |
| 34 | #include <linux/idr.h> |
| 35 | #include <linux/platform_data/x86/apple.h> |
| 36 | |
| 37 | #define CREATE_TRACE_POINTS |
| 38 | #include <trace/events/spi.h> |
| 39 | EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); |
| 40 | EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); |
| 41 | |
| 42 | #include "internals.h" |
| 43 | |
| 44 | static DEFINE_IDR(spi_master_idr); |
| 45 | |
| 46 | static void spidev_release(struct device *dev) |
| 47 | { |
| 48 | struct spi_device *spi = to_spi_device(dev); |
| 49 | |
| 50 | spi_controller_put(spi->controller); |
| 51 | kfree(spi->driver_override); |
| 52 | kfree(spi); |
| 53 | } |
| 54 | |
| 55 | static ssize_t |
| 56 | modalias_show(struct device *dev, struct device_attribute *a, char *buf) |
| 57 | { |
| 58 | const struct spi_device *spi = to_spi_device(dev); |
| 59 | int len; |
| 60 | |
| 61 | len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); |
| 62 | if (len != -ENODEV) |
| 63 | return len; |
| 64 | |
| 65 | return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); |
| 66 | } |
| 67 | static DEVICE_ATTR_RO(modalias); |
| 68 | |
| 69 | static ssize_t driver_override_store(struct device *dev, |
| 70 | struct device_attribute *a, |
| 71 | const char *buf, size_t count) |
| 72 | { |
| 73 | struct spi_device *spi = to_spi_device(dev); |
| 74 | const char *end = memchr(buf, '\n', count); |
| 75 | const size_t len = end ? end - buf : count; |
| 76 | const char *driver_override, *old; |
| 77 | |
| 78 | /* We need to keep extra room for a newline when displaying value */ |
| 79 | if (len >= (PAGE_SIZE - 1)) |
| 80 | return -EINVAL; |
| 81 | |
| 82 | driver_override = kstrndup(buf, len, GFP_KERNEL); |
| 83 | if (!driver_override) |
| 84 | return -ENOMEM; |
| 85 | |
| 86 | device_lock(dev); |
| 87 | old = spi->driver_override; |
| 88 | if (len) { |
| 89 | spi->driver_override = driver_override; |
| 90 | } else { |
| 91 | /* Emptry string, disable driver override */ |
| 92 | spi->driver_override = NULL; |
| 93 | kfree(driver_override); |
| 94 | } |
| 95 | device_unlock(dev); |
| 96 | kfree(old); |
| 97 | |
| 98 | return count; |
| 99 | } |
| 100 | |
| 101 | static ssize_t driver_override_show(struct device *dev, |
| 102 | struct device_attribute *a, char *buf) |
| 103 | { |
| 104 | const struct spi_device *spi = to_spi_device(dev); |
| 105 | ssize_t len; |
| 106 | |
| 107 | device_lock(dev); |
| 108 | len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); |
| 109 | device_unlock(dev); |
| 110 | return len; |
| 111 | } |
| 112 | static DEVICE_ATTR_RW(driver_override); |
| 113 | |
| 114 | #define SPI_STATISTICS_ATTRS(field, file) \ |
| 115 | static ssize_t spi_controller_##field##_show(struct device *dev, \ |
| 116 | struct device_attribute *attr, \ |
| 117 | char *buf) \ |
| 118 | { \ |
| 119 | struct spi_controller *ctlr = container_of(dev, \ |
| 120 | struct spi_controller, dev); \ |
| 121 | return spi_statistics_##field##_show(&ctlr->statistics, buf); \ |
| 122 | } \ |
| 123 | static struct device_attribute dev_attr_spi_controller_##field = { \ |
| 124 | .attr = { .name = file, .mode = 0444 }, \ |
| 125 | .show = spi_controller_##field##_show, \ |
| 126 | }; \ |
| 127 | static ssize_t spi_device_##field##_show(struct device *dev, \ |
| 128 | struct device_attribute *attr, \ |
| 129 | char *buf) \ |
| 130 | { \ |
| 131 | struct spi_device *spi = to_spi_device(dev); \ |
| 132 | return spi_statistics_##field##_show(&spi->statistics, buf); \ |
| 133 | } \ |
| 134 | static struct device_attribute dev_attr_spi_device_##field = { \ |
| 135 | .attr = { .name = file, .mode = 0444 }, \ |
| 136 | .show = spi_device_##field##_show, \ |
| 137 | } |
| 138 | |
| 139 | #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ |
| 140 | static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ |
| 141 | char *buf) \ |
| 142 | { \ |
| 143 | unsigned long flags; \ |
| 144 | ssize_t len; \ |
| 145 | spin_lock_irqsave(&stat->lock, flags); \ |
| 146 | len = sprintf(buf, format_string, stat->field); \ |
| 147 | spin_unlock_irqrestore(&stat->lock, flags); \ |
| 148 | return len; \ |
| 149 | } \ |
| 150 | SPI_STATISTICS_ATTRS(name, file) |
| 151 | |
| 152 | #define SPI_STATISTICS_SHOW(field, format_string) \ |
| 153 | SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ |
| 154 | field, format_string) |
| 155 | |
| 156 | SPI_STATISTICS_SHOW(messages, "%lu"); |
| 157 | SPI_STATISTICS_SHOW(transfers, "%lu"); |
| 158 | SPI_STATISTICS_SHOW(errors, "%lu"); |
| 159 | SPI_STATISTICS_SHOW(timedout, "%lu"); |
| 160 | |
| 161 | SPI_STATISTICS_SHOW(spi_sync, "%lu"); |
| 162 | SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); |
| 163 | SPI_STATISTICS_SHOW(spi_async, "%lu"); |
| 164 | |
| 165 | SPI_STATISTICS_SHOW(bytes, "%llu"); |
| 166 | SPI_STATISTICS_SHOW(bytes_rx, "%llu"); |
| 167 | SPI_STATISTICS_SHOW(bytes_tx, "%llu"); |
| 168 | |
| 169 | #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ |
| 170 | SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ |
| 171 | "transfer_bytes_histo_" number, \ |
| 172 | transfer_bytes_histo[index], "%lu") |
| 173 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); |
| 174 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); |
| 175 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); |
| 176 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); |
| 177 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); |
| 178 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); |
| 179 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); |
| 180 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); |
| 181 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); |
| 182 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); |
| 183 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); |
| 184 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); |
| 185 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); |
| 186 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); |
| 187 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); |
| 188 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); |
| 189 | SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); |
| 190 | |
| 191 | SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); |
| 192 | |
| 193 | static struct attribute *spi_dev_attrs[] = { |
| 194 | &dev_attr_modalias.attr, |
| 195 | &dev_attr_driver_override.attr, |
| 196 | NULL, |
| 197 | }; |
| 198 | |
| 199 | static const struct attribute_group spi_dev_group = { |
| 200 | .attrs = spi_dev_attrs, |
| 201 | }; |
| 202 | |
| 203 | static struct attribute *spi_device_statistics_attrs[] = { |
| 204 | &dev_attr_spi_device_messages.attr, |
| 205 | &dev_attr_spi_device_transfers.attr, |
| 206 | &dev_attr_spi_device_errors.attr, |
| 207 | &dev_attr_spi_device_timedout.attr, |
| 208 | &dev_attr_spi_device_spi_sync.attr, |
| 209 | &dev_attr_spi_device_spi_sync_immediate.attr, |
| 210 | &dev_attr_spi_device_spi_async.attr, |
| 211 | &dev_attr_spi_device_bytes.attr, |
| 212 | &dev_attr_spi_device_bytes_rx.attr, |
| 213 | &dev_attr_spi_device_bytes_tx.attr, |
| 214 | &dev_attr_spi_device_transfer_bytes_histo0.attr, |
| 215 | &dev_attr_spi_device_transfer_bytes_histo1.attr, |
| 216 | &dev_attr_spi_device_transfer_bytes_histo2.attr, |
| 217 | &dev_attr_spi_device_transfer_bytes_histo3.attr, |
| 218 | &dev_attr_spi_device_transfer_bytes_histo4.attr, |
| 219 | &dev_attr_spi_device_transfer_bytes_histo5.attr, |
| 220 | &dev_attr_spi_device_transfer_bytes_histo6.attr, |
| 221 | &dev_attr_spi_device_transfer_bytes_histo7.attr, |
| 222 | &dev_attr_spi_device_transfer_bytes_histo8.attr, |
| 223 | &dev_attr_spi_device_transfer_bytes_histo9.attr, |
| 224 | &dev_attr_spi_device_transfer_bytes_histo10.attr, |
| 225 | &dev_attr_spi_device_transfer_bytes_histo11.attr, |
| 226 | &dev_attr_spi_device_transfer_bytes_histo12.attr, |
| 227 | &dev_attr_spi_device_transfer_bytes_histo13.attr, |
| 228 | &dev_attr_spi_device_transfer_bytes_histo14.attr, |
| 229 | &dev_attr_spi_device_transfer_bytes_histo15.attr, |
| 230 | &dev_attr_spi_device_transfer_bytes_histo16.attr, |
| 231 | &dev_attr_spi_device_transfers_split_maxsize.attr, |
| 232 | NULL, |
| 233 | }; |
| 234 | |
| 235 | static const struct attribute_group spi_device_statistics_group = { |
| 236 | .name = "statistics", |
| 237 | .attrs = spi_device_statistics_attrs, |
| 238 | }; |
| 239 | |
| 240 | static const struct attribute_group *spi_dev_groups[] = { |
| 241 | &spi_dev_group, |
| 242 | &spi_device_statistics_group, |
| 243 | NULL, |
| 244 | }; |
| 245 | |
| 246 | static struct attribute *spi_controller_statistics_attrs[] = { |
| 247 | &dev_attr_spi_controller_messages.attr, |
| 248 | &dev_attr_spi_controller_transfers.attr, |
| 249 | &dev_attr_spi_controller_errors.attr, |
| 250 | &dev_attr_spi_controller_timedout.attr, |
| 251 | &dev_attr_spi_controller_spi_sync.attr, |
| 252 | &dev_attr_spi_controller_spi_sync_immediate.attr, |
| 253 | &dev_attr_spi_controller_spi_async.attr, |
| 254 | &dev_attr_spi_controller_bytes.attr, |
| 255 | &dev_attr_spi_controller_bytes_rx.attr, |
| 256 | &dev_attr_spi_controller_bytes_tx.attr, |
| 257 | &dev_attr_spi_controller_transfer_bytes_histo0.attr, |
| 258 | &dev_attr_spi_controller_transfer_bytes_histo1.attr, |
| 259 | &dev_attr_spi_controller_transfer_bytes_histo2.attr, |
| 260 | &dev_attr_spi_controller_transfer_bytes_histo3.attr, |
| 261 | &dev_attr_spi_controller_transfer_bytes_histo4.attr, |
| 262 | &dev_attr_spi_controller_transfer_bytes_histo5.attr, |
| 263 | &dev_attr_spi_controller_transfer_bytes_histo6.attr, |
| 264 | &dev_attr_spi_controller_transfer_bytes_histo7.attr, |
| 265 | &dev_attr_spi_controller_transfer_bytes_histo8.attr, |
| 266 | &dev_attr_spi_controller_transfer_bytes_histo9.attr, |
| 267 | &dev_attr_spi_controller_transfer_bytes_histo10.attr, |
| 268 | &dev_attr_spi_controller_transfer_bytes_histo11.attr, |
| 269 | &dev_attr_spi_controller_transfer_bytes_histo12.attr, |
| 270 | &dev_attr_spi_controller_transfer_bytes_histo13.attr, |
| 271 | &dev_attr_spi_controller_transfer_bytes_histo14.attr, |
| 272 | &dev_attr_spi_controller_transfer_bytes_histo15.attr, |
| 273 | &dev_attr_spi_controller_transfer_bytes_histo16.attr, |
| 274 | &dev_attr_spi_controller_transfers_split_maxsize.attr, |
| 275 | NULL, |
| 276 | }; |
| 277 | |
| 278 | static const struct attribute_group spi_controller_statistics_group = { |
| 279 | .name = "statistics", |
| 280 | .attrs = spi_controller_statistics_attrs, |
| 281 | }; |
| 282 | |
| 283 | static const struct attribute_group *spi_master_groups[] = { |
| 284 | &spi_controller_statistics_group, |
| 285 | NULL, |
| 286 | }; |
| 287 | |
| 288 | void spi_statistics_add_transfer_stats(struct spi_statistics *stats, |
| 289 | struct spi_transfer *xfer, |
| 290 | struct spi_controller *ctlr) |
| 291 | { |
| 292 | unsigned long flags; |
| 293 | int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; |
| 294 | |
| 295 | if (l2len < 0) |
| 296 | l2len = 0; |
| 297 | |
| 298 | spin_lock_irqsave(&stats->lock, flags); |
| 299 | |
| 300 | stats->transfers++; |
| 301 | stats->transfer_bytes_histo[l2len]++; |
| 302 | |
| 303 | stats->bytes += xfer->len; |
| 304 | if ((xfer->tx_buf) && |
| 305 | (xfer->tx_buf != ctlr->dummy_tx)) |
| 306 | stats->bytes_tx += xfer->len; |
| 307 | if ((xfer->rx_buf) && |
| 308 | (xfer->rx_buf != ctlr->dummy_rx)) |
| 309 | stats->bytes_rx += xfer->len; |
| 310 | |
| 311 | spin_unlock_irqrestore(&stats->lock, flags); |
| 312 | } |
| 313 | EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); |
| 314 | |
| 315 | /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, |
| 316 | * and the sysfs version makes coldplug work too. |
| 317 | */ |
| 318 | |
| 319 | static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, |
| 320 | const struct spi_device *sdev) |
| 321 | { |
| 322 | while (id->name[0]) { |
| 323 | if (!strcmp(sdev->modalias, id->name)) |
| 324 | return id; |
| 325 | id++; |
| 326 | } |
| 327 | return NULL; |
| 328 | } |
| 329 | |
| 330 | const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) |
| 331 | { |
| 332 | const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); |
| 333 | |
| 334 | return spi_match_id(sdrv->id_table, sdev); |
| 335 | } |
| 336 | EXPORT_SYMBOL_GPL(spi_get_device_id); |
| 337 | |
| 338 | static int spi_match_device(struct device *dev, struct device_driver *drv) |
| 339 | { |
| 340 | const struct spi_device *spi = to_spi_device(dev); |
| 341 | const struct spi_driver *sdrv = to_spi_driver(drv); |
| 342 | |
| 343 | /* Check override first, and if set, only use the named driver */ |
| 344 | if (spi->driver_override) |
| 345 | return strcmp(spi->driver_override, drv->name) == 0; |
| 346 | |
| 347 | /* Attempt an OF style match */ |
| 348 | if (of_driver_match_device(dev, drv)) |
| 349 | return 1; |
| 350 | |
| 351 | /* Then try ACPI */ |
| 352 | if (acpi_driver_match_device(dev, drv)) |
| 353 | return 1; |
| 354 | |
| 355 | if (sdrv->id_table) |
| 356 | return !!spi_match_id(sdrv->id_table, spi); |
| 357 | |
| 358 | return strcmp(spi->modalias, drv->name) == 0; |
| 359 | } |
| 360 | |
| 361 | static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) |
| 362 | { |
| 363 | const struct spi_device *spi = to_spi_device(dev); |
| 364 | int rc; |
| 365 | |
| 366 | rc = acpi_device_uevent_modalias(dev, env); |
| 367 | if (rc != -ENODEV) |
| 368 | return rc; |
| 369 | |
| 370 | return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); |
| 371 | } |
| 372 | |
| 373 | struct bus_type spi_bus_type = { |
| 374 | .name = "spi", |
| 375 | .dev_groups = spi_dev_groups, |
| 376 | .match = spi_match_device, |
| 377 | .uevent = spi_uevent, |
| 378 | }; |
| 379 | EXPORT_SYMBOL_GPL(spi_bus_type); |
| 380 | |
| 381 | |
| 382 | static int spi_drv_probe(struct device *dev) |
| 383 | { |
| 384 | const struct spi_driver *sdrv = to_spi_driver(dev->driver); |
| 385 | struct spi_device *spi = to_spi_device(dev); |
| 386 | int ret; |
| 387 | |
| 388 | ret = of_clk_set_defaults(dev->of_node, false); |
| 389 | if (ret) |
| 390 | return ret; |
| 391 | |
| 392 | if (dev->of_node) { |
| 393 | spi->irq = of_irq_get(dev->of_node, 0); |
| 394 | if (spi->irq == -EPROBE_DEFER) |
| 395 | return -EPROBE_DEFER; |
| 396 | if (spi->irq < 0) |
| 397 | spi->irq = 0; |
| 398 | } |
| 399 | |
| 400 | if (has_acpi_companion(dev) && spi->irq < 0) { |
| 401 | struct acpi_device *adev = to_acpi_device_node(dev->fwnode); |
| 402 | |
| 403 | spi->irq = acpi_dev_gpio_irq_get(adev, 0); |
| 404 | if (spi->irq == -EPROBE_DEFER) |
| 405 | return -EPROBE_DEFER; |
| 406 | if (spi->irq < 0) |
| 407 | spi->irq = 0; |
| 408 | } |
| 409 | |
| 410 | ret = dev_pm_domain_attach(dev, true); |
| 411 | if (ret) |
| 412 | return ret; |
| 413 | |
| 414 | if (sdrv->probe) { |
| 415 | ret = sdrv->probe(spi); |
| 416 | if (ret) |
| 417 | dev_pm_domain_detach(dev, true); |
| 418 | } |
| 419 | |
| 420 | return ret; |
| 421 | } |
| 422 | |
| 423 | static int spi_drv_remove(struct device *dev) |
| 424 | { |
| 425 | const struct spi_driver *sdrv = to_spi_driver(dev->driver); |
| 426 | int ret = 0; |
| 427 | |
| 428 | if (sdrv->remove) |
| 429 | ret = sdrv->remove(to_spi_device(dev)); |
| 430 | dev_pm_domain_detach(dev, true); |
| 431 | |
| 432 | return ret; |
| 433 | } |
| 434 | |
| 435 | static void spi_drv_shutdown(struct device *dev) |
| 436 | { |
| 437 | const struct spi_driver *sdrv = to_spi_driver(dev->driver); |
| 438 | |
| 439 | sdrv->shutdown(to_spi_device(dev)); |
| 440 | } |
| 441 | |
| 442 | /** |
| 443 | * __spi_register_driver - register a SPI driver |
| 444 | * @owner: owner module of the driver to register |
| 445 | * @sdrv: the driver to register |
| 446 | * Context: can sleep |
| 447 | * |
| 448 | * Return: zero on success, else a negative error code. |
| 449 | */ |
| 450 | int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) |
| 451 | { |
| 452 | sdrv->driver.owner = owner; |
| 453 | sdrv->driver.bus = &spi_bus_type; |
| 454 | sdrv->driver.probe = spi_drv_probe; |
| 455 | sdrv->driver.remove = spi_drv_remove; |
| 456 | if (sdrv->shutdown) |
| 457 | sdrv->driver.shutdown = spi_drv_shutdown; |
| 458 | return driver_register(&sdrv->driver); |
| 459 | } |
| 460 | EXPORT_SYMBOL_GPL(__spi_register_driver); |
| 461 | |
| 462 | /*-------------------------------------------------------------------------*/ |
| 463 | |
| 464 | /* SPI devices should normally not be created by SPI device drivers; that |
| 465 | * would make them board-specific. Similarly with SPI controller drivers. |
| 466 | * Device registration normally goes into like arch/.../mach.../board-YYY.c |
| 467 | * with other readonly (flashable) information about mainboard devices. |
| 468 | */ |
| 469 | |
| 470 | struct boardinfo { |
| 471 | struct list_head list; |
| 472 | struct spi_board_info board_info; |
| 473 | }; |
| 474 | |
| 475 | static LIST_HEAD(board_list); |
| 476 | static LIST_HEAD(spi_controller_list); |
| 477 | |
| 478 | /* |
| 479 | * Used to protect add/del opertion for board_info list and |
| 480 | * spi_controller list, and their matching process |
| 481 | * also used to protect object of type struct idr |
| 482 | */ |
| 483 | static DEFINE_MUTEX(board_lock); |
| 484 | |
| 485 | /** |
| 486 | * spi_alloc_device - Allocate a new SPI device |
| 487 | * @ctlr: Controller to which device is connected |
| 488 | * Context: can sleep |
| 489 | * |
| 490 | * Allows a driver to allocate and initialize a spi_device without |
| 491 | * registering it immediately. This allows a driver to directly |
| 492 | * fill the spi_device with device parameters before calling |
| 493 | * spi_add_device() on it. |
| 494 | * |
| 495 | * Caller is responsible to call spi_add_device() on the returned |
| 496 | * spi_device structure to add it to the SPI controller. If the caller |
| 497 | * needs to discard the spi_device without adding it, then it should |
| 498 | * call spi_dev_put() on it. |
| 499 | * |
| 500 | * Return: a pointer to the new device, or NULL. |
