blob: d7178d9d237fe31dd8e7196e93ba87356a8a4386 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11#include <linux/pci.h>
12#include <linux/iommu.h>
13#include <linux/iopoll.h>
14#include <linux/irq.h>
15#include <linux/log2.h>
16#include <linux/module.h>
17#include <linux/moduleparam.h>
18#include <linux/slab.h>
19#include <linux/dmi.h>
20#include <linux/dma-mapping.h>
21
22#include "xhci.h"
23#include "xhci-trace.h"
24#include "xhci-debugfs.h"
25#include "xhci-dbgcap.h"
26
27
28
29#define DRIVER_AUTHOR "Sarah Sharp"
30#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
31
32#define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
33
34/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
35static int link_quirk;
36module_param(link_quirk, int, S_IRUGO | S_IWUSR);
37MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
38
39static unsigned long long quirks;
40module_param(quirks, ullong, S_IRUGO);
41MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
42
43static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
44{
45 struct xhci_segment *seg = ring->first_seg;
46
47 if (!td || !td->start_seg)
48 return false;
49 do {
50 if (seg == td->start_seg)
51 return true;
52 seg = seg->next;
53 } while (seg && seg != ring->first_seg);
54
55 return false;
56}
57
58/*
59 * xhci_handshake - spin reading hc until handshake completes or fails
60 * @ptr: address of hc register to be read
61 * @mask: bits to look at in result of read
62 * @done: value of those bits when handshake succeeds
63 * @usec: timeout in microseconds
64 *
65 * Returns negative errno, or zero on success
66 *
67 * Success happens when the "mask" bits have the specified value (hardware
68 * handshake done). There are two failure modes: "usec" have passed (major
69 * hardware flakeout), or the register reads as all-ones (hardware removed).
70 */
71int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
72{
73 u32 result;
74 int ret;
75
76 ret = readl_poll_timeout_atomic(ptr, result,
77 (result & mask) == done ||
78 result == U32_MAX,
79 1, timeout_us);
80 if (result == U32_MAX) /* card removed */
81 return -ENODEV;
82
83 return ret;
84}
85
86/*
87 * Disable interrupts and begin the xHCI halting process.
88 */
89void xhci_quiesce(struct xhci_hcd *xhci)
90{
91 u32 halted;
92 u32 cmd;
93 u32 mask;
94
95 mask = ~(XHCI_IRQS);
96 halted = readl(&xhci->op_regs->status) & STS_HALT;
97 if (!halted)
98 mask &= ~CMD_RUN;
99
100 cmd = readl(&xhci->op_regs->command);
101 cmd &= mask;
102 writel(cmd, &xhci->op_regs->command);
103}
104
105/*
106 * Force HC into halt state.
107 *
108 * Disable any IRQs and clear the run/stop bit.
109 * HC will complete any current and actively pipelined transactions, and
110 * should halt within 16 ms of the run/stop bit being cleared.
111 * Read HC Halted bit in the status register to see when the HC is finished.
112 */
113int xhci_halt(struct xhci_hcd *xhci)
114{
115 int ret;
116 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
117 xhci_quiesce(xhci);
118
119 ret = xhci_handshake(&xhci->op_regs->status,
120 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
121 if (ret) {
122 xhci_warn(xhci, "Host halt failed, %d\n", ret);
123 return ret;
124 }
125 xhci->xhc_state |= XHCI_STATE_HALTED;
126 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
127 return ret;
128}
129
130/*
131 * Set the run bit and wait for the host to be running.
132 */
133int xhci_start(struct xhci_hcd *xhci)
134{
135 u32 temp;
136 int ret;
137
138 temp = readl(&xhci->op_regs->command);
139 temp |= (CMD_RUN);
140 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141 temp);
142 writel(temp, &xhci->op_regs->command);
143
144 /*
145 * Wait for the HCHalted Status bit to be 0 to indicate the host is
146 * running.
147 */
148 ret = xhci_handshake(&xhci->op_regs->status,
149 STS_HALT, 0, XHCI_MAX_HALT_USEC);
150 if (ret == -ETIMEDOUT)
151 xhci_err(xhci, "Host took too long to start, "
152 "waited %u microseconds.\n",
153 XHCI_MAX_HALT_USEC);
154 if (!ret) {
155 /* clear state flags. Including dying, halted or removing */
156 xhci->xhc_state = 0;
157 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
158 }
159
160 return ret;
161}
162
163/*
164 * Reset a halted HC.
165 *
166 * This resets pipelines, timers, counters, state machines, etc.
167 * Transactions will be terminated immediately, and operational registers
168 * will be set to their defaults.
169 */
170int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
171{
172 u32 command;
173 u32 state;
174 int ret;
175
176 state = readl(&xhci->op_regs->status);
177
178 if (state == ~(u32)0) {
179 xhci_warn(xhci, "Host not accessible, reset failed.\n");
180 return -ENODEV;
181 }
182
183 if ((state & STS_HALT) == 0) {
184 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
185 return 0;
186 }
187
188 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
189 command = readl(&xhci->op_regs->command);
190 command |= CMD_RESET;
191 writel(command, &xhci->op_regs->command);
192
193 /* Existing Intel xHCI controllers require a delay of 1 mS,
194 * after setting the CMD_RESET bit, and before accessing any
195 * HC registers. This allows the HC to complete the
196 * reset operation and be ready for HC register access.
197 * Without this delay, the subsequent HC register access,
198 * may result in a system hang very rarely.
199 */
200 if (xhci->quirks & XHCI_INTEL_HOST)
201 udelay(1000);
202
203 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
204 if (ret)
205 return ret;
206
207 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
208 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
209
210 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
211 "Wait for controller to be ready for doorbell rings");
212 /*
213 * xHCI cannot write to any doorbells or operational registers other
214 * than status until the "Controller Not Ready" flag is cleared.
215 */
216 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
217
218 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
219 xhci->usb2_rhub.bus_state.suspended_ports = 0;
220 xhci->usb2_rhub.bus_state.resuming_ports = 0;
221 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
222 xhci->usb3_rhub.bus_state.suspended_ports = 0;
223 xhci->usb3_rhub.bus_state.resuming_ports = 0;
224
225 return ret;
226}
227
228static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
229{
230 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
231 struct iommu_domain *domain;
232 int err, i;
233 u64 val;
234 u32 intrs;
235
236 /*
237 * Some Renesas controllers get into a weird state if they are
238 * reset while programmed with 64bit addresses (they will preserve
239 * the top half of the address in internal, non visible
240 * registers). You end up with half the address coming from the
241 * kernel, and the other half coming from the firmware. Also,
242 * changing the programming leads to extra accesses even if the
243 * controller is supposed to be halted. The controller ends up with
244 * a fatal fault, and is then ripe for being properly reset.
245 *
246 * Special care is taken to only apply this if the device is behind
247 * an iommu. Doing anything when there is no iommu is definitely
248 * unsafe...
249 */
250 domain = iommu_get_domain_for_dev(dev);
251 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
252 domain->type == IOMMU_DOMAIN_IDENTITY)
253 return;
254
255 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
256
257 /* Clear HSEIE so that faults do not get signaled */
258 val = readl(&xhci->op_regs->command);
259 val &= ~CMD_HSEIE;
260 writel(val, &xhci->op_regs->command);
261
262 /* Clear HSE (aka FATAL) */
263 val = readl(&xhci->op_regs->status);
264 val |= STS_FATAL;
265 writel(val, &xhci->op_regs->status);
266
267 /* Now zero the registers, and brace for impact */
268 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
269 if (upper_32_bits(val))
270 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
271 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
272 if (upper_32_bits(val))
273 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
274
275 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
276 ARRAY_SIZE(xhci->run_regs->ir_set));
277
278 for (i = 0; i < intrs; i++) {
279 struct xhci_intr_reg __iomem *ir;
280
281 ir = &xhci->run_regs->ir_set[i];
282 val = xhci_read_64(xhci, &ir->erst_base);
283 if (upper_32_bits(val))
284 xhci_write_64(xhci, 0, &ir->erst_base);
285 val= xhci_read_64(xhci, &ir->erst_dequeue);
286 if (upper_32_bits(val))
287 xhci_write_64(xhci, 0, &ir->erst_dequeue);
288 }
289
290 /* Wait for the fault to appear. It will be cleared on reset */
291 err = xhci_handshake(&xhci->op_regs->status,
292 STS_FATAL, STS_FATAL,
293 XHCI_MAX_HALT_USEC);
294 if (!err)
295 xhci_info(xhci, "Fault detected\n");
296}
297
298#ifdef CONFIG_USB_PCI
299/*
300 * Set up MSI
301 */
302static int xhci_setup_msi(struct xhci_hcd *xhci)
303{
304 int ret;
305 /*
306 * TODO:Check with MSI Soc for sysdev
307 */
308 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
309
310 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
311 if (ret < 0) {
312 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
313 "failed to allocate MSI entry");
314 return ret;
315 }
316
317 ret = request_irq(pdev->irq, xhci_msi_irq,
318 0, "xhci_hcd", xhci_to_hcd(xhci));
319 if (ret) {
320 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
321 "disable MSI interrupt");
322 pci_free_irq_vectors(pdev);
323 }
324
325 return ret;
326}
327
328/*
329 * Set up MSI-X
330 */
331static int xhci_setup_msix(struct xhci_hcd *xhci)
332{
333 int i, ret = 0;
334 struct usb_hcd *hcd = xhci_to_hcd(xhci);
335 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
336
337 /*
338 * calculate number of msi-x vectors supported.
339 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
340 * with max number of interrupters based on the xhci HCSPARAMS1.
341 * - num_online_cpus: maximum msi-x vectors per CPUs core.
342 * Add additional 1 vector to ensure always available interrupt.
343 */
344 xhci->msix_count = min(num_online_cpus() + 1,
345 HCS_MAX_INTRS(xhci->hcs_params1));
346
347 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
348 PCI_IRQ_MSIX);
349 if (ret < 0) {
350 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
351 "Failed to enable MSI-X");
352 return ret;
353 }
354
355 for (i = 0; i < xhci->msix_count; i++) {
356 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
357 "xhci_hcd", xhci_to_hcd(xhci));
358 if (ret)
359 goto disable_msix;
360 }
361
362 hcd->msix_enabled = 1;
363 return ret;
364
365disable_msix:
366 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
367 while (--i >= 0)
368 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
369 pci_free_irq_vectors(pdev);
370 return ret;
371}
372
373/* Free any IRQs and disable MSI-X */
374static void xhci_cleanup_msix(struct xhci_hcd *xhci)
375{
376 struct usb_hcd *hcd = xhci_to_hcd(xhci);
377 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
378
379 if (xhci->quirks & XHCI_PLAT)
380 return;
381
382 /* return if using legacy interrupt */
383 if (hcd->irq > 0)
384 return;
385
386 if (hcd->msix_enabled) {
387 int i;
388
389 for (i = 0; i < xhci->msix_count; i++)
390 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
391 } else {
392 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
393 }
394
395 pci_free_irq_vectors(pdev);
396 hcd->msix_enabled = 0;
397}
398
399static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
400{
401 struct usb_hcd *hcd = xhci_to_hcd(xhci);
402
403 if (hcd->msix_enabled) {
404 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
405 int i;
406
407 for (i = 0; i < xhci->msix_count; i++)
408 synchronize_irq(pci_irq_vector(pdev, i));
409 }
410}
411
412static int xhci_try_enable_msi(struct usb_hcd *hcd)
413{
414 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
415 struct pci_dev *pdev;
416 int ret;
417
418 /* The xhci platform device has set up IRQs through usb_add_hcd. */
419 if (xhci->quirks & XHCI_PLAT)
420 return 0;
421
422 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
423 /*
424 * Some Fresco Logic host controllers advertise MSI, but fail to
425 * generate interrupts. Don't even try to enable MSI.
426 */
427 if (xhci->quirks & XHCI_BROKEN_MSI)
428 goto legacy_irq;
429
430 /* unregister the legacy interrupt */
431 if (hcd->irq)
432 free_irq(hcd->irq, hcd);
433 hcd->irq = 0;
434
435 ret = xhci_setup_msix(xhci);
436 if (ret)
437 /* fall back to msi*/
438 ret = xhci_setup_msi(xhci);
439
440 if (!ret) {
441 hcd->msi_enabled = 1;
442 return 0;
443 }
444
445 if (!pdev->irq) {
446 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
447 return -EINVAL;
448 }
449
450 legacy_irq:
451 if (!strlen(hcd->irq_descr))
452 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
453 hcd->driver->description, hcd->self.busnum);
454
455 /* fall back to legacy interrupt*/
456 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
457 hcd->irq_descr, hcd);
458 if (ret) {
459 xhci_err(xhci, "request interrupt %d failed\n",
460 pdev->irq);
461 return ret;
462 }
463 hcd->irq = pdev->irq;
464 return 0;
465}
466
467#else
468
469static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
470{
471 return 0;
472}
473
474static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
475{
476}
477
478static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
479{
480}
481
482#endif
483
484static void compliance_mode_recovery(struct timer_list *t)
485{
486 struct xhci_hcd *xhci;
487 struct usb_hcd *hcd;
488 struct xhci_hub *rhub;
489 u32 temp;
490 int i;
491
492 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
493 rhub = &xhci->usb3_rhub;
494
495 for (i = 0; i < rhub->num_ports; i++) {
496 temp = readl(rhub->ports[i]->addr);
497 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
498 /*
499 * Compliance Mode Detected. Letting USB Core
500 * handle the Warm Reset
501 */
502 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
503 "Compliance mode detected->port %d",
504 i + 1);
505 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
506 "Attempting compliance mode recovery");
507 hcd = xhci->shared_hcd;
508
509 if (hcd->state == HC_STATE_SUSPENDED)
510 usb_hcd_resume_root_hub(hcd);
511
512 usb_hcd_poll_rh_status(hcd);
513 }
514 }
515
516 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
517 mod_timer(&xhci->comp_mode_recovery_timer,
518 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
519}
520
521/*
522 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
523 * that causes ports behind that hardware to enter compliance mode sometimes.
524 * The quirk creates a timer that polls every 2 seconds the link state of
525 * each host controller's port and recovers it by issuing a Warm reset
526 * if Compliance mode is detected, otherwise the port will become "dead" (no
527 * device connections or disconnections will be detected anymore). Becasue no
528 * status event is generated when entering compliance mode (per xhci spec),
529 * this quirk is needed on systems that have the failing hardware installed.
530 */
531static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
532{
533 xhci->port_status_u0 = 0;
534 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
535 0);
536 xhci->comp_mode_recovery_timer.expires = jiffies +
537 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
538
539 add_timer(&xhci->comp_mode_recovery_timer);
540 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
541 "Compliance mode recovery timer initialized");
542}
543
544/*
545 * This function identifies the systems that have installed the SN65LVPE502CP
546 * USB3.0 re-driver and that need the Compliance Mode Quirk.
547 * Systems:
548 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
549 */
550static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
551{
552 const char *dmi_product_name, *dmi_sys_vendor;
553
554 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
555 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
556 if (!dmi_product_name || !dmi_sys_vendor)
557 return false;
558
559 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
560 return false;
561
562 if (strstr(dmi_product_name, "Z420") ||
563 strstr(dmi_product_name, "Z620") ||
564 strstr(dmi_product_name, "Z820") ||
565 strstr(dmi_product_name, "Z1 Workstation"))
566 return true;
567
568 return false;
569}
570
571static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
572{
573 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
574}
575
576
577/*
578 * Initialize memory for HCD and xHC (one-time init).
579 *
580 * Program the PAGESIZE register, initialize the device context array, create
581 * device contexts (?), set up a command ring segment (or two?), create event
582 * ring (one for now).
583 */
584static int xhci_init(struct usb_hcd *hcd)
585{
586 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
587 int retval = 0;
588
589 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
590 spin_lock_init(&xhci->lock);
591 if (xhci->hci_version == 0x95 && link_quirk) {
592 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
593 "QUIRK: Not clearing Link TRB chain bits.");
594 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
595 } else {
596 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
597 "xHCI doesn't need link TRB QUIRK");
598 }
599
600 retval = xhci_mem_init(xhci, GFP_KERNEL);
601 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
602
603 /* Initializing Compliance Mode Recovery Data If Needed */
604 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
605 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
606 compliance_mode_recovery_timer_init(xhci);
607 }
608
609 return retval;
610}
611
612/*-------------------------------------------------------------------------*/
613
614
615static int xhci_run_finished(struct xhci_hcd *xhci)
616{
617 if (xhci_start(xhci)) {
618 xhci_halt(xhci);
619 return -ENODEV;
620 }
621 xhci->shared_hcd->state = HC_STATE_RUNNING;
622 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
623
624 if (xhci->quirks & XHCI_NEC_HOST)
625 xhci_ring_cmd_db(xhci);
626
627 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
628 "Finished xhci_run for USB3 roothub");
629 return 0;
630}
631
632/*
633 * Start the HC after it was halted.
634 *
635 * This function is called by the USB core when the HC driver is added.
636 * Its opposite is xhci_stop().
637 *
638 * xhci_init() must be called once before this function can be called.
639 * Reset the HC, enable device slot contexts, program DCBAAP, and
640 * set command ring pointer and event ring pointer.
641 *
642 * Setup MSI-X vectors and enable interrupts.
643 */
644int xhci_run(struct usb_hcd *hcd)
645{
646 u32 temp;
647 u64 temp_64;
648 int ret;
649 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
650
651 /* Start the xHCI host controller running only after the USB 2.0 roothub
652 * is setup.
653 */
654
655 hcd->uses_new_polling = 1;
656 if (!usb_hcd_is_primary_hcd(hcd))
657 return xhci_run_finished(xhci);
658
659 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
660
661 ret = xhci_try_enable_msi(hcd);
662 if (ret)
663 return ret;
664
665 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
666 temp_64 &= ~ERST_PTR_MASK;
667 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
668 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
669
670 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671 "// Set the interrupt modulation register");
672 temp = readl(&xhci->ir_set->irq_control);
673 temp &= ~ER_IRQ_INTERVAL_MASK;
674 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
675 writel(temp, &xhci->ir_set->irq_control);
676
677 /* Set the HCD state before we enable the irqs */
678 temp = readl(&xhci->op_regs->command);
679 temp |= (CMD_EIE);
680 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
681 "// Enable interrupts, cmd = 0x%x.", temp);
682 writel(temp, &xhci->op_regs->command);
683
684 temp = readl(&xhci->ir_set->irq_pending);
685 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
686 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
687 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
688 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
689
690 if (xhci->quirks & XHCI_NEC_HOST) {
691 struct xhci_command *command;
692
693 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
694 if (!command)
695 return -ENOMEM;
696
697 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
698 TRB_TYPE(TRB_NEC_GET_FW));
699 if (ret)
700 xhci_free_command(xhci, command);
701 }
702 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
703 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
704 "Finished xhci_run for USB2 roothub");
705
706 xhci_dbc_init(xhci);
707
708 xhci_debugfs_init(xhci);
709
710 return 0;
711}
712EXPORT_SYMBOL_GPL(xhci_run);
713
714/*
715 * Stop xHCI driver.
716 *
717 * This function is called by the USB core when the HC driver is removed.
718 * Its opposite is xhci_run().
719 *
720 * Disable device contexts, disable IRQs, and quiesce the HC.
721 * Reset the HC, finish any completed transactions, and cleanup memory.
722 */
723static void xhci_stop(struct usb_hcd *hcd)
724{
725 u32 temp;
726 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
727
728 mutex_lock(&xhci->mutex);
729
730 /* Only halt host and free memory after both hcds are removed */
731 if (!usb_hcd_is_primary_hcd(hcd)) {
732 mutex_unlock(&xhci->mutex);
733 return;
734 }
735
736 xhci_dbc_exit(xhci);
737
738 spin_lock_irq(&xhci->lock);
739 xhci->xhc_state |= XHCI_STATE_HALTED;
740 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
741 xhci_halt(xhci);
742 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
743 spin_unlock_irq(&xhci->lock);
744
745 xhci_cleanup_msix(xhci);
746
747 /* Deleting Compliance Mode Recovery Timer */
748 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
749 (!(xhci_all_ports_seen_u0(xhci)))) {
750 del_timer_sync(&xhci->comp_mode_recovery_timer);
751 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
752 "%s: compliance mode recovery timer deleted",
753 __func__);
754 }
755
756 if (xhci->quirks & XHCI_AMD_PLL_FIX)
757 usb_amd_dev_put();
758
759 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
760 "// Disabling event ring interrupts");
761 temp = readl(&xhci->op_regs->status);
762 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
763 temp = readl(&xhci->ir_set->irq_pending);
764 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
765
766 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
767 xhci_mem_cleanup(xhci);
768 xhci_debugfs_exit(xhci);
769 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
770 "xhci_stop completed - status = %x",
771 readl(&xhci->op_regs->status));
772 mutex_unlock(&xhci->mutex);
773}
774
775/*
776 * Shutdown HC (not bus-specific)
777 *
778 * This is called when the machine is rebooting or halting. We assume that the
779 * machine will be powered off, and the HC's internal state will be reset.
