blob: d570edf21239d41a99f2d9e5408c9fbae5e099b3 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * SuperH on-chip serial module support. (SCI with no FIFO / with FIFO)
4 *
5 * Copyright (C) 2002 - 2011 Paul Mundt
6 * Copyright (C) 2015 Glider bvba
7 * Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
8 *
9 * based off of the old drivers/char/sh-sci.c by:
10 *
11 * Copyright (C) 1999, 2000 Niibe Yutaka
12 * Copyright (C) 2000 Sugioka Toshinobu
13 * Modified to support multiple serial ports. Stuart Menefy (May 2000).
14 * Modified to support SecureEdge. David McCullough (2002)
15 * Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
16 * Removed SH7300 support (Jul 2007).
17 */
18#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
19#define SUPPORT_SYSRQ
20#endif
21
22#undef DEBUG
23
24#include <linux/clk.h>
25#include <linux/console.h>
26#include <linux/ctype.h>
27#include <linux/cpufreq.h>
28#include <linux/delay.h>
29#include <linux/dmaengine.h>
30#include <linux/dma-mapping.h>
31#include <linux/err.h>
32#include <linux/errno.h>
33#include <linux/init.h>
34#include <linux/interrupt.h>
35#include <linux/ioport.h>
36#include <linux/ktime.h>
37#include <linux/major.h>
38#include <linux/module.h>
39#include <linux/mm.h>
40#include <linux/of.h>
41#include <linux/of_device.h>
42#include <linux/platform_device.h>
43#include <linux/pm_runtime.h>
44#include <linux/scatterlist.h>
45#include <linux/serial.h>
46#include <linux/serial_sci.h>
47#include <linux/sh_dma.h>
48#include <linux/slab.h>
49#include <linux/string.h>
50#include <linux/sysrq.h>
51#include <linux/timer.h>
52#include <linux/tty.h>
53#include <linux/tty_flip.h>
54
55#ifdef CONFIG_SUPERH
56#include <asm/sh_bios.h>
57#endif
58
59#include "serial_mctrl_gpio.h"
60#include "sh-sci.h"
61
62/* Offsets into the sci_port->irqs array */
63enum {
64 SCIx_ERI_IRQ,
65 SCIx_RXI_IRQ,
66 SCIx_TXI_IRQ,
67 SCIx_BRI_IRQ,
68 SCIx_DRI_IRQ,
69 SCIx_TEI_IRQ,
70 SCIx_NR_IRQS,
71
72 SCIx_MUX_IRQ = SCIx_NR_IRQS, /* special case */
73};
74
75#define SCIx_IRQ_IS_MUXED(port) \
76 ((port)->irqs[SCIx_ERI_IRQ] == \
77 (port)->irqs[SCIx_RXI_IRQ]) || \
78 ((port)->irqs[SCIx_ERI_IRQ] && \
79 ((port)->irqs[SCIx_RXI_IRQ] < 0))
80
81enum SCI_CLKS {
82 SCI_FCK, /* Functional Clock */
83 SCI_SCK, /* Optional External Clock */
84 SCI_BRG_INT, /* Optional BRG Internal Clock Source */
85 SCI_SCIF_CLK, /* Optional BRG External Clock Source */
86 SCI_NUM_CLKS
87};
88
89/* Bit x set means sampling rate x + 1 is supported */
90#define SCI_SR(x) BIT((x) - 1)
91#define SCI_SR_RANGE(x, y) GENMASK((y) - 1, (x) - 1)
92
93#define SCI_SR_SCIFAB SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
94 SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
95 SCI_SR(19) | SCI_SR(27)
96
97#define min_sr(_port) ffs((_port)->sampling_rate_mask)
98#define max_sr(_port) fls((_port)->sampling_rate_mask)
99
100/* Iterate over all supported sampling rates, from high to low */
101#define for_each_sr(_sr, _port) \
102 for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--) \
103 if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
104
105struct plat_sci_reg {
106 u8 offset, size;
107};
108
109struct sci_port_params {
110 const struct plat_sci_reg regs[SCIx_NR_REGS];
111 unsigned int fifosize;
112 unsigned int overrun_reg;
113 unsigned int overrun_mask;
114 unsigned int sampling_rate_mask;
115 unsigned int error_mask;
116 unsigned int error_clear;
117};
118
119struct sci_port {
120 struct uart_port port;
121
122 /* Platform configuration */
123 const struct sci_port_params *params;
124 const struct plat_sci_port *cfg;
125 unsigned int sampling_rate_mask;
126 resource_size_t reg_size;
127 struct mctrl_gpios *gpios;
128
129 /* Clocks */
130 struct clk *clks[SCI_NUM_CLKS];
131 unsigned long clk_rates[SCI_NUM_CLKS];
132
133 int irqs[SCIx_NR_IRQS];
134 char *irqstr[SCIx_NR_IRQS];
135
136 struct dma_chan *chan_tx;
137 struct dma_chan *chan_rx;
138
139#ifdef CONFIG_SERIAL_SH_SCI_DMA
140 struct dma_chan *chan_tx_saved;
141 struct dma_chan *chan_rx_saved;
142 dma_cookie_t cookie_tx;
143 dma_cookie_t cookie_rx[2];
144 dma_cookie_t active_rx;
145 dma_addr_t tx_dma_addr;
146 unsigned int tx_dma_len;
147 struct scatterlist sg_rx[2];
148 void *rx_buf[2];
149 size_t buf_len_rx;
150 struct work_struct work_tx;
151 struct hrtimer rx_timer;
152 unsigned int rx_timeout; /* microseconds */
153#endif
154 unsigned int rx_frame;
155 int rx_trigger;
156 struct timer_list rx_fifo_timer;
157 int rx_fifo_timeout;
158 u16 hscif_tot;
159
160 bool has_rtscts;
161 bool autorts;
162};
163
164#define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
165
166static struct sci_port sci_ports[SCI_NPORTS];
167static unsigned long sci_ports_in_use;
168static struct uart_driver sci_uart_driver;
169
170static inline struct sci_port *
171to_sci_port(struct uart_port *uart)
172{
173 return container_of(uart, struct sci_port, port);
174}
175
176static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
177 /*
178 * Common SCI definitions, dependent on the port's regshift
179 * value.
180 */
181 [SCIx_SCI_REGTYPE] = {
182 .regs = {
183 [SCSMR] = { 0x00, 8 },
184 [SCBRR] = { 0x01, 8 },
185 [SCSCR] = { 0x02, 8 },
186 [SCxTDR] = { 0x03, 8 },
187 [SCxSR] = { 0x04, 8 },
188 [SCxRDR] = { 0x05, 8 },
189 },
190 .fifosize = 1,
191 .overrun_reg = SCxSR,
192 .overrun_mask = SCI_ORER,
193 .sampling_rate_mask = SCI_SR(32),
194 .error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
195 .error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
196 },
197
198 /*
199 * Common definitions for legacy IrDA ports.
200 */
201 [SCIx_IRDA_REGTYPE] = {
202 .regs = {
203 [SCSMR] = { 0x00, 8 },
204 [SCBRR] = { 0x02, 8 },
205 [SCSCR] = { 0x04, 8 },
206 [SCxTDR] = { 0x06, 8 },
207 [SCxSR] = { 0x08, 16 },
208 [SCxRDR] = { 0x0a, 8 },
209 [SCFCR] = { 0x0c, 8 },
210 [SCFDR] = { 0x0e, 16 },
211 },
212 .fifosize = 1,
213 .overrun_reg = SCxSR,
214 .overrun_mask = SCI_ORER,
215 .sampling_rate_mask = SCI_SR(32),
216 .error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
217 .error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
218 },
219
220 /*
221 * Common SCIFA definitions.
222 */
223 [SCIx_SCIFA_REGTYPE] = {
224 .regs = {
225 [SCSMR] = { 0x00, 16 },
226 [SCBRR] = { 0x04, 8 },
227 [SCSCR] = { 0x08, 16 },
228 [SCxTDR] = { 0x20, 8 },
229 [SCxSR] = { 0x14, 16 },
230 [SCxRDR] = { 0x24, 8 },
231 [SCFCR] = { 0x18, 16 },
232 [SCFDR] = { 0x1c, 16 },
233 [SCPCR] = { 0x30, 16 },
234 [SCPDR] = { 0x34, 16 },
235 },
236 .fifosize = 64,
237 .overrun_reg = SCxSR,
238 .overrun_mask = SCIFA_ORER,
239 .sampling_rate_mask = SCI_SR_SCIFAB,
240 .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
241 .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
242 },
243
244 /*
245 * Common SCIFB definitions.
246 */
247 [SCIx_SCIFB_REGTYPE] = {
248 .regs = {
249 [SCSMR] = { 0x00, 16 },
250 [SCBRR] = { 0x04, 8 },
251 [SCSCR] = { 0x08, 16 },
252 [SCxTDR] = { 0x40, 8 },
253 [SCxSR] = { 0x14, 16 },
254 [SCxRDR] = { 0x60, 8 },
255 [SCFCR] = { 0x18, 16 },
256 [SCTFDR] = { 0x38, 16 },
257 [SCRFDR] = { 0x3c, 16 },
258 [SCPCR] = { 0x30, 16 },
259 [SCPDR] = { 0x34, 16 },
260 },
261 .fifosize = 256,
262 .overrun_reg = SCxSR,
263 .overrun_mask = SCIFA_ORER,
264 .sampling_rate_mask = SCI_SR_SCIFAB,
265 .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
266 .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
267 },
268
269 /*
270 * Common SH-2(A) SCIF definitions for ports with FIFO data
271 * count registers.
272 */
273 [SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
274 .regs = {
275 [SCSMR] = { 0x00, 16 },
276 [SCBRR] = { 0x04, 8 },
277 [SCSCR] = { 0x08, 16 },
278 [SCxTDR] = { 0x0c, 8 },
279 [SCxSR] = { 0x10, 16 },
280 [SCxRDR] = { 0x14, 8 },
281 [SCFCR] = { 0x18, 16 },
282 [SCFDR] = { 0x1c, 16 },
283 [SCSPTR] = { 0x20, 16 },
284 [SCLSR] = { 0x24, 16 },
285 },
286 .fifosize = 16,
287 .overrun_reg = SCLSR,
288 .overrun_mask = SCLSR_ORER,
289 .sampling_rate_mask = SCI_SR(32),
290 .error_mask = SCIF_DEFAULT_ERROR_MASK,
291 .error_clear = SCIF_ERROR_CLEAR,
292 },
293
294 /*
295 * The "SCIFA" that is in RZ/T and RZ/A2.
296 * It looks like a normal SCIF with FIFO data, but with a
297 * compressed address space. Also, the break out of interrupts
298 * are different: ERI/BRI, RXI, TXI, TEI, DRI.
299 */
300 [SCIx_RZ_SCIFA_REGTYPE] = {
301 .regs = {
302 [SCSMR] = { 0x00, 16 },
303 [SCBRR] = { 0x02, 8 },
304 [SCSCR] = { 0x04, 16 },
305 [SCxTDR] = { 0x06, 8 },
306 [SCxSR] = { 0x08, 16 },
307 [SCxRDR] = { 0x0A, 8 },
308 [SCFCR] = { 0x0C, 16 },
309 [SCFDR] = { 0x0E, 16 },
310 [SCSPTR] = { 0x10, 16 },
311 [SCLSR] = { 0x12, 16 },
312 },
313 .fifosize = 16,
314 .overrun_reg = SCLSR,
315 .overrun_mask = SCLSR_ORER,
316 .sampling_rate_mask = SCI_SR(32),
317 .error_mask = SCIF_DEFAULT_ERROR_MASK,
318 .error_clear = SCIF_ERROR_CLEAR,
319 },
320
321 /*
322 * Common SH-3 SCIF definitions.
323 */
324 [SCIx_SH3_SCIF_REGTYPE] = {
325 .regs = {
326 [SCSMR] = { 0x00, 8 },
327 [SCBRR] = { 0x02, 8 },
328 [SCSCR] = { 0x04, 8 },
329 [SCxTDR] = { 0x06, 8 },
330 [SCxSR] = { 0x08, 16 },
331 [SCxRDR] = { 0x0a, 8 },
332 [SCFCR] = { 0x0c, 8 },
333 [SCFDR] = { 0x0e, 16 },
334 },
335 .fifosize = 16,
336 .overrun_reg = SCLSR,
337 .overrun_mask = SCLSR_ORER,
338 .sampling_rate_mask = SCI_SR(32),
339 .error_mask = SCIF_DEFAULT_ERROR_MASK,
340 .error_clear = SCIF_ERROR_CLEAR,
341 },
342
343 /*
344 * Common SH-4(A) SCIF(B) definitions.
345 */
346 [SCIx_SH4_SCIF_REGTYPE] = {
347 .regs = {
348 [SCSMR] = { 0x00, 16 },
349 [SCBRR] = { 0x04, 8 },
350 [SCSCR] = { 0x08, 16 },
351 [SCxTDR] = { 0x0c, 8 },
352 [SCxSR] = { 0x10, 16 },
353 [SCxRDR] = { 0x14, 8 },
354 [SCFCR] = { 0x18, 16 },
355 [SCFDR] = { 0x1c, 16 },
356 [SCSPTR] = { 0x20, 16 },
357 [SCLSR] = { 0x24, 16 },
358 },
359 .fifosize = 16,
360 .overrun_reg = SCLSR,
361 .overrun_mask = SCLSR_ORER,
362 .sampling_rate_mask = SCI_SR(32),
363 .error_mask = SCIF_DEFAULT_ERROR_MASK,
364 .error_clear = SCIF_ERROR_CLEAR,
365 },
366
367 /*
368 * Common SCIF definitions for ports with a Baud Rate Generator for
369 * External Clock (BRG).