| 501 | */ |
| 502 | struct spi_device *spi_alloc_device(struct spi_controller *ctlr) |
| 503 | { |
| 504 | struct spi_device *spi; |
| 505 | |
| 506 | if (!spi_controller_get(ctlr)) |
| 507 | return NULL; |
| 508 | |
| 509 | spi = kzalloc(sizeof(*spi), GFP_KERNEL); |
| 510 | if (!spi) { |
| 511 | spi_controller_put(ctlr); |
| 512 | return NULL; |
| 513 | } |
| 514 | |
| 515 | spi->master = spi->controller = ctlr; |
| 516 | spi->dev.parent = &ctlr->dev; |
| 517 | spi->dev.bus = &spi_bus_type; |
| 518 | spi->dev.release = spidev_release; |
| 519 | spi->cs_gpio = -ENOENT; |
| 520 | |
| 521 | spin_lock_init(&spi->statistics.lock); |
| 522 | |
| 523 | device_initialize(&spi->dev); |
| 524 | return spi; |
| 525 | } |
| 526 | EXPORT_SYMBOL_GPL(spi_alloc_device); |
| 527 | |
| 528 | static void spi_dev_set_name(struct spi_device *spi) |
| 529 | { |
| 530 | struct acpi_device *adev = ACPI_COMPANION(&spi->dev); |
| 531 | |
| 532 | if (adev) { |
| 533 | dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); |
| 534 | return; |
| 535 | } |
| 536 | |
| 537 | dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), |
| 538 | spi->chip_select); |
| 539 | } |
| 540 | |
| 541 | static int spi_dev_check(struct device *dev, void *data) |
| 542 | { |
| 543 | struct spi_device *spi = to_spi_device(dev); |
| 544 | struct spi_device *new_spi = data; |
| 545 | |
| 546 | if (spi->controller == new_spi->controller && |
| 547 | spi->chip_select == new_spi->chip_select) |
| 548 | return -EBUSY; |
| 549 | return 0; |
| 550 | } |
| 551 | |
| 552 | static void spi_cleanup(struct spi_device *spi) |
| 553 | { |
| 554 | if (spi->controller->cleanup) |
| 555 | spi->controller->cleanup(spi); |
| 556 | } |
| 557 | |
| 558 | /** |
| 559 | * spi_add_device - Add spi_device allocated with spi_alloc_device |
| 560 | * @spi: spi_device to register |
| 561 | * |
| 562 | * Companion function to spi_alloc_device. Devices allocated with |
| 563 | * spi_alloc_device can be added onto the spi bus with this function. |
| 564 | * |
| 565 | * Return: 0 on success; negative errno on failure |
| 566 | */ |
| 567 | int spi_add_device(struct spi_device *spi) |
| 568 | { |
| 569 | struct spi_controller *ctlr = spi->controller; |
| 570 | struct device *dev = ctlr->dev.parent; |
| 571 | int status; |
| 572 | |
| 573 | /* Chipselects are numbered 0..max; validate. */ |
| 574 | if (spi->chip_select >= ctlr->num_chipselect) { |
| 575 | dev_err(dev, "cs%d >= max %d\n", spi->chip_select, |
| 576 | ctlr->num_chipselect); |
| 577 | return -EINVAL; |
| 578 | } |
| 579 | |
| 580 | /* Set the bus ID string */ |
| 581 | spi_dev_set_name(spi); |
| 582 | |
| 583 | /* We need to make sure there's no other device with this |
| 584 | * chipselect **BEFORE** we call setup(), else we'll trash |
| 585 | * its configuration. Lock against concurrent add() calls. |
| 586 | */ |
| 587 | mutex_lock(&ctlr->add_lock); |
| 588 | |
| 589 | status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); |
| 590 | if (status) { |
| 591 | dev_err(dev, "chipselect %d already in use\n", |
| 592 | spi->chip_select); |
| 593 | goto done; |
| 594 | } |
| 595 | |
| 596 | /* Controller may unregister concurrently */ |
| 597 | if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && |
| 598 | !device_is_registered(&ctlr->dev)) { |
| 599 | status = -ENODEV; |
| 600 | goto done; |
| 601 | } |
| 602 | |
| 603 | /* Descriptors take precedence */ |
| 604 | if (ctlr->cs_gpiods) |
| 605 | spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; |
| 606 | else if (ctlr->cs_gpios) |
| 607 | spi->cs_gpio = ctlr->cs_gpios[spi->chip_select]; |
| 608 | |
| 609 | /* Drivers may modify this initial i/o setup, but will |
| 610 | * normally rely on the device being setup. Devices |
| 611 | * using SPI_CS_HIGH can't coexist well otherwise... |
| 612 | */ |
| 613 | status = spi_setup(spi); |
| 614 | if (status < 0) { |
| 615 | dev_err(dev, "can't setup %s, status %d\n", |
| 616 | dev_name(&spi->dev), status); |
| 617 | goto done; |
| 618 | } |
| 619 | |
| 620 | /* Device may be bound to an active driver when this returns */ |
| 621 | status = device_add(&spi->dev); |
| 622 | if (status < 0) { |
| 623 | dev_err(dev, "can't add %s, status %d\n", |
| 624 | dev_name(&spi->dev), status); |
| 625 | spi_cleanup(spi); |
| 626 | } else { |
| 627 | dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); |
| 628 | } |
| 629 | |
| 630 | done: |
| 631 | mutex_unlock(&ctlr->add_lock); |
| 632 | return status; |
| 633 | } |
| 634 | EXPORT_SYMBOL_GPL(spi_add_device); |
| 635 | |
| 636 | /** |
| 637 | * spi_new_device - instantiate one new SPI device |
| 638 | * @ctlr: Controller to which device is connected |
| 639 | * @chip: Describes the SPI device |
| 640 | * Context: can sleep |
| 641 | * |
| 642 | * On typical mainboards, this is purely internal; and it's not needed |
| 643 | * after board init creates the hard-wired devices. Some development |
| 644 | * platforms may not be able to use spi_register_board_info though, and |
| 645 | * this is exported so that for example a USB or parport based adapter |
| 646 | * driver could add devices (which it would learn about out-of-band). |
| 647 | * |
| 648 | * Return: the new device, or NULL. |
| 649 | */ |
| 650 | struct spi_device *spi_new_device(struct spi_controller *ctlr, |
| 651 | struct spi_board_info *chip) |
| 652 | { |
| 653 | struct spi_device *proxy; |
| 654 | int status; |
| 655 | |
| 656 | /* NOTE: caller did any chip->bus_num checks necessary. |
| 657 | * |
| 658 | * Also, unless we change the return value convention to use |
| 659 | * error-or-pointer (not NULL-or-pointer), troubleshootability |
| 660 | * suggests syslogged diagnostics are best here (ugh). |
| 661 | */ |
| 662 | |
| 663 | proxy = spi_alloc_device(ctlr); |
| 664 | if (!proxy) |
| 665 | return NULL; |
| 666 | |
| 667 | WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); |
| 668 | |
| 669 | proxy->chip_select = chip->chip_select; |
| 670 | proxy->max_speed_hz = chip->max_speed_hz; |
| 671 | proxy->mode = chip->mode; |
| 672 | proxy->irq = chip->irq; |
| 673 | strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); |
| 674 | proxy->dev.platform_data = (void *) chip->platform_data; |
| 675 | proxy->controller_data = chip->controller_data; |
| 676 | proxy->controller_state = NULL; |
| 677 | |
| 678 | if (chip->properties) { |
| 679 | status = device_add_properties(&proxy->dev, chip->properties); |
| 680 | if (status) { |
| 681 | dev_err(&ctlr->dev, |
| 682 | "failed to add properties to '%s': %d\n", |
| 683 | chip->modalias, status); |
| 684 | goto err_dev_put; |
| 685 | } |
| 686 | } |
| 687 | |
| 688 | status = spi_add_device(proxy); |
| 689 | if (status < 0) |
| 690 | goto err_remove_props; |
| 691 | |
| 692 | return proxy; |
| 693 | |
| 694 | err_remove_props: |
| 695 | if (chip->properties) |
| 696 | device_remove_properties(&proxy->dev); |
| 697 | err_dev_put: |
| 698 | spi_dev_put(proxy); |
| 699 | return NULL; |
| 700 | } |
| 701 | EXPORT_SYMBOL_GPL(spi_new_device); |
| 702 | |
| 703 | /** |
| 704 | * spi_unregister_device - unregister a single SPI device |
| 705 | * @spi: spi_device to unregister |
| 706 | * |
| 707 | * Start making the passed SPI device vanish. Normally this would be handled |
| 708 | * by spi_unregister_controller(). |
| 709 | */ |
| 710 | void spi_unregister_device(struct spi_device *spi) |
| 711 | { |
| 712 | if (!spi) |
| 713 | return; |
| 714 | |
| 715 | if (spi->dev.of_node) { |
| 716 | of_node_clear_flag(spi->dev.of_node, OF_POPULATED); |
| 717 | of_node_put(spi->dev.of_node); |
| 718 | } |
| 719 | if (ACPI_COMPANION(&spi->dev)) |
| 720 | acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); |
| 721 | device_del(&spi->dev); |
| 722 | spi_cleanup(spi); |
| 723 | put_device(&spi->dev); |
| 724 | } |
| 725 | EXPORT_SYMBOL_GPL(spi_unregister_device); |
| 726 | |
| 727 | static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, |
| 728 | struct spi_board_info *bi) |
| 729 | { |
| 730 | struct spi_device *dev; |
| 731 | |
| 732 | if (ctlr->bus_num != bi->bus_num) |
| 733 | return; |
| 734 | |
| 735 | dev = spi_new_device(ctlr, bi); |
| 736 | if (!dev) |
| 737 | dev_err(ctlr->dev.parent, "can't create new device for %s\n", |
| 738 | bi->modalias); |
| 739 | } |
| 740 | |
| 741 | /** |
| 742 | * spi_register_board_info - register SPI devices for a given board |
| 743 | * @info: array of chip descriptors |
| 744 | * @n: how many descriptors are provided |
| 745 | * Context: can sleep |
| 746 | * |
| 747 | * Board-specific early init code calls this (probably during arch_initcall) |
| 748 | * with segments of the SPI device table. Any device nodes are created later, |
| 749 | * after the relevant parent SPI controller (bus_num) is defined. We keep |
| 750 | * this table of devices forever, so that reloading a controller driver will |
| 751 | * not make Linux forget about these hard-wired devices. |
| 752 | * |
| 753 | * Other code can also call this, e.g. a particular add-on board might provide |
| 754 | * SPI devices through its expansion connector, so code initializing that board |
| 755 | * would naturally declare its SPI devices. |
| 756 | * |
| 757 | * The board info passed can safely be __initdata ... but be careful of |
| 758 | * any embedded pointers (platform_data, etc), they're copied as-is. |
| 759 | * Device properties are deep-copied though. |
| 760 | * |
| 761 | * Return: zero on success, else a negative error code. |
| 762 | */ |
| 763 | int spi_register_board_info(struct spi_board_info const *info, unsigned n) |
| 764 | { |
| 765 | struct boardinfo *bi; |
| 766 | int i; |
| 767 | |
| 768 | if (!n) |
| 769 | return 0; |
| 770 | |
| 771 | bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); |
| 772 | if (!bi) |
| 773 | return -ENOMEM; |
| 774 | |
| 775 | for (i = 0; i < n; i++, bi++, info++) { |
| 776 | struct spi_controller *ctlr; |
| 777 | |
| 778 | memcpy(&bi->board_info, info, sizeof(*info)); |
| 779 | if (info->properties) { |
| 780 | bi->board_info.properties = |
| 781 | property_entries_dup(info->properties); |
| 782 | if (IS_ERR(bi->board_info.properties)) |
| 783 | return PTR_ERR(bi->board_info.properties); |
| 784 | } |
| 785 | |
| 786 | mutex_lock(&board_lock); |
| 787 | list_add_tail(&bi->list, &board_list); |
| 788 | list_for_each_entry(ctlr, &spi_controller_list, list) |
| 789 | spi_match_controller_to_boardinfo(ctlr, |
| 790 | &bi->board_info); |
| 791 | mutex_unlock(&board_lock); |
| 792 | } |
| 793 | |
| 794 | return 0; |
| 795 | } |
| 796 | |
| 797 | /*-------------------------------------------------------------------------*/ |
| 798 | |
| 799 | static void spi_set_cs(struct spi_device *spi, bool enable) |
| 800 | { |
| 801 | if (spi->mode & SPI_CS_HIGH) |
| 802 | enable = !enable; |
| 803 | |
| 804 | if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) { |
| 805 | /* |
| 806 | * Honour the SPI_NO_CS flag and invert the enable line, as |
| 807 | * active low is default for SPI. Execution paths that handle |
| 808 | * polarity inversion in gpiolib (such as device tree) will |
| 809 | * enforce active high using the SPI_CS_HIGH resulting in a |
| 810 | * double inversion through the code above. |
| 811 | */ |
| 812 | if (!(spi->mode & SPI_NO_CS)) { |
| 813 | if (spi->cs_gpiod) |
| 814 | gpiod_set_value_cansleep(spi->cs_gpiod, |
| 815 | !enable); |
| 816 | else |
| 817 | gpio_set_value_cansleep(spi->cs_gpio, !enable); |
| 818 | } |
| 819 | /* Some SPI masters need both GPIO CS & slave_select */ |
| 820 | if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && |
| 821 | spi->controller->set_cs) |
| 822 | spi->controller->set_cs(spi, !enable); |
| 823 | } else if (spi->controller->set_cs) { |
| 824 | spi->controller->set_cs(spi, !enable); |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | #ifdef CONFIG_HAS_DMA |
| 829 | int spi_map_buf(struct spi_controller *ctlr, struct device *dev, |
| 830 | struct sg_table *sgt, void *buf, size_t len, |
| 831 | enum dma_data_direction dir) |
| 832 | { |
| 833 | const bool vmalloced_buf = is_vmalloc_addr(buf); |
| 834 | unsigned int max_seg_size = dma_get_max_seg_size(dev); |
| 835 | #ifdef CONFIG_HIGHMEM |
| 836 | const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && |
| 837 | (unsigned long)buf < (PKMAP_BASE + |
| 838 | (LAST_PKMAP * PAGE_SIZE))); |
| 839 | #else |
| 840 | const bool kmap_buf = false; |
| 841 | #endif |
| 842 | int desc_len; |
| 843 | int sgs; |
| 844 | struct page *vm_page; |
| 845 | struct scatterlist *sg; |
| 846 | void *sg_buf; |
| 847 | size_t min; |
| 848 | int i, ret; |
| 849 | |
| 850 | if (vmalloced_buf || kmap_buf) { |
| 851 | desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); |
| 852 | sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); |
| 853 | } else if (virt_addr_valid(buf)) { |
| 854 | desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); |
| 855 | sgs = DIV_ROUND_UP(len, desc_len); |
| 856 | } else { |
| 857 | return -EINVAL; |
| 858 | } |
| 859 | |
| 860 | ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); |
| 861 | if (ret != 0) |
| 862 | return ret; |
| 863 | |
| 864 | sg = &sgt->sgl[0]; |
| 865 | for (i = 0; i < sgs; i++) { |
| 866 | |
| 867 | if (vmalloced_buf || kmap_buf) { |
| 868 | /* |
| 869 | * Next scatterlist entry size is the minimum between |
| 870 | * the desc_len and the remaining buffer length that |
| 871 | * fits in a page. |
| 872 | */ |
| 873 | min = min_t(size_t, desc_len, |
| 874 | min_t(size_t, len, |
| 875 | PAGE_SIZE - offset_in_page(buf))); |
| 876 | if (vmalloced_buf) |
| 877 | vm_page = vmalloc_to_page(buf); |
| 878 | else |
| 879 | vm_page = kmap_to_page(buf); |
| 880 | if (!vm_page) { |
| 881 | sg_free_table(sgt); |
| 882 | return -ENOMEM; |
| 883 | } |
| 884 | sg_set_page(sg, vm_page, |
| 885 | min, offset_in_page(buf)); |
| 886 | } else { |
| 887 | min = min_t(size_t, len, desc_len); |
| 888 | sg_buf = buf; |
| 889 | sg_set_buf(sg, sg_buf, min); |
| 890 | } |
| 891 | |
| 892 | buf += min; |
| 893 | len -= min; |
| 894 | sg = sg_next(sg); |
| 895 | } |
| 896 | |
| 897 | ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); |
| 898 | if (!ret) |
| 899 | ret = -ENOMEM; |
| 900 | if (ret < 0) { |
| 901 | sg_free_table(sgt); |
| 902 | return ret; |
| 903 | } |
| 904 | |
| 905 | sgt->nents = ret; |
| 906 | |
| 907 | return 0; |
| 908 | } |
| 909 | |
| 910 | void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, |
| 911 | struct sg_table *sgt, enum dma_data_direction dir) |
| 912 | { |
| 913 | if (sgt->orig_nents) { |
| 914 | dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); |
| 915 | sg_free_table(sgt); |
| 916 | } |
| 917 | } |
| 918 | |
| 919 | static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) |
| 920 | { |
| 921 | struct device *tx_dev, *rx_dev; |
| 922 | struct spi_transfer *xfer; |
| 923 | int ret; |
| 924 | |
| 925 | if (!ctlr->can_dma) |
| 926 | return 0; |
| 927 | |
| 928 | if (ctlr->dma_tx) |
| 929 | tx_dev = ctlr->dma_tx->device->dev; |
| 930 | else |
| 931 | tx_dev = ctlr->dev.parent; |
| 932 | |
| 933 | if (ctlr->dma_rx) |
| 934 | rx_dev = ctlr->dma_rx->device->dev; |
| 935 | else |
| 936 | rx_dev = ctlr->dev.parent; |
| 937 | |
| 938 | ret = -ENOMSG; |
| 939 | list_for_each_entry(xfer, &msg->transfers, transfer_list) { |
| 940 | if (!ctlr->can_dma(ctlr, msg->spi, xfer)) |
| 941 | continue; |
| 942 | |
| 943 | if (xfer->tx_buf != NULL) { |
| 944 | ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, |
| 945 | (void *)xfer->tx_buf, xfer->len, |
| 946 | DMA_TO_DEVICE); |
| 947 | if (ret != 0) |
| 948 | return ret; |
| 949 | } |
| 950 | |
| 951 | if (xfer->rx_buf != NULL) { |
| 952 | ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, |
| 953 | xfer->rx_buf, xfer->len, |
| 954 | DMA_FROM_DEVICE); |
| 955 | if (ret != 0) { |
| 956 | spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, |
| 957 | DMA_TO_DEVICE); |
| 958 | return ret; |
| 959 | } |
| 960 | } |
| 961 | } |
| 962 | /* No transfer has been mapped, bail out with success */ |
| 963 | if (ret) |
| 964 | return 0; |
| 965 | |
| 966 | ctlr->cur_msg_mapped = true; |
| 967 | |
| 968 | return 0; |
| 969 | } |
| 970 | |
| 971 | static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) |
| 972 | { |
| 973 | struct spi_transfer *xfer; |
| 974 | struct device *tx_dev, *rx_dev; |
| 975 | |
| 976 | if (!ctlr->cur_msg_mapped || !ctlr->can_dma) |
| 977 | return 0; |
| 978 | |
| 979 | if (ctlr->dma_tx) |
| 980 | tx_dev = ctlr->dma_tx->device->dev; |
| 981 | else |
| 982 | tx_dev = ctlr->dev.parent; |
| 983 | |
| 984 | if (ctlr->dma_rx) |
| 985 | rx_dev = ctlr->dma_rx->device->dev; |
| 986 | else |
| 987 | rx_dev = ctlr->dev.parent; |
| 988 | |
| 989 | list_for_each_entry(xfer, &msg->transfers, transfer_list) { |
| 990 | if (!ctlr->can_dma(ctlr, msg->spi, xfer)) |
| 991 | continue; |
| 992 | |
| 993 | spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); |
| 994 | spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); |
| 995 | } |
| 996 | |
| 997 | return 0; |
| 998 | } |
| 999 | #else /* !CONFIG_HAS_DMA */ |
| 1000 | static inline int __spi_map_msg(struct spi_controller *ctlr, |
| 1001 | struct spi_message *msg) |
| 1002 | { |
| 1003 | return 0; |
| 1004 | } |
| 1005 | |
| 1006 | static inline int __spi_unmap_msg(struct spi_controller *ctlr, |
| 1007 | struct spi_message *msg) |
| 1008 | { |
| 1009 | return 0; |
| 1010 | } |
| 1011 | #endif /* !CONFIG_HAS_DMA */ |
| 1012 | |
| 1013 | static inline int spi_unmap_msg(struct spi_controller *ctlr, |
| 1014 | struct spi_message *msg) |
| 1015 | { |
| 1016 | struct spi_transfer *xfer; |
| 1017 | |
| 1018 | list_for_each_entry(xfer, &msg->transfers, transfer_list) { |
| 1019 | /* |
| 1020 | * Restore the original value of tx_buf or rx_buf if they are |
| 1021 | * NULL. |
| 1022 | */ |
| 1023 | if (xfer->tx_buf == ctlr->dummy_tx) |
| 1024 | xfer->tx_buf = NULL; |
| 1025 | if (xfer->rx_buf == ctlr->dummy_rx) |
| 1026 | xfer->rx_buf = NULL; |
| 1027 | } |
| 1028 | |
| 1029 | return __spi_unmap_msg(ctlr, msg); |
