blob: f34ee2a0c2c193f84ba4220a9ea89f481a162398 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * VFIO PCI config space virtualization
4 *
5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
6 * Author: Alex Williamson <alex.williamson@redhat.com>
7 *
8 * Derived from original vfio:
9 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
10 * Author: Tom Lyon, pugs@cisco.com
11 */
12
13/*
14 * This code handles reading and writing of PCI configuration registers.
15 * This is hairy because we want to allow a lot of flexibility to the
16 * user driver, but cannot trust it with all of the config fields.
17 * Tables determine which fields can be read and written, as well as
18 * which fields are 'virtualized' - special actions and translations to
19 * make it appear to the user that he has control, when in fact things
20 * must be negotiated with the underlying OS.
21 */
22
23#include <linux/fs.h>
24#include <linux/pci.h>
25#include <linux/uaccess.h>
26#include <linux/vfio.h>
27#include <linux/slab.h>
28
29#include "vfio_pci_private.h"
30
31/* Fake capability ID for standard config space */
32#define PCI_CAP_ID_BASIC 0
33
34#define is_bar(offset) \
35 ((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
36 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
37
38/*
39 * Lengths of PCI Config Capabilities
40 * 0: Removed from the user visible capability list
41 * FF: Variable length
42 */
43static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = {
44 [PCI_CAP_ID_BASIC] = PCI_STD_HEADER_SIZEOF, /* pci config header */
45 [PCI_CAP_ID_PM] = PCI_PM_SIZEOF,
46 [PCI_CAP_ID_AGP] = PCI_AGP_SIZEOF,
47 [PCI_CAP_ID_VPD] = PCI_CAP_VPD_SIZEOF,
48 [PCI_CAP_ID_SLOTID] = 0, /* bridge - don't care */
49 [PCI_CAP_ID_MSI] = 0xFF, /* 10, 14, 20, or 24 */
50 [PCI_CAP_ID_CHSWP] = 0, /* cpci - not yet */
51 [PCI_CAP_ID_PCIX] = 0xFF, /* 8 or 24 */
52 [PCI_CAP_ID_HT] = 0xFF, /* hypertransport */
53 [PCI_CAP_ID_VNDR] = 0xFF, /* variable */
54 [PCI_CAP_ID_DBG] = 0, /* debug - don't care */
55 [PCI_CAP_ID_CCRC] = 0, /* cpci - not yet */
56 [PCI_CAP_ID_SHPC] = 0, /* hotswap - not yet */
57 [PCI_CAP_ID_SSVID] = 0, /* bridge - don't care */
58 [PCI_CAP_ID_AGP3] = 0, /* AGP8x - not yet */
59 [PCI_CAP_ID_SECDEV] = 0, /* secure device not yet */
60 [PCI_CAP_ID_EXP] = 0xFF, /* 20 or 44 */
61 [PCI_CAP_ID_MSIX] = PCI_CAP_MSIX_SIZEOF,
62 [PCI_CAP_ID_SATA] = 0xFF,
63 [PCI_CAP_ID_AF] = PCI_CAP_AF_SIZEOF,
64};
65
66/*
67 * Lengths of PCIe/PCI-X Extended Config Capabilities
68 * 0: Removed or masked from the user visible capability list
69 * FF: Variable length
70 */
71static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = {
72 [PCI_EXT_CAP_ID_ERR] = PCI_ERR_ROOT_COMMAND,
73 [PCI_EXT_CAP_ID_VC] = 0xFF,
74 [PCI_EXT_CAP_ID_DSN] = PCI_EXT_CAP_DSN_SIZEOF,
75 [PCI_EXT_CAP_ID_PWR] = PCI_EXT_CAP_PWR_SIZEOF,
76 [PCI_EXT_CAP_ID_RCLD] = 0, /* root only - don't care */
77 [PCI_EXT_CAP_ID_RCILC] = 0, /* root only - don't care */
78 [PCI_EXT_CAP_ID_RCEC] = 0, /* root only - don't care */
79 [PCI_EXT_CAP_ID_MFVC] = 0xFF,
80 [PCI_EXT_CAP_ID_VC9] = 0xFF, /* same as CAP_ID_VC */
81 [PCI_EXT_CAP_ID_RCRB] = 0, /* root only - don't care */
82 [PCI_EXT_CAP_ID_VNDR] = 0xFF,
83 [PCI_EXT_CAP_ID_CAC] = 0, /* obsolete */
84 [PCI_EXT_CAP_ID_ACS] = 0xFF,
85 [PCI_EXT_CAP_ID_ARI] = PCI_EXT_CAP_ARI_SIZEOF,
86 [PCI_EXT_CAP_ID_ATS] = PCI_EXT_CAP_ATS_SIZEOF,
87 [PCI_EXT_CAP_ID_SRIOV] = PCI_EXT_CAP_SRIOV_SIZEOF,
88 [PCI_EXT_CAP_ID_MRIOV] = 0, /* not yet */
89 [PCI_EXT_CAP_ID_MCAST] = PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
90 [PCI_EXT_CAP_ID_PRI] = PCI_EXT_CAP_PRI_SIZEOF,
91 [PCI_EXT_CAP_ID_AMD_XXX] = 0, /* not yet */
92 [PCI_EXT_CAP_ID_REBAR] = 0xFF,
93 [PCI_EXT_CAP_ID_DPA] = 0xFF,
94 [PCI_EXT_CAP_ID_TPH] = 0xFF,
95 [PCI_EXT_CAP_ID_LTR] = PCI_EXT_CAP_LTR_SIZEOF,
96 [PCI_EXT_CAP_ID_SECPCI] = 0, /* not yet */
97 [PCI_EXT_CAP_ID_PMUX] = 0, /* not yet */
98 [PCI_EXT_CAP_ID_PASID] = 0, /* not yet */
99};
100
101/*
102 * Read/Write Permission Bits - one bit for each bit in capability
103 * Any field can be read if it exists, but what is read depends on
104 * whether the field is 'virtualized', or just pass thru to the
105 * hardware. Any virtualized field is also virtualized for writes.
106 * Writes are only permitted if they have a 1 bit here.