780 * Don't bother to free memory.
781 *
782 * This will only ever be called with the main usb_hcd (the USB3 roothub).
783 */
784void xhci_shutdown(struct usb_hcd *hcd)
785{
786 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
787
788 if (!xhci->op_regs)
789 return;
790
791 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
792 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
793
794 /* Don't poll the roothubs after shutdown. */
795 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
796 __func__, hcd->self.busnum);
797 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
798 del_timer_sync(&hcd->rh_timer);
799
800 if (xhci->shared_hcd) {
801 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
802 del_timer_sync(&xhci->shared_hcd->rh_timer);
803 }
804
805 spin_lock_irq(&xhci->lock);
806 xhci_halt(xhci);
807 /* Workaround for spurious wakeups at shutdown with HSW */
808 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
809 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
810 spin_unlock_irq(&xhci->lock);
811
812 xhci_cleanup_msix(xhci);
813
814 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
815 "xhci_shutdown completed - status = %x",
816 readl(&xhci->op_regs->status));
817}
818EXPORT_SYMBOL_GPL(xhci_shutdown);
819
820#ifdef CONFIG_PM
821static void xhci_save_registers(struct xhci_hcd *xhci)
822{
823 xhci->s3.command = readl(&xhci->op_regs->command);
824 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
825 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
826 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
827 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
828 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
829 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
830 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
831 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
832}
833
834static void xhci_restore_registers(struct xhci_hcd *xhci)
835{
836 writel(xhci->s3.command, &xhci->op_regs->command);
837 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
838 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
839 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
840 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
841 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
842 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
843 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
844 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
845}
846
847static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
848{
849 u64 val_64;
850
851 /* step 2: initialize command ring buffer */
852 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
853 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
854 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
855 xhci->cmd_ring->dequeue) &
856 (u64) ~CMD_RING_RSVD_BITS) |
857 xhci->cmd_ring->cycle_state;
858 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
859 "// Setting command ring address to 0x%llx",
860 (long unsigned long) val_64);
861 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
862}
863
864/*
865 * The whole command ring must be cleared to zero when we suspend the host.
866 *
867 * The host doesn't save the command ring pointer in the suspend well, so we
868 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
869 * aligned, because of the reserved bits in the command ring dequeue pointer
870 * register. Therefore, we can't just set the dequeue pointer back in the
871 * middle of the ring (TRBs are 16-byte aligned).
872 */
873static void xhci_clear_command_ring(struct xhci_hcd *xhci)
874{
875 struct xhci_ring *ring;
876 struct xhci_segment *seg;
877
878 ring = xhci->cmd_ring;
879 seg = ring->deq_seg;
880 do {
881 memset(seg->trbs, 0,
882 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
883 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
884 cpu_to_le32(~TRB_CYCLE);
885 seg = seg->next;
886 } while (seg != ring->deq_seg);
887
888 /* Reset the software enqueue and dequeue pointers */
889 ring->deq_seg = ring->first_seg;
890 ring->dequeue = ring->first_seg->trbs;
891 ring->enq_seg = ring->deq_seg;
892 ring->enqueue = ring->dequeue;
893
894 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
895 /*
896 * Ring is now zeroed, so the HW should look for change of ownership
897 * when the cycle bit is set to 1.
898 */
899 ring->cycle_state = 1;
900
901 /*
902 * Reset the hardware dequeue pointer.
903 * Yes, this will need to be re-written after resume, but we're paranoid
904 * and want to make sure the hardware doesn't access bogus memory
905 * because, say, the BIOS or an SMI started the host without changing
906 * the command ring pointers.
907 */
908 xhci_set_cmd_ring_deq(xhci);
909}
910
911/*
912 * Disable port wake bits if do_wakeup is not set.
913 *
914 * Also clear a possible internal port wake state left hanging for ports that
915 * detected termination but never successfully enumerated (trained to 0U).
916 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
917 * at enumeration clears this wake, force one here as well for unconnected ports
918 */
919
920static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
921 struct xhci_hub *rhub,
922 bool do_wakeup)
923{
924 unsigned long flags;
925 u32 t1, t2, portsc;
926 int i;
927
928 spin_lock_irqsave(&xhci->lock, flags);
929
930 for (i = 0; i < rhub->num_ports; i++) {
931 portsc = readl(rhub->ports[i]->addr);
932 t1 = xhci_port_state_to_neutral(portsc);
933 t2 = t1;
934
935 /* clear wake bits if do_wake is not set */
936 if (!do_wakeup)
937 t2 &= ~PORT_WAKE_BITS;
938
939 /* Don't touch csc bit if connected or connect change is set */
940 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
941 t2 |= PORT_CSC;
942
943 if (t1 != t2) {
944 writel(t2, rhub->ports[i]->addr);
945 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
946 rhub->hcd->self.busnum, i + 1, portsc, t2);
947 }
948 }
949 spin_unlock_irqrestore(&xhci->lock, flags);
950}
951
952static bool xhci_pending_portevent(struct xhci_hcd *xhci)
953{
954 struct xhci_port **ports;
955 int port_index;
956 u32 status;
957 u32 portsc;
958
959 status = readl(&xhci->op_regs->status);
960 if (status & STS_EINT)
961 return true;
962 /*
963 * Checking STS_EINT is not enough as there is a lag between a change
964 * bit being set and the Port Status Change Event that it generated
965 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
966 */
967
968 port_index = xhci->usb2_rhub.num_ports;
969 ports = xhci->usb2_rhub.ports;
970 while (port_index--) {
971 portsc = readl(ports[port_index]->addr);
972 if (portsc & PORT_CHANGE_MASK ||
973 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
974 return true;
975 }
976 port_index = xhci->usb3_rhub.num_ports;
977 ports = xhci->usb3_rhub.ports;
978 while (port_index--) {
979 portsc = readl(ports[port_index]->addr);
980 if (portsc & PORT_CHANGE_MASK ||
981 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
982 return true;
983 }
984 return false;
985}
986
987/*
988 * Stop HC (not bus-specific)
989 *
990 * This is called when the machine transition into S3/S4 mode.
991 *
992 */
993int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
994{
995 int rc = 0;
996 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
997 struct usb_hcd *hcd = xhci_to_hcd(xhci);
998 u32 command;
999 u32 res;
1000
1001 if (!hcd->state)
1002 return 0;
1003
1004 if (hcd->state != HC_STATE_SUSPENDED ||
1005 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
1006 return -EINVAL;
1007
1008 /* Clear root port wake on bits if wakeup not allowed. */
1009 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1010 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1011
1012 if (!HCD_HW_ACCESSIBLE(hcd))
1013 return 0;
1014
1015 xhci_dbc_suspend(xhci);
1016
1017 /* Don't poll the roothubs on bus suspend. */
1018 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
1019 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1020 del_timer_sync(&hcd->rh_timer);
1021 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1022 del_timer_sync(&xhci->shared_hcd->rh_timer);
1023
1024 if (xhci->quirks & XHCI_SUSPEND_DELAY)
1025 usleep_range(1000, 1500);
1026
1027 spin_lock_irq(&xhci->lock);
1028 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1029 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1030 /* step 1: stop endpoint */
1031 /* skipped assuming that port suspend has done */
1032
1033 /* step 2: clear Run/Stop bit */
1034 command = readl(&xhci->op_regs->command);
1035 command &= ~CMD_RUN;
1036 writel(command, &xhci->op_regs->command);
1037
1038 /* Some chips from Fresco Logic need an extraordinary delay */
1039 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1040
1041 if (xhci_handshake(&xhci->op_regs->status,
1042 STS_HALT, STS_HALT, delay)) {
1043 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1044 spin_unlock_irq(&xhci->lock);
1045 return -ETIMEDOUT;
1046 }
1047 xhci_clear_command_ring(xhci);
1048
1049 /* step 3: save registers */
1050 xhci_save_registers(xhci);
1051
1052 /* step 4: set CSS flag */
1053 command = readl(&xhci->op_regs->command);
1054 command |= CMD_CSS;
1055 writel(command, &xhci->op_regs->command);
1056 xhci->broken_suspend = 0;
1057 if (xhci_handshake(&xhci->op_regs->status,
1058 STS_SAVE, 0, 20 * 1000)) {
1059 /*
1060 * AMD SNPS xHC 3.0 occasionally does not clear the
1061 * SSS bit of USBSTS and when driver tries to poll
1062 * to see if the xHC clears BIT(8) which never happens
1063 * and driver assumes that controller is not responding
1064 * and times out. To workaround this, its good to check
1065 * if SRE and HCE bits are not set (as per xhci
1066 * Section 5.4.2) and bypass the timeout.
1067 */
1068 res = readl(&xhci->op_regs->status);
1069 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1070 (((res & STS_SRE) == 0) &&
1071 ((res & STS_HCE) == 0))) {
1072 xhci->broken_suspend = 1;
1073 } else {
1074 xhci_warn(xhci, "WARN: xHC save state timeout\n");
1075 spin_unlock_irq(&xhci->lock);
1076 return -ETIMEDOUT;
1077 }
1078 }
1079 spin_unlock_irq(&xhci->lock);
1080
1081 /*
1082 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1083 * is about to be suspended.
1084 */
1085 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1086 (!(xhci_all_ports_seen_u0(xhci)))) {
1087 del_timer_sync(&xhci->comp_mode_recovery_timer);
1088 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1089 "%s: compliance mode recovery timer deleted",
1090 __func__);
1091 }
1092
1093 /* step 5: remove core well power */
1094 /* synchronize irq when using MSI-X */
1095 xhci_msix_sync_irqs(xhci);
1096
1097 return rc;
1098}
1099EXPORT_SYMBOL_GPL(xhci_suspend);
1100
1101/*
1102 * start xHC (not bus-specific)
1103 *
1104 * This is called when the machine transition from S3/S4 mode.
1105 *
1106 */
1107int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1108{
1109 u32 command, temp = 0;
1110 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1111 struct usb_hcd *secondary_hcd;
1112 int retval = 0;
1113 bool comp_timer_running = false;
1114 bool pending_portevent = false;
1115 bool reinit_xhc = false;
1116
1117 if (!hcd->state)
1118 return 0;
1119
1120 /* Wait a bit if either of the roothubs need to settle from the
1121 * transition into bus suspend.
1122 */
1123
1124 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1125 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1126 msleep(100);
1127
1128 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1129 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1130
1131 spin_lock_irq(&xhci->lock);
1132
1133 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1134 reinit_xhc = true;
1135
1136 if (!reinit_xhc) {
1137 /*
1138 * Some controllers might lose power during suspend, so wait
1139 * for controller not ready bit to clear, just as in xHC init.
1140 */
1141 retval = xhci_handshake(&xhci->op_regs->status,
1142 STS_CNR, 0, 10 * 1000 * 1000);
1143 if (retval) {
1144 xhci_warn(xhci, "Controller not ready at resume %d\n",
1145 retval);
1146 spin_unlock_irq(&xhci->lock);
1147 return retval;
1148 }
1149 /* step 1: restore register */
1150 xhci_restore_registers(xhci);
1151 /* step 2: initialize command ring buffer */
1152 xhci_set_cmd_ring_deq(xhci);
1153 /* step 3: restore state and start state*/
1154 /* step 3: set CRS flag */
1155 command = readl(&xhci->op_regs->command);
1156 command |= CMD_CRS;
1157 writel(command, &xhci->op_regs->command);
1158 /*
1159 * Some controllers take up to 55+ ms to complete the controller
1160 * restore so setting the timeout to 100ms. Xhci specification
1161 * doesn't mention any timeout value.
1162 */
1163 if (xhci_handshake(&xhci->op_regs->status,
1164 STS_RESTORE, 0, 100 * 1000)) {
1165 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1166 spin_unlock_irq(&xhci->lock);
1167 return -ETIMEDOUT;
1168 }
1169 }
1170
1171 temp = readl(&xhci->op_regs->status);
1172
1173 /* re-initialize the HC on Restore Error, or Host Controller Error */
1174 if (temp & (STS_SRE | STS_HCE)) {
1175 reinit_xhc = true;
1176 if (!xhci->broken_suspend)
1177 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1178 }
1179
1180 if (reinit_xhc) {
1181 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1182 !(xhci_all_ports_seen_u0(xhci))) {
1183 del_timer_sync(&xhci->comp_mode_recovery_timer);
1184 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1185 "Compliance Mode Recovery Timer deleted!");
1186 }
1187
1188 /* Let the USB core know _both_ roothubs lost power. */
1189 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1190 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1191
1192 xhci_dbg(xhci, "Stop HCD\n");
1193 xhci_halt(xhci);
1194 xhci_zero_64b_regs(xhci);
1195 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1196 spin_unlock_irq(&xhci->lock);
1197 if (retval)
1198 return retval;
1199 xhci_cleanup_msix(xhci);
1200
1201 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1202 temp = readl(&xhci->op_regs->status);
1203 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1204 temp = readl(&xhci->ir_set->irq_pending);
1205 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1206
1207 xhci_dbg(xhci, "cleaning up memory\n");
1208 xhci_mem_cleanup(xhci);
1209 xhci_debugfs_exit(xhci);
1210 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1211 readl(&xhci->op_regs->status));
1212
1213 /* USB core calls the PCI reinit and start functions twice:
1214 * first with the primary HCD, and then with the secondary HCD.
1215 * If we don't do the same, the host will never be started.
1216 */
1217 if (!usb_hcd_is_primary_hcd(hcd))
1218 secondary_hcd = hcd;
1219 else
1220 secondary_hcd = xhci->shared_hcd;
1221
1222 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1223 retval = xhci_init(hcd->primary_hcd);
1224 if (retval)
1225 return retval;
1226 comp_timer_running = true;
1227
1228 xhci_dbg(xhci, "Start the primary HCD\n");
1229 retval = xhci_run(hcd->primary_hcd);
1230 if (!retval) {
1231 xhci_dbg(xhci, "Start the secondary HCD\n");
1232 retval = xhci_run(secondary_hcd);
1233 }
1234 hcd->state = HC_STATE_SUSPENDED;
1235 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1236 goto done;
1237 }
1238
1239 /* step 4: set Run/Stop bit */
1240 command = readl(&xhci->op_regs->command);
1241 command |= CMD_RUN;
1242 writel(command, &xhci->op_regs->command);
1243 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1244 0, 250 * 1000);
1245
1246 /* step 5: walk topology and initialize portsc,
1247 * portpmsc and portli
1248 */
1249 /* this is done in bus_resume */
1250
1251 /* step 6: restart each of the previously
1252 * Running endpoints by ringing their doorbells
1253 */
1254
1255 spin_unlock_irq(&xhci->lock);
1256
1257 xhci_dbc_resume(xhci);
1258
1259 done:
1260 if (retval == 0) {
1261 /*
1262 * Resume roothubs only if there are pending events.
1263 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1264 * the first wake signalling failed, give it that chance.
1265 */
1266 pending_portevent = xhci_pending_portevent(xhci);
1267 if (!pending_portevent) {
1268 msleep(120);
1269 pending_portevent = xhci_pending_portevent(xhci);
1270 }
1271
1272 if (pending_portevent) {
1273 usb_hcd_resume_root_hub(xhci->shared_hcd);
1274 usb_hcd_resume_root_hub(hcd);
1275 }
1276 }
1277 /*
1278 * If system is subject to the Quirk, Compliance Mode Timer needs to
1279 * be re-initialized Always after a system resume. Ports are subject
1280 * to suffer the Compliance Mode issue again. It doesn't matter if
1281 * ports have entered previously to U0 before system's suspension.
1282 */
1283 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1284 compliance_mode_recovery_timer_init(xhci);
1285
1286 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1287 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1288
1289 /* Re-enable port polling. */
1290 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1291 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1292 usb_hcd_poll_rh_status(xhci->shared_hcd);
1293 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1294 usb_hcd_poll_rh_status(hcd);
1295
1296 return retval;
1297}
1298EXPORT_SYMBOL_GPL(xhci_resume);
1299#endif /* CONFIG_PM */
1300
1301/*-------------------------------------------------------------------------*/
1302
1303/*
1304 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1305 * we'll copy the actual data into the TRB address register. This is limited to
1306 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1307 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1308 */
1309static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1310 gfp_t mem_flags)
1311{
1312 if (xhci_urb_suitable_for_idt(urb))
1313 return 0;
1314
1315 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1316}
1317
1318/**
1319 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1320 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1321 * value to right shift 1 for the bitmask.
1322 *
1323 * Index = (epnum * 2) + direction - 1,
1324 * where direction = 0 for OUT, 1 for IN.
1325 * For control endpoints, the IN index is used (OUT index is unused), so
1326 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1327 */
1328unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1329{
1330 unsigned int index;
1331 if (usb_endpoint_xfer_control(desc))
1332 index = (unsigned int) (usb_endpoint_num(desc)*2);
1333 else
1334 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1335 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1336 return index;
1337}
1338EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1339
1340/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1341 * address from the XHCI endpoint index.
1342 */
1343unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1344{
1345 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1346 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1347 return direction | number;
1348}
1349
1350/* Find the flag for this endpoint (for use in the control context). Use the
1351 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1352 * bit 1, etc.
1353 */
1354static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1355{
1356 return 1 << (xhci_get_endpoint_index(desc) + 1);
1357}
1358
1359/* Find the flag for this endpoint (for use in the control context). Use the
1360 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1361 * bit 1, etc.
1362 */
1363static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1364{
1365 return 1 << (ep_index + 1);
1366}
1367
1368/* Compute the last valid endpoint context index. Basically, this is the
1369 * endpoint index plus one. For slot contexts with more than valid endpoint,
1370 * we find the most significant bit set in the added contexts flags.
1371 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1372 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1373 */
1374unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1375{
1376 return fls(added_ctxs) - 1;
1377}
1378
1379/* Returns 1 if the arguments are OK;
1380 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1381 */
1382static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1383 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1384 const char *func) {
1385 struct xhci_hcd *xhci;
1386 struct xhci_virt_device *virt_dev;
1387
1388 if (!hcd || (check_ep && !ep) || !udev) {
1389 pr_debug("xHCI %s called with invalid args\n", func);
1390 return -EINVAL;
1391 }
1392 if (!udev->parent) {
1393 pr_debug("xHCI %s called for root hub\n", func);
1394 return 0;
1395 }
1396
1397 xhci = hcd_to_xhci(hcd);
1398 if (check_virt_dev) {
1399 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1400 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1401 func);
1402 return -EINVAL;
1403 }
1404
1405 virt_dev = xhci->devs[udev->slot_id];
1406 if (virt_dev->udev != udev) {
1407 xhci_dbg(xhci, "xHCI %s called with udev and "
1408 "virt_dev does not match\n", func);
1409 return -EINVAL;
1410 }
1411 }
1412
1413 if (xhci->xhc_state & XHCI_STATE_HALTED)
1414 return -ENODEV;
1415
1416 return 1;
1417}
1418
1419static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1420 struct usb_device *udev, struct xhci_command *command,
1421 bool ctx_change, bool must_succeed);
1422
1423/*
1424 * Full speed devices may have a max packet size greater than 8 bytes, but the
1425 * USB core doesn't know that until it reads the first 8 bytes of the
1426 * descriptor. If the usb_device's max packet size changes after that point,
1427 * we need to issue an evaluate context command and wait on it.
1428 */
1429static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1430 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1431{
1432 struct xhci_container_ctx *out_ctx;
1433 struct xhci_input_control_ctx *ctrl_ctx;
1434 struct xhci_ep_ctx *ep_ctx;
1435 struct xhci_command *command;
1436 int max_packet_size;
1437 int hw_max_packet_size;
1438 int ret = 0;
1439
1440 out_ctx = xhci->devs[slot_id]->out_ctx;
1441 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1442 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1443 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1444 if (hw_max_packet_size != max_packet_size) {
1445 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1446 "Max Packet Size for ep 0 changed.");
1447 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1448 "Max packet size in usb_device = %d",
1449 max_packet_size);
1450 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1451 "Max packet size in xHCI HW = %d",
1452 hw_max_packet_size);
1453 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1454 "Issuing evaluate context command.");
1455
1456 /* Set up the input context flags for the command */
1457 /* FIXME: This won't work if a non-default control endpoint
1458 * changes max packet sizes.
