blob: 8739dd0ee870d88b9f2595953cf09c2065255487 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001/******************************************************************************
2 * Client-facing interface for the Xenbus driver. In other words, the
3 * interface between the Xenbus and the device-specific code, be it the
4 * frontend or the backend of that driver.
5 *
6 * Copyright (C) 2005 XenSource Ltd
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version 2
10 * as published by the Free Software Foundation; or, when distributed
11 * separately from the Linux kernel or incorporated into other
12 * software packages, subject to the following license:
13 *
14 * Permission is hereby granted, free of charge, to any person obtaining a copy
15 * of this source file (the "Software"), to deal in the Software without
16 * restriction, including without limitation the rights to use, copy, modify,
17 * merge, publish, distribute, sublicense, and/or sell copies of the Software,
18 * and to permit persons to whom the Software is furnished to do so, subject to
19 * the following conditions:
20 *
21 * The above copyright notice and this permission notice shall be included in
22 * all copies or substantial portions of the Software.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
25 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
27 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
30 * IN THE SOFTWARE.
31 */
32
33#include <linux/mm.h>
34#include <linux/slab.h>
35#include <linux/types.h>
36#include <linux/spinlock.h>
37#include <linux/vmalloc.h>
38#include <linux/export.h>
39#include <asm/xen/hypervisor.h>
40#include <xen/page.h>
41#include <xen/interface/xen.h>
42#include <xen/interface/event_channel.h>
43#include <xen/balloon.h>
44#include <xen/events.h>
45#include <xen/grant_table.h>
46#include <xen/xenbus.h>
47#include <xen/xen.h>
48#include <xen/features.h>
49
50#include "xenbus.h"
51
52#define XENBUS_PAGES(_grants) (DIV_ROUND_UP(_grants, XEN_PFN_PER_PAGE))
53
54#define XENBUS_MAX_RING_PAGES (XENBUS_PAGES(XENBUS_MAX_RING_GRANTS))
55
56struct xenbus_map_node {
57 struct list_head next;
58 union {
59 struct {
60 struct vm_struct *area;
61 } pv;
62 struct {
63 struct page *pages[XENBUS_MAX_RING_PAGES];
64 unsigned long addrs[XENBUS_MAX_RING_GRANTS];
65 void *addr;
66 } hvm;
67 };
68 grant_handle_t handles[XENBUS_MAX_RING_GRANTS];
69 unsigned int nr_handles;
70};
71
72static DEFINE_SPINLOCK(xenbus_valloc_lock);
73static LIST_HEAD(xenbus_valloc_pages);
74
75struct xenbus_ring_ops {
76 int (*map)(struct xenbus_device *dev,
77 grant_ref_t *gnt_refs, unsigned int nr_grefs,
78 void **vaddr);
79 int (*unmap)(struct xenbus_device *dev, void *vaddr);
80};
81
82static const struct xenbus_ring_ops *ring_ops __read_mostly;
83
84const char *xenbus_strstate(enum xenbus_state state)
85{
86 static const char *const name[] = {
87 [ XenbusStateUnknown ] = "Unknown",
88 [ XenbusStateInitialising ] = "Initialising",
89 [ XenbusStateInitWait ] = "InitWait",
90 [ XenbusStateInitialised ] = "Initialised",
91 [ XenbusStateConnected ] = "Connected",
92 [ XenbusStateClosing ] = "Closing",
93 [ XenbusStateClosed ] = "Closed",
94 [XenbusStateReconfiguring] = "Reconfiguring",
95 [XenbusStateReconfigured] = "Reconfigured",
96 };
97 return (state < ARRAY_SIZE(name)) ? name[state] : "INVALID";
98}
99EXPORT_SYMBOL_GPL(xenbus_strstate);
100
101/**
102 * xenbus_watch_path - register a watch
103 * @dev: xenbus device
104 * @path: path to watch
105 * @watch: watch to register
106 * @callback: callback to register
107 *
108 * Register a @watch on the given path, using the given xenbus_watch structure
109 * for storage, and the given @callback function as the callback. Return 0 on
110 * success, or -errno on error. On success, the given @path will be saved as
111 * @watch->node, and remains the caller's to free. On error, @watch->node will
112 * be NULL, the device will switch to %XenbusStateClosing, and the error will
113 * be saved in the store.
