blob: f71f61bcfe1e1216a26e3f4d3dd083560ff850f2 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0+
2/*
3 * USB Gadget driver for LPC32xx
4 *
5 * Authors:
6 * Kevin Wells <kevin.wells@nxp.com>
7 * Mike James
8 * Roland Stigge <stigge@antcom.de>
9 *
10 * Copyright (C) 2006 Philips Semiconductors
11 * Copyright (C) 2009 NXP Semiconductors
12 * Copyright (C) 2012 Roland Stigge
13 *
14 * Note: This driver is based on original work done by Mike James for
15 * the LPC3180.
16 */
17
18#include <linux/clk.h>
19#include <linux/delay.h>
20#include <linux/dma-mapping.h>
21#include <linux/dmapool.h>
22#include <linux/i2c.h>
23#include <linux/interrupt.h>
24#include <linux/module.h>
25#include <linux/of.h>
26#include <linux/platform_device.h>
27#include <linux/prefetch.h>
28#include <linux/proc_fs.h>
29#include <linux/slab.h>
30#include <linux/usb/ch9.h>
31#include <linux/usb/gadget.h>
32#include <linux/usb/isp1301.h>
33
34#ifdef CONFIG_USB_GADGET_DEBUG_FILES
35#include <linux/debugfs.h>
36#include <linux/seq_file.h>
37#endif
38
39/*
40 * USB device configuration structure
41 */
42typedef void (*usc_chg_event)(int);
43struct lpc32xx_usbd_cfg {
44 int vbus_drv_pol; /* 0=active low drive for VBUS via ISP1301 */
45 usc_chg_event conn_chgb; /* Connection change event (optional) */
46 usc_chg_event susp_chgb; /* Suspend/resume event (optional) */
47 usc_chg_event rmwk_chgb; /* Enable/disable remote wakeup */
48};
49
50/*
51 * controller driver data structures
52 */
53
54/* 16 endpoints (not to be confused with 32 hardware endpoints) */
55#define NUM_ENDPOINTS 16
56
57/*
58 * IRQ indices make reading the code a little easier
59 */
60#define IRQ_USB_LP 0
61#define IRQ_USB_HP 1
62#define IRQ_USB_DEVDMA 2
63#define IRQ_USB_ATX 3
64
65#define EP_OUT 0 /* RX (from host) */
66#define EP_IN 1 /* TX (to host) */
67
68/* Returns the interrupt mask for the selected hardware endpoint */
69#define EP_MASK_SEL(ep, dir) (1 << (((ep) * 2) + dir))
70
71#define EP_INT_TYPE 0
72#define EP_ISO_TYPE 1
73#define EP_BLK_TYPE 2
74#define EP_CTL_TYPE 3
75
76/* EP0 states */
77#define WAIT_FOR_SETUP 0 /* Wait for setup packet */
78#define DATA_IN 1 /* Expect dev->host transfer */
79#define DATA_OUT 2 /* Expect host->dev transfer */
80
81/* DD (DMA Descriptor) structure, requires word alignment, this is already
82 * defined in the LPC32XX USB device header file, but this version is slightly
83 * modified to tag some work data with each DMA descriptor. */
84struct lpc32xx_usbd_dd_gad {
85 u32 dd_next_phy;
86 u32 dd_setup;
87 u32 dd_buffer_addr;
88 u32 dd_status;
89 u32 dd_iso_ps_mem_addr;
90 u32 this_dma;
91 u32 iso_status[6]; /* 5 spare */
92 u32 dd_next_v;
93};
94
95/*
96 * Logical endpoint structure
97 */
98struct lpc32xx_ep {
99 struct usb_ep ep;
100 struct list_head queue;
101 struct lpc32xx_udc *udc;
102
103 u32 hwep_num_base; /* Physical hardware EP */
104 u32 hwep_num; /* Maps to hardware endpoint */
105 u32 maxpacket;
106 u32 lep;
107
108 bool is_in;
109 bool req_pending;
110 u32 eptype;
111
112 u32 totalints;
113
114 bool wedge;
115};
116
117enum atx_type {
118 ISP1301,
119 STOTG04,
120};
121
122/*
123 * Common UDC structure
124 */
125struct lpc32xx_udc {
126 struct usb_gadget gadget;
127 struct usb_gadget_driver *driver;
128 struct platform_device *pdev;
129 struct device *dev;
130 struct dentry *pde;
131 spinlock_t lock;
132 struct i2c_client *isp1301_i2c_client;
133
134 /* Board and device specific */
135 struct lpc32xx_usbd_cfg *board;
136 void __iomem *udp_baseaddr;
137 int udp_irq[4];
138 struct clk *usb_slv_clk;
139
140 /* DMA support */
141 u32 *udca_v_base;
142 u32 udca_p_base;
143 struct dma_pool *dd_cache;
144
145 /* Common EP and control data */
146 u32 enabled_devints;
147 u32 enabled_hwepints;
148 u32 dev_status;
149 u32 realized_eps;
150
151 /* VBUS detection, pullup, and power flags */
152 u8 vbus;
153 u8 last_vbus;
154 int pullup;
155 int poweron;
156 enum atx_type atx;
157
158 /* Work queues related to I2C support */
159 struct work_struct pullup_job;
160 struct work_struct power_job;
161
162 /* USB device peripheral - various */
163 struct lpc32xx_ep ep[NUM_ENDPOINTS];
164 bool enabled;
165 bool clocked;
166 bool suspended;
167 int ep0state;
168 atomic_t enabled_ep_cnt;
169 wait_queue_head_t ep_disable_wait_queue;
170};
171
172/*
173 * Endpoint request
174 */
175struct lpc32xx_request {
176 struct usb_request req;
177 struct list_head queue;
178 struct lpc32xx_usbd_dd_gad *dd_desc_ptr;
179 bool mapped;
180 bool send_zlp;
181};
182
183static inline struct lpc32xx_udc *to_udc(struct usb_gadget *g)
184{
185 return container_of(g, struct lpc32xx_udc, gadget);
186}
187
188#define ep_dbg(epp, fmt, arg...) \
189 dev_dbg(epp->udc->dev, "%s: " fmt, __func__, ## arg)
190#define ep_err(epp, fmt, arg...) \
191 dev_err(epp->udc->dev, "%s: " fmt, __func__, ## arg)
192#define ep_info(epp, fmt, arg...) \
193 dev_info(epp->udc->dev, "%s: " fmt, __func__, ## arg)
194#define ep_warn(epp, fmt, arg...) \
195 dev_warn(epp->udc->dev, "%s:" fmt, __func__, ## arg)
196
197#define UDCA_BUFF_SIZE (128)
198
199/**********************************************************************
200 * USB device controller register offsets
201 **********************************************************************/
202
203#define USBD_DEVINTST(x) ((x) + 0x200)
204#define USBD_DEVINTEN(x) ((x) + 0x204)
205#define USBD_DEVINTCLR(x) ((x) + 0x208)
206#define USBD_DEVINTSET(x) ((x) + 0x20C)
207#define USBD_CMDCODE(x) ((x) + 0x210)
208#define USBD_CMDDATA(x) ((x) + 0x214)
209#define USBD_RXDATA(x) ((x) + 0x218)
210#define USBD_TXDATA(x) ((x) + 0x21C)
211#define USBD_RXPLEN(x) ((x) + 0x220)
212#define USBD_TXPLEN(x) ((x) + 0x224)
213#define USBD_CTRL(x) ((x) + 0x228)
214#define USBD_DEVINTPRI(x) ((x) + 0x22C)
215#define USBD_EPINTST(x) ((x) + 0x230)
216#define USBD_EPINTEN(x) ((x) + 0x234)
217#define USBD_EPINTCLR(x) ((x) + 0x238)
218#define USBD_EPINTSET(x) ((x) + 0x23C)
219#define USBD_EPINTPRI(x) ((x) + 0x240)
220#define USBD_REEP(x) ((x) + 0x244)
221#define USBD_EPIND(x) ((x) + 0x248)
222#define USBD_EPMAXPSIZE(x) ((x) + 0x24C)
223/* DMA support registers only below */
224/* Set, clear, or get enabled state of the DMA request status. If
225 * enabled, an IN or OUT token will start a DMA transfer for the EP */
226#define USBD_DMARST(x) ((x) + 0x250)
227#define USBD_DMARCLR(x) ((x) + 0x254)
228#define USBD_DMARSET(x) ((x) + 0x258)
229/* DMA UDCA head pointer */
230#define USBD_UDCAH(x) ((x) + 0x280)
231/* EP DMA status, enable, and disable. This is used to specifically
232 * enabled or disable DMA for a specific EP */
233#define USBD_EPDMAST(x) ((x) + 0x284)
234#define USBD_EPDMAEN(x) ((x) + 0x288)
235#define USBD_EPDMADIS(x) ((x) + 0x28C)
236/* DMA master interrupts enable and pending interrupts */
237#define USBD_DMAINTST(x) ((x) + 0x290)
238#define USBD_DMAINTEN(x) ((x) + 0x294)
239/* DMA end of transfer interrupt enable, disable, status */
240#define USBD_EOTINTST(x) ((x) + 0x2A0)
241#define USBD_EOTINTCLR(x) ((x) + 0x2A4)
242#define USBD_EOTINTSET(x) ((x) + 0x2A8)
243/* New DD request interrupt enable, disable, status */
244#define USBD_NDDRTINTST(x) ((x) + 0x2AC)
245#define USBD_NDDRTINTCLR(x) ((x) + 0x2B0)
246#define USBD_NDDRTINTSET(x) ((x) + 0x2B4)
247/* DMA error interrupt enable, disable, status */
248#define USBD_SYSERRTINTST(x) ((x) + 0x2B8)
249#define USBD_SYSERRTINTCLR(x) ((x) + 0x2BC)
250#define USBD_SYSERRTINTSET(x) ((x) + 0x2C0)
251
252/**********************************************************************
253 * USBD_DEVINTST/USBD_DEVINTEN/USBD_DEVINTCLR/USBD_DEVINTSET/
254 * USBD_DEVINTPRI register definitions
255 **********************************************************************/
256#define USBD_ERR_INT (1 << 9)
257#define USBD_EP_RLZED (1 << 8)
258#define USBD_TXENDPKT (1 << 7)
259#define USBD_RXENDPKT (1 << 6)
260#define USBD_CDFULL (1 << 5)
261#define USBD_CCEMPTY (1 << 4)
262#define USBD_DEV_STAT (1 << 3)
263#define USBD_EP_SLOW (1 << 2)
264#define USBD_EP_FAST (1 << 1)
265#define USBD_FRAME (1 << 0)
266
267/**********************************************************************
268 * USBD_EPINTST/USBD_EPINTEN/USBD_EPINTCLR/USBD_EPINTSET/
269 * USBD_EPINTPRI register definitions
270 **********************************************************************/
271/* End point selection macro (RX) */
272#define USBD_RX_EP_SEL(e) (1 << ((e) << 1))
273
274/* End point selection macro (TX) */
275#define USBD_TX_EP_SEL(e) (1 << (((e) << 1) + 1))
276
277/**********************************************************************
278 * USBD_REEP/USBD_DMARST/USBD_DMARCLR/USBD_DMARSET/USBD_EPDMAST/
279 * USBD_EPDMAEN/USBD_EPDMADIS/
280 * USBD_NDDRTINTST/USBD_NDDRTINTCLR/USBD_NDDRTINTSET/
281 * USBD_EOTINTST/USBD_EOTINTCLR/USBD_EOTINTSET/
282 * USBD_SYSERRTINTST/USBD_SYSERRTINTCLR/USBD_SYSERRTINTSET
283 * register definitions
284 **********************************************************************/
285/* Endpoint selection macro */
286#define USBD_EP_SEL(e) (1 << (e))
287
288/**********************************************************************
289 * SBD_DMAINTST/USBD_DMAINTEN
290 **********************************************************************/
291#define USBD_SYS_ERR_INT (1 << 2)
292#define USBD_NEW_DD_INT (1 << 1)
293#define USBD_EOT_INT (1 << 0)
294
295/**********************************************************************
296 * USBD_RXPLEN register definitions
297 **********************************************************************/
298#define USBD_PKT_RDY (1 << 11)
299#define USBD_DV (1 << 10)
300#define USBD_PK_LEN_MASK 0x3FF
301
302/**********************************************************************
303 * USBD_CTRL register definitions
304 **********************************************************************/
305#define USBD_LOG_ENDPOINT(e) ((e) << 2)
306#define USBD_WR_EN (1 << 1)
307#define USBD_RD_EN (1 << 0)
308
309/**********************************************************************
310 * USBD_CMDCODE register definitions
311 **********************************************************************/
312#define USBD_CMD_CODE(c) ((c) << 16)
313#define USBD_CMD_PHASE(p) ((p) << 8)
314
315/**********************************************************************
316 * USBD_DMARST/USBD_DMARCLR/USBD_DMARSET register definitions
317 **********************************************************************/
318#define USBD_DMAEP(e) (1 << (e))
319
320/* DD (DMA Descriptor) structure, requires word alignment */
321struct lpc32xx_usbd_dd {
322 u32 *dd_next;
323 u32 dd_setup;
324 u32 dd_buffer_addr;
325 u32 dd_status;
326 u32 dd_iso_ps_mem_addr;
327};
328
329/* dd_setup bit defines */
330#define DD_SETUP_ATLE_DMA_MODE 0x01
331#define DD_SETUP_NEXT_DD_VALID 0x04
332#define DD_SETUP_ISO_EP 0x10
333#define DD_SETUP_PACKETLEN(n) (((n) & 0x7FF) << 5)
334#define DD_SETUP_DMALENBYTES(n) (((n) & 0xFFFF) << 16)
335
336/* dd_status bit defines */
337#define DD_STATUS_DD_RETIRED 0x01
338#define DD_STATUS_STS_MASK 0x1E
339#define DD_STATUS_STS_NS 0x00 /* Not serviced */
340#define DD_STATUS_STS_BS 0x02 /* Being serviced */
341#define DD_STATUS_STS_NC 0x04 /* Normal completion */
342#define DD_STATUS_STS_DUR 0x06 /* Data underrun (short packet) */
343#define DD_STATUS_STS_DOR 0x08 /* Data overrun */
344#define DD_STATUS_STS_SE 0x12 /* System error */
345#define DD_STATUS_PKT_VAL 0x20 /* Packet valid */
346#define DD_STATUS_LSB_EX 0x40 /* LS byte extracted (ATLE) */
347#define DD_STATUS_MSB_EX 0x80 /* MS byte extracted (ATLE) */
348#define DD_STATUS_MLEN(n) (((n) >> 8) & 0x3F)
349#define DD_STATUS_CURDMACNT(n) (((n) >> 16) & 0xFFFF)
350
351/*
352 *
353 * Protocol engine bits below
354 *
355 */
356/* Device Interrupt Bit Definitions */
357#define FRAME_INT 0x00000001
358#define EP_FAST_INT 0x00000002
359#define EP_SLOW_INT 0x00000004
360#define DEV_STAT_INT 0x00000008
361#define CCEMTY_INT 0x00000010
362#define CDFULL_INT 0x00000020
363#define RxENDPKT_INT 0x00000040
364#define TxENDPKT_INT 0x00000080
365#define EP_RLZED_INT 0x00000100
366#define ERR_INT 0x00000200
367
368/* Rx & Tx Packet Length Definitions */
369#define PKT_LNGTH_MASK 0x000003FF
370#define PKT_DV 0x00000400
371#define PKT_RDY 0x00000800
372
373/* USB Control Definitions */
374#define CTRL_RD_EN 0x00000001
375#define CTRL_WR_EN 0x00000002
376
377/* Command Codes */
378#define CMD_SET_ADDR 0x00D00500
379#define CMD_CFG_DEV 0x00D80500
380#define CMD_SET_MODE 0x00F30500
381#define CMD_RD_FRAME 0x00F50500
382#define DAT_RD_FRAME 0x00F50200
383#define CMD_RD_TEST 0x00FD0500
384#define DAT_RD_TEST 0x00FD0200
385#define CMD_SET_DEV_STAT 0x00FE0500
386#define CMD_GET_DEV_STAT 0x00FE0500
387#define DAT_GET_DEV_STAT 0x00FE0200
388#define CMD_GET_ERR_CODE 0x00FF0500
389#define DAT_GET_ERR_CODE 0x00FF0200
390#define CMD_RD_ERR_STAT 0x00FB0500
391#define DAT_RD_ERR_STAT 0x00FB0200
392#define DAT_WR_BYTE(x) (0x00000100 | ((x) << 16))
393#define CMD_SEL_EP(x) (0x00000500 | ((x) << 16))
394#define DAT_SEL_EP(x) (0x00000200 | ((x) << 16))
395#define CMD_SEL_EP_CLRI(x) (0x00400500 | ((x) << 16))
396#define DAT_SEL_EP_CLRI(x) (0x00400200 | ((x) << 16))