370 */
371 [SCIx_SH4_SCIF_BRG_REGTYPE] = {
372 .regs = {
373 [SCSMR] = { 0x00, 16 },
374 [SCBRR] = { 0x04, 8 },
375 [SCSCR] = { 0x08, 16 },
376 [SCxTDR] = { 0x0c, 8 },
377 [SCxSR] = { 0x10, 16 },
378 [SCxRDR] = { 0x14, 8 },
379 [SCFCR] = { 0x18, 16 },
380 [SCFDR] = { 0x1c, 16 },
381 [SCSPTR] = { 0x20, 16 },
382 [SCLSR] = { 0x24, 16 },
383 [SCDL] = { 0x30, 16 },
384 [SCCKS] = { 0x34, 16 },
385 },
386 .fifosize = 16,
387 .overrun_reg = SCLSR,
388 .overrun_mask = SCLSR_ORER,
389 .sampling_rate_mask = SCI_SR(32),
390 .error_mask = SCIF_DEFAULT_ERROR_MASK,
391 .error_clear = SCIF_ERROR_CLEAR,
392 },
393
394 /*
395 * Common HSCIF definitions.
396 */
397 [SCIx_HSCIF_REGTYPE] = {
398 .regs = {
399 [SCSMR] = { 0x00, 16 },
400 [SCBRR] = { 0x04, 8 },
401 [SCSCR] = { 0x08, 16 },
402 [SCxTDR] = { 0x0c, 8 },
403 [SCxSR] = { 0x10, 16 },
404 [SCxRDR] = { 0x14, 8 },
405 [SCFCR] = { 0x18, 16 },
406 [SCFDR] = { 0x1c, 16 },
407 [SCSPTR] = { 0x20, 16 },
408 [SCLSR] = { 0x24, 16 },
409 [HSSRR] = { 0x40, 16 },
410 [SCDL] = { 0x30, 16 },
411 [SCCKS] = { 0x34, 16 },
412 [HSRTRGR] = { 0x54, 16 },
413 [HSTTRGR] = { 0x58, 16 },
414 },
415 .fifosize = 128,
416 .overrun_reg = SCLSR,
417 .overrun_mask = SCLSR_ORER,
418 .sampling_rate_mask = SCI_SR_RANGE(8, 32),
419 .error_mask = SCIF_DEFAULT_ERROR_MASK,
420 .error_clear = SCIF_ERROR_CLEAR,
421 },
422
423 /*
424 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
425 * register.
426 */
427 [SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
428 .regs = {
429 [SCSMR] = { 0x00, 16 },
430 [SCBRR] = { 0x04, 8 },
431 [SCSCR] = { 0x08, 16 },
432 [SCxTDR] = { 0x0c, 8 },
433 [SCxSR] = { 0x10, 16 },
434 [SCxRDR] = { 0x14, 8 },
435 [SCFCR] = { 0x18, 16 },
436 [SCFDR] = { 0x1c, 16 },
437 [SCLSR] = { 0x24, 16 },
438 },
439 .fifosize = 16,
440 .overrun_reg = SCLSR,
441 .overrun_mask = SCLSR_ORER,
442 .sampling_rate_mask = SCI_SR(32),
443 .error_mask = SCIF_DEFAULT_ERROR_MASK,
444 .error_clear = SCIF_ERROR_CLEAR,
445 },
446
447 /*
448 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
449 * count registers.
450 */
451 [SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
452 .regs = {
453 [SCSMR] = { 0x00, 16 },
454 [SCBRR] = { 0x04, 8 },
455 [SCSCR] = { 0x08, 16 },
456 [SCxTDR] = { 0x0c, 8 },
457 [SCxSR] = { 0x10, 16 },
458 [SCxRDR] = { 0x14, 8 },
459 [SCFCR] = { 0x18, 16 },
460 [SCFDR] = { 0x1c, 16 },
461 [SCTFDR] = { 0x1c, 16 }, /* aliased to SCFDR */
462 [SCRFDR] = { 0x20, 16 },
463 [SCSPTR] = { 0x24, 16 },
464 [SCLSR] = { 0x28, 16 },
465 },
466 .fifosize = 16,
467 .overrun_reg = SCLSR,
468 .overrun_mask = SCLSR_ORER,
469 .sampling_rate_mask = SCI_SR(32),
470 .error_mask = SCIF_DEFAULT_ERROR_MASK,
471 .error_clear = SCIF_ERROR_CLEAR,
472 },
473
474 /*
475 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
476 * registers.
477 */
478 [SCIx_SH7705_SCIF_REGTYPE] = {
479 .regs = {
480 [SCSMR] = { 0x00, 16 },
481 [SCBRR] = { 0x04, 8 },
482 [SCSCR] = { 0x08, 16 },
483 [SCxTDR] = { 0x20, 8 },
484 [SCxSR] = { 0x14, 16 },
485 [SCxRDR] = { 0x24, 8 },
486 [SCFCR] = { 0x18, 16 },
487 [SCFDR] = { 0x1c, 16 },
488 },
489 .fifosize = 64,
490 .overrun_reg = SCxSR,
491 .overrun_mask = SCIFA_ORER,
492 .sampling_rate_mask = SCI_SR(16),
493 .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
494 .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
495 },
496};
497
498#define sci_getreg(up, offset) (&to_sci_port(up)->params->regs[offset])
499
500/*
501 * The "offset" here is rather misleading, in that it refers to an enum
502 * value relative to the port mapping rather than the fixed offset
503 * itself, which needs to be manually retrieved from the platform's
504 * register map for the given port.
505 */
506static unsigned int sci_serial_in(struct uart_port *p, int offset)
507{
508 const struct plat_sci_reg *reg = sci_getreg(p, offset);
509
510 if (reg->size == 8)
511 return ioread8(p->membase + (reg->offset << p->regshift));
512 else if (reg->size == 16)
513 return ioread16(p->membase + (reg->offset << p->regshift));
514 else
515 WARN(1, "Invalid register access\n");
516
517 return 0;
518}
519
520static void sci_serial_out(struct uart_port *p, int offset, int value)
521{
522 const struct plat_sci_reg *reg = sci_getreg(p, offset);
523
524 if (reg->size == 8)
525 iowrite8(value, p->membase + (reg->offset << p->regshift));
526 else if (reg->size == 16)
527 iowrite16(value, p->membase + (reg->offset << p->regshift));
528 else
529 WARN(1, "Invalid register access\n");
530}
531
532static void sci_port_enable(struct sci_port *sci_port)
533{
534 unsigned int i;
535
536 if (!sci_port->port.dev)
537 return;
538
539 pm_runtime_get_sync(sci_port->port.dev);
540
541 for (i = 0; i < SCI_NUM_CLKS; i++) {
542 clk_prepare_enable(sci_port->clks[i]);
543 sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
544 }
545 sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
546}
547
548static void sci_port_disable(struct sci_port *sci_port)
549{
550 unsigned int i;
551
552 if (!sci_port->port.dev)
553 return;
554
555 for (i = SCI_NUM_CLKS; i-- > 0; )
556 clk_disable_unprepare(sci_port->clks[i]);
557
558 pm_runtime_put_sync(sci_port->port.dev);
559}
560
561static inline unsigned long port_rx_irq_mask(struct uart_port *port)
562{
563 /*
564 * Not all ports (such as SCIFA) will support REIE. Rather than
565 * special-casing the port type, we check the port initialization
566 * IRQ enable mask to see whether the IRQ is desired at all. If
567 * it's unset, it's logically inferred that there's no point in
568 * testing for it.
569 */
570 return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
571}
572
573static void sci_start_tx(struct uart_port *port)
574{
575 struct sci_port *s = to_sci_port(port);
576 unsigned short ctrl;
577
578#ifdef CONFIG_SERIAL_SH_SCI_DMA
579 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
580 u16 new, scr = serial_port_in(port, SCSCR);
581 if (s->chan_tx)
582 new = scr | SCSCR_TDRQE;
583 else
584 new = scr & ~SCSCR_TDRQE;
585 if (new != scr)
586 serial_port_out(port, SCSCR, new);
587 }
588
589 if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
590 dma_submit_error(s->cookie_tx)) {
591 s->cookie_tx = 0;
592 schedule_work(&s->work_tx);
593 }
594#endif
595
596 if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
597 /* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
598 ctrl = serial_port_in(port, SCSCR);
599 serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
600 }
601}
602
603static void sci_stop_tx(struct uart_port *port)
604{
605 unsigned short ctrl;
606
607 /* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
608 ctrl = serial_port_in(port, SCSCR);
609
610 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
611 ctrl &= ~SCSCR_TDRQE;
612
613 ctrl &= ~SCSCR_TIE;
614
615 serial_port_out(port, SCSCR, ctrl);
616
617#ifdef CONFIG_SERIAL_SH_SCI_DMA
618 if (to_sci_port(port)->chan_tx &&
619 !dma_submit_error(to_sci_port(port)->cookie_tx)) {
620 dmaengine_terminate_async(to_sci_port(port)->chan_tx);
621 to_sci_port(port)->cookie_tx = -EINVAL;
622 }
623#endif
624}
625
626static void sci_start_rx(struct uart_port *port)
627{
628 unsigned short ctrl;
629
630 ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
631
632 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
633 ctrl &= ~SCSCR_RDRQE;
634
635 serial_port_out(port, SCSCR, ctrl);
636}
637
638static void sci_stop_rx(struct uart_port *port)
639{
640 unsigned short ctrl;
641
642 ctrl = serial_port_in(port, SCSCR);
643
644 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
645 ctrl &= ~SCSCR_RDRQE;
646
647 ctrl &= ~port_rx_irq_mask(port);
648
649 serial_port_out(port, SCSCR, ctrl);
650}
651
652static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
653{
654 if (port->type == PORT_SCI) {
655 /* Just store the mask */
656 serial_port_out(port, SCxSR, mask);
657 } else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
658 /* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
659 /* Only clear the status bits we want to clear */
660 serial_port_out(port, SCxSR,
661 serial_port_in(port, SCxSR) & mask);
662 } else {
663 /* Store the mask, clear parity/framing errors */
664 serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
665 }
666}
667
668#if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
669 defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
670
671#ifdef CONFIG_CONSOLE_POLL
672static int sci_poll_get_char(struct uart_port *port)
673{
674 unsigned short status;
675 int c;
676
677 do {
678 status = serial_port_in(port, SCxSR);
679 if (status & SCxSR_ERRORS(port)) {
680 sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
681 continue;
682 }
683 break;
684 } while (1);
685
686 if (!(status & SCxSR_RDxF(port)))
687 return NO_POLL_CHAR;
688
689 c = serial_port_in(port, SCxRDR);
690
691 /* Dummy read */
692 serial_port_in(port, SCxSR);
693 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
694
695 return c;
696}
697#endif
698
699static void sci_poll_put_char(struct uart_port *port, unsigned char c)
700{
701 unsigned short status;
702
703 do {
704 status = serial_port_in(port, SCxSR);
705 } while (!(status & SCxSR_TDxE(port)));
706
707 serial_port_out(port, SCxTDR, c);
708 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
709}
710#endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
711 CONFIG_SERIAL_SH_SCI_EARLYCON */
712
713static void sci_init_pins(struct uart_port *port, unsigned int cflag)
714{
715 struct sci_port *s = to_sci_port(port);
716
717 /*
718 * Use port-specific handler if provided.