107 */
108struct perm_bits {
109 u8 *virt; /* read/write virtual data, not hw */
110 u8 *write; /* writeable bits */
111 int (*readfn)(struct vfio_pci_device *vdev, int pos, int count,
112 struct perm_bits *perm, int offset, __le32 *val);
113 int (*writefn)(struct vfio_pci_device *vdev, int pos, int count,
114 struct perm_bits *perm, int offset, __le32 val);
115};
116
117#define NO_VIRT 0
118#define ALL_VIRT 0xFFFFFFFFU
119#define NO_WRITE 0
120#define ALL_WRITE 0xFFFFFFFFU
121
122static int vfio_user_config_read(struct pci_dev *pdev, int offset,
123 __le32 *val, int count)
124{
125 int ret = -EINVAL;
126 u32 tmp_val = 0;
127
128 switch (count) {
129 case 1:
130 {
131 u8 tmp;
132 ret = pci_user_read_config_byte(pdev, offset, &tmp);
133 tmp_val = tmp;
134 break;
135 }
136 case 2:
137 {
138 u16 tmp;
139 ret = pci_user_read_config_word(pdev, offset, &tmp);
140 tmp_val = tmp;
141 break;
142 }
143 case 4:
144 ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
145 break;
146 }
147
148 *val = cpu_to_le32(tmp_val);
149
150 return ret;
151}
152
153static int vfio_user_config_write(struct pci_dev *pdev, int offset,
154 __le32 val, int count)
155{
156 int ret = -EINVAL;
157 u32 tmp_val = le32_to_cpu(val);
158
159 switch (count) {
160 case 1:
161 ret = pci_user_write_config_byte(pdev, offset, tmp_val);
162 break;
163 case 2:
164 ret = pci_user_write_config_word(pdev, offset, tmp_val);
165 break;
166 case 4:
167 ret = pci_user_write_config_dword(pdev, offset, tmp_val);
168 break;
169 }
170
171 return ret;
172}
173
174static int vfio_default_config_read(struct vfio_pci_device *vdev, int pos,
175 int count, struct perm_bits *perm,
176 int offset, __le32 *val)
177{
178 __le32 virt = 0;
179
180 memcpy(val, vdev->vconfig + pos, count);
181
182 memcpy(&virt, perm->virt + offset, count);
183
184 /* Any non-virtualized bits? */
185 if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
186 struct pci_dev *pdev = vdev->pdev;
187 __le32 phys_val = 0;
188 int ret;
189
190 ret = vfio_user_config_read(pdev, pos, &phys_val, count);
191 if (ret)
192 return ret;
193
194 *val = (phys_val & ~virt) | (*val & virt);
195 }
196
197 return count;
198}
199
200static int vfio_default_config_write(struct vfio_pci_device *vdev, int pos,
201 int count, struct perm_bits *perm,
202 int offset, __le32 val)
203{
204 __le32 virt = 0, write = 0;
205
206 memcpy(&write, perm->write + offset, count);
207
208 if (!write)
209 return count; /* drop, no writable bits */
210
211 memcpy(&virt, perm->virt + offset, count);
212
213 /* Virtualized and writable bits go to vconfig */
214 if (write & virt) {
215 __le32 virt_val = 0;
216
217 memcpy(&virt_val, vdev->vconfig + pos, count);
218
219 virt_val &= ~(write & virt);
220 virt_val |= (val & (write & virt));
221
222 memcpy(vdev->vconfig + pos, &virt_val, count);
223 }
224
225 /* Non-virtualzed and writable bits go to hardware */
226 if (write & ~virt) {
227 struct pci_dev *pdev = vdev->pdev;
228 __le32 phys_val = 0;
229 int ret;
230
231 ret = vfio_user_config_read(pdev, pos, &phys_val, count);
232 if (ret)
233 return ret;
234
235 phys_val &= ~(write & ~virt);
236 phys_val |= (val & (write & ~virt));
237
238 ret = vfio_user_config_write(pdev, pos, phys_val, count);
239 if (ret)
240 return ret;
241 }
242
243 return count;
244}
245
246/* Allow direct read from hardware, except for capability next pointer */
247static int vfio_direct_config_read(struct vfio_pci_device *vdev, int pos,
248 int count, struct perm_bits *perm,
249 int offset, __le32 *val)
250{
251 int ret;
252
253 ret = vfio_user_config_read(vdev->pdev, pos, val, count);
254 if (ret)
255 return ret;
256
257 if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
258 if (offset < 4)
259 memcpy(val, vdev->vconfig + pos, count);
260 } else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
261 if (offset == PCI_CAP_LIST_ID && count > 1)
262 memcpy(val, vdev->vconfig + pos,
263 min(PCI_CAP_FLAGS, count));
264 else if (offset == PCI_CAP_LIST_NEXT)
265 memcpy(val, vdev->vconfig + pos, 1);
266 }
267
268 return count;
269}
270
271/* Raw access skips any kind of virtualization */
272static int vfio_raw_config_write(struct vfio_pci_device *vdev, int pos,
273 int count, struct perm_bits *perm,
274 int offset, __le32 val)
275{
276 int ret;
277
278 ret = vfio_user_config_write(vdev->pdev, pos, val, count);
279 if (ret)
280 return ret;
281
282 return count;
283}
284
285static int vfio_raw_config_read(struct vfio_pci_device *vdev, int pos,
286 int count, struct perm_bits *perm,
287 int offset, __le32 *val)
288{
289 int ret;
290
291 ret = vfio_user_config_read(vdev->pdev, pos, val, count);
292 if (ret)
293 return ret;
294
295 return count;
296}
297
298/* Virt access uses only virtualization */
299static int vfio_virt_config_write(struct vfio_pci_device *vdev, int pos,
300 int count, struct perm_bits *perm,
301 int offset, __le32 val)
302{
303 memcpy(vdev->vconfig + pos, &val, count);
304 return count;
305}
306
307static int vfio_virt_config_read(struct vfio_pci_device *vdev, int pos,
308 int count, struct perm_bits *perm,
309 int offset, __le32 *val)
310{
311 memcpy(val, vdev->vconfig + pos, count);
312 return count;
313}
314
315static struct perm_bits direct_ro_perms = {
316 .readfn = vfio_direct_config_read,
317};
318
319/* Default capability regions to read-only, no-virtualization */
320static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
321 [0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
322};
323static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
324 [0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
325};
326/*
327 * Default unassigned regions to raw read-write access. Some devices
328 * require this to function as they hide registers between the gaps in
329 * config space (be2net). Like MMIO and I/O port registers, we have
330 * to trust the hardware isolation.
331 */
332static struct perm_bits unassigned_perms = {
333 .readfn = vfio_raw_config_read,
334 .writefn = vfio_raw_config_write
335};
336
337static struct perm_bits virt_perms = {
338 .readfn = vfio_virt_config_read,
339 .writefn = vfio_virt_config_write
340};
341
342static void free_perm_bits(struct perm_bits *perm)
343{
344 kfree(perm->virt);
345 kfree(perm->write);
346 perm->virt = NULL;
347 perm->write = NULL;
348}
349
350static int alloc_perm_bits(struct perm_bits *perm, int size)
351{
352 /*
353 * Round up all permission bits to the next dword, this lets us
354 * ignore whether a read/write exceeds the defined capability
355 * structure. We can do this because:
356 * - Standard config space is already dword aligned
357 * - Capabilities are all dword aligned (bits 0:1 of next reserved)
358 * - Express capabilities defined as dword aligned
359 */
360 size = round_up(size, 4);
361
362 /*
363 * Zero state is
364 * - All Readable, None Writeable, None Virtualized
365 */
366 perm->virt = kzalloc(size, GFP_KERNEL);
367 perm->write = kzalloc(size, GFP_KERNEL);
368 if (!perm->virt || !perm->write) {
369 free_perm_bits(perm);
370 return -ENOMEM;
371 }
372
373 perm->readfn = vfio_default_config_read;
374 perm->writefn = vfio_default_config_write;
375
376 return 0;
377}
378
379/*
380 * Helper functions for filling in permission tables
381 */
382static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
383{
384 p->virt[off] = virt;
385 p->write[off] = write;
386}
387
388/* Handle endian-ness - pci and tables are little-endian */
389static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
390{
391 *(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
392 *(__le16 *)(&p->write[off]) = cpu_to_le16(write);
393}
394
395/* Handle endian-ness - pci and tables are little-endian */
396static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
397{
398 *(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
399 *(__le32 *)(&p->write[off]) = cpu_to_le32(write);
400}
401
402/* Caller should hold memory_lock semaphore */
403bool __vfio_pci_memory_enabled(struct vfio_pci_device *vdev)
404{
405 struct pci_dev *pdev = vdev->pdev;
406 u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
407
408 /*
409 * SR-IOV VF memory enable is handled by the MSE bit in the
410 * PF SR-IOV capability, there's therefore no need to trigger
411 * faults based on the virtual value.
412 */
413 return pdev->no_command_memory || (cmd & PCI_COMMAND_MEMORY);
414}
415
416/*
417 * Restore the *real* BARs after we detect a FLR or backdoor reset.