397#define CMD_SET_EP_STAT(x) (0x00400500 | ((x) << 16))
398#define CMD_CLR_BUF 0x00F20500
399#define DAT_CLR_BUF 0x00F20200
400#define CMD_VALID_BUF 0x00FA0500
401
402/* Device Address Register Definitions */
403#define DEV_ADDR_MASK 0x7F
404#define DEV_EN 0x80
405
406/* Device Configure Register Definitions */
407#define CONF_DVICE 0x01
408
409/* Device Mode Register Definitions */
410#define AP_CLK 0x01
411#define INAK_CI 0x02
412#define INAK_CO 0x04
413#define INAK_II 0x08
414#define INAK_IO 0x10
415#define INAK_BI 0x20
416#define INAK_BO 0x40
417
418/* Device Status Register Definitions */
419#define DEV_CON 0x01
420#define DEV_CON_CH 0x02
421#define DEV_SUS 0x04
422#define DEV_SUS_CH 0x08
423#define DEV_RST 0x10
424
425/* Error Code Register Definitions */
426#define ERR_EC_MASK 0x0F
427#define ERR_EA 0x10
428
429/* Error Status Register Definitions */
430#define ERR_PID 0x01
431#define ERR_UEPKT 0x02
432#define ERR_DCRC 0x04
433#define ERR_TIMOUT 0x08
434#define ERR_EOP 0x10
435#define ERR_B_OVRN 0x20
436#define ERR_BTSTF 0x40
437#define ERR_TGL 0x80
438
439/* Endpoint Select Register Definitions */
440#define EP_SEL_F 0x01
441#define EP_SEL_ST 0x02
442#define EP_SEL_STP 0x04
443#define EP_SEL_PO 0x08
444#define EP_SEL_EPN 0x10
445#define EP_SEL_B_1_FULL 0x20
446#define EP_SEL_B_2_FULL 0x40
447
448/* Endpoint Status Register Definitions */
449#define EP_STAT_ST 0x01
450#define EP_STAT_DA 0x20
451#define EP_STAT_RF_MO 0x40
452#define EP_STAT_CND_ST 0x80
453
454/* Clear Buffer Register Definitions */
455#define CLR_BUF_PO 0x01
456
457/* DMA Interrupt Bit Definitions */
458#define EOT_INT 0x01
459#define NDD_REQ_INT 0x02
460#define SYS_ERR_INT 0x04
461
462#define DRIVER_VERSION "1.03"
463static const char driver_name[] = "lpc32xx_udc";
464
465/*
466 *
467 * proc interface support
468 *
469 */
470#ifdef CONFIG_USB_GADGET_DEBUG_FILES
471static char *epnames[] = {"INT", "ISO", "BULK", "CTRL"};
472static const char debug_filename[] = "driver/udc";
473
474static void proc_ep_show(struct seq_file *s, struct lpc32xx_ep *ep)
475{
476 struct lpc32xx_request *req;
477
478 seq_printf(s, "\n");
479 seq_printf(s, "%12s, maxpacket %4d %3s",
480 ep->ep.name, ep->ep.maxpacket,
481 ep->is_in ? "in" : "out");
482 seq_printf(s, " type %4s", epnames[ep->eptype]);
483 seq_printf(s, " ints: %12d", ep->totalints);
484
485 if (list_empty(&ep->queue))
486 seq_printf(s, "\t(queue empty)\n");
487 else {
488 list_for_each_entry(req, &ep->queue, queue) {
489 u32 length = req->req.actual;
490
491 seq_printf(s, "\treq %p len %d/%d buf %p\n",
492 &req->req, length,
493 req->req.length, req->req.buf);
494 }
495 }
496}
497
498static int proc_udc_show(struct seq_file *s, void *unused)
499{
500 struct lpc32xx_udc *udc = s->private;
501 struct lpc32xx_ep *ep;
502 unsigned long flags;
503
504 seq_printf(s, "%s: version %s\n", driver_name, DRIVER_VERSION);
505
506 spin_lock_irqsave(&udc->lock, flags);
507
508 seq_printf(s, "vbus %s, pullup %s, %s powered%s, gadget %s\n\n",
509 udc->vbus ? "present" : "off",
510 udc->enabled ? (udc->vbus ? "active" : "enabled") :
511 "disabled",
512 udc->gadget.is_selfpowered ? "self" : "VBUS",
513 udc->suspended ? ", suspended" : "",
514 udc->driver ? udc->driver->driver.name : "(none)");
515
516 if (udc->enabled && udc->vbus) {
517 proc_ep_show(s, &udc->ep[0]);
518 list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list)
519 proc_ep_show(s, ep);
520 }
521
522 spin_unlock_irqrestore(&udc->lock, flags);
523
524 return 0;
525}
526
527static int proc_udc_open(struct inode *inode, struct file *file)
528{
529 return single_open(file, proc_udc_show, PDE_DATA(inode));
530}
531
532static const struct file_operations proc_ops = {
533 .owner = THIS_MODULE,
534 .open = proc_udc_open,
535 .read = seq_read,
536 .llseek = seq_lseek,
537 .release = single_release,
538};
539
540static void create_debug_file(struct lpc32xx_udc *udc)
541{
542 udc->pde = debugfs_create_file(debug_filename, 0, NULL, udc, &proc_ops);
543}
544
545static void remove_debug_file(struct lpc32xx_udc *udc)
546{
547 debugfs_remove(udc->pde);
548}
549
550#else
551static inline void create_debug_file(struct lpc32xx_udc *udc) {}
552static inline void remove_debug_file(struct lpc32xx_udc *udc) {}
553#endif
554
555/* Primary initialization sequence for the ISP1301 transceiver */
556static void isp1301_udc_configure(struct lpc32xx_udc *udc)
557{
558 u8 value;
559 s32 vendor, product;
560
561 vendor = i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x00);
562 product = i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x02);
563
564 if (vendor == 0x0483 && product == 0xa0c4)
565 udc->atx = STOTG04;
566
567 /* LPC32XX only supports DAT_SE0 USB mode */
568 /* This sequence is important */
569
570 /* Disable transparent UART mode first */
571 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
572 (ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
573 MC1_UART_EN);
574
575 /* Set full speed and SE0 mode */
576 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
577 (ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
578 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
579 ISP1301_I2C_MODE_CONTROL_1, (MC1_SPEED_REG | MC1_DAT_SE0));
580
581 /*
582 * The PSW_OE enable bit state is reversed in the ISP1301 User's Guide
583 */
584 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
585 (ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
586
587 value = MC2_BI_DI;
588 if (udc->atx != STOTG04)
589 value |= MC2_SPD_SUSP_CTRL;
590 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
591 ISP1301_I2C_MODE_CONTROL_2, value);
592
593 /* Driver VBUS_DRV high or low depending on board setup */
594 if (udc->board->vbus_drv_pol != 0)
595 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
596 ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DRV);
597 else
598 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
599 ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
600 OTG1_VBUS_DRV);
601
602 /* Bi-directional mode with suspend control
603 * Enable both pulldowns for now - the pullup will be enable when VBUS
604 * is detected */
605 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
606 (ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
607 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
608 ISP1301_I2C_OTG_CONTROL_1,
609 (0 | OTG1_DM_PULLDOWN | OTG1_DP_PULLDOWN));
610
611 /* Discharge VBUS (just in case) */
612 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
613 ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
614 msleep(1);
615 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
616 (ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
617 OTG1_VBUS_DISCHRG);
618
619 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
620 ISP1301_I2C_INTERRUPT_LATCH | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
621
622 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
623 ISP1301_I2C_INTERRUPT_FALLING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
624 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
625 ISP1301_I2C_INTERRUPT_RISING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
626
627 dev_info(udc->dev, "ISP1301 Vendor ID : 0x%04x\n", vendor);
628 dev_info(udc->dev, "ISP1301 Product ID : 0x%04x\n", product);
629 dev_info(udc->dev, "ISP1301 Version ID : 0x%04x\n",
630 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x14));
631
632}
633
634/* Enables or disables the USB device pullup via the ISP1301 transceiver */
635static void isp1301_pullup_set(struct lpc32xx_udc *udc)
636{
637 if (udc->pullup)
638 /* Enable pullup for bus signalling */
639 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
640 ISP1301_I2C_OTG_CONTROL_1, OTG1_DP_PULLUP);
641 else
642 /* Enable pullup for bus signalling */
643 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
644 ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
645 OTG1_DP_PULLUP);
646}
647
648static void pullup_work(struct work_struct *work)
649{
650 struct lpc32xx_udc *udc =
651 container_of(work, struct lpc32xx_udc, pullup_job);
652
653 isp1301_pullup_set(udc);
654}
655
656static void isp1301_pullup_enable(struct lpc32xx_udc *udc, int en_pullup,
657 int block)
658{
659 if (en_pullup == udc->pullup)
660 return;
661
662 udc->pullup = en_pullup;
663 if (block)
664 isp1301_pullup_set(udc);
665 else
666 /* defer slow i2c pull up setting */
667 schedule_work(&udc->pullup_job);
668}
669
670#ifdef CONFIG_PM
671/* Powers up or down the ISP1301 transceiver */
672static void isp1301_set_powerstate(struct lpc32xx_udc *udc, int enable)
673{
674 /* There is no "global power down" register for stotg04 */
675 if (udc->atx == STOTG04)
676 return;
677
678 if (enable != 0)
679 /* Power up ISP1301 - this ISP1301 will automatically wakeup
680 when VBUS is detected */
681 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
682 ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR,
683 MC2_GLOBAL_PWR_DN);
684 else
685 /* Power down ISP1301 */
686 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
687 ISP1301_I2C_MODE_CONTROL_2, MC2_GLOBAL_PWR_DN);
688}
689
690static void power_work(struct work_struct *work)
691{
692 struct lpc32xx_udc *udc =
693 container_of(work, struct lpc32xx_udc, power_job);
694
695 isp1301_set_powerstate(udc, udc->poweron);
696}
697#endif
698
699/*
700 *
701 * USB protocol engine command/data read/write helper functions
702 *
703 */
704/* Issues a single command to the USB device state machine */
705static void udc_protocol_cmd_w(struct lpc32xx_udc *udc, u32 cmd)
706{
707 u32 pass = 0;
708 int to;
709
710 /* EP may lock on CLRI if this read isn't done */
711 u32 tmp = readl(USBD_DEVINTST(udc->udp_baseaddr));
712 (void) tmp;
713
714 while (pass == 0) {
715 writel(USBD_CCEMPTY, USBD_DEVINTCLR(udc->udp_baseaddr));
716
717 /* Write command code */
718 writel(cmd, USBD_CMDCODE(udc->udp_baseaddr));
719 to = 10000;
720 while (((readl(USBD_DEVINTST(udc->udp_baseaddr)) &
721 USBD_CCEMPTY) == 0) && (to > 0)) {
722 to--;
723 }
724
725 if (to > 0)
726 pass = 1;
727
728 cpu_relax();
729 }
730}
731
732/* Issues 2 commands (or command and data) to the USB device state machine */
733static inline void udc_protocol_cmd_data_w(struct lpc32xx_udc *udc, u32 cmd,
734 u32 data)
735{
736 udc_protocol_cmd_w(udc, cmd);
737 udc_protocol_cmd_w(udc, data);
738}
739
740/* Issues a single command to the USB device state machine and reads
741 * response data */
742static u32 udc_protocol_cmd_r(struct lpc32xx_udc *udc, u32 cmd)
743{
744 int to = 1000;
745
746 /* Write a command and read data from the protocol engine */
747 writel((USBD_CDFULL | USBD_CCEMPTY),
748 USBD_DEVINTCLR(udc->udp_baseaddr));
749
750 /* Write command code */
751 udc_protocol_cmd_w(udc, cmd);
752
753 while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) & USBD_CDFULL))
754 && (to > 0))
755 to--;
756 if (!to)
757 dev_dbg(udc->dev,
758 "Protocol engine didn't receive response (CDFULL)\n");
759
760 return readl(USBD_CMDDATA(udc->udp_baseaddr));
761}
762
763/*
764 *
765 * USB device interrupt mask support functions
766 *
767 */
768/* Enable one or more USB device interrupts */
769static inline void uda_enable_devint(struct lpc32xx_udc *udc, u32 devmask)
770{
771 udc->enabled_devints |= devmask;
772 writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
773}
774
775/* Disable one or more USB device interrupts */
776static inline void uda_disable_devint(struct lpc32xx_udc *udc, u32 mask)
777{
778 udc->enabled_devints &= ~mask;
779 writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
780}
781
782/* Clear one or more USB device interrupts */
783static inline void uda_clear_devint(struct lpc32xx_udc *udc, u32 mask)
784{
785 writel(mask, USBD_DEVINTCLR(udc->udp_baseaddr));
786}
787
788/*
789 *
790 * Endpoint interrupt disable/enable functions
791 *
792 */
793/* Enable one or more USB endpoint interrupts */
794static void uda_enable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
795{
796 udc->enabled_hwepints |= (1 << hwep);
797 writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
798}
799
800/* Disable one or more USB endpoint interrupts */
801static void uda_disable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
802{
803 udc->enabled_hwepints &= ~(1 << hwep);
804 writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
805}
806
807/* Clear one or more USB endpoint interrupts */
808static inline void uda_clear_hwepint(struct lpc32xx_udc *udc, u32 hwep)
809{
810 writel((1 << hwep), USBD_EPINTCLR(udc->udp_baseaddr));
811}
812
813/* Enable DMA for the HW channel */
814static inline void udc_ep_dma_enable(struct lpc32xx_udc *udc, u32 hwep)
815{
816 writel((1 << hwep), USBD_EPDMAEN(udc->udp_baseaddr));
817}
818
819/* Disable DMA for the HW channel */
820static inline void udc_ep_dma_disable(struct lpc32xx_udc *udc, u32 hwep)
821{
822 writel((1 << hwep), USBD_EPDMADIS(udc->udp_baseaddr));
823}
824
825/*
826 *
827 * Endpoint realize/unrealize functions
828 *
829 */
830/* Before an endpoint can be used, it needs to be realized
831 * in the USB protocol engine - this realizes the endpoint.