719 */
720 if (s->cfg->ops && s->cfg->ops->init_pins) {
721 s->cfg->ops->init_pins(port, cflag);
722 return;
723 }
724
725 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
726 u16 data = serial_port_in(port, SCPDR);
727 u16 ctrl = serial_port_in(port, SCPCR);
728
729 /* Enable RXD and TXD pin functions */
730 ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
731 if (to_sci_port(port)->has_rtscts) {
732 /* RTS# is output, active low, unless autorts */
733 if (!(port->mctrl & TIOCM_RTS)) {
734 ctrl |= SCPCR_RTSC;
735 data |= SCPDR_RTSD;
736 } else if (!s->autorts) {
737 ctrl |= SCPCR_RTSC;
738 data &= ~SCPDR_RTSD;
739 } else {
740 /* Enable RTS# pin function */
741 ctrl &= ~SCPCR_RTSC;
742 }
743 /* Enable CTS# pin function */
744 ctrl &= ~SCPCR_CTSC;
745 }
746 serial_port_out(port, SCPDR, data);
747 serial_port_out(port, SCPCR, ctrl);
748 } else if (sci_getreg(port, SCSPTR)->size) {
749 u16 status = serial_port_in(port, SCSPTR);
750
751 /* RTS# is always output; and active low, unless autorts */
752 status |= SCSPTR_RTSIO;
753 if (!(port->mctrl & TIOCM_RTS))
754 status |= SCSPTR_RTSDT;
755 else if (!s->autorts)
756 status &= ~SCSPTR_RTSDT;
757 /* CTS# and SCK are inputs */
758 status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
759 serial_port_out(port, SCSPTR, status);
760 }
761}
762
763static int sci_txfill(struct uart_port *port)
764{
765 struct sci_port *s = to_sci_port(port);
766 unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
767 const struct plat_sci_reg *reg;
768
769 reg = sci_getreg(port, SCTFDR);
770 if (reg->size)
771 return serial_port_in(port, SCTFDR) & fifo_mask;
772
773 reg = sci_getreg(port, SCFDR);
774 if (reg->size)
775 return serial_port_in(port, SCFDR) >> 8;
776
777 return !(serial_port_in(port, SCxSR) & SCI_TDRE);
778}
779
780static int sci_txroom(struct uart_port *port)
781{
782 return port->fifosize - sci_txfill(port);
783}
784
785static int sci_rxfill(struct uart_port *port)
786{
787 struct sci_port *s = to_sci_port(port);
788 unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
789 const struct plat_sci_reg *reg;
790
791 reg = sci_getreg(port, SCRFDR);
792 if (reg->size)
793 return serial_port_in(port, SCRFDR) & fifo_mask;
794
795 reg = sci_getreg(port, SCFDR);
796 if (reg->size)
797 return serial_port_in(port, SCFDR) & fifo_mask;
798
799 return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
800}
801
802/* ********************************************************************** *
803 * the interrupt related routines *
804 * ********************************************************************** */
805
806static void sci_transmit_chars(struct uart_port *port)
807{
808 struct circ_buf *xmit = &port->state->xmit;
809 unsigned int stopped = uart_tx_stopped(port);
810 unsigned short status;
811 unsigned short ctrl;
812 int count;
813
814 status = serial_port_in(port, SCxSR);
815 if (!(status & SCxSR_TDxE(port))) {
816 ctrl = serial_port_in(port, SCSCR);
817 if (uart_circ_empty(xmit))
818 ctrl &= ~SCSCR_TIE;
819 else
820 ctrl |= SCSCR_TIE;
821 serial_port_out(port, SCSCR, ctrl);
822 return;
823 }
824
825 count = sci_txroom(port);
826
827 do {
828 unsigned char c;
829
830 if (port->x_char) {
831 c = port->x_char;
832 port->x_char = 0;
833 } else if (!uart_circ_empty(xmit) && !stopped) {
834 c = xmit->buf[xmit->tail];
835 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
836 } else {
837 break;
838 }
839
840 serial_port_out(port, SCxTDR, c);
841
842 port->icount.tx++;
843 } while (--count > 0);
844
845 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
846
847 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
848 uart_write_wakeup(port);
849 if (uart_circ_empty(xmit))
850 sci_stop_tx(port);
851
852}
853
854/* On SH3, SCIF may read end-of-break as a space->mark char */
855#define STEPFN(c) ({int __c = (c); (((__c-1)|(__c)) == -1); })
856
857static void sci_receive_chars(struct uart_port *port)
858{
859 struct tty_port *tport = &port->state->port;
860 int i, count, copied = 0;
861 unsigned short status;
862 unsigned char flag;
863
864 status = serial_port_in(port, SCxSR);
865 if (!(status & SCxSR_RDxF(port)))
866 return;
867
868 while (1) {
869 /* Don't copy more bytes than there is room for in the buffer */
870 count = tty_buffer_request_room(tport, sci_rxfill(port));
871
872 /* If for any reason we can't copy more data, we're done! */
873 if (count == 0)
874 break;
875
876 if (port->type == PORT_SCI) {
877 char c = serial_port_in(port, SCxRDR);
878 if (uart_handle_sysrq_char(port, c))
879 count = 0;
880 else
881 tty_insert_flip_char(tport, c, TTY_NORMAL);
882 } else {
883 for (i = 0; i < count; i++) {
884 char c;
885
886 if (port->type == PORT_SCIF ||
887 port->type == PORT_HSCIF) {
888 status = serial_port_in(port, SCxSR);
889 c = serial_port_in(port, SCxRDR);
890 } else {
891 c = serial_port_in(port, SCxRDR);
892 status = serial_port_in(port, SCxSR);
893 }
894 if (uart_handle_sysrq_char(port, c)) {
895 count--; i--;
896 continue;
897 }
898
899 /* Store data and status */
900 if (status & SCxSR_FER(port)) {
901 flag = TTY_FRAME;
902 port->icount.frame++;
903 dev_notice(port->dev, "frame error\n");
904 } else if (status & SCxSR_PER(port)) {
905 flag = TTY_PARITY;
906 port->icount.parity++;
907 dev_notice(port->dev, "parity error\n");
908 } else
909 flag = TTY_NORMAL;
910
911 tty_insert_flip_char(tport, c, flag);
912 }
913 }
914
915 serial_port_in(port, SCxSR); /* dummy read */
916 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
917
918 copied += count;
919 port->icount.rx += count;
920 }
921
922 if (copied) {
923 /* Tell the rest of the system the news. New characters! */
924 tty_flip_buffer_push(tport);
925 } else {
926 /* TTY buffers full; read from RX reg to prevent lockup */
927 serial_port_in(port, SCxRDR);
928 serial_port_in(port, SCxSR); /* dummy read */
929 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
930 }
931}
932
933static int sci_handle_errors(struct uart_port *port)
934{
935 int copied = 0;
936 unsigned short status = serial_port_in(port, SCxSR);
937 struct tty_port *tport = &port->state->port;
938 struct sci_port *s = to_sci_port(port);
939
940 /* Handle overruns */
941 if (status & s->params->overrun_mask) {
942 port->icount.overrun++;
943
944 /* overrun error */
945 if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
946 copied++;
947
948 dev_notice(port->dev, "overrun error\n");
949 }
950
951 if (status & SCxSR_FER(port)) {
952 /* frame error */
953 port->icount.frame++;
954
955 if (tty_insert_flip_char(tport, 0, TTY_FRAME))
956 copied++;
957
958 dev_notice(port->dev, "frame error\n");
959 }
960
961 if (status & SCxSR_PER(port)) {
962 /* parity error */
963 port->icount.parity++;
964
965 if (tty_insert_flip_char(tport, 0, TTY_PARITY))
966 copied++;
967
968 dev_notice(port->dev, "parity error\n");
969 }
970
971 if (copied)
972 tty_flip_buffer_push(tport);
973
974 return copied;
975}
976
977static int sci_handle_fifo_overrun(struct uart_port *port)
978{
979 struct tty_port *tport = &port->state->port;
980 struct sci_port *s = to_sci_port(port);
981 const struct plat_sci_reg *reg;
982 int copied = 0;
983 u16 status;
984
985 reg = sci_getreg(port, s->params->overrun_reg);
986 if (!reg->size)
987 return 0;
988
989 status = serial_port_in(port, s->params->overrun_reg);
990 if (status & s->params->overrun_mask) {
991 status &= ~s->params->overrun_mask;
992 serial_port_out(port, s->params->overrun_reg, status);
993
994 port->icount.overrun++;
995
996 tty_insert_flip_char(tport, 0, TTY_OVERRUN);
997 tty_flip_buffer_push(tport);
998
999 dev_dbg(port->dev, "overrun error\n");
1000 copied++;
1001 }
1002
1003 return copied;
1004}
1005
1006static int sci_handle_breaks(struct uart_port *port)
1007{
1008 int copied = 0;
1009 unsigned short status = serial_port_in(port, SCxSR);
1010 struct tty_port *tport = &port->state->port;
1011
1012 if (uart_handle_break(port))
1013 return 0;
1014
1015 if (status & SCxSR_BRK(port)) {
1016 port->icount.brk++;
1017
1018 /* Notify of BREAK */
1019 if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1020 copied++;
1021
1022 dev_dbg(port->dev, "BREAK detected\n");
1023 }
1024
1025 if (copied)
1026 tty_flip_buffer_push(tport);
1027
1028 copied += sci_handle_fifo_overrun(port);
1029
1030 return copied;
1031}
1032
1033static int scif_set_rtrg(struct uart_port *port, int rx_trig)
1034{
1035 unsigned int bits;
1036
1037 if (rx_trig >= port->fifosize)
1038 rx_trig = port->fifosize - 1;
1039 if (rx_trig < 1)
1040 rx_trig = 1;
1041
1042 /* HSCIF can be set to an arbitrary level. */
1043 if (sci_getreg(port, HSRTRGR)->size) {
1044 serial_port_out(port, HSRTRGR, rx_trig);
1045 return rx_trig;
1046 }
1047
1048 switch (port->type) {
1049 case PORT_SCIF:
1050 if (rx_trig < 4) {
1051 bits = 0;
1052 rx_trig = 1;
1053 } else if (rx_trig < 8) {
1054 bits = SCFCR_RTRG0;
1055 rx_trig = 4;
1056 } else if (rx_trig < 14) {
1057 bits = SCFCR_RTRG1;
1058 rx_trig = 8;
1059 } else {
1060 bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1061 rx_trig = 14;
1062 }
1063 break;
1064 case PORT_SCIFA:
1065 case PORT_SCIFB:
1066 if (rx_trig < 16) {
1067 bits = 0;
1068 rx_trig = 1;
1069 } else if (rx_trig < 32) {
1070 bits = SCFCR_RTRG0;
1071 rx_trig = 16;
1072 } else if (rx_trig < 48) {
1073 bits = SCFCR_RTRG1;
1074 rx_trig = 32;
1075 } else {
1076 bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1077 rx_trig = 48;
1078 }
1079 break;
1080 default:
1081 WARN(1, "unknown FIFO configuration");
1082 return 1;
1083 }
1084
1085 serial_port_out(port, SCFCR,
1086 (serial_port_in(port, SCFCR) &
1087 ~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1088
1089 return rx_trig;
1090}
1091
1092static int scif_rtrg_enabled(struct uart_port *port)
1093{
1094 if (sci_getreg(port, HSRTRGR)->size)
1095 return serial_port_in(port, HSRTRGR) != 0;
1096 else
1097 return (serial_port_in(port, SCFCR) &
1098 (SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1099}
1100
1101static void rx_fifo_timer_fn(struct timer_list *t)
1102{
1103 struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1104 struct uart_port *port = &s->port;
1105
1106 dev_dbg(port->dev, "Rx timed out\n");
1107 scif_set_rtrg(port, 1);
1108}
1109
1110static ssize_t rx_fifo_trigger_show(struct device *dev,
1111 struct device_attribute *attr, char *buf)
1112{
1113 struct uart_port *port = dev_get_drvdata(dev);
1114 struct sci_port *sci = to_sci_port(port);
1115
1116 return sprintf(buf, "%d\n", sci->rx_trigger);
1117}
1118
1119static ssize_t rx_fifo_trigger_store(struct device *dev,
1120 struct device_attribute *attr,
1121 const char *buf, size_t count)
1122{
1123 struct uart_port *port = dev_get_drvdata(dev);
1124 struct sci_port *sci = to_sci_port(port);
1125 int ret;
1126 long r;
1127
1128 ret = kstrtol(buf, 0, &r);
1129 if (ret)
1130 return ret;
1131
1132 sci->rx_trigger = scif_set_rtrg(port, r);
1133 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1134 scif_set_rtrg(port, 1);
1135
1136 return count;
1137}
1138
1139static DEVICE_ATTR_RW(rx_fifo_trigger);
1140
1141static ssize_t rx_fifo_timeout_show(struct device *dev,
1142 struct device_attribute *attr,
1143 char *buf)
1144{
1145 struct uart_port *port = dev_get_drvdata(dev);
1146 struct sci_port *sci = to_sci_port(port);
1147 int v;
1148
1149 if (port->type == PORT_HSCIF)
1150 v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1151 else
1152 v = sci->rx_fifo_timeout;
1153
1154 return sprintf(buf, "%d\n", v);
1155}
1156
1157static ssize_t rx_fifo_timeout_store(struct device *dev,
1158 struct device_attribute *attr,
1159 const char *buf,
1160 size_t count)
1161{
1162 struct uart_port *port = dev_get_drvdata(dev);
1163 struct sci_port *sci = to_sci_port(port);
1164 int ret;
1165 long r;
1166
1167 ret = kstrtol(buf, 0, &r);
1168 if (ret)
1169 return ret;
1170
1171 if (port->type == PORT_HSCIF) {
1172 if (r < 0 || r > 3)
1173 return -EINVAL;
1174 sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1175 } else {
1176 sci->rx_fifo_timeout = r;
1177 scif_set_rtrg(port, 1);
1178 if (r > 0)
1179 timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1180 }
1181
1182 return count;
1183}
1184
1185static DEVICE_ATTR_RW(rx_fifo_timeout);
1186
1187
1188#ifdef CONFIG_SERIAL_SH_SCI_DMA
1189static void sci_dma_tx_complete(void *arg)
1190{
1191 struct sci_port *s = arg;
1192 struct uart_port *port = &s->port;
1193 struct circ_buf *xmit = &port->state->xmit;
1194 unsigned long flags;
1195
1196 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1197
1198 spin_lock_irqsave(&port->lock, flags);
1199
1200 xmit->tail += s->tx_dma_len;
1201 xmit->tail &= UART_XMIT_SIZE - 1;
1202
1203 port->icount.tx += s->tx_dma_len;
1204
1205 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1206 uart_write_wakeup(port);
1207
1208 if (!uart_circ_empty(xmit)) {
1209 s->cookie_tx = 0;
1210 schedule_work(&s->work_tx);
1211 } else {
1212 s->cookie_tx = -EINVAL;
1213 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1214 u16 ctrl = serial_port_in(port, SCSCR);
1215 serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1216 }
1217 }
1218
1219 spin_unlock_irqrestore(&port->lock, flags);
1220}
1221
1222/* Locking: called with port lock held */
1223static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1224{
1225 struct uart_port *port = &s->port;
1226 struct tty_port *tport = &port->state->port;
1227 int copied;
1228
1229 copied = tty_insert_flip_string(tport, buf, count);
1230 if (copied < count)
1231 port->icount.buf_overrun++;
1232
1233 port->icount.rx += copied;
1234
1235 return copied;
1236}
1237
1238static int sci_dma_rx_find_active(struct sci_port *s)
1239{
1240 unsigned int i;
1241
1242 for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1243 if (s->active_rx == s->cookie_rx[i])
1244 return i;
1245
1246 return -1;
1247}
1248
1249static void sci_dma_rx_chan_invalidate(struct sci_port *s)
1250{
1251 unsigned int i;
1252
1253 s->chan_rx = NULL;
1254 for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1255 s->cookie_rx[i] = -EINVAL;
1256 s->active_rx = 0;
1257}
1258
1259static void sci_dma_rx_release(struct sci_port *s)
1260{
1261 struct dma_chan *chan = s->chan_rx_saved;
1262 struct uart_port *port = &s->port;
1263 unsigned long flags;