418 * (backdoor = some device specific technique that we didn't catch)
419 */
420static void vfio_bar_restore(struct vfio_pci_device *vdev)
421{
422 struct pci_dev *pdev = vdev->pdev;
423 u32 *rbar = vdev->rbar;
424 u16 cmd;
425 int i;
426
427 if (pdev->is_virtfn)
428 return;
429
430 pci_info(pdev, "%s: reset recovery - restoring BARs\n", __func__);
431
432 for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
433 pci_user_write_config_dword(pdev, i, *rbar);
434
435 pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
436
437 if (vdev->nointx) {
438 pci_user_read_config_word(pdev, PCI_COMMAND, &cmd);
439 cmd |= PCI_COMMAND_INTX_DISABLE;
440 pci_user_write_config_word(pdev, PCI_COMMAND, cmd);
441 }
442}
443
444static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
445{
446 unsigned long flags = pci_resource_flags(pdev, bar);
447 u32 val;
448
449 if (flags & IORESOURCE_IO)
450 return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
451
452 val = PCI_BASE_ADDRESS_SPACE_MEMORY;
453
454 if (flags & IORESOURCE_PREFETCH)
455 val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
456
457 if (flags & IORESOURCE_MEM_64)
458 val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
459
460 return cpu_to_le32(val);
461}
462
463/*
464 * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
465 * to reflect the hardware capabilities. This implements BAR sizing.
466 */
467static void vfio_bar_fixup(struct vfio_pci_device *vdev)
468{
469 struct pci_dev *pdev = vdev->pdev;
470 int i;
471 __le32 *bar;
472 u64 mask;
473
474 bar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
475
476 for (i = PCI_STD_RESOURCES; i <= PCI_STD_RESOURCE_END; i++, bar++) {
477 if (!pci_resource_start(pdev, i)) {
478 *bar = 0; /* Unmapped by host = unimplemented to user */
479 continue;
480 }
481
482 mask = ~(pci_resource_len(pdev, i) - 1);
483
484 *bar &= cpu_to_le32((u32)mask);
485 *bar |= vfio_generate_bar_flags(pdev, i);
486
487 if (*bar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
488 bar++;
489 *bar &= cpu_to_le32((u32)(mask >> 32));
490 i++;
491 }
492 }
493
494 bar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
495
496 /*
497 * NB. REGION_INFO will have reported zero size if we weren't able
498 * to read the ROM, but we still return the actual BAR size here if
499 * it exists (or the shadow ROM space).
500 */
501 if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
502 mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
503 mask |= PCI_ROM_ADDRESS_ENABLE;
504 *bar &= cpu_to_le32((u32)mask);
505 } else if (pdev->resource[PCI_ROM_RESOURCE].flags &
506 IORESOURCE_ROM_SHADOW) {
507 mask = ~(0x20000 - 1);
508 mask |= PCI_ROM_ADDRESS_ENABLE;
509 *bar &= cpu_to_le32((u32)mask);
510 } else
511 *bar = 0;
512
513 vdev->bardirty = false;
514}
515
516static int vfio_basic_config_read(struct vfio_pci_device *vdev, int pos,
517 int count, struct perm_bits *perm,
518 int offset, __le32 *val)
519{
520 if (is_bar(offset)) /* pos == offset for basic config */
521 vfio_bar_fixup(vdev);
522
523 count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
524
525 /* Mask in virtual memory enable */
526 if (offset == PCI_COMMAND && vdev->pdev->no_command_memory) {
527 u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
528 u32 tmp_val = le32_to_cpu(*val);
529
530 tmp_val |= cmd & PCI_COMMAND_MEMORY;
531 *val = cpu_to_le32(tmp_val);
532 }
533
534 return count;
535}
536
537/* Test whether BARs match the value we think they should contain */
538static bool vfio_need_bar_restore(struct vfio_pci_device *vdev)
539{
540 int i = 0, pos = PCI_BASE_ADDRESS_0, ret;
541 u32 bar;
542
543 for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) {
544 if (vdev->rbar[i]) {
545 ret = pci_user_read_config_dword(vdev->pdev, pos, &bar);
546 if (ret || vdev->rbar[i] != bar)
547 return true;
548 }
549 }
550
551 return false;
552}
553
554static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
555 int count, struct perm_bits *perm,
556 int offset, __le32 val)
557{
558 struct pci_dev *pdev = vdev->pdev;
559 __le16 *virt_cmd;
560 u16 new_cmd = 0;
561 int ret;
562
563 virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
564
565 if (offset == PCI_COMMAND) {
566 bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
567 u16 phys_cmd;
568
569 ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
570 if (ret)
571 return ret;
572
573 new_cmd = le32_to_cpu(val);
574
575 phys_io = !!(phys_cmd & PCI_COMMAND_IO);
576 virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
577 new_io = !!(new_cmd & PCI_COMMAND_IO);
578
579 phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
580 virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
581 new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
582
583 if (!new_mem)
584 vfio_pci_zap_and_down_write_memory_lock(vdev);
585 else
586 down_write(&vdev->memory_lock);
587
588 /*
589 * If the user is writing mem/io enable (new_mem/io) and we
590 * think it's already enabled (virt_mem/io), but the hardware
591 * shows it disabled (phys_mem/io, then the device has
592 * undergone some kind of backdoor reset and needs to be
593 * restored before we allow it to enable the bars.
594 * SR-IOV devices will trigger this - for mem enable let's
595 * catch this now and for io enable it will be caught later
596 */
597 if ((new_mem && virt_mem && !phys_mem &&
598 !pdev->no_command_memory) ||
599 (new_io && virt_io && !phys_io) ||
600 vfio_need_bar_restore(vdev))
601 vfio_bar_restore(vdev);
602 }
603
604 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
605 if (count < 0) {
606 if (offset == PCI_COMMAND)
607 up_write(&vdev->memory_lock);
608 return count;
609 }
610
611 /*
612 * Save current memory/io enable bits in vconfig to allow for
613 * the test above next time.
614 */
615 if (offset == PCI_COMMAND) {
616 u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
617
618 *virt_cmd &= cpu_to_le16(~mask);
619 *virt_cmd |= cpu_to_le16(new_cmd & mask);
620
621 up_write(&vdev->memory_lock);
622 }
623
624 /* Emulate INTx disable */
625 if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
626 bool virt_intx_disable;
627
628 virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
629 PCI_COMMAND_INTX_DISABLE);
630
631 if (virt_intx_disable && !vdev->virq_disabled) {
632 vdev->virq_disabled = true;
633 vfio_pci_intx_mask(vdev);
634 } else if (!virt_intx_disable && vdev->virq_disabled) {
635 vdev->virq_disabled = false;
636 vfio_pci_intx_unmask(vdev);
637 }
638 }
639
640 if (is_bar(offset))
641 vdev->bardirty = true;
642
643 return count;
644}
645
646/* Permissions for the Basic PCI Header */
647static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
648{
649 if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
650 return -ENOMEM;
651
652 perm->readfn = vfio_basic_config_read;
653 perm->writefn = vfio_basic_config_write;
654
655 /* Virtualized for SR-IOV functions, which just have FFFF */
656 p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
657 p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
658
659 /*
660 * Virtualize INTx disable, we use it internally for interrupt
661 * control and can emulate it for non-PCI 2.3 devices.