| 1030 | } |
| 1031 | |
| 1032 | static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) |
| 1033 | { |
| 1034 | struct spi_transfer *xfer; |
| 1035 | void *tmp; |
| 1036 | unsigned int max_tx, max_rx; |
| 1037 | |
| 1038 | if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) { |
| 1039 | max_tx = 0; |
| 1040 | max_rx = 0; |
| 1041 | |
| 1042 | list_for_each_entry(xfer, &msg->transfers, transfer_list) { |
| 1043 | if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && |
| 1044 | !xfer->tx_buf) |
| 1045 | max_tx = max(xfer->len, max_tx); |
| 1046 | if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && |
| 1047 | !xfer->rx_buf) |
| 1048 | max_rx = max(xfer->len, max_rx); |
| 1049 | } |
| 1050 | |
| 1051 | if (max_tx) { |
| 1052 | tmp = krealloc(ctlr->dummy_tx, max_tx, |
| 1053 | GFP_KERNEL | GFP_DMA); |
| 1054 | if (!tmp) |
| 1055 | return -ENOMEM; |
| 1056 | ctlr->dummy_tx = tmp; |
| 1057 | memset(tmp, 0, max_tx); |
| 1058 | } |
| 1059 | |
| 1060 | if (max_rx) { |
| 1061 | tmp = krealloc(ctlr->dummy_rx, max_rx, |
| 1062 | GFP_KERNEL | GFP_DMA); |
| 1063 | if (!tmp) |
| 1064 | return -ENOMEM; |
| 1065 | ctlr->dummy_rx = tmp; |
| 1066 | } |
| 1067 | |
| 1068 | if (max_tx || max_rx) { |
| 1069 | list_for_each_entry(xfer, &msg->transfers, |
| 1070 | transfer_list) { |
| 1071 | if (!xfer->len) |
| 1072 | continue; |
| 1073 | if (!xfer->tx_buf) |
| 1074 | xfer->tx_buf = ctlr->dummy_tx; |
| 1075 | if (!xfer->rx_buf) |
| 1076 | xfer->rx_buf = ctlr->dummy_rx; |
| 1077 | } |
| 1078 | } |
| 1079 | } |
| 1080 | |
| 1081 | return __spi_map_msg(ctlr, msg); |
| 1082 | } |
| 1083 | |
| 1084 | static int spi_transfer_wait(struct spi_controller *ctlr, |
| 1085 | struct spi_message *msg, |
| 1086 | struct spi_transfer *xfer) |
| 1087 | { |
| 1088 | struct spi_statistics *statm = &ctlr->statistics; |
| 1089 | struct spi_statistics *stats = &msg->spi->statistics; |
| 1090 | unsigned long long ms = 1; |
| 1091 | |
| 1092 | if (spi_controller_is_slave(ctlr)) { |
| 1093 | if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { |
| 1094 | dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); |
| 1095 | return -EINTR; |
| 1096 | } |
| 1097 | } else { |
| 1098 | ms = 8LL * 1000LL * xfer->len; |
| 1099 | do_div(ms, xfer->speed_hz); |
| 1100 | ms += ms + 200; /* some tolerance */ |
| 1101 | |
| 1102 | if (ms > UINT_MAX) |
| 1103 | ms = UINT_MAX; |
| 1104 | |
| 1105 | ms = wait_for_completion_timeout(&ctlr->xfer_completion, |
| 1106 | msecs_to_jiffies(ms)); |
| 1107 | |
| 1108 | if (ms == 0) { |
| 1109 | SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); |
| 1110 | SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); |
| 1111 | dev_err(&msg->spi->dev, |
| 1112 | "SPI transfer timed out\n"); |
| 1113 | return -ETIMEDOUT; |
| 1114 | } |
| 1115 | } |
| 1116 | |
| 1117 | return 0; |
| 1118 | } |
| 1119 | |
| 1120 | static void _spi_transfer_delay_ns(u32 ns) |
| 1121 | { |
| 1122 | if (!ns) |
| 1123 | return; |
| 1124 | if (ns <= 1000) { |
| 1125 | ndelay(ns); |
| 1126 | } else { |
| 1127 | u32 us = DIV_ROUND_UP(ns, 1000); |
| 1128 | |
| 1129 | if (us <= 10) |
| 1130 | udelay(us); |
| 1131 | else |
| 1132 | usleep_range(us, us + DIV_ROUND_UP(us, 10)); |
| 1133 | } |
| 1134 | } |
| 1135 | |
| 1136 | static void _spi_transfer_cs_change_delay(struct spi_message *msg, |
| 1137 | struct spi_transfer *xfer) |
| 1138 | { |
| 1139 | u32 delay = xfer->cs_change_delay; |
| 1140 | u32 unit = xfer->cs_change_delay_unit; |
| 1141 | u32 hz; |
| 1142 | |
| 1143 | /* return early on "fast" mode - for everything but USECS */ |
| 1144 | if (!delay && unit != SPI_DELAY_UNIT_USECS) |
| 1145 | return; |
| 1146 | |
| 1147 | switch (unit) { |
| 1148 | case SPI_DELAY_UNIT_USECS: |
| 1149 | /* for compatibility use default of 10us */ |
| 1150 | if (!delay) |
| 1151 | delay = 10000; |
| 1152 | else |
| 1153 | delay *= 1000; |
| 1154 | break; |
| 1155 | case SPI_DELAY_UNIT_NSECS: /* nothing to do here */ |
| 1156 | break; |
| 1157 | case SPI_DELAY_UNIT_SCK: |
| 1158 | /* if there is no effective speed know, then approximate |
| 1159 | * by underestimating with half the requested hz |
| 1160 | */ |
| 1161 | hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; |
| 1162 | delay *= DIV_ROUND_UP(1000000000, hz); |
| 1163 | break; |
| 1164 | default: |
| 1165 | dev_err_once(&msg->spi->dev, |
| 1166 | "Use of unsupported delay unit %i, using default of 10us\n", |
| 1167 | xfer->cs_change_delay_unit); |
| 1168 | delay = 10000; |
| 1169 | } |
| 1170 | /* now sleep for the requested amount of time */ |
| 1171 | _spi_transfer_delay_ns(delay); |
| 1172 | } |
| 1173 | |
| 1174 | /* |
| 1175 | * spi_transfer_one_message - Default implementation of transfer_one_message() |
| 1176 | * |
| 1177 | * This is a standard implementation of transfer_one_message() for |
| 1178 | * drivers which implement a transfer_one() operation. It provides |
| 1179 | * standard handling of delays and chip select management. |
| 1180 | */ |
| 1181 | static int spi_transfer_one_message(struct spi_controller *ctlr, |
| 1182 | struct spi_message *msg) |
| 1183 | { |
| 1184 | struct spi_transfer *xfer; |
| 1185 | bool keep_cs = false; |
| 1186 | int ret = 0; |
| 1187 | struct spi_statistics *statm = &ctlr->statistics; |
| 1188 | struct spi_statistics *stats = &msg->spi->statistics; |
| 1189 | |
| 1190 | spi_set_cs(msg->spi, true); |
| 1191 | |
| 1192 | SPI_STATISTICS_INCREMENT_FIELD(statm, messages); |
| 1193 | SPI_STATISTICS_INCREMENT_FIELD(stats, messages); |
| 1194 | |
| 1195 | list_for_each_entry(xfer, &msg->transfers, transfer_list) { |
| 1196 | trace_spi_transfer_start(msg, xfer); |
| 1197 | |
| 1198 | spi_statistics_add_transfer_stats(statm, xfer, ctlr); |
| 1199 | spi_statistics_add_transfer_stats(stats, xfer, ctlr); |
| 1200 | |
| 1201 | if (xfer->tx_buf || xfer->rx_buf) { |
| 1202 | reinit_completion(&ctlr->xfer_completion); |
| 1203 | |
| 1204 | ret = ctlr->transfer_one(ctlr, msg->spi, xfer); |
| 1205 | if (ret < 0) { |
| 1206 | SPI_STATISTICS_INCREMENT_FIELD(statm, |
| 1207 | errors); |
| 1208 | SPI_STATISTICS_INCREMENT_FIELD(stats, |
| 1209 | errors); |
| 1210 | dev_err(&msg->spi->dev, |
| 1211 | "SPI transfer failed: %d\n", ret); |
| 1212 | goto out; |
| 1213 | } |
| 1214 | |
| 1215 | if (ret > 0) { |
| 1216 | ret = spi_transfer_wait(ctlr, msg, xfer); |
| 1217 | if (ret < 0) |
| 1218 | msg->status = ret; |
| 1219 | } |
| 1220 | } else { |
| 1221 | if (xfer->len) |
| 1222 | dev_err(&msg->spi->dev, |
| 1223 | "Bufferless transfer has length %u\n", |
| 1224 | xfer->len); |
| 1225 | } |
| 1226 | |
| 1227 | trace_spi_transfer_stop(msg, xfer); |
| 1228 | |
| 1229 | if (msg->status != -EINPROGRESS) |
| 1230 | goto out; |
| 1231 | |
| 1232 | if (xfer->delay_usecs) |
| 1233 | _spi_transfer_delay_ns(xfer->delay_usecs * 1000); |
| 1234 | |
| 1235 | if (xfer->cs_change) { |
| 1236 | if (list_is_last(&xfer->transfer_list, |
| 1237 | &msg->transfers)) { |
| 1238 | keep_cs = true; |
| 1239 | } else { |
| 1240 | spi_set_cs(msg->spi, false); |
| 1241 | _spi_transfer_cs_change_delay(msg, xfer); |
| 1242 | spi_set_cs(msg->spi, true); |
| 1243 | } |
| 1244 | } |
| 1245 | |
| 1246 | msg->actual_length += xfer->len; |
| 1247 | } |
| 1248 | |
| 1249 | out: |
| 1250 | if (ret != 0 || !keep_cs) |
| 1251 | spi_set_cs(msg->spi, false); |
| 1252 | |
| 1253 | if (msg->status == -EINPROGRESS) |
| 1254 | msg->status = ret; |
| 1255 | |
| 1256 | if (msg->status && ctlr->handle_err) |
| 1257 | ctlr->handle_err(ctlr, msg); |
| 1258 | |
| 1259 | spi_finalize_current_message(ctlr); |
| 1260 | |
| 1261 | return ret; |
| 1262 | } |
| 1263 | |
| 1264 | /** |
| 1265 | * spi_finalize_current_transfer - report completion of a transfer |
| 1266 | * @ctlr: the controller reporting completion |
| 1267 | * |
| 1268 | * Called by SPI drivers using the core transfer_one_message() |
| 1269 | * implementation to notify it that the current interrupt driven |
| 1270 | * transfer has finished and the next one may be scheduled. |
| 1271 | */ |
| 1272 | void spi_finalize_current_transfer(struct spi_controller *ctlr) |
| 1273 | { |
| 1274 | complete(&ctlr->xfer_completion); |
| 1275 | } |
| 1276 | EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); |
| 1277 | |
| 1278 | /** |
| 1279 | * __spi_pump_messages - function which processes spi message queue |
| 1280 | * @ctlr: controller to process queue for |
| 1281 | * @in_kthread: true if we are in the context of the message pump thread |
| 1282 | * |
| 1283 | * This function checks if there is any spi message in the queue that |
| 1284 | * needs processing and if so call out to the driver to initialize hardware |
| 1285 | * and transfer each message. |
| 1286 | * |
| 1287 | * Note that it is called both from the kthread itself and also from |
| 1288 | * inside spi_sync(); the queue extraction handling at the top of the |
| 1289 | * function should deal with this safely. |
| 1290 | */ |
| 1291 | static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) |
| 1292 | { |
| 1293 | struct spi_message *msg; |
| 1294 | bool was_busy = false; |
| 1295 | unsigned long flags; |
| 1296 | int ret; |
| 1297 | |
| 1298 | /* Lock queue */ |
| 1299 | spin_lock_irqsave(&ctlr->queue_lock, flags); |
| 1300 | |
| 1301 | /* Make sure we are not already running a message */ |
| 1302 | if (ctlr->cur_msg) { |
| 1303 | spin_unlock_irqrestore(&ctlr->queue_lock, flags); |
| 1304 | return; |
| 1305 | } |
| 1306 | |
| 1307 | /* If another context is idling the device then defer */ |
| 1308 | if (ctlr->idling) { |
| 1309 | kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); |
| 1310 | spin_unlock_irqrestore(&ctlr->queue_lock, flags); |
| 1311 | return; |
| 1312 | } |
| 1313 | |
| 1314 | /* Check if the queue is idle */ |
| 1315 | if (list_empty(&ctlr->queue) || !ctlr->running) { |
| 1316 | if (!ctlr->busy) { |
| 1317 | spin_unlock_irqrestore(&ctlr->queue_lock, flags); |
| 1318 | return; |
| 1319 | } |
| 1320 | |
| 1321 | /* Only do teardown in the thread */ |
| 1322 | if (!in_kthread) { |
| 1323 | kthread_queue_work(&ctlr->kworker, |
| 1324 | &ctlr->pump_messages); |
| 1325 | spin_unlock_irqrestore(&ctlr->queue_lock, flags); |
| 1326 | return; |
| 1327 | } |
| 1328 | |
| 1329 | ctlr->busy = false; |
| 1330 | ctlr->idling = true; |
| 1331 | spin_unlock_irqrestore(&ctlr->queue_lock, flags); |
| 1332 | |
| 1333 | kfree(ctlr->dummy_rx); |
| 1334 | ctlr->dummy_rx = NULL; |
| 1335 | kfree(ctlr->dummy_tx); |
| 1336 | ctlr->dummy_tx = NULL; |
| 1337 | if (ctlr->unprepare_transfer_hardware && |
| 1338 | ctlr->unprepare_transfer_hardware(ctlr)) |
| 1339 | dev_err(&ctlr->dev, |
| 1340 | "failed to unprepare transfer hardware\n"); |
| 1341 | if (ctlr->auto_runtime_pm) { |
| 1342 | pm_runtime_mark_last_busy(ctlr->dev.parent); |
| 1343 | pm_runtime_put_autosuspend(ctlr->dev.parent); |
| 1344 | } |
| 1345 | trace_spi_controller_idle(ctlr); |
| 1346 | |
| 1347 | spin_lock_irqsave(&ctlr->queue_lock, flags); |
| 1348 | ctlr->idling = false; |
| 1349 | spin_unlock_irqrestore(&ctlr->queue_lock, flags); |
| 1350 | return; |
| 1351 | } |
| 1352 | |
| 1353 | /* Extract head of queue */ |
| 1354 | msg = list_first_entry(&ctlr->queue, struct spi_message, queue); |
| 1355 | ctlr->cur_msg = msg; |
| 1356 | |
| 1357 | list_del_init(&msg->queue); |
| 1358 | if (ctlr->busy) |
| 1359 | was_busy = true; |
| 1360 | else |
| 1361 | ctlr->busy = true; |
| 1362 | spin_unlock_irqrestore(&ctlr->queue_lock, flags); |
| 1363 | |
| 1364 | mutex_lock(&ctlr->io_mutex); |
| 1365 | |
| 1366 | if (!was_busy && ctlr->auto_runtime_pm) { |
| 1367 | ret = pm_runtime_get_sync(ctlr->dev.parent); |
| 1368 | if (ret < 0) { |
| 1369 | pm_runtime_put_noidle(ctlr->dev.parent); |
| 1370 | dev_err(&ctlr->dev, "Failed to power device: %d\n", |
| 1371 | ret); |
| 1372 | mutex_unlock(&ctlr->io_mutex); |
| 1373 | return; |
| 1374 | } |
| 1375 | } |
| 1376 | |
| 1377 | if (!was_busy) |
| 1378 | trace_spi_controller_busy(ctlr); |
| 1379 | |
| 1380 | if (!was_busy && ctlr->prepare_transfer_hardware) { |
| 1381 | ret = ctlr->prepare_transfer_hardware(ctlr); |
| 1382 | if (ret) { |
| 1383 | dev_err(&ctlr->dev, |
| 1384 | "failed to prepare transfer hardware: %d\n", |
| 1385 | ret); |
| 1386 | |
| 1387 | if (ctlr->auto_runtime_pm) |
| 1388 | pm_runtime_put(ctlr->dev.parent); |
| 1389 | |
| 1390 | msg->status = ret; |
| 1391 | spi_finalize_current_message(ctlr); |
| 1392 | |
| 1393 | mutex_unlock(&ctlr->io_mutex); |
| 1394 | return; |
| 1395 | } |
| 1396 | } |
| 1397 | |
| 1398 | trace_spi_message_start(msg); |
| 1399 | |
| 1400 | if (ctlr->prepare_message) { |
| 1401 | ret = ctlr->prepare_message(ctlr, msg); |
| 1402 | if (ret) { |
| 1403 | dev_err(&ctlr->dev, "failed to prepare message: %d\n", |
| 1404 | ret); |
| 1405 | msg->status = ret; |
| 1406 | spi_finalize_current_message(ctlr); |
| 1407 | goto out; |
| 1408 | } |
| 1409 | ctlr->cur_msg_prepared = true; |
| 1410 | } |
| 1411 | |
| 1412 | ret = spi_map_msg(ctlr, msg); |
| 1413 | if (ret) { |
| 1414 | msg->status = ret; |
| 1415 | spi_finalize_current_message(ctlr); |
| 1416 | goto out; |
| 1417 | } |
| 1418 | |
| 1419 | ret = ctlr->transfer_one_message(ctlr, msg); |
| 1420 | if (ret) { |
| 1421 | dev_err(&ctlr->dev, |
| 1422 | "failed to transfer one message from queue\n"); |
| 1423 | goto out; |
| 1424 | } |
| 1425 | |
| 1426 | out: |
| 1427 | mutex_unlock(&ctlr->io_mutex); |
| 1428 | |
| 1429 | /* Prod the scheduler in case transfer_one() was busy waiting */ |
| 1430 | if (!ret) |
| 1431 | cond_resched(); |
| 1432 | } |
| 1433 | |
| 1434 | /** |
| 1435 | * spi_pump_messages - kthread work function which processes spi message queue |
| 1436 | * @work: pointer to kthread work struct contained in the controller struct |
| 1437 | */ |
| 1438 | static void spi_pump_messages(struct kthread_work *work) |
| 1439 | { |
| 1440 | struct spi_controller *ctlr = |
| 1441 | container_of(work, struct spi_controller, pump_messages); |
| 1442 | |
| 1443 | __spi_pump_messages(ctlr, true); |
| 1444 | } |
| 1445 | |
| 1446 | /** |
| 1447 | * spi_set_thread_rt - set the controller to pump at realtime priority |
| 1448 | * @ctlr: controller to boost priority of |
| 1449 | * |
| 1450 | * This can be called because the controller requested realtime priority |
| 1451 | * (by setting the ->rt value before calling spi_register_controller()) or |
| 1452 | * because a device on the bus said that its transfers needed realtime |
| 1453 | * priority. |
| 1454 | * |
| 1455 | * NOTE: at the moment if any device on a bus says it needs realtime then |
| 1456 | * the thread will be at realtime priority for all transfers on that |
| 1457 | * controller. If this eventually becomes a problem we may see if we can |
| 1458 | * find a way to boost the priority only temporarily during relevant |
| 1459 | * transfers. |
| 1460 | */ |
| 1461 | static void spi_set_thread_rt(struct spi_controller *ctlr) |
| 1462 | { |
| 1463 | struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 }; |
| 1464 | |
| 1465 | dev_info(&ctlr->dev, |
| 1466 | "will run message pump with realtime priority\n"); |
| 1467 | sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, ¶m); |
| 1468 | } |
| 1469 | |
| 1470 | static int spi_init_queue(struct spi_controller *ctlr) |
| 1471 | { |
| 1472 | ctlr->running = false; |
| 1473 | ctlr->busy = false; |
| 1474 | |
| 1475 | kthread_init_worker(&ctlr->kworker); |
| 1476 | ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker, |
| 1477 | "%s", dev_name(&ctlr->dev)); |
| 1478 | if (IS_ERR(ctlr->kworker_task)) { |
| 1479 | dev_err(&ctlr->dev, "failed to create message pump task\n"); |
| 1480 | return PTR_ERR(ctlr->kworker_task); |
| 1481 | } |
| 1482 | kthread_init_work(&ctlr->pump_messages, spi_pump_messages); |
| 1483 | |
| 1484 | /* |
| 1485 | * Controller config will indicate if this controller should run the |
| 1486 | * message pump with high (realtime) priority to reduce the transfer |
| 1487 | * latency on the bus by minimising the delay between a transfer |
| 1488 | * request and the scheduling of the message pump thread. Without this |
| 1489 | * setting the message pump thread will remain at default priority. |
| 1490 | */ |
| 1491 | if (ctlr->rt) |
| 1492 | spi_set_thread_rt(ctlr); |
| 1493 | |
| 1494 | return 0; |
| 1495 | } |
| 1496 | |
| 1497 | /** |
| 1498 | * spi_get_next_queued_message() - called by driver to check for queued |
| 1499 | * messages |
| 1500 | * @ctlr: the controller to check for queued messages |
| 1501 | * |
| 1502 | * If there are more messages in the queue, the next message is returned from |
| 1503 | * this call. |
| 1504 | * |
| 1505 | * Return: the next message in the queue, else NULL if the queue is empty. |
| 1506 | */ |
| 1507 | struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) |
| 1508 | { |
| 1509 | struct spi_message *next; |
| 1510 | unsigned long flags; |
| 1511 | |
| 1512 | /* get a pointer to the next message, if any */ |
| 1513 | spin_lock_irqsave(&ctlr->queue_lock, flags); |
| 1514 | next = list_first_entry_or_null(&ctlr->queue, struct spi_message, |
| 1515 | queue); |
| 1516 | spin_unlock_irqrestore(&ctlr->queue_lock, flags); |
| 1517 | |
| 1518 | return next; |
| 1519 | } |
| 1520 | EXPORT_SYMBOL_GPL(spi_get_next_queued_message); |
| 1521 | |
| 1522 | /** |
| 1523 | * spi_finalize_current_message() - the current message is complete |
| 1524 | * @ctlr: the controller to return the message to |
| 1525 | * |
| 1526 | * Called by the driver to notify the core that the message in the front of the |
| 1527 | * queue is complete and can be removed from the queue. |
| 1528 | */ |
| 1529 | void spi_finalize_current_message(struct spi_controller *ctlr) |
| 1530 | { |
| 1531 | struct spi_message *mesg; |
| 1532 | unsigned long flags; |
| 1533 | int ret; |
| 1534 | |
| 1535 | spin_lock_irqsave(&ctlr->queue_lock, flags); |
| 1536 | mesg = ctlr->cur_msg; |
| 1537 | spin_unlock_irqrestore(&ctlr->queue_lock, flags); |
| 1538 | |
| 1539 | spi_unmap_msg(ctlr, mesg); |
| 1540 | |