1264
1265 uart_port_lock_irqsave(port, &flags);
1266 s->chan_rx_saved = NULL;
1267 sci_dma_rx_chan_invalidate(s);
1268 uart_port_unlock_irqrestore(port, flags);
1269
1270 dmaengine_terminate_sync(chan);
1271 dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1272 sg_dma_address(&s->sg_rx[0]));
1273 dma_release_channel(chan);
1274}
1275
1276static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1277{
1278 long sec = usec / 1000000;
1279 long nsec = (usec % 1000000) * 1000;
1280 ktime_t t = ktime_set(sec, nsec);
1281
1282 hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1283}
1284
1285static void sci_dma_rx_reenable_irq(struct sci_port *s)
1286{
1287 struct uart_port *port = &s->port;
1288 u16 scr;
1289
1290 /* Direct new serial port interrupts back to CPU */
1291 scr = serial_port_in(port, SCSCR);
1292 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1293 scr &= ~SCSCR_RDRQE;
1294 enable_irq(s->irqs[SCIx_RXI_IRQ]);
1295 }
1296 serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1297}
1298
1299static void sci_dma_rx_complete(void *arg)
1300{
1301 struct sci_port *s = arg;
1302 struct dma_chan *chan = s->chan_rx;
1303 struct uart_port *port = &s->port;
1304 struct dma_async_tx_descriptor *desc;
1305 unsigned long flags;
1306 int active, count = 0;
1307
1308 dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1309 s->active_rx);
1310
1311 spin_lock_irqsave(&port->lock, flags);
1312
1313 active = sci_dma_rx_find_active(s);
1314 if (active >= 0)
1315 count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1316
1317 start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1318
1319 if (count)
1320 tty_flip_buffer_push(&port->state->port);
1321
1322 desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1323 DMA_DEV_TO_MEM,
1324 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1325 if (!desc)
1326 goto fail;
1327
1328 desc->callback = sci_dma_rx_complete;
1329 desc->callback_param = s;
1330 s->cookie_rx[active] = dmaengine_submit(desc);
1331 if (dma_submit_error(s->cookie_rx[active]))
1332 goto fail;
1333
1334 s->active_rx = s->cookie_rx[!active];
1335
1336 dma_async_issue_pending(chan);
1337
1338 spin_unlock_irqrestore(&port->lock, flags);
1339 dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1340 __func__, s->cookie_rx[active], active, s->active_rx);
1341 return;
1342
1343fail:
1344 spin_unlock_irqrestore(&port->lock, flags);
1345 dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1346 /* Switch to PIO */
1347 spin_lock_irqsave(&port->lock, flags);
1348 dmaengine_terminate_async(chan);
1349 sci_dma_rx_chan_invalidate(s);
1350 sci_dma_rx_reenable_irq(s);
1351 spin_unlock_irqrestore(&port->lock, flags);
1352}
1353
1354static void sci_dma_tx_release(struct sci_port *s)
1355{
1356 struct dma_chan *chan = s->chan_tx_saved;
1357
1358 cancel_work_sync(&s->work_tx);
1359 s->chan_tx_saved = s->chan_tx = NULL;
1360 s->cookie_tx = -EINVAL;
1361 dmaengine_terminate_sync(chan);
1362 dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1363 DMA_TO_DEVICE);
1364 dma_release_channel(chan);
1365}
1366
1367static int sci_dma_rx_submit(struct sci_port *s, bool port_lock_held)
1368{
1369 struct dma_chan *chan = s->chan_rx;
1370 struct uart_port *port = &s->port;
1371 unsigned long flags;
1372 int i;
1373
1374 for (i = 0; i < 2; i++) {
1375 struct scatterlist *sg = &s->sg_rx[i];
1376 struct dma_async_tx_descriptor *desc;
1377
1378 desc = dmaengine_prep_slave_sg(chan,
1379 sg, 1, DMA_DEV_TO_MEM,
1380 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1381 if (!desc)
1382 goto fail;
1383
1384 desc->callback = sci_dma_rx_complete;
1385 desc->callback_param = s;
1386 s->cookie_rx[i] = dmaengine_submit(desc);
1387 if (dma_submit_error(s->cookie_rx[i]))
1388 goto fail;
1389
1390 }
1391
1392 s->active_rx = s->cookie_rx[0];
1393
1394 dma_async_issue_pending(chan);
1395 return 0;
1396
1397fail:
1398 /* Switch to PIO */
1399 if (!port_lock_held)
1400 spin_lock_irqsave(&port->lock, flags);
1401 if (i)
1402 dmaengine_terminate_async(chan);
1403 sci_dma_rx_chan_invalidate(s);
1404 sci_start_rx(port);
1405 if (!port_lock_held)
1406 spin_unlock_irqrestore(&port->lock, flags);
1407 return -EAGAIN;
1408}
1409
1410static void sci_dma_tx_work_fn(struct work_struct *work)
1411{
1412 struct sci_port *s = container_of(work, struct sci_port, work_tx);
1413 struct dma_async_tx_descriptor *desc;
1414 struct dma_chan *chan = s->chan_tx;
1415 struct uart_port *port = &s->port;
1416 struct circ_buf *xmit = &port->state->xmit;
1417 unsigned long flags;
1418 dma_addr_t buf;
1419 int head, tail;
1420
1421 /*
1422 * DMA is idle now.
1423 * Port xmit buffer is already mapped, and it is one page... Just adjust
1424 * offsets and lengths. Since it is a circular buffer, we have to
1425 * transmit till the end, and then the rest. Take the port lock to get a
1426 * consistent xmit buffer state.
1427 */
1428 spin_lock_irq(&port->lock);
1429 head = xmit->head;
1430 tail = xmit->tail;
1431 buf = s->tx_dma_addr + (tail & (UART_XMIT_SIZE - 1));
1432 s->tx_dma_len = min_t(unsigned int,
1433 CIRC_CNT(head, tail, UART_XMIT_SIZE),
1434 CIRC_CNT_TO_END(head, tail, UART_XMIT_SIZE));
1435 if (!s->tx_dma_len) {
1436 /* Transmit buffer has been flushed */
1437 spin_unlock_irq(&port->lock);
1438 return;
1439 }
1440
1441 desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1442 DMA_MEM_TO_DEV,
1443 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1444 if (!desc) {
1445 spin_unlock_irq(&port->lock);
1446 dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1447 goto switch_to_pio;
1448 }
1449
1450 dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1451 DMA_TO_DEVICE);
1452
1453 desc->callback = sci_dma_tx_complete;
1454 desc->callback_param = s;
1455 s->cookie_tx = dmaengine_submit(desc);
1456 if (dma_submit_error(s->cookie_tx)) {
1457 spin_unlock_irq(&port->lock);
1458 dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1459 goto switch_to_pio;
1460 }
1461
1462 spin_unlock_irq(&port->lock);
1463 dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1464 __func__, xmit->buf, tail, head, s->cookie_tx);
1465
1466 dma_async_issue_pending(chan);
1467 return;
1468
1469switch_to_pio:
1470 spin_lock_irqsave(&port->lock, flags);
1471 s->chan_tx = NULL;
1472 sci_start_tx(port);
1473 spin_unlock_irqrestore(&port->lock, flags);
1474 return;
1475}
1476
1477static enum hrtimer_restart sci_dma_rx_timer_fn(struct hrtimer *t)
1478{
1479 struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1480 struct dma_chan *chan = s->chan_rx;
1481 struct uart_port *port = &s->port;
1482 struct dma_tx_state state;
1483 enum dma_status status;
1484 unsigned long flags;
1485 unsigned int read;
1486 int active, count;
1487
1488 dev_dbg(port->dev, "DMA Rx timed out\n");
1489
1490 spin_lock_irqsave(&port->lock, flags);
1491
1492 active = sci_dma_rx_find_active(s);
1493 if (active < 0) {
1494 spin_unlock_irqrestore(&port->lock, flags);
1495 return HRTIMER_NORESTART;
1496 }
1497
1498 status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1499 if (status == DMA_COMPLETE) {
1500 spin_unlock_irqrestore(&port->lock, flags);
1501 dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1502 s->active_rx, active);
1503
1504 /* Let packet complete handler take care of the packet */
1505 return HRTIMER_NORESTART;
1506 }
1507
1508 dmaengine_pause(chan);
1509
1510 /*
1511 * sometimes DMA transfer doesn't stop even if it is stopped and
1512 * data keeps on coming until transaction is complete so check
1513 * for DMA_COMPLETE again
1514 * Let packet complete handler take care of the packet
1515 */
1516 status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1517 if (status == DMA_COMPLETE) {
1518 spin_unlock_irqrestore(&port->lock, flags);
1519 dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1520 return HRTIMER_NORESTART;
1521 }
1522
1523 /* Handle incomplete DMA receive */
1524 dmaengine_terminate_async(s->chan_rx);
1525 read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1526
1527 if (read) {
1528 count = sci_dma_rx_push(s, s->rx_buf[active], read);
1529 if (count)
1530 tty_flip_buffer_push(&port->state->port);
1531 }
1532
1533 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1534 sci_dma_rx_submit(s, true);
1535
1536 sci_dma_rx_reenable_irq(s);
1537
1538 spin_unlock_irqrestore(&port->lock, flags);
1539
1540 return HRTIMER_NORESTART;
1541}
1542
1543static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1544 enum dma_transfer_direction dir)
1545{
1546 struct dma_chan *chan;
1547 struct dma_slave_config cfg;
1548 int ret;
1549
1550 chan = dma_request_slave_channel(port->dev,
1551 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1552 if (!chan) {
1553 dev_dbg(port->dev, "dma_request_slave_channel failed\n");
1554 return NULL;
1555 }
1556
1557 memset(&cfg, 0, sizeof(cfg));
1558 cfg.direction = dir;
1559 if (dir == DMA_MEM_TO_DEV) {
1560 cfg.dst_addr = port->mapbase +
1561 (sci_getreg(port, SCxTDR)->offset << port->regshift);
1562 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1563 } else {
1564 cfg.src_addr = port->mapbase +
1565 (sci_getreg(port, SCxRDR)->offset << port->regshift);
1566 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1567 }
1568
1569 ret = dmaengine_slave_config(chan, &cfg);
1570 if (ret) {
1571 dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1572 dma_release_channel(chan);
1573 return NULL;
1574 }
1575
1576 return chan;
1577}
1578
1579static void sci_request_dma(struct uart_port *port)
1580{
1581 struct sci_port *s = to_sci_port(port);
1582 struct dma_chan *chan;
1583
1584 dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1585
1586 /*
1587 * DMA on console may interfere with Kernel log messages which use
1588 * plain putchar(). So, simply don't use it with a console.
1589 */
1590 if (uart_console(port))
1591 return;
1592
1593 if (!port->dev->of_node)
1594 return;
1595
1596 s->cookie_tx = -EINVAL;
1597
1598 /*
1599 * Don't request a dma channel if no channel was specified
1600 * in the device tree.
1601 */
1602 if (!of_find_property(port->dev->of_node, "dmas", NULL))
1603 return;
1604
1605 chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1606 dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1607 if (chan) {
1608 /* UART circular tx buffer is an aligned page. */
1609 s->tx_dma_addr = dma_map_single(chan->device->dev,
1610 port->state->xmit.buf,
1611 UART_XMIT_SIZE,
1612 DMA_TO_DEVICE);
1613 if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1614 dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1615 dma_release_channel(chan);
1616 } else {
1617 dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1618 __func__, UART_XMIT_SIZE,
1619 port->state->xmit.buf, &s->tx_dma_addr);
1620
1621 INIT_WORK(&s->work_tx, sci_dma_tx_work_fn);
1622 s->chan_tx_saved = s->chan_tx = chan;
1623 }
1624 }
1625
1626 chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1627 dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1628 if (chan) {
1629 unsigned int i;
1630 dma_addr_t dma;
1631 void *buf;
1632
1633 s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1634 buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1635 &dma, GFP_KERNEL);
1636 if (!buf) {
1637 dev_warn(port->dev,
1638 "Failed to allocate Rx dma buffer, using PIO\n");
1639 dma_release_channel(chan);
1640 return;
1641 }
1642
1643 for (i = 0; i < 2; i++) {
1644 struct scatterlist *sg = &s->sg_rx[i];
1645
1646 sg_init_table(sg, 1);
1647 s->rx_buf[i] = buf;
1648 sg_dma_address(sg) = dma;
1649 sg_dma_len(sg) = s->buf_len_rx;
1650
1651 buf += s->buf_len_rx;
1652 dma += s->buf_len_rx;
1653 }
1654
1655 hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1656 s->rx_timer.function = sci_dma_rx_timer_fn;
1657
1658 s->chan_rx_saved = s->chan_rx = chan;
1659
1660 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1661 sci_dma_rx_submit(s, false);
1662 }
1663}
1664
1665static void sci_free_dma(struct uart_port *port)
1666{
1667 struct sci_port *s = to_sci_port(port);
1668
1669 if (s->chan_tx_saved)
1670 sci_dma_tx_release(s);
1671 if (s->chan_rx_saved)
1672 sci_dma_rx_release(s);
1673}
1674
1675static void sci_flush_buffer(struct uart_port *port)
1676{
1677 struct sci_port *s = to_sci_port(port);
1678
1679 /*
1680 * In uart_flush_buffer(), the xmit circular buffer has just been
1681 * cleared, so we have to reset tx_dma_len accordingly, and stop any
1682 * pending transfers
1683 */
1684 s->tx_dma_len = 0;
1685 if (s->chan_tx) {
1686 dmaengine_terminate_async(s->chan_tx);
1687 s->cookie_tx = -EINVAL;
1688 }
1689}
1690#else /* !CONFIG_SERIAL_SH_SCI_DMA */
1691static inline void sci_request_dma(struct uart_port *port)
1692{
1693}
1694
1695static inline void sci_free_dma(struct uart_port *port)
1696{
1697}
1698
1699#define sci_flush_buffer NULL
1700#endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1701
1702static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1703{
1704 struct uart_port *port = ptr;
1705 struct sci_port *s = to_sci_port(port);
1706
1707#ifdef CONFIG_SERIAL_SH_SCI_DMA
1708 if (s->chan_rx) {
1709 u16 scr = serial_port_in(port, SCSCR);
1710 u16 ssr = serial_port_in(port, SCxSR);
1711
1712 /* Disable future Rx interrupts */
1713 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1714 disable_irq_nosync(irq);
1715 scr |= SCSCR_RDRQE;
1716 } else {
1717 if (sci_dma_rx_submit(s, false) < 0)
1718 goto handle_pio;
1719
1720 scr &= ~SCSCR_RIE;
1721 }
1722 serial_port_out(port, SCSCR, scr);
1723 /* Clear current interrupt */
1724 serial_port_out(port, SCxSR,
1725 ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1726 dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1727 jiffies, s->rx_timeout);
1728 start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1729
1730 return IRQ_HANDLED;
1731 }
1732
1733handle_pio:
1734#endif
1735
1736 if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1737 if (!scif_rtrg_enabled(port))
1738 scif_set_rtrg(port, s->rx_trigger);
1739
1740 mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1741 s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1742 }
1743
1744 /* I think sci_receive_chars has to be called irrespective
1745 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1746 * to be disabled?