832 * The interrupt (FIFO or DMA) is not enabled with this function */
833static void udc_realize_hwep(struct lpc32xx_udc *udc, u32 hwep,
834 u32 maxpacket)
835{
836 int to = 1000;
837
838 writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
839 writel(hwep, USBD_EPIND(udc->udp_baseaddr));
840 udc->realized_eps |= (1 << hwep);
841 writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
842 writel(maxpacket, USBD_EPMAXPSIZE(udc->udp_baseaddr));
843
844 /* Wait until endpoint is realized in hardware */
845 while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) &
846 USBD_EP_RLZED)) && (to > 0))
847 to--;
848 if (!to)
849 dev_dbg(udc->dev, "EP not correctly realized in hardware\n");
850
851 writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
852}
853
854/* Unrealize an EP */
855static void udc_unrealize_hwep(struct lpc32xx_udc *udc, u32 hwep)
856{
857 udc->realized_eps &= ~(1 << hwep);
858 writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
859}
860
861/*
862 *
863 * Endpoint support functions
864 *
865 */
866/* Select and clear endpoint interrupt */
867static u32 udc_selep_clrint(struct lpc32xx_udc *udc, u32 hwep)
868{
869 udc_protocol_cmd_w(udc, CMD_SEL_EP_CLRI(hwep));
870 return udc_protocol_cmd_r(udc, DAT_SEL_EP_CLRI(hwep));
871}
872
873/* Disables the endpoint in the USB protocol engine */
874static void udc_disable_hwep(struct lpc32xx_udc *udc, u32 hwep)
875{
876 udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
877 DAT_WR_BYTE(EP_STAT_DA));
878}
879
880/* Stalls the endpoint - endpoint will return STALL */
881static void udc_stall_hwep(struct lpc32xx_udc *udc, u32 hwep)
882{
883 udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
884 DAT_WR_BYTE(EP_STAT_ST));
885}
886
887/* Clear stall or reset endpoint */
888static void udc_clrstall_hwep(struct lpc32xx_udc *udc, u32 hwep)
889{
890 udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
891 DAT_WR_BYTE(0));
892}
893
894/* Select an endpoint for endpoint status, clear, validate */
895static void udc_select_hwep(struct lpc32xx_udc *udc, u32 hwep)
896{
897 udc_protocol_cmd_w(udc, CMD_SEL_EP(hwep));
898}
899
900/*
901 *
902 * Endpoint buffer management functions
903 *
904 */
905/* Clear the current endpoint's buffer */
906static void udc_clr_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
907{
908 udc_select_hwep(udc, hwep);
909 udc_protocol_cmd_w(udc, CMD_CLR_BUF);
910}
911
912/* Validate the current endpoint's buffer */
913static void udc_val_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
914{
915 udc_select_hwep(udc, hwep);
916 udc_protocol_cmd_w(udc, CMD_VALID_BUF);
917}
918
919static inline u32 udc_clearep_getsts(struct lpc32xx_udc *udc, u32 hwep)
920{
921 /* Clear EP interrupt */
922 uda_clear_hwepint(udc, hwep);
923 return udc_selep_clrint(udc, hwep);
924}
925
926/*
927 *
928 * USB EP DMA support
929 *
930 */
931/* Allocate a DMA Descriptor */
932static struct lpc32xx_usbd_dd_gad *udc_dd_alloc(struct lpc32xx_udc *udc)
933{
934 dma_addr_t dma;
935 struct lpc32xx_usbd_dd_gad *dd;
936
937 dd = dma_pool_alloc(udc->dd_cache, GFP_ATOMIC | GFP_DMA, &dma);
938 if (dd)
939 dd->this_dma = dma;
940
941 return dd;
942}
943
944/* Free a DMA Descriptor */
945static void udc_dd_free(struct lpc32xx_udc *udc, struct lpc32xx_usbd_dd_gad *dd)
946{
947 dma_pool_free(udc->dd_cache, dd, dd->this_dma);
948}
949
950/*
951 *
952 * USB setup and shutdown functions
953 *
954 */
955/* Enables or disables most of the USB system clocks when low power mode is
956 * needed. Clocks are typically started on a connection event, and disabled
957 * when a cable is disconnected */
958static void udc_clk_set(struct lpc32xx_udc *udc, int enable)
959{
960 if (enable != 0) {
961 if (udc->clocked)
962 return;
963
964 udc->clocked = 1;
965 clk_prepare_enable(udc->usb_slv_clk);
966 } else {
967 if (!udc->clocked)
968 return;
969
970 udc->clocked = 0;
971 clk_disable_unprepare(udc->usb_slv_clk);
972 }
973}
974
975/* Set/reset USB device address */
976static void udc_set_address(struct lpc32xx_udc *udc, u32 addr)
977{
978 /* Address will be latched at the end of the status phase, or
979 latched immediately if function is called twice */
980 udc_protocol_cmd_data_w(udc, CMD_SET_ADDR,
981 DAT_WR_BYTE(DEV_EN | addr));
982}
983
984/* Setup up a IN request for DMA transfer - this consists of determining the
985 * list of DMA addresses for the transfer, allocating DMA Descriptors,
986 * installing the DD into the UDCA, and then enabling the DMA for that EP */
987static int udc_ep_in_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
988{
989 struct lpc32xx_request *req;
990 u32 hwep = ep->hwep_num;
991
992 ep->req_pending = 1;
993
994 /* There will always be a request waiting here */
995 req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
996
997 /* Place the DD Descriptor into the UDCA */
998 udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
999
1000 /* Enable DMA and interrupt for the HW EP */
1001 udc_ep_dma_enable(udc, hwep);
1002
1003 /* Clear ZLP if last packet is not of MAXP size */
1004 if (req->req.length % ep->ep.maxpacket)
1005 req->send_zlp = 0;
1006
1007 return 0;
1008}
1009
1010/* Setup up a OUT request for DMA transfer - this consists of determining the
1011 * list of DMA addresses for the transfer, allocating DMA Descriptors,
1012 * installing the DD into the UDCA, and then enabling the DMA for that EP */
1013static int udc_ep_out_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1014{
1015 struct lpc32xx_request *req;
1016 u32 hwep = ep->hwep_num;
1017
1018 ep->req_pending = 1;
1019
1020 /* There will always be a request waiting here */
1021 req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1022
1023 /* Place the DD Descriptor into the UDCA */
1024 udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
1025
1026 /* Enable DMA and interrupt for the HW EP */
1027 udc_ep_dma_enable(udc, hwep);
1028 return 0;
1029}
1030
1031static void udc_disable(struct lpc32xx_udc *udc)
1032{
1033 u32 i;
1034
1035 /* Disable device */
1036 udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1037 udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(0));
1038
1039 /* Disable all device interrupts (including EP0) */
1040 uda_disable_devint(udc, 0x3FF);
1041
1042 /* Disable and reset all endpoint interrupts */
1043 for (i = 0; i < 32; i++) {
1044 uda_disable_hwepint(udc, i);
1045 uda_clear_hwepint(udc, i);
1046 udc_disable_hwep(udc, i);
1047 udc_unrealize_hwep(udc, i);
1048 udc->udca_v_base[i] = 0;
1049
1050 /* Disable and clear all interrupts and DMA */
1051 udc_ep_dma_disable(udc, i);
1052 writel((1 << i), USBD_EOTINTCLR(udc->udp_baseaddr));
1053 writel((1 << i), USBD_NDDRTINTCLR(udc->udp_baseaddr));
1054 writel((1 << i), USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1055 writel((1 << i), USBD_DMARCLR(udc->udp_baseaddr));
1056 }
1057
1058 /* Disable DMA interrupts */
1059 writel(0, USBD_DMAINTEN(udc->udp_baseaddr));
1060
1061 writel(0, USBD_UDCAH(udc->udp_baseaddr));
1062}
1063
1064static void udc_enable(struct lpc32xx_udc *udc)
1065{
1066 u32 i;
1067 struct lpc32xx_ep *ep = &udc->ep[0];
1068
1069 /* Start with known state */
1070 udc_disable(udc);
1071
1072 /* Enable device */
1073 udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(DEV_CON));
1074
1075 /* EP interrupts on high priority, FRAME interrupt on low priority */
1076 writel(USBD_EP_FAST, USBD_DEVINTPRI(udc->udp_baseaddr));
1077 writel(0xFFFF, USBD_EPINTPRI(udc->udp_baseaddr));
1078
1079 /* Clear any pending device interrupts */
1080 writel(0x3FF, USBD_DEVINTCLR(udc->udp_baseaddr));
1081
1082 /* Setup UDCA - not yet used (DMA) */
1083 writel(udc->udca_p_base, USBD_UDCAH(udc->udp_baseaddr));
1084
1085 /* Only enable EP0 in and out for now, EP0 only works in FIFO mode */
1086 for (i = 0; i <= 1; i++) {
1087 udc_realize_hwep(udc, i, ep->ep.maxpacket);
1088 uda_enable_hwepint(udc, i);
1089 udc_select_hwep(udc, i);
1090 udc_clrstall_hwep(udc, i);
1091 udc_clr_buffer_hwep(udc, i);
1092 }
1093
1094 /* Device interrupt setup */
1095 uda_clear_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1096 USBD_EP_FAST));
1097 uda_enable_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1098 USBD_EP_FAST));
1099
1100 /* Set device address to 0 - called twice to force a latch in the USB
1101 engine without the need of a setup packet status closure */
1102 udc_set_address(udc, 0);
1103 udc_set_address(udc, 0);
1104
1105 /* Enable master DMA interrupts */
1106 writel((USBD_SYS_ERR_INT | USBD_EOT_INT),
1107 USBD_DMAINTEN(udc->udp_baseaddr));
1108
1109 udc->dev_status = 0;
1110}
1111
1112/*
1113 *
1114 * USB device board specific events handled via callbacks
1115 *
1116 */
1117/* Connection change event - notify board function of change */
1118static void uda_power_event(struct lpc32xx_udc *udc, u32 conn)
1119{
1120 /* Just notify of a connection change event (optional) */
1121 if (udc->board->conn_chgb != NULL)
1122 udc->board->conn_chgb(conn);
1123}
1124
1125/* Suspend/resume event - notify board function of change */
1126static void uda_resm_susp_event(struct lpc32xx_udc *udc, u32 conn)
1127{
1128 /* Just notify of a Suspend/resume change event (optional) */
1129 if (udc->board->susp_chgb != NULL)
1130 udc->board->susp_chgb(conn);
1131
1132 if (conn)
1133 udc->suspended = 0;
1134 else
1135 udc->suspended = 1;
1136}
1137
1138/* Remote wakeup enable/disable - notify board function of change */
1139static void uda_remwkp_cgh(struct lpc32xx_udc *udc)
1140{
1141 if (udc->board->rmwk_chgb != NULL)
1142 udc->board->rmwk_chgb(udc->dev_status &
1143 (1 << USB_DEVICE_REMOTE_WAKEUP));
1144}
1145
1146/* Reads data from FIFO, adjusts for alignment and data size */
1147static void udc_pop_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1148{
1149 int n, i, bl;
1150 u16 *p16;
1151 u32 *p32, tmp, cbytes;
1152
1153 /* Use optimal data transfer method based on source address and size */
1154 switch (((uintptr_t) data) & 0x3) {
1155 case 0: /* 32-bit aligned */
1156 p32 = (u32 *) data;
1157 cbytes = (bytes & ~0x3);
1158
1159 /* Copy 32-bit aligned data first */
1160 for (n = 0; n < cbytes; n += 4)
1161 *p32++ = readl(USBD_RXDATA(udc->udp_baseaddr));
1162
1163 /* Handle any remaining bytes */
1164 bl = bytes - cbytes;
1165 if (bl) {
1166 tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1167 for (n = 0; n < bl; n++)
1168 data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1169
1170 }
1171 break;
1172
1173 case 1: /* 8-bit aligned */
1174 case 3:
1175 /* Each byte has to be handled independently */
1176 for (n = 0; n < bytes; n += 4) {
1177 tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1178
1179 bl = bytes - n;
1180 if (bl > 4)
1181 bl = 4;
1182
1183 for (i = 0; i < bl; i++)
1184 data[n + i] = (u8) ((tmp >> (i * 8)) & 0xFF);
1185 }
1186 break;
1187
1188 case 2: /* 16-bit aligned */
1189 p16 = (u16 *) data;
1190 cbytes = (bytes & ~0x3);
1191
1192 /* Copy 32-bit sized objects first with 16-bit alignment */
1193 for (n = 0; n < cbytes; n += 4) {
1194 tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1195 *p16++ = (u16)(tmp & 0xFFFF);
1196 *p16++ = (u16)((tmp >> 16) & 0xFFFF);
1197 }
1198
1199 /* Handle any remaining bytes */
1200 bl = bytes - cbytes;
1201 if (bl) {
1202 tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1203 for (n = 0; n < bl; n++)
1204 data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1205 }
1206 break;
1207 }
1208}
1209
1210/* Read data from the FIFO for an endpoint. This function is for endpoints (such
1211 * as EP0) that don't use DMA. This function should only be called if a packet
1212 * is known to be ready to read for the endpoint. Note that the endpoint must
1213 * be selected in the protocol engine prior to this call. */
1214static u32 udc_read_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1215 u32 bytes)
1216{
1217 u32 tmpv;
1218 int to = 1000;
1219 u32 tmp, hwrep = ((hwep & 0x1E) << 1) | CTRL_RD_EN;
1220
1221 /* Setup read of endpoint */