| 1541 | /* In the prepare_messages callback the spi bus has the opportunity to |
| 1542 | * split a transfer to smaller chunks. |
| 1543 | * Release splited transfers here since spi_map_msg is done on the |
| 1544 | * splited transfers. |
| 1545 | */ |
| 1546 | spi_res_release(ctlr, mesg); |
| 1547 | |
| 1548 | if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { |
| 1549 | ret = ctlr->unprepare_message(ctlr, mesg); |
| 1550 | if (ret) { |
| 1551 | dev_err(&ctlr->dev, "failed to unprepare message: %d\n", |
| 1552 | ret); |
| 1553 | } |
| 1554 | } |
| 1555 | |
| 1556 | spin_lock_irqsave(&ctlr->queue_lock, flags); |
| 1557 | ctlr->cur_msg = NULL; |
| 1558 | ctlr->cur_msg_prepared = false; |
| 1559 | kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); |
| 1560 | spin_unlock_irqrestore(&ctlr->queue_lock, flags); |
| 1561 | |
| 1562 | trace_spi_message_done(mesg); |
| 1563 | |
| 1564 | mesg->state = NULL; |
| 1565 | if (mesg->complete) |
| 1566 | mesg->complete(mesg->context); |
| 1567 | } |
| 1568 | EXPORT_SYMBOL_GPL(spi_finalize_current_message); |
| 1569 | |
| 1570 | static int spi_start_queue(struct spi_controller *ctlr) |
| 1571 | { |
| 1572 | unsigned long flags; |
| 1573 | |
| 1574 | spin_lock_irqsave(&ctlr->queue_lock, flags); |
| 1575 | |
| 1576 | if (ctlr->running || ctlr->busy) { |
| 1577 | spin_unlock_irqrestore(&ctlr->queue_lock, flags); |
| 1578 | return -EBUSY; |
| 1579 | } |
| 1580 | |
| 1581 | ctlr->running = true; |
| 1582 | ctlr->cur_msg = NULL; |
| 1583 | spin_unlock_irqrestore(&ctlr->queue_lock, flags); |
| 1584 | |
| 1585 | kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); |
| 1586 | |
| 1587 | return 0; |
| 1588 | } |
| 1589 | |
| 1590 | static int spi_stop_queue(struct spi_controller *ctlr) |
| 1591 | { |
| 1592 | unsigned long flags; |
| 1593 | unsigned limit = 500; |
| 1594 | int ret = 0; |
| 1595 | |
| 1596 | spin_lock_irqsave(&ctlr->queue_lock, flags); |
| 1597 | |
| 1598 | /* |
| 1599 | * This is a bit lame, but is optimized for the common execution path. |
| 1600 | * A wait_queue on the ctlr->busy could be used, but then the common |
| 1601 | * execution path (pump_messages) would be required to call wake_up or |
| 1602 | * friends on every SPI message. Do this instead. |
| 1603 | */ |
| 1604 | while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { |
| 1605 | spin_unlock_irqrestore(&ctlr->queue_lock, flags); |
| 1606 | usleep_range(10000, 11000); |
| 1607 | spin_lock_irqsave(&ctlr->queue_lock, flags); |
| 1608 | } |
| 1609 | |
| 1610 | if (!list_empty(&ctlr->queue) || ctlr->busy) |
| 1611 | ret = -EBUSY; |
| 1612 | else |
| 1613 | ctlr->running = false; |
| 1614 | |
| 1615 | spin_unlock_irqrestore(&ctlr->queue_lock, flags); |
| 1616 | |
| 1617 | if (ret) { |
| 1618 | dev_warn(&ctlr->dev, "could not stop message queue\n"); |
| 1619 | return ret; |
| 1620 | } |
| 1621 | return ret; |
| 1622 | } |
| 1623 | |
| 1624 | static int spi_destroy_queue(struct spi_controller *ctlr) |
| 1625 | { |
| 1626 | int ret; |
| 1627 | |
| 1628 | ret = spi_stop_queue(ctlr); |
| 1629 | |
| 1630 | /* |
| 1631 | * kthread_flush_worker will block until all work is done. |
| 1632 | * If the reason that stop_queue timed out is that the work will never |
| 1633 | * finish, then it does no good to call flush/stop thread, so |
| 1634 | * return anyway. |
| 1635 | */ |
| 1636 | if (ret) { |
| 1637 | dev_err(&ctlr->dev, "problem destroying queue\n"); |
| 1638 | return ret; |
| 1639 | } |
| 1640 | |
| 1641 | kthread_flush_worker(&ctlr->kworker); |
| 1642 | kthread_stop(ctlr->kworker_task); |
| 1643 | |
| 1644 | return 0; |
| 1645 | } |
| 1646 | |
| 1647 | static int __spi_queued_transfer(struct spi_device *spi, |
| 1648 | struct spi_message *msg, |
| 1649 | bool need_pump) |
| 1650 | { |
| 1651 | struct spi_controller *ctlr = spi->controller; |
| 1652 | unsigned long flags; |
| 1653 | |
| 1654 | spin_lock_irqsave(&ctlr->queue_lock, flags); |
| 1655 | |
| 1656 | if (!ctlr->running) { |
| 1657 | spin_unlock_irqrestore(&ctlr->queue_lock, flags); |
| 1658 | return -ESHUTDOWN; |
| 1659 | } |
| 1660 | msg->actual_length = 0; |
| 1661 | msg->status = -EINPROGRESS; |
| 1662 | |
| 1663 | list_add_tail(&msg->queue, &ctlr->queue); |
| 1664 | if (!ctlr->busy && need_pump) |
| 1665 | kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); |
| 1666 | |
| 1667 | spin_unlock_irqrestore(&ctlr->queue_lock, flags); |
| 1668 | return 0; |
| 1669 | } |
| 1670 | |
| 1671 | /** |
| 1672 | * spi_queued_transfer - transfer function for queued transfers |
| 1673 | * @spi: spi device which is requesting transfer |
| 1674 | * @msg: spi message which is to handled is queued to driver queue |
| 1675 | * |
| 1676 | * Return: zero on success, else a negative error code. |
| 1677 | */ |
| 1678 | static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) |
| 1679 | { |
| 1680 | return __spi_queued_transfer(spi, msg, true); |
| 1681 | } |
| 1682 | |
| 1683 | static int spi_controller_initialize_queue(struct spi_controller *ctlr) |
| 1684 | { |
| 1685 | int ret; |
| 1686 | |
| 1687 | ctlr->transfer = spi_queued_transfer; |
| 1688 | if (!ctlr->transfer_one_message) |
| 1689 | ctlr->transfer_one_message = spi_transfer_one_message; |
| 1690 | |
| 1691 | /* Initialize and start queue */ |
| 1692 | ret = spi_init_queue(ctlr); |
| 1693 | if (ret) { |
| 1694 | dev_err(&ctlr->dev, "problem initializing queue\n"); |
| 1695 | goto err_init_queue; |
| 1696 | } |
| 1697 | ctlr->queued = true; |
| 1698 | ret = spi_start_queue(ctlr); |
| 1699 | if (ret) { |
| 1700 | dev_err(&ctlr->dev, "problem starting queue\n"); |
| 1701 | goto err_start_queue; |
| 1702 | } |
| 1703 | |
| 1704 | return 0; |
| 1705 | |
| 1706 | err_start_queue: |
| 1707 | spi_destroy_queue(ctlr); |
| 1708 | err_init_queue: |
| 1709 | return ret; |
| 1710 | } |
| 1711 | |
| 1712 | /** |
| 1713 | * spi_flush_queue - Send all pending messages in the queue from the callers' |
| 1714 | * context |
| 1715 | * @ctlr: controller to process queue for |
| 1716 | * |
| 1717 | * This should be used when one wants to ensure all pending messages have been |
| 1718 | * sent before doing something. Is used by the spi-mem code to make sure SPI |
| 1719 | * memory operations do not preempt regular SPI transfers that have been queued |
| 1720 | * before the spi-mem operation. |
| 1721 | */ |
| 1722 | void spi_flush_queue(struct spi_controller *ctlr) |
| 1723 | { |
| 1724 | if (ctlr->transfer == spi_queued_transfer) |
| 1725 | __spi_pump_messages(ctlr, false); |
| 1726 | } |
| 1727 | |
| 1728 | /*-------------------------------------------------------------------------*/ |
| 1729 | |
| 1730 | #if defined(CONFIG_OF) |
| 1731 | static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, |
| 1732 | struct device_node *nc) |
| 1733 | { |
| 1734 | u32 value; |
| 1735 | int rc; |
| 1736 | |
| 1737 | /* Mode (clock phase/polarity/etc.) */ |
| 1738 | if (of_property_read_bool(nc, "spi-cpha")) |
| 1739 | spi->mode |= SPI_CPHA; |
| 1740 | if (of_property_read_bool(nc, "spi-cpol")) |
| 1741 | spi->mode |= SPI_CPOL; |
| 1742 | if (of_property_read_bool(nc, "spi-3wire")) |
| 1743 | spi->mode |= SPI_3WIRE; |
| 1744 | if (of_property_read_bool(nc, "spi-lsb-first")) |
| 1745 | spi->mode |= SPI_LSB_FIRST; |
| 1746 | if (of_property_read_bool(nc, "spi-cs-high")) |
| 1747 | spi->mode |= SPI_CS_HIGH; |
| 1748 | |
| 1749 | /* Device DUAL/QUAD mode */ |
| 1750 | if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { |
| 1751 | switch (value) { |
| 1752 | case 1: |
| 1753 | break; |
| 1754 | case 2: |
| 1755 | spi->mode |= SPI_TX_DUAL; |
| 1756 | break; |
| 1757 | case 4: |
| 1758 | spi->mode |= SPI_TX_QUAD; |
| 1759 | break; |
| 1760 | case 8: |
| 1761 | spi->mode |= SPI_TX_OCTAL; |
| 1762 | break; |
| 1763 | default: |
| 1764 | dev_warn(&ctlr->dev, |
| 1765 | "spi-tx-bus-width %d not supported\n", |
| 1766 | value); |
| 1767 | break; |
| 1768 | } |
| 1769 | } |
| 1770 | |
| 1771 | if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { |
| 1772 | switch (value) { |
| 1773 | case 1: |
| 1774 | break; |
| 1775 | case 2: |
| 1776 | spi->mode |= SPI_RX_DUAL; |
| 1777 | break; |
| 1778 | case 4: |
| 1779 | spi->mode |= SPI_RX_QUAD; |
| 1780 | break; |
| 1781 | case 8: |
| 1782 | spi->mode |= SPI_RX_OCTAL; |
| 1783 | break; |
| 1784 | default: |
| 1785 | dev_warn(&ctlr->dev, |
| 1786 | "spi-rx-bus-width %d not supported\n", |
| 1787 | value); |
| 1788 | break; |
| 1789 | } |
| 1790 | } |
| 1791 | |
| 1792 | if (spi_controller_is_slave(ctlr)) { |
| 1793 | if (!of_node_name_eq(nc, "slave")) { |
| 1794 | dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", |
| 1795 | nc); |
| 1796 | return -EINVAL; |
| 1797 | } |
| 1798 | return 0; |
| 1799 | } |
| 1800 | |
| 1801 | /* Device address */ |
| 1802 | rc = of_property_read_u32(nc, "reg", &value); |
| 1803 | if (rc) { |
| 1804 | dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", |
| 1805 | nc, rc); |
| 1806 | return rc; |
| 1807 | } |
| 1808 | spi->chip_select = value; |
| 1809 | |
| 1810 | /* |
| 1811 | * For descriptors associated with the device, polarity inversion is |
| 1812 | * handled in the gpiolib, so all gpio chip selects are "active high" |
| 1813 | * in the logical sense, the gpiolib will invert the line if need be. |
| 1814 | */ |
| 1815 | if ((ctlr->use_gpio_descriptors) && ctlr->cs_gpiods && |
| 1816 | ctlr->cs_gpiods[spi->chip_select]) |
| 1817 | spi->mode |= SPI_CS_HIGH; |
| 1818 | |
| 1819 | /* Device speed */ |
| 1820 | rc = of_property_read_u32(nc, "spi-max-frequency", &value); |
| 1821 | if (rc) { |
| 1822 | dev_err(&ctlr->dev, |
| 1823 | "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc); |
| 1824 | return rc; |
| 1825 | } |
| 1826 | spi->max_speed_hz = value; |
| 1827 | |
| 1828 | return 0; |
| 1829 | } |
| 1830 | |
| 1831 | static struct spi_device * |
| 1832 | of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) |
| 1833 | { |
| 1834 | struct spi_device *spi; |
| 1835 | int rc; |
| 1836 | |
| 1837 | /* Alloc an spi_device */ |
| 1838 | spi = spi_alloc_device(ctlr); |
| 1839 | if (!spi) { |
| 1840 | dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); |
| 1841 | rc = -ENOMEM; |
| 1842 | goto err_out; |
| 1843 | } |
| 1844 | |
| 1845 | /* Select device driver */ |
| 1846 | rc = of_modalias_node(nc, spi->modalias, |
| 1847 | sizeof(spi->modalias)); |
| 1848 | if (rc < 0) { |
| 1849 | dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); |
| 1850 | goto err_out; |
| 1851 | } |
| 1852 | |
| 1853 | rc = of_spi_parse_dt(ctlr, spi, nc); |
| 1854 | if (rc) |
| 1855 | goto err_out; |
| 1856 | |
| 1857 | /* Store a pointer to the node in the device structure */ |
| 1858 | of_node_get(nc); |
| 1859 | spi->dev.of_node = nc; |
| 1860 | spi->dev.fwnode = of_fwnode_handle(nc); |
| 1861 | |
| 1862 | /* Register the new device */ |
| 1863 | rc = spi_add_device(spi); |
| 1864 | if (rc) { |
| 1865 | dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); |
| 1866 | goto err_of_node_put; |
| 1867 | } |
| 1868 | |
| 1869 | return spi; |
| 1870 | |
| 1871 | err_of_node_put: |
| 1872 | of_node_put(nc); |
| 1873 | err_out: |
| 1874 | spi_dev_put(spi); |
| 1875 | return ERR_PTR(rc); |
| 1876 | } |
| 1877 | |
| 1878 | /** |
| 1879 | * of_register_spi_devices() - Register child devices onto the SPI bus |
| 1880 | * @ctlr: Pointer to spi_controller device |
| 1881 | * |
| 1882 | * Registers an spi_device for each child node of controller node which |
| 1883 | * represents a valid SPI slave. |
| 1884 | */ |
| 1885 | static void of_register_spi_devices(struct spi_controller *ctlr) |
| 1886 | { |
| 1887 | struct spi_device *spi; |
| 1888 | struct device_node *nc; |
| 1889 | |
| 1890 | if (!ctlr->dev.of_node) |
| 1891 | return; |
| 1892 | |
| 1893 | for_each_available_child_of_node(ctlr->dev.of_node, nc) { |
| 1894 | if (of_node_test_and_set_flag(nc, OF_POPULATED)) |
| 1895 | continue; |
| 1896 | spi = of_register_spi_device(ctlr, nc); |
| 1897 | if (IS_ERR(spi)) { |
| 1898 | dev_warn(&ctlr->dev, |
| 1899 | "Failed to create SPI device for %pOF\n", nc); |
| 1900 | of_node_clear_flag(nc, OF_POPULATED); |
| 1901 | } |
| 1902 | } |
| 1903 | } |
| 1904 | #else |
| 1905 | static void of_register_spi_devices(struct spi_controller *ctlr) { } |
| 1906 | #endif |
| 1907 | |
| 1908 | #ifdef CONFIG_ACPI |
| 1909 | struct acpi_spi_lookup { |
| 1910 | struct spi_controller *ctlr; |
| 1911 | u32 max_speed_hz; |
| 1912 | u32 mode; |
| 1913 | int irq; |
| 1914 | u8 bits_per_word; |
| 1915 | u8 chip_select; |
| 1916 | }; |
| 1917 | |
| 1918 | static void acpi_spi_parse_apple_properties(struct acpi_device *dev, |
| 1919 | struct acpi_spi_lookup *lookup) |
| 1920 | { |
| 1921 | const union acpi_object *obj; |
| 1922 | |
| 1923 | if (!x86_apple_machine) |
| 1924 | return; |
| 1925 | |
| 1926 | if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) |
| 1927 | && obj->buffer.length >= 4) |
| 1928 | lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; |
| 1929 | |
| 1930 | if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) |
| 1931 | && obj->buffer.length == 8) |
| 1932 | lookup->bits_per_word = *(u64 *)obj->buffer.pointer; |
| 1933 | |
| 1934 | if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) |
| 1935 | && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) |
| 1936 | lookup->mode |= SPI_LSB_FIRST; |
| 1937 | |
| 1938 | if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) |
| 1939 | && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) |
| 1940 | lookup->mode |= SPI_CPOL; |
| 1941 | |
| 1942 | if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) |
| 1943 | && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) |
| 1944 | lookup->mode |= SPI_CPHA; |
| 1945 | } |
| 1946 | |
| 1947 | static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) |
| 1948 | { |
| 1949 | struct acpi_spi_lookup *lookup = data; |
| 1950 | struct spi_controller *ctlr = lookup->ctlr; |
| 1951 | |
| 1952 | if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { |
| 1953 | struct acpi_resource_spi_serialbus *sb; |
| 1954 | acpi_handle parent_handle; |
| 1955 | acpi_status status; |
| 1956 | |
| 1957 | sb = &ares->data.spi_serial_bus; |
| 1958 | if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { |
| 1959 | |
| 1960 | status = acpi_get_handle(NULL, |
| 1961 | sb->resource_source.string_ptr, |
| 1962 | &parent_handle); |
| 1963 | |
| 1964 | if (ACPI_FAILURE(status) || |
| 1965 | ACPI_HANDLE(ctlr->dev.parent) != parent_handle) |
| 1966 | return -ENODEV; |
| 1967 | |
| 1968 | /* |
| 1969 | * ACPI DeviceSelection numbering is handled by the |
| 1970 | * host controller driver in Windows and can vary |
| 1971 | * from driver to driver. In Linux we always expect |
| 1972 | * 0 .. max - 1 so we need to ask the driver to |
| 1973 | * translate between the two schemes. |
| 1974 | */ |
| 1975 | if (ctlr->fw_translate_cs) { |
| 1976 | int cs = ctlr->fw_translate_cs(ctlr, |
| 1977 | sb->device_selection); |
| 1978 | if (cs < 0) |
| 1979 | return cs; |
| 1980 | lookup->chip_select = cs; |
| 1981 | } else { |
| 1982 | lookup->chip_select = sb->device_selection; |
| 1983 | } |
| 1984 | |
| 1985 | lookup->max_speed_hz = sb->connection_speed; |
| 1986 | lookup->bits_per_word = sb->data_bit_length; |
| 1987 | |
| 1988 | if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) |
| 1989 | lookup->mode |= SPI_CPHA; |
| 1990 | if (sb->clock_polarity == ACPI_SPI_START_HIGH) |
| 1991 | lookup->mode |= SPI_CPOL; |
| 1992 | if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) |
| 1993 | lookup->mode |= SPI_CS_HIGH; |
| 1994 | } |
| 1995 | } else if (lookup->irq < 0) { |
| 1996 | struct resource r; |
| 1997 | |
| 1998 | if (acpi_dev_resource_interrupt(ares, 0, &r)) |
| 1999 | lookup->irq = r.start; |
| 2000 | } |
| 2001 | |
| 2002 | /* Always tell the ACPI core to skip this resource */ |
| 2003 | return 1; |
| 2004 | } |
| 2005 | |
| 2006 | static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, |
| 2007 | struct acpi_device *adev) |
| 2008 | { |
| 2009 | acpi_handle parent_handle = NULL; |
| 2010 | struct list_head resource_list; |
| 2011 | struct acpi_spi_lookup lookup = {}; |
| 2012 | struct spi_device *spi; |
| 2013 | int ret; |
| 2014 | |
| 2015 | if (acpi_bus_get_status(adev) || !adev->status.present || |
| 2016 | acpi_device_enumerated(adev)) |
| 2017 | return AE_OK; |
| 2018 | |
| 2019 | lookup.ctlr = ctlr; |
| 2020 | lookup.irq = -1; |
| 2021 | |
| 2022 | INIT_LIST_HEAD(&resource_list); |
| 2023 | ret = acpi_dev_get_resources(adev, &resource_list, |
| 2024 | acpi_spi_add_resource, &lookup); |
| 2025 | acpi_dev_free_resource_list(&resource_list); |
| 2026 | |
| 2027 | if (ret < 0) |
| 2028 | /* found SPI in _CRS but it points to another controller */ |
| 2029 | return AE_OK; |
| 2030 | |
| 2031 | if (!lookup.max_speed_hz && |
| 2032 | !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) && |
| 2033 | ACPI_HANDLE(ctlr->dev.parent) == parent_handle) { |
| 2034 | /* Apple does not use _CRS but nested devices for SPI slaves */ |
| 2035 | acpi_spi_parse_apple_properties(adev, &lookup); |
| 2036 | } |
| 2037 | |
| 2038 | if (!lookup.max_speed_hz) |
| 2039 | return AE_OK; |
| 2040 | |
| 2041 | spi = spi_alloc_device(ctlr); |
| 2042 | if (!spi) { |
| 2043 | dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n", |
| 2044 | dev_name(&adev->dev)); |
| 2045 | return AE_NO_MEMORY; |
| 2046 | } |
| 2047 | |
| 2048 | ACPI_COMPANION_SET(&spi->dev, adev); |
| 2049 | spi->max_speed_hz = lookup.max_speed_hz; |
| 2050 | spi->mode = lookup.mode; |
| 2051 | spi->irq = lookup.irq; |
| 2052 | spi->bits_per_word = lookup.bits_per_word; |
| 2053 | spi->chip_select = lookup.chip_select; |
| 2054 | |
| 2055 | acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, |
| 2056 | sizeof(spi->modalias)); |
| 2057 | |
| 2058 | acpi_device_set_enumerated(adev); |
| 2059 | |
| 2060 | adev->power.flags.ignore_parent = true; |
| 2061 | if (spi_add_device(spi)) { |
| 2062 | adev->power.flags.ignore_parent = false; |