114 */
115int xenbus_watch_path(struct xenbus_device *dev, const char *path,
116 struct xenbus_watch *watch,
117 bool (*will_handle)(struct xenbus_watch *,
118 const char *, const char *),
119 void (*callback)(struct xenbus_watch *,
120 const char *, const char *))
121{
122 int err;
123
124 watch->node = path;
125 watch->will_handle = will_handle;
126 watch->callback = callback;
127
128 err = register_xenbus_watch(watch);
129
130 if (err) {
131 watch->node = NULL;
132 watch->will_handle = NULL;
133 watch->callback = NULL;
134 xenbus_dev_fatal(dev, err, "adding watch on %s", path);
135 }
136
137 return err;
138}
139EXPORT_SYMBOL_GPL(xenbus_watch_path);
140
141
142/**
143 * xenbus_watch_pathfmt - register a watch on a sprintf-formatted path
144 * @dev: xenbus device
145 * @watch: watch to register
146 * @callback: callback to register
147 * @pathfmt: format of path to watch
148 *
149 * Register a watch on the given @path, using the given xenbus_watch
150 * structure for storage, and the given @callback function as the callback.
151 * Return 0 on success, or -errno on error. On success, the watched path
152 * (@path/@path2) will be saved as @watch->node, and becomes the caller's to
153 * kfree(). On error, watch->node will be NULL, so the caller has nothing to
154 * free, the device will switch to %XenbusStateClosing, and the error will be
155 * saved in the store.
156 */
157int xenbus_watch_pathfmt(struct xenbus_device *dev,
158 struct xenbus_watch *watch,
159 bool (*will_handle)(struct xenbus_watch *,
160 const char *, const char *),
161 void (*callback)(struct xenbus_watch *,
162 const char *, const char *),
163 const char *pathfmt, ...)
164{
165 int err;
166 va_list ap;
167 char *path;
168
169 va_start(ap, pathfmt);
170 path = kvasprintf(GFP_NOIO | __GFP_HIGH, pathfmt, ap);
171 va_end(ap);
172
173 if (!path) {
174 xenbus_dev_fatal(dev, -ENOMEM, "allocating path for watch");
175 return -ENOMEM;
176 }
177 err = xenbus_watch_path(dev, path, watch, will_handle, callback);
178
179 if (err)
180 kfree(path);
181 return err;
182}
183EXPORT_SYMBOL_GPL(xenbus_watch_pathfmt);
184
185static void xenbus_switch_fatal(struct xenbus_device *, int, int,
186 const char *, ...);
187
188static int
189__xenbus_switch_state(struct xenbus_device *dev,
190 enum xenbus_state state, int depth)
191{
192 /* We check whether the state is currently set to the given value, and
193 if not, then the state is set. We don't want to unconditionally
194 write the given state, because we don't want to fire watches
195 unnecessarily. Furthermore, if the node has gone, we don't write
196 to it, as the device will be tearing down, and we don't want to
197 resurrect that directory.
198
199 Note that, because of this cached value of our state, this
200 function will not take a caller's Xenstore transaction
201 (something it was trying to in the past) because dev->state
202 would not get reset if the transaction was aborted.
203 */
204
205 struct xenbus_transaction xbt;
206 int current_state;
207 int err, abort;
208
209 if (state == dev->state)
210 return 0;
211
212again:
213 abort = 1;
214
215 err = xenbus_transaction_start(&xbt);
216 if (err) {
217 xenbus_switch_fatal(dev, depth, err, "starting transaction");
218 return 0;
219 }
220
221 err = xenbus_scanf(xbt, dev->nodename, "state", "%d", &current_state);
222 if (err != 1)
223 goto abort;
224
225 err = xenbus_printf(xbt, dev->nodename, "state", "%d", state);
226 if (err) {
227 xenbus_switch_fatal(dev, depth, err, "writing new state");
228 goto abort;
229 }
230
231 abort = 0;
232abort:
233 err = xenbus_transaction_end(xbt, abort);
234 if (err) {
235 if (err == -EAGAIN && !abort)
236 goto again;
237 xenbus_switch_fatal(dev, depth, err, "ending transaction");
238 } else
239 dev->state = state;
240
241 return 0;
242}
243
244/**
245 * xenbus_switch_state
246 * @dev: xenbus device
247 * @state: new state
248 *
249 * Advertise in the store a change of the given driver to the given new_state.
250 * Return 0 on success, or -errno on error. On error, the device will switch
251 * to XenbusStateClosing, and the error will be saved in the store.