1222 writel(hwrep, USBD_CTRL(udc->udp_baseaddr));
1223
1224 /* Wait until packet is ready */
1225 while ((((tmpv = readl(USBD_RXPLEN(udc->udp_baseaddr))) &
1226 PKT_RDY) == 0) && (to > 0))
1227 to--;
1228 if (!to)
1229 dev_dbg(udc->dev, "No packet ready on FIFO EP read\n");
1230
1231 /* Mask out count */
1232 tmp = tmpv & PKT_LNGTH_MASK;
1233 if (bytes < tmp)
1234 tmp = bytes;
1235
1236 if ((tmp > 0) && (data != NULL))
1237 udc_pop_fifo(udc, (u8 *) data, tmp);
1238
1239 writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1240
1241 /* Clear the buffer */
1242 udc_clr_buffer_hwep(udc, hwep);
1243
1244 return tmp;
1245}
1246
1247/* Stuffs data into the FIFO, adjusts for alignment and data size */
1248static void udc_stuff_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1249{
1250 int n, i, bl;
1251 u16 *p16;
1252 u32 *p32, tmp, cbytes;
1253
1254 /* Use optimal data transfer method based on source address and size */
1255 switch (((uintptr_t) data) & 0x3) {
1256 case 0: /* 32-bit aligned */
1257 p32 = (u32 *) data;
1258 cbytes = (bytes & ~0x3);
1259
1260 /* Copy 32-bit aligned data first */
1261 for (n = 0; n < cbytes; n += 4)
1262 writel(*p32++, USBD_TXDATA(udc->udp_baseaddr));
1263
1264 /* Handle any remaining bytes */
1265 bl = bytes - cbytes;
1266 if (bl) {
1267 tmp = 0;
1268 for (n = 0; n < bl; n++)
1269 tmp |= data[cbytes + n] << (n * 8);
1270
1271 writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1272 }
1273 break;
1274
1275 case 1: /* 8-bit aligned */
1276 case 3:
1277 /* Each byte has to be handled independently */
1278 for (n = 0; n < bytes; n += 4) {
1279 bl = bytes - n;
1280 if (bl > 4)
1281 bl = 4;
1282
1283 tmp = 0;
1284 for (i = 0; i < bl; i++)
1285 tmp |= data[n + i] << (i * 8);
1286
1287 writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1288 }
1289 break;
1290
1291 case 2: /* 16-bit aligned */
1292 p16 = (u16 *) data;
1293 cbytes = (bytes & ~0x3);
1294
1295 /* Copy 32-bit aligned data first */
1296 for (n = 0; n < cbytes; n += 4) {
1297 tmp = *p16++ & 0xFFFF;
1298 tmp |= (*p16++ & 0xFFFF) << 16;
1299 writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1300 }
1301
1302 /* Handle any remaining bytes */
1303 bl = bytes - cbytes;
1304 if (bl) {
1305 tmp = 0;
1306 for (n = 0; n < bl; n++)
1307 tmp |= data[cbytes + n] << (n * 8);
1308
1309 writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1310 }
1311 break;
1312 }
1313}
1314
1315/* Write data to the FIFO for an endpoint. This function is for endpoints (such
1316 * as EP0) that don't use DMA. Note that the endpoint must be selected in the
1317 * protocol engine prior to this call. */
1318static void udc_write_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1319 u32 bytes)
1320{
1321 u32 hwwep = ((hwep & 0x1E) << 1) | CTRL_WR_EN;
1322
1323 if ((bytes > 0) && (data == NULL))
1324 return;
1325
1326 /* Setup write of endpoint */
1327 writel(hwwep, USBD_CTRL(udc->udp_baseaddr));
1328
1329 writel(bytes, USBD_TXPLEN(udc->udp_baseaddr));
1330
1331 /* Need at least 1 byte to trigger TX */
1332 if (bytes == 0)
1333 writel(0, USBD_TXDATA(udc->udp_baseaddr));
1334 else
1335 udc_stuff_fifo(udc, (u8 *) data, bytes);
1336
1337 writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1338
1339 udc_val_buffer_hwep(udc, hwep);
1340}
1341
1342/* USB device reset - resets USB to a default state with just EP0
1343 enabled */
1344static void uda_usb_reset(struct lpc32xx_udc *udc)
1345{
1346 u32 i = 0;
1347 /* Re-init device controller and EP0 */
1348 udc_enable(udc);
1349 udc->gadget.speed = USB_SPEED_FULL;
1350
1351 for (i = 1; i < NUM_ENDPOINTS; i++) {
1352 struct lpc32xx_ep *ep = &udc->ep[i];
1353 ep->req_pending = 0;
1354 }
1355}
1356
1357/* Send a ZLP on EP0 */
1358static void udc_ep0_send_zlp(struct lpc32xx_udc *udc)
1359{
1360 udc_write_hwep(udc, EP_IN, NULL, 0);
1361}
1362
1363/* Get current frame number */
1364static u16 udc_get_current_frame(struct lpc32xx_udc *udc)
1365{
1366 u16 flo, fhi;
1367
1368 udc_protocol_cmd_w(udc, CMD_RD_FRAME);
1369 flo = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1370 fhi = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1371
1372 return (fhi << 8) | flo;
1373}
1374
1375/* Set the device as configured - enables all endpoints */
1376static inline void udc_set_device_configured(struct lpc32xx_udc *udc)
1377{
1378 udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(CONF_DVICE));
1379}
1380
1381/* Set the device as unconfigured - disables all endpoints */
1382static inline void udc_set_device_unconfigured(struct lpc32xx_udc *udc)
1383{
1384 udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1385}
1386
1387/* reinit == restore initial software state */
1388static void udc_reinit(struct lpc32xx_udc *udc)
1389{
1390 u32 i;
1391
1392 INIT_LIST_HEAD(&udc->gadget.ep_list);
1393 INIT_LIST_HEAD(&udc->gadget.ep0->ep_list);
1394
1395 for (i = 0; i < NUM_ENDPOINTS; i++) {
1396 struct lpc32xx_ep *ep = &udc->ep[i];
1397
1398 if (i != 0)
1399 list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1400 usb_ep_set_maxpacket_limit(&ep->ep, ep->maxpacket);
1401 INIT_LIST_HEAD(&ep->queue);
1402 ep->req_pending = 0;
1403 }
1404
1405 udc->ep0state = WAIT_FOR_SETUP;
1406}
1407
1408/* Must be called with lock */
1409static void done(struct lpc32xx_ep *ep, struct lpc32xx_request *req, int status)
1410{
1411 struct lpc32xx_udc *udc = ep->udc;
1412
1413 list_del_init(&req->queue);
1414 if (req->req.status == -EINPROGRESS)
1415 req->req.status = status;
1416 else
1417 status = req->req.status;
1418
1419 if (ep->lep) {
1420 usb_gadget_unmap_request(&udc->gadget, &req->req, ep->is_in);
1421
1422 /* Free DDs */
1423 udc_dd_free(udc, req->dd_desc_ptr);
1424 }
1425
1426 if (status && status != -ESHUTDOWN)
1427 ep_dbg(ep, "%s done %p, status %d\n", ep->ep.name, req, status);
1428
1429 ep->req_pending = 0;
1430 spin_unlock(&udc->lock);
1431 usb_gadget_giveback_request(&ep->ep, &req->req);
1432 spin_lock(&udc->lock);
1433}
1434
1435/* Must be called with lock */
1436static void nuke(struct lpc32xx_ep *ep, int status)
1437{
1438 struct lpc32xx_request *req;
1439
1440 while (!list_empty(&ep->queue)) {
1441 req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1442 done(ep, req, status);
1443 }
1444
1445 if (status == -ESHUTDOWN) {
1446 uda_disable_hwepint(ep->udc, ep->hwep_num);
1447 udc_disable_hwep(ep->udc, ep->hwep_num);
1448 }
1449}
1450
1451/* IN endpoint 0 transfer */
1452static int udc_ep0_in_req(struct lpc32xx_udc *udc)
1453{
1454 struct lpc32xx_request *req;
1455 struct lpc32xx_ep *ep0 = &udc->ep[0];
1456 u32 tsend, ts = 0;
1457
1458 if (list_empty(&ep0->queue))
1459 /* Nothing to send */
1460 return 0;
1461 else
1462 req = list_entry(ep0->queue.next, struct lpc32xx_request,
1463 queue);
1464
1465 tsend = ts = req->req.length - req->req.actual;
1466 if (ts == 0) {
1467 /* Send a ZLP */
1468 udc_ep0_send_zlp(udc);
1469 done(ep0, req, 0);
1470 return 1;
1471 } else if (ts > ep0->ep.maxpacket)
1472 ts = ep0->ep.maxpacket; /* Just send what we can */
1473
1474 /* Write data to the EP0 FIFO and start transfer */
1475 udc_write_hwep(udc, EP_IN, (req->req.buf + req->req.actual), ts);
1476
1477 /* Increment data pointer */
1478 req->req.actual += ts;
1479
1480 if (tsend >= ep0->ep.maxpacket)
1481 return 0; /* Stay in data transfer state */
1482
1483 /* Transfer request is complete */
1484 udc->ep0state = WAIT_FOR_SETUP;
1485 done(ep0, req, 0);
1486 return 1;
1487}
1488
1489/* OUT endpoint 0 transfer */
1490static int udc_ep0_out_req(struct lpc32xx_udc *udc)
1491{
1492 struct lpc32xx_request *req;
1493 struct lpc32xx_ep *ep0 = &udc->ep[0];
1494 u32 tr, bufferspace;
1495
1496 if (list_empty(&ep0->queue))
1497 return 0;
1498 else
1499 req = list_entry(ep0->queue.next, struct lpc32xx_request,
1500 queue);
1501
1502 if (req) {
1503 if (req->req.length == 0) {
1504 /* Just dequeue request */
1505 done(ep0, req, 0);
1506 udc->ep0state = WAIT_FOR_SETUP;
1507 return 1;
1508 }
1509
1510 /* Get data from FIFO */
1511 bufferspace = req->req.length - req->req.actual;
1512 if (bufferspace > ep0->ep.maxpacket)
1513 bufferspace = ep0->ep.maxpacket;
1514
1515 /* Copy data to buffer */
1516 prefetchw(req->req.buf + req->req.actual);
1517 tr = udc_read_hwep(udc, EP_OUT, req->req.buf + req->req.actual,
1518 bufferspace);
1519 req->req.actual += bufferspace;
1520
1521 if (tr < ep0->ep.maxpacket) {
1522 /* This is the last packet */
1523 done(ep0, req, 0);
1524 udc->ep0state = WAIT_FOR_SETUP;
1525 return 1;
1526 }
1527 }
1528
1529 return 0;
1530}
1531
1532/* Must be called with lock */
1533static void stop_activity(struct lpc32xx_udc *udc)
1534{
1535 struct usb_gadget_driver *driver = udc->driver;
1536 int i;
1537
1538 if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1539 driver = NULL;
1540
1541 udc->gadget.speed = USB_SPEED_UNKNOWN;
1542 udc->suspended = 0;
1543
1544 for (i = 0; i < NUM_ENDPOINTS; i++) {
1545 struct lpc32xx_ep *ep = &udc->ep[i];
1546 nuke(ep, -ESHUTDOWN);
1547 }
1548 if (driver) {
1549 spin_unlock(&udc->lock);
1550 driver->disconnect(&udc->gadget);
1551 spin_lock(&udc->lock);
1552 }
1553
1554 isp1301_pullup_enable(udc, 0, 0);
1555 udc_disable(udc);
1556 udc_reinit(udc);
1557}
1558
1559/*
1560 * Activate or kill host pullup
1561 * Can be called with or without lock
1562 */
1563static void pullup(struct lpc32xx_udc *udc, int is_on)
1564{
1565 if (!udc->clocked)
1566 return;
1567
1568 if (!udc->enabled || !udc->vbus)
1569 is_on = 0;
1570
1571 if (is_on != udc->pullup)
1572 isp1301_pullup_enable(udc, is_on, 0);
1573}
1574
1575/* Must be called without lock */
1576static int lpc32xx_ep_disable(struct usb_ep *_ep)
1577{
1578 struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1579 struct lpc32xx_udc *udc = ep->udc;
1580 unsigned long flags;
1581
1582 if ((ep->hwep_num_base == 0) || (ep->hwep_num == 0))
1583 return -EINVAL;
1584 spin_lock_irqsave(&udc->lock, flags);
1585
1586 nuke(ep, -ESHUTDOWN);
1587
1588 /* Clear all DMA statuses for this EP */
1589 udc_ep_dma_disable(udc, ep->hwep_num);
1590 writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1591 writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1592 writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1593 writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1594
1595 /* Remove the DD pointer in the UDCA */
1596 udc->udca_v_base[ep->hwep_num] = 0;
1597
1598 /* Disable and reset endpoint and interrupt */
1599 uda_clear_hwepint(udc, ep->hwep_num);
1600 udc_unrealize_hwep(udc, ep->hwep_num);
1601
1602 ep->hwep_num = 0;
1603
1604 spin_unlock_irqrestore(&udc->lock, flags);
1605
1606 atomic_dec(&udc->enabled_ep_cnt);
1607 wake_up(&udc->ep_disable_wait_queue);
1608
1609 return 0;
1610}
1611
1612/* Must be called without lock */
1613static int lpc32xx_ep_enable(struct usb_ep *_ep,
1614 const struct usb_endpoint_descriptor *desc)
1615{
1616 struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1617 struct lpc32xx_udc *udc;
1618 u16 maxpacket;
1619 u32 tmp;
1620 unsigned long flags;
1621
1622 /* Verify EP data */
1623 if ((!_ep) || (!ep) || (!desc) ||
1624 (desc->bDescriptorType != USB_DT_ENDPOINT))
1625 return -EINVAL;
1626
1627 udc = ep->udc;
1628 maxpacket = usb_endpoint_maxp(desc);
1629 if ((maxpacket == 0) || (maxpacket > ep->maxpacket)) {
1630 dev_dbg(udc->dev, "bad ep descriptor's packet size\n");
1631 return -EINVAL;
1632 }
1633
1634 /* Don't touch EP0 */
1635 if (ep->hwep_num_base == 0) {
1636 dev_dbg(udc->dev, "Can't re-enable EP0!!!\n");
1637 return -EINVAL;
1638 }
1639
1640 /* Is driver ready? */
1641 if ((!udc->driver) || (udc->gadget.speed == USB_SPEED_UNKNOWN)) {
1642 dev_dbg(udc->dev, "bogus device state\n");
1643 return -ESHUTDOWN;
1644 }
1645
1646 tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
1647 switch (tmp) {
1648 case USB_ENDPOINT_XFER_CONTROL:
1649 return -EINVAL;
1650
1651 case USB_ENDPOINT_XFER_INT:
1652 if (maxpacket > ep->maxpacket) {
1653 dev_dbg(udc->dev,
1654 "Bad INT endpoint maxpacket %d\n", maxpacket);
1655 return -EINVAL;
1656 }
1657 break;
1658