1459 */
1460
1461 command = xhci_alloc_command(xhci, true, mem_flags);
1462 if (!command)
1463 return -ENOMEM;
1464
1465 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1466 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1467 if (!ctrl_ctx) {
1468 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1469 __func__);
1470 ret = -ENOMEM;
1471 goto command_cleanup;
1472 }
1473 /* Set up the modified control endpoint 0 */
1474 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1475 xhci->devs[slot_id]->out_ctx, ep_index);
1476
1477 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1478 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1479 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1480 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1481
1482 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1483 ctrl_ctx->drop_flags = 0;
1484
1485 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1486 true, false);
1487
1488 /* Clean up the input context for later use by bandwidth
1489 * functions.
1490 */
1491 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1492command_cleanup:
1493 kfree(command->completion);
1494 kfree(command);
1495 }
1496 return ret;
1497}
1498
1499/*
1500 * non-error returns are a promise to giveback() the urb later
1501 * we drop ownership so next owner (or urb unlink) can get it
1502 */
1503static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1504{
1505 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1506 unsigned long flags;
1507 int ret = 0;
1508 unsigned int slot_id, ep_index;
1509 unsigned int *ep_state;
1510 struct urb_priv *urb_priv;
1511 int num_tds;
1512
1513 if (!urb)
1514 return -EINVAL;
1515 ret = xhci_check_args(hcd, urb->dev, urb->ep,
1516 true, true, __func__);
1517 if (ret <= 0)
1518 return ret ? ret : -EINVAL;
1519
1520 slot_id = urb->dev->slot_id;
1521 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1522 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1523
1524 if (!HCD_HW_ACCESSIBLE(hcd)) {
1525 if (!in_interrupt())
1526 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1527 return -ESHUTDOWN;
1528 }
1529 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1530 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1531 return -ENODEV;
1532 }
1533
1534 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1535 num_tds = urb->number_of_packets;
1536 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1537 urb->transfer_buffer_length > 0 &&
1538 urb->transfer_flags & URB_ZERO_PACKET &&
1539 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1540 num_tds = 2;
1541 else
1542 num_tds = 1;
1543
1544 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1545 if (!urb_priv)
1546 return -ENOMEM;
1547
1548 urb_priv->num_tds = num_tds;
1549 urb_priv->num_tds_done = 0;
1550 urb->hcpriv = urb_priv;
1551
1552 trace_xhci_urb_enqueue(urb);
1553
1554 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1555 /* Check to see if the max packet size for the default control
1556 * endpoint changed during FS device enumeration
1557 */
1558 if (urb->dev->speed == USB_SPEED_FULL) {
1559 ret = xhci_check_maxpacket(xhci, slot_id,
1560 ep_index, urb, mem_flags);
1561 if (ret < 0) {
1562 xhci_urb_free_priv(urb_priv);
1563 urb->hcpriv = NULL;
1564 return ret;
1565 }
1566 }
1567 }
1568
1569 spin_lock_irqsave(&xhci->lock, flags);
1570
1571 if (xhci->xhc_state & XHCI_STATE_DYING) {
1572 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1573 urb->ep->desc.bEndpointAddress, urb);
1574 ret = -ESHUTDOWN;
1575 goto free_priv;
1576 }
1577 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1578 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1579 *ep_state);
1580 ret = -EINVAL;
1581 goto free_priv;
1582 }
1583 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1584 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1585 ret = -EINVAL;
1586 goto free_priv;
1587 }
1588
1589 switch (usb_endpoint_type(&urb->ep->desc)) {
1590
1591 case USB_ENDPOINT_XFER_CONTROL:
1592 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1593 slot_id, ep_index);
1594 break;
1595 case USB_ENDPOINT_XFER_BULK:
1596 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1597 slot_id, ep_index);
1598 break;
1599 case USB_ENDPOINT_XFER_INT:
1600 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1601 slot_id, ep_index);
1602 break;
1603 case USB_ENDPOINT_XFER_ISOC:
1604 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1605 slot_id, ep_index);
1606 }
1607
1608 if (ret) {
1609free_priv:
1610 xhci_urb_free_priv(urb_priv);
1611 urb->hcpriv = NULL;
1612 }
1613 spin_unlock_irqrestore(&xhci->lock, flags);
1614 return ret;
1615}
1616
1617/*
1618 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1619 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1620 * should pick up where it left off in the TD, unless a Set Transfer Ring
1621 * Dequeue Pointer is issued.
1622 *
1623 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1624 * the ring. Since the ring is a contiguous structure, they can't be physically
1625 * removed. Instead, there are two options:
1626 *
1627 * 1) If the HC is in the middle of processing the URB to be canceled, we
1628 * simply move the ring's dequeue pointer past those TRBs using the Set
1629 * Transfer Ring Dequeue Pointer command. This will be the common case,
1630 * when drivers timeout on the last submitted URB and attempt to cancel.
1631 *
1632 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1633 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1634 * HC will need to invalidate the any TRBs it has cached after the stop
1635 * endpoint command, as noted in the xHCI 0.95 errata.
1636 *
1637 * 3) The TD may have completed by the time the Stop Endpoint Command
1638 * completes, so software needs to handle that case too.
1639 *
1640 * This function should protect against the TD enqueueing code ringing the
1641 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1642 * It also needs to account for multiple cancellations on happening at the same
1643 * time for the same endpoint.
1644 *
1645 * Note that this function can be called in any context, or so says
1646 * usb_hcd_unlink_urb()
1647 */
1648static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1649{
1650 unsigned long flags;
1651 int ret, i;
1652 u32 temp;
1653 struct xhci_hcd *xhci;
1654 struct urb_priv *urb_priv;
1655 struct xhci_td *td;
1656 unsigned int ep_index;
1657 struct xhci_ring *ep_ring;
1658 struct xhci_virt_ep *ep;
1659 struct xhci_command *command;
1660 struct xhci_virt_device *vdev;
1661
1662 xhci = hcd_to_xhci(hcd);
1663 spin_lock_irqsave(&xhci->lock, flags);
1664
1665 trace_xhci_urb_dequeue(urb);
1666
1667 /* Make sure the URB hasn't completed or been unlinked already */
1668 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1669 if (ret)
1670 goto done;
1671
1672 /* give back URB now if we can't queue it for cancel */
1673 vdev = xhci->devs[urb->dev->slot_id];
1674 urb_priv = urb->hcpriv;
1675 if (!vdev || !urb_priv)
1676 goto err_giveback;
1677
1678 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1679 ep = &vdev->eps[ep_index];
1680 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1681 if (!ep || !ep_ring)
1682 goto err_giveback;
1683
1684 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1685 temp = readl(&xhci->op_regs->status);
1686 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1687 xhci_hc_died(xhci);
1688 goto done;
1689 }
1690
1691 /*
1692 * check ring is not re-allocated since URB was enqueued. If it is, then
1693 * make sure none of the ring related pointers in this URB private data
1694 * are touched, such as td_list, otherwise we overwrite freed data
1695 */
1696 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1697 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1698 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1699 td = &urb_priv->td[i];
1700 if (!list_empty(&td->cancelled_td_list))
1701 list_del_init(&td->cancelled_td_list);
1702 }
1703 goto err_giveback;
1704 }
1705
1706 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1707 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1708 "HC halted, freeing TD manually.");
1709 for (i = urb_priv->num_tds_done;
1710 i < urb_priv->num_tds;
1711 i++) {
1712 td = &urb_priv->td[i];
1713 if (!list_empty(&td->td_list))
1714 list_del_init(&td->td_list);
1715 if (!list_empty(&td->cancelled_td_list))
1716 list_del_init(&td->cancelled_td_list);
1717 }
1718 goto err_giveback;
1719 }
1720
1721 i = urb_priv->num_tds_done;
1722 if (i < urb_priv->num_tds)
1723 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1724 "Cancel URB %p, dev %s, ep 0x%x, "
1725 "starting at offset 0x%llx",
1726 urb, urb->dev->devpath,
1727 urb->ep->desc.bEndpointAddress,
1728 (unsigned long long) xhci_trb_virt_to_dma(
1729 urb_priv->td[i].start_seg,
1730 urb_priv->td[i].first_trb));
1731
1732 for (; i < urb_priv->num_tds; i++) {
1733 td = &urb_priv->td[i];
1734 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1735 }
1736
1737 /* Queue a stop endpoint command, but only if this is
1738 * the first cancellation to be handled.
1739 */
1740 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1741 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1742 if (!command) {
1743 ret = -ENOMEM;
1744 goto done;
1745 }
1746 ep->ep_state |= EP_STOP_CMD_PENDING;
1747 ep->stop_cmd_timer.expires = jiffies +
1748 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1749 add_timer(&ep->stop_cmd_timer);
1750 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1751 ep_index, 0);
1752 xhci_ring_cmd_db(xhci);
1753 }
1754done:
1755 spin_unlock_irqrestore(&xhci->lock, flags);
1756 return ret;
1757
1758err_giveback:
1759 if (urb_priv)
1760 xhci_urb_free_priv(urb_priv);
1761 usb_hcd_unlink_urb_from_ep(hcd, urb);
1762 spin_unlock_irqrestore(&xhci->lock, flags);
1763 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1764 return ret;
1765}
1766
1767/* Drop an endpoint from a new bandwidth configuration for this device.
1768 * Only one call to this function is allowed per endpoint before
1769 * check_bandwidth() or reset_bandwidth() must be called.
1770 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1771 * add the endpoint to the schedule with possibly new parameters denoted by a
1772 * different endpoint descriptor in usb_host_endpoint.
1773 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1774 * not allowed.
1775 *
1776 * The USB core will not allow URBs to be queued to an endpoint that is being
1777 * disabled, so there's no need for mutual exclusion to protect
1778 * the xhci->devs[slot_id] structure.
1779 */
1780int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1781 struct usb_host_endpoint *ep)
1782{
1783 struct xhci_hcd *xhci;
1784 struct xhci_container_ctx *in_ctx, *out_ctx;
1785 struct xhci_input_control_ctx *ctrl_ctx;
1786 unsigned int ep_index;
1787 struct xhci_ep_ctx *ep_ctx;
1788 u32 drop_flag;
1789 u32 new_add_flags, new_drop_flags;
1790 int ret;
1791
1792 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1793 if (ret <= 0)
1794 return ret;
1795 xhci = hcd_to_xhci(hcd);
1796 if (xhci->xhc_state & XHCI_STATE_DYING)
1797 return -ENODEV;
1798
1799 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1800 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1801 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1802 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1803 __func__, drop_flag);
1804 return 0;
1805 }
1806
1807 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1808 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1809 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1810 if (!ctrl_ctx) {
1811 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1812 __func__);
1813 return 0;
1814 }
1815
1816 ep_index = xhci_get_endpoint_index(&ep->desc);
1817 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1818 /* If the HC already knows the endpoint is disabled,
1819 * or the HCD has noted it is disabled, ignore this request
1820 */
1821 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1822 le32_to_cpu(ctrl_ctx->drop_flags) &
1823 xhci_get_endpoint_flag(&ep->desc)) {
1824 /* Do not warn when called after a usb_device_reset */
1825 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1826 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1827 __func__, ep);
1828 return 0;
1829 }
1830
1831 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1832 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1833
1834 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1835 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1836
1837 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1838
1839 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1840
1841 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1842 (unsigned int) ep->desc.bEndpointAddress,
1843 udev->slot_id,
1844 (unsigned int) new_drop_flags,
1845 (unsigned int) new_add_flags);
1846 return 0;
1847}
1848EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1849
1850/* Add an endpoint to a new possible bandwidth configuration for this device.
1851 * Only one call to this function is allowed per endpoint before
1852 * check_bandwidth() or reset_bandwidth() must be called.
1853 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1854 * add the endpoint to the schedule with possibly new parameters denoted by a
1855 * different endpoint descriptor in usb_host_endpoint.
1856 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1857 * not allowed.
1858 *
1859 * The USB core will not allow URBs to be queued to an endpoint until the
1860 * configuration or alt setting is installed in the device, so there's no need
1861 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1862 */
1863int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1864 struct usb_host_endpoint *ep)
1865{
1866 struct xhci_hcd *xhci;
1867 struct xhci_container_ctx *in_ctx;
1868 unsigned int ep_index;
1869 struct xhci_input_control_ctx *ctrl_ctx;
1870 struct xhci_ep_ctx *ep_ctx;
1871 u32 added_ctxs;
1872 u32 new_add_flags, new_drop_flags;
1873 struct xhci_virt_device *virt_dev;
1874 int ret = 0;
1875
1876 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1877 if (ret <= 0) {
1878 /* So we won't queue a reset ep command for a root hub */
1879 ep->hcpriv = NULL;
1880 return ret;
1881 }
1882 xhci = hcd_to_xhci(hcd);
1883 if (xhci->xhc_state & XHCI_STATE_DYING)
1884 return -ENODEV;
1885
1886 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1887 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1888 /* FIXME when we have to issue an evaluate endpoint command to
1889 * deal with ep0 max packet size changing once we get the
1890 * descriptors
1891 */
1892 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1893 __func__, added_ctxs);
1894 return 0;
1895 }
1896
1897 virt_dev = xhci->devs[udev->slot_id];
1898 in_ctx = virt_dev->in_ctx;
1899 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1900 if (!ctrl_ctx) {
1901 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1902 __func__);
1903 return 0;
1904 }
1905
1906 ep_index = xhci_get_endpoint_index(&ep->desc);
1907 /* If this endpoint is already in use, and the upper layers are trying
1908 * to add it again without dropping it, reject the addition.
1909 */
1910 if (virt_dev->eps[ep_index].ring &&
1911 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1912 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1913 "without dropping it.\n",
1914 (unsigned int) ep->desc.bEndpointAddress);
1915 return -EINVAL;
1916 }
1917
1918 /* If the HCD has already noted the endpoint is enabled,
1919 * ignore this request.
1920 */
1921 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1922 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1923 __func__, ep);
1924 return 0;
1925 }
1926
1927 /*
1928 * Configuration and alternate setting changes must be done in
1929 * process context, not interrupt context (or so documenation
1930 * for usb_set_interface() and usb_set_configuration() claim).
1931 */
1932 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1933 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1934 __func__, ep->desc.bEndpointAddress);
1935 return -ENOMEM;
1936 }
1937
1938 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1939 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1940
1941 /* If xhci_endpoint_disable() was called for this endpoint, but the
1942 * xHC hasn't been notified yet through the check_bandwidth() call,
1943 * this re-adds a new state for the endpoint from the new endpoint
1944 * descriptors. We must drop and re-add this endpoint, so we leave the
1945 * drop flags alone.
1946 */
1947 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1948
1949 /* Store the usb_device pointer for later use */
1950 ep->hcpriv = udev;
1951
1952 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1953 trace_xhci_add_endpoint(ep_ctx);
1954
1955 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1956 (unsigned int) ep->desc.bEndpointAddress,
1957 udev->slot_id,
1958 (unsigned int) new_drop_flags,
1959 (unsigned int) new_add_flags);
1960 return 0;
1961}
1962EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1963
1964static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1965{
1966 struct xhci_input_control_ctx *ctrl_ctx;
1967 struct xhci_ep_ctx *ep_ctx;
1968 struct xhci_slot_ctx *slot_ctx;
1969 int i;
1970
1971 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1972 if (!ctrl_ctx) {
1973 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1974 __func__);
1975 return;
1976 }
1977
1978 /* When a device's add flag and drop flag are zero, any subsequent
1979 * configure endpoint command will leave that endpoint's state
1980 * untouched. Make sure we don't leave any old state in the input
1981 * endpoint contexts.
1982 */
1983 ctrl_ctx->drop_flags = 0;
1984 ctrl_ctx->add_flags = 0;
1985 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1986 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1987 /* Endpoint 0 is always valid */
1988 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1989 for (i = 1; i < 31; i++) {
1990 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1991 ep_ctx->ep_info = 0;
1992 ep_ctx->ep_info2 = 0;
1993 ep_ctx->deq = 0;
1994 ep_ctx->tx_info = 0;
1995 }
1996}
1997
1998static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1999 struct usb_device *udev, u32 *cmd_status)
2000{
2001 int ret;
2002
2003 switch (*cmd_status) {
2004 case COMP_COMMAND_ABORTED:
2005 case COMP_COMMAND_RING_STOPPED:
2006 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2007 ret = -ETIME;
2008 break;
2009 case COMP_RESOURCE_ERROR:
2010 dev_warn(&udev->dev,
2011 "Not enough host controller resources for new device state.\n");
2012 ret = -ENOMEM;
2013 /* FIXME: can we allocate more resources for the HC? */
2014 break;
2015 case COMP_BANDWIDTH_ERROR:
2016 case COMP_SECONDARY_BANDWIDTH_ERROR:
2017 dev_warn(&udev->dev,
2018 "Not enough bandwidth for new device state.\n");
2019 ret = -ENOSPC;
2020 /* FIXME: can we go back to the old state? */
2021 break;
2022 case COMP_TRB_ERROR:
2023 /* the HCD set up something wrong */
2024 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2025 "add flag = 1, "
2026 "and endpoint is not disabled.\n");
2027 ret = -EINVAL;
2028 break;
2029 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2030 dev_warn(&udev->dev,
2031 "ERROR: Incompatible device for endpoint configure command.\n");
2032 ret = -ENODEV;
2033 break;
2034 case COMP_SUCCESS:
2035 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2036 "Successful Endpoint Configure command");
2037 ret = 0;
2038 break;
2039 default:
2040 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2041 *cmd_status);
2042 ret = -EINVAL;
2043 break;
2044 }
2045 return ret;
2046}
2047
2048static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2049 struct usb_device *udev, u32 *cmd_status)
2050{
2051 int ret;
2052
2053 switch (*cmd_status) {
2054 case COMP_COMMAND_ABORTED:
2055 case COMP_COMMAND_RING_STOPPED:
2056 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2057 ret = -ETIME;
2058 break;
2059 case COMP_PARAMETER_ERROR:
2060 dev_warn(&udev->dev,
2061 "WARN: xHCI driver setup invalid evaluate context command.\n");
2062 ret = -EINVAL;
2063 break;
2064 case COMP_SLOT_NOT_ENABLED_ERROR:
2065 dev_warn(&udev->dev,
2066 "WARN: slot not enabled for evaluate context command.\n");
2067 ret = -EINVAL;
2068 break;
2069 case COMP_CONTEXT_STATE_ERROR:
2070 dev_warn(&udev->dev,
2071 "WARN: invalid context state for evaluate context command.\n");
2072 ret = -EINVAL;
2073 break;
2074 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2075 dev_warn(&udev->dev,
2076 "ERROR: Incompatible device for evaluate context command.\n");
2077 ret = -ENODEV;
2078 break;
2079 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2080 /* Max Exit Latency too large error */
2081 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2082 ret = -EINVAL;
2083 break;
2084 case COMP_SUCCESS:
2085 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2086 "Successful evaluate context command");
2087 ret = 0;
2088 break;
2089 default:
2090 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2091 *cmd_status);
2092 ret = -EINVAL;
2093 break;
2094 }
2095 return ret;
2096}
2097
2098static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2099 struct xhci_input_control_ctx *ctrl_ctx)
2100{
2101 u32 valid_add_flags;
2102 u32 valid_drop_flags;
2103
2104 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2105 * (bit 1). The default control endpoint is added during the Address
2106 * Device command and is never removed until the slot is disabled.
2107 */
2108 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2109 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2110
2111 /* Use hweight32 to count the number of ones in the add flags, or
2112 * number of endpoints added. Don't count endpoints that are changed
2113 * (both added and dropped).
2114 */
2115 return hweight32(valid_add_flags) -
2116 hweight32(valid_add_flags & valid_drop_flags);
2117}
2118
2119static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2120 struct xhci_input_control_ctx *ctrl_ctx)
2121{
2122 u32 valid_add_flags;
2123 u32 valid_drop_flags;
2124
2125 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2126 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2127
2128 return hweight32(valid_drop_flags) -
2129 hweight32(valid_add_flags & valid_drop_flags);
2130}
2131
2132/*
2133 * We need to reserve the new number of endpoints before the configure endpoint
2134 * command completes. We can't subtract the dropped endpoints from the number
2135 * of active endpoints until the command completes because we can oversubscribe
2136 * the host in this case:
2137 *
2138 * - the first configure endpoint command drops more endpoints than it adds
2139 * - a second configure endpoint command that adds more endpoints is queued
2140 * - the first configure endpoint command fails, so the config is unchanged
2141 * - the second command may succeed, even though there isn't enough resources
2142 *
2143 * Must be called with xhci->lock held.
2144 */
2145static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2146 struct xhci_input_control_ctx *ctrl_ctx)
2147{
2148 u32 added_eps;
2149
2150 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2151 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2152 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2153 "Not enough ep ctxs: "
2154 "%u active, need to add %u, limit is %u.",
2155 xhci->num_active_eps, added_eps,
2156 xhci->limit_active_eps);
2157 return -ENOMEM;
2158 }
2159 xhci->num_active_eps += added_eps;
2160 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2161 "Adding %u ep ctxs, %u now active.", added_eps,
2162 xhci->num_active_eps);
2163 return 0;
2164}
2165
2166/*
2167 * The configure endpoint was failed by the xHC for some other reason, so we
2168 * need to revert the resources that failed configuration would have used.