662 */
663 p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
664
665 /* Virtualize capability list, we might want to skip/disable */
666 p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
667
668 /* No harm to write */
669 p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
670 p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
671 p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
672
673 /* Virtualize all bars, can't touch the real ones */
674 p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
675 p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
676 p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
677 p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
678 p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
679 p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
680 p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
681
682 /* Allow us to adjust capability chain */
683 p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
684
685 /* Sometimes used by sw, just virtualize */
686 p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
687
688 /* Virtualize interrupt pin to allow hiding INTx */
689 p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);
690
691 return 0;
692}
693
694static int vfio_pm_config_write(struct vfio_pci_device *vdev, int pos,
695 int count, struct perm_bits *perm,
696 int offset, __le32 val)
697{
698 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
699 if (count < 0)
700 return count;
701
702 if (offset == PCI_PM_CTRL) {
703 pci_power_t state;
704
705 switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
706 case 0:
707 state = PCI_D0;
708 break;
709 case 1:
710 state = PCI_D1;
711 break;
712 case 2:
713 state = PCI_D2;
714 break;
715 case 3:
716 state = PCI_D3hot;
717 break;
718 }
719
720 vfio_pci_set_power_state(vdev, state);
721 }
722
723 return count;
724}
725
726/* Permissions for the Power Management capability */
727static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
728{
729 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
730 return -ENOMEM;
731
732 perm->writefn = vfio_pm_config_write;
733
734 /*
735 * We always virtualize the next field so we can remove
736 * capabilities from the chain if we want to.
737 */
738 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
739
740 /*
741 * Power management is defined *per function*, so we can let
742 * the user change power state, but we trap and initiate the
743 * change ourselves, so the state bits are read-only.
744 */
745 p_setd(perm, PCI_PM_CTRL, NO_VIRT, ~PCI_PM_CTRL_STATE_MASK);
746 return 0;
747}
748
749static int vfio_vpd_config_write(struct vfio_pci_device *vdev, int pos,
750 int count, struct perm_bits *perm,
751 int offset, __le32 val)
752{
753 struct pci_dev *pdev = vdev->pdev;
754 __le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR);
755 __le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA);
756 u16 addr;
757 u32 data;
758
759 /*
760 * Write through to emulation. If the write includes the upper byte
761 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
762 * have work to do.
763 */
764 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
765 if (count < 0 || offset > PCI_VPD_ADDR + 1 ||
766 offset + count <= PCI_VPD_ADDR + 1)
767 return count;
768
769 addr = le16_to_cpu(*paddr);
770
771 if (addr & PCI_VPD_ADDR_F) {
772 data = le32_to_cpu(*pdata);
773 if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4)
774 return count;
775 } else {
776 data = 0;
777 if (pci_read_vpd(pdev, addr, 4, &data) < 0)
778 return count;
779 *pdata = cpu_to_le32(data);
780 }
781
782 /*
783 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
784 * signal completion. If an error occurs above, we assume that not
785 * toggling this bit will induce a driver timeout.
786 */
787 addr ^= PCI_VPD_ADDR_F;
788 *paddr = cpu_to_le16(addr);
789
790 return count;
791}
792
793/* Permissions for Vital Product Data capability */
794static int __init init_pci_cap_vpd_perm(struct perm_bits *perm)
795{
796 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD]))
797 return -ENOMEM;
798
799 perm->writefn = vfio_vpd_config_write;
800
801 /*
802 * We always virtualize the next field so we can remove
803 * capabilities from the chain if we want to.
804 */
805 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
806
807 /*
808 * Both the address and data registers are virtualized to
809 * enable access through the pci_vpd_read/write functions
810 */
811 p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE);
812 p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE);
813
814 return 0;
815}
816
817/* Permissions for PCI-X capability */
818static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
819{
820 /* Alloc 24, but only 8 are used in v0 */
821 if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
822 return -ENOMEM;
823
824 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
825
826 p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
827 p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
828 return 0;
829}
830
831static int vfio_exp_config_write(struct vfio_pci_device *vdev, int pos,
832 int count, struct perm_bits *perm,
833 int offset, __le32 val)
834{
835 __le16 *ctrl = (__le16 *)(vdev->vconfig + pos -
836 offset + PCI_EXP_DEVCTL);
837 int readrq = le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ;
838
839 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
840 if (count < 0)
841 return count;
842
843 /*
844 * The FLR bit is virtualized, if set and the device supports PCIe
845 * FLR, issue a reset_function. Regardless, clear the bit, the spec
846 * requires it to be always read as zero. NB, reset_function might
847 * not use a PCIe FLR, we don't have that level of granularity.
848 */
849 if (*ctrl & cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR)) {
850 u32 cap;
851 int ret;
852
853 *ctrl &= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR);
854
855 ret = pci_user_read_config_dword(vdev->pdev,
856 pos - offset + PCI_EXP_DEVCAP,
857 &cap);
858
859 if (!ret && (cap & PCI_EXP_DEVCAP_FLR)) {
860 vfio_pci_zap_and_down_write_memory_lock(vdev);
861 pci_try_reset_function(vdev->pdev);
862 up_write(&vdev->memory_lock);
863 }
864 }
865
866 /*
867 * MPS is virtualized to the user, writes do not change the physical
868 * register since determining a proper MPS value requires a system wide
869 * device view. The MRRS is largely independent of MPS, but since the
870 * user does not have that system-wide view, they might set a safe, but
871 * inefficiently low value. Here we allow writes through to hardware,
872 * but we set the floor to the physical device MPS setting, so that
873 * we can at least use full TLPs, as defined by the MPS value.
874 *
875 * NB, if any devices actually depend on an artificially low MRRS
876 * setting, this will need to be revisited, perhaps with a quirk
877 * though pcie_set_readrq().
878 */
879 if (readrq != (le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ)) {
880 readrq = 128 <<
881 ((le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ) >> 12);
882 readrq = max(readrq, pcie_get_mps(vdev->pdev));
883
884 pcie_set_readrq(vdev->pdev, readrq);
885 }
886
887 return count;
888}
889
890/* Permissions for PCI Express capability */
891static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
892{
893 /* Alloc largest of possible sizes */
894 if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
895 return -ENOMEM;
896
897 perm->writefn = vfio_exp_config_write;
898
899 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
900
901 /*
902 * Allow writes to device control fields, except devctl_phantom,
903 * which could confuse IOMMU, MPS, which can break communication
904 * with other physical devices, and the ARI bit in devctl2, which
905 * is set at probe time. FLR and MRRS get virtualized via our
906 * writefn.
907 */
908 p_setw(perm, PCI_EXP_DEVCTL,
909 PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_PAYLOAD |
910 PCI_EXP_DEVCTL_READRQ, ~PCI_EXP_DEVCTL_PHANTOM);
911 p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
912 return 0;
913}
914
915static int vfio_af_config_write(struct vfio_pci_device *vdev, int pos,
916 int count, struct perm_bits *perm,
917 int offset, __le32 val)
918{
919 u8 *ctrl = vdev->vconfig + pos - offset + PCI_AF_CTRL;
920
921 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
922 if (count < 0)
923 return count;
924
925 /*
926 * The FLR bit is virtualized, if set and the device supports AF
927 * FLR, issue a reset_function. Regardless, clear the bit, the spec
928 * requires it to be always read as zero. NB, reset_function might
929 * not use an AF FLR, we don't have that level of granularity.
930 */
931 if (*ctrl & PCI_AF_CTRL_FLR) {
932 u8 cap;
933 int ret;
934
935 *ctrl &= ~PCI_AF_CTRL_FLR;
936
937 ret = pci_user_read_config_byte(vdev->pdev,
938 pos - offset + PCI_AF_CAP,
939 &cap);
940
941 if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP)) {
942 vfio_pci_zap_and_down_write_memory_lock(vdev);
943 pci_try_reset_function(vdev->pdev);
944 up_write(&vdev->memory_lock);
945 }
946 }
947
948 return count;
949}
950
951/* Permissions for Advanced Function capability */
952static int __init init_pci_cap_af_perm(struct perm_bits *perm)
953{
954 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
955 return -ENOMEM;
956
957 perm->writefn = vfio_af_config_write;
958
959 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
960 p_setb(perm, PCI_AF_CTRL, PCI_AF_CTRL_FLR, PCI_AF_CTRL_FLR);
961 return 0;
962}
963
964/* Permissions for Advanced Error Reporting extended capability */
965static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
966{
967 u32 mask;
968
969 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
970 return -ENOMEM;
971
972 /*
973 * Virtualize the first dword of all express capabilities
974 * because it includes the next pointer. This lets us later
975 * remove capabilities from the chain if we need to.