1659 case USB_ENDPOINT_XFER_BULK:
1660 switch (maxpacket) {
1661 case 8:
1662 case 16:
1663 case 32:
1664 case 64:
1665 break;
1666
1667 default:
1668 dev_dbg(udc->dev,
1669 "Bad BULK endpoint maxpacket %d\n", maxpacket);
1670 return -EINVAL;
1671 }
1672 break;
1673
1674 case USB_ENDPOINT_XFER_ISOC:
1675 break;
1676 }
1677 spin_lock_irqsave(&udc->lock, flags);
1678
1679 /* Initialize endpoint to match the selected descriptor */
1680 ep->is_in = (desc->bEndpointAddress & USB_DIR_IN) != 0;
1681 ep->ep.maxpacket = maxpacket;
1682
1683 /* Map hardware endpoint from base and direction */
1684 if (ep->is_in)
1685 /* IN endpoints are offset 1 from the OUT endpoint */
1686 ep->hwep_num = ep->hwep_num_base + EP_IN;
1687 else
1688 ep->hwep_num = ep->hwep_num_base;
1689
1690 ep_dbg(ep, "EP enabled: %s, HW:%d, MP:%d IN:%d\n", ep->ep.name,
1691 ep->hwep_num, maxpacket, (ep->is_in == 1));
1692
1693 /* Realize the endpoint, interrupt is enabled later when
1694 * buffers are queued, IN EPs will NAK until buffers are ready */
1695 udc_realize_hwep(udc, ep->hwep_num, ep->ep.maxpacket);
1696 udc_clr_buffer_hwep(udc, ep->hwep_num);
1697 uda_disable_hwepint(udc, ep->hwep_num);
1698 udc_clrstall_hwep(udc, ep->hwep_num);
1699
1700 /* Clear all DMA statuses for this EP */
1701 udc_ep_dma_disable(udc, ep->hwep_num);
1702 writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1703 writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1704 writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1705 writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1706
1707 spin_unlock_irqrestore(&udc->lock, flags);
1708
1709 atomic_inc(&udc->enabled_ep_cnt);
1710 return 0;
1711}
1712
1713/*
1714 * Allocate a USB request list
1715 * Can be called with or without lock
1716 */
1717static struct usb_request *lpc32xx_ep_alloc_request(struct usb_ep *_ep,
1718 gfp_t gfp_flags)
1719{
1720 struct lpc32xx_request *req;
1721
1722 req = kzalloc(sizeof(struct lpc32xx_request), gfp_flags);
1723 if (!req)
1724 return NULL;
1725
1726 INIT_LIST_HEAD(&req->queue);
1727 return &req->req;
1728}
1729
1730/*
1731 * De-allocate a USB request list
1732 * Can be called with or without lock
1733 */
1734static void lpc32xx_ep_free_request(struct usb_ep *_ep,
1735 struct usb_request *_req)
1736{
1737 struct lpc32xx_request *req;
1738
1739 req = container_of(_req, struct lpc32xx_request, req);
1740 BUG_ON(!list_empty(&req->queue));
1741 kfree(req);
1742}
1743
1744/* Must be called without lock */
1745static int lpc32xx_ep_queue(struct usb_ep *_ep,
1746 struct usb_request *_req, gfp_t gfp_flags)
1747{
1748 struct lpc32xx_request *req;
1749 struct lpc32xx_ep *ep;
1750 struct lpc32xx_udc *udc;
1751 unsigned long flags;
1752 int status = 0;
1753
1754 req = container_of(_req, struct lpc32xx_request, req);
1755 ep = container_of(_ep, struct lpc32xx_ep, ep);
1756
1757 if (!_ep || !_req || !_req->complete || !_req->buf ||
1758 !list_empty(&req->queue))
1759 return -EINVAL;
1760
1761 udc = ep->udc;
1762
1763 if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1764 return -EPIPE;
1765
1766 if (ep->lep) {
1767 struct lpc32xx_usbd_dd_gad *dd;
1768
1769 status = usb_gadget_map_request(&udc->gadget, _req, ep->is_in);
1770 if (status)
1771 return status;
1772
1773 /* For the request, build a list of DDs */
1774 dd = udc_dd_alloc(udc);
1775 if (!dd) {
1776 /* Error allocating DD */
1777 return -ENOMEM;
1778 }
1779 req->dd_desc_ptr = dd;
1780
1781 /* Setup the DMA descriptor */
1782 dd->dd_next_phy = dd->dd_next_v = 0;
1783 dd->dd_buffer_addr = req->req.dma;
1784 dd->dd_status = 0;
1785
1786 /* Special handling for ISO EPs */
1787 if (ep->eptype == EP_ISO_TYPE) {
1788 dd->dd_setup = DD_SETUP_ISO_EP |
1789 DD_SETUP_PACKETLEN(0) |
1790 DD_SETUP_DMALENBYTES(1);
1791 dd->dd_iso_ps_mem_addr = dd->this_dma + 24;
1792 if (ep->is_in)
1793 dd->iso_status[0] = req->req.length;
1794 else
1795 dd->iso_status[0] = 0;
1796 } else
1797 dd->dd_setup = DD_SETUP_PACKETLEN(ep->ep.maxpacket) |
1798 DD_SETUP_DMALENBYTES(req->req.length);
1799 }
1800
1801 ep_dbg(ep, "%s queue req %p len %d buf %p (in=%d) z=%d\n", _ep->name,
1802 _req, _req->length, _req->buf, ep->is_in, _req->zero);
1803
1804 spin_lock_irqsave(&udc->lock, flags);
1805
1806 _req->status = -EINPROGRESS;
1807 _req->actual = 0;
1808 req->send_zlp = _req->zero;
1809
1810 /* Kickstart empty queues */
1811 if (list_empty(&ep->queue)) {
1812 list_add_tail(&req->queue, &ep->queue);
1813
1814 if (ep->hwep_num_base == 0) {
1815 /* Handle expected data direction */
1816 if (ep->is_in) {
1817 /* IN packet to host */
1818 udc->ep0state = DATA_IN;
1819 status = udc_ep0_in_req(udc);
1820 } else {
1821 /* OUT packet from host */
1822 udc->ep0state = DATA_OUT;
1823 status = udc_ep0_out_req(udc);
1824 }
1825 } else if (ep->is_in) {
1826 /* IN packet to host and kick off transfer */
1827 if (!ep->req_pending)
1828 udc_ep_in_req_dma(udc, ep);
1829 } else
1830 /* OUT packet from host and kick off list */
1831 if (!ep->req_pending)
1832 udc_ep_out_req_dma(udc, ep);
1833 } else
1834 list_add_tail(&req->queue, &ep->queue);
1835
1836 spin_unlock_irqrestore(&udc->lock, flags);
1837
1838 return (status < 0) ? status : 0;
1839}
1840
1841/* Must be called without lock */
1842static int lpc32xx_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1843{
1844 struct lpc32xx_ep *ep;
1845 struct lpc32xx_request *req;
1846 unsigned long flags;
1847
1848 ep = container_of(_ep, struct lpc32xx_ep, ep);
1849 if (!_ep || ep->hwep_num_base == 0)
1850 return -EINVAL;
1851
1852 spin_lock_irqsave(&ep->udc->lock, flags);
1853
1854 /* make sure it's actually queued on this endpoint */
1855 list_for_each_entry(req, &ep->queue, queue) {
1856 if (&req->req == _req)
1857 break;
1858 }
1859 if (&req->req != _req) {
1860 spin_unlock_irqrestore(&ep->udc->lock, flags);
1861 return -EINVAL;
1862 }
1863
1864 done(ep, req, -ECONNRESET);
1865
1866 spin_unlock_irqrestore(&ep->udc->lock, flags);
1867
1868 return 0;
1869}
1870
1871/* Must be called without lock */
1872static int lpc32xx_ep_set_halt(struct usb_ep *_ep, int value)
1873{
1874 struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1875 struct lpc32xx_udc *udc;
1876 unsigned long flags;
1877
1878 if ((!ep) || (ep->hwep_num <= 1))
1879 return -EINVAL;
1880
1881 /* Don't halt an IN EP */
1882 if (ep->is_in)
1883 return -EAGAIN;
1884
1885 udc = ep->udc;
1886 spin_lock_irqsave(&udc->lock, flags);
1887
1888 if (value == 1) {
1889 /* stall */
1890 udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1891 DAT_WR_BYTE(EP_STAT_ST));
1892 } else {
1893 /* End stall */
1894 ep->wedge = 0;
1895 udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1896 DAT_WR_BYTE(0));
1897 }
1898
1899 spin_unlock_irqrestore(&udc->lock, flags);
1900
1901 return 0;
1902}
1903
1904/* set the halt feature and ignores clear requests */
1905static int lpc32xx_ep_set_wedge(struct usb_ep *_ep)
1906{
1907 struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1908
1909 if (!_ep || !ep->udc)
1910 return -EINVAL;
1911
1912 ep->wedge = 1;
1913
1914 return usb_ep_set_halt(_ep);
1915}
1916
1917static const struct usb_ep_ops lpc32xx_ep_ops = {
1918 .enable = lpc32xx_ep_enable,
1919 .disable = lpc32xx_ep_disable,
1920 .alloc_request = lpc32xx_ep_alloc_request,
1921 .free_request = lpc32xx_ep_free_request,
1922 .queue = lpc32xx_ep_queue,
1923 .dequeue = lpc32xx_ep_dequeue,
1924 .set_halt = lpc32xx_ep_set_halt,
1925 .set_wedge = lpc32xx_ep_set_wedge,
1926};
1927
1928/* Send a ZLP on a non-0 IN EP */
1929void udc_send_in_zlp(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1930{
1931 /* Clear EP status */
1932 udc_clearep_getsts(udc, ep->hwep_num);
1933
1934 /* Send ZLP via FIFO mechanism */
1935 udc_write_hwep(udc, ep->hwep_num, NULL, 0);
1936}
1937
1938/*
1939 * Handle EP completion for ZLP
1940 * This function will only be called when a delayed ZLP needs to be sent out
1941 * after a DMA transfer has filled both buffers.
1942 */
1943void udc_handle_eps(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1944{
1945 u32 epstatus;
1946 struct lpc32xx_request *req;
1947
1948 if (ep->hwep_num <= 0)
1949 return;
1950
1951 uda_clear_hwepint(udc, ep->hwep_num);
1952
1953 /* If this interrupt isn't enabled, return now */
1954 if (!(udc->enabled_hwepints & (1 << ep->hwep_num)))
1955 return;
1956
1957 /* Get endpoint status */
1958 epstatus = udc_clearep_getsts(udc, ep->hwep_num);
1959
1960 /*
1961 * This should never happen, but protect against writing to the
1962 * buffer when full.
1963 */
1964 if (epstatus & EP_SEL_F)
1965 return;
1966
1967 if (ep->is_in) {
1968 udc_send_in_zlp(udc, ep);
1969 uda_disable_hwepint(udc, ep->hwep_num);
1970 } else
1971 return;
1972
1973 /* If there isn't a request waiting, something went wrong */
1974 req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1975 if (req) {
1976 done(ep, req, 0);
1977
1978 /* Start another request if ready */
1979 if (!list_empty(&ep->queue)) {
1980 if (ep->is_in)
1981 udc_ep_in_req_dma(udc, ep);
1982 else
1983 udc_ep_out_req_dma(udc, ep);
1984 } else
1985 ep->req_pending = 0;
1986 }
1987}
1988
1989
1990/* DMA end of transfer completion */
1991static void udc_handle_dma_ep(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1992{
1993 u32 status;
1994 struct lpc32xx_request *req;
1995 struct lpc32xx_usbd_dd_gad *dd;
1996
1997#ifdef CONFIG_USB_GADGET_DEBUG_FILES
1998 ep->totalints++;
1999#endif
2000
2001 req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
2002 if (!req) {
2003 ep_err(ep, "DMA interrupt on no req!\n");
2004 return;
2005 }
2006 dd = req->dd_desc_ptr;
2007
2008 /* DMA descriptor should always be retired for this call */
2009 if (!(dd->dd_status & DD_STATUS_DD_RETIRED))
2010 ep_warn(ep, "DMA descriptor did not retire\n");
2011
2012 /* Disable DMA */
2013 udc_ep_dma_disable(udc, ep->hwep_num);
2014 writel((1 << ep->hwep_num), USBD_EOTINTCLR(udc->udp_baseaddr));
2015 writel((1 << ep->hwep_num), USBD_NDDRTINTCLR(udc->udp_baseaddr));
2016
2017 /* System error? */
2018 if (readl(USBD_SYSERRTINTST(udc->udp_baseaddr)) &
2019 (1 << ep->hwep_num)) {
2020 writel((1 << ep->hwep_num),
2021 USBD_SYSERRTINTCLR(udc->udp_baseaddr));
2022 ep_err(ep, "AHB critical error!\n");
2023 ep->req_pending = 0;
2024
2025 /* The error could have occurred on a packet of a multipacket
2026 * transfer, so recovering the transfer is not possible. Close
2027 * the request with an error */
2028 done(ep, req, -ECONNABORTED);
2029 return;
2030 }
2031
2032 /* Handle the current DD's status */
2033 status = dd->dd_status;
2034 switch (status & DD_STATUS_STS_MASK) {
2035 case DD_STATUS_STS_NS:
2036 /* DD not serviced? This shouldn't happen! */
2037 ep->req_pending = 0;
2038 ep_err(ep, "DMA critical EP error: DD not serviced (0x%x)!\n",
2039 status);
2040
2041 done(ep, req, -ECONNABORTED);
2042 return;
2043
2044 case DD_STATUS_STS_BS:
2045 /* Interrupt only fires on EOT - This shouldn't happen! */
2046 ep->req_pending = 0;
2047 ep_err(ep, "DMA critical EP error: EOT prior to service completion (0x%x)!\n",
2048 status);
2049 done(ep, req, -ECONNABORTED);
2050 return;
2051
2052 case DD_STATUS_STS_NC:
2053 case DD_STATUS_STS_DUR:
2054 /* Really just a short packet, not an underrun */
2055 /* This is a good status and what we expect */
2056 break;
2057
2058 default:
2059 /* Data overrun, system error, or unknown */
2060 ep->req_pending = 0;
2061 ep_err(ep, "DMA critical EP error: System error (0x%x)!\n",
2062 status);
2063 done(ep, req, -ECONNABORTED);
2064 return;
2065 }
2066
2067 /* ISO endpoints are handled differently */
2068 if (ep->eptype == EP_ISO_TYPE) {
2069 if (ep->is_in)
2070 req->req.actual = req->req.length;
2071 else
2072 req->req.actual = dd->iso_status[0] & 0xFFFF;
2073 } else
2074 req->req.actual += DD_STATUS_CURDMACNT(status);
2075
2076 /* Send a ZLP if necessary. This will be done for non-int
2077 * packets which have a size that is a divisor of MAXP */
2078 if (req->send_zlp) {
2079 /*
2080 * If at least 1 buffer is available, send the ZLP now.