1747 */
1748 sci_receive_chars(port);
1749
1750 return IRQ_HANDLED;
1751}
1752
1753static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1754{
1755 struct uart_port *port = ptr;
1756 unsigned long flags;
1757
1758 spin_lock_irqsave(&port->lock, flags);
1759 sci_transmit_chars(port);
1760 spin_unlock_irqrestore(&port->lock, flags);
1761
1762 return IRQ_HANDLED;
1763}
1764
1765static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1766{
1767 struct uart_port *port = ptr;
1768
1769 /* Handle BREAKs */
1770 sci_handle_breaks(port);
1771
1772 /* drop invalid character received before break was detected */
1773 serial_port_in(port, SCxRDR);
1774
1775 sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1776
1777 return IRQ_HANDLED;
1778}
1779
1780static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1781{
1782 struct uart_port *port = ptr;
1783 struct sci_port *s = to_sci_port(port);
1784
1785 if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) {
1786 /* Break and Error interrupts are muxed */
1787 unsigned short ssr_status = serial_port_in(port, SCxSR);
1788
1789 /* Break Interrupt */
1790 if (ssr_status & SCxSR_BRK(port))
1791 sci_br_interrupt(irq, ptr);
1792
1793 /* Break only? */
1794 if (!(ssr_status & SCxSR_ERRORS(port)))
1795 return IRQ_HANDLED;
1796 }
1797
1798 /* Handle errors */
1799 if (port->type == PORT_SCI) {
1800 if (sci_handle_errors(port)) {
1801 /* discard character in rx buffer */
1802 serial_port_in(port, SCxSR);
1803 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1804 }
1805 } else {
1806 sci_handle_fifo_overrun(port);
1807 if (!s->chan_rx)
1808 sci_receive_chars(port);
1809 }
1810
1811 sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1812
1813 /* Kick the transmission */
1814 if (!s->chan_tx)
1815 sci_tx_interrupt(irq, ptr);
1816
1817 return IRQ_HANDLED;
1818}
1819
1820static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1821{
1822 unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1823 struct uart_port *port = ptr;
1824 struct sci_port *s = to_sci_port(port);
1825 irqreturn_t ret = IRQ_NONE;
1826
1827 ssr_status = serial_port_in(port, SCxSR);
1828 scr_status = serial_port_in(port, SCSCR);
1829 if (s->params->overrun_reg == SCxSR)
1830 orer_status = ssr_status;
1831 else if (sci_getreg(port, s->params->overrun_reg)->size)
1832 orer_status = serial_port_in(port, s->params->overrun_reg);
1833
1834 err_enabled = scr_status & port_rx_irq_mask(port);
1835
1836 /* Tx Interrupt */
1837 if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1838 !s->chan_tx)
1839 ret = sci_tx_interrupt(irq, ptr);
1840
1841 /*
1842 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1843 * DR flags
1844 */
1845 if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1846 (scr_status & SCSCR_RIE))
1847 ret = sci_rx_interrupt(irq, ptr);
1848
1849 /* Error Interrupt */
1850 if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1851 ret = sci_er_interrupt(irq, ptr);
1852
1853 /* Break Interrupt */
1854 if (s->irqs[SCIx_ERI_IRQ] != s->irqs[SCIx_BRI_IRQ] &&
1855 (ssr_status & SCxSR_BRK(port)) && err_enabled)
1856 ret = sci_br_interrupt(irq, ptr);
1857
1858 /* Overrun Interrupt */
1859 if (orer_status & s->params->overrun_mask) {
1860 sci_handle_fifo_overrun(port);
1861 ret = IRQ_HANDLED;
1862 }
1863
1864 return ret;
1865}
1866
1867static const struct sci_irq_desc {
1868 const char *desc;
1869 irq_handler_t handler;
1870} sci_irq_desc[] = {
1871 /*
1872 * Split out handlers, the default case.
1873 */
1874 [SCIx_ERI_IRQ] = {
1875 .desc = "rx err",
1876 .handler = sci_er_interrupt,
1877 },
1878
1879 [SCIx_RXI_IRQ] = {
1880 .desc = "rx full",
1881 .handler = sci_rx_interrupt,
1882 },
1883
1884 [SCIx_TXI_IRQ] = {
1885 .desc = "tx empty",
1886 .handler = sci_tx_interrupt,
1887 },
1888
1889 [SCIx_BRI_IRQ] = {
1890 .desc = "break",
1891 .handler = sci_br_interrupt,
1892 },
1893
1894 [SCIx_DRI_IRQ] = {
1895 .desc = "rx ready",
1896 .handler = sci_rx_interrupt,
1897 },
1898
1899 [SCIx_TEI_IRQ] = {
1900 .desc = "tx end",
1901 .handler = sci_tx_interrupt,
1902 },
1903
1904 /*
1905 * Special muxed handler.
1906 */
1907 [SCIx_MUX_IRQ] = {
1908 .desc = "mux",
1909 .handler = sci_mpxed_interrupt,
1910 },
1911};
1912
1913static int sci_request_irq(struct sci_port *port)
1914{
1915 struct uart_port *up = &port->port;
1916 int i, j, w, ret = 0;
1917
1918 for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1919 const struct sci_irq_desc *desc;
1920 int irq;
1921
1922 /* Check if already registered (muxed) */
1923 for (w = 0; w < i; w++)
1924 if (port->irqs[w] == port->irqs[i])
1925 w = i + 1;
1926 if (w > i)
1927 continue;
1928
1929 if (SCIx_IRQ_IS_MUXED(port)) {
1930 i = SCIx_MUX_IRQ;
1931 irq = up->irq;
1932 } else {
1933 irq = port->irqs[i];
1934
1935 /*
1936 * Certain port types won't support all of the
1937 * available interrupt sources.
1938 */
1939 if (unlikely(irq < 0))
1940 continue;
1941 }
1942
1943 desc = sci_irq_desc + i;
1944 port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1945 dev_name(up->dev), desc->desc);
1946 if (!port->irqstr[j]) {
1947 ret = -ENOMEM;
1948 goto out_nomem;
1949 }
1950
1951 ret = request_irq(irq, desc->handler, up->irqflags,
1952 port->irqstr[j], port);
1953 if (unlikely(ret)) {
1954 dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1955 goto out_noirq;
1956 }
1957 }
1958
1959 return 0;
1960
1961out_noirq:
1962 while (--i >= 0)
1963 free_irq(port->irqs[i], port);
1964
1965out_nomem:
1966 while (--j >= 0)
1967 kfree(port->irqstr[j]);
1968
1969 return ret;
1970}
1971
1972static void sci_free_irq(struct sci_port *port)
1973{
1974 int i, j;
1975
1976 /*
1977 * Intentionally in reverse order so we iterate over the muxed
1978 * IRQ first.
1979 */
1980 for (i = 0; i < SCIx_NR_IRQS; i++) {
1981 int irq = port->irqs[i];
1982
1983 /*
1984 * Certain port types won't support all of the available
1985 * interrupt sources.
1986 */
1987 if (unlikely(irq < 0))
1988 continue;
1989
1990 /* Check if already freed (irq was muxed) */
1991 for (j = 0; j < i; j++)
1992 if (port->irqs[j] == irq)
1993 j = i + 1;
1994 if (j > i)
1995 continue;
1996
1997 free_irq(port->irqs[i], port);
1998 kfree(port->irqstr[i]);
1999
2000 if (SCIx_IRQ_IS_MUXED(port)) {
2001 /* If there's only one IRQ, we're done. */
2002 return;
2003 }
2004 }
2005}
2006
2007static unsigned int sci_tx_empty(struct uart_port *port)
2008{
2009 unsigned short status = serial_port_in(port, SCxSR);
2010 unsigned short in_tx_fifo = sci_txfill(port);
2011
2012 return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
2013}
2014
2015static void sci_set_rts(struct uart_port *port, bool state)
2016{
2017 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2018 u16 data = serial_port_in(port, SCPDR);
2019
2020 /* Active low */
2021 if (state)
2022 data &= ~SCPDR_RTSD;
2023 else
2024 data |= SCPDR_RTSD;
2025 serial_port_out(port, SCPDR, data);
2026
2027 /* RTS# is output */
2028 serial_port_out(port, SCPCR,
2029 serial_port_in(port, SCPCR) | SCPCR_RTSC);
2030 } else if (sci_getreg(port, SCSPTR)->size) {
2031 u16 ctrl = serial_port_in(port, SCSPTR);
2032
2033 /* Active low */
2034 if (state)
2035 ctrl &= ~SCSPTR_RTSDT;
2036 else
2037 ctrl |= SCSPTR_RTSDT;
2038 serial_port_out(port, SCSPTR, ctrl);
2039 }
2040}
2041
2042static bool sci_get_cts(struct uart_port *port)
2043{
2044 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2045 /* Active low */
2046 return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
2047 } else if (sci_getreg(port, SCSPTR)->size) {
2048 /* Active low */
2049 return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
2050 }
2051
2052 return true;
2053}
2054
2055/*
2056 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
2057 * CTS/RTS is supported in hardware by at least one port and controlled
2058 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
2059 * handled via the ->init_pins() op, which is a bit of a one-way street,
2060 * lacking any ability to defer pin control -- this will later be
2061 * converted over to the GPIO framework).
2062 *
2063 * Other modes (such as loopback) are supported generically on certain
2064 * port types, but not others. For these it's sufficient to test for the
2065 * existence of the support register and simply ignore the port type.
2066 */
2067static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
2068{
2069 struct sci_port *s = to_sci_port(port);
2070
2071 if (mctrl & TIOCM_LOOP) {
2072 const struct plat_sci_reg *reg;
2073
2074 /*
2075 * Standard loopback mode for SCFCR ports.
2076 */
2077 reg = sci_getreg(port, SCFCR);
2078 if (reg->size)
2079 serial_port_out(port, SCFCR,
2080 serial_port_in(port, SCFCR) |
2081 SCFCR_LOOP);
2082 }
2083
2084 mctrl_gpio_set(s->gpios, mctrl);
2085
2086 if (!s->has_rtscts)
2087 return;
2088
2089 if (!(mctrl & TIOCM_RTS)) {
2090 /* Disable Auto RTS */
2091 serial_port_out(port, SCFCR,
2092 serial_port_in(port, SCFCR) & ~SCFCR_MCE);
2093
2094 /* Clear RTS */
2095 sci_set_rts(port, 0);
2096 } else if (s->autorts) {
2097 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2098 /* Enable RTS# pin function */
2099 serial_port_out(port, SCPCR,
2100 serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
2101 }
2102
2103 /* Enable Auto RTS */
2104 serial_port_out(port, SCFCR,
2105 serial_port_in(port, SCFCR) | SCFCR_MCE);
2106 } else {
2107 /* Set RTS */
2108 sci_set_rts(port, 1);
2109 }
2110}
2111
2112static unsigned int sci_get_mctrl(struct uart_port *port)
2113{
2114 struct sci_port *s = to_sci_port(port);
2115 struct mctrl_gpios *gpios = s->gpios;
2116 unsigned int mctrl = 0;
2117
2118 mctrl_gpio_get(gpios, &mctrl);
2119
2120 /*
2121 * CTS/RTS is handled in hardware when supported, while nothing
2122 * else is wired up.
2123 */
2124 if (s->autorts) {
2125 if (sci_get_cts(port))
2126 mctrl |= TIOCM_CTS;
2127 } else if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS)) {
2128 mctrl |= TIOCM_CTS;
2129 }
2130 if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR))
2131 mctrl |= TIOCM_DSR;
2132 if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD))
2133 mctrl |= TIOCM_CAR;
2134
2135 return mctrl;
2136}
2137
2138static void sci_enable_ms(struct uart_port *port)
2139{
2140 mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2141}
2142
2143static void sci_break_ctl(struct uart_port *port, int break_state)
2144{
2145 unsigned short scscr, scsptr;
2146 unsigned long flags;
2147
2148 /* check wheter the port has SCSPTR */
2149 if (!sci_getreg(port, SCSPTR)->size) {
2150 /*
2151 * Not supported by hardware. Most parts couple break and rx
2152 * interrupts together, with break detection always enabled.