| 2063 | dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", |
| 2064 | dev_name(&adev->dev)); |
| 2065 | spi_dev_put(spi); |
| 2066 | } |
| 2067 | |
| 2068 | return AE_OK; |
| 2069 | } |
| 2070 | |
| 2071 | static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, |
| 2072 | void *data, void **return_value) |
| 2073 | { |
| 2074 | struct spi_controller *ctlr = data; |
| 2075 | struct acpi_device *adev; |
| 2076 | |
| 2077 | if (acpi_bus_get_device(handle, &adev)) |
| 2078 | return AE_OK; |
| 2079 | |
| 2080 | return acpi_register_spi_device(ctlr, adev); |
| 2081 | } |
| 2082 | |
| 2083 | #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 |
| 2084 | |
| 2085 | static void acpi_register_spi_devices(struct spi_controller *ctlr) |
| 2086 | { |
| 2087 | acpi_status status; |
| 2088 | acpi_handle handle; |
| 2089 | |
| 2090 | handle = ACPI_HANDLE(ctlr->dev.parent); |
| 2091 | if (!handle) |
| 2092 | return; |
| 2093 | |
| 2094 | status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, |
| 2095 | SPI_ACPI_ENUMERATE_MAX_DEPTH, |
| 2096 | acpi_spi_add_device, NULL, ctlr, NULL); |
| 2097 | if (ACPI_FAILURE(status)) |
| 2098 | dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); |
| 2099 | } |
| 2100 | #else |
| 2101 | static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} |
| 2102 | #endif /* CONFIG_ACPI */ |
| 2103 | |
| 2104 | static void spi_controller_release(struct device *dev) |
| 2105 | { |
| 2106 | struct spi_controller *ctlr; |
| 2107 | |
| 2108 | ctlr = container_of(dev, struct spi_controller, dev); |
| 2109 | kfree(ctlr); |
| 2110 | } |
| 2111 | |
| 2112 | static struct class spi_master_class = { |
| 2113 | .name = "spi_master", |
| 2114 | .owner = THIS_MODULE, |
| 2115 | .dev_release = spi_controller_release, |
| 2116 | .dev_groups = spi_master_groups, |
| 2117 | }; |
| 2118 | |
| 2119 | #ifdef CONFIG_SPI_SLAVE |
| 2120 | /** |
| 2121 | * spi_slave_abort - abort the ongoing transfer request on an SPI slave |
| 2122 | * controller |
| 2123 | * @spi: device used for the current transfer |
| 2124 | */ |
| 2125 | int spi_slave_abort(struct spi_device *spi) |
| 2126 | { |
| 2127 | struct spi_controller *ctlr = spi->controller; |
| 2128 | |
| 2129 | if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) |
| 2130 | return ctlr->slave_abort(ctlr); |
| 2131 | |
| 2132 | return -ENOTSUPP; |
| 2133 | } |
| 2134 | EXPORT_SYMBOL_GPL(spi_slave_abort); |
| 2135 | |
| 2136 | static int match_true(struct device *dev, void *data) |
| 2137 | { |
| 2138 | return 1; |
| 2139 | } |
| 2140 | |
| 2141 | static ssize_t slave_show(struct device *dev, struct device_attribute *attr, |
| 2142 | char *buf) |
| 2143 | { |
| 2144 | struct spi_controller *ctlr = container_of(dev, struct spi_controller, |
| 2145 | dev); |
| 2146 | struct device *child; |
| 2147 | |
| 2148 | child = device_find_child(&ctlr->dev, NULL, match_true); |
| 2149 | return sprintf(buf, "%s\n", |
| 2150 | child ? to_spi_device(child)->modalias : NULL); |
| 2151 | } |
| 2152 | |
| 2153 | static ssize_t slave_store(struct device *dev, struct device_attribute *attr, |
| 2154 | const char *buf, size_t count) |
| 2155 | { |
| 2156 | struct spi_controller *ctlr = container_of(dev, struct spi_controller, |
| 2157 | dev); |
| 2158 | struct spi_device *spi; |
| 2159 | struct device *child; |
| 2160 | char name[32]; |
| 2161 | int rc; |
| 2162 | |
| 2163 | rc = sscanf(buf, "%31s", name); |
| 2164 | if (rc != 1 || !name[0]) |
| 2165 | return -EINVAL; |
| 2166 | |
| 2167 | child = device_find_child(&ctlr->dev, NULL, match_true); |
| 2168 | if (child) { |
| 2169 | /* Remove registered slave */ |
| 2170 | device_unregister(child); |
| 2171 | put_device(child); |
| 2172 | } |
| 2173 | |
| 2174 | if (strcmp(name, "(null)")) { |
| 2175 | /* Register new slave */ |
| 2176 | spi = spi_alloc_device(ctlr); |
| 2177 | if (!spi) |
| 2178 | return -ENOMEM; |
| 2179 | |
| 2180 | strlcpy(spi->modalias, name, sizeof(spi->modalias)); |
| 2181 | |
| 2182 | rc = spi_add_device(spi); |
| 2183 | if (rc) { |
| 2184 | spi_dev_put(spi); |
| 2185 | return rc; |
| 2186 | } |
| 2187 | } |
| 2188 | |
| 2189 | return count; |
| 2190 | } |
| 2191 | |
| 2192 | static DEVICE_ATTR_RW(slave); |
| 2193 | |
| 2194 | static struct attribute *spi_slave_attrs[] = { |
| 2195 | &dev_attr_slave.attr, |
| 2196 | NULL, |
| 2197 | }; |
| 2198 | |
| 2199 | static const struct attribute_group spi_slave_group = { |
| 2200 | .attrs = spi_slave_attrs, |
| 2201 | }; |
| 2202 | |
| 2203 | static const struct attribute_group *spi_slave_groups[] = { |
| 2204 | &spi_controller_statistics_group, |
| 2205 | &spi_slave_group, |
| 2206 | NULL, |
| 2207 | }; |
| 2208 | |
| 2209 | static struct class spi_slave_class = { |
| 2210 | .name = "spi_slave", |
| 2211 | .owner = THIS_MODULE, |
| 2212 | .dev_release = spi_controller_release, |
| 2213 | .dev_groups = spi_slave_groups, |
| 2214 | }; |
| 2215 | #else |
| 2216 | extern struct class spi_slave_class; /* dummy */ |
| 2217 | #endif |
| 2218 | |
| 2219 | /** |
| 2220 | * __spi_alloc_controller - allocate an SPI master or slave controller |
| 2221 | * @dev: the controller, possibly using the platform_bus |
| 2222 | * @size: how much zeroed driver-private data to allocate; the pointer to this |
| 2223 | * memory is in the driver_data field of the returned device, accessible |
| 2224 | * with spi_controller_get_devdata(); the memory is cacheline aligned; |
| 2225 | * drivers granting DMA access to portions of their private data need to |
| 2226 | * round up @size using ALIGN(size, dma_get_cache_alignment()). |
| 2227 | * @slave: flag indicating whether to allocate an SPI master (false) or SPI |
| 2228 | * slave (true) controller |
| 2229 | * Context: can sleep |
| 2230 | * |
| 2231 | * This call is used only by SPI controller drivers, which are the |
| 2232 | * only ones directly touching chip registers. It's how they allocate |
| 2233 | * an spi_controller structure, prior to calling spi_register_controller(). |
| 2234 | * |
| 2235 | * This must be called from context that can sleep. |
| 2236 | * |
| 2237 | * The caller is responsible for assigning the bus number and initializing the |
| 2238 | * controller's methods before calling spi_register_controller(); and (after |
| 2239 | * errors adding the device) calling spi_controller_put() to prevent a memory |
| 2240 | * leak. |
| 2241 | * |
| 2242 | * Return: the SPI controller structure on success, else NULL. |
| 2243 | */ |
| 2244 | struct spi_controller *__spi_alloc_controller(struct device *dev, |
| 2245 | unsigned int size, bool slave) |
| 2246 | { |
| 2247 | struct spi_controller *ctlr; |
| 2248 | size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); |
| 2249 | |
| 2250 | if (!dev) |
| 2251 | return NULL; |
| 2252 | |
| 2253 | ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); |
| 2254 | if (!ctlr) |
| 2255 | return NULL; |
| 2256 | |
| 2257 | device_initialize(&ctlr->dev); |
| 2258 | ctlr->bus_num = -1; |
| 2259 | ctlr->num_chipselect = 1; |
| 2260 | ctlr->slave = slave; |
| 2261 | if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) |
| 2262 | ctlr->dev.class = &spi_slave_class; |
| 2263 | else |
| 2264 | ctlr->dev.class = &spi_master_class; |
| 2265 | ctlr->dev.parent = dev; |
| 2266 | pm_suspend_ignore_children(&ctlr->dev, true); |
| 2267 | spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); |
| 2268 | |
| 2269 | return ctlr; |
| 2270 | } |
| 2271 | EXPORT_SYMBOL_GPL(__spi_alloc_controller); |
| 2272 | |
| 2273 | static void devm_spi_release_controller(struct device *dev, void *ctlr) |
| 2274 | { |
| 2275 | spi_controller_put(*(struct spi_controller **)ctlr); |
| 2276 | } |
| 2277 | |
| 2278 | /** |
| 2279 | * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() |
| 2280 | * @dev: physical device of SPI controller |
| 2281 | * @size: how much zeroed driver-private data to allocate |
| 2282 | * @slave: whether to allocate an SPI master (false) or SPI slave (true) |
| 2283 | * Context: can sleep |
| 2284 | * |
| 2285 | * Allocate an SPI controller and automatically release a reference on it |
| 2286 | * when @dev is unbound from its driver. Drivers are thus relieved from |
| 2287 | * having to call spi_controller_put(). |
| 2288 | * |
| 2289 | * The arguments to this function are identical to __spi_alloc_controller(). |
| 2290 | * |
| 2291 | * Return: the SPI controller structure on success, else NULL. |
| 2292 | */ |
| 2293 | struct spi_controller *__devm_spi_alloc_controller(struct device *dev, |
| 2294 | unsigned int size, |
| 2295 | bool slave) |
| 2296 | { |
| 2297 | struct spi_controller **ptr, *ctlr; |
| 2298 | |
| 2299 | ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), |
| 2300 | GFP_KERNEL); |
| 2301 | if (!ptr) |
| 2302 | return NULL; |
| 2303 | |
| 2304 | ctlr = __spi_alloc_controller(dev, size, slave); |
| 2305 | if (ctlr) { |
| 2306 | ctlr->devm_allocated = true; |
| 2307 | *ptr = ctlr; |
| 2308 | devres_add(dev, ptr); |
| 2309 | } else { |
| 2310 | devres_free(ptr); |
| 2311 | } |
| 2312 | |
| 2313 | return ctlr; |
| 2314 | } |
| 2315 | EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); |
| 2316 | |
| 2317 | #ifdef CONFIG_OF |
| 2318 | static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) |
| 2319 | { |
| 2320 | int nb, i, *cs; |
| 2321 | struct device_node *np = ctlr->dev.of_node; |
| 2322 | |
| 2323 | if (!np) |
| 2324 | return 0; |
| 2325 | |
| 2326 | nb = of_gpio_named_count(np, "cs-gpios"); |
| 2327 | ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); |
| 2328 | |
| 2329 | /* Return error only for an incorrectly formed cs-gpios property */ |
| 2330 | if (nb == 0 || nb == -ENOENT) |
| 2331 | return 0; |
| 2332 | else if (nb < 0) |
| 2333 | return nb; |
| 2334 | |
| 2335 | cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int), |
| 2336 | GFP_KERNEL); |
| 2337 | ctlr->cs_gpios = cs; |
| 2338 | |
| 2339 | if (!ctlr->cs_gpios) |
| 2340 | return -ENOMEM; |
| 2341 | |
| 2342 | for (i = 0; i < ctlr->num_chipselect; i++) |
| 2343 | cs[i] = -ENOENT; |
| 2344 | |
| 2345 | for (i = 0; i < nb; i++) |
| 2346 | cs[i] = of_get_named_gpio(np, "cs-gpios", i); |
| 2347 | |
| 2348 | return 0; |
| 2349 | } |
| 2350 | #else |
| 2351 | static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) |
| 2352 | { |
| 2353 | return 0; |
| 2354 | } |
| 2355 | #endif |
| 2356 | |
| 2357 | /** |
| 2358 | * spi_get_gpio_descs() - grab chip select GPIOs for the master |
| 2359 | * @ctlr: The SPI master to grab GPIO descriptors for |
| 2360 | */ |
| 2361 | static int spi_get_gpio_descs(struct spi_controller *ctlr) |
| 2362 | { |
| 2363 | int nb, i; |
| 2364 | struct gpio_desc **cs; |
| 2365 | struct device *dev = &ctlr->dev; |
| 2366 | |
| 2367 | nb = gpiod_count(dev, "cs"); |
| 2368 | ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); |
| 2369 | |
| 2370 | /* No GPIOs at all is fine, else return the error */ |
| 2371 | if (nb == 0 || nb == -ENOENT) |
| 2372 | return 0; |
| 2373 | else if (nb < 0) |
| 2374 | return nb; |
| 2375 | |
| 2376 | cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), |
| 2377 | GFP_KERNEL); |
| 2378 | if (!cs) |
| 2379 | return -ENOMEM; |
| 2380 | ctlr->cs_gpiods = cs; |
| 2381 | |
| 2382 | for (i = 0; i < nb; i++) { |
| 2383 | /* |
| 2384 | * Most chipselects are active low, the inverted |
| 2385 | * semantics are handled by special quirks in gpiolib, |
| 2386 | * so initializing them GPIOD_OUT_LOW here means |
| 2387 | * "unasserted", in most cases this will drive the physical |
| 2388 | * line high. |
| 2389 | */ |
| 2390 | cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, |
| 2391 | GPIOD_OUT_LOW); |
| 2392 | if (IS_ERR(cs[i])) |
| 2393 | return PTR_ERR(cs[i]); |
| 2394 | |
| 2395 | if (cs[i]) { |
| 2396 | /* |
| 2397 | * If we find a CS GPIO, name it after the device and |
| 2398 | * chip select line. |
| 2399 | */ |
| 2400 | char *gpioname; |
| 2401 | |
| 2402 | gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", |
| 2403 | dev_name(dev), i); |
| 2404 | if (!gpioname) |
| 2405 | return -ENOMEM; |
| 2406 | gpiod_set_consumer_name(cs[i], gpioname); |
| 2407 | } |
| 2408 | } |
| 2409 | |
| 2410 | return 0; |
| 2411 | } |
| 2412 | |
| 2413 | static int spi_controller_check_ops(struct spi_controller *ctlr) |
| 2414 | { |
| 2415 | /* |
| 2416 | * The controller may implement only the high-level SPI-memory like |
| 2417 | * operations if it does not support regular SPI transfers, and this is |
| 2418 | * valid use case. |
| 2419 | * If ->mem_ops is NULL, we request that at least one of the |
| 2420 | * ->transfer_xxx() method be implemented. |
| 2421 | */ |
| 2422 | if (ctlr->mem_ops) { |
| 2423 | if (!ctlr->mem_ops->exec_op) |
| 2424 | return -EINVAL; |
| 2425 | } else if (!ctlr->transfer && !ctlr->transfer_one && |
| 2426 | !ctlr->transfer_one_message) { |
| 2427 | return -EINVAL; |
| 2428 | } |
| 2429 | |
| 2430 | return 0; |
| 2431 | } |
| 2432 | |
| 2433 | /** |
| 2434 | * spi_register_controller - register SPI master or slave controller |
| 2435 | * @ctlr: initialized master, originally from spi_alloc_master() or |
| 2436 | * spi_alloc_slave() |
| 2437 | * Context: can sleep |
| 2438 | * |
| 2439 | * SPI controllers connect to their drivers using some non-SPI bus, |
| 2440 | * such as the platform bus. The final stage of probe() in that code |
| 2441 | * includes calling spi_register_controller() to hook up to this SPI bus glue. |
| 2442 | * |
| 2443 | * SPI controllers use board specific (often SOC specific) bus numbers, |
| 2444 | * and board-specific addressing for SPI devices combines those numbers |
| 2445 | * with chip select numbers. Since SPI does not directly support dynamic |
| 2446 | * device identification, boards need configuration tables telling which |
| 2447 | * chip is at which address. |
| 2448 | * |
| 2449 | * This must be called from context that can sleep. It returns zero on |
| 2450 | * success, else a negative error code (dropping the controller's refcount). |
| 2451 | * After a successful return, the caller is responsible for calling |
| 2452 | * spi_unregister_controller(). |
| 2453 | * |
| 2454 | * Return: zero on success, else a negative error code. |
| 2455 | */ |
| 2456 | int spi_register_controller(struct spi_controller *ctlr) |
| 2457 | { |
| 2458 | struct device *dev = ctlr->dev.parent; |
| 2459 | struct boardinfo *bi; |
| 2460 | int status; |
| 2461 | int id, first_dynamic; |
| 2462 | |
| 2463 | if (!dev) |
| 2464 | return -ENODEV; |
| 2465 | |
| 2466 | /* |
| 2467 | * Make sure all necessary hooks are implemented before registering |
| 2468 | * the SPI controller. |
| 2469 | */ |
| 2470 | status = spi_controller_check_ops(ctlr); |
| 2471 | if (status) |
| 2472 | return status; |
| 2473 | |
| 2474 | if (ctlr->bus_num >= 0) { |
| 2475 | /* devices with a fixed bus num must check-in with the num */ |
| 2476 | mutex_lock(&board_lock); |
| 2477 | id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, |
| 2478 | ctlr->bus_num + 1, GFP_KERNEL); |
| 2479 | mutex_unlock(&board_lock); |
| 2480 | if (WARN(id < 0, "couldn't get idr")) |
| 2481 | return id == -ENOSPC ? -EBUSY : id; |
| 2482 | ctlr->bus_num = id; |
| 2483 | } else if (ctlr->dev.of_node) { |
| 2484 | /* allocate dynamic bus number using Linux idr */ |
| 2485 | id = of_alias_get_id(ctlr->dev.of_node, "spi"); |
| 2486 | if (id >= 0) { |
| 2487 | ctlr->bus_num = id; |
| 2488 | mutex_lock(&board_lock); |
| 2489 | id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, |
| 2490 | ctlr->bus_num + 1, GFP_KERNEL); |
| 2491 | mutex_unlock(&board_lock); |
| 2492 | if (WARN(id < 0, "couldn't get idr")) |
| 2493 | return id == -ENOSPC ? -EBUSY : id; |
| 2494 | } |
| 2495 | } |
| 2496 | if (ctlr->bus_num < 0) { |
| 2497 | first_dynamic = of_alias_get_highest_id("spi"); |
| 2498 | if (first_dynamic < 0) |
| 2499 | first_dynamic = 0; |
| 2500 | else |
| 2501 | first_dynamic++; |
| 2502 | |
| 2503 | mutex_lock(&board_lock); |
| 2504 | id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, |
| 2505 | 0, GFP_KERNEL); |
| 2506 | mutex_unlock(&board_lock); |
| 2507 | if (WARN(id < 0, "couldn't get idr")) |
| 2508 | return id; |
| 2509 | ctlr->bus_num = id; |
| 2510 | } |
| 2511 | INIT_LIST_HEAD(&ctlr->queue); |
| 2512 | spin_lock_init(&ctlr->queue_lock); |
| 2513 | spin_lock_init(&ctlr->bus_lock_spinlock); |
| 2514 | mutex_init(&ctlr->bus_lock_mutex); |
| 2515 | mutex_init(&ctlr->io_mutex); |
| 2516 | mutex_init(&ctlr->add_lock); |
| 2517 | ctlr->bus_lock_flag = 0; |
| 2518 | init_completion(&ctlr->xfer_completion); |
| 2519 | if (!ctlr->max_dma_len) |
| 2520 | ctlr->max_dma_len = INT_MAX; |
| 2521 | |
| 2522 | /* register the device, then userspace will see it. |
| 2523 | * registration fails if the bus ID is in use. |
| 2524 | */ |
| 2525 | dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); |
| 2526 | |
| 2527 | if (!spi_controller_is_slave(ctlr)) { |
| 2528 | if (ctlr->use_gpio_descriptors) { |
| 2529 | status = spi_get_gpio_descs(ctlr); |
| 2530 | if (status) |
| 2531 | goto free_bus_id; |
| 2532 | /* |
| 2533 | * A controller using GPIO descriptors always |
| 2534 | * supports SPI_CS_HIGH if need be. |
| 2535 | */ |
| 2536 | ctlr->mode_bits |= SPI_CS_HIGH; |
| 2537 | } else { |
| 2538 | /* Legacy code path for GPIOs from DT */ |
| 2539 | status = of_spi_get_gpio_numbers(ctlr); |
| 2540 | if (status) |
| 2541 | goto free_bus_id; |
| 2542 | } |
| 2543 | } |
| 2544 | |
| 2545 | /* |
| 2546 | * Even if it's just one always-selected device, there must |
| 2547 | * be at least one chipselect. |
| 2548 | */ |
| 2549 | if (!ctlr->num_chipselect) { |
| 2550 | status = -EINVAL; |
| 2551 | goto free_bus_id; |
| 2552 | } |
| 2553 | |
| 2554 | status = device_add(&ctlr->dev); |
| 2555 | if (status < 0) |
| 2556 | goto free_bus_id; |
| 2557 | dev_dbg(dev, "registered %s %s\n", |
| 2558 | spi_controller_is_slave(ctlr) ? "slave" : "master", |
| 2559 | dev_name(&ctlr->dev)); |
| 2560 | |
| 2561 | /* |
| 2562 | * If we're using a queued driver, start the queue. Note that we don't |