2081 * Otherwise, the ZLP send needs to be deferred until a
2082 * buffer is available.
2083 */
2084 if (udc_clearep_getsts(udc, ep->hwep_num) & EP_SEL_F) {
2085 udc_clearep_getsts(udc, ep->hwep_num);
2086 uda_enable_hwepint(udc, ep->hwep_num);
2087 udc_clearep_getsts(udc, ep->hwep_num);
2088
2089 /* Let the EP interrupt handle the ZLP */
2090 return;
2091 } else
2092 udc_send_in_zlp(udc, ep);
2093 }
2094
2095 /* Transfer request is complete */
2096 done(ep, req, 0);
2097
2098 /* Start another request if ready */
2099 udc_clearep_getsts(udc, ep->hwep_num);
2100 if (!list_empty((&ep->queue))) {
2101 if (ep->is_in)
2102 udc_ep_in_req_dma(udc, ep);
2103 else
2104 udc_ep_out_req_dma(udc, ep);
2105 } else
2106 ep->req_pending = 0;
2107
2108}
2109
2110/*
2111 *
2112 * Endpoint 0 functions
2113 *
2114 */
2115static void udc_handle_dev(struct lpc32xx_udc *udc)
2116{
2117 u32 tmp;
2118
2119 udc_protocol_cmd_w(udc, CMD_GET_DEV_STAT);
2120 tmp = udc_protocol_cmd_r(udc, DAT_GET_DEV_STAT);
2121
2122 if (tmp & DEV_RST)
2123 uda_usb_reset(udc);
2124 else if (tmp & DEV_CON_CH)
2125 uda_power_event(udc, (tmp & DEV_CON));
2126 else if (tmp & DEV_SUS_CH) {
2127 if (tmp & DEV_SUS) {
2128 if (udc->vbus == 0)
2129 stop_activity(udc);
2130 else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2131 udc->driver) {
2132 /* Power down transceiver */
2133 udc->poweron = 0;
2134 schedule_work(&udc->pullup_job);
2135 uda_resm_susp_event(udc, 1);
2136 }
2137 } else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2138 udc->driver && udc->vbus) {
2139 uda_resm_susp_event(udc, 0);
2140 /* Power up transceiver */
2141 udc->poweron = 1;
2142 schedule_work(&udc->pullup_job);
2143 }
2144 }
2145}
2146
2147static int udc_get_status(struct lpc32xx_udc *udc, u16 reqtype, u16 wIndex)
2148{
2149 struct lpc32xx_ep *ep;
2150 u32 ep0buff = 0, tmp;
2151
2152 switch (reqtype & USB_RECIP_MASK) {
2153 case USB_RECIP_INTERFACE:
2154 break; /* Not supported */
2155
2156 case USB_RECIP_DEVICE:
2157 ep0buff = udc->gadget.is_selfpowered;
2158 if (udc->dev_status & (1 << USB_DEVICE_REMOTE_WAKEUP))
2159 ep0buff |= (1 << USB_DEVICE_REMOTE_WAKEUP);
2160 break;
2161
2162 case USB_RECIP_ENDPOINT:
2163 tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2164 ep = &udc->ep[tmp];
2165 if ((tmp == 0) || (tmp >= NUM_ENDPOINTS))
2166 return -EOPNOTSUPP;
2167
2168 if (wIndex & USB_DIR_IN) {
2169 if (!ep->is_in)
2170 return -EOPNOTSUPP; /* Something's wrong */
2171 } else if (ep->is_in)
2172 return -EOPNOTSUPP; /* Not an IN endpoint */
2173
2174 /* Get status of the endpoint */
2175 udc_protocol_cmd_w(udc, CMD_SEL_EP(ep->hwep_num));
2176 tmp = udc_protocol_cmd_r(udc, DAT_SEL_EP(ep->hwep_num));
2177
2178 if (tmp & EP_SEL_ST)
2179 ep0buff = (1 << USB_ENDPOINT_HALT);
2180 else
2181 ep0buff = 0;
2182 break;
2183
2184 default:
2185 break;
2186 }
2187
2188 /* Return data */
2189 udc_write_hwep(udc, EP_IN, &ep0buff, 2);
2190
2191 return 0;
2192}
2193
2194static void udc_handle_ep0_setup(struct lpc32xx_udc *udc)
2195{
2196 struct lpc32xx_ep *ep, *ep0 = &udc->ep[0];
2197 struct usb_ctrlrequest ctrlpkt;
2198 int i, bytes;
2199 u16 wIndex, wValue, reqtype, req, tmp;
2200
2201 /* Nuke previous transfers */
2202 nuke(ep0, -EPROTO);
2203
2204 /* Get setup packet */
2205 bytes = udc_read_hwep(udc, EP_OUT, (u32 *) &ctrlpkt, 8);
2206 if (bytes != 8) {
2207 ep_warn(ep0, "Incorrectly sized setup packet (s/b 8, is %d)!\n",
2208 bytes);
2209 return;
2210 }
2211
2212 /* Native endianness */
2213 wIndex = le16_to_cpu(ctrlpkt.wIndex);
2214 wValue = le16_to_cpu(ctrlpkt.wValue);
2215 reqtype = le16_to_cpu(ctrlpkt.bRequestType);
2216
2217 /* Set direction of EP0 */
2218 if (likely(reqtype & USB_DIR_IN))
2219 ep0->is_in = 1;
2220 else
2221 ep0->is_in = 0;
2222
2223 /* Handle SETUP packet */
2224 req = le16_to_cpu(ctrlpkt.bRequest);
2225 switch (req) {
2226 case USB_REQ_CLEAR_FEATURE:
2227 case USB_REQ_SET_FEATURE:
2228 switch (reqtype) {
2229 case (USB_TYPE_STANDARD | USB_RECIP_DEVICE):
2230 if (wValue != USB_DEVICE_REMOTE_WAKEUP)
2231 goto stall; /* Nothing else handled */
2232
2233 /* Tell board about event */
2234 if (req == USB_REQ_CLEAR_FEATURE)
2235 udc->dev_status &=
2236 ~(1 << USB_DEVICE_REMOTE_WAKEUP);
2237 else
2238 udc->dev_status |=
2239 (1 << USB_DEVICE_REMOTE_WAKEUP);
2240 uda_remwkp_cgh(udc);
2241 goto zlp_send;
2242
2243 case (USB_TYPE_STANDARD | USB_RECIP_ENDPOINT):
2244 tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2245 if ((wValue != USB_ENDPOINT_HALT) ||
2246 (tmp >= NUM_ENDPOINTS))
2247 break;
2248
2249 /* Find hardware endpoint from logical endpoint */
2250 ep = &udc->ep[tmp];
2251 tmp = ep->hwep_num;
2252 if (tmp == 0)
2253 break;
2254
2255 if (req == USB_REQ_SET_FEATURE)
2256 udc_stall_hwep(udc, tmp);
2257 else if (!ep->wedge)
2258 udc_clrstall_hwep(udc, tmp);
2259
2260 goto zlp_send;
2261
2262 default:
2263 break;
2264 }
2265 break;
2266
2267 case USB_REQ_SET_ADDRESS:
2268 if (reqtype == (USB_TYPE_STANDARD | USB_RECIP_DEVICE)) {
2269 udc_set_address(udc, wValue);
2270 goto zlp_send;
2271 }
2272 break;
2273
2274 case USB_REQ_GET_STATUS:
2275 udc_get_status(udc, reqtype, wIndex);
2276 return;
2277
2278 default:
2279 break; /* Let GadgetFS handle the descriptor instead */
2280 }
2281
2282 if (likely(udc->driver)) {
2283 /* device-2-host (IN) or no data setup command, process
2284 * immediately */
2285 spin_unlock(&udc->lock);
2286 i = udc->driver->setup(&udc->gadget, &ctrlpkt);
2287
2288 spin_lock(&udc->lock);
2289 if (req == USB_REQ_SET_CONFIGURATION) {
2290 /* Configuration is set after endpoints are realized */
2291 if (wValue) {
2292 /* Set configuration */
2293 udc_set_device_configured(udc);
2294
2295 udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2296 DAT_WR_BYTE(AP_CLK |
2297 INAK_BI | INAK_II));
2298 } else {
2299 /* Clear configuration */
2300 udc_set_device_unconfigured(udc);
2301
2302 /* Disable NAK interrupts */
2303 udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2304 DAT_WR_BYTE(AP_CLK));
2305 }
2306 }
2307
2308 if (i < 0) {
2309 /* setup processing failed, force stall */
2310 dev_dbg(udc->dev,
2311 "req %02x.%02x protocol STALL; stat %d\n",
2312 reqtype, req, i);
2313 udc->ep0state = WAIT_FOR_SETUP;
2314 goto stall;
2315 }
2316 }
2317
2318 if (!ep0->is_in)
2319 udc_ep0_send_zlp(udc); /* ZLP IN packet on data phase */
2320
2321 return;
2322
2323stall:
2324 udc_stall_hwep(udc, EP_IN);
2325 return;
2326
2327zlp_send:
2328 udc_ep0_send_zlp(udc);
2329 return;
2330}
2331
2332/* IN endpoint 0 transfer */
2333static void udc_handle_ep0_in(struct lpc32xx_udc *udc)
2334{
2335 struct lpc32xx_ep *ep0 = &udc->ep[0];
2336 u32 epstatus;
2337
2338 /* Clear EP interrupt */
2339 epstatus = udc_clearep_getsts(udc, EP_IN);
2340
2341#ifdef CONFIG_USB_GADGET_DEBUG_FILES
2342 ep0->totalints++;
2343#endif
2344
2345 /* Stalled? Clear stall and reset buffers */
2346 if (epstatus & EP_SEL_ST) {
2347 udc_clrstall_hwep(udc, EP_IN);
2348 nuke(ep0, -ECONNABORTED);
2349 udc->ep0state = WAIT_FOR_SETUP;
2350 return;
2351 }
2352
2353 /* Is a buffer available? */
2354 if (!(epstatus & EP_SEL_F)) {
2355 /* Handle based on current state */
2356 if (udc->ep0state == DATA_IN)
2357 udc_ep0_in_req(udc);
2358 else {
2359 /* Unknown state for EP0 oe end of DATA IN phase */
2360 nuke(ep0, -ECONNABORTED);
2361 udc->ep0state = WAIT_FOR_SETUP;
2362 }
2363 }
2364}
2365
2366/* OUT endpoint 0 transfer */
2367static void udc_handle_ep0_out(struct lpc32xx_udc *udc)
2368{
2369 struct lpc32xx_ep *ep0 = &udc->ep[0];
2370 u32 epstatus;
2371
2372 /* Clear EP interrupt */
2373 epstatus = udc_clearep_getsts(udc, EP_OUT);
2374
2375
2376#ifdef CONFIG_USB_GADGET_DEBUG_FILES
2377 ep0->totalints++;
2378#endif
2379
2380 /* Stalled? */
2381 if (epstatus & EP_SEL_ST) {
2382 udc_clrstall_hwep(udc, EP_OUT);
2383 nuke(ep0, -ECONNABORTED);
2384 udc->ep0state = WAIT_FOR_SETUP;
2385 return;
2386 }
2387
2388 /* A NAK may occur if a packet couldn't be received yet */
2389 if (epstatus & EP_SEL_EPN)
2390 return;
2391 /* Setup packet incoming? */
2392 if (epstatus & EP_SEL_STP) {
2393 nuke(ep0, 0);
2394 udc->ep0state = WAIT_FOR_SETUP;
2395 }
2396
2397 /* Data available? */
2398 if (epstatus & EP_SEL_F)
2399 /* Handle based on current state */
2400 switch (udc->ep0state) {
2401 case WAIT_FOR_SETUP:
2402 udc_handle_ep0_setup(udc);
2403 break;
2404
2405 case DATA_OUT:
2406 udc_ep0_out_req(udc);
2407 break;
2408
2409 default:
2410 /* Unknown state for EP0 */
2411 nuke(ep0, -ECONNABORTED);
2412 udc->ep0state = WAIT_FOR_SETUP;
2413 }
2414}
2415
2416/* Must be called without lock */
2417static int lpc32xx_get_frame(struct usb_gadget *gadget)
2418{
2419 int frame;
2420 unsigned long flags;
2421 struct lpc32xx_udc *udc = to_udc(gadget);
2422
2423 if (!udc->clocked)
2424 return -EINVAL;
2425
2426 spin_lock_irqsave(&udc->lock, flags);
2427
2428 frame = (int) udc_get_current_frame(udc);
2429
2430 spin_unlock_irqrestore(&udc->lock, flags);
2431
2432 return frame;
2433}
2434
2435static int lpc32xx_wakeup(struct usb_gadget *gadget)
2436{
2437 return -ENOTSUPP;
2438}
2439
2440static int lpc32xx_set_selfpowered(struct usb_gadget *gadget, int is_on)
2441{
2442 gadget->is_selfpowered = (is_on != 0);
2443
2444 return 0;
2445}
2446
2447/*
2448 * vbus is here! turn everything on that's ready
2449 * Must be called without lock
2450 */
2451static int lpc32xx_vbus_session(struct usb_gadget *gadget, int is_active)
2452{
2453 unsigned long flags;
2454 struct lpc32xx_udc *udc = to_udc(gadget);
2455
2456 spin_lock_irqsave(&udc->lock, flags);
2457
2458 /* Doesn't need lock */
2459 if (udc->driver) {
2460 udc_clk_set(udc, 1);
2461 udc_enable(udc);
2462 pullup(udc, is_active);
2463 } else {
2464 stop_activity(udc);
2465 pullup(udc, 0);
2466
2467 spin_unlock_irqrestore(&udc->lock, flags);
2468 /*
2469 * Wait for all the endpoints to disable,
2470 * before disabling clocks. Don't wait if
2471 * endpoints are not enabled.