2153 */
2154 return;
2155 }
2156
2157 spin_lock_irqsave(&port->lock, flags);
2158 scsptr = serial_port_in(port, SCSPTR);
2159 scscr = serial_port_in(port, SCSCR);
2160
2161 if (break_state == -1) {
2162 scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2163 scscr &= ~SCSCR_TE;
2164 } else {
2165 scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2166 scscr |= SCSCR_TE;
2167 }
2168
2169 serial_port_out(port, SCSPTR, scsptr);
2170 serial_port_out(port, SCSCR, scscr);
2171 spin_unlock_irqrestore(&port->lock, flags);
2172}
2173
2174static int sci_startup(struct uart_port *port)
2175{
2176 struct sci_port *s = to_sci_port(port);
2177 int ret;
2178
2179 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2180
2181 sci_request_dma(port);
2182
2183 ret = sci_request_irq(s);
2184 if (unlikely(ret < 0)) {
2185 sci_free_dma(port);
2186 return ret;
2187 }
2188
2189 return 0;
2190}
2191
2192static void sci_shutdown(struct uart_port *port)
2193{
2194 struct sci_port *s = to_sci_port(port);
2195 unsigned long flags;
2196 u16 scr;
2197
2198 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2199
2200 s->autorts = false;
2201 mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2202
2203 spin_lock_irqsave(&port->lock, flags);
2204 sci_stop_rx(port);
2205 sci_stop_tx(port);
2206 /*
2207 * Stop RX and TX, disable related interrupts, keep clock source
2208 * and HSCIF TOT bits
2209 */
2210 scr = serial_port_in(port, SCSCR);
2211 serial_port_out(port, SCSCR, scr &
2212 (SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2213 spin_unlock_irqrestore(&port->lock, flags);
2214
2215#ifdef CONFIG_SERIAL_SH_SCI_DMA
2216 if (s->chan_rx_saved) {
2217 dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2218 port->line);
2219 hrtimer_cancel(&s->rx_timer);
2220 }
2221#endif
2222
2223 if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0)
2224 del_timer_sync(&s->rx_fifo_timer);
2225 sci_free_irq(s);
2226 sci_free_dma(port);
2227}
2228
2229static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2230 unsigned int *srr)
2231{
2232 unsigned long freq = s->clk_rates[SCI_SCK];
2233 int err, min_err = INT_MAX;
2234 unsigned int sr;
2235
2236 if (s->port.type != PORT_HSCIF)
2237 freq *= 2;
2238
2239 for_each_sr(sr, s) {
2240 err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2241 if (abs(err) >= abs(min_err))
2242 continue;
2243
2244 min_err = err;
2245 *srr = sr - 1;
2246
2247 if (!err)
2248 break;
2249 }
2250
2251 dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2252 *srr + 1);
2253 return min_err;
2254}
2255
2256static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2257 unsigned long freq, unsigned int *dlr,
2258 unsigned int *srr)
2259{
2260 int err, min_err = INT_MAX;
2261 unsigned int sr, dl;
2262
2263 if (s->port.type != PORT_HSCIF)
2264 freq *= 2;
2265
2266 for_each_sr(sr, s) {
2267 dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2268 dl = clamp(dl, 1U, 65535U);
2269
2270 err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2271 if (abs(err) >= abs(min_err))
2272 continue;
2273
2274 min_err = err;
2275 *dlr = dl;
2276 *srr = sr - 1;
2277
2278 if (!err)
2279 break;
2280 }
2281
2282 dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2283 min_err, *dlr, *srr + 1);
2284 return min_err;
2285}
2286
2287/* calculate sample rate, BRR, and clock select */
2288static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2289 unsigned int *brr, unsigned int *srr,
2290 unsigned int *cks)
2291{
2292 unsigned long freq = s->clk_rates[SCI_FCK];
2293 unsigned int sr, br, prediv, scrate, c;
2294 int err, min_err = INT_MAX;
2295
2296 if (s->port.type != PORT_HSCIF)
2297 freq *= 2;
2298
2299 /*
2300 * Find the combination of sample rate and clock select with the
2301 * smallest deviation from the desired baud rate.
2302 * Prefer high sample rates to maximise the receive margin.
2303 *
2304 * M: Receive margin (%)
2305 * N: Ratio of bit rate to clock (N = sampling rate)
2306 * D: Clock duty (D = 0 to 1.0)
2307 * L: Frame length (L = 9 to 12)
2308 * F: Absolute value of clock frequency deviation
2309 *
2310 * M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2311 * (|D - 0.5| / N * (1 + F))|
2312 * NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2313 */
2314 for_each_sr(sr, s) {
2315 for (c = 0; c <= 3; c++) {
2316 /* integerized formulas from HSCIF documentation */
2317 prediv = sr * (1 << (2 * c + 1));
2318
2319 /*
2320 * We need to calculate:
2321 *
2322 * br = freq / (prediv * bps) clamped to [1..256]
2323 * err = freq / (br * prediv) - bps
2324 *
2325 * Watch out for overflow when calculating the desired
2326 * sampling clock rate!
2327 */
2328 if (bps > UINT_MAX / prediv)
2329 break;
2330
2331 scrate = prediv * bps;
2332 br = DIV_ROUND_CLOSEST(freq, scrate);
2333 br = clamp(br, 1U, 256U);
2334
2335 err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2336 if (abs(err) >= abs(min_err))
2337 continue;
2338
2339 min_err = err;
2340 *brr = br - 1;
2341 *srr = sr - 1;
2342 *cks = c;
2343
2344 if (!err)
2345 goto found;
2346 }
2347 }
2348
2349found:
2350 dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2351 min_err, *brr, *srr + 1, *cks);
2352 return min_err;
2353}
2354
2355static void sci_reset(struct uart_port *port)
2356{
2357 const struct plat_sci_reg *reg;
2358 unsigned int status;
2359 struct sci_port *s = to_sci_port(port);
2360
2361 serial_port_out(port, SCSCR, s->hscif_tot); /* TE=0, RE=0, CKE1=0 */
2362
2363 reg = sci_getreg(port, SCFCR);
2364 if (reg->size)
2365 serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2366
2367 sci_clear_SCxSR(port,
2368 SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2369 SCxSR_BREAK_CLEAR(port));
2370 if (sci_getreg(port, SCLSR)->size) {
2371 status = serial_port_in(port, SCLSR);
2372 status &= ~(SCLSR_TO | SCLSR_ORER);
2373 serial_port_out(port, SCLSR, status);
2374 }
2375
2376 if (s->rx_trigger > 1) {
2377 if (s->rx_fifo_timeout) {
2378 scif_set_rtrg(port, 1);
2379 timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2380 } else {
2381 if (port->type == PORT_SCIFA ||
2382 port->type == PORT_SCIFB)
2383 scif_set_rtrg(port, 1);
2384 else
2385 scif_set_rtrg(port, s->rx_trigger);
2386 }
2387 }
2388}
2389
2390static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2391 struct ktermios *old)
2392{
2393 unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2394 unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2395 unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2396 struct sci_port *s = to_sci_port(port);
2397 const struct plat_sci_reg *reg;
2398 int min_err = INT_MAX, err;
2399 unsigned long max_freq = 0;
2400 int best_clk = -1;
2401 unsigned long flags;
2402
2403 if ((termios->c_cflag & CSIZE) == CS7) {
2404 smr_val |= SCSMR_CHR;
2405 } else {
2406 termios->c_cflag &= ~CSIZE;
2407 termios->c_cflag |= CS8;
2408 }
2409 if (termios->c_cflag & PARENB)
2410 smr_val |= SCSMR_PE;
2411 if (termios->c_cflag & PARODD)
2412 smr_val |= SCSMR_PE | SCSMR_ODD;
2413 if (termios->c_cflag & CSTOPB)
2414 smr_val |= SCSMR_STOP;
2415
2416 /*
2417 * earlyprintk comes here early on with port->uartclk set to zero.
2418 * the clock framework is not up and running at this point so here
2419 * we assume that 115200 is the maximum baud rate. please note that
2420 * the baud rate is not programmed during earlyprintk - it is assumed
2421 * that the previous boot loader has enabled required clocks and
2422 * setup the baud rate generator hardware for us already.
2423 */
2424 if (!port->uartclk) {
2425 baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2426 goto done;
2427 }
2428
2429 for (i = 0; i < SCI_NUM_CLKS; i++)
2430 max_freq = max(max_freq, s->clk_rates[i]);
2431
2432 baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2433 if (!baud)
2434 goto done;
2435
2436 /*
2437 * There can be multiple sources for the sampling clock. Find the one
2438 * that gives us the smallest deviation from the desired baud rate.
2439 */
2440
2441 /* Optional Undivided External Clock */
2442 if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2443 port->type != PORT_SCIFB) {
2444 err = sci_sck_calc(s, baud, &srr1);
2445 if (abs(err) < abs(min_err)) {
2446 best_clk = SCI_SCK;
2447 scr_val = SCSCR_CKE1;
2448 sccks = SCCKS_CKS;
2449 min_err = err;
2450 srr = srr1;
2451 if (!err)
2452 goto done;
2453 }
2454 }
2455
2456 /* Optional BRG Frequency Divided External Clock */
2457 if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2458 err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2459 &srr1);
2460 if (abs(err) < abs(min_err)) {
2461 best_clk = SCI_SCIF_CLK;
2462 scr_val = SCSCR_CKE1;
2463 sccks = 0;
2464 min_err = err;
2465 dl = dl1;
2466 srr = srr1;
2467 if (!err)
2468 goto done;
2469 }
2470 }
2471
2472 /* Optional BRG Frequency Divided Internal Clock */
2473 if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2474 err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2475 &srr1);
2476 if (abs(err) < abs(min_err)) {
2477 best_clk = SCI_BRG_INT;
2478 scr_val = SCSCR_CKE1;
2479 sccks = SCCKS_XIN;
2480 min_err = err;
2481 dl = dl1;
2482 srr = srr1;
2483 if (!min_err)
2484 goto done;
2485 }
2486 }
2487
2488 /* Divided Functional Clock using standard Bit Rate Register */
2489 err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2490 if (abs(err) < abs(min_err)) {
2491 best_clk = SCI_FCK;
2492 scr_val = 0;
2493 min_err = err;
2494 brr = brr1;
2495 srr = srr1;
2496 cks = cks1;
2497 }
2498
2499done:
2500 if (best_clk >= 0)
2501 dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2502 s->clks[best_clk], baud, min_err);
2503
2504 sci_port_enable(s);
2505
2506 /*
2507 * Program the optional External Baud Rate Generator (BRG) first.
2508 * It controls the mux to select (H)SCK or frequency divided clock.
2509 */
2510 if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2511 serial_port_out(port, SCDL, dl);
2512 serial_port_out(port, SCCKS, sccks);
2513 }
2514
2515 spin_lock_irqsave(&port->lock, flags);
2516
2517 sci_reset(port);
2518
2519 uart_update_timeout(port, termios->c_cflag, baud);
2520
2521 /* byte size and parity */
2522 switch (termios->c_cflag & CSIZE) {
2523 case CS5:
2524 bits = 7;
2525 break;
2526 case CS6:
2527 bits = 8;
2528 break;
2529 case CS7:
2530 bits = 9;
2531 break;
2532 default:
2533 bits = 10;
2534 break;
2535 }
2536
2537 if (termios->c_cflag & CSTOPB)
2538 bits++;
2539 if (termios->c_cflag & PARENB)
2540 bits++;
2541
2542 if (best_clk >= 0) {
2543 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2544 switch (srr + 1) {
2545 case 5: smr_val |= SCSMR_SRC_5; break;
2546 case 7: smr_val |= SCSMR_SRC_7; break;
2547 case 11: smr_val |= SCSMR_SRC_11; break;
2548 case 13: smr_val |= SCSMR_SRC_13; break;
2549 case 16: smr_val |= SCSMR_SRC_16; break;
2550 case 17: smr_val |= SCSMR_SRC_17; break;
2551 case 19: smr_val |= SCSMR_SRC_19; break;
2552 case 27: smr_val |= SCSMR_SRC_27; break;
2553 }
2554 smr_val |= cks;
2555 serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2556 serial_port_out(port, SCSMR, smr_val);
2557 serial_port_out(port, SCBRR, brr);
2558 if (sci_getreg(port, HSSRR)->size) {
2559 unsigned int hssrr = srr | HSCIF_SRE;
2560 /* Calculate deviation from intended rate at the
2561 * center of the last stop bit in sampling clocks.
2562 */
2563 int last_stop = bits * 2 - 1;
2564 int deviation = DIV_ROUND_CLOSEST(min_err * last_stop *
2565 (int)(srr + 1),
2566 2 * (int)baud);
2567
2568 if (abs(deviation) >= 2) {
2569 /* At least two sampling clocks off at the
2570 * last stop bit; we can increase the error
2571 * margin by shifting the sampling point.
2572 */
2573 int shift = clamp(deviation / 2, -8, 7);
2574
2575 hssrr |= (shift << HSCIF_SRHP_SHIFT) &
2576 HSCIF_SRHP_MASK;
2577 hssrr |= HSCIF_SRDE;
2578 }
2579 serial_port_out(port, HSSRR, hssrr);
2580 }
2581
2582 /* Wait one bit interval */
2583 udelay((1000000 + (baud - 1)) / baud);
2584 } else {
2585 /* Don't touch the bit rate configuration */
2586 scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2587 smr_val |= serial_port_in(port, SCSMR) &
2588 (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2589 serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2590 serial_port_out(port, SCSMR, smr_val);
2591 }
2592
2593 sci_init_pins(port, termios->c_cflag);
2594
2595 port->status &= ~UPSTAT_AUTOCTS;
2596 s->autorts = false;
2597 reg = sci_getreg(port, SCFCR);
2598 if (reg->size) {
2599 unsigned short ctrl = serial_port_in(port, SCFCR);
2600
2601 if ((port->flags & UPF_HARD_FLOW) &&
2602 (termios->c_cflag & CRTSCTS)) {
2603 /* There is no CTS interrupt to restart the hardware */
2604 port->status |= UPSTAT_AUTOCTS;
2605 /* MCE is enabled when RTS is raised */
2606 s->autorts = true;
2607 }
2608
2609 /*
2610 * As we've done a sci_reset() above, ensure we don't
2611 * interfere with the FIFOs while toggling MCE. As the
2612 * reset values could still be set, simply mask them out.