2169 *
2170 * Must be called with xhci->lock held.
2171 */
2172static void xhci_free_host_resources(struct xhci_hcd *xhci,
2173 struct xhci_input_control_ctx *ctrl_ctx)
2174{
2175 u32 num_failed_eps;
2176
2177 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2178 xhci->num_active_eps -= num_failed_eps;
2179 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2180 "Removing %u failed ep ctxs, %u now active.",
2181 num_failed_eps,
2182 xhci->num_active_eps);
2183}
2184
2185/*
2186 * Now that the command has completed, clean up the active endpoint count by
2187 * subtracting out the endpoints that were dropped (but not changed).
2188 *
2189 * Must be called with xhci->lock held.
2190 */
2191static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2192 struct xhci_input_control_ctx *ctrl_ctx)
2193{
2194 u32 num_dropped_eps;
2195
2196 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2197 xhci->num_active_eps -= num_dropped_eps;
2198 if (num_dropped_eps)
2199 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2200 "Removing %u dropped ep ctxs, %u now active.",
2201 num_dropped_eps,
2202 xhci->num_active_eps);
2203}
2204
2205static unsigned int xhci_get_block_size(struct usb_device *udev)
2206{
2207 switch (udev->speed) {
2208 case USB_SPEED_LOW:
2209 case USB_SPEED_FULL:
2210 return FS_BLOCK;
2211 case USB_SPEED_HIGH:
2212 return HS_BLOCK;
2213 case USB_SPEED_SUPER:
2214 case USB_SPEED_SUPER_PLUS:
2215 return SS_BLOCK;
2216 case USB_SPEED_UNKNOWN:
2217 case USB_SPEED_WIRELESS:
2218 default:
2219 /* Should never happen */
2220 return 1;
2221 }
2222}
2223
2224static unsigned int
2225xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2226{
2227 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2228 return LS_OVERHEAD;
2229 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2230 return FS_OVERHEAD;
2231 return HS_OVERHEAD;
2232}
2233
2234/* If we are changing a LS/FS device under a HS hub,
2235 * make sure (if we are activating a new TT) that the HS bus has enough
2236 * bandwidth for this new TT.
2237 */
2238static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2239 struct xhci_virt_device *virt_dev,
2240 int old_active_eps)
2241{
2242 struct xhci_interval_bw_table *bw_table;
2243 struct xhci_tt_bw_info *tt_info;
2244
2245 /* Find the bandwidth table for the root port this TT is attached to. */
2246 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2247 tt_info = virt_dev->tt_info;
2248 /* If this TT already had active endpoints, the bandwidth for this TT
2249 * has already been added. Removing all periodic endpoints (and thus
2250 * making the TT enactive) will only decrease the bandwidth used.
2251 */
2252 if (old_active_eps)
2253 return 0;
2254 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2255 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2256 return -ENOMEM;
2257 return 0;
2258 }
2259 /* Not sure why we would have no new active endpoints...
2260 *
2261 * Maybe because of an Evaluate Context change for a hub update or a
2262 * control endpoint 0 max packet size change?
2263 * FIXME: skip the bandwidth calculation in that case.
2264 */
2265 return 0;
2266}
2267
2268static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2269 struct xhci_virt_device *virt_dev)
2270{
2271 unsigned int bw_reserved;
2272
2273 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2274 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2275 return -ENOMEM;
2276
2277 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2278 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2279 return -ENOMEM;
2280
2281 return 0;
2282}
2283
2284/*
2285 * This algorithm is a very conservative estimate of the worst-case scheduling
2286 * scenario for any one interval. The hardware dynamically schedules the
2287 * packets, so we can't tell which microframe could be the limiting factor in
2288 * the bandwidth scheduling. This only takes into account periodic endpoints.
2289 *
2290 * Obviously, we can't solve an NP complete problem to find the minimum worst
2291 * case scenario. Instead, we come up with an estimate that is no less than
2292 * the worst case bandwidth used for any one microframe, but may be an
2293 * over-estimate.
2294 *
2295 * We walk the requirements for each endpoint by interval, starting with the
2296 * smallest interval, and place packets in the schedule where there is only one
2297 * possible way to schedule packets for that interval. In order to simplify
2298 * this algorithm, we record the largest max packet size for each interval, and
2299 * assume all packets will be that size.
2300 *
2301 * For interval 0, we obviously must schedule all packets for each interval.
2302 * The bandwidth for interval 0 is just the amount of data to be transmitted
2303 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2304 * the number of packets).
2305 *
2306 * For interval 1, we have two possible microframes to schedule those packets
2307 * in. For this algorithm, if we can schedule the same number of packets for
2308 * each possible scheduling opportunity (each microframe), we will do so. The
2309 * remaining number of packets will be saved to be transmitted in the gaps in
2310 * the next interval's scheduling sequence.
2311 *
2312 * As we move those remaining packets to be scheduled with interval 2 packets,
2313 * we have to double the number of remaining packets to transmit. This is
2314 * because the intervals are actually powers of 2, and we would be transmitting
2315 * the previous interval's packets twice in this interval. We also have to be
2316 * sure that when we look at the largest max packet size for this interval, we
2317 * also look at the largest max packet size for the remaining packets and take
2318 * the greater of the two.
2319 *
2320 * The algorithm continues to evenly distribute packets in each scheduling
2321 * opportunity, and push the remaining packets out, until we get to the last
2322 * interval. Then those packets and their associated overhead are just added
2323 * to the bandwidth used.
2324 */
2325static int xhci_check_bw_table(struct xhci_hcd *xhci,
2326 struct xhci_virt_device *virt_dev,
2327 int old_active_eps)
2328{
2329 unsigned int bw_reserved;
2330 unsigned int max_bandwidth;
2331 unsigned int bw_used;
2332 unsigned int block_size;
2333 struct xhci_interval_bw_table *bw_table;
2334 unsigned int packet_size = 0;
2335 unsigned int overhead = 0;
2336 unsigned int packets_transmitted = 0;
2337 unsigned int packets_remaining = 0;
2338 unsigned int i;
2339
2340 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2341 return xhci_check_ss_bw(xhci, virt_dev);
2342
2343 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2344 max_bandwidth = HS_BW_LIMIT;
2345 /* Convert percent of bus BW reserved to blocks reserved */
2346 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2347 } else {
2348 max_bandwidth = FS_BW_LIMIT;
2349 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2350 }
2351
2352 bw_table = virt_dev->bw_table;
2353 /* We need to translate the max packet size and max ESIT payloads into
2354 * the units the hardware uses.
2355 */
2356 block_size = xhci_get_block_size(virt_dev->udev);
2357
2358 /* If we are manipulating a LS/FS device under a HS hub, double check
2359 * that the HS bus has enough bandwidth if we are activing a new TT.
2360 */
2361 if (virt_dev->tt_info) {
2362 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2363 "Recalculating BW for rootport %u",
2364 virt_dev->real_port);
2365 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2366 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2367 "newly activated TT.\n");
2368 return -ENOMEM;
2369 }
2370 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2371 "Recalculating BW for TT slot %u port %u",
2372 virt_dev->tt_info->slot_id,
2373 virt_dev->tt_info->ttport);
2374 } else {
2375 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2376 "Recalculating BW for rootport %u",
2377 virt_dev->real_port);
2378 }
2379
2380 /* Add in how much bandwidth will be used for interval zero, or the
2381 * rounded max ESIT payload + number of packets * largest overhead.
2382 */
2383 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2384 bw_table->interval_bw[0].num_packets *
2385 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2386
2387 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2388 unsigned int bw_added;
2389 unsigned int largest_mps;
2390 unsigned int interval_overhead;
2391
2392 /*
2393 * How many packets could we transmit in this interval?
2394 * If packets didn't fit in the previous interval, we will need
2395 * to transmit that many packets twice within this interval.
2396 */
2397 packets_remaining = 2 * packets_remaining +
2398 bw_table->interval_bw[i].num_packets;
2399
2400 /* Find the largest max packet size of this or the previous
2401 * interval.
2402 */
2403 if (list_empty(&bw_table->interval_bw[i].endpoints))
2404 largest_mps = 0;
2405 else {
2406 struct xhci_virt_ep *virt_ep;
2407 struct list_head *ep_entry;
2408
2409 ep_entry = bw_table->interval_bw[i].endpoints.next;
2410 virt_ep = list_entry(ep_entry,
2411 struct xhci_virt_ep, bw_endpoint_list);
2412 /* Convert to blocks, rounding up */
2413 largest_mps = DIV_ROUND_UP(
2414 virt_ep->bw_info.max_packet_size,
2415 block_size);
2416 }
2417 if (largest_mps > packet_size)
2418 packet_size = largest_mps;
2419
2420 /* Use the larger overhead of this or the previous interval. */
2421 interval_overhead = xhci_get_largest_overhead(
2422 &bw_table->interval_bw[i]);
2423 if (interval_overhead > overhead)
2424 overhead = interval_overhead;
2425
2426 /* How many packets can we evenly distribute across
2427 * (1 << (i + 1)) possible scheduling opportunities?
2428 */
2429 packets_transmitted = packets_remaining >> (i + 1);
2430
2431 /* Add in the bandwidth used for those scheduled packets */
2432 bw_added = packets_transmitted * (overhead + packet_size);
2433
2434 /* How many packets do we have remaining to transmit? */
2435 packets_remaining = packets_remaining % (1 << (i + 1));
2436
2437 /* What largest max packet size should those packets have? */
2438 /* If we've transmitted all packets, don't carry over the
2439 * largest packet size.
2440 */
2441 if (packets_remaining == 0) {
2442 packet_size = 0;
2443 overhead = 0;
2444 } else if (packets_transmitted > 0) {
2445 /* Otherwise if we do have remaining packets, and we've
2446 * scheduled some packets in this interval, take the
2447 * largest max packet size from endpoints with this
2448 * interval.
2449 */
2450 packet_size = largest_mps;
2451 overhead = interval_overhead;
2452 }
2453 /* Otherwise carry over packet_size and overhead from the last
2454 * time we had a remainder.
2455 */
2456 bw_used += bw_added;
2457 if (bw_used > max_bandwidth) {
2458 xhci_warn(xhci, "Not enough bandwidth. "
2459 "Proposed: %u, Max: %u\n",
2460 bw_used, max_bandwidth);
2461 return -ENOMEM;
2462 }
2463 }
2464 /*
2465 * Ok, we know we have some packets left over after even-handedly
2466 * scheduling interval 15. We don't know which microframes they will
2467 * fit into, so we over-schedule and say they will be scheduled every
2468 * microframe.
2469 */
2470 if (packets_remaining > 0)
2471 bw_used += overhead + packet_size;
2472
2473 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2474 unsigned int port_index = virt_dev->real_port - 1;
2475
2476 /* OK, we're manipulating a HS device attached to a
2477 * root port bandwidth domain. Include the number of active TTs
2478 * in the bandwidth used.
2479 */
2480 bw_used += TT_HS_OVERHEAD *
2481 xhci->rh_bw[port_index].num_active_tts;
2482 }
2483
2484 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2485 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2486 "Available: %u " "percent",
2487 bw_used, max_bandwidth, bw_reserved,
2488 (max_bandwidth - bw_used - bw_reserved) * 100 /
2489 max_bandwidth);
2490
2491 bw_used += bw_reserved;
2492 if (bw_used > max_bandwidth) {
2493 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2494 bw_used, max_bandwidth);
2495 return -ENOMEM;
2496 }
2497
2498 bw_table->bw_used = bw_used;
2499 return 0;
2500}
2501
2502static bool xhci_is_async_ep(unsigned int ep_type)
2503{
2504 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2505 ep_type != ISOC_IN_EP &&
2506 ep_type != INT_IN_EP);
2507}
2508
2509static bool xhci_is_sync_in_ep(unsigned int ep_type)
2510{
2511 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2512}
2513
2514static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2515{
2516 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2517
2518 if (ep_bw->ep_interval == 0)
2519 return SS_OVERHEAD_BURST +
2520 (ep_bw->mult * ep_bw->num_packets *
2521 (SS_OVERHEAD + mps));
2522 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2523 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2524 1 << ep_bw->ep_interval);
2525
2526}
2527
2528static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2529 struct xhci_bw_info *ep_bw,
2530 struct xhci_interval_bw_table *bw_table,
2531 struct usb_device *udev,
2532 struct xhci_virt_ep *virt_ep,
2533 struct xhci_tt_bw_info *tt_info)
2534{
2535 struct xhci_interval_bw *interval_bw;
2536 int normalized_interval;
2537
2538 if (xhci_is_async_ep(ep_bw->type))
2539 return;
2540
2541 if (udev->speed >= USB_SPEED_SUPER) {
2542 if (xhci_is_sync_in_ep(ep_bw->type))
2543 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2544 xhci_get_ss_bw_consumed(ep_bw);
2545 else
2546 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2547 xhci_get_ss_bw_consumed(ep_bw);
2548 return;
2549 }
2550
2551 /* SuperSpeed endpoints never get added to intervals in the table, so
2552 * this check is only valid for HS/FS/LS devices.
2553 */
2554 if (list_empty(&virt_ep->bw_endpoint_list))
2555 return;
2556 /* For LS/FS devices, we need to translate the interval expressed in
2557 * microframes to frames.
2558 */
2559 if (udev->speed == USB_SPEED_HIGH)
2560 normalized_interval = ep_bw->ep_interval;
2561 else
2562 normalized_interval = ep_bw->ep_interval - 3;
2563
2564 if (normalized_interval == 0)
2565 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2566 interval_bw = &bw_table->interval_bw[normalized_interval];
2567 interval_bw->num_packets -= ep_bw->num_packets;
2568 switch (udev->speed) {
2569 case USB_SPEED_LOW:
2570 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2571 break;
2572 case USB_SPEED_FULL:
2573 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2574 break;
2575 case USB_SPEED_HIGH:
2576 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2577 break;
2578 case USB_SPEED_SUPER:
2579 case USB_SPEED_SUPER_PLUS:
2580 case USB_SPEED_UNKNOWN:
2581 case USB_SPEED_WIRELESS:
2582 /* Should never happen because only LS/FS/HS endpoints will get
2583 * added to the endpoint list.
2584 */
2585 return;
2586 }
2587 if (tt_info)
2588 tt_info->active_eps -= 1;
2589 list_del_init(&virt_ep->bw_endpoint_list);
2590}
2591
2592static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2593 struct xhci_bw_info *ep_bw,
2594 struct xhci_interval_bw_table *bw_table,
2595 struct usb_device *udev,
2596 struct xhci_virt_ep *virt_ep,
2597 struct xhci_tt_bw_info *tt_info)
2598{
2599 struct xhci_interval_bw *interval_bw;
2600 struct xhci_virt_ep *smaller_ep;
2601 int normalized_interval;
2602
2603 if (xhci_is_async_ep(ep_bw->type))
2604 return;
2605
2606 if (udev->speed == USB_SPEED_SUPER) {
2607 if (xhci_is_sync_in_ep(ep_bw->type))
2608 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2609 xhci_get_ss_bw_consumed(ep_bw);
2610 else
2611 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2612 xhci_get_ss_bw_consumed(ep_bw);
2613 return;
2614 }
2615
2616 /* For LS/FS devices, we need to translate the interval expressed in
2617 * microframes to frames.
2618 */
2619 if (udev->speed == USB_SPEED_HIGH)
2620 normalized_interval = ep_bw->ep_interval;
2621 else
2622 normalized_interval = ep_bw->ep_interval - 3;
2623
2624 if (normalized_interval == 0)
2625 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2626 interval_bw = &bw_table->interval_bw[normalized_interval];
2627 interval_bw->num_packets += ep_bw->num_packets;
2628 switch (udev->speed) {
2629 case USB_SPEED_LOW:
2630 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2631 break;
2632 case USB_SPEED_FULL:
2633 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2634 break;
2635 case USB_SPEED_HIGH:
2636 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2637 break;
2638 case USB_SPEED_SUPER:
2639 case USB_SPEED_SUPER_PLUS:
2640 case USB_SPEED_UNKNOWN:
2641 case USB_SPEED_WIRELESS:
2642 /* Should never happen because only LS/FS/HS endpoints will get
2643 * added to the endpoint list.
2644 */
2645 return;
2646 }
2647
2648 if (tt_info)
2649 tt_info->active_eps += 1;
2650 /* Insert the endpoint into the list, largest max packet size first. */
2651 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2652 bw_endpoint_list) {
2653 if (ep_bw->max_packet_size >=
2654 smaller_ep->bw_info.max_packet_size) {
2655 /* Add the new ep before the smaller endpoint */
2656 list_add_tail(&virt_ep->bw_endpoint_list,
2657 &smaller_ep->bw_endpoint_list);
2658 return;
2659 }
2660 }
2661 /* Add the new endpoint at the end of the list. */
2662 list_add_tail(&virt_ep->bw_endpoint_list,
2663 &interval_bw->endpoints);
2664}
2665
2666void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2667 struct xhci_virt_device *virt_dev,
2668 int old_active_eps)
2669{
2670 struct xhci_root_port_bw_info *rh_bw_info;
2671 if (!virt_dev->tt_info)
2672 return;
2673
2674 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2675 if (old_active_eps == 0 &&
2676 virt_dev->tt_info->active_eps != 0) {
2677 rh_bw_info->num_active_tts += 1;
2678 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2679 } else if (old_active_eps != 0 &&
2680 virt_dev->tt_info->active_eps == 0) {
2681 rh_bw_info->num_active_tts -= 1;
2682 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2683 }
2684}
2685
2686static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2687 struct xhci_virt_device *virt_dev,
2688 struct xhci_container_ctx *in_ctx)
2689{
2690 struct xhci_bw_info ep_bw_info[31];
2691 int i;
2692 struct xhci_input_control_ctx *ctrl_ctx;
2693 int old_active_eps = 0;
2694
2695 if (virt_dev->tt_info)
2696 old_active_eps = virt_dev->tt_info->active_eps;
2697
2698 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2699 if (!ctrl_ctx) {
2700 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2701 __func__);
2702 return -ENOMEM;
2703 }
2704
2705 for (i = 0; i < 31; i++) {
2706 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2707 continue;
2708
2709 /* Make a copy of the BW info in case we need to revert this */
2710 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2711 sizeof(ep_bw_info[i]));
2712 /* Drop the endpoint from the interval table if the endpoint is
2713 * being dropped or changed.
2714 */
2715 if (EP_IS_DROPPED(ctrl_ctx, i))
2716 xhci_drop_ep_from_interval_table(xhci,
2717 &virt_dev->eps[i].bw_info,
2718 virt_dev->bw_table,
2719 virt_dev->udev,
2720 &virt_dev->eps[i],
2721 virt_dev->tt_info);
2722 }
2723 /* Overwrite the information stored in the endpoints' bw_info */
2724 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2725 for (i = 0; i < 31; i++) {
2726 /* Add any changed or added endpoints to the interval table */
2727 if (EP_IS_ADDED(ctrl_ctx, i))
2728 xhci_add_ep_to_interval_table(xhci,
2729 &virt_dev->eps[i].bw_info,
2730 virt_dev->bw_table,
2731 virt_dev->udev,
2732 &virt_dev->eps[i],
2733 virt_dev->tt_info);
2734 }
2735
2736 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2737 /* Ok, this fits in the bandwidth we have.
2738 * Update the number of active TTs.
2739 */
2740 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2741 return 0;
2742 }
2743
2744 /* We don't have enough bandwidth for this, revert the stored info. */
2745 for (i = 0; i < 31; i++) {
2746 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2747 continue;
2748
2749 /* Drop the new copies of any added or changed endpoints from
2750 * the interval table.
2751 */
2752 if (EP_IS_ADDED(ctrl_ctx, i)) {
2753 xhci_drop_ep_from_interval_table(xhci,
2754 &virt_dev->eps[i].bw_info,
2755 virt_dev->bw_table,
2756 virt_dev->udev,
2757 &virt_dev->eps[i],
2758 virt_dev->tt_info);
2759 }
2760 /* Revert the endpoint back to its old information */
2761 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2762 sizeof(ep_bw_info[i]));
2763 /* Add any changed or dropped endpoints back into the table */
2764 if (EP_IS_DROPPED(ctrl_ctx, i))
2765 xhci_add_ep_to_interval_table(xhci,
2766 &virt_dev->eps[i].bw_info,
2767 virt_dev->bw_table,
2768 virt_dev->udev,
2769 &virt_dev->eps[i],
2770 virt_dev->tt_info);
2771 }
2772 return -ENOMEM;
2773}
2774
2775
2776/* Issue a configure endpoint command or evaluate context command
2777 * and wait for it to finish.