2472 */
2473 if (atomic_read(&udc->enabled_ep_cnt))
2474 wait_event_interruptible(udc->ep_disable_wait_queue,
2475 (atomic_read(&udc->enabled_ep_cnt) == 0));
2476
2477 spin_lock_irqsave(&udc->lock, flags);
2478
2479 udc_clk_set(udc, 0);
2480 }
2481
2482 spin_unlock_irqrestore(&udc->lock, flags);
2483
2484 return 0;
2485}
2486
2487/* Can be called with or without lock */
2488static int lpc32xx_pullup(struct usb_gadget *gadget, int is_on)
2489{
2490 struct lpc32xx_udc *udc = to_udc(gadget);
2491
2492 /* Doesn't need lock */
2493 pullup(udc, is_on);
2494
2495 return 0;
2496}
2497
2498static int lpc32xx_start(struct usb_gadget *, struct usb_gadget_driver *);
2499static int lpc32xx_stop(struct usb_gadget *);
2500
2501static const struct usb_gadget_ops lpc32xx_udc_ops = {
2502 .get_frame = lpc32xx_get_frame,
2503 .wakeup = lpc32xx_wakeup,
2504 .set_selfpowered = lpc32xx_set_selfpowered,
2505 .vbus_session = lpc32xx_vbus_session,
2506 .pullup = lpc32xx_pullup,
2507 .udc_start = lpc32xx_start,
2508 .udc_stop = lpc32xx_stop,
2509};
2510
2511static void nop_release(struct device *dev)
2512{
2513 /* nothing to free */
2514}
2515
2516static const struct lpc32xx_udc controller_template = {
2517 .gadget = {
2518 .ops = &lpc32xx_udc_ops,
2519 .name = driver_name,
2520 .dev = {
2521 .init_name = "gadget",
2522 .release = nop_release,
2523 }
2524 },
2525 .ep[0] = {
2526 .ep = {
2527 .name = "ep0",
2528 .ops = &lpc32xx_ep_ops,
2529 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL,
2530 USB_EP_CAPS_DIR_ALL),
2531 },
2532 .maxpacket = 64,
2533 .hwep_num_base = 0,
2534 .hwep_num = 0, /* Can be 0 or 1, has special handling */
2535 .lep = 0,
2536 .eptype = EP_CTL_TYPE,
2537 },
2538 .ep[1] = {
2539 .ep = {
2540 .name = "ep1-int",
2541 .ops = &lpc32xx_ep_ops,
2542 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2543 USB_EP_CAPS_DIR_ALL),
2544 },
2545 .maxpacket = 64,
2546 .hwep_num_base = 2,
2547 .hwep_num = 0, /* 2 or 3, will be set later */
2548 .lep = 1,
2549 .eptype = EP_INT_TYPE,
2550 },
2551 .ep[2] = {
2552 .ep = {
2553 .name = "ep2-bulk",
2554 .ops = &lpc32xx_ep_ops,
2555 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2556 USB_EP_CAPS_DIR_ALL),
2557 },
2558 .maxpacket = 64,
2559 .hwep_num_base = 4,
2560 .hwep_num = 0, /* 4 or 5, will be set later */
2561 .lep = 2,
2562 .eptype = EP_BLK_TYPE,
2563 },
2564 .ep[3] = {
2565 .ep = {
2566 .name = "ep3-iso",
2567 .ops = &lpc32xx_ep_ops,
2568 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2569 USB_EP_CAPS_DIR_ALL),
2570 },
2571 .maxpacket = 1023,
2572 .hwep_num_base = 6,
2573 .hwep_num = 0, /* 6 or 7, will be set later */
2574 .lep = 3,
2575 .eptype = EP_ISO_TYPE,
2576 },
2577 .ep[4] = {
2578 .ep = {
2579 .name = "ep4-int",
2580 .ops = &lpc32xx_ep_ops,
2581 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2582 USB_EP_CAPS_DIR_ALL),
2583 },
2584 .maxpacket = 64,
2585 .hwep_num_base = 8,
2586 .hwep_num = 0, /* 8 or 9, will be set later */
2587 .lep = 4,
2588 .eptype = EP_INT_TYPE,
2589 },
2590 .ep[5] = {
2591 .ep = {
2592 .name = "ep5-bulk",
2593 .ops = &lpc32xx_ep_ops,
2594 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2595 USB_EP_CAPS_DIR_ALL),
2596 },
2597 .maxpacket = 64,
2598 .hwep_num_base = 10,
2599 .hwep_num = 0, /* 10 or 11, will be set later */
2600 .lep = 5,
2601 .eptype = EP_BLK_TYPE,
2602 },
2603 .ep[6] = {
2604 .ep = {
2605 .name = "ep6-iso",
2606 .ops = &lpc32xx_ep_ops,
2607 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2608 USB_EP_CAPS_DIR_ALL),
2609 },
2610 .maxpacket = 1023,
2611 .hwep_num_base = 12,
2612 .hwep_num = 0, /* 12 or 13, will be set later */
2613 .lep = 6,
2614 .eptype = EP_ISO_TYPE,
2615 },
2616 .ep[7] = {
2617 .ep = {
2618 .name = "ep7-int",
2619 .ops = &lpc32xx_ep_ops,
2620 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2621 USB_EP_CAPS_DIR_ALL),
2622 },
2623 .maxpacket = 64,
2624 .hwep_num_base = 14,
2625 .hwep_num = 0,
2626 .lep = 7,
2627 .eptype = EP_INT_TYPE,
2628 },
2629 .ep[8] = {
2630 .ep = {
2631 .name = "ep8-bulk",
2632 .ops = &lpc32xx_ep_ops,
2633 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2634 USB_EP_CAPS_DIR_ALL),
2635 },
2636 .maxpacket = 64,
2637 .hwep_num_base = 16,
2638 .hwep_num = 0,
2639 .lep = 8,
2640 .eptype = EP_BLK_TYPE,
2641 },
2642 .ep[9] = {
2643 .ep = {
2644 .name = "ep9-iso",
2645 .ops = &lpc32xx_ep_ops,
2646 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2647 USB_EP_CAPS_DIR_ALL),
2648 },
2649 .maxpacket = 1023,
2650 .hwep_num_base = 18,
2651 .hwep_num = 0,
2652 .lep = 9,
2653 .eptype = EP_ISO_TYPE,
2654 },
2655 .ep[10] = {
2656 .ep = {
2657 .name = "ep10-int",
2658 .ops = &lpc32xx_ep_ops,
2659 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2660 USB_EP_CAPS_DIR_ALL),
2661 },
2662 .maxpacket = 64,
2663 .hwep_num_base = 20,
2664 .hwep_num = 0,
2665 .lep = 10,
2666 .eptype = EP_INT_TYPE,
2667 },
2668 .ep[11] = {
2669 .ep = {
2670 .name = "ep11-bulk",
2671 .ops = &lpc32xx_ep_ops,
2672 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2673 USB_EP_CAPS_DIR_ALL),
2674 },
2675 .maxpacket = 64,
2676 .hwep_num_base = 22,
2677 .hwep_num = 0,
2678 .lep = 11,
2679 .eptype = EP_BLK_TYPE,
2680 },
2681 .ep[12] = {
2682 .ep = {
2683 .name = "ep12-iso",
2684 .ops = &lpc32xx_ep_ops,
2685 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2686 USB_EP_CAPS_DIR_ALL),
2687 },
2688 .maxpacket = 1023,
2689 .hwep_num_base = 24,
2690 .hwep_num = 0,
2691 .lep = 12,
2692 .eptype = EP_ISO_TYPE,
2693 },
2694 .ep[13] = {
2695 .ep = {
2696 .name = "ep13-int",
2697 .ops = &lpc32xx_ep_ops,
2698 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_INT,
2699 USB_EP_CAPS_DIR_ALL),
2700 },
2701 .maxpacket = 64,
2702 .hwep_num_base = 26,
2703 .hwep_num = 0,
2704 .lep = 13,
2705 .eptype = EP_INT_TYPE,
2706 },
2707 .ep[14] = {
2708 .ep = {
2709 .name = "ep14-bulk",
2710 .ops = &lpc32xx_ep_ops,
2711 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2712 USB_EP_CAPS_DIR_ALL),
2713 },
2714 .maxpacket = 64,
2715 .hwep_num_base = 28,
2716 .hwep_num = 0,
2717 .lep = 14,
2718 .eptype = EP_BLK_TYPE,
2719 },
2720 .ep[15] = {
2721 .ep = {
2722 .name = "ep15-bulk",
2723 .ops = &lpc32xx_ep_ops,
2724 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2725 USB_EP_CAPS_DIR_ALL),
2726 },
2727 .maxpacket = 1023,
2728 .hwep_num_base = 30,
2729 .hwep_num = 0,
2730 .lep = 15,
2731 .eptype = EP_BLK_TYPE,
2732 },
2733};
2734
2735/* ISO and status interrupts */
2736static irqreturn_t lpc32xx_usb_lp_irq(int irq, void *_udc)
2737{
2738 u32 tmp, devstat;
2739 struct lpc32xx_udc *udc = _udc;
2740
2741 spin_lock(&udc->lock);
2742
2743 /* Read the device status register */
2744 devstat = readl(USBD_DEVINTST(udc->udp_baseaddr));
2745
2746 devstat &= ~USBD_EP_FAST;
2747 writel(devstat, USBD_DEVINTCLR(udc->udp_baseaddr));
2748 devstat = devstat & udc->enabled_devints;
2749
2750 /* Device specific handling needed? */
2751 if (devstat & USBD_DEV_STAT)
2752 udc_handle_dev(udc);
2753
2754 /* Start of frame? (devstat & FRAME_INT):
2755 * The frame interrupt isn't really needed for ISO support,
2756 * as the driver will queue the necessary packets */
2757
2758 /* Error? */
2759 if (devstat & ERR_INT) {
2760 /* All types of errors, from cable removal during transfer to
2761 * misc protocol and bit errors. These are mostly for just info,
2762 * as the USB hardware will work around these. If these errors
2763 * happen alot, something is wrong. */
2764 udc_protocol_cmd_w(udc, CMD_RD_ERR_STAT);
2765 tmp = udc_protocol_cmd_r(udc, DAT_RD_ERR_STAT);
2766 dev_dbg(udc->dev, "Device error (0x%x)!\n", tmp);
2767 }
2768
2769 spin_unlock(&udc->lock);
2770
2771 return IRQ_HANDLED;
2772}
2773
2774/* EP interrupts */
2775static irqreturn_t lpc32xx_usb_hp_irq(int irq, void *_udc)
2776{
2777 u32 tmp;
2778 struct lpc32xx_udc *udc = _udc;
2779
2780 spin_lock(&udc->lock);
2781
2782 /* Read the device status register */
2783 writel(USBD_EP_FAST, USBD_DEVINTCLR(udc->udp_baseaddr));
2784
2785 /* Endpoints */
2786 tmp = readl(USBD_EPINTST(udc->udp_baseaddr));
2787
2788 /* Special handling for EP0 */
2789 if (tmp & (EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2790 /* Handle EP0 IN */
2791 if (tmp & (EP_MASK_SEL(0, EP_IN)))
2792 udc_handle_ep0_in(udc);
2793
2794 /* Handle EP0 OUT */
2795 if (tmp & (EP_MASK_SEL(0, EP_OUT)))
2796 udc_handle_ep0_out(udc);
2797 }
2798
2799 /* All other EPs */
2800 if (tmp & ~(EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2801 int i;
2802
2803 /* Handle other EP interrupts */
2804 for (i = 1; i < NUM_ENDPOINTS; i++) {
2805 if (tmp & (1 << udc->ep[i].hwep_num))
2806 udc_handle_eps(udc, &udc->ep[i]);
2807 }
2808 }
2809
2810 spin_unlock(&udc->lock);
2811
2812 return IRQ_HANDLED;
2813}
2814
2815static irqreturn_t lpc32xx_usb_devdma_irq(int irq, void *_udc)
2816{
2817 struct lpc32xx_udc *udc = _udc;
2818
2819 int i;
2820 u32 tmp;
2821
2822 spin_lock(&udc->lock);
2823
2824 /* Handle EP DMA EOT interrupts */
2825 tmp = readl(USBD_EOTINTST(udc->udp_baseaddr)) |
2826 (readl(USBD_EPDMAST(udc->udp_baseaddr)) &
2827 readl(USBD_NDDRTINTST(udc->udp_baseaddr))) |
2828 readl(USBD_SYSERRTINTST(udc->udp_baseaddr));
2829 for (i = 1; i < NUM_ENDPOINTS; i++) {
2830 if (tmp & (1 << udc->ep[i].hwep_num))
2831 udc_handle_dma_ep(udc, &udc->ep[i]);
2832 }
2833
2834 spin_unlock(&udc->lock);
2835
2836 return IRQ_HANDLED;
2837}
2838
2839/*
2840 *
2841 * VBUS detection, pullup handler, and Gadget cable state notification
2842 *
2843 */
2844static void vbus_work(struct lpc32xx_udc *udc)
2845{
2846 u8 value;
2847
2848 if (udc->enabled != 0) {
2849 /* Discharge VBUS real quick */
2850 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2851 ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
2852
2853 /* Give VBUS some time (100mS) to discharge */
2854 msleep(100);
2855
2856 /* Disable VBUS discharge resistor */
2857 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2858 ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
2859 OTG1_VBUS_DISCHRG);
2860
2861 /* Clear interrupt */
2862 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2863 ISP1301_I2C_INTERRUPT_LATCH |
2864 ISP1301_I2C_REG_CLEAR_ADDR, ~0);
2865
2866 /* Get the VBUS status from the transceiver */
2867 value = i2c_smbus_read_byte_data(udc->isp1301_i2c_client,
2868 ISP1301_I2C_INTERRUPT_SOURCE);
2869
2870 /* VBUS on or off? */
2871 if (value & INT_SESS_VLD)
2872 udc->vbus = 1;
2873 else
2874 udc->vbus = 0;
2875
2876 /* VBUS changed? */
2877 if (udc->last_vbus != udc->vbus) {
2878 udc->last_vbus = udc->vbus;
2879 lpc32xx_vbus_session(&udc->gadget, udc->vbus);
2880 }
2881 }
2882}
2883
2884static irqreturn_t lpc32xx_usb_vbus_irq(int irq, void *_udc)
2885{
2886 struct lpc32xx_udc *udc = _udc;
2887
2888 vbus_work(udc);
2889
2890 return IRQ_HANDLED;
2891}
2892
2893static int lpc32xx_start(struct usb_gadget *gadget,
2894 struct usb_gadget_driver *driver)
2895{
2896 struct lpc32xx_udc *udc = to_udc(gadget);
2897
2898 if (!driver || driver->max_speed < USB_SPEED_FULL || !driver->setup) {
2899 dev_err(udc->dev, "bad parameter.\n");
2900 return -EINVAL;
2901 }
2902
2903 if (udc->driver) {
2904 dev_err(udc->dev, "UDC already has a gadget driver\n");
2905 return -EBUSY;
2906 }
2907
2908 udc->driver = driver;
2909 udc->gadget.dev.of_node = udc->dev->of_node;
2910 udc->enabled = 1;
2911 udc->gadget.is_selfpowered = 1;
2912 udc->vbus = 0;
2913
2914 /* Force VBUS process once to check for cable insertion */
2915 udc->last_vbus = udc->vbus = 0;
2916 vbus_work(udc);
2917
2918 /* enable interrupts */
2919 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2920 ISP1301_I2C_INTERRUPT_FALLING, INT_SESS_VLD | INT_VBUS_VLD);
2921 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2922 ISP1301_I2C_INTERRUPT_RISING, INT_SESS_VLD | INT_VBUS_VLD);
2923
2924 return 0;
2925}
2926
2927static int lpc32xx_stop(struct usb_gadget *gadget)
2928{
2929 struct lpc32xx_udc *udc = to_udc(gadget);
2930
2931 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2932 ISP1301_I2C_INTERRUPT_FALLING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
2933 i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2934 ISP1301_I2C_INTERRUPT_RISING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
2935
2936 if (udc->clocked) {
2937 spin_lock(&udc->lock);
2938 stop_activity(udc);
2939 spin_unlock(&udc->lock);
2940
2941 /*
2942 * Wait for all the endpoints to disable,
2943 * before disabling clocks. Don't wait if
2944 * endpoints are not enabled.