| 2563 | * need the queueing logic if the driver is only supporting high-level |
| 2564 | * memory operations. |
| 2565 | */ |
| 2566 | if (ctlr->transfer) { |
| 2567 | dev_info(dev, "controller is unqueued, this is deprecated\n"); |
| 2568 | } else if (ctlr->transfer_one || ctlr->transfer_one_message) { |
| 2569 | status = spi_controller_initialize_queue(ctlr); |
| 2570 | if (status) { |
| 2571 | device_del(&ctlr->dev); |
| 2572 | goto free_bus_id; |
| 2573 | } |
| 2574 | } |
| 2575 | /* add statistics */ |
| 2576 | spin_lock_init(&ctlr->statistics.lock); |
| 2577 | |
| 2578 | mutex_lock(&board_lock); |
| 2579 | list_add_tail(&ctlr->list, &spi_controller_list); |
| 2580 | list_for_each_entry(bi, &board_list, list) |
| 2581 | spi_match_controller_to_boardinfo(ctlr, &bi->board_info); |
| 2582 | mutex_unlock(&board_lock); |
| 2583 | |
| 2584 | /* Register devices from the device tree and ACPI */ |
| 2585 | of_register_spi_devices(ctlr); |
| 2586 | acpi_register_spi_devices(ctlr); |
| 2587 | return status; |
| 2588 | |
| 2589 | free_bus_id: |
| 2590 | mutex_lock(&board_lock); |
| 2591 | idr_remove(&spi_master_idr, ctlr->bus_num); |
| 2592 | mutex_unlock(&board_lock); |
| 2593 | return status; |
| 2594 | } |
| 2595 | EXPORT_SYMBOL_GPL(spi_register_controller); |
| 2596 | |
| 2597 | static void devm_spi_unregister(struct device *dev, void *res) |
| 2598 | { |
| 2599 | spi_unregister_controller(*(struct spi_controller **)res); |
| 2600 | } |
| 2601 | |
| 2602 | /** |
| 2603 | * devm_spi_register_controller - register managed SPI master or slave |
| 2604 | * controller |
| 2605 | * @dev: device managing SPI controller |
| 2606 | * @ctlr: initialized controller, originally from spi_alloc_master() or |
| 2607 | * spi_alloc_slave() |
| 2608 | * Context: can sleep |
| 2609 | * |
| 2610 | * Register a SPI device as with spi_register_controller() which will |
| 2611 | * automatically be unregistered and freed. |
| 2612 | * |
| 2613 | * Return: zero on success, else a negative error code. |
| 2614 | */ |
| 2615 | int devm_spi_register_controller(struct device *dev, |
| 2616 | struct spi_controller *ctlr) |
| 2617 | { |
| 2618 | struct spi_controller **ptr; |
| 2619 | int ret; |
| 2620 | |
| 2621 | ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); |
| 2622 | if (!ptr) |
| 2623 | return -ENOMEM; |
| 2624 | |
| 2625 | ret = spi_register_controller(ctlr); |
| 2626 | if (!ret) { |
| 2627 | *ptr = ctlr; |
| 2628 | devres_add(dev, ptr); |
| 2629 | } else { |
| 2630 | devres_free(ptr); |
| 2631 | } |
| 2632 | |
| 2633 | return ret; |
| 2634 | } |
| 2635 | EXPORT_SYMBOL_GPL(devm_spi_register_controller); |
| 2636 | |
| 2637 | static int __unregister(struct device *dev, void *null) |
| 2638 | { |
| 2639 | spi_unregister_device(to_spi_device(dev)); |
| 2640 | return 0; |
| 2641 | } |
| 2642 | |
| 2643 | /** |
| 2644 | * spi_unregister_controller - unregister SPI master or slave controller |
| 2645 | * @ctlr: the controller being unregistered |
| 2646 | * Context: can sleep |
| 2647 | * |
| 2648 | * This call is used only by SPI controller drivers, which are the |
| 2649 | * only ones directly touching chip registers. |
| 2650 | * |
| 2651 | * This must be called from context that can sleep. |
| 2652 | * |
| 2653 | * Note that this function also drops a reference to the controller. |
| 2654 | */ |
| 2655 | void spi_unregister_controller(struct spi_controller *ctlr) |
| 2656 | { |
| 2657 | struct spi_controller *found; |
| 2658 | int id = ctlr->bus_num; |
| 2659 | |
| 2660 | /* Prevent addition of new devices, unregister existing ones */ |
| 2661 | if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) |
| 2662 | mutex_lock(&ctlr->add_lock); |
| 2663 | |
| 2664 | device_for_each_child(&ctlr->dev, NULL, __unregister); |
| 2665 | |
| 2666 | /* First make sure that this controller was ever added */ |
| 2667 | mutex_lock(&board_lock); |
| 2668 | found = idr_find(&spi_master_idr, id); |
| 2669 | mutex_unlock(&board_lock); |
| 2670 | if (ctlr->queued) { |
| 2671 | if (spi_destroy_queue(ctlr)) |
| 2672 | dev_err(&ctlr->dev, "queue remove failed\n"); |
| 2673 | } |
| 2674 | mutex_lock(&board_lock); |
| 2675 | list_del(&ctlr->list); |
| 2676 | mutex_unlock(&board_lock); |
| 2677 | |
| 2678 | device_del(&ctlr->dev); |
| 2679 | |
| 2680 | /* free bus id */ |
| 2681 | mutex_lock(&board_lock); |
| 2682 | if (found == ctlr) |
| 2683 | idr_remove(&spi_master_idr, id); |
| 2684 | mutex_unlock(&board_lock); |
| 2685 | |
| 2686 | if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) |
| 2687 | mutex_unlock(&ctlr->add_lock); |
| 2688 | |
| 2689 | /* Release the last reference on the controller if its driver |
| 2690 | * has not yet been converted to devm_spi_alloc_master/slave(). |
| 2691 | */ |
| 2692 | if (!ctlr->devm_allocated) |
| 2693 | put_device(&ctlr->dev); |
| 2694 | } |
| 2695 | EXPORT_SYMBOL_GPL(spi_unregister_controller); |
| 2696 | |
| 2697 | int spi_controller_suspend(struct spi_controller *ctlr) |
| 2698 | { |
| 2699 | int ret; |
| 2700 | |
| 2701 | /* Basically no-ops for non-queued controllers */ |
| 2702 | if (!ctlr->queued) |
| 2703 | return 0; |
| 2704 | |
| 2705 | ret = spi_stop_queue(ctlr); |
| 2706 | if (ret) |
| 2707 | dev_err(&ctlr->dev, "queue stop failed\n"); |
| 2708 | |
| 2709 | return ret; |
| 2710 | } |
| 2711 | EXPORT_SYMBOL_GPL(spi_controller_suspend); |
| 2712 | |
| 2713 | int spi_controller_resume(struct spi_controller *ctlr) |
| 2714 | { |
| 2715 | int ret; |
| 2716 | |
| 2717 | if (!ctlr->queued) |
| 2718 | return 0; |
| 2719 | |
| 2720 | ret = spi_start_queue(ctlr); |
| 2721 | if (ret) |
| 2722 | dev_err(&ctlr->dev, "queue restart failed\n"); |
| 2723 | |
| 2724 | return ret; |
| 2725 | } |
| 2726 | EXPORT_SYMBOL_GPL(spi_controller_resume); |
| 2727 | |
| 2728 | static int __spi_controller_match(struct device *dev, const void *data) |
| 2729 | { |
| 2730 | struct spi_controller *ctlr; |
| 2731 | const u16 *bus_num = data; |
| 2732 | |
| 2733 | ctlr = container_of(dev, struct spi_controller, dev); |
| 2734 | return ctlr->bus_num == *bus_num; |
| 2735 | } |
| 2736 | |
| 2737 | /** |
| 2738 | * spi_busnum_to_master - look up master associated with bus_num |
| 2739 | * @bus_num: the master's bus number |
| 2740 | * Context: can sleep |
| 2741 | * |
| 2742 | * This call may be used with devices that are registered after |
| 2743 | * arch init time. It returns a refcounted pointer to the relevant |
| 2744 | * spi_controller (which the caller must release), or NULL if there is |
| 2745 | * no such master registered. |
| 2746 | * |
| 2747 | * Return: the SPI master structure on success, else NULL. |
| 2748 | */ |
| 2749 | struct spi_controller *spi_busnum_to_master(u16 bus_num) |
| 2750 | { |
| 2751 | struct device *dev; |
| 2752 | struct spi_controller *ctlr = NULL; |
| 2753 | |
| 2754 | dev = class_find_device(&spi_master_class, NULL, &bus_num, |
| 2755 | __spi_controller_match); |
| 2756 | if (dev) |
| 2757 | ctlr = container_of(dev, struct spi_controller, dev); |
| 2758 | /* reference got in class_find_device */ |
| 2759 | return ctlr; |
| 2760 | } |
| 2761 | EXPORT_SYMBOL_GPL(spi_busnum_to_master); |
| 2762 | |
| 2763 | /*-------------------------------------------------------------------------*/ |
| 2764 | |
| 2765 | /* Core methods for SPI resource management */ |
| 2766 | |
| 2767 | /** |
| 2768 | * spi_res_alloc - allocate a spi resource that is life-cycle managed |
| 2769 | * during the processing of a spi_message while using |
| 2770 | * spi_transfer_one |
| 2771 | * @spi: the spi device for which we allocate memory |
| 2772 | * @release: the release code to execute for this resource |
| 2773 | * @size: size to alloc and return |
| 2774 | * @gfp: GFP allocation flags |
| 2775 | * |
| 2776 | * Return: the pointer to the allocated data |
| 2777 | * |
| 2778 | * This may get enhanced in the future to allocate from a memory pool |
| 2779 | * of the @spi_device or @spi_controller to avoid repeated allocations. |
| 2780 | */ |
| 2781 | void *spi_res_alloc(struct spi_device *spi, |
| 2782 | spi_res_release_t release, |
| 2783 | size_t size, gfp_t gfp) |
| 2784 | { |
| 2785 | struct spi_res *sres; |
| 2786 | |
| 2787 | sres = kzalloc(sizeof(*sres) + size, gfp); |
| 2788 | if (!sres) |
| 2789 | return NULL; |
| 2790 | |
| 2791 | INIT_LIST_HEAD(&sres->entry); |
| 2792 | sres->release = release; |
| 2793 | |
| 2794 | return sres->data; |
| 2795 | } |
| 2796 | EXPORT_SYMBOL_GPL(spi_res_alloc); |
| 2797 | |
| 2798 | /** |
| 2799 | * spi_res_free - free an spi resource |
| 2800 | * @res: pointer to the custom data of a resource |
| 2801 | * |
| 2802 | */ |
| 2803 | void spi_res_free(void *res) |
| 2804 | { |
| 2805 | struct spi_res *sres = container_of(res, struct spi_res, data); |
| 2806 | |
| 2807 | if (!res) |
| 2808 | return; |
| 2809 | |
| 2810 | WARN_ON(!list_empty(&sres->entry)); |
| 2811 | kfree(sres); |
| 2812 | } |
| 2813 | EXPORT_SYMBOL_GPL(spi_res_free); |
| 2814 | |
| 2815 | /** |
| 2816 | * spi_res_add - add a spi_res to the spi_message |
| 2817 | * @message: the spi message |
| 2818 | * @res: the spi_resource |
| 2819 | */ |
| 2820 | void spi_res_add(struct spi_message *message, void *res) |
| 2821 | { |
| 2822 | struct spi_res *sres = container_of(res, struct spi_res, data); |
| 2823 | |
| 2824 | WARN_ON(!list_empty(&sres->entry)); |
| 2825 | list_add_tail(&sres->entry, &message->resources); |
| 2826 | } |
| 2827 | EXPORT_SYMBOL_GPL(spi_res_add); |
| 2828 | |
| 2829 | /** |
| 2830 | * spi_res_release - release all spi resources for this message |
| 2831 | * @ctlr: the @spi_controller |
| 2832 | * @message: the @spi_message |
| 2833 | */ |
| 2834 | void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) |
| 2835 | { |
| 2836 | struct spi_res *res, *tmp; |
| 2837 | |
| 2838 | list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { |
| 2839 | if (res->release) |
| 2840 | res->release(ctlr, message, res->data); |
| 2841 | |
| 2842 | list_del(&res->entry); |
| 2843 | |
| 2844 | kfree(res); |
| 2845 | } |
| 2846 | } |
| 2847 | EXPORT_SYMBOL_GPL(spi_res_release); |
| 2848 | |
| 2849 | /*-------------------------------------------------------------------------*/ |
| 2850 | |
| 2851 | /* Core methods for spi_message alterations */ |
| 2852 | |
| 2853 | static void __spi_replace_transfers_release(struct spi_controller *ctlr, |
| 2854 | struct spi_message *msg, |
| 2855 | void *res) |
| 2856 | { |
| 2857 | struct spi_replaced_transfers *rxfer = res; |
| 2858 | size_t i; |
| 2859 | |
| 2860 | /* call extra callback if requested */ |
| 2861 | if (rxfer->release) |
| 2862 | rxfer->release(ctlr, msg, res); |
| 2863 | |
| 2864 | /* insert replaced transfers back into the message */ |
| 2865 | list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); |
| 2866 | |
| 2867 | /* remove the formerly inserted entries */ |
| 2868 | for (i = 0; i < rxfer->inserted; i++) |
| 2869 | list_del(&rxfer->inserted_transfers[i].transfer_list); |
| 2870 | } |
| 2871 | |
| 2872 | /** |
| 2873 | * spi_replace_transfers - replace transfers with several transfers |
| 2874 | * and register change with spi_message.resources |
| 2875 | * @msg: the spi_message we work upon |
| 2876 | * @xfer_first: the first spi_transfer we want to replace |
| 2877 | * @remove: number of transfers to remove |
| 2878 | * @insert: the number of transfers we want to insert instead |
| 2879 | * @release: extra release code necessary in some circumstances |
| 2880 | * @extradatasize: extra data to allocate (with alignment guarantees |
| 2881 | * of struct @spi_transfer) |
| 2882 | * @gfp: gfp flags |
| 2883 | * |
| 2884 | * Returns: pointer to @spi_replaced_transfers, |
| 2885 | * PTR_ERR(...) in case of errors. |
| 2886 | */ |
| 2887 | struct spi_replaced_transfers *spi_replace_transfers( |
| 2888 | struct spi_message *msg, |
| 2889 | struct spi_transfer *xfer_first, |
| 2890 | size_t remove, |
| 2891 | size_t insert, |
| 2892 | spi_replaced_release_t release, |
| 2893 | size_t extradatasize, |
| 2894 | gfp_t gfp) |
| 2895 | { |
| 2896 | struct spi_replaced_transfers *rxfer; |
| 2897 | struct spi_transfer *xfer; |
| 2898 | size_t i; |
| 2899 | |
| 2900 | /* allocate the structure using spi_res */ |
| 2901 | rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, |
| 2902 | struct_size(rxfer, inserted_transfers, insert) |
| 2903 | + extradatasize, |
| 2904 | gfp); |
| 2905 | if (!rxfer) |
| 2906 | return ERR_PTR(-ENOMEM); |
| 2907 | |
| 2908 | /* the release code to invoke before running the generic release */ |
| 2909 | rxfer->release = release; |
| 2910 | |
| 2911 | /* assign extradata */ |
| 2912 | if (extradatasize) |
| 2913 | rxfer->extradata = |
| 2914 | &rxfer->inserted_transfers[insert]; |
| 2915 | |
| 2916 | /* init the replaced_transfers list */ |
| 2917 | INIT_LIST_HEAD(&rxfer->replaced_transfers); |
| 2918 | |
| 2919 | /* assign the list_entry after which we should reinsert |
| 2920 | * the @replaced_transfers - it may be spi_message.messages! |
| 2921 | */ |
| 2922 | rxfer->replaced_after = xfer_first->transfer_list.prev; |
| 2923 | |
| 2924 | /* remove the requested number of transfers */ |
| 2925 | for (i = 0; i < remove; i++) { |
| 2926 | /* if the entry after replaced_after it is msg->transfers |
| 2927 | * then we have been requested to remove more transfers |
| 2928 | * than are in the list |
| 2929 | */ |
| 2930 | if (rxfer->replaced_after->next == &msg->transfers) { |
| 2931 | dev_err(&msg->spi->dev, |
| 2932 | "requested to remove more spi_transfers than are available\n"); |
| 2933 | /* insert replaced transfers back into the message */ |
| 2934 | list_splice(&rxfer->replaced_transfers, |
| 2935 | rxfer->replaced_after); |
| 2936 | |
| 2937 | /* free the spi_replace_transfer structure */ |
| 2938 | spi_res_free(rxfer); |
| 2939 | |
| 2940 | /* and return with an error */ |
| 2941 | return ERR_PTR(-EINVAL); |
| 2942 | } |
| 2943 | |
| 2944 | /* remove the entry after replaced_after from list of |
| 2945 | * transfers and add it to list of replaced_transfers |
| 2946 | */ |
| 2947 | list_move_tail(rxfer->replaced_after->next, |
| 2948 | &rxfer->replaced_transfers); |
| 2949 | } |
| 2950 | |
| 2951 | /* create copy of the given xfer with identical settings |
| 2952 | * based on the first transfer to get removed |
| 2953 | */ |
| 2954 | for (i = 0; i < insert; i++) { |
| 2955 | /* we need to run in reverse order */ |
| 2956 | xfer = &rxfer->inserted_transfers[insert - 1 - i]; |
| 2957 | |
| 2958 | /* copy all spi_transfer data */ |
| 2959 | memcpy(xfer, xfer_first, sizeof(*xfer)); |
| 2960 | |
| 2961 | /* add to list */ |
| 2962 | list_add(&xfer->transfer_list, rxfer->replaced_after); |
| 2963 | |
| 2964 | /* clear cs_change and delay_usecs for all but the last */ |
| 2965 | if (i) { |
| 2966 | xfer->cs_change = false; |
| 2967 | xfer->delay_usecs = 0; |
| 2968 | } |
| 2969 | } |
| 2970 | |
| 2971 | /* set up inserted */ |
| 2972 | rxfer->inserted = insert; |
| 2973 | |
| 2974 | /* and register it with spi_res/spi_message */ |
| 2975 | spi_res_add(msg, rxfer); |
| 2976 | |
| 2977 | return rxfer; |
| 2978 | } |
| 2979 | EXPORT_SYMBOL_GPL(spi_replace_transfers); |
| 2980 | |
| 2981 | static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, |
| 2982 | struct spi_message *msg, |
| 2983 | struct spi_transfer **xferp, |
| 2984 | size_t maxsize, |
| 2985 | gfp_t gfp) |
| 2986 | { |
| 2987 | struct spi_transfer *xfer = *xferp, *xfers; |
| 2988 | struct spi_replaced_transfers *srt; |
| 2989 | size_t offset; |
| 2990 | size_t count, i; |
| 2991 | |
| 2992 | /* calculate how many we have to replace */ |
| 2993 | count = DIV_ROUND_UP(xfer->len, maxsize); |
| 2994 | |
| 2995 | /* create replacement */ |
| 2996 | srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); |
| 2997 | if (IS_ERR(srt)) |
| 2998 | return PTR_ERR(srt); |
| 2999 | xfers = srt->inserted_transfers; |
| 3000 | |
| 3001 | /* now handle each of those newly inserted spi_transfers |
| 3002 | * note that the replacements spi_transfers all are preset |
| 3003 | * to the same values as *xferp, so tx_buf, rx_buf and len |
| 3004 | * are all identical (as well as most others) |
| 3005 | * so we just have to fix up len and the pointers. |
| 3006 | * |
| 3007 | * this also includes support for the depreciated |
| 3008 | * spi_message.is_dma_mapped interface |
| 3009 | */ |
| 3010 | |
| 3011 | /* the first transfer just needs the length modified, so we |
| 3012 | * run it outside the loop |
| 3013 | */ |
| 3014 | xfers[0].len = min_t(size_t, maxsize, xfer[0].len); |
| 3015 | |
| 3016 | /* all the others need rx_buf/tx_buf also set */ |
| 3017 | for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { |
| 3018 | /* update rx_buf, tx_buf and dma */ |
| 3019 | if (xfers[i].rx_buf) |
| 3020 | xfers[i].rx_buf += offset; |
| 3021 | if (xfers[i].rx_dma) |
| 3022 | xfers[i].rx_dma += offset; |
| 3023 | if (xfers[i].tx_buf) |
| 3024 | xfers[i].tx_buf += offset; |
| 3025 | if (xfers[i].tx_dma) |
| 3026 | xfers[i].tx_dma += offset; |
| 3027 | |
| 3028 | /* update length */ |
| 3029 | xfers[i].len = min(maxsize, xfers[i].len - offset); |
| 3030 | } |
| 3031 | |
| 3032 | /* we set up xferp to the last entry we have inserted, |
| 3033 | * so that we skip those already split transfers |
| 3034 | */ |
| 3035 | *xferp = &xfers[count - 1]; |
| 3036 | |
| 3037 | /* increment statistics counters */ |
| 3038 | SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, |
| 3039 | transfers_split_maxsize); |
| 3040 | SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, |
| 3041 | transfers_split_maxsize); |
| 3042 | |
| 3043 | return 0; |
| 3044 | } |
| 3045 | |
| 3046 | /** |
| 3047 | * spi_split_tranfers_maxsize - split spi transfers into multiple transfers |
| 3048 | * when an individual transfer exceeds a |
| 3049 | * certain size |
| 3050 | * @ctlr: the @spi_controller for this transfer |
| 3051 | * @msg: the @spi_message to transform |
| 3052 | * @maxsize: the maximum when to apply this |
| 3053 | * @gfp: GFP allocation flags |
| 3054 | * |
| 3055 | * Return: status of transformation |