2613 */
2614 ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2615
2616 serial_port_out(port, SCFCR, ctrl);
2617 }
2618 if (port->flags & UPF_HARD_FLOW) {
2619 /* Refresh (Auto) RTS */
2620 sci_set_mctrl(port, port->mctrl);
2621 }
2622
2623 scr_val |= SCSCR_RE | SCSCR_TE |
2624 (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2625 serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2626 if ((srr + 1 == 5) &&
2627 (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2628 /*
2629 * In asynchronous mode, when the sampling rate is 1/5, first
2630 * received data may become invalid on some SCIFA and SCIFB.
2631 * To avoid this problem wait more than 1 serial data time (1
2632 * bit time x serial data number) after setting SCSCR.RE = 1.
2633 */
2634 udelay(DIV_ROUND_UP(10 * 1000000, baud));
2635 }
2636
2637 /*
2638 * Calculate delay for 2 DMA buffers (4 FIFO).
2639 * See serial_core.c::uart_update_timeout().
2640 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2641 * function calculates 1 jiffie for the data plus 5 jiffies for the
2642 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2643 * buffers (4 FIFO sizes), but when performing a faster transfer, the
2644 * value obtained by this formula is too small. Therefore, if the value
2645 * is smaller than 20ms, use 20ms as the timeout value for DMA.
2646 */
2647 s->rx_frame = (10000 * bits) / (baud / 100);
2648#ifdef CONFIG_SERIAL_SH_SCI_DMA
2649 s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2650 if (s->rx_timeout < 20)
2651 s->rx_timeout = 20;
2652#endif
2653
2654 if ((termios->c_cflag & CREAD) != 0)
2655 sci_start_rx(port);
2656
2657 spin_unlock_irqrestore(&port->lock, flags);
2658
2659 sci_port_disable(s);
2660
2661 if (UART_ENABLE_MS(port, termios->c_cflag))
2662 sci_enable_ms(port);
2663}
2664
2665static void sci_pm(struct uart_port *port, unsigned int state,
2666 unsigned int oldstate)
2667{
2668 struct sci_port *sci_port = to_sci_port(port);
2669
2670 switch (state) {
2671 case UART_PM_STATE_OFF:
2672 sci_port_disable(sci_port);
2673 break;
2674 default:
2675 sci_port_enable(sci_port);
2676 break;
2677 }
2678}
2679
2680static const char *sci_type(struct uart_port *port)
2681{
2682 switch (port->type) {
2683 case PORT_IRDA:
2684 return "irda";
2685 case PORT_SCI:
2686 return "sci";
2687 case PORT_SCIF:
2688 return "scif";
2689 case PORT_SCIFA:
2690 return "scifa";
2691 case PORT_SCIFB:
2692 return "scifb";
2693 case PORT_HSCIF:
2694 return "hscif";
2695 }
2696
2697 return NULL;
2698}
2699
2700static int sci_remap_port(struct uart_port *port)
2701{
2702 struct sci_port *sport = to_sci_port(port);
2703
2704 /*
2705 * Nothing to do if there's already an established membase.
2706 */
2707 if (port->membase)
2708 return 0;
2709
2710 if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2711 port->membase = ioremap_nocache(port->mapbase, sport->reg_size);
2712 if (unlikely(!port->membase)) {
2713 dev_err(port->dev, "can't remap port#%d\n", port->line);
2714 return -ENXIO;
2715 }
2716 } else {
2717 /*
2718 * For the simple (and majority of) cases where we don't
2719 * need to do any remapping, just cast the cookie
2720 * directly.
2721 */
2722 port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2723 }
2724
2725 return 0;
2726}
2727
2728static void sci_release_port(struct uart_port *port)
2729{
2730 struct sci_port *sport = to_sci_port(port);
2731
2732 if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2733 iounmap(port->membase);
2734 port->membase = NULL;
2735 }
2736
2737 release_mem_region(port->mapbase, sport->reg_size);
2738}
2739
2740static int sci_request_port(struct uart_port *port)
2741{
2742 struct resource *res;
2743 struct sci_port *sport = to_sci_port(port);
2744 int ret;
2745
2746 res = request_mem_region(port->mapbase, sport->reg_size,
2747 dev_name(port->dev));
2748 if (unlikely(res == NULL)) {
2749 dev_err(port->dev, "request_mem_region failed.");
2750 return -EBUSY;
2751 }
2752
2753 ret = sci_remap_port(port);
2754 if (unlikely(ret != 0)) {
2755 release_resource(res);
2756 return ret;
2757 }
2758
2759 return 0;
2760}
2761
2762static void sci_config_port(struct uart_port *port, int flags)
2763{
2764 if (flags & UART_CONFIG_TYPE) {
2765 struct sci_port *sport = to_sci_port(port);
2766
2767 port->type = sport->cfg->type;
2768 sci_request_port(port);
2769 }
2770}
2771
2772static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2773{
2774 if (ser->baud_base < 2400)
2775 /* No paper tape reader for Mitch.. */
2776 return -EINVAL;
2777
2778 return 0;
2779}
2780
2781static const struct uart_ops sci_uart_ops = {
2782 .tx_empty = sci_tx_empty,
2783 .set_mctrl = sci_set_mctrl,
2784 .get_mctrl = sci_get_mctrl,
2785 .start_tx = sci_start_tx,
2786 .stop_tx = sci_stop_tx,
2787 .stop_rx = sci_stop_rx,
2788 .enable_ms = sci_enable_ms,
2789 .break_ctl = sci_break_ctl,
2790 .startup = sci_startup,
2791 .shutdown = sci_shutdown,
2792 .flush_buffer = sci_flush_buffer,
2793 .set_termios = sci_set_termios,
2794 .pm = sci_pm,
2795 .type = sci_type,
2796 .release_port = sci_release_port,
2797 .request_port = sci_request_port,
2798 .config_port = sci_config_port,
2799 .verify_port = sci_verify_port,
2800#ifdef CONFIG_CONSOLE_POLL
2801 .poll_get_char = sci_poll_get_char,
2802 .poll_put_char = sci_poll_put_char,
2803#endif
2804};
2805
2806static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2807{
2808 const char *clk_names[] = {
2809 [SCI_FCK] = "fck",
2810 [SCI_SCK] = "sck",
2811 [SCI_BRG_INT] = "brg_int",
2812 [SCI_SCIF_CLK] = "scif_clk",
2813 };
2814 struct clk *clk;
2815 unsigned int i;
2816
2817 if (sci_port->cfg->type == PORT_HSCIF)
2818 clk_names[SCI_SCK] = "hsck";
2819
2820 for (i = 0; i < SCI_NUM_CLKS; i++) {
2821 clk = devm_clk_get(dev, clk_names[i]);
2822 if (PTR_ERR(clk) == -EPROBE_DEFER)
2823 return -EPROBE_DEFER;
2824
2825 if (IS_ERR(clk) && i == SCI_FCK) {
2826 /*
2827 * "fck" used to be called "sci_ick", and we need to
2828 * maintain DT backward compatibility.
2829 */
2830 clk = devm_clk_get(dev, "sci_ick");
2831 if (PTR_ERR(clk) == -EPROBE_DEFER)
2832 return -EPROBE_DEFER;
2833
2834 if (!IS_ERR(clk))
2835 goto found;
2836
2837 /*
2838 * Not all SH platforms declare a clock lookup entry
2839 * for SCI devices, in which case we need to get the
2840 * global "peripheral_clk" clock.
2841 */
2842 clk = devm_clk_get(dev, "peripheral_clk");
2843 if (!IS_ERR(clk))
2844 goto found;
2845
2846 dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2847 PTR_ERR(clk));
2848 return PTR_ERR(clk);
2849 }
2850
2851found:
2852 if (IS_ERR(clk))
2853 dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2854 PTR_ERR(clk));
2855 else
2856 dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i],
2857 clk, clk_get_rate(clk));
2858 sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2859 }
2860 return 0;
2861}
2862
2863static const struct sci_port_params *
2864sci_probe_regmap(const struct plat_sci_port *cfg)
2865{
2866 unsigned int regtype;
2867
2868 if (cfg->regtype != SCIx_PROBE_REGTYPE)
2869 return &sci_port_params[cfg->regtype];
2870
2871 switch (cfg->type) {
2872 case PORT_SCI:
2873 regtype = SCIx_SCI_REGTYPE;
2874 break;
2875 case PORT_IRDA:
2876 regtype = SCIx_IRDA_REGTYPE;
2877 break;
2878 case PORT_SCIFA:
2879 regtype = SCIx_SCIFA_REGTYPE;
2880 break;
2881 case PORT_SCIFB:
2882 regtype = SCIx_SCIFB_REGTYPE;
2883 break;
2884 case PORT_SCIF:
2885 /*
2886 * The SH-4 is a bit of a misnomer here, although that's
2887 * where this particular port layout originated. This
2888 * configuration (or some slight variation thereof)
2889 * remains the dominant model for all SCIFs.
2890 */
2891 regtype = SCIx_SH4_SCIF_REGTYPE;
2892 break;
2893 case PORT_HSCIF:
2894 regtype = SCIx_HSCIF_REGTYPE;
2895 break;
2896 default:
2897 pr_err("Can't probe register map for given port\n");
2898 return NULL;
2899 }
2900
2901 return &sci_port_params[regtype];
2902}
2903
2904static int sci_init_single(struct platform_device *dev,
2905 struct sci_port *sci_port, unsigned int index,
2906 const struct plat_sci_port *p, bool early)
2907{
2908 struct uart_port *port = &sci_port->port;
2909 const struct resource *res;
2910 unsigned int i;
2911 int ret;
2912
2913 sci_port->cfg = p;
2914
2915 port->ops = &sci_uart_ops;
2916 port->iotype = UPIO_MEM;
2917 port->line = index;
2918
2919 res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2920 if (res == NULL)
2921 return -ENOMEM;
2922
2923 port->mapbase = res->start;
2924 sci_port->reg_size = resource_size(res);
2925
2926 for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) {
2927 if (i)
2928 sci_port->irqs[i] = platform_get_irq_optional(dev, i);
2929 else
2930 sci_port->irqs[i] = platform_get_irq(dev, i);
2931 }
2932
2933 /*
2934 * The fourth interrupt on SCI port is transmit end interrupt, so
2935 * shuffle the interrupts.
2936 */
2937 if (p->type == PORT_SCI)
2938 swap(sci_port->irqs[SCIx_BRI_IRQ], sci_port->irqs[SCIx_TEI_IRQ]);
2939
2940 /* The SCI generates several interrupts. They can be muxed together or
2941 * connected to different interrupt lines. In the muxed case only one
2942 * interrupt resource is specified as there is only one interrupt ID.
2943 * In the non-muxed case, up to 6 interrupt signals might be generated
2944 * from the SCI, however those signals might have their own individual
2945 * interrupt ID numbers, or muxed together with another interrupt.
2946 */
2947 if (sci_port->irqs[0] < 0)
2948 return -ENXIO;
2949
2950 if (sci_port->irqs[1] < 0)
2951 for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++)
2952 sci_port->irqs[i] = sci_port->irqs[0];
2953
2954 sci_port->params = sci_probe_regmap(p);
2955 if (unlikely(sci_port->params == NULL))
2956 return -EINVAL;
2957
2958 switch (p->type) {
2959 case PORT_SCIFB:
2960 sci_port->rx_trigger = 48;
2961 break;
2962 case PORT_HSCIF:
2963 sci_port->rx_trigger = 64;
2964 break;
2965 case PORT_SCIFA:
2966 sci_port->rx_trigger = 32;
2967 break;
2968 case PORT_SCIF:
2969 if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
2970 /* RX triggering not implemented for this IP */
2971 sci_port->rx_trigger = 1;
2972 else
2973 sci_port->rx_trigger = 8;
2974 break;
2975 default:
2976 sci_port->rx_trigger = 1;
2977 break;
2978 }
2979
2980 sci_port->rx_fifo_timeout = 0;
2981 sci_port->hscif_tot = 0;
2982
2983 /* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2984 * match the SoC datasheet, this should be investigated. Let platform
2985 * data override the sampling rate for now.
2986 */
2987 sci_port->sampling_rate_mask = p->sampling_rate
2988 ? SCI_SR(p->sampling_rate)
2989 : sci_port->params->sampling_rate_mask;
2990
2991 if (!early) {
2992 ret = sci_init_clocks(sci_port, &dev->dev);
2993 if (ret < 0)
2994 return ret;
2995
2996 port->dev = &dev->dev;
2997
2998 pm_runtime_enable(&dev->dev);
2999 }
3000
3001 port->type = p->type;
3002 port->flags = UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
3003 port->fifosize = sci_port->params->fifosize;
3004
3005 if (port->type == PORT_SCI && !dev->dev.of_node) {
3006 if (sci_port->reg_size >= 0x20)
3007 port->regshift = 2;
3008 else
3009 port->regshift = 1;
3010 }
3011
3012 /*
3013 * The UART port needs an IRQ value, so we peg this to the RX IRQ
3014 * for the multi-IRQ ports, which is where we are primarily
3015 * concerned with the shutdown path synchronization.
3016 *
3017 * For the muxed case there's nothing more to do.
3018 */
3019 port->irq = sci_port->irqs[SCIx_RXI_IRQ];
3020 port->irqflags = 0;
3021
3022 port->serial_in = sci_serial_in;
3023 port->serial_out = sci_serial_out;
3024
3025 return 0;
3026}
3027
3028static void sci_cleanup_single(struct sci_port *port)
3029{
3030 pm_runtime_disable(port->port.dev);
3031}
3032
3033#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
3034 defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
3035static void serial_console_putchar(struct uart_port *port, int ch)
3036{
3037 sci_poll_put_char(port, ch);
3038}
3039
3040/*
3041 * Print a string to the serial port trying not to disturb
3042 * any possible real use of the port...