2778 */
2779static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2780 struct usb_device *udev,
2781 struct xhci_command *command,
2782 bool ctx_change, bool must_succeed)
2783{
2784 int ret;
2785 unsigned long flags;
2786 struct xhci_input_control_ctx *ctrl_ctx;
2787 struct xhci_virt_device *virt_dev;
2788 struct xhci_slot_ctx *slot_ctx;
2789
2790 if (!command)
2791 return -EINVAL;
2792
2793 spin_lock_irqsave(&xhci->lock, flags);
2794
2795 if (xhci->xhc_state & XHCI_STATE_DYING) {
2796 spin_unlock_irqrestore(&xhci->lock, flags);
2797 return -ESHUTDOWN;
2798 }
2799
2800 virt_dev = xhci->devs[udev->slot_id];
2801
2802 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2803 if (!ctrl_ctx) {
2804 spin_unlock_irqrestore(&xhci->lock, flags);
2805 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2806 __func__);
2807 return -ENOMEM;
2808 }
2809
2810 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2811 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2812 spin_unlock_irqrestore(&xhci->lock, flags);
2813 xhci_warn(xhci, "Not enough host resources, "
2814 "active endpoint contexts = %u\n",
2815 xhci->num_active_eps);
2816 return -ENOMEM;
2817 }
2818 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change &&
2819 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2820 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2821 xhci_free_host_resources(xhci, ctrl_ctx);
2822 spin_unlock_irqrestore(&xhci->lock, flags);
2823 xhci_warn(xhci, "Not enough bandwidth\n");
2824 return -ENOMEM;
2825 }
2826
2827 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2828
2829 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2830 trace_xhci_configure_endpoint(slot_ctx);
2831
2832 if (!ctx_change)
2833 ret = xhci_queue_configure_endpoint(xhci, command,
2834 command->in_ctx->dma,
2835 udev->slot_id, must_succeed);
2836 else
2837 ret = xhci_queue_evaluate_context(xhci, command,
2838 command->in_ctx->dma,
2839 udev->slot_id, must_succeed);
2840 if (ret < 0) {
2841 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2842 xhci_free_host_resources(xhci, ctrl_ctx);
2843 spin_unlock_irqrestore(&xhci->lock, flags);
2844 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2845 "FIXME allocate a new ring segment");
2846 return -ENOMEM;
2847 }
2848 xhci_ring_cmd_db(xhci);
2849 spin_unlock_irqrestore(&xhci->lock, flags);
2850
2851 /* Wait for the configure endpoint command to complete */
2852 wait_for_completion(command->completion);
2853
2854 if (!ctx_change)
2855 ret = xhci_configure_endpoint_result(xhci, udev,
2856 &command->status);
2857 else
2858 ret = xhci_evaluate_context_result(xhci, udev,
2859 &command->status);
2860
2861 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2862 spin_lock_irqsave(&xhci->lock, flags);
2863 /* If the command failed, remove the reserved resources.
2864 * Otherwise, clean up the estimate to include dropped eps.
2865 */
2866 if (ret)
2867 xhci_free_host_resources(xhci, ctrl_ctx);
2868 else
2869 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2870 spin_unlock_irqrestore(&xhci->lock, flags);
2871 }
2872 return ret;
2873}
2874
2875static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2876 struct xhci_virt_device *vdev, int i)
2877{
2878 struct xhci_virt_ep *ep = &vdev->eps[i];
2879
2880 if (ep->ep_state & EP_HAS_STREAMS) {
2881 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2882 xhci_get_endpoint_address(i));
2883 xhci_free_stream_info(xhci, ep->stream_info);
2884 ep->stream_info = NULL;
2885 ep->ep_state &= ~EP_HAS_STREAMS;
2886 }
2887}
2888
2889/* Called after one or more calls to xhci_add_endpoint() or
2890 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2891 * to call xhci_reset_bandwidth().
2892 *
2893 * Since we are in the middle of changing either configuration or
2894 * installing a new alt setting, the USB core won't allow URBs to be
2895 * enqueued for any endpoint on the old config or interface. Nothing
2896 * else should be touching the xhci->devs[slot_id] structure, so we
2897 * don't need to take the xhci->lock for manipulating that.
2898 */
2899int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2900{
2901 int i;
2902 int ret = 0;
2903 struct xhci_hcd *xhci;
2904 struct xhci_virt_device *virt_dev;
2905 struct xhci_input_control_ctx *ctrl_ctx;
2906 struct xhci_slot_ctx *slot_ctx;
2907 struct xhci_command *command;
2908
2909 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2910 if (ret <= 0)
2911 return ret;
2912 xhci = hcd_to_xhci(hcd);
2913 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2914 (xhci->xhc_state & XHCI_STATE_REMOVING))
2915 return -ENODEV;
2916
2917 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2918 virt_dev = xhci->devs[udev->slot_id];
2919
2920 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2921 if (!command)
2922 return -ENOMEM;
2923
2924 command->in_ctx = virt_dev->in_ctx;
2925
2926 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2927 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2928 if (!ctrl_ctx) {
2929 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2930 __func__);
2931 ret = -ENOMEM;
2932 goto command_cleanup;
2933 }
2934 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2935 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2936 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2937
2938 /* Don't issue the command if there's no endpoints to update. */
2939 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2940 ctrl_ctx->drop_flags == 0) {
2941 ret = 0;
2942 goto command_cleanup;
2943 }
2944 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2945 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2946 for (i = 31; i >= 1; i--) {
2947 __le32 le32 = cpu_to_le32(BIT(i));
2948
2949 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2950 || (ctrl_ctx->add_flags & le32) || i == 1) {
2951 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2952 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2953 break;
2954 }
2955 }
2956
2957 ret = xhci_configure_endpoint(xhci, udev, command,
2958 false, false);
2959 if (ret)
2960 /* Callee should call reset_bandwidth() */
2961 goto command_cleanup;
2962
2963 /* Free any rings that were dropped, but not changed. */
2964 for (i = 1; i < 31; i++) {
2965 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2966 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2967 xhci_free_endpoint_ring(xhci, virt_dev, i);
2968 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2969 }
2970 }
2971 xhci_zero_in_ctx(xhci, virt_dev);
2972 /*
2973 * Install any rings for completely new endpoints or changed endpoints,
2974 * and free any old rings from changed endpoints.
2975 */
2976 for (i = 1; i < 31; i++) {
2977 if (!virt_dev->eps[i].new_ring)
2978 continue;
2979 /* Only free the old ring if it exists.
2980 * It may not if this is the first add of an endpoint.
2981 */
2982 if (virt_dev->eps[i].ring) {
2983 xhci_free_endpoint_ring(xhci, virt_dev, i);
2984 }
2985 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2986 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2987 virt_dev->eps[i].new_ring = NULL;
2988 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
2989 }
2990command_cleanup:
2991 kfree(command->completion);
2992 kfree(command);
2993
2994 return ret;
2995}
2996EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
2997
2998void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2999{
3000 struct xhci_hcd *xhci;
3001 struct xhci_virt_device *virt_dev;
3002 int i, ret;
3003
3004 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3005 if (ret <= 0)
3006 return;
3007 xhci = hcd_to_xhci(hcd);
3008
3009 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3010 virt_dev = xhci->devs[udev->slot_id];
3011 /* Free any rings allocated for added endpoints */
3012 for (i = 0; i < 31; i++) {
3013 if (virt_dev->eps[i].new_ring) {
3014 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3015 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3016 virt_dev->eps[i].new_ring = NULL;
3017 }
3018 }
3019 xhci_zero_in_ctx(xhci, virt_dev);
3020}
3021EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3022
3023static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3024 struct xhci_container_ctx *in_ctx,
3025 struct xhci_container_ctx *out_ctx,
3026 struct xhci_input_control_ctx *ctrl_ctx,
3027 u32 add_flags, u32 drop_flags)
3028{
3029 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3030 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3031 xhci_slot_copy(xhci, in_ctx, out_ctx);
3032 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3033}
3034
3035static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
3036 unsigned int slot_id, unsigned int ep_index,
3037 struct xhci_dequeue_state *deq_state)
3038{
3039 struct xhci_input_control_ctx *ctrl_ctx;
3040 struct xhci_container_ctx *in_ctx;
3041 struct xhci_ep_ctx *ep_ctx;
3042 u32 added_ctxs;
3043 dma_addr_t addr;
3044
3045 in_ctx = xhci->devs[slot_id]->in_ctx;
3046 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
3047 if (!ctrl_ctx) {
3048 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3049 __func__);
3050 return;
3051 }
3052
3053 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3054 xhci->devs[slot_id]->out_ctx, ep_index);
3055 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3056 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3057 deq_state->new_deq_ptr);
3058 if (addr == 0) {
3059 xhci_warn(xhci, "WARN Cannot submit config ep after "
3060 "reset ep command\n");
3061 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3062 deq_state->new_deq_seg,
3063 deq_state->new_deq_ptr);
3064 return;
3065 }
3066 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3067
3068 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3069 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3070 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3071 added_ctxs, added_ctxs);
3072}
3073
3074void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int slot_id,
3075 unsigned int ep_index, unsigned int stream_id,
3076 struct xhci_td *td)
3077{
3078 struct xhci_dequeue_state deq_state;
3079
3080 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3081 "Cleaning up stalled endpoint ring");
3082 /* We need to move the HW's dequeue pointer past this TD,
3083 * or it will attempt to resend it on the next doorbell ring.
3084 */
3085 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, stream_id, td,
3086 &deq_state);
3087
3088 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3089 return;
3090
3091 /* HW with the reset endpoint quirk will use the saved dequeue state to
3092 * issue a configure endpoint command later.
3093 */
3094 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3095 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3096 "Queueing new dequeue state");
3097 xhci_queue_new_dequeue_state(xhci, slot_id,
3098 ep_index, &deq_state);
3099 } else {
3100 /* Better hope no one uses the input context between now and the
3101 * reset endpoint completion!
3102 * XXX: No idea how this hardware will react when stream rings
3103 * are enabled.
3104 */
3105 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3106 "Setting up input context for "
3107 "configure endpoint command");
3108 xhci_setup_input_ctx_for_quirk(xhci, slot_id,
3109 ep_index, &deq_state);
3110 }
3111}
3112
3113static void xhci_endpoint_disable(struct usb_hcd *hcd,
3114 struct usb_host_endpoint *host_ep)
3115{
3116 struct xhci_hcd *xhci;
3117 struct xhci_virt_device *vdev;
3118 struct xhci_virt_ep *ep;
3119 struct usb_device *udev;
3120 unsigned long flags;
3121 unsigned int ep_index;
3122
3123 xhci = hcd_to_xhci(hcd);
3124rescan:
3125 spin_lock_irqsave(&xhci->lock, flags);
3126
3127 udev = (struct usb_device *)host_ep->hcpriv;
3128 if (!udev || !udev->slot_id)
3129 goto done;
3130
3131 vdev = xhci->devs[udev->slot_id];
3132 if (!vdev)
3133 goto done;
3134
3135 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3136 ep = &vdev->eps[ep_index];
3137 if (!ep)
3138 goto done;
3139
3140 /* wait for hub_tt_work to finish clearing hub TT */
3141 if (ep->ep_state & EP_CLEARING_TT) {
3142 spin_unlock_irqrestore(&xhci->lock, flags);
3143 schedule_timeout_uninterruptible(1);
3144 goto rescan;
3145 }
3146
3147 if (ep->ep_state)
3148 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3149 ep->ep_state);
3150done:
3151 host_ep->hcpriv = NULL;
3152 spin_unlock_irqrestore(&xhci->lock, flags);
3153}
3154
3155/*
3156 * Called after usb core issues a clear halt control message.
3157 * The host side of the halt should already be cleared by a reset endpoint
3158 * command issued when the STALL event was received.
3159 *
3160 * The reset endpoint command may only be issued to endpoints in the halted
3161 * state. For software that wishes to reset the data toggle or sequence number
3162 * of an endpoint that isn't in the halted state this function will issue a
3163 * configure endpoint command with the Drop and Add bits set for the target
3164 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3165 */
3166
3167static void xhci_endpoint_reset(struct usb_hcd *hcd,
3168 struct usb_host_endpoint *host_ep)
3169{
3170 struct xhci_hcd *xhci;
3171 struct usb_device *udev;
3172 struct xhci_virt_device *vdev;
3173 struct xhci_virt_ep *ep;
3174 struct xhci_input_control_ctx *ctrl_ctx;
3175 struct xhci_command *stop_cmd, *cfg_cmd;
3176 unsigned int ep_index;
3177 unsigned long flags;
3178 u32 ep_flag;
3179 int err;
3180
3181 xhci = hcd_to_xhci(hcd);
3182 if (!host_ep->hcpriv)
3183 return;
3184 udev = (struct usb_device *) host_ep->hcpriv;
3185 vdev = xhci->devs[udev->slot_id];
3186
3187 /*
3188 * vdev may be lost due to xHC restore error and re-initialization
3189 * during S3/S4 resume. A new vdev will be allocated later by
3190 * xhci_discover_or_reset_device()
3191 */
3192 if (!udev->slot_id || !vdev)
3193 return;
3194 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3195 ep = &vdev->eps[ep_index];
3196 if (!ep)
3197 return;
3198
3199 /* Bail out if toggle is already being cleared by a endpoint reset */
3200 spin_lock_irqsave(&xhci->lock, flags);
3201 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3202 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3203 spin_unlock_irqrestore(&xhci->lock, flags);
3204 return;
3205 }
3206 spin_unlock_irqrestore(&xhci->lock, flags);
3207 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3208 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3209 usb_endpoint_xfer_isoc(&host_ep->desc))
3210 return;
3211
3212 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3213
3214 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3215 return;
3216
3217 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3218 if (!stop_cmd)
3219 return;
3220
3221 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3222 if (!cfg_cmd)
3223 goto cleanup;
3224
3225 spin_lock_irqsave(&xhci->lock, flags);
3226
3227 /* block queuing new trbs and ringing ep doorbell */
3228 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3229
3230 /*
3231 * Make sure endpoint ring is empty before resetting the toggle/seq.
3232 * Driver is required to synchronously cancel all transfer request.
3233 * Stop the endpoint to force xHC to update the output context
3234 */
3235
3236 if (!list_empty(&ep->ring->td_list)) {
3237 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3238 spin_unlock_irqrestore(&xhci->lock, flags);
3239 xhci_free_command(xhci, cfg_cmd);
3240 goto cleanup;
3241 }
3242
3243 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3244 ep_index, 0);
3245 if (err < 0) {
3246 spin_unlock_irqrestore(&xhci->lock, flags);
3247 xhci_free_command(xhci, cfg_cmd);
3248 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3249 __func__, err);
3250 goto cleanup;
3251 }
3252
3253 xhci_ring_cmd_db(xhci);
3254 spin_unlock_irqrestore(&xhci->lock, flags);
3255
3256 wait_for_completion(stop_cmd->completion);
3257
3258 spin_lock_irqsave(&xhci->lock, flags);
3259
3260 /* config ep command clears toggle if add and drop ep flags are set */
3261 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3262 if (!ctrl_ctx) {
3263 spin_unlock_irqrestore(&xhci->lock, flags);
3264 xhci_free_command(xhci, cfg_cmd);
3265 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3266 __func__);
3267 goto cleanup;
3268 }
3269
3270 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3271 ctrl_ctx, ep_flag, ep_flag);
3272 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3273
3274 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3275 udev->slot_id, false);
3276 if (err < 0) {
3277 spin_unlock_irqrestore(&xhci->lock, flags);
3278 xhci_free_command(xhci, cfg_cmd);
3279 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3280 __func__, err);
3281 goto cleanup;
3282 }
3283
3284 xhci_ring_cmd_db(xhci);
3285 spin_unlock_irqrestore(&xhci->lock, flags);
3286
3287 wait_for_completion(cfg_cmd->completion);
3288
3289 xhci_free_command(xhci, cfg_cmd);
3290cleanup:
3291 xhci_free_command(xhci, stop_cmd);
3292 spin_lock_irqsave(&xhci->lock, flags);
3293 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3294 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3295 spin_unlock_irqrestore(&xhci->lock, flags);
3296}
3297
3298static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3299 struct usb_device *udev, struct usb_host_endpoint *ep,
3300 unsigned int slot_id)
3301{
3302 int ret;
3303 unsigned int ep_index;
3304 unsigned int ep_state;
3305
3306 if (!ep)
3307 return -EINVAL;
3308 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3309 if (ret <= 0)
3310 return ret ? ret : -EINVAL;
3311 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3312 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3313 " descriptor for ep 0x%x does not support streams\n",
3314 ep->desc.bEndpointAddress);
3315 return -EINVAL;
3316 }
3317
3318 ep_index = xhci_get_endpoint_index(&ep->desc);
3319 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3320 if (ep_state & EP_HAS_STREAMS ||
3321 ep_state & EP_GETTING_STREAMS) {
3322 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3323 "already has streams set up.\n",
3324 ep->desc.bEndpointAddress);
3325 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3326 "dynamic stream context array reallocation.\n");
3327 return -EINVAL;
3328 }
3329 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3330 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3331 "endpoint 0x%x; URBs are pending.\n",
3332 ep->desc.bEndpointAddress);
3333 return -EINVAL;
3334 }
3335 return 0;
3336}
3337
3338static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3339 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3340{
3341 unsigned int max_streams;
3342
3343 /* The stream context array size must be a power of two */
3344 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3345 /*
3346 * Find out how many primary stream array entries the host controller
3347 * supports. Later we may use secondary stream arrays (similar to 2nd
3348 * level page entries), but that's an optional feature for xHCI host
3349 * controllers. xHCs must support at least 4 stream IDs.
3350 */
3351 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3352 if (*num_stream_ctxs > max_streams) {
3353 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3354 max_streams);
3355 *num_stream_ctxs = max_streams;
3356 *num_streams = max_streams;
3357 }
3358}
3359
3360/* Returns an error code if one of the endpoint already has streams.
3361 * This does not change any data structures, it only checks and gathers
3362 * information.
3363 */
3364static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3365 struct usb_device *udev,
3366 struct usb_host_endpoint **eps, unsigned int num_eps,
3367 unsigned int *num_streams, u32 *changed_ep_bitmask)
3368{
3369 unsigned int max_streams;
3370 unsigned int endpoint_flag;
3371 int i;
3372 int ret;
3373
3374 for (i = 0; i < num_eps; i++) {
3375 ret = xhci_check_streams_endpoint(xhci, udev,
3376 eps[i], udev->slot_id);
3377 if (ret < 0)
3378 return ret;
3379
3380 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3381 if (max_streams < (*num_streams - 1)) {
3382 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3383 eps[i]->desc.bEndpointAddress,
3384 max_streams);
3385 *num_streams = max_streams+1;
3386 }
3387
3388 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3389 if (*changed_ep_bitmask & endpoint_flag)
3390 return -EINVAL;
3391 *changed_ep_bitmask |= endpoint_flag;
3392 }
3393 return 0;
3394}
3395
3396static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3397 struct usb_device *udev,
3398 struct usb_host_endpoint **eps, unsigned int num_eps)
3399{
3400 u32 changed_ep_bitmask = 0;
3401 unsigned int slot_id;
3402 unsigned int ep_index;
3403 unsigned int ep_state;
3404 int i;
3405
3406 slot_id = udev->slot_id;
3407 if (!xhci->devs[slot_id])
3408 return 0;
3409
3410 for (i = 0; i < num_eps; i++) {
3411 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3412 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3413 /* Are streams already being freed for the endpoint? */
3414 if (ep_state & EP_GETTING_NO_STREAMS) {
3415 xhci_warn(xhci, "WARN Can't disable streams for "
3416 "endpoint 0x%x, "
3417 "streams are being disabled already\n",
3418 eps[i]->desc.bEndpointAddress);
3419 return 0;
3420 }
3421 /* Are there actually any streams to free? */
3422 if (!(ep_state & EP_HAS_STREAMS) &&
3423 !(ep_state & EP_GETTING_STREAMS)) {
3424 xhci_warn(xhci, "WARN Can't disable streams for "
3425 "endpoint 0x%x, "
3426 "streams are already disabled!\n",
3427 eps[i]->desc.bEndpointAddress);
3428 xhci_warn(xhci, "WARN xhci_free_streams() called "
3429 "with non-streams endpoint\n");
3430 return 0;
3431 }
3432 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3433 }
3434 return changed_ep_bitmask;
3435}
3436
3437/*
3438 * The USB device drivers use this function (through the HCD interface in USB
3439 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3440 * coordinate mass storage command queueing across multiple endpoints (basically
3441 * a stream ID == a task ID).
3442 *
3443 * Setting up streams involves allocating the same size stream context array
3444 * for each endpoint and issuing a configure endpoint command for all endpoints.