2945 */
2946 if (atomic_read(&udc->enabled_ep_cnt))
2947 wait_event_interruptible(udc->ep_disable_wait_queue,
2948 (atomic_read(&udc->enabled_ep_cnt) == 0));
2949
2950 spin_lock(&udc->lock);
2951 udc_clk_set(udc, 0);
2952 spin_unlock(&udc->lock);
2953 }
2954
2955 udc->enabled = 0;
2956 udc->driver = NULL;
2957
2958 return 0;
2959}
2960
2961static void lpc32xx_udc_shutdown(struct platform_device *dev)
2962{
2963 /* Force disconnect on reboot */
2964 struct lpc32xx_udc *udc = platform_get_drvdata(dev);
2965
2966 pullup(udc, 0);
2967}
2968
2969/*
2970 * Callbacks to be overridden by options passed via OF (TODO)
2971 */
2972
2973static void lpc32xx_usbd_conn_chg(int conn)
2974{
2975 /* Do nothing, it might be nice to enable an LED
2976 * based on conn state being !0 */
2977}
2978
2979static void lpc32xx_usbd_susp_chg(int susp)
2980{
2981 /* Device suspend if susp != 0 */
2982}
2983
2984static void lpc32xx_rmwkup_chg(int remote_wakup_enable)
2985{
2986 /* Enable or disable USB remote wakeup */
2987}
2988
2989struct lpc32xx_usbd_cfg lpc32xx_usbddata = {
2990 .vbus_drv_pol = 0,
2991 .conn_chgb = &lpc32xx_usbd_conn_chg,
2992 .susp_chgb = &lpc32xx_usbd_susp_chg,
2993 .rmwk_chgb = &lpc32xx_rmwkup_chg,
2994};
2995
2996
2997static u64 lpc32xx_usbd_dmamask = ~(u32) 0x7F;
2998
2999static int lpc32xx_udc_probe(struct platform_device *pdev)
3000{
3001 struct device *dev = &pdev->dev;
3002 struct lpc32xx_udc *udc;
3003 int retval, i;
3004 struct resource *res;
3005 dma_addr_t dma_handle;
3006 struct device_node *isp1301_node;
3007
3008 udc = devm_kmemdup(dev, &controller_template, sizeof(*udc), GFP_KERNEL);
3009 if (!udc)
3010 return -ENOMEM;
3011
3012 for (i = 0; i <= 15; i++)
3013 udc->ep[i].udc = udc;
3014 udc->gadget.ep0 = &udc->ep[0].ep;
3015
3016 /* init software state */
3017 udc->gadget.dev.parent = dev;
3018 udc->pdev = pdev;
3019 udc->dev = &pdev->dev;
3020 udc->enabled = 0;
3021
3022 if (pdev->dev.of_node) {
3023 isp1301_node = of_parse_phandle(pdev->dev.of_node,
3024 "transceiver", 0);
3025 } else {
3026 isp1301_node = NULL;
3027 }
3028
3029 udc->isp1301_i2c_client = isp1301_get_client(isp1301_node);
3030 of_node_put(isp1301_node);
3031 if (!udc->isp1301_i2c_client) {
3032 return -EPROBE_DEFER;
3033 }
3034
3035 dev_info(udc->dev, "ISP1301 I2C device at address 0x%x\n",
3036 udc->isp1301_i2c_client->addr);
3037
3038 pdev->dev.dma_mask = &lpc32xx_usbd_dmamask;
3039 retval = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
3040 if (retval)
3041 return retval;
3042
3043 udc->board = &lpc32xx_usbddata;
3044
3045 /*
3046 * Resources are mapped as follows:
3047 * IORESOURCE_MEM, base address and size of USB space
3048 * IORESOURCE_IRQ, USB device low priority interrupt number
3049 * IORESOURCE_IRQ, USB device high priority interrupt number
3050 * IORESOURCE_IRQ, USB device interrupt number
3051 * IORESOURCE_IRQ, USB transceiver interrupt number
3052 */
3053 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3054 if (!res)
3055 return -ENXIO;
3056
3057 spin_lock_init(&udc->lock);
3058
3059 /* Get IRQs */
3060 for (i = 0; i < 4; i++) {
3061 udc->udp_irq[i] = platform_get_irq(pdev, i);
3062 if (udc->udp_irq[i] < 0)
3063 return udc->udp_irq[i];
3064 }
3065
3066 udc->udp_baseaddr = devm_ioremap_resource(dev, res);
3067 if (IS_ERR(udc->udp_baseaddr)) {
3068 dev_err(udc->dev, "IO map failure\n");
3069 return PTR_ERR(udc->udp_baseaddr);
3070 }
3071
3072 /* Get USB device clock */
3073 udc->usb_slv_clk = devm_clk_get(&pdev->dev, NULL);
3074 if (IS_ERR(udc->usb_slv_clk)) {
3075 dev_err(udc->dev, "failed to acquire USB device clock\n");
3076 return PTR_ERR(udc->usb_slv_clk);
3077 }
3078
3079 /* Enable USB device clock */
3080 retval = clk_prepare_enable(udc->usb_slv_clk);
3081 if (retval < 0) {
3082 dev_err(udc->dev, "failed to start USB device clock\n");
3083 return retval;
3084 }
3085
3086 /* Setup deferred workqueue data */
3087 udc->poweron = udc->pullup = 0;
3088 INIT_WORK(&udc->pullup_job, pullup_work);
3089#ifdef CONFIG_PM
3090 INIT_WORK(&udc->power_job, power_work);
3091#endif
3092
3093 /* All clocks are now on */
3094 udc->clocked = 1;
3095
3096 isp1301_udc_configure(udc);
3097 /* Allocate memory for the UDCA */
3098 udc->udca_v_base = dma_alloc_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3099 &dma_handle,
3100 (GFP_KERNEL | GFP_DMA));
3101 if (!udc->udca_v_base) {
3102 dev_err(udc->dev, "error getting UDCA region\n");
3103 retval = -ENOMEM;
3104 goto i2c_fail;
3105 }
3106 udc->udca_p_base = dma_handle;
3107 dev_dbg(udc->dev, "DMA buffer(0x%x bytes), P:0x%08x, V:0x%p\n",
3108 UDCA_BUFF_SIZE, udc->udca_p_base, udc->udca_v_base);
3109
3110 /* Setup the DD DMA memory pool */
3111 udc->dd_cache = dma_pool_create("udc_dd", udc->dev,
3112 sizeof(struct lpc32xx_usbd_dd_gad),
3113 sizeof(u32), 0);
3114 if (!udc->dd_cache) {
3115 dev_err(udc->dev, "error getting DD DMA region\n");
3116 retval = -ENOMEM;
3117 goto dma_alloc_fail;
3118 }
3119
3120 /* Clear USB peripheral and initialize gadget endpoints */
3121 udc_disable(udc);
3122 udc_reinit(udc);
3123
3124 /* Request IRQs - low and high priority USB device IRQs are routed to
3125 * the same handler, while the DMA interrupt is routed elsewhere */
3126 retval = devm_request_irq(dev, udc->udp_irq[IRQ_USB_LP],
3127 lpc32xx_usb_lp_irq, 0, "udc_lp", udc);
3128 if (retval < 0) {
3129 dev_err(udc->dev, "LP request irq %d failed\n",
3130 udc->udp_irq[IRQ_USB_LP]);
3131 goto irq_req_fail;
3132 }
3133 retval = devm_request_irq(dev, udc->udp_irq[IRQ_USB_HP],
3134 lpc32xx_usb_hp_irq, 0, "udc_hp", udc);
3135 if (retval < 0) {
3136 dev_err(udc->dev, "HP request irq %d failed\n",
3137 udc->udp_irq[IRQ_USB_HP]);
3138 goto irq_req_fail;
3139 }
3140
3141 retval = devm_request_irq(dev, udc->udp_irq[IRQ_USB_DEVDMA],
3142 lpc32xx_usb_devdma_irq, 0, "udc_dma", udc);
3143 if (retval < 0) {
3144 dev_err(udc->dev, "DEV request irq %d failed\n",
3145 udc->udp_irq[IRQ_USB_DEVDMA]);
3146 goto irq_req_fail;
3147 }
3148
3149 /* The transceiver interrupt is used for VBUS detection and will
3150 kick off the VBUS handler function */
3151 retval = devm_request_threaded_irq(dev, udc->udp_irq[IRQ_USB_ATX], NULL,
3152 lpc32xx_usb_vbus_irq, IRQF_ONESHOT,
3153 "udc_otg", udc);
3154 if (retval < 0) {
3155 dev_err(udc->dev, "VBUS request irq %d failed\n",
3156 udc->udp_irq[IRQ_USB_ATX]);
3157 goto irq_req_fail;
3158 }
3159
3160 /* Initialize wait queue */
3161 init_waitqueue_head(&udc->ep_disable_wait_queue);
3162 atomic_set(&udc->enabled_ep_cnt, 0);
3163
3164 retval = usb_add_gadget_udc(dev, &udc->gadget);
3165 if (retval < 0)
3166 goto add_gadget_fail;
3167
3168 dev_set_drvdata(dev, udc);
3169 device_init_wakeup(dev, 1);
3170 create_debug_file(udc);
3171
3172 /* Disable clocks for now */
3173 udc_clk_set(udc, 0);
3174
3175 dev_info(udc->dev, "%s version %s\n", driver_name, DRIVER_VERSION);
3176 return 0;
3177
3178add_gadget_fail:
3179irq_req_fail:
3180 dma_pool_destroy(udc->dd_cache);
3181dma_alloc_fail:
3182 dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3183 udc->udca_v_base, udc->udca_p_base);
3184i2c_fail:
3185 clk_disable_unprepare(udc->usb_slv_clk);
3186 dev_err(udc->dev, "%s probe failed, %d\n", driver_name, retval);
3187
3188 return retval;
3189}
3190
3191static int lpc32xx_udc_remove(struct platform_device *pdev)
3192{
3193 struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3194
3195 usb_del_gadget_udc(&udc->gadget);
3196 if (udc->driver)
3197 return -EBUSY;
3198
3199 udc_clk_set(udc, 1);
3200 udc_disable(udc);
3201 pullup(udc, 0);
3202
3203 device_init_wakeup(&pdev->dev, 0);
3204 remove_debug_file(udc);
3205
3206 dma_pool_destroy(udc->dd_cache);
3207 dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3208 udc->udca_v_base, udc->udca_p_base);
3209
3210 clk_disable_unprepare(udc->usb_slv_clk);
3211
3212 return 0;
3213}
3214
3215#ifdef CONFIG_PM
3216static int lpc32xx_udc_suspend(struct platform_device *pdev, pm_message_t mesg)
3217{
3218 struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3219
3220 if (udc->clocked) {
3221 /* Power down ISP */
3222 udc->poweron = 0;
3223 isp1301_set_powerstate(udc, 0);
3224
3225 /* Disable clocking */
3226 udc_clk_set(udc, 0);
3227
3228 /* Keep clock flag on, so we know to re-enable clocks
3229 on resume */
3230 udc->clocked = 1;
3231
3232 /* Kill global USB clock */
3233 clk_disable_unprepare(udc->usb_slv_clk);
3234 }
3235
3236 return 0;
3237}
3238
3239static int lpc32xx_udc_resume(struct platform_device *pdev)
3240{
3241 struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3242
3243 if (udc->clocked) {
3244 /* Enable global USB clock */
3245 clk_prepare_enable(udc->usb_slv_clk);
3246
3247 /* Enable clocking */
3248 udc_clk_set(udc, 1);
3249
3250 /* ISP back to normal power mode */
3251 udc->poweron = 1;
3252 isp1301_set_powerstate(udc, 1);
3253 }
3254
3255 return 0;
3256}
3257#else
3258#define lpc32xx_udc_suspend NULL
3259#define lpc32xx_udc_resume NULL
3260#endif
3261
3262#ifdef CONFIG_OF
3263static const struct of_device_id lpc32xx_udc_of_match[] = {
3264 { .compatible = "nxp,lpc3220-udc", },
3265 { },
3266};
3267MODULE_DEVICE_TABLE(of, lpc32xx_udc_of_match);
3268#endif
3269
3270static struct platform_driver lpc32xx_udc_driver = {
3271 .remove = lpc32xx_udc_remove,
3272 .shutdown = lpc32xx_udc_shutdown,
3273 .suspend = lpc32xx_udc_suspend,
3274 .resume = lpc32xx_udc_resume,
3275 .driver = {
3276 .name = (char *) driver_name,
3277 .of_match_table = of_match_ptr(lpc32xx_udc_of_match),
3278 },
3279};
3280
3281module_platform_driver_probe(lpc32xx_udc_driver, lpc32xx_udc_probe);
3282
3283MODULE_DESCRIPTION("LPC32XX udc driver");
3284MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
3285MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
3286MODULE_LICENSE("GPL");
3287MODULE_ALIAS("platform:lpc32xx_udc");