| 3056 | */ |
| 3057 | int spi_split_transfers_maxsize(struct spi_controller *ctlr, |
| 3058 | struct spi_message *msg, |
| 3059 | size_t maxsize, |
| 3060 | gfp_t gfp) |
| 3061 | { |
| 3062 | struct spi_transfer *xfer; |
| 3063 | int ret; |
| 3064 | |
| 3065 | /* iterate over the transfer_list, |
| 3066 | * but note that xfer is advanced to the last transfer inserted |
| 3067 | * to avoid checking sizes again unnecessarily (also xfer does |
| 3068 | * potentiall belong to a different list by the time the |
| 3069 | * replacement has happened |
| 3070 | */ |
| 3071 | list_for_each_entry(xfer, &msg->transfers, transfer_list) { |
| 3072 | if (xfer->len > maxsize) { |
| 3073 | ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, |
| 3074 | maxsize, gfp); |
| 3075 | if (ret) |
| 3076 | return ret; |
| 3077 | } |
| 3078 | } |
| 3079 | |
| 3080 | return 0; |
| 3081 | } |
| 3082 | EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); |
| 3083 | |
| 3084 | /*-------------------------------------------------------------------------*/ |
| 3085 | |
| 3086 | /* Core methods for SPI controller protocol drivers. Some of the |
| 3087 | * other core methods are currently defined as inline functions. |
| 3088 | */ |
| 3089 | |
| 3090 | static int __spi_validate_bits_per_word(struct spi_controller *ctlr, |
| 3091 | u8 bits_per_word) |
| 3092 | { |
| 3093 | if (ctlr->bits_per_word_mask) { |
| 3094 | /* Only 32 bits fit in the mask */ |
| 3095 | if (bits_per_word > 32) |
| 3096 | return -EINVAL; |
| 3097 | if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) |
| 3098 | return -EINVAL; |
| 3099 | } |
| 3100 | |
| 3101 | return 0; |
| 3102 | } |
| 3103 | |
| 3104 | /** |
| 3105 | * spi_setup - setup SPI mode and clock rate |
| 3106 | * @spi: the device whose settings are being modified |
| 3107 | * Context: can sleep, and no requests are queued to the device |
| 3108 | * |
| 3109 | * SPI protocol drivers may need to update the transfer mode if the |
| 3110 | * device doesn't work with its default. They may likewise need |
| 3111 | * to update clock rates or word sizes from initial values. This function |
| 3112 | * changes those settings, and must be called from a context that can sleep. |
| 3113 | * Except for SPI_CS_HIGH, which takes effect immediately, the changes take |
| 3114 | * effect the next time the device is selected and data is transferred to |
| 3115 | * or from it. When this function returns, the spi device is deselected. |
| 3116 | * |
| 3117 | * Note that this call will fail if the protocol driver specifies an option |
| 3118 | * that the underlying controller or its driver does not support. For |
| 3119 | * example, not all hardware supports wire transfers using nine bit words, |
| 3120 | * LSB-first wire encoding, or active-high chipselects. |
| 3121 | * |
| 3122 | * Return: zero on success, else a negative error code. |
| 3123 | */ |
| 3124 | int spi_setup(struct spi_device *spi) |
| 3125 | { |
| 3126 | unsigned bad_bits, ugly_bits; |
| 3127 | int status; |
| 3128 | |
| 3129 | /* check mode to prevent that DUAL and QUAD set at the same time |
| 3130 | */ |
| 3131 | if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || |
| 3132 | ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { |
| 3133 | dev_err(&spi->dev, |
| 3134 | "setup: can not select dual and quad at the same time\n"); |
| 3135 | return -EINVAL; |
| 3136 | } |
| 3137 | /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden |
| 3138 | */ |
| 3139 | if ((spi->mode & SPI_3WIRE) && (spi->mode & |
| 3140 | (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | |
| 3141 | SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) |
| 3142 | return -EINVAL; |
| 3143 | /* help drivers fail *cleanly* when they need options |
| 3144 | * that aren't supported with their current controller |
| 3145 | * SPI_CS_WORD has a fallback software implementation, |
| 3146 | * so it is ignored here. |
| 3147 | */ |
| 3148 | bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD); |
| 3149 | /* nothing prevents from working with active-high CS in case if it |
| 3150 | * is driven by GPIO. |
| 3151 | */ |
| 3152 | if (gpio_is_valid(spi->cs_gpio)) |
| 3153 | bad_bits &= ~SPI_CS_HIGH; |
| 3154 | ugly_bits = bad_bits & |
| 3155 | (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | |
| 3156 | SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); |
| 3157 | if (ugly_bits) { |
| 3158 | dev_warn(&spi->dev, |
| 3159 | "setup: ignoring unsupported mode bits %x\n", |
| 3160 | ugly_bits); |
| 3161 | spi->mode &= ~ugly_bits; |
| 3162 | bad_bits &= ~ugly_bits; |
| 3163 | } |
| 3164 | if (bad_bits) { |
| 3165 | dev_err(&spi->dev, "setup: unsupported mode bits %x\n", |
| 3166 | bad_bits); |
| 3167 | return -EINVAL; |
| 3168 | } |
| 3169 | |
| 3170 | if (!spi->bits_per_word) |
| 3171 | spi->bits_per_word = 8; |
| 3172 | |
| 3173 | status = __spi_validate_bits_per_word(spi->controller, |
| 3174 | spi->bits_per_word); |
| 3175 | if (status) |
| 3176 | return status; |
| 3177 | |
| 3178 | if (!spi->max_speed_hz) |
| 3179 | spi->max_speed_hz = spi->controller->max_speed_hz; |
| 3180 | |
| 3181 | if (spi->controller->setup) |
| 3182 | status = spi->controller->setup(spi); |
| 3183 | |
| 3184 | if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { |
| 3185 | status = pm_runtime_get_sync(spi->controller->dev.parent); |
| 3186 | if (status < 0) { |
| 3187 | pm_runtime_put_noidle(spi->controller->dev.parent); |
| 3188 | dev_err(&spi->controller->dev, "Failed to power device: %d\n", |
| 3189 | status); |
| 3190 | return status; |
| 3191 | } |
| 3192 | |
| 3193 | /* |
| 3194 | * We do not want to return positive value from pm_runtime_get, |
| 3195 | * there are many instances of devices calling spi_setup() and |
| 3196 | * checking for a non-zero return value instead of a negative |
| 3197 | * return value. |
| 3198 | */ |
| 3199 | status = 0; |
| 3200 | |
| 3201 | spi_set_cs(spi, false); |
| 3202 | pm_runtime_mark_last_busy(spi->controller->dev.parent); |
| 3203 | pm_runtime_put_autosuspend(spi->controller->dev.parent); |
| 3204 | } else { |
| 3205 | spi_set_cs(spi, false); |
| 3206 | } |
| 3207 | |
| 3208 | if (spi->rt && !spi->controller->rt) { |
| 3209 | spi->controller->rt = true; |
| 3210 | spi_set_thread_rt(spi->controller); |
| 3211 | } |
| 3212 | |
| 3213 | dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", |
| 3214 | (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), |
| 3215 | (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", |
| 3216 | (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", |
| 3217 | (spi->mode & SPI_3WIRE) ? "3wire, " : "", |
| 3218 | (spi->mode & SPI_LOOP) ? "loopback, " : "", |
| 3219 | spi->bits_per_word, spi->max_speed_hz, |
| 3220 | status); |
| 3221 | |
| 3222 | return status; |
| 3223 | } |
| 3224 | EXPORT_SYMBOL_GPL(spi_setup); |
| 3225 | |
| 3226 | /** |
| 3227 | * spi_set_cs_timing - configure CS setup, hold, and inactive delays |
| 3228 | * @spi: the device that requires specific CS timing configuration |
| 3229 | * @setup: CS setup time in terms of clock count |
| 3230 | * @hold: CS hold time in terms of clock count |
| 3231 | * @inactive_dly: CS inactive delay between transfers in terms of clock count |
| 3232 | */ |
| 3233 | void spi_set_cs_timing(struct spi_device *spi, u8 setup, u8 hold, |
| 3234 | u8 inactive_dly) |
| 3235 | { |
| 3236 | if (spi->controller->set_cs_timing) |
| 3237 | spi->controller->set_cs_timing(spi, setup, hold, inactive_dly); |
| 3238 | } |
| 3239 | EXPORT_SYMBOL_GPL(spi_set_cs_timing); |
| 3240 | |
| 3241 | static int __spi_validate(struct spi_device *spi, struct spi_message *message) |
| 3242 | { |
| 3243 | struct spi_controller *ctlr = spi->controller; |
| 3244 | struct spi_transfer *xfer; |
| 3245 | int w_size; |
| 3246 | |
| 3247 | if (list_empty(&message->transfers)) |
| 3248 | return -EINVAL; |
| 3249 | |
| 3250 | /* If an SPI controller does not support toggling the CS line on each |
| 3251 | * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO |
| 3252 | * for the CS line, we can emulate the CS-per-word hardware function by |
| 3253 | * splitting transfers into one-word transfers and ensuring that |
| 3254 | * cs_change is set for each transfer. |
| 3255 | */ |
| 3256 | if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || |
| 3257 | spi->cs_gpiod || |
| 3258 | gpio_is_valid(spi->cs_gpio))) { |
| 3259 | size_t maxsize; |
| 3260 | int ret; |
| 3261 | |
| 3262 | maxsize = (spi->bits_per_word + 7) / 8; |
| 3263 | |
| 3264 | /* spi_split_transfers_maxsize() requires message->spi */ |
| 3265 | message->spi = spi; |
| 3266 | |
| 3267 | ret = spi_split_transfers_maxsize(ctlr, message, maxsize, |
| 3268 | GFP_KERNEL); |
| 3269 | if (ret) |
| 3270 | return ret; |
| 3271 | |
| 3272 | list_for_each_entry(xfer, &message->transfers, transfer_list) { |
| 3273 | /* don't change cs_change on the last entry in the list */ |
| 3274 | if (list_is_last(&xfer->transfer_list, &message->transfers)) |
| 3275 | break; |
| 3276 | xfer->cs_change = 1; |
| 3277 | } |
| 3278 | } |
| 3279 | |
| 3280 | /* Half-duplex links include original MicroWire, and ones with |
| 3281 | * only one data pin like SPI_3WIRE (switches direction) or where |
| 3282 | * either MOSI or MISO is missing. They can also be caused by |
| 3283 | * software limitations. |
| 3284 | */ |
| 3285 | if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || |
| 3286 | (spi->mode & SPI_3WIRE)) { |
| 3287 | unsigned flags = ctlr->flags; |
| 3288 | |
| 3289 | list_for_each_entry(xfer, &message->transfers, transfer_list) { |
| 3290 | if (xfer->rx_buf && xfer->tx_buf) |
| 3291 | return -EINVAL; |
| 3292 | if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) |
| 3293 | return -EINVAL; |
| 3294 | if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) |
| 3295 | return -EINVAL; |
| 3296 | } |
| 3297 | } |
| 3298 | |
| 3299 | /** |
| 3300 | * Set transfer bits_per_word and max speed as spi device default if |
| 3301 | * it is not set for this transfer. |
| 3302 | * Set transfer tx_nbits and rx_nbits as single transfer default |
| 3303 | * (SPI_NBITS_SINGLE) if it is not set for this transfer. |
| 3304 | * Ensure transfer word_delay is at least as long as that required by |
| 3305 | * device itself. |
| 3306 | */ |
| 3307 | message->frame_length = 0; |
| 3308 | list_for_each_entry(xfer, &message->transfers, transfer_list) { |
| 3309 | xfer->effective_speed_hz = 0; |
| 3310 | message->frame_length += xfer->len; |
| 3311 | if (!xfer->bits_per_word) |
| 3312 | xfer->bits_per_word = spi->bits_per_word; |
| 3313 | |
| 3314 | if (!xfer->speed_hz) |
| 3315 | xfer->speed_hz = spi->max_speed_hz; |
| 3316 | |
| 3317 | if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) |
| 3318 | xfer->speed_hz = ctlr->max_speed_hz; |
| 3319 | |
| 3320 | if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) |
| 3321 | return -EINVAL; |
| 3322 | |
| 3323 | /* |
| 3324 | * SPI transfer length should be multiple of SPI word size |
| 3325 | * where SPI word size should be power-of-two multiple |
| 3326 | */ |
| 3327 | if (xfer->bits_per_word <= 8) |
| 3328 | w_size = 1; |
| 3329 | else if (xfer->bits_per_word <= 16) |
| 3330 | w_size = 2; |
| 3331 | else |
| 3332 | w_size = 4; |
| 3333 | |
| 3334 | /* No partial transfers accepted */ |
| 3335 | if (xfer->len % w_size) |
| 3336 | return -EINVAL; |
| 3337 | |
| 3338 | if (xfer->speed_hz && ctlr->min_speed_hz && |
| 3339 | xfer->speed_hz < ctlr->min_speed_hz) |
| 3340 | return -EINVAL; |
| 3341 | |
| 3342 | if (xfer->tx_buf && !xfer->tx_nbits) |
| 3343 | xfer->tx_nbits = SPI_NBITS_SINGLE; |
| 3344 | if (xfer->rx_buf && !xfer->rx_nbits) |
| 3345 | xfer->rx_nbits = SPI_NBITS_SINGLE; |
| 3346 | /* check transfer tx/rx_nbits: |
| 3347 | * 1. check the value matches one of single, dual and quad |
| 3348 | * 2. check tx/rx_nbits match the mode in spi_device |
| 3349 | */ |
| 3350 | if (xfer->tx_buf) { |
| 3351 | if (xfer->tx_nbits != SPI_NBITS_SINGLE && |
| 3352 | xfer->tx_nbits != SPI_NBITS_DUAL && |
| 3353 | xfer->tx_nbits != SPI_NBITS_QUAD) |
| 3354 | return -EINVAL; |
| 3355 | if ((xfer->tx_nbits == SPI_NBITS_DUAL) && |
| 3356 | !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) |
| 3357 | return -EINVAL; |
| 3358 | if ((xfer->tx_nbits == SPI_NBITS_QUAD) && |
| 3359 | !(spi->mode & SPI_TX_QUAD)) |
| 3360 | return -EINVAL; |
| 3361 | } |
| 3362 | /* check transfer rx_nbits */ |
| 3363 | if (xfer->rx_buf) { |
| 3364 | if (xfer->rx_nbits != SPI_NBITS_SINGLE && |
| 3365 | xfer->rx_nbits != SPI_NBITS_DUAL && |
| 3366 | xfer->rx_nbits != SPI_NBITS_QUAD) |
| 3367 | return -EINVAL; |
| 3368 | if ((xfer->rx_nbits == SPI_NBITS_DUAL) && |
| 3369 | !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) |
| 3370 | return -EINVAL; |
| 3371 | if ((xfer->rx_nbits == SPI_NBITS_QUAD) && |
| 3372 | !(spi->mode & SPI_RX_QUAD)) |
| 3373 | return -EINVAL; |
| 3374 | } |
| 3375 | |
| 3376 | if (xfer->word_delay_usecs < spi->word_delay_usecs) |
| 3377 | xfer->word_delay_usecs = spi->word_delay_usecs; |
| 3378 | } |
| 3379 | |
| 3380 | message->status = -EINPROGRESS; |
| 3381 | |
| 3382 | return 0; |
| 3383 | } |
| 3384 | |
| 3385 | static int __spi_async(struct spi_device *spi, struct spi_message *message) |
| 3386 | { |
| 3387 | struct spi_controller *ctlr = spi->controller; |
| 3388 | |
| 3389 | /* |
| 3390 | * Some controllers do not support doing regular SPI transfers. Return |
| 3391 | * ENOTSUPP when this is the case. |
| 3392 | */ |
| 3393 | if (!ctlr->transfer) |
| 3394 | return -ENOTSUPP; |
| 3395 | |
| 3396 | message->spi = spi; |
| 3397 | |
| 3398 | SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); |
| 3399 | SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); |
| 3400 | |
| 3401 | trace_spi_message_submit(message); |
| 3402 | |
| 3403 | return ctlr->transfer(spi, message); |
| 3404 | } |
| 3405 | |
| 3406 | /** |
| 3407 | * spi_async - asynchronous SPI transfer |
| 3408 | * @spi: device with which data will be exchanged |
| 3409 | * @message: describes the data transfers, including completion callback |
| 3410 | * Context: any (irqs may be blocked, etc) |
| 3411 | * |
| 3412 | * This call may be used in_irq and other contexts which can't sleep, |
| 3413 | * as well as from task contexts which can sleep. |
| 3414 | * |
| 3415 | * The completion callback is invoked in a context which can't sleep. |
| 3416 | * Before that invocation, the value of message->status is undefined. |
| 3417 | * When the callback is issued, message->status holds either zero (to |
| 3418 | * indicate complete success) or a negative error code. After that |
| 3419 | * callback returns, the driver which issued the transfer request may |
| 3420 | * deallocate the associated memory; it's no longer in use by any SPI |
| 3421 | * core or controller driver code. |
| 3422 | * |
| 3423 | * Note that although all messages to a spi_device are handled in |
| 3424 | * FIFO order, messages may go to different devices in other orders. |
| 3425 | * Some device might be higher priority, or have various "hard" access |
| 3426 | * time requirements, for example. |
| 3427 | * |
| 3428 | * On detection of any fault during the transfer, processing of |
| 3429 | * the entire message is aborted, and the device is deselected. |
| 3430 | * Until returning from the associated message completion callback, |
| 3431 | * no other spi_message queued to that device will be processed. |
| 3432 | * (This rule applies equally to all the synchronous transfer calls, |
| 3433 | * which are wrappers around this core asynchronous primitive.) |
| 3434 | * |
| 3435 | * Return: zero on success, else a negative error code. |
| 3436 | */ |
| 3437 | int spi_async(struct spi_device *spi, struct spi_message *message) |
| 3438 | { |
| 3439 | struct spi_controller *ctlr = spi->controller; |
| 3440 | int ret; |
| 3441 | unsigned long flags; |
| 3442 | |
| 3443 | ret = __spi_validate(spi, message); |
| 3444 | if (ret != 0) |
| 3445 | return ret; |
| 3446 | |
| 3447 | spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); |
| 3448 | |
| 3449 | if (ctlr->bus_lock_flag) |
| 3450 | ret = -EBUSY; |
| 3451 | else |
| 3452 | ret = __spi_async(spi, message); |
| 3453 | |
| 3454 | spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); |
| 3455 | |
| 3456 | return ret; |
| 3457 | } |
| 3458 | EXPORT_SYMBOL_GPL(spi_async); |
| 3459 | |
| 3460 | /** |
| 3461 | * spi_async_locked - version of spi_async with exclusive bus usage |
| 3462 | * @spi: device with which data will be exchanged |
| 3463 | * @message: describes the data transfers, including completion callback |
| 3464 | * Context: any (irqs may be blocked, etc) |
| 3465 | * |
| 3466 | * This call may be used in_irq and other contexts which can't sleep, |
| 3467 | * as well as from task contexts which can sleep. |
| 3468 | * |
| 3469 | * The completion callback is invoked in a context which can't sleep. |
| 3470 | * Before that invocation, the value of message->status is undefined. |
| 3471 | * When the callback is issued, message->status holds either zero (to |
| 3472 | * indicate complete success) or a negative error code. After that |
| 3473 | * callback returns, the driver which issued the transfer request may |
| 3474 | * deallocate the associated memory; it's no longer in use by any SPI |
| 3475 | * core or controller driver code. |
| 3476 | * |
| 3477 | * Note that although all messages to a spi_device are handled in |
| 3478 | * FIFO order, messages may go to different devices in other orders. |
| 3479 | * Some device might be higher priority, or have various "hard" access |
| 3480 | * time requirements, for example. |
| 3481 | * |
| 3482 | * On detection of any fault during the transfer, processing of |
| 3483 | * the entire message is aborted, and the device is deselected. |
| 3484 | * Until returning from the associated message completion callback, |
| 3485 | * no other spi_message queued to that device will be processed. |