3445 *
3446 * Don't allow the call to succeed if one endpoint only supports one stream
3447 * (which means it doesn't support streams at all).
3448 *
3449 * Drivers may get less stream IDs than they asked for, if the host controller
3450 * hardware or endpoints claim they can't support the number of requested
3451 * stream IDs.
3452 */
3453static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3454 struct usb_host_endpoint **eps, unsigned int num_eps,
3455 unsigned int num_streams, gfp_t mem_flags)
3456{
3457 int i, ret;
3458 struct xhci_hcd *xhci;
3459 struct xhci_virt_device *vdev;
3460 struct xhci_command *config_cmd;
3461 struct xhci_input_control_ctx *ctrl_ctx;
3462 unsigned int ep_index;
3463 unsigned int num_stream_ctxs;
3464 unsigned int max_packet;
3465 unsigned long flags;
3466 u32 changed_ep_bitmask = 0;
3467
3468 if (!eps)
3469 return -EINVAL;
3470
3471 /* Add one to the number of streams requested to account for
3472 * stream 0 that is reserved for xHCI usage.
3473 */
3474 num_streams += 1;
3475 xhci = hcd_to_xhci(hcd);
3476 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3477 num_streams);
3478
3479 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3480 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3481 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3482 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3483 return -ENOSYS;
3484 }
3485
3486 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3487 if (!config_cmd)
3488 return -ENOMEM;
3489
3490 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3491 if (!ctrl_ctx) {
3492 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3493 __func__);
3494 xhci_free_command(xhci, config_cmd);
3495 return -ENOMEM;
3496 }
3497
3498 /* Check to make sure all endpoints are not already configured for
3499 * streams. While we're at it, find the maximum number of streams that
3500 * all the endpoints will support and check for duplicate endpoints.
3501 */
3502 spin_lock_irqsave(&xhci->lock, flags);
3503 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3504 num_eps, &num_streams, &changed_ep_bitmask);
3505 if (ret < 0) {
3506 xhci_free_command(xhci, config_cmd);
3507 spin_unlock_irqrestore(&xhci->lock, flags);
3508 return ret;
3509 }
3510 if (num_streams <= 1) {
3511 xhci_warn(xhci, "WARN: endpoints can't handle "
3512 "more than one stream.\n");
3513 xhci_free_command(xhci, config_cmd);
3514 spin_unlock_irqrestore(&xhci->lock, flags);
3515 return -EINVAL;
3516 }
3517 vdev = xhci->devs[udev->slot_id];
3518 /* Mark each endpoint as being in transition, so
3519 * xhci_urb_enqueue() will reject all URBs.
3520 */
3521 for (i = 0; i < num_eps; i++) {
3522 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3523 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3524 }
3525 spin_unlock_irqrestore(&xhci->lock, flags);
3526
3527 /* Setup internal data structures and allocate HW data structures for
3528 * streams (but don't install the HW structures in the input context
3529 * until we're sure all memory allocation succeeded).
3530 */
3531 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3532 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3533 num_stream_ctxs, num_streams);
3534
3535 for (i = 0; i < num_eps; i++) {
3536 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3537 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3538 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3539 num_stream_ctxs,
3540 num_streams,
3541 max_packet, mem_flags);
3542 if (!vdev->eps[ep_index].stream_info)
3543 goto cleanup;
3544 /* Set maxPstreams in endpoint context and update deq ptr to
3545 * point to stream context array. FIXME
3546 */
3547 }
3548
3549 /* Set up the input context for a configure endpoint command. */
3550 for (i = 0; i < num_eps; i++) {
3551 struct xhci_ep_ctx *ep_ctx;
3552
3553 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3554 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3555
3556 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3557 vdev->out_ctx, ep_index);
3558 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3559 vdev->eps[ep_index].stream_info);
3560 }
3561 /* Tell the HW to drop its old copy of the endpoint context info
3562 * and add the updated copy from the input context.
3563 */
3564 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3565 vdev->out_ctx, ctrl_ctx,
3566 changed_ep_bitmask, changed_ep_bitmask);
3567
3568 /* Issue and wait for the configure endpoint command */
3569 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3570 false, false);
3571
3572 /* xHC rejected the configure endpoint command for some reason, so we
3573 * leave the old ring intact and free our internal streams data
3574 * structure.
3575 */
3576 if (ret < 0)
3577 goto cleanup;
3578
3579 spin_lock_irqsave(&xhci->lock, flags);
3580 for (i = 0; i < num_eps; i++) {
3581 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3582 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3583 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3584 udev->slot_id, ep_index);
3585 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3586 }
3587 xhci_free_command(xhci, config_cmd);
3588 spin_unlock_irqrestore(&xhci->lock, flags);
3589
3590 /* Subtract 1 for stream 0, which drivers can't use */
3591 return num_streams - 1;
3592
3593cleanup:
3594 /* If it didn't work, free the streams! */
3595 for (i = 0; i < num_eps; i++) {
3596 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3597 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3598 vdev->eps[ep_index].stream_info = NULL;
3599 /* FIXME Unset maxPstreams in endpoint context and
3600 * update deq ptr to point to normal string ring.
3601 */
3602 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3603 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3604 xhci_endpoint_zero(xhci, vdev, eps[i]);
3605 }
3606 xhci_free_command(xhci, config_cmd);
3607 return -ENOMEM;
3608}
3609
3610/* Transition the endpoint from using streams to being a "normal" endpoint
3611 * without streams.
3612 *
3613 * Modify the endpoint context state, submit a configure endpoint command,
3614 * and free all endpoint rings for streams if that completes successfully.
3615 */
3616static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3617 struct usb_host_endpoint **eps, unsigned int num_eps,
3618 gfp_t mem_flags)
3619{
3620 int i, ret;
3621 struct xhci_hcd *xhci;
3622 struct xhci_virt_device *vdev;
3623 struct xhci_command *command;
3624 struct xhci_input_control_ctx *ctrl_ctx;
3625 unsigned int ep_index;
3626 unsigned long flags;
3627 u32 changed_ep_bitmask;
3628
3629 xhci = hcd_to_xhci(hcd);
3630 vdev = xhci->devs[udev->slot_id];
3631
3632 /* Set up a configure endpoint command to remove the streams rings */
3633 spin_lock_irqsave(&xhci->lock, flags);
3634 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3635 udev, eps, num_eps);
3636 if (changed_ep_bitmask == 0) {
3637 spin_unlock_irqrestore(&xhci->lock, flags);
3638 return -EINVAL;
3639 }
3640
3641 /* Use the xhci_command structure from the first endpoint. We may have
3642 * allocated too many, but the driver may call xhci_free_streams() for
3643 * each endpoint it grouped into one call to xhci_alloc_streams().
3644 */
3645 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3646 command = vdev->eps[ep_index].stream_info->free_streams_command;
3647 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3648 if (!ctrl_ctx) {
3649 spin_unlock_irqrestore(&xhci->lock, flags);
3650 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3651 __func__);
3652 return -EINVAL;
3653 }
3654
3655 for (i = 0; i < num_eps; i++) {
3656 struct xhci_ep_ctx *ep_ctx;
3657
3658 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3659 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3660 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3661 EP_GETTING_NO_STREAMS;
3662
3663 xhci_endpoint_copy(xhci, command->in_ctx,
3664 vdev->out_ctx, ep_index);
3665 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3666 &vdev->eps[ep_index]);
3667 }
3668 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3669 vdev->out_ctx, ctrl_ctx,
3670 changed_ep_bitmask, changed_ep_bitmask);
3671 spin_unlock_irqrestore(&xhci->lock, flags);
3672
3673 /* Issue and wait for the configure endpoint command,
3674 * which must succeed.
3675 */
3676 ret = xhci_configure_endpoint(xhci, udev, command,
3677 false, true);
3678
3679 /* xHC rejected the configure endpoint command for some reason, so we
3680 * leave the streams rings intact.
3681 */
3682 if (ret < 0)
3683 return ret;
3684
3685 spin_lock_irqsave(&xhci->lock, flags);
3686 for (i = 0; i < num_eps; i++) {
3687 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3688 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3689 vdev->eps[ep_index].stream_info = NULL;
3690 /* FIXME Unset maxPstreams in endpoint context and
3691 * update deq ptr to point to normal string ring.
3692 */
3693 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3694 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3695 }
3696 spin_unlock_irqrestore(&xhci->lock, flags);
3697
3698 return 0;
3699}
3700
3701/*
3702 * Deletes endpoint resources for endpoints that were active before a Reset
3703 * Device command, or a Disable Slot command. The Reset Device command leaves
3704 * the control endpoint intact, whereas the Disable Slot command deletes it.
3705 *
3706 * Must be called with xhci->lock held.
3707 */
3708void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3709 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3710{
3711 int i;
3712 unsigned int num_dropped_eps = 0;
3713 unsigned int drop_flags = 0;
3714
3715 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3716 if (virt_dev->eps[i].ring) {
3717 drop_flags |= 1 << i;
3718 num_dropped_eps++;
3719 }
3720 }
3721 xhci->num_active_eps -= num_dropped_eps;
3722 if (num_dropped_eps)
3723 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3724 "Dropped %u ep ctxs, flags = 0x%x, "
3725 "%u now active.",
3726 num_dropped_eps, drop_flags,
3727 xhci->num_active_eps);
3728}
3729
3730/*
3731 * This submits a Reset Device Command, which will set the device state to 0,
3732 * set the device address to 0, and disable all the endpoints except the default
3733 * control endpoint. The USB core should come back and call
3734 * xhci_address_device(), and then re-set up the configuration. If this is
3735 * called because of a usb_reset_and_verify_device(), then the old alternate
3736 * settings will be re-installed through the normal bandwidth allocation
3737 * functions.
3738 *
3739 * Wait for the Reset Device command to finish. Remove all structures
3740 * associated with the endpoints that were disabled. Clear the input device
3741 * structure? Reset the control endpoint 0 max packet size?
3742 *
3743 * If the virt_dev to be reset does not exist or does not match the udev,
3744 * it means the device is lost, possibly due to the xHC restore error and
3745 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3746 * re-allocate the device.
3747 */
3748static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3749 struct usb_device *udev)
3750{
3751 int ret, i;
3752 unsigned long flags;
3753 struct xhci_hcd *xhci;
3754 unsigned int slot_id;
3755 struct xhci_virt_device *virt_dev;
3756 struct xhci_command *reset_device_cmd;
3757 struct xhci_slot_ctx *slot_ctx;
3758 int old_active_eps = 0;
3759
3760 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3761 if (ret <= 0)
3762 return ret;
3763 xhci = hcd_to_xhci(hcd);
3764 slot_id = udev->slot_id;
3765 virt_dev = xhci->devs[slot_id];
3766 if (!virt_dev) {
3767 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3768 "not exist. Re-allocate the device\n", slot_id);
3769 ret = xhci_alloc_dev(hcd, udev);
3770 if (ret == 1)
3771 return 0;
3772 else
3773 return -EINVAL;
3774 }
3775
3776 if (virt_dev->tt_info)
3777 old_active_eps = virt_dev->tt_info->active_eps;
3778
3779 if (virt_dev->udev != udev) {
3780 /* If the virt_dev and the udev does not match, this virt_dev
3781 * may belong to another udev.
3782 * Re-allocate the device.
3783 */
3784 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3785 "not match the udev. Re-allocate the device\n",
3786 slot_id);
3787 ret = xhci_alloc_dev(hcd, udev);
3788 if (ret == 1)
3789 return 0;
3790 else
3791 return -EINVAL;
3792 }
3793
3794 /* If device is not setup, there is no point in resetting it */
3795 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3796 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3797 SLOT_STATE_DISABLED)
3798 return 0;
3799
3800 trace_xhci_discover_or_reset_device(slot_ctx);
3801
3802 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3803 /* Allocate the command structure that holds the struct completion.
3804 * Assume we're in process context, since the normal device reset
3805 * process has to wait for the device anyway. Storage devices are
3806 * reset as part of error handling, so use GFP_NOIO instead of
3807 * GFP_KERNEL.
3808 */
3809 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3810 if (!reset_device_cmd) {
3811 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3812 return -ENOMEM;
3813 }
3814
3815 /* Attempt to submit the Reset Device command to the command ring */
3816 spin_lock_irqsave(&xhci->lock, flags);
3817
3818 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3819 if (ret) {
3820 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3821 spin_unlock_irqrestore(&xhci->lock, flags);
3822 goto command_cleanup;
3823 }
3824 xhci_ring_cmd_db(xhci);
3825 spin_unlock_irqrestore(&xhci->lock, flags);
3826
3827 /* Wait for the Reset Device command to finish */
3828 wait_for_completion(reset_device_cmd->completion);
3829
3830 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3831 * unless we tried to reset a slot ID that wasn't enabled,
3832 * or the device wasn't in the addressed or configured state.
3833 */
3834 ret = reset_device_cmd->status;
3835 switch (ret) {
3836 case COMP_COMMAND_ABORTED:
3837 case COMP_COMMAND_RING_STOPPED:
3838 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3839 ret = -ETIME;
3840 goto command_cleanup;
3841 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3842 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3843 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3844 slot_id,
3845 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3846 xhci_dbg(xhci, "Not freeing device rings.\n");
3847 /* Don't treat this as an error. May change my mind later. */
3848 ret = 0;
3849 goto command_cleanup;
3850 case COMP_SUCCESS:
3851 xhci_dbg(xhci, "Successful reset device command.\n");
3852 break;
3853 default:
3854 if (xhci_is_vendor_info_code(xhci, ret))
3855 break;
3856 xhci_warn(xhci, "Unknown completion code %u for "
3857 "reset device command.\n", ret);
3858 ret = -EINVAL;
3859 goto command_cleanup;
3860 }
3861
3862 /* Free up host controller endpoint resources */
3863 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3864 spin_lock_irqsave(&xhci->lock, flags);
3865 /* Don't delete the default control endpoint resources */
3866 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3867 spin_unlock_irqrestore(&xhci->lock, flags);
3868 }
3869
3870 /* Everything but endpoint 0 is disabled, so free the rings. */
3871 for (i = 1; i < 31; i++) {
3872 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3873
3874 if (ep->ep_state & EP_HAS_STREAMS) {
3875 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3876 xhci_get_endpoint_address(i));
3877 xhci_free_stream_info(xhci, ep->stream_info);
3878 ep->stream_info = NULL;
3879 ep->ep_state &= ~EP_HAS_STREAMS;
3880 }
3881
3882 if (ep->ring) {
3883 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3884 xhci_free_endpoint_ring(xhci, virt_dev, i);
3885 }
3886 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3887 xhci_drop_ep_from_interval_table(xhci,
3888 &virt_dev->eps[i].bw_info,
3889 virt_dev->bw_table,
3890 udev,
3891 &virt_dev->eps[i],
3892 virt_dev->tt_info);
3893 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3894 }
3895 /* If necessary, update the number of active TTs on this root port */
3896 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3897 virt_dev->flags = 0;
3898 ret = 0;
3899
3900command_cleanup:
3901 xhci_free_command(xhci, reset_device_cmd);
3902 return ret;
3903}
3904
3905/*
3906 * At this point, the struct usb_device is about to go away, the device has
3907 * disconnected, and all traffic has been stopped and the endpoints have been
3908 * disabled. Free any HC data structures associated with that device.
3909 */
3910static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3911{
3912 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3913 struct xhci_virt_device *virt_dev;
3914 struct xhci_slot_ctx *slot_ctx;
3915 unsigned long flags;
3916 int i, ret;
3917
3918 /*
3919 * We called pm_runtime_get_noresume when the device was attached.
3920 * Decrement the counter here to allow controller to runtime suspend
3921 * if no devices remain.
3922 */
3923 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3924 pm_runtime_put_noidle(hcd->self.controller);
3925
3926 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3927 /* If the host is halted due to driver unload, we still need to free the
3928 * device.
3929 */
3930 if (ret <= 0 && ret != -ENODEV)
3931 return;
3932
3933 virt_dev = xhci->devs[udev->slot_id];
3934 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3935 trace_xhci_free_dev(slot_ctx);
3936
3937 /* Stop any wayward timer functions (which may grab the lock) */
3938 for (i = 0; i < 31; i++) {
3939 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3940 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3941 }
3942 virt_dev->udev = NULL;
3943 xhci_disable_slot(xhci, udev->slot_id);
3944
3945 spin_lock_irqsave(&xhci->lock, flags);
3946 xhci_free_virt_device(xhci, udev->slot_id);
3947 spin_unlock_irqrestore(&xhci->lock, flags);
3948
3949}
3950
3951int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3952{
3953 struct xhci_command *command;
3954 unsigned long flags;
3955 u32 state;
3956 int ret = 0;
3957
3958 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3959 if (!command)
3960 return -ENOMEM;
3961
3962 xhci_debugfs_remove_slot(xhci, slot_id);
3963
3964 spin_lock_irqsave(&xhci->lock, flags);
3965 /* Don't disable the slot if the host controller is dead. */
3966 state = readl(&xhci->op_regs->status);
3967 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3968 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3969 spin_unlock_irqrestore(&xhci->lock, flags);
3970 kfree(command);
3971 return -ENODEV;
3972 }
3973
3974 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3975 slot_id);
3976 if (ret) {
3977 spin_unlock_irqrestore(&xhci->lock, flags);
3978 kfree(command);
3979 return ret;
3980 }
3981 xhci_ring_cmd_db(xhci);
3982 spin_unlock_irqrestore(&xhci->lock, flags);
3983
3984 wait_for_completion(command->completion);
3985
3986 if (command->status != COMP_SUCCESS)
3987 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3988 slot_id, command->status);
3989
3990 xhci_free_command(xhci, command);
3991
3992 return ret;
3993}
3994
3995/*
3996 * Checks if we have enough host controller resources for the default control
3997 * endpoint.
3998 *
3999 * Must be called with xhci->lock held.
4000 */
4001static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4002{
4003 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4004 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4005 "Not enough ep ctxs: "
4006 "%u active, need to add 1, limit is %u.",
4007 xhci->num_active_eps, xhci->limit_active_eps);
4008 return -ENOMEM;
4009 }
4010 xhci->num_active_eps += 1;
4011 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4012 "Adding 1 ep ctx, %u now active.",
4013 xhci->num_active_eps);
4014 return 0;
4015}
4016
4017
4018/*
4019 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4020 * timed out, or allocating memory failed. Returns 1 on success.
4021 */
4022int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4023{
4024 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4025 struct xhci_virt_device *vdev;
4026 struct xhci_slot_ctx *slot_ctx;
4027 unsigned long flags;
4028 int ret, slot_id;
4029 struct xhci_command *command;
4030
4031 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4032 if (!command)
4033 return 0;
4034
4035 spin_lock_irqsave(&xhci->lock, flags);
4036 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4037 if (ret) {
4038 spin_unlock_irqrestore(&xhci->lock, flags);
4039 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4040 xhci_free_command(xhci, command);
4041 return 0;
4042 }
4043 xhci_ring_cmd_db(xhci);
4044 spin_unlock_irqrestore(&xhci->lock, flags);
4045
4046 wait_for_completion(command->completion);
4047 slot_id = command->slot_id;
4048
4049 if (!slot_id || command->status != COMP_SUCCESS) {
4050 xhci_err(xhci, "Error while assigning device slot ID\n");
4051 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4052 HCS_MAX_SLOTS(
4053 readl(&xhci->cap_regs->hcs_params1)));
4054 xhci_free_command(xhci, command);
4055 return 0;
4056 }
4057
4058 xhci_free_command(xhci, command);
4059
4060 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4061 spin_lock_irqsave(&xhci->lock, flags);
4062 ret = xhci_reserve_host_control_ep_resources(xhci);
4063 if (ret) {
4064 spin_unlock_irqrestore(&xhci->lock, flags);
4065 xhci_warn(xhci, "Not enough host resources, "
4066 "active endpoint contexts = %u\n",
4067 xhci->num_active_eps);
4068 goto disable_slot;
4069 }
4070 spin_unlock_irqrestore(&xhci->lock, flags);
4071 }
4072 /* Use GFP_NOIO, since this function can be called from
4073 * xhci_discover_or_reset_device(), which may be called as part of
4074 * mass storage driver error handling.
4075 */
4076 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4077 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4078 goto disable_slot;
4079 }
4080 vdev = xhci->devs[slot_id];
4081 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4082 trace_xhci_alloc_dev(slot_ctx);
4083
4084 udev->slot_id = slot_id;
4085
4086 xhci_debugfs_create_slot(xhci, slot_id);
4087
4088 /*
4089 * If resetting upon resume, we can't put the controller into runtime
4090 * suspend if there is a device attached.