976 */
977 p_setd(perm, 0, ALL_VIRT, NO_WRITE);
978
979 /* Writable bits mask */
980 mask = PCI_ERR_UNC_UND | /* Undefined */
981 PCI_ERR_UNC_DLP | /* Data Link Protocol */
982 PCI_ERR_UNC_SURPDN | /* Surprise Down */
983 PCI_ERR_UNC_POISON_TLP | /* Poisoned TLP */
984 PCI_ERR_UNC_FCP | /* Flow Control Protocol */
985 PCI_ERR_UNC_COMP_TIME | /* Completion Timeout */
986 PCI_ERR_UNC_COMP_ABORT | /* Completer Abort */
987 PCI_ERR_UNC_UNX_COMP | /* Unexpected Completion */
988 PCI_ERR_UNC_RX_OVER | /* Receiver Overflow */
989 PCI_ERR_UNC_MALF_TLP | /* Malformed TLP */
990 PCI_ERR_UNC_ECRC | /* ECRC Error Status */
991 PCI_ERR_UNC_UNSUP | /* Unsupported Request */
992 PCI_ERR_UNC_ACSV | /* ACS Violation */
993 PCI_ERR_UNC_INTN | /* internal error */
994 PCI_ERR_UNC_MCBTLP | /* MC blocked TLP */
995 PCI_ERR_UNC_ATOMEG | /* Atomic egress blocked */
996 PCI_ERR_UNC_TLPPRE; /* TLP prefix blocked */
997 p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
998 p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
999 p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
1000
1001 mask = PCI_ERR_COR_RCVR | /* Receiver Error Status */
1002 PCI_ERR_COR_BAD_TLP | /* Bad TLP Status */
1003 PCI_ERR_COR_BAD_DLLP | /* Bad DLLP Status */
1004 PCI_ERR_COR_REP_ROLL | /* REPLAY_NUM Rollover */
1005 PCI_ERR_COR_REP_TIMER | /* Replay Timer Timeout */
1006 PCI_ERR_COR_ADV_NFAT | /* Advisory Non-Fatal */
1007 PCI_ERR_COR_INTERNAL | /* Corrected Internal */
1008 PCI_ERR_COR_LOG_OVER; /* Header Log Overflow */
1009 p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
1010 p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
1011
1012 mask = PCI_ERR_CAP_ECRC_GENE | /* ECRC Generation Enable */
1013 PCI_ERR_CAP_ECRC_CHKE; /* ECRC Check Enable */
1014 p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
1015 return 0;
1016}
1017
1018/* Permissions for Power Budgeting extended capability */
1019static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
1020{
1021 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
1022 return -ENOMEM;
1023
1024 p_setd(perm, 0, ALL_VIRT, NO_WRITE);
1025
1026 /* Writing the data selector is OK, the info is still read-only */
1027 p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
1028 return 0;
1029}
1030
1031/*
1032 * Initialize the shared permission tables
1033 */
1034void vfio_pci_uninit_perm_bits(void)
1035{
1036 free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
1037
1038 free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
1039 free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]);
1040 free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
1041 free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
1042 free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
1043
1044 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1045 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1046}
1047
1048int __init vfio_pci_init_perm_bits(void)
1049{
1050 int ret;
1051
1052 /* Basic config space */
1053 ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
1054
1055 /* Capabilities */
1056 ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
1057 ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]);
1058 ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
1059 cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1060 ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
1061 ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
1062
1063 /* Extended capabilities */
1064 ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1065 ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1066 ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1067
1068 if (ret)
1069 vfio_pci_uninit_perm_bits();
1070
1071 return ret;
1072}
1073
1074static int vfio_find_cap_start(struct vfio_pci_device *vdev, int pos)
1075{
1076 u8 cap;
1077 int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
1078 PCI_STD_HEADER_SIZEOF;
1079 cap = vdev->pci_config_map[pos];
1080
1081 if (cap == PCI_CAP_ID_BASIC)
1082 return 0;
1083
1084 /* XXX Can we have to abutting capabilities of the same type? */
1085 while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
1086 pos--;
1087
1088 return pos;
1089}
1090
1091static int vfio_msi_config_read(struct vfio_pci_device *vdev, int pos,
1092 int count, struct perm_bits *perm,
1093 int offset, __le32 *val)
1094{
1095 /* Update max available queue size from msi_qmax */
1096 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1097 __le16 *flags;
1098 int start;
1099
1100 start = vfio_find_cap_start(vdev, pos);
1101
1102 flags = (__le16 *)&vdev->vconfig[start];
1103
1104 *flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
1105 *flags |= cpu_to_le16(vdev->msi_qmax << 1);
1106 }
1107
1108 return vfio_default_config_read(vdev, pos, count, perm, offset, val);
1109}
1110
1111static int vfio_msi_config_write(struct vfio_pci_device *vdev, int pos,
1112 int count, struct perm_bits *perm,
1113 int offset, __le32 val)
1114{
1115 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
1116 if (count < 0)
1117 return count;
1118
1119 /* Fixup and write configured queue size and enable to hardware */
1120 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1121 __le16 *pflags;
1122 u16 flags;
1123 int start, ret;
1124
1125 start = vfio_find_cap_start(vdev, pos);
1126
1127 pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
1128
1129 flags = le16_to_cpu(*pflags);
1130
1131 /* MSI is enabled via ioctl */
1132 if (!is_msi(vdev))
1133 flags &= ~PCI_MSI_FLAGS_ENABLE;
1134
1135 /* Check queue size */
1136 if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
1137 flags &= ~PCI_MSI_FLAGS_QSIZE;
1138 flags |= vdev->msi_qmax << 4;
1139 }
1140
1141 /* Write back to virt and to hardware */
1142 *pflags = cpu_to_le16(flags);
1143 ret = pci_user_write_config_word(vdev->pdev,
1144 start + PCI_MSI_FLAGS,
1145 flags);
1146 if (ret)
1147 return ret;
1148 }
1149
1150 return count;
1151}
1152
1153/*
1154 * MSI determination is per-device, so this routine gets used beyond
1155 * initialization time. Don't add __init
1156 */
1157static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
1158{
1159 if (alloc_perm_bits(perm, len))
1160 return -ENOMEM;
1161
1162 perm->readfn = vfio_msi_config_read;
1163 perm->writefn = vfio_msi_config_write;
1164
1165 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
1166
1167 /*
1168 * The upper byte of the control register is reserved,
1169 * just setup the lower byte.