252 */
253int xenbus_switch_state(struct xenbus_device *dev, enum xenbus_state state)
254{
255 return __xenbus_switch_state(dev, state, 0);
256}
257
258EXPORT_SYMBOL_GPL(xenbus_switch_state);
259
260int xenbus_frontend_closed(struct xenbus_device *dev)
261{
262 xenbus_switch_state(dev, XenbusStateClosed);
263 complete(&dev->down);
264 return 0;
265}
266EXPORT_SYMBOL_GPL(xenbus_frontend_closed);
267
268static void xenbus_va_dev_error(struct xenbus_device *dev, int err,
269 const char *fmt, va_list ap)
270{
271 unsigned int len;
272 char *printf_buffer;
273 char *path_buffer;
274
275#define PRINTF_BUFFER_SIZE 4096
276
277 printf_buffer = kmalloc(PRINTF_BUFFER_SIZE, GFP_KERNEL);
278 if (!printf_buffer)
279 return;
280
281 len = sprintf(printf_buffer, "%i ", -err);
282 vsnprintf(printf_buffer + len, PRINTF_BUFFER_SIZE - len, fmt, ap);
283
284 dev_err(&dev->dev, "%s\n", printf_buffer);
285
286 path_buffer = kasprintf(GFP_KERNEL, "error/%s", dev->nodename);
287 if (path_buffer)
288 xenbus_write(XBT_NIL, path_buffer, "error", printf_buffer);
289
290 kfree(printf_buffer);
291 kfree(path_buffer);
292}
293
294/**
295 * xenbus_dev_error
296 * @dev: xenbus device
297 * @err: error to report
298 * @fmt: error message format
299 *
300 * Report the given negative errno into the store, along with the given
301 * formatted message.
302 */
303void xenbus_dev_error(struct xenbus_device *dev, int err, const char *fmt, ...)
304{
305 va_list ap;
306
307 va_start(ap, fmt);
308 xenbus_va_dev_error(dev, err, fmt, ap);
309 va_end(ap);
310}
311EXPORT_SYMBOL_GPL(xenbus_dev_error);
312
313/**
314 * xenbus_dev_fatal
315 * @dev: xenbus device
316 * @err: error to report
317 * @fmt: error message format
318 *
319 * Equivalent to xenbus_dev_error(dev, err, fmt, args), followed by
320 * xenbus_switch_state(dev, XenbusStateClosing) to schedule an orderly
321 * closedown of this driver and its peer.
322 */
323
324void xenbus_dev_fatal(struct xenbus_device *dev, int err, const char *fmt, ...)
325{
326 va_list ap;
327
328 va_start(ap, fmt);
329 xenbus_va_dev_error(dev, err, fmt, ap);
330 va_end(ap);
331
332 xenbus_switch_state(dev, XenbusStateClosing);
333}
334EXPORT_SYMBOL_GPL(xenbus_dev_fatal);
335
336/**
337 * Equivalent to xenbus_dev_fatal(dev, err, fmt, args), but helps
338 * avoiding recursion within xenbus_switch_state.
339 */
340static void xenbus_switch_fatal(struct xenbus_device *dev, int depth, int err,
341 const char *fmt, ...)
342{
343 va_list ap;
344
345 va_start(ap, fmt);
346 xenbus_va_dev_error(dev, err, fmt, ap);
347 va_end(ap);
348
349 if (!depth)
350 __xenbus_switch_state(dev, XenbusStateClosing, 1);
351}
352
353/**
354 * xenbus_grant_ring
355 * @dev: xenbus device
356 * @vaddr: starting virtual address of the ring
357 * @nr_pages: number of pages to be granted
358 * @grefs: grant reference array to be filled in
359 *
360 * Grant access to the given @vaddr to the peer of the given device.
361 * Then fill in @grefs with grant references. Return 0 on success, or
362 * -errno on error. On error, the device will switch to
363 * XenbusStateClosing, and the error will be saved in the store.
364 */
365int xenbus_grant_ring(struct xenbus_device *dev, void *vaddr,
366 unsigned int nr_pages, grant_ref_t *grefs)
367{
368 int err;
369 unsigned int i;
370 grant_ref_t gref_head;
371
372 err = gnttab_alloc_grant_references(nr_pages, &gref_head);
373 if (err) {
374 xenbus_dev_fatal(dev, err, "granting access to ring page");
375 return err;
376 }
377
378 for (i = 0; i < nr_pages; i++) {
379 unsigned long gfn;
380
381 if (is_vmalloc_addr(vaddr))
382 gfn = pfn_to_gfn(vmalloc_to_pfn(vaddr));
383 else
384 gfn = virt_to_gfn(vaddr);
385
386 grefs[i] = gnttab_claim_grant_reference(&gref_head);
387 gnttab_grant_foreign_access_ref(grefs[i], dev->otherend_id,
388 gfn, 0);
389
390 vaddr = vaddr + XEN_PAGE_SIZE;
391 }
392
393 return 0;
394}
395EXPORT_SYMBOL_GPL(xenbus_grant_ring);
396
397
398/**
399 * Allocate an event channel for the given xenbus_device, assigning the newly
400 * created local port to *port. Return 0 on success, or -errno on error. On
401 * error, the device will switch to XenbusStateClosing, and the error will be
402 * saved in the store.
403 */
404int xenbus_alloc_evtchn(struct xenbus_device *dev, int *port