4091 */
4092 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4093 pm_runtime_get_noresume(hcd->self.controller);
4094
4095 /* Is this a LS or FS device under a HS hub? */
4096 /* Hub or peripherial? */
4097 return 1;
4098
4099disable_slot:
4100 xhci_disable_slot(xhci, udev->slot_id);
4101 xhci_free_virt_device(xhci, udev->slot_id);
4102
4103 return 0;
4104}
4105
4106/*
4107 * Issue an Address Device command and optionally send a corresponding
4108 * SetAddress request to the device.
4109 */
4110static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4111 enum xhci_setup_dev setup)
4112{
4113 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4114 unsigned long flags;
4115 struct xhci_virt_device *virt_dev;
4116 int ret = 0;
4117 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4118 struct xhci_slot_ctx *slot_ctx;
4119 struct xhci_input_control_ctx *ctrl_ctx;
4120 u64 temp_64;
4121 struct xhci_command *command = NULL;
4122
4123 mutex_lock(&xhci->mutex);
4124
4125 if (xhci->xhc_state) { /* dying, removing or halted */
4126 ret = -ESHUTDOWN;
4127 goto out;
4128 }
4129
4130 if (!udev->slot_id) {
4131 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4132 "Bad Slot ID %d", udev->slot_id);
4133 ret = -EINVAL;
4134 goto out;
4135 }
4136
4137 virt_dev = xhci->devs[udev->slot_id];
4138
4139 if (WARN_ON(!virt_dev)) {
4140 /*
4141 * In plug/unplug torture test with an NEC controller,
4142 * a zero-dereference was observed once due to virt_dev = 0.
4143 * Print useful debug rather than crash if it is observed again!
4144 */
4145 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4146 udev->slot_id);
4147 ret = -EINVAL;
4148 goto out;
4149 }
4150 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4151 trace_xhci_setup_device_slot(slot_ctx);
4152
4153 if (setup == SETUP_CONTEXT_ONLY) {
4154 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4155 SLOT_STATE_DEFAULT) {
4156 xhci_dbg(xhci, "Slot already in default state\n");
4157 goto out;
4158 }
4159 }
4160
4161 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4162 if (!command) {
4163 ret = -ENOMEM;
4164 goto out;
4165 }
4166
4167 command->in_ctx = virt_dev->in_ctx;
4168
4169 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4170 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4171 if (!ctrl_ctx) {
4172 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4173 __func__);
4174 ret = -EINVAL;
4175 goto out;
4176 }
4177 /*
4178 * If this is the first Set Address since device plug-in or
4179 * virt_device realloaction after a resume with an xHCI power loss,
4180 * then set up the slot context.
4181 */
4182 if (!slot_ctx->dev_info)
4183 xhci_setup_addressable_virt_dev(xhci, udev);
4184 /* Otherwise, update the control endpoint ring enqueue pointer. */
4185 else
4186 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4187 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4188 ctrl_ctx->drop_flags = 0;
4189
4190 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4191 le32_to_cpu(slot_ctx->dev_info) >> 27);
4192
4193 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4194 spin_lock_irqsave(&xhci->lock, flags);
4195 trace_xhci_setup_device(virt_dev);
4196 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4197 udev->slot_id, setup);
4198 if (ret) {
4199 spin_unlock_irqrestore(&xhci->lock, flags);
4200 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4201 "FIXME: allocate a command ring segment");
4202 goto out;
4203 }
4204 xhci_ring_cmd_db(xhci);
4205 spin_unlock_irqrestore(&xhci->lock, flags);
4206
4207 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4208 wait_for_completion(command->completion);
4209
4210 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4211 * the SetAddress() "recovery interval" required by USB and aborting the
4212 * command on a timeout.
4213 */
4214 switch (command->status) {
4215 case COMP_COMMAND_ABORTED:
4216 case COMP_COMMAND_RING_STOPPED:
4217 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4218 ret = -ETIME;
4219 break;
4220 case COMP_CONTEXT_STATE_ERROR:
4221 case COMP_SLOT_NOT_ENABLED_ERROR:
4222 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4223 act, udev->slot_id);
4224 ret = -EINVAL;
4225 break;
4226 case COMP_USB_TRANSACTION_ERROR:
4227 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4228
4229 mutex_unlock(&xhci->mutex);
4230 ret = xhci_disable_slot(xhci, udev->slot_id);
4231 xhci_free_virt_device(xhci, udev->slot_id);
4232 if (!ret) {
4233 if (xhci_alloc_dev(hcd, udev) == 1)
4234 xhci_setup_addressable_virt_dev(xhci, udev);
4235 }
4236 kfree(command->completion);
4237 kfree(command);
4238 return -EPROTO;
4239 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4240 dev_warn(&udev->dev,
4241 "ERROR: Incompatible device for setup %s command\n", act);
4242 ret = -ENODEV;
4243 break;
4244 case COMP_SUCCESS:
4245 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4246 "Successful setup %s command", act);
4247 break;
4248 default:
4249 xhci_err(xhci,
4250 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4251 act, command->status);
4252 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4253 ret = -EINVAL;
4254 break;
4255 }
4256 if (ret)
4257 goto out;
4258 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4259 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4260 "Op regs DCBAA ptr = %#016llx", temp_64);
4261 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4262 "Slot ID %d dcbaa entry @%p = %#016llx",
4263 udev->slot_id,
4264 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4265 (unsigned long long)
4266 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4267 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4268 "Output Context DMA address = %#08llx",
4269 (unsigned long long)virt_dev->out_ctx->dma);
4270 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4271 le32_to_cpu(slot_ctx->dev_info) >> 27);
4272 /*
4273 * USB core uses address 1 for the roothubs, so we add one to the
4274 * address given back to us by the HC.
4275 */
4276 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4277 le32_to_cpu(slot_ctx->dev_info) >> 27);
4278 /* Zero the input context control for later use */
4279 ctrl_ctx->add_flags = 0;
4280 ctrl_ctx->drop_flags = 0;
4281 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4282 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4283
4284 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4285 "Internal device address = %d",
4286 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4287out:
4288 mutex_unlock(&xhci->mutex);
4289 if (command) {
4290 kfree(command->completion);
4291 kfree(command);
4292 }
4293 return ret;
4294}
4295
4296static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4297{
4298 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4299}
4300
4301static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4302{
4303 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4304}
4305
4306/*
4307 * Transfer the port index into real index in the HW port status
4308 * registers. Caculate offset between the port's PORTSC register
4309 * and port status base. Divide the number of per port register
4310 * to get the real index. The raw port number bases 1.
4311 */
4312int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4313{
4314 struct xhci_hub *rhub;
4315
4316 rhub = xhci_get_rhub(hcd);
4317 return rhub->ports[port1 - 1]->hw_portnum + 1;
4318}
4319
4320/*
4321 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4322 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4323 */
4324static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4325 struct usb_device *udev, u16 max_exit_latency)
4326{
4327 struct xhci_virt_device *virt_dev;
4328 struct xhci_command *command;
4329 struct xhci_input_control_ctx *ctrl_ctx;
4330 struct xhci_slot_ctx *slot_ctx;
4331 unsigned long flags;
4332 int ret;
4333
4334 spin_lock_irqsave(&xhci->lock, flags);
4335
4336 virt_dev = xhci->devs[udev->slot_id];
4337
4338 /*
4339 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4340 * xHC was re-initialized. Exit latency will be set later after
4341 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4342 */
4343
4344 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4345 spin_unlock_irqrestore(&xhci->lock, flags);
4346 return 0;
4347 }
4348
4349 /* Attempt to issue an Evaluate Context command to change the MEL. */
4350 command = xhci->lpm_command;
4351 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4352 if (!ctrl_ctx) {
4353 spin_unlock_irqrestore(&xhci->lock, flags);
4354 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4355 __func__);
4356 return -ENOMEM;
4357 }
4358
4359 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4360 spin_unlock_irqrestore(&xhci->lock, flags);
4361
4362 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4363 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4364 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4365 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4366 slot_ctx->dev_state = 0;
4367
4368 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4369 "Set up evaluate context for LPM MEL change.");
4370
4371 /* Issue and wait for the evaluate context command. */
4372 ret = xhci_configure_endpoint(xhci, udev, command,
4373 true, true);
4374
4375 if (!ret) {
4376 spin_lock_irqsave(&xhci->lock, flags);
4377 virt_dev->current_mel = max_exit_latency;
4378 spin_unlock_irqrestore(&xhci->lock, flags);
4379 }
4380 return ret;
4381}
4382
4383#ifdef CONFIG_PM
4384
4385/* BESL to HIRD Encoding array for USB2 LPM */
4386static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4387 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4388
4389/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4390static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4391 struct usb_device *udev)
4392{
4393 int u2del, besl, besl_host;
4394 int besl_device = 0;
4395 u32 field;
4396
4397 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4398 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4399
4400 if (field & USB_BESL_SUPPORT) {
4401 for (besl_host = 0; besl_host < 16; besl_host++) {
4402 if (xhci_besl_encoding[besl_host] >= u2del)
4403 break;
4404 }
4405 /* Use baseline BESL value as default */
4406 if (field & USB_BESL_BASELINE_VALID)
4407 besl_device = USB_GET_BESL_BASELINE(field);
4408 else if (field & USB_BESL_DEEP_VALID)
4409 besl_device = USB_GET_BESL_DEEP(field);
4410 } else {
4411 if (u2del <= 50)
4412 besl_host = 0;
4413 else
4414 besl_host = (u2del - 51) / 75 + 1;
4415 }
4416
4417 besl = besl_host + besl_device;
4418 if (besl > 15)
4419 besl = 15;
4420
4421 return besl;
4422}
4423
4424/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4425static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4426{
4427 u32 field;
4428 int l1;
4429 int besld = 0;
4430 int hirdm = 0;
4431
4432 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4433
4434 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4435 l1 = udev->l1_params.timeout / 256;
4436
4437 /* device has preferred BESLD */
4438 if (field & USB_BESL_DEEP_VALID) {
4439 besld = USB_GET_BESL_DEEP(field);
4440 hirdm = 1;
4441 }
4442
4443 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4444}
4445
4446static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4447 struct usb_device *udev, int enable)
4448{
4449 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4450 struct xhci_port **ports;
4451 __le32 __iomem *pm_addr, *hlpm_addr;
4452 u32 pm_val, hlpm_val, field;
4453 unsigned int port_num;
4454 unsigned long flags;
4455 int hird, exit_latency;
4456 int ret;
4457
4458 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4459 return -EPERM;
4460
4461 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4462 !udev->lpm_capable)
4463 return -EPERM;
4464
4465 if (!udev->parent || udev->parent->parent ||
4466 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4467 return -EPERM;
4468
4469 if (udev->usb2_hw_lpm_capable != 1)
4470 return -EPERM;
4471
4472 spin_lock_irqsave(&xhci->lock, flags);
4473
4474 ports = xhci->usb2_rhub.ports;
4475 port_num = udev->portnum - 1;
4476 pm_addr = ports[port_num]->addr + PORTPMSC;
4477 pm_val = readl(pm_addr);
4478 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4479
4480 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4481 enable ? "enable" : "disable", port_num + 1);
4482
4483 if (enable) {
4484 /* Host supports BESL timeout instead of HIRD */
4485 if (udev->usb2_hw_lpm_besl_capable) {
4486 /* if device doesn't have a preferred BESL value use a
4487 * default one which works with mixed HIRD and BESL
4488 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4489 */
4490 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4491 if ((field & USB_BESL_SUPPORT) &&
4492 (field & USB_BESL_BASELINE_VALID))
4493 hird = USB_GET_BESL_BASELINE(field);
4494 else
4495 hird = udev->l1_params.besl;
4496
4497 exit_latency = xhci_besl_encoding[hird];
4498 spin_unlock_irqrestore(&xhci->lock, flags);
4499
4500 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4501 * input context for link powermanagement evaluate
4502 * context commands. It is protected by hcd->bandwidth
4503 * mutex and is shared by all devices. We need to set
4504 * the max ext latency in USB 2 BESL LPM as well, so
4505 * use the same mutex and xhci_change_max_exit_latency()
4506 */
4507 mutex_lock(hcd->bandwidth_mutex);
4508 ret = xhci_change_max_exit_latency(xhci, udev,
4509 exit_latency);
4510 mutex_unlock(hcd->bandwidth_mutex);
4511
4512 if (ret < 0)
4513 return ret;
4514 spin_lock_irqsave(&xhci->lock, flags);
4515
4516 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4517 writel(hlpm_val, hlpm_addr);
4518 /* flush write */
4519 readl(hlpm_addr);
4520 } else {
4521 hird = xhci_calculate_hird_besl(xhci, udev);
4522 }
4523
4524 pm_val &= ~PORT_HIRD_MASK;
4525 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4526 writel(pm_val, pm_addr);
4527 pm_val = readl(pm_addr);
4528 pm_val |= PORT_HLE;
4529 writel(pm_val, pm_addr);
4530 /* flush write */
4531 readl(pm_addr);
4532 } else {
4533 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4534 writel(pm_val, pm_addr);
4535 /* flush write */
4536 readl(pm_addr);
4537 if (udev->usb2_hw_lpm_besl_capable) {
4538 spin_unlock_irqrestore(&xhci->lock, flags);
4539 mutex_lock(hcd->bandwidth_mutex);
4540 xhci_change_max_exit_latency(xhci, udev, 0);
4541 mutex_unlock(hcd->bandwidth_mutex);
4542 readl_poll_timeout(ports[port_num]->addr, pm_val,
4543 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4544 100, 10000);
4545 return 0;
4546 }
4547 }
4548
4549 spin_unlock_irqrestore(&xhci->lock, flags);
4550 return 0;
4551}
4552
4553/* check if a usb2 port supports a given extened capability protocol
4554 * only USB2 ports extended protocol capability values are cached.
4555 * Return 1 if capability is supported
4556 */
4557static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4558 unsigned capability)
4559{
4560 u32 port_offset, port_count;
4561 int i;
4562
4563 for (i = 0; i < xhci->num_ext_caps; i++) {
4564 if (xhci->ext_caps[i] & capability) {
4565 /* port offsets starts at 1 */
4566 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4567 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4568 if (port >= port_offset &&
4569 port < port_offset + port_count)
4570 return 1;
4571 }
4572 }
4573 return 0;
4574}
4575
4576static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4577{
4578 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4579 int portnum = udev->portnum - 1;
4580
4581 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4582 return 0;
4583
4584 /* we only support lpm for non-hub device connected to root hub yet */
4585 if (!udev->parent || udev->parent->parent ||
4586 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4587 return 0;
4588
4589 if (xhci->hw_lpm_support == 1 &&
4590 xhci_check_usb2_port_capability(
4591 xhci, portnum, XHCI_HLC)) {
4592 udev->usb2_hw_lpm_capable = 1;
4593 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4594 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4595 if (xhci_check_usb2_port_capability(xhci, portnum,
4596 XHCI_BLC))
4597 udev->usb2_hw_lpm_besl_capable = 1;
4598 }
4599
4600 return 0;
4601}
4602
4603/*---------------------- USB 3.0 Link PM functions ------------------------*/
4604
4605/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4606static unsigned long long xhci_service_interval_to_ns(
4607 struct usb_endpoint_descriptor *desc)
4608{
4609 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4610}
4611
4612static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4613 enum usb3_link_state state)
4614{
4615 unsigned long long sel;
4616 unsigned long long pel;
4617 unsigned int max_sel_pel;
4618 char *state_name;
4619
4620 switch (state) {
4621 case USB3_LPM_U1:
4622 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4623 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4624 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4625 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4626 state_name = "U1";
4627 break;
4628 case USB3_LPM_U2:
4629 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4630 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4631 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4632 state_name = "U2";
4633 break;
4634 default:
4635 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4636 __func__);
4637 return USB3_LPM_DISABLED;
4638 }
4639
4640 if (sel <= max_sel_pel && pel <= max_sel_pel)
4641 return USB3_LPM_DEVICE_INITIATED;
4642
4643 if (sel > max_sel_pel)
4644 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4645 "due to long SEL %llu ms\n",
4646 state_name, sel);
4647 else
4648 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4649 "due to long PEL %llu ms\n",
4650 state_name, pel);
4651 return USB3_LPM_DISABLED;
4652}
4653
4654/* The U1 timeout should be the maximum of the following values:
4655 * - For control endpoints, U1 system exit latency (SEL) * 3
4656 * - For bulk endpoints, U1 SEL * 5
4657 * - For interrupt endpoints:
4658 * - Notification EPs, U1 SEL * 3
4659 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4660 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4661 */
4662static unsigned long long xhci_calculate_intel_u1_timeout(
4663 struct usb_device *udev,
4664 struct usb_endpoint_descriptor *desc)
4665{
4666 unsigned long long timeout_ns;
4667 int ep_type;
4668 int intr_type;
4669
4670 ep_type = usb_endpoint_type(desc);
4671 switch (ep_type) {
4672 case USB_ENDPOINT_XFER_CONTROL:
4673 timeout_ns = udev->u1_params.sel * 3;
4674 break;
4675 case USB_ENDPOINT_XFER_BULK:
4676 timeout_ns = udev->u1_params.sel * 5;
4677 break;
4678 case USB_ENDPOINT_XFER_INT:
4679 intr_type = usb_endpoint_interrupt_type(desc);
4680 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4681 timeout_ns = udev->u1_params.sel * 3;
4682 break;
4683 }
4684 /* Otherwise the calculation is the same as isoc eps */
4685 /* fall through */
4686 case USB_ENDPOINT_XFER_ISOC:
4687 timeout_ns = xhci_service_interval_to_ns(desc);
4688 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4689 if (timeout_ns < udev->u1_params.sel * 2)
4690 timeout_ns = udev->u1_params.sel * 2;
4691 break;
4692 default:
4693 return 0;
4694 }
4695
4696 return timeout_ns;
4697}
4698
4699/* Returns the hub-encoded U1 timeout value. */
4700static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4701 struct usb_device *udev,
4702 struct usb_endpoint_descriptor *desc)
4703{
4704 unsigned long long timeout_ns;
4705
4706 /* Prevent U1 if service interval is shorter than U1 exit latency */
4707 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4708 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4709 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4710 return USB3_LPM_DISABLED;
4711 }
4712 }
4713
4714 if (xhci->quirks & XHCI_INTEL_HOST)
4715 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4716 else
4717 timeout_ns = udev->u1_params.sel;
4718
4719 /* The U1 timeout is encoded in 1us intervals.
4720 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4721 */
4722 if (timeout_ns == USB3_LPM_DISABLED)
4723 timeout_ns = 1;
4724 else
4725 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4726
4727 /* If the necessary timeout value is bigger than what we can set in the
4728 * USB 3.0 hub, we have to disable hub-initiated U1.
4729 */
4730 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4731 return timeout_ns;
4732 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4733 "due to long timeout %llu ms\n", timeout_ns);
4734 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4735}
4736
4737/* The U2 timeout should be the maximum of:
4738 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4739 * - largest bInterval of any active periodic endpoint (to avoid going
4740 * into lower power link states between intervals).
4741 * - the U2 Exit Latency of the device
4742 */
4743static unsigned long long xhci_calculate_intel_u2_timeout(
4744 struct usb_device *udev,
4745 struct usb_endpoint_descriptor *desc)
4746{
4747 unsigned long long timeout_ns;
4748 unsigned long long u2_del_ns;
4749
4750 timeout_ns = 10 * 1000 * 1000;
4751
4752 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4753 (xhci_service_interval_to_ns(desc) > timeout_ns))
4754 timeout_ns = xhci_service_interval_to_ns(desc);
4755
4756 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4757 if (u2_del_ns > timeout_ns)
4758 timeout_ns = u2_del_ns;
4759
4760 return timeout_ns;
4761}
4762
4763/* Returns the hub-encoded U2 timeout value. */
4764static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4765 struct usb_device *udev,
4766 struct usb_endpoint_descriptor *desc)
4767{
4768 unsigned long long timeout_ns;
4769
4770 /* Prevent U2 if service interval is shorter than U2 exit latency */
4771 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4772 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4773 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4774 return USB3_LPM_DISABLED;
4775 }
4776 }
4777
4778 if (xhci->quirks & XHCI_INTEL_HOST)
4779 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4780 else
4781 timeout_ns = udev->u2_params.sel;
4782
4783 /* The U2 timeout is encoded in 256us intervals */
4784 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4785 /* If the necessary timeout value is bigger than what we can set in the
4786 * USB 3.0 hub, we have to disable hub-initiated U2.