1170 */
1171 p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
1172 p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
1173 if (flags & PCI_MSI_FLAGS_64BIT) {
1174 p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
1175 p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
1176 if (flags & PCI_MSI_FLAGS_MASKBIT) {
1177 p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
1178 p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
1179 }
1180 } else {
1181 p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
1182 if (flags & PCI_MSI_FLAGS_MASKBIT) {
1183 p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
1184 p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
1185 }
1186 }
1187 return 0;
1188}
1189
1190/* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
1191static int vfio_msi_cap_len(struct vfio_pci_device *vdev, u8 pos)
1192{
1193 struct pci_dev *pdev = vdev->pdev;
1194 int len, ret;
1195 u16 flags;
1196
1197 ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
1198 if (ret)
1199 return pcibios_err_to_errno(ret);
1200
1201 len = 10; /* Minimum size */
1202 if (flags & PCI_MSI_FLAGS_64BIT)
1203 len += 4;
1204 if (flags & PCI_MSI_FLAGS_MASKBIT)
1205 len += 10;
1206
1207 if (vdev->msi_perm)
1208 return len;
1209
1210 vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
1211 if (!vdev->msi_perm)
1212 return -ENOMEM;
1213
1214 ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
1215 if (ret) {
1216 kfree(vdev->msi_perm);
1217 return ret;
1218 }
1219
1220 return len;
1221}
1222
1223/* Determine extended capability length for VC (2 & 9) and MFVC */
1224static int vfio_vc_cap_len(struct vfio_pci_device *vdev, u16 pos)
1225{
1226 struct pci_dev *pdev = vdev->pdev;
1227 u32 tmp;
1228 int ret, evcc, phases, vc_arb;
1229 int len = PCI_CAP_VC_BASE_SIZEOF;
1230
1231 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
1232 if (ret)
1233 return pcibios_err_to_errno(ret);
1234
1235 evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
1236 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
1237 if (ret)
1238 return pcibios_err_to_errno(ret);
1239
1240 if (tmp & PCI_VC_CAP2_128_PHASE)
1241 phases = 128;
1242 else if (tmp & PCI_VC_CAP2_64_PHASE)
1243 phases = 64;
1244 else if (tmp & PCI_VC_CAP2_32_PHASE)
1245 phases = 32;
1246 else
1247 phases = 0;
1248
1249 vc_arb = phases * 4;
1250
1251 /*
1252 * Port arbitration tables are root & switch only;
1253 * function arbitration tables are function 0 only.
1254 * In either case, we'll never let user write them so
1255 * we don't care how big they are
1256 */
1257 len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
1258 if (vc_arb) {
1259 len = round_up(len, 16);
1260 len += vc_arb / 8;
1261 }
1262 return len;
1263}
1264
1265static int vfio_cap_len(struct vfio_pci_device *vdev, u8 cap, u8 pos)
1266{
1267 struct pci_dev *pdev = vdev->pdev;
1268 u32 dword;
1269 u16 word;
1270 u8 byte;
1271 int ret;
1272
1273 switch (cap) {
1274 case PCI_CAP_ID_MSI:
1275 return vfio_msi_cap_len(vdev, pos);
1276 case PCI_CAP_ID_PCIX:
1277 ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
1278 if (ret)
1279 return pcibios_err_to_errno(ret);
1280
1281 if (PCI_X_CMD_VERSION(word)) {
1282 if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1283 /* Test for extended capabilities */
1284 pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE,
1285 &dword);
1286 vdev->extended_caps = (dword != 0);
1287 }
1288 return PCI_CAP_PCIX_SIZEOF_V2;
1289 } else
1290 return PCI_CAP_PCIX_SIZEOF_V0;
1291 case PCI_CAP_ID_VNDR:
1292 /* length follows next field */
1293 ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
1294 if (ret)
1295 return pcibios_err_to_errno(ret);
1296
1297 return byte;
1298 case PCI_CAP_ID_EXP:
1299 if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1300 /* Test for extended capabilities */
1301 pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
1302 vdev->extended_caps = (dword != 0);
1303 }
1304
1305 /* length based on version and type */
1306 if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1) {
1307 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1308 return 0xc; /* "All Devices" only, no link */
1309 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
1310 } else {
1311 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1312 return 0x2c; /* No link */
1313 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
1314 }
1315 case PCI_CAP_ID_HT:
1316 ret = pci_read_config_byte(pdev, pos + 3, &byte);
1317 if (ret)
1318 return pcibios_err_to_errno(ret);
1319
1320 return (byte & HT_3BIT_CAP_MASK) ?
1321 HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
1322 case PCI_CAP_ID_SATA:
1323 ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
1324 if (ret)
1325 return pcibios_err_to_errno(ret);
1326
1327 byte &= PCI_SATA_REGS_MASK;
1328 if (byte == PCI_SATA_REGS_INLINE)
1329 return PCI_SATA_SIZEOF_LONG;
1330 else
1331 return PCI_SATA_SIZEOF_SHORT;
1332 default:
1333 pci_warn(pdev, "%s: unknown length for PCI cap %#x@%#x\n",
1334 __func__, cap, pos);
1335 }
1336
1337 return 0;
1338}
1339
1340static int vfio_ext_cap_len(struct vfio_pci_device *vdev, u16 ecap, u16 epos)
1341{
1342 struct pci_dev *pdev = vdev->pdev;
1343 u8 byte;
1344 u32 dword;
1345 int ret;
1346
1347 switch (ecap) {
1348 case PCI_EXT_CAP_ID_VNDR:
1349 ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
1350 if (ret)
1351 return pcibios_err_to_errno(ret);
1352
1353 return dword >> PCI_VSEC_HDR_LEN_SHIFT;
1354 case PCI_EXT_CAP_ID_VC:
1355 case PCI_EXT_CAP_ID_VC9:
1356 case PCI_EXT_CAP_ID_MFVC:
1357 return vfio_vc_cap_len(vdev, epos);
1358 case PCI_EXT_CAP_ID_ACS:
1359 ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
1360 if (ret)
1361 return pcibios_err_to_errno(ret);
1362
1363 if (byte & PCI_ACS_EC) {
1364 int bits;
1365
1366 ret = pci_read_config_byte(pdev,
1367 epos + PCI_ACS_EGRESS_BITS,
1368 &byte);
1369 if (ret)
1370 return pcibios_err_to_errno(ret);
1371
1372 bits = byte ? round_up(byte, 32) : 256;
1373 return 8 + (bits / 8);
1374 }
1375 return 8;
1376
1377 case PCI_EXT_CAP_ID_REBAR:
1378 ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
1379 if (ret)
1380 return pcibios_err_to_errno(ret);
1381
1382 byte &= PCI_REBAR_CTRL_NBAR_MASK;
1383 byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
1384
1385 return 4 + (byte * 8);
1386 case PCI_EXT_CAP_ID_DPA:
1387 ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
1388 if (ret)
1389 return pcibios_err_to_errno(ret);
1390
1391 byte &= PCI_DPA_CAP_SUBSTATE_MASK;
1392 return PCI_DPA_BASE_SIZEOF + byte + 1;
1393 case PCI_EXT_CAP_ID_TPH:
1394 ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
1395 if (ret)
1396 return pcibios_err_to_errno(ret);
1397
1398 if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
1399 int sts;
1400
1401 sts = dword & PCI_TPH_CAP_ST_MASK;
1402 sts >>= PCI_TPH_CAP_ST_SHIFT;
1403 return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
1404 }
1405 return PCI_TPH_BASE_SIZEOF;
1406 default:
1407 pci_warn(pdev, "%s: unknown length for PCI ecap %#x@%#x\n",
1408 __func__, ecap, epos);
1409 }
1410
1411 return 0;
1412}
1413
1414static int vfio_fill_vconfig_bytes(struct vfio_pci_device *vdev,
1415 int offset, int size)
1416{
1417 struct pci_dev *pdev = vdev->pdev;
1418 int ret = 0;
1419
1420 /*
1421 * We try to read physical config space in the largest chunks
1422 * we can, assuming that all of the fields support dword access.
1423 * pci_save_state() makes this same assumption and seems to do ok.