| 3486 | * (This rule applies equally to all the synchronous transfer calls, |
| 3487 | * which are wrappers around this core asynchronous primitive.) |
| 3488 | * |
| 3489 | * Return: zero on success, else a negative error code. |
| 3490 | */ |
| 3491 | int spi_async_locked(struct spi_device *spi, struct spi_message *message) |
| 3492 | { |
| 3493 | struct spi_controller *ctlr = spi->controller; |
| 3494 | int ret; |
| 3495 | unsigned long flags; |
| 3496 | |
| 3497 | ret = __spi_validate(spi, message); |
| 3498 | if (ret != 0) |
| 3499 | return ret; |
| 3500 | |
| 3501 | spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); |
| 3502 | |
| 3503 | ret = __spi_async(spi, message); |
| 3504 | |
| 3505 | spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); |
| 3506 | |
| 3507 | return ret; |
| 3508 | |
| 3509 | } |
| 3510 | EXPORT_SYMBOL_GPL(spi_async_locked); |
| 3511 | |
| 3512 | /*-------------------------------------------------------------------------*/ |
| 3513 | |
| 3514 | /* Utility methods for SPI protocol drivers, layered on |
| 3515 | * top of the core. Some other utility methods are defined as |
| 3516 | * inline functions. |
| 3517 | */ |
| 3518 | |
| 3519 | static void spi_complete(void *arg) |
| 3520 | { |
| 3521 | complete(arg); |
| 3522 | } |
| 3523 | |
| 3524 | static int __spi_sync(struct spi_device *spi, struct spi_message *message) |
| 3525 | { |
| 3526 | DECLARE_COMPLETION_ONSTACK(done); |
| 3527 | int status; |
| 3528 | struct spi_controller *ctlr = spi->controller; |
| 3529 | unsigned long flags; |
| 3530 | |
| 3531 | status = __spi_validate(spi, message); |
| 3532 | if (status != 0) |
| 3533 | return status; |
| 3534 | |
| 3535 | message->complete = spi_complete; |
| 3536 | message->context = &done; |
| 3537 | message->spi = spi; |
| 3538 | |
| 3539 | SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); |
| 3540 | SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); |
| 3541 | |
| 3542 | /* If we're not using the legacy transfer method then we will |
| 3543 | * try to transfer in the calling context so special case. |
| 3544 | * This code would be less tricky if we could remove the |
| 3545 | * support for driver implemented message queues. |
| 3546 | */ |
| 3547 | if (ctlr->transfer == spi_queued_transfer) { |
| 3548 | spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); |
| 3549 | |
| 3550 | trace_spi_message_submit(message); |
| 3551 | |
| 3552 | status = __spi_queued_transfer(spi, message, false); |
| 3553 | |
| 3554 | spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); |
| 3555 | } else { |
| 3556 | status = spi_async_locked(spi, message); |
| 3557 | } |
| 3558 | |
| 3559 | if (status == 0) { |
| 3560 | /* Push out the messages in the calling context if we |
| 3561 | * can. |
| 3562 | */ |
| 3563 | if (ctlr->transfer == spi_queued_transfer) { |
| 3564 | SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, |
| 3565 | spi_sync_immediate); |
| 3566 | SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, |
| 3567 | spi_sync_immediate); |
| 3568 | __spi_pump_messages(ctlr, false); |
| 3569 | } |
| 3570 | |
| 3571 | wait_for_completion(&done); |
| 3572 | status = message->status; |
| 3573 | } |
| 3574 | message->context = NULL; |
| 3575 | return status; |
| 3576 | } |
| 3577 | |
| 3578 | /** |
| 3579 | * spi_sync - blocking/synchronous SPI data transfers |
| 3580 | * @spi: device with which data will be exchanged |
| 3581 | * @message: describes the data transfers |
| 3582 | * Context: can sleep |
| 3583 | * |
| 3584 | * This call may only be used from a context that may sleep. The sleep |
| 3585 | * is non-interruptible, and has no timeout. Low-overhead controller |
| 3586 | * drivers may DMA directly into and out of the message buffers. |
| 3587 | * |
| 3588 | * Note that the SPI device's chip select is active during the message, |
| 3589 | * and then is normally disabled between messages. Drivers for some |
| 3590 | * frequently-used devices may want to minimize costs of selecting a chip, |
| 3591 | * by leaving it selected in anticipation that the next message will go |
| 3592 | * to the same chip. (That may increase power usage.) |
| 3593 | * |
| 3594 | * Also, the caller is guaranteeing that the memory associated with the |
| 3595 | * message will not be freed before this call returns. |
| 3596 | * |
| 3597 | * Return: zero on success, else a negative error code. |
| 3598 | */ |
| 3599 | int spi_sync(struct spi_device *spi, struct spi_message *message) |
| 3600 | { |
| 3601 | int ret; |
| 3602 | |
| 3603 | mutex_lock(&spi->controller->bus_lock_mutex); |
| 3604 | ret = __spi_sync(spi, message); |
| 3605 | mutex_unlock(&spi->controller->bus_lock_mutex); |
| 3606 | |
| 3607 | return ret; |
| 3608 | } |
| 3609 | EXPORT_SYMBOL_GPL(spi_sync); |
| 3610 | |
| 3611 | /** |
| 3612 | * spi_sync_locked - version of spi_sync with exclusive bus usage |
| 3613 | * @spi: device with which data will be exchanged |
| 3614 | * @message: describes the data transfers |
| 3615 | * Context: can sleep |
| 3616 | * |
| 3617 | * This call may only be used from a context that may sleep. The sleep |
| 3618 | * is non-interruptible, and has no timeout. Low-overhead controller |
| 3619 | * drivers may DMA directly into and out of the message buffers. |
| 3620 | * |
| 3621 | * This call should be used by drivers that require exclusive access to the |
| 3622 | * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must |
| 3623 | * be released by a spi_bus_unlock call when the exclusive access is over. |
| 3624 | * |
| 3625 | * Return: zero on success, else a negative error code. |
| 3626 | */ |
| 3627 | int spi_sync_locked(struct spi_device *spi, struct spi_message *message) |
| 3628 | { |
| 3629 | return __spi_sync(spi, message); |
| 3630 | } |
| 3631 | EXPORT_SYMBOL_GPL(spi_sync_locked); |
| 3632 | |
| 3633 | /** |
| 3634 | * spi_bus_lock - obtain a lock for exclusive SPI bus usage |
| 3635 | * @ctlr: SPI bus master that should be locked for exclusive bus access |
| 3636 | * Context: can sleep |
| 3637 | * |
| 3638 | * This call may only be used from a context that may sleep. The sleep |
| 3639 | * is non-interruptible, and has no timeout. |
| 3640 | * |
| 3641 | * This call should be used by drivers that require exclusive access to the |
| 3642 | * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the |
| 3643 | * exclusive access is over. Data transfer must be done by spi_sync_locked |
| 3644 | * and spi_async_locked calls when the SPI bus lock is held. |
| 3645 | * |
| 3646 | * Return: always zero. |
| 3647 | */ |
| 3648 | int spi_bus_lock(struct spi_controller *ctlr) |
| 3649 | { |
| 3650 | unsigned long flags; |
| 3651 | |
| 3652 | mutex_lock(&ctlr->bus_lock_mutex); |
| 3653 | |
| 3654 | spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); |
| 3655 | ctlr->bus_lock_flag = 1; |
| 3656 | spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); |
| 3657 | |
| 3658 | /* mutex remains locked until spi_bus_unlock is called */ |
| 3659 | |
| 3660 | return 0; |
| 3661 | } |
| 3662 | EXPORT_SYMBOL_GPL(spi_bus_lock); |
| 3663 | |
| 3664 | /** |
| 3665 | * spi_bus_unlock - release the lock for exclusive SPI bus usage |
| 3666 | * @ctlr: SPI bus master that was locked for exclusive bus access |
| 3667 | * Context: can sleep |
| 3668 | * |
| 3669 | * This call may only be used from a context that may sleep. The sleep |
| 3670 | * is non-interruptible, and has no timeout. |
| 3671 | * |
| 3672 | * This call releases an SPI bus lock previously obtained by an spi_bus_lock |
| 3673 | * call. |
| 3674 | * |
| 3675 | * Return: always zero. |
| 3676 | */ |
| 3677 | int spi_bus_unlock(struct spi_controller *ctlr) |
| 3678 | { |
| 3679 | ctlr->bus_lock_flag = 0; |
| 3680 | |
| 3681 | mutex_unlock(&ctlr->bus_lock_mutex); |
| 3682 | |
| 3683 | return 0; |
| 3684 | } |
| 3685 | EXPORT_SYMBOL_GPL(spi_bus_unlock); |
| 3686 | |
| 3687 | /* portable code must never pass more than 32 bytes */ |
| 3688 | #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) |
| 3689 | |
| 3690 | static u8 *buf; |
| 3691 | |
| 3692 | /** |
| 3693 | * spi_write_then_read - SPI synchronous write followed by read |
| 3694 | * @spi: device with which data will be exchanged |
| 3695 | * @txbuf: data to be written (need not be dma-safe) |
| 3696 | * @n_tx: size of txbuf, in bytes |
| 3697 | * @rxbuf: buffer into which data will be read (need not be dma-safe) |
| 3698 | * @n_rx: size of rxbuf, in bytes |
| 3699 | * Context: can sleep |
| 3700 | * |
| 3701 | * This performs a half duplex MicroWire style transaction with the |
| 3702 | * device, sending txbuf and then reading rxbuf. The return value |
| 3703 | * is zero for success, else a negative errno status code. |
| 3704 | * This call may only be used from a context that may sleep. |
| 3705 | * |
| 3706 | * Parameters to this routine are always copied using a small buffer; |
| 3707 | * portable code should never use this for more than 32 bytes. |
| 3708 | * Performance-sensitive or bulk transfer code should instead use |
| 3709 | * spi_{async,sync}() calls with dma-safe buffers. |
| 3710 | * |
| 3711 | * Return: zero on success, else a negative error code. |
| 3712 | */ |
| 3713 | int spi_write_then_read(struct spi_device *spi, |
| 3714 | const void *txbuf, unsigned n_tx, |
| 3715 | void *rxbuf, unsigned n_rx) |
| 3716 | { |
| 3717 | static DEFINE_MUTEX(lock); |
| 3718 | |
| 3719 | int status; |
| 3720 | struct spi_message message; |
| 3721 | struct spi_transfer x[2]; |
| 3722 | u8 *local_buf; |
| 3723 | |
| 3724 | /* Use preallocated DMA-safe buffer if we can. We can't avoid |
| 3725 | * copying here, (as a pure convenience thing), but we can |
| 3726 | * keep heap costs out of the hot path unless someone else is |
| 3727 | * using the pre-allocated buffer or the transfer is too large. |
| 3728 | */ |
| 3729 | if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { |
| 3730 | local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), |
| 3731 | GFP_KERNEL | GFP_DMA); |
| 3732 | if (!local_buf) |
| 3733 | return -ENOMEM; |
| 3734 | } else { |
| 3735 | local_buf = buf; |
| 3736 | } |
| 3737 | |
| 3738 | spi_message_init(&message); |
| 3739 | memset(x, 0, sizeof(x)); |
| 3740 | if (n_tx) { |
| 3741 | x[0].len = n_tx; |
| 3742 | spi_message_add_tail(&x[0], &message); |
| 3743 | } |
| 3744 | if (n_rx) { |
| 3745 | x[1].len = n_rx; |
| 3746 | spi_message_add_tail(&x[1], &message); |
| 3747 | } |
| 3748 | |
| 3749 | memcpy(local_buf, txbuf, n_tx); |
| 3750 | x[0].tx_buf = local_buf; |
| 3751 | x[1].rx_buf = local_buf + n_tx; |
| 3752 | |
| 3753 | /* do the i/o */ |
| 3754 | status = spi_sync(spi, &message); |
| 3755 | if (status == 0) |
| 3756 | memcpy(rxbuf, x[1].rx_buf, n_rx); |
| 3757 | |
| 3758 | if (x[0].tx_buf == buf) |
| 3759 | mutex_unlock(&lock); |
| 3760 | else |
| 3761 | kfree(local_buf); |
| 3762 | |
| 3763 | return status; |
| 3764 | } |
| 3765 | EXPORT_SYMBOL_GPL(spi_write_then_read); |
| 3766 | |
| 3767 | /*-------------------------------------------------------------------------*/ |
| 3768 | |
| 3769 | #if IS_ENABLED(CONFIG_OF) |
| 3770 | /* must call put_device() when done with returned spi_device device */ |
| 3771 | struct spi_device *of_find_spi_device_by_node(struct device_node *node) |
| 3772 | { |
| 3773 | struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); |
| 3774 | |
| 3775 | return dev ? to_spi_device(dev) : NULL; |
| 3776 | } |
| 3777 | EXPORT_SYMBOL_GPL(of_find_spi_device_by_node); |
| 3778 | #endif /* IS_ENABLED(CONFIG_OF) */ |
| 3779 | |
| 3780 | #if IS_ENABLED(CONFIG_OF_DYNAMIC) |
| 3781 | /* the spi controllers are not using spi_bus, so we find it with another way */ |
| 3782 | static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) |
| 3783 | { |
| 3784 | struct device *dev; |
| 3785 | |
| 3786 | dev = class_find_device_by_of_node(&spi_master_class, node); |
| 3787 | if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) |
| 3788 | dev = class_find_device_by_of_node(&spi_slave_class, node); |
| 3789 | if (!dev) |
| 3790 | return NULL; |
| 3791 | |
| 3792 | /* reference got in class_find_device */ |
| 3793 | return container_of(dev, struct spi_controller, dev); |
| 3794 | } |
| 3795 | |
| 3796 | static int of_spi_notify(struct notifier_block *nb, unsigned long action, |
| 3797 | void *arg) |
| 3798 | { |
| 3799 | struct of_reconfig_data *rd = arg; |
| 3800 | struct spi_controller *ctlr; |
| 3801 | struct spi_device *spi; |
| 3802 | |
| 3803 | switch (of_reconfig_get_state_change(action, arg)) { |
| 3804 | case OF_RECONFIG_CHANGE_ADD: |
| 3805 | ctlr = of_find_spi_controller_by_node(rd->dn->parent); |
| 3806 | if (ctlr == NULL) |
| 3807 | return NOTIFY_OK; /* not for us */ |
| 3808 | |
| 3809 | if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { |
| 3810 | put_device(&ctlr->dev); |
| 3811 | return NOTIFY_OK; |
| 3812 | } |
| 3813 | |
| 3814 | spi = of_register_spi_device(ctlr, rd->dn); |
| 3815 | put_device(&ctlr->dev); |
| 3816 | |
| 3817 | if (IS_ERR(spi)) { |
| 3818 | pr_err("%s: failed to create for '%pOF'\n", |
| 3819 | __func__, rd->dn); |
| 3820 | of_node_clear_flag(rd->dn, OF_POPULATED); |
| 3821 | return notifier_from_errno(PTR_ERR(spi)); |
| 3822 | } |
| 3823 | break; |
| 3824 | |
| 3825 | case OF_RECONFIG_CHANGE_REMOVE: |
| 3826 | /* already depopulated? */ |
| 3827 | if (!of_node_check_flag(rd->dn, OF_POPULATED)) |
| 3828 | return NOTIFY_OK; |
| 3829 | |
| 3830 | /* find our device by node */ |
| 3831 | spi = of_find_spi_device_by_node(rd->dn); |
| 3832 | if (spi == NULL) |
| 3833 | return NOTIFY_OK; /* no? not meant for us */ |
| 3834 | |
| 3835 | /* unregister takes one ref away */ |
| 3836 | spi_unregister_device(spi); |
| 3837 | |
| 3838 | /* and put the reference of the find */ |
| 3839 | put_device(&spi->dev); |
| 3840 | break; |
| 3841 | } |
| 3842 | |
| 3843 | return NOTIFY_OK; |
| 3844 | } |
| 3845 | |
| 3846 | static struct notifier_block spi_of_notifier = { |
| 3847 | .notifier_call = of_spi_notify, |
| 3848 | }; |
| 3849 | #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ |
| 3850 | extern struct notifier_block spi_of_notifier; |
| 3851 | #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ |
| 3852 | |
| 3853 | #if IS_ENABLED(CONFIG_ACPI) |
| 3854 | static int spi_acpi_controller_match(struct device *dev, const void *data) |
| 3855 | { |
| 3856 | return ACPI_COMPANION(dev->parent) == data; |
| 3857 | } |
| 3858 | |
| 3859 | static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) |
| 3860 | { |
| 3861 | struct device *dev; |
| 3862 | |
| 3863 | dev = class_find_device(&spi_master_class, NULL, adev, |
| 3864 | spi_acpi_controller_match); |
| 3865 | if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) |
| 3866 | dev = class_find_device(&spi_slave_class, NULL, adev, |
| 3867 | spi_acpi_controller_match); |
| 3868 | if (!dev) |
| 3869 | return NULL; |
| 3870 | |
| 3871 | return container_of(dev, struct spi_controller, dev); |
| 3872 | } |
| 3873 | |
| 3874 | static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) |
| 3875 | { |
| 3876 | struct device *dev; |
| 3877 | |
| 3878 | dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); |
| 3879 | return dev ? to_spi_device(dev) : NULL; |
| 3880 | } |
| 3881 | |
| 3882 | static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, |
| 3883 | void *arg) |
| 3884 | { |
| 3885 | struct acpi_device *adev = arg; |
| 3886 | struct spi_controller *ctlr; |
| 3887 | struct spi_device *spi; |
| 3888 | |
| 3889 | switch (value) { |
| 3890 | case ACPI_RECONFIG_DEVICE_ADD: |
| 3891 | ctlr = acpi_spi_find_controller_by_adev(adev->parent); |
| 3892 | if (!ctlr) |
| 3893 | break; |
| 3894 | |
| 3895 | acpi_register_spi_device(ctlr, adev); |
| 3896 | put_device(&ctlr->dev); |
| 3897 | break; |
| 3898 | case ACPI_RECONFIG_DEVICE_REMOVE: |
| 3899 | if (!acpi_device_enumerated(adev)) |
| 3900 | break; |
| 3901 | |
| 3902 | spi = acpi_spi_find_device_by_adev(adev); |
| 3903 | if (!spi) |
| 3904 | break; |
| 3905 | |
| 3906 | spi_unregister_device(spi); |
| 3907 | put_device(&spi->dev); |
| 3908 | break; |
| 3909 | } |
| 3910 | |
| 3911 | return NOTIFY_OK; |
| 3912 | } |
| 3913 | |
| 3914 | static struct notifier_block spi_acpi_notifier = { |
| 3915 | .notifier_call = acpi_spi_notify, |
| 3916 | }; |
| 3917 | #else |
| 3918 | extern struct notifier_block spi_acpi_notifier; |
| 3919 | #endif |
| 3920 | |
| 3921 | static int __init spi_init(void) |
| 3922 | { |
| 3923 | int status; |
| 3924 | |
| 3925 | buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); |
| 3926 | if (!buf) { |
| 3927 | status = -ENOMEM; |
| 3928 | goto err0; |
| 3929 | } |
| 3930 | |
| 3931 | status = bus_register(&spi_bus_type); |
| 3932 | if (status < 0) |
| 3933 | goto err1; |
| 3934 | |
| 3935 | status = class_register(&spi_master_class); |
| 3936 | if (status < 0) |
| 3937 | goto err2; |
| 3938 | |
| 3939 | if (IS_ENABLED(CONFIG_SPI_SLAVE)) { |
| 3940 | status = class_register(&spi_slave_class); |
| 3941 | if (status < 0) |
| 3942 | goto err3; |
| 3943 | } |
| 3944 | |
| 3945 | if (IS_ENABLED(CONFIG_OF_DYNAMIC)) |
| 3946 | WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); |
| 3947 | if (IS_ENABLED(CONFIG_ACPI)) |
| 3948 | WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); |
| 3949 | |
| 3950 | return 0; |
| 3951 | |
| 3952 | err3: |
| 3953 | class_unregister(&spi_master_class); |
| 3954 | err2: |
| 3955 | bus_unregister(&spi_bus_type); |
| 3956 | err1: |
| 3957 | kfree(buf); |
| 3958 | buf = NULL; |
| 3959 | err0: |
| 3960 | return status; |
| 3961 | } |
| 3962 | |
| 3963 | /* board_info is normally registered in arch_initcall(), |
| 3964 | * but even essential drivers wait till later |
| 3965 | * |
| 3966 | * REVISIT only boardinfo really needs static linking. the rest (device and |
| 3967 | * driver registration) _could_ be dynamically linked (modular) ... costs |
| 3968 | * include needing to have boardinfo data structures be much more public. |
| 3969 | */ |
| 3970 | postcore_initcall(spi_init); |