3043 */
3044static void serial_console_write(struct console *co, const char *s,
3045 unsigned count)
3046{
3047 struct sci_port *sci_port = &sci_ports[co->index];
3048 struct uart_port *port = &sci_port->port;
3049 unsigned short bits, ctrl, ctrl_temp;
3050 unsigned long flags;
3051 int locked = 1;
3052
3053#if defined(SUPPORT_SYSRQ)
3054 if (port->sysrq)
3055 locked = 0;
3056 else
3057#endif
3058 if (oops_in_progress)
3059 locked = spin_trylock_irqsave(&port->lock, flags);
3060 else
3061 spin_lock_irqsave(&port->lock, flags);
3062
3063 /* first save SCSCR then disable interrupts, keep clock source */
3064 ctrl = serial_port_in(port, SCSCR);
3065 ctrl_temp = SCSCR_RE | SCSCR_TE |
3066 (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
3067 (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
3068 serial_port_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
3069
3070 uart_console_write(port, s, count, serial_console_putchar);
3071
3072 /* wait until fifo is empty and last bit has been transmitted */
3073 bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
3074 while ((serial_port_in(port, SCxSR) & bits) != bits)
3075 cpu_relax();
3076
3077 /* restore the SCSCR */
3078 serial_port_out(port, SCSCR, ctrl);
3079
3080 if (locked)
3081 spin_unlock_irqrestore(&port->lock, flags);
3082}
3083
3084static int serial_console_setup(struct console *co, char *options)
3085{
3086 struct sci_port *sci_port;
3087 struct uart_port *port;
3088 int baud = 115200;
3089 int bits = 8;
3090 int parity = 'n';
3091 int flow = 'n';
3092 int ret;
3093
3094 /*
3095 * Refuse to handle any bogus ports.
3096 */
3097 if (co->index < 0 || co->index >= SCI_NPORTS)
3098 return -ENODEV;
3099
3100 sci_port = &sci_ports[co->index];
3101 port = &sci_port->port;
3102
3103 /*
3104 * Refuse to handle uninitialized ports.
3105 */
3106 if (!port->ops)
3107 return -ENODEV;
3108
3109 ret = sci_remap_port(port);
3110 if (unlikely(ret != 0))
3111 return ret;
3112
3113 if (options)
3114 uart_parse_options(options, &baud, &parity, &bits, &flow);
3115
3116 return uart_set_options(port, co, baud, parity, bits, flow);
3117}
3118
3119static struct console serial_console = {
3120 .name = "ttySC",
3121 .device = uart_console_device,
3122 .write = serial_console_write,
3123 .setup = serial_console_setup,
3124 .flags = CON_PRINTBUFFER,
3125 .index = -1,
3126 .data = &sci_uart_driver,
3127};
3128
3129static struct console early_serial_console = {
3130 .name = "early_ttySC",
3131 .write = serial_console_write,
3132 .flags = CON_PRINTBUFFER,
3133 .index = -1,
3134};
3135
3136static char early_serial_buf[32];
3137
3138static int sci_probe_earlyprintk(struct platform_device *pdev)
3139{
3140 const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
3141
3142 if (early_serial_console.data)
3143 return -EEXIST;
3144
3145 early_serial_console.index = pdev->id;
3146
3147 sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
3148
3149 serial_console_setup(&early_serial_console, early_serial_buf);
3150
3151 if (!strstr(early_serial_buf, "keep"))
3152 early_serial_console.flags |= CON_BOOT;
3153
3154 register_console(&early_serial_console);
3155 return 0;
3156}
3157
3158#define SCI_CONSOLE (&serial_console)
3159
3160#else
3161static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3162{
3163 return -EINVAL;
3164}
3165
3166#define SCI_CONSOLE NULL
3167
3168#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3169
3170static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3171
3172static DEFINE_MUTEX(sci_uart_registration_lock);
3173static struct uart_driver sci_uart_driver = {
3174 .owner = THIS_MODULE,
3175 .driver_name = "sci",
3176 .dev_name = "ttySC",
3177 .major = SCI_MAJOR,
3178 .minor = SCI_MINOR_START,
3179 .nr = SCI_NPORTS,
3180 .cons = SCI_CONSOLE,
3181};
3182
3183static int sci_remove(struct platform_device *dev)
3184{
3185 struct sci_port *port = platform_get_drvdata(dev);
3186 unsigned int type = port->port.type; /* uart_remove_... clears it */
3187
3188 sci_ports_in_use &= ~BIT(port->port.line);
3189 uart_remove_one_port(&sci_uart_driver, &port->port);
3190
3191 sci_cleanup_single(port);
3192
3193 if (port->port.fifosize > 1)
3194 device_remove_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3195 if (type == PORT_SCIFA || type == PORT_SCIFB || type == PORT_HSCIF)
3196 device_remove_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3197
3198 return 0;
3199}
3200
3201
3202#define SCI_OF_DATA(type, regtype) (void *)((type) << 16 | (regtype))
3203#define SCI_OF_TYPE(data) ((unsigned long)(data) >> 16)
3204#define SCI_OF_REGTYPE(data) ((unsigned long)(data) & 0xffff)
3205
3206static const struct of_device_id of_sci_match[] = {
3207 /* SoC-specific types */
3208 {
3209 .compatible = "renesas,scif-r7s72100",
3210 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3211 },
3212 {
3213 .compatible = "renesas,scif-r7s9210",
3214 .data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3215 },
3216 /* Family-specific types */
3217 {
3218 .compatible = "renesas,rcar-gen1-scif",
3219 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3220 }, {
3221 .compatible = "renesas,rcar-gen2-scif",
3222 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3223 }, {
3224 .compatible = "renesas,rcar-gen3-scif",
3225 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3226 },
3227 /* Generic types */
3228 {
3229 .compatible = "renesas,scif",
3230 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3231 }, {
3232 .compatible = "renesas,scifa",
3233 .data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3234 }, {
3235 .compatible = "renesas,scifb",
3236 .data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3237 }, {
3238 .compatible = "renesas,hscif",
3239 .data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3240 }, {
3241 .compatible = "renesas,sci",
3242 .data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3243 }, {
3244 /* Terminator */
3245 },
3246};
3247MODULE_DEVICE_TABLE(of, of_sci_match);
3248
3249static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3250 unsigned int *dev_id)
3251{
3252 struct device_node *np = pdev->dev.of_node;
3253 struct plat_sci_port *p;
3254 struct sci_port *sp;
3255 const void *data;
3256 int id;
3257
3258 if (!IS_ENABLED(CONFIG_OF) || !np)
3259 return NULL;
3260
3261 data = of_device_get_match_data(&pdev->dev);
3262
3263 p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3264 if (!p)
3265 return NULL;
3266
3267 /* Get the line number from the aliases node. */
3268 id = of_alias_get_id(np, "serial");
3269 if (id < 0 && ~sci_ports_in_use)
3270 id = ffz(sci_ports_in_use);
3271 if (id < 0) {
3272 dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3273 return NULL;
3274 }
3275 if (id >= ARRAY_SIZE(sci_ports)) {
3276 dev_err(&pdev->dev, "serial%d out of range\n", id);
3277 return NULL;
3278 }
3279
3280 sp = &sci_ports[id];
3281 *dev_id = id;
3282
3283 p->type = SCI_OF_TYPE(data);
3284 p->regtype = SCI_OF_REGTYPE(data);
3285
3286 sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3287
3288 return p;
3289}
3290
3291static int sci_probe_single(struct platform_device *dev,
3292 unsigned int index,
3293 struct plat_sci_port *p,
3294 struct sci_port *sciport)
3295{
3296 int ret;
3297
3298 /* Sanity check */
3299 if (unlikely(index >= SCI_NPORTS)) {
3300 dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3301 index+1, SCI_NPORTS);
3302 dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3303 return -EINVAL;
3304 }
3305 BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
3306 if (sci_ports_in_use & BIT(index))
3307 return -EBUSY;
3308
3309 mutex_lock(&sci_uart_registration_lock);
3310 if (!sci_uart_driver.state) {
3311 ret = uart_register_driver(&sci_uart_driver);
3312 if (ret) {
3313 mutex_unlock(&sci_uart_registration_lock);
3314 return ret;
3315 }
3316 }
3317 mutex_unlock(&sci_uart_registration_lock);
3318
3319 ret = sci_init_single(dev, sciport, index, p, false);
3320 if (ret)
3321 return ret;
3322
3323 sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3324 if (IS_ERR(sciport->gpios))
3325 return PTR_ERR(sciport->gpios);
3326
3327 if (sciport->has_rtscts) {
3328 if (mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_CTS) ||
3329 mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_RTS)) {
3330 dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3331 return -EINVAL;
3332 }
3333 sciport->port.flags |= UPF_HARD_FLOW;
3334 }
3335
3336 ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3337 if (ret) {
3338 sci_cleanup_single(sciport);
3339 return ret;
3340 }
3341
3342 return 0;
3343}
3344
3345static int sci_probe(struct platform_device *dev)
3346{
3347 struct plat_sci_port *p;
3348 struct sci_port *sp;
3349 unsigned int dev_id;
3350 int ret;
3351
3352 /*
3353 * If we've come here via earlyprintk initialization, head off to
3354 * the special early probe. We don't have sufficient device state
3355 * to make it beyond this yet.
3356 */
3357 if (is_early_platform_device(dev))
3358 return sci_probe_earlyprintk(dev);
3359
3360 if (dev->dev.of_node) {
3361 p = sci_parse_dt(dev, &dev_id);
3362 if (p == NULL)
3363 return -EINVAL;
3364 } else {
3365 p = dev->dev.platform_data;
3366 if (p == NULL) {
3367 dev_err(&dev->dev, "no platform data supplied\n");
3368 return -EINVAL;
3369 }
3370
3371 dev_id = dev->id;
3372 }
3373
3374 sp = &sci_ports[dev_id];
3375 platform_set_drvdata(dev, sp);
3376
3377 ret = sci_probe_single(dev, dev_id, p, sp);
3378 if (ret)
3379 return ret;
3380
3381 if (sp->port.fifosize > 1) {
3382 ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3383 if (ret)
3384 return ret;
3385 }
3386 if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3387 sp->port.type == PORT_HSCIF) {
3388 ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3389 if (ret) {
3390 if (sp->port.fifosize > 1) {
3391 device_remove_file(&dev->dev,
3392 &dev_attr_rx_fifo_trigger);
3393 }
3394 return ret;
3395 }
3396 }
3397
3398#ifdef CONFIG_SH_STANDARD_BIOS
3399 sh_bios_gdb_detach();
3400#endif
3401
3402 sci_ports_in_use |= BIT(dev_id);
3403 return 0;
3404}
3405
3406static __maybe_unused int sci_suspend(struct device *dev)
3407{
3408 struct sci_port *sport = dev_get_drvdata(dev);
3409
3410 if (sport)
3411 uart_suspend_port(&sci_uart_driver, &sport->port);
3412
3413 return 0;
3414}
3415
3416static __maybe_unused int sci_resume(struct device *dev)
3417{
3418 struct sci_port *sport = dev_get_drvdata(dev);
3419
3420 if (sport)
3421 uart_resume_port(&sci_uart_driver, &sport->port);
3422
3423 return 0;
3424}
3425
3426static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3427
3428static struct platform_driver sci_driver = {
3429 .probe = sci_probe,
3430 .remove = sci_remove,
3431 .driver = {
3432 .name = "sh-sci",
3433 .pm = &sci_dev_pm_ops,
3434 .of_match_table = of_match_ptr(of_sci_match),
3435 },
3436};
3437
3438static int __init sci_init(void)
3439{
3440 pr_info("%s\n", banner);
3441
3442 return platform_driver_register(&sci_driver);
3443}
3444
3445static void __exit sci_exit(void)
3446{
3447 platform_driver_unregister(&sci_driver);
3448
3449 if (sci_uart_driver.state)
3450 uart_unregister_driver(&sci_uart_driver);
3451}
3452
3453#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
3454early_platform_init_buffer("earlyprintk", &sci_driver,
3455 early_serial_buf, ARRAY_SIZE(early_serial_buf));
3456#endif
3457#ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3458static struct plat_sci_port port_cfg __initdata;
3459
3460static int __init early_console_setup(struct earlycon_device *device,
3461 int type)
3462{
3463 if (!device->port.membase)
3464 return -ENODEV;
3465
3466 device->port.serial_in = sci_serial_in;
3467 device->port.serial_out = sci_serial_out;
3468 device->port.type = type;
3469 memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3470 port_cfg.type = type;
3471 sci_ports[0].cfg = &port_cfg;
3472 sci_ports[0].params = sci_probe_regmap(&port_cfg);
3473 port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3474 sci_serial_out(&sci_ports[0].port, SCSCR,
3475 SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3476
3477 device->con->write = serial_console_write;
3478 return 0;
3479}
3480static int __init sci_early_console_setup(struct earlycon_device *device,
3481 const char *opt)
3482{
3483 return early_console_setup(device, PORT_SCI);
3484}
3485static int __init scif_early_console_setup(struct earlycon_device *device,
3486 const char *opt)
3487{
3488 return early_console_setup(device, PORT_SCIF);
3489}
3490static int __init rzscifa_early_console_setup(struct earlycon_device *device,
3491 const char *opt)
3492{
3493 port_cfg.regtype = SCIx_RZ_SCIFA_REGTYPE;
3494 return early_console_setup(device, PORT_SCIF);
3495}
3496static int __init scifa_early_console_setup(struct earlycon_device *device,
3497 const char *opt)
3498{
3499 return early_console_setup(device, PORT_SCIFA);
3500}
3501static int __init scifb_early_console_setup(struct earlycon_device *device,
3502 const char *opt)
3503{
3504 return early_console_setup(device, PORT_SCIFB);
3505}
3506static int __init hscif_early_console_setup(struct earlycon_device *device,
3507 const char *opt)
3508{
3509 return early_console_setup(device, PORT_HSCIF);
3510}
3511
3512OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3513OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3514OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup);
3515OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3516OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3517OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3518#endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3519
3520module_init(sci_init);
3521module_exit(sci_exit);
3522
3523MODULE_LICENSE("GPL");
3524MODULE_ALIAS("platform:sh-sci");
3525MODULE_AUTHOR("Paul Mundt");
3526MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");