1424 */
1425 while (size) {
1426 int filled;
1427
1428 if (size >= 4 && !(offset % 4)) {
1429 __le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
1430 u32 dword;
1431
1432 ret = pci_read_config_dword(pdev, offset, &dword);
1433 if (ret)
1434 return ret;
1435 *dwordp = cpu_to_le32(dword);
1436 filled = 4;
1437 } else if (size >= 2 && !(offset % 2)) {
1438 __le16 *wordp = (__le16 *)&vdev->vconfig[offset];
1439 u16 word;
1440
1441 ret = pci_read_config_word(pdev, offset, &word);
1442 if (ret)
1443 return ret;
1444 *wordp = cpu_to_le16(word);
1445 filled = 2;
1446 } else {
1447 u8 *byte = &vdev->vconfig[offset];
1448 ret = pci_read_config_byte(pdev, offset, byte);
1449 if (ret)
1450 return ret;
1451 filled = 1;
1452 }
1453
1454 offset += filled;
1455 size -= filled;
1456 }
1457
1458 return ret;
1459}
1460
1461static int vfio_cap_init(struct vfio_pci_device *vdev)
1462{
1463 struct pci_dev *pdev = vdev->pdev;
1464 u8 *map = vdev->pci_config_map;
1465 u16 status;
1466 u8 pos, *prev, cap;
1467 int loops, ret, caps = 0;
1468
1469 /* Any capabilities? */
1470 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
1471 if (ret)
1472 return ret;
1473
1474 if (!(status & PCI_STATUS_CAP_LIST))
1475 return 0; /* Done */
1476
1477 ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
1478 if (ret)
1479 return ret;
1480
1481 /* Mark the previous position in case we want to skip a capability */
1482 prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
1483
1484 /* We can bound our loop, capabilities are dword aligned */
1485 loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
1486 while (pos && loops--) {
1487 u8 next;
1488 int i, len = 0;
1489
1490 ret = pci_read_config_byte(pdev, pos, &cap);
1491 if (ret)
1492 return ret;
1493
1494 ret = pci_read_config_byte(pdev,
1495 pos + PCI_CAP_LIST_NEXT, &next);
1496 if (ret)
1497 return ret;
1498
1499 /*
1500 * ID 0 is a NULL capability, conflicting with our fake
1501 * PCI_CAP_ID_BASIC. As it has no content, consider it
1502 * hidden for now.
1503 */
1504 if (cap && cap <= PCI_CAP_ID_MAX) {
1505 len = pci_cap_length[cap];
1506 if (len == 0xFF) { /* Variable length */
1507 len = vfio_cap_len(vdev, cap, pos);
1508 if (len < 0)
1509 return len;
1510 }
1511 }
1512
1513 if (!len) {
1514 pci_info(pdev, "%s: hiding cap %#x@%#x\n", __func__,
1515 cap, pos);
1516 *prev = next;
1517 pos = next;
1518 continue;
1519 }
1520
1521 /* Sanity check, do we overlap other capabilities? */
1522 for (i = 0; i < len; i++) {
1523 if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
1524 continue;
1525
1526 pci_warn(pdev, "%s: PCI config conflict @%#x, was cap %#x now cap %#x\n",
1527 __func__, pos + i, map[pos + i], cap);
1528 }
1529
1530 BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1531
1532 memset(map + pos, cap, len);
1533 ret = vfio_fill_vconfig_bytes(vdev, pos, len);
1534 if (ret)
1535 return ret;
1536
1537 prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
1538 pos = next;
1539 caps++;
1540 }
1541
1542 /* If we didn't fill any capabilities, clear the status flag */
1543 if (!caps) {
1544 __le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
1545 *vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
1546 }
1547
1548 return 0;
1549}
1550
1551static int vfio_ecap_init(struct vfio_pci_device *vdev)
1552{
1553 struct pci_dev *pdev = vdev->pdev;
1554 u8 *map = vdev->pci_config_map;
1555 u16 epos;
1556 __le32 *prev = NULL;
1557 int loops, ret, ecaps = 0;
1558
1559 if (!vdev->extended_caps)
1560 return 0;
1561
1562 epos = PCI_CFG_SPACE_SIZE;
1563
1564 loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
1565
1566 while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
1567 u32 header;
1568 u16 ecap;
1569 int i, len = 0;
1570 bool hidden = false;
1571
1572 ret = pci_read_config_dword(pdev, epos, &header);
1573 if (ret)
1574 return ret;
1575
1576 ecap = PCI_EXT_CAP_ID(header);
1577
1578 if (ecap <= PCI_EXT_CAP_ID_MAX) {
1579 len = pci_ext_cap_length[ecap];
1580 if (len == 0xFF) {
1581 len = vfio_ext_cap_len(vdev, ecap, epos);
1582 if (len < 0)
1583 return len;
1584 }
1585 }
1586
1587 if (!len) {
1588 pci_info(pdev, "%s: hiding ecap %#x@%#x\n",
1589 __func__, ecap, epos);
1590
1591 /* If not the first in the chain, we can skip over it */
1592 if (prev) {
1593 u32 val = epos = PCI_EXT_CAP_NEXT(header);
1594 *prev &= cpu_to_le32(~(0xffcU << 20));
1595 *prev |= cpu_to_le32(val << 20);
1596 continue;
1597 }
1598
1599 /*
1600 * Otherwise, fill in a placeholder, the direct
1601 * readfn will virtualize this automatically
1602 */
1603 len = PCI_CAP_SIZEOF;
1604 hidden = true;
1605 }
1606
1607 for (i = 0; i < len; i++) {
1608 if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
1609 continue;
1610
1611 pci_warn(pdev, "%s: PCI config conflict @%#x, was ecap %#x now ecap %#x\n",
1612 __func__, epos + i, map[epos + i], ecap);
1613 }
1614
1615 /*
1616 * Even though ecap is 2 bytes, we're currently a long way
1617 * from exceeding 1 byte capabilities. If we ever make it
1618 * up to 0xFE we'll need to up this to a two-byte, byte map.
1619 */
1620 BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1621
1622 memset(map + epos, ecap, len);
1623 ret = vfio_fill_vconfig_bytes(vdev, epos, len);
1624 if (ret)
1625 return ret;
1626
1627 /*
1628 * If we're just using this capability to anchor the list,
1629 * hide the real ID. Only count real ecaps. XXX PCI spec
1630 * indicates to use cap id = 0, version = 0, next = 0 if
1631 * ecaps are absent, hope users check all the way to next.
1632 */
1633 if (hidden)
1634 *(__le32 *)&vdev->vconfig[epos] &=
1635 cpu_to_le32((0xffcU << 20));
1636 else
1637 ecaps++;
1638
1639 prev = (__le32 *)&vdev->vconfig[epos];
1640 epos = PCI_EXT_CAP_NEXT(header);
1641 }
1642
1643 if (!ecaps)
1644 *(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
1645
1646 return 0;
1647}
1648
1649/*
1650 * Nag about hardware bugs, hopefully to have vendors fix them, but at least
1651 * to collect a list of dependencies for the VF INTx pin quirk below.
1652 */
1653static const struct pci_device_id known_bogus_vf_intx_pin[] = {
1654 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x270c) },
1655 {}
1656};
1657
1658/*
1659 * For each device we allocate a pci_config_map that indicates the
1660 * capability occupying each dword and thus the struct perm_bits we
1661 * use for read and write. We also allocate a virtualized config
1662 * space which tracks reads and writes to bits that we emulate for
1663 * the user. Initial values filled from device.
1664 *
1665 * Using shared struct perm_bits between all vfio-pci devices saves
1666 * us from allocating cfg_size buffers for virt and write for every
1667 * device. We could remove vconfig and allocate individual buffers
1668 * for each area requiring emulated bits, but the array of pointers
1669 * would be comparable in size (at least for standard config space).
1670 */
1671int vfio_config_init(struct vfio_pci_device *vdev)
1672{
1673 struct pci_dev *pdev = vdev->pdev;
1674 u8 *map, *vconfig;
1675 int ret;
1676
1677 /*
1678 * Config space, caps and ecaps are all dword aligned, so we could
1679 * use one byte per dword to record the type. However, there are
1680 * no requiremenst on the length of a capability, so the gap between
1681 * capabilities needs byte granularity.