4787 */
4788 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4789 return timeout_ns;
4790 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4791 "due to long timeout %llu ms\n", timeout_ns);
4792 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4793}
4794
4795static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4796 struct usb_device *udev,
4797 struct usb_endpoint_descriptor *desc,
4798 enum usb3_link_state state,
4799 u16 *timeout)
4800{
4801 if (state == USB3_LPM_U1)
4802 return xhci_calculate_u1_timeout(xhci, udev, desc);
4803 else if (state == USB3_LPM_U2)
4804 return xhci_calculate_u2_timeout(xhci, udev, desc);
4805
4806 return USB3_LPM_DISABLED;
4807}
4808
4809static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4810 struct usb_device *udev,
4811 struct usb_endpoint_descriptor *desc,
4812 enum usb3_link_state state,
4813 u16 *timeout)
4814{
4815 u16 alt_timeout;
4816
4817 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4818 desc, state, timeout);
4819
4820 /* If we found we can't enable hub-initiated LPM, and
4821 * the U1 or U2 exit latency was too high to allow
4822 * device-initiated LPM as well, then we will disable LPM
4823 * for this device, so stop searching any further.
4824 */
4825 if (alt_timeout == USB3_LPM_DISABLED) {
4826 *timeout = alt_timeout;
4827 return -E2BIG;
4828 }
4829 if (alt_timeout > *timeout)
4830 *timeout = alt_timeout;
4831 return 0;
4832}
4833
4834static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4835 struct usb_device *udev,
4836 struct usb_host_interface *alt,
4837 enum usb3_link_state state,
4838 u16 *timeout)
4839{
4840 int j;
4841
4842 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4843 if (xhci_update_timeout_for_endpoint(xhci, udev,
4844 &alt->endpoint[j].desc, state, timeout))
4845 return -E2BIG;
4846 continue;
4847 }
4848 return 0;
4849}
4850
4851static int xhci_check_intel_tier_policy(struct usb_device *udev,
4852 enum usb3_link_state state)
4853{
4854 struct usb_device *parent;
4855 unsigned int num_hubs;
4856
4857 if (state == USB3_LPM_U2)
4858 return 0;
4859
4860 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4861 for (parent = udev->parent, num_hubs = 0; parent->parent;
4862 parent = parent->parent)
4863 num_hubs++;
4864
4865 if (num_hubs < 2)
4866 return 0;
4867
4868 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4869 " below second-tier hub.\n");
4870 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4871 "to decrease power consumption.\n");
4872 return -E2BIG;
4873}
4874
4875static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4876 struct usb_device *udev,
4877 enum usb3_link_state state)
4878{
4879 if (xhci->quirks & XHCI_INTEL_HOST)
4880 return xhci_check_intel_tier_policy(udev, state);
4881 else
4882 return 0;
4883}
4884
4885/* Returns the U1 or U2 timeout that should be enabled.
4886 * If the tier check or timeout setting functions return with a non-zero exit
4887 * code, that means the timeout value has been finalized and we shouldn't look
4888 * at any more endpoints.
4889 */
4890static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4891 struct usb_device *udev, enum usb3_link_state state)
4892{
4893 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4894 struct usb_host_config *config;
4895 char *state_name;
4896 int i;
4897 u16 timeout = USB3_LPM_DISABLED;
4898
4899 if (state == USB3_LPM_U1)
4900 state_name = "U1";
4901 else if (state == USB3_LPM_U2)
4902 state_name = "U2";
4903 else {
4904 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4905 state);
4906 return timeout;
4907 }
4908
4909 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4910 return timeout;
4911
4912 /* Gather some information about the currently installed configuration
4913 * and alternate interface settings.
4914 */
4915 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4916 state, &timeout))
4917 return timeout;
4918
4919 config = udev->actconfig;
4920 if (!config)
4921 return timeout;
4922
4923 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4924 struct usb_driver *driver;
4925 struct usb_interface *intf = config->interface[i];
4926
4927 if (!intf)
4928 continue;
4929
4930 /* Check if any currently bound drivers want hub-initiated LPM
4931 * disabled.
4932 */
4933 if (intf->dev.driver) {
4934 driver = to_usb_driver(intf->dev.driver);
4935 if (driver && driver->disable_hub_initiated_lpm) {
4936 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4937 state_name, driver->name);
4938 timeout = xhci_get_timeout_no_hub_lpm(udev,
4939 state);
4940 if (timeout == USB3_LPM_DISABLED)
4941 return timeout;
4942 }
4943 }
4944
4945 /* Not sure how this could happen... */
4946 if (!intf->cur_altsetting)
4947 continue;
4948
4949 if (xhci_update_timeout_for_interface(xhci, udev,
4950 intf->cur_altsetting,
4951 state, &timeout))
4952 return timeout;
4953 }
4954 return timeout;
4955}
4956
4957static int calculate_max_exit_latency(struct usb_device *udev,
4958 enum usb3_link_state state_changed,
4959 u16 hub_encoded_timeout)
4960{
4961 unsigned long long u1_mel_us = 0;
4962 unsigned long long u2_mel_us = 0;
4963 unsigned long long mel_us = 0;
4964 bool disabling_u1;
4965 bool disabling_u2;
4966 bool enabling_u1;
4967 bool enabling_u2;
4968
4969 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4970 hub_encoded_timeout == USB3_LPM_DISABLED);
4971 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4972 hub_encoded_timeout == USB3_LPM_DISABLED);
4973
4974 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4975 hub_encoded_timeout != USB3_LPM_DISABLED);
4976 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4977 hub_encoded_timeout != USB3_LPM_DISABLED);
4978
4979 /* If U1 was already enabled and we're not disabling it,
4980 * or we're going to enable U1, account for the U1 max exit latency.
4981 */
4982 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4983 enabling_u1)
4984 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4985 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4986 enabling_u2)
4987 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4988
4989 if (u1_mel_us > u2_mel_us)
4990 mel_us = u1_mel_us;
4991 else
4992 mel_us = u2_mel_us;
4993 /* xHCI host controller max exit latency field is only 16 bits wide. */
4994 if (mel_us > MAX_EXIT) {
4995 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4996 "is too big.\n", mel_us);
4997 return -E2BIG;
4998 }
4999 return mel_us;
5000}
5001
5002/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5003static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5004 struct usb_device *udev, enum usb3_link_state state)
5005{
5006 struct xhci_hcd *xhci;
5007 struct xhci_port *port;
5008 u16 hub_encoded_timeout;
5009 int mel;
5010 int ret;
5011
5012 xhci = hcd_to_xhci(hcd);
5013 /* The LPM timeout values are pretty host-controller specific, so don't
5014 * enable hub-initiated timeouts unless the vendor has provided
5015 * information about their timeout algorithm.
5016 */
5017 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5018 !xhci->devs[udev->slot_id])
5019 return USB3_LPM_DISABLED;
5020
5021 /* If connected to root port then check port can handle lpm */
5022 if (udev->parent && !udev->parent->parent) {
5023 port = xhci->usb3_rhub.ports[udev->portnum - 1];
5024 if (port->lpm_incapable)
5025 return USB3_LPM_DISABLED;
5026 }
5027
5028 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5029 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5030 if (mel < 0) {
5031 /* Max Exit Latency is too big, disable LPM. */
5032 hub_encoded_timeout = USB3_LPM_DISABLED;
5033 mel = 0;
5034 }
5035
5036 ret = xhci_change_max_exit_latency(xhci, udev, mel);
5037 if (ret)
5038 return ret;
5039 return hub_encoded_timeout;
5040}
5041
5042static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5043 struct usb_device *udev, enum usb3_link_state state)
5044{
5045 struct xhci_hcd *xhci;
5046 u16 mel;
5047
5048 xhci = hcd_to_xhci(hcd);
5049 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5050 !xhci->devs[udev->slot_id])
5051 return 0;
5052
5053 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5054 return xhci_change_max_exit_latency(xhci, udev, mel);
5055}
5056#else /* CONFIG_PM */
5057
5058static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5059 struct usb_device *udev, int enable)
5060{
5061 return 0;
5062}
5063
5064static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5065{
5066 return 0;
5067}
5068
5069static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5070 struct usb_device *udev, enum usb3_link_state state)
5071{
5072 return USB3_LPM_DISABLED;
5073}
5074
5075static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5076 struct usb_device *udev, enum usb3_link_state state)
5077{
5078 return 0;
5079}
5080#endif /* CONFIG_PM */
5081
5082/*-------------------------------------------------------------------------*/
5083
5084/* Once a hub descriptor is fetched for a device, we need to update the xHC's
5085 * internal data structures for the device.
5086 */
5087int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5088 struct usb_tt *tt, gfp_t mem_flags)
5089{
5090 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5091 struct xhci_virt_device *vdev;
5092 struct xhci_command *config_cmd;
5093 struct xhci_input_control_ctx *ctrl_ctx;
5094 struct xhci_slot_ctx *slot_ctx;
5095 unsigned long flags;
5096 unsigned think_time;
5097 int ret;
5098
5099 /* Ignore root hubs */
5100 if (!hdev->parent)
5101 return 0;
5102
5103 vdev = xhci->devs[hdev->slot_id];
5104 if (!vdev) {
5105 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5106 return -EINVAL;
5107 }
5108
5109 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5110 if (!config_cmd)
5111 return -ENOMEM;
5112
5113 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5114 if (!ctrl_ctx) {
5115 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5116 __func__);
5117 xhci_free_command(xhci, config_cmd);
5118 return -ENOMEM;
5119 }
5120
5121 spin_lock_irqsave(&xhci->lock, flags);
5122 if (hdev->speed == USB_SPEED_HIGH &&
5123 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5124 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5125 xhci_free_command(xhci, config_cmd);
5126 spin_unlock_irqrestore(&xhci->lock, flags);
5127 return -ENOMEM;
5128 }
5129
5130 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5131 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5132 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5133 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5134 /*
5135 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5136 * but it may be already set to 1 when setup an xHCI virtual
5137 * device, so clear it anyway.
5138 */
5139 if (tt->multi)
5140 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5141 else if (hdev->speed == USB_SPEED_FULL)
5142 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5143
5144 if (xhci->hci_version > 0x95) {
5145 xhci_dbg(xhci, "xHCI version %x needs hub "
5146 "TT think time and number of ports\n",
5147 (unsigned int) xhci->hci_version);
5148 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5149 /* Set TT think time - convert from ns to FS bit times.
5150 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5151 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5152 *
5153 * xHCI 1.0: this field shall be 0 if the device is not a
5154 * High-spped hub.
5155 */
5156 think_time = tt->think_time;
5157 if (think_time != 0)
5158 think_time = (think_time / 666) - 1;
5159 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5160 slot_ctx->tt_info |=
5161 cpu_to_le32(TT_THINK_TIME(think_time));
5162 } else {
5163 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5164 "TT think time or number of ports\n",
5165 (unsigned int) xhci->hci_version);
5166 }
5167 slot_ctx->dev_state = 0;
5168 spin_unlock_irqrestore(&xhci->lock, flags);
5169
5170 xhci_dbg(xhci, "Set up %s for hub device.\n",
5171 (xhci->hci_version > 0x95) ?
5172 "configure endpoint" : "evaluate context");
5173
5174 /* Issue and wait for the configure endpoint or
5175 * evaluate context command.
5176 */
5177 if (xhci->hci_version > 0x95)
5178 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5179 false, false);
5180 else
5181 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5182 true, false);
5183
5184 xhci_free_command(xhci, config_cmd);
5185 return ret;
5186}
5187EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5188
5189static int xhci_get_frame(struct usb_hcd *hcd)
5190{
5191 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5192 /* EHCI mods by the periodic size. Why? */
5193 return readl(&xhci->run_regs->microframe_index) >> 3;
5194}
5195
5196int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5197{
5198 struct xhci_hcd *xhci;
5199 /*
5200 * TODO: Check with DWC3 clients for sysdev according to
5201 * quirks
5202 */
5203 struct device *dev = hcd->self.sysdev;
5204 unsigned int minor_rev;
5205 int retval;
5206
5207 /* Accept arbitrarily long scatter-gather lists */
5208 hcd->self.sg_tablesize = ~0;
5209
5210 /* support to build packet from discontinuous buffers */
5211 hcd->self.no_sg_constraint = 1;
5212
5213 /* XHCI controllers don't stop the ep queue on short packets :| */
5214 hcd->self.no_stop_on_short = 1;
5215
5216 xhci = hcd_to_xhci(hcd);
5217
5218 if (usb_hcd_is_primary_hcd(hcd)) {
5219 xhci->main_hcd = hcd;
5220 xhci->usb2_rhub.hcd = hcd;
5221 /* Mark the first roothub as being USB 2.0.
5222 * The xHCI driver will register the USB 3.0 roothub.
5223 */
5224 hcd->speed = HCD_USB2;
5225 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5226 /*
5227 * USB 2.0 roothub under xHCI has an integrated TT,
5228 * (rate matching hub) as opposed to having an OHCI/UHCI
5229 * companion controller.
5230 */
5231 hcd->has_tt = 1;
5232 } else {
5233 /*
5234 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5235 * should return 0x31 for sbrn, or that the minor revision
5236 * is a two digit BCD containig minor and sub-minor numbers.
5237 * This was later clarified in xHCI 1.2.
5238 *
5239 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5240 * minor revision set to 0x1 instead of 0x10.
5241 */
5242 if (xhci->usb3_rhub.min_rev == 0x1)
5243 minor_rev = 1;
5244 else
5245 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5246
5247 switch (minor_rev) {
5248 case 2:
5249 hcd->speed = HCD_USB32;
5250 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5251 hcd->self.root_hub->rx_lanes = 2;
5252 hcd->self.root_hub->tx_lanes = 2;
5253 break;
5254 case 1:
5255 hcd->speed = HCD_USB31;
5256 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5257 break;
5258 }
5259 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5260 minor_rev,
5261 minor_rev ? "Enhanced " : "");
5262
5263 xhci->usb3_rhub.hcd = hcd;
5264 /* xHCI private pointer was set in xhci_pci_probe for the second
5265 * registered roothub.
5266 */
5267 return 0;
5268 }
5269
5270 mutex_init(&xhci->mutex);
5271 xhci->cap_regs = hcd->regs;
5272 xhci->op_regs = hcd->regs +
5273 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5274 xhci->run_regs = hcd->regs +
5275 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5276 /* Cache read-only capability registers */
5277 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5278 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5279 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5280 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5281 xhci->hci_version = HC_VERSION(xhci->hcc_params);
5282 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5283 if (xhci->hci_version > 0x100)
5284 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5285
5286 xhci->quirks |= quirks;
5287
5288 get_quirks(dev, xhci);
5289
5290 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5291 * success event after a short transfer. This quirk will ignore such
5292 * spurious event.
5293 */
5294 if (xhci->hci_version > 0x96)
5295 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5296
5297 /* Make sure the HC is halted. */
5298 retval = xhci_halt(xhci);
5299 if (retval)
5300 return retval;
5301
5302 xhci_zero_64b_regs(xhci);
5303
5304 xhci_dbg(xhci, "Resetting HCD\n");
5305 /* Reset the internal HC memory state and registers. */
5306 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5307 if (retval)
5308 return retval;
5309 xhci_dbg(xhci, "Reset complete\n");
5310
5311 /*
5312 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5313 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5314 * address memory pointers actually. So, this driver clears the AC64
5315 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5316 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5317 */
5318 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5319 xhci->hcc_params &= ~BIT(0);
5320
5321 /* Set dma_mask and coherent_dma_mask to 64-bits,
5322 * if xHC supports 64-bit addressing */
5323 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5324 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5325 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5326 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5327 } else {
5328 /*
5329 * This is to avoid error in cases where a 32-bit USB
5330 * controller is used on a 64-bit capable system.
5331 */
5332 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5333 if (retval)
5334 return retval;
5335 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5336 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5337 }
5338
5339 xhci_dbg(xhci, "Calling HCD init\n");
5340 /* Initialize HCD and host controller data structures. */
5341 retval = xhci_init(hcd);
5342 if (retval)
5343 return retval;
5344 xhci_dbg(xhci, "Called HCD init\n");
5345
5346 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5347 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5348
5349 return 0;
5350}
5351EXPORT_SYMBOL_GPL(xhci_gen_setup);
5352
5353static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5354 struct usb_host_endpoint *ep)
5355{
5356 struct xhci_hcd *xhci;
5357 struct usb_device *udev;
5358 unsigned int slot_id;
5359 unsigned int ep_index;
5360 unsigned long flags;
5361
5362 xhci = hcd_to_xhci(hcd);
5363
5364 spin_lock_irqsave(&xhci->lock, flags);
5365 udev = (struct usb_device *)ep->hcpriv;
5366 slot_id = udev->slot_id;
5367 ep_index = xhci_get_endpoint_index(&ep->desc);
5368
5369 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5370 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5371 spin_unlock_irqrestore(&xhci->lock, flags);
5372}
5373
5374static const struct hc_driver xhci_hc_driver = {
5375 .description = "xhci-hcd",
5376 .product_desc = "xHCI Host Controller",
5377 .hcd_priv_size = sizeof(struct xhci_hcd),
5378
5379 /*
5380 * generic hardware linkage
5381 */
5382 .irq = xhci_irq,
5383 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED,
5384
5385 /*
5386 * basic lifecycle operations
5387 */
5388 .reset = NULL, /* set in xhci_init_driver() */
5389 .start = xhci_run,
5390 .stop = xhci_stop,
5391 .shutdown = xhci_shutdown,
5392
5393 /*
5394 * managing i/o requests and associated device resources
5395 */
5396 .map_urb_for_dma = xhci_map_urb_for_dma,
5397 .urb_enqueue = xhci_urb_enqueue,
5398 .urb_dequeue = xhci_urb_dequeue,
5399 .alloc_dev = xhci_alloc_dev,
5400 .free_dev = xhci_free_dev,
5401 .alloc_streams = xhci_alloc_streams,
5402 .free_streams = xhci_free_streams,
5403 .add_endpoint = xhci_add_endpoint,
5404 .drop_endpoint = xhci_drop_endpoint,
5405 .endpoint_disable = xhci_endpoint_disable,
5406 .endpoint_reset = xhci_endpoint_reset,
5407 .check_bandwidth = xhci_check_bandwidth,
5408 .reset_bandwidth = xhci_reset_bandwidth,
5409 .address_device = xhci_address_device,
5410 .enable_device = xhci_enable_device,
5411 .update_hub_device = xhci_update_hub_device,
5412 .reset_device = xhci_discover_or_reset_device,
5413
5414 /*
5415 * scheduling support
5416 */
5417 .get_frame_number = xhci_get_frame,
5418
5419 /*
5420 * root hub support
5421 */
5422 .hub_control = xhci_hub_control,
5423 .hub_status_data = xhci_hub_status_data,
5424 .bus_suspend = xhci_bus_suspend,
5425 .bus_resume = xhci_bus_resume,
5426 .get_resuming_ports = xhci_get_resuming_ports,
5427
5428 /*
5429 * call back when device connected and addressed
5430 */
5431 .update_device = xhci_update_device,
5432 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5433 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5434 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5435 .find_raw_port_number = xhci_find_raw_port_number,
5436 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5437};
5438
5439void xhci_init_driver(struct hc_driver *drv,
5440 const struct xhci_driver_overrides *over)
5441{
5442 BUG_ON(!over);
5443
5444 /* Copy the generic table to drv then apply the overrides */
5445 *drv = xhci_hc_driver;
5446
5447 if (over) {
5448 drv->hcd_priv_size += over->extra_priv_size;
5449 if (over->reset)
5450 drv->reset = over->reset;
5451 if (over->start)
5452 drv->start = over->start;
5453 if (over->add_endpoint)
5454 drv->add_endpoint = over->add_endpoint;
5455 if (over->drop_endpoint)
5456 drv->drop_endpoint = over->drop_endpoint;
5457 if (over->check_bandwidth)
5458 drv->check_bandwidth = over->check_bandwidth;
5459 if (over->reset_bandwidth)
5460 drv->reset_bandwidth = over->reset_bandwidth;
5461 if (over->update_hub_device)
5462 drv->update_hub_device = over->update_hub_device;
5463 }
5464}
5465EXPORT_SYMBOL_GPL(xhci_init_driver);
5466
5467MODULE_DESCRIPTION(DRIVER_DESC);
5468MODULE_AUTHOR(DRIVER_AUTHOR);
5469MODULE_LICENSE("GPL");
5470
5471static int __init xhci_hcd_init(void)
5472{
5473 /*
5474 * Check the compiler generated sizes of structures that must be laid
5475 * out in specific ways for hardware access.
5476 */
5477 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5478 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5479 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5480 /* xhci_device_control has eight fields, and also
5481 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5482 */
5483 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5484 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5485 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5486 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5487 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5488 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5489 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5490
5491 if (usb_disabled())
5492 return -ENODEV;
5493
5494 xhci_debugfs_create_root();
5495
5496 return 0;
5497}
5498
5499/*
5500 * If an init function is provided, an exit function must also be provided
5501 * to allow module unload.
5502 */
5503static void __exit xhci_hcd_fini(void)
5504{
5505 xhci_debugfs_remove_root();
5506}
5507
5508module_init(xhci_hcd_init);
5509module_exit(xhci_hcd_fini);