1682 */
1683 map = kmalloc(pdev->cfg_size, GFP_KERNEL);
1684 if (!map)
1685 return -ENOMEM;
1686
1687 vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
1688 if (!vconfig) {
1689 kfree(map);
1690 return -ENOMEM;
1691 }
1692
1693 vdev->pci_config_map = map;
1694 vdev->vconfig = vconfig;
1695
1696 memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
1697 memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
1698 pdev->cfg_size - PCI_STD_HEADER_SIZEOF);
1699
1700 ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
1701 if (ret)
1702 goto out;
1703
1704 vdev->bardirty = true;
1705
1706 /*
1707 * XXX can we just pci_load_saved_state/pci_restore_state?
1708 * may need to rebuild vconfig after that
1709 */
1710
1711 /* For restore after reset */
1712 vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
1713 vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
1714 vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
1715 vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
1716 vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
1717 vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
1718 vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
1719
1720 if (pdev->is_virtfn) {
1721 *(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
1722 *(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
1723
1724 /*
1725 * Per SR-IOV spec rev 1.1, 3.4.1.18 the interrupt pin register
1726 * does not apply to VFs and VFs must implement this register
1727 * as read-only with value zero. Userspace is not readily able
1728 * to identify whether a device is a VF and thus that the pin
1729 * definition on the device is bogus should it violate this
1730 * requirement. We already virtualize the pin register for
1731 * other purposes, so we simply need to replace the bogus value
1732 * and consider VFs when we determine INTx IRQ count.
1733 */
1734 if (vconfig[PCI_INTERRUPT_PIN] &&
1735 !pci_match_id(known_bogus_vf_intx_pin, pdev))
1736 pci_warn(pdev,
1737 "Hardware bug: VF reports bogus INTx pin %d\n",
1738 vconfig[PCI_INTERRUPT_PIN]);
1739
1740 vconfig[PCI_INTERRUPT_PIN] = 0; /* Gratuitous for good VFs */
1741 }
1742 if (pdev->no_command_memory) {
1743 /*
1744 * VFs and devices that set pdev->no_command_memory do not
1745 * implement the memory enable bit of the COMMAND register
1746 * therefore we'll not have it set in our initial copy of
1747 * config space after pci_enable_device(). For consistency
1748 * with PFs, set the virtual enable bit here.
1749 */
1750 *(__le16 *)&vconfig[PCI_COMMAND] |=
1751 cpu_to_le16(PCI_COMMAND_MEMORY);
1752 }
1753
1754 if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx)
1755 vconfig[PCI_INTERRUPT_PIN] = 0;
1756
1757 ret = vfio_cap_init(vdev);
1758 if (ret)
1759 goto out;
1760
1761 ret = vfio_ecap_init(vdev);
1762 if (ret)
1763 goto out;
1764
1765 return 0;
1766
1767out:
1768 kfree(map);
1769 vdev->pci_config_map = NULL;
1770 kfree(vconfig);
1771 vdev->vconfig = NULL;
1772 return pcibios_err_to_errno(ret);
1773}
1774
1775void vfio_config_free(struct vfio_pci_device *vdev)
1776{
1777 kfree(vdev->vconfig);
1778 vdev->vconfig = NULL;
1779 kfree(vdev->pci_config_map);
1780 vdev->pci_config_map = NULL;
1781 if (vdev->msi_perm) {
1782 free_perm_bits(vdev->msi_perm);
1783 kfree(vdev->msi_perm);
1784 vdev->msi_perm = NULL;
1785 }
1786}
1787
1788/*
1789 * Find the remaining number of bytes in a dword that match the given
1790 * position. Stop at either the end of the capability or the dword boundary.
1791 */
1792static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_device *vdev,
1793 loff_t pos)
1794{
1795 u8 cap = vdev->pci_config_map[pos];
1796 size_t i;
1797
1798 for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
1799 /* nop */;
1800
1801 return i;
1802}
1803
1804static ssize_t vfio_config_do_rw(struct vfio_pci_device *vdev, char __user *buf,
1805 size_t count, loff_t *ppos, bool iswrite)
1806{
1807 struct pci_dev *pdev = vdev->pdev;
1808 struct perm_bits *perm;
1809 __le32 val = 0;
1810 int cap_start = 0, offset;
1811 u8 cap_id;
1812 ssize_t ret;
1813
1814 if (*ppos < 0 || *ppos >= pdev->cfg_size ||
1815 *ppos + count > pdev->cfg_size)
1816 return -EFAULT;
1817
1818 /*
1819 * Chop accesses into aligned chunks containing no more than a
1820 * single capability. Caller increments to the next chunk.
1821 */
1822 count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
1823 if (count >= 4 && !(*ppos % 4))
1824 count = 4;
1825 else if (count >= 2 && !(*ppos % 2))
1826 count = 2;
1827 else
1828 count = 1;
1829
1830 ret = count;
1831
1832 cap_id = vdev->pci_config_map[*ppos];
1833
1834 if (cap_id == PCI_CAP_ID_INVALID) {
1835 perm = &unassigned_perms;
1836 cap_start = *ppos;
1837 } else if (cap_id == PCI_CAP_ID_INVALID_VIRT) {
1838 perm = &virt_perms;
1839 cap_start = *ppos;
1840 } else {
1841 if (*ppos >= PCI_CFG_SPACE_SIZE) {
1842 /*
1843 * We can get a cap_id that exceeds PCI_EXT_CAP_ID_MAX
1844 * if we're hiding an unknown capability at the start
1845 * of the extended capability list. Use default, ro
1846 * access, which will virtualize the id and next values.
1847 */
1848 if (cap_id > PCI_EXT_CAP_ID_MAX)
1849 perm = &direct_ro_perms;
1850 else
1851 perm = &ecap_perms[cap_id];
1852
1853 cap_start = vfio_find_cap_start(vdev, *ppos);
1854 } else {
1855 WARN_ON(cap_id > PCI_CAP_ID_MAX);
1856
1857 perm = &cap_perms[cap_id];
1858
1859 if (cap_id == PCI_CAP_ID_MSI)
1860 perm = vdev->msi_perm;
1861
1862 if (cap_id > PCI_CAP_ID_BASIC)
1863 cap_start = vfio_find_cap_start(vdev, *ppos);
1864 }
1865 }
1866
1867 WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
1868 WARN_ON(cap_start > *ppos);
1869
1870 offset = *ppos - cap_start;
1871
1872 if (iswrite) {
1873 if (!perm->writefn)
1874 return ret;
1875
1876 if (copy_from_user(&val, buf, count))
1877 return -EFAULT;
1878
1879 ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
1880 } else {
1881 if (perm->readfn) {
1882 ret = perm->readfn(vdev, *ppos, count,
1883 perm, offset, &val);
1884 if (ret < 0)
1885 return ret;
1886 }
1887
1888 if (copy_to_user(buf, &val, count))
1889 return -EFAULT;
1890 }
1891
1892 return ret;
1893}
1894
1895ssize_t vfio_pci_config_rw(struct vfio_pci_device *vdev, char __user *buf,
1896 size_t count, loff_t *ppos, bool iswrite)
1897{
1898 size_t done = 0;
1899 int ret = 0;
1900 loff_t pos = *ppos;
1901
1902 pos &= VFIO_PCI_OFFSET_MASK;
1903
1904 while (count) {
1905 ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
1906 if (ret < 0)
1907 return ret;
1908
1909 count -= ret;
1910 done += ret;
1911 buf += ret;
1912 pos += ret;
1913 }
1914
1915 *ppos += done;
1916
1917 return done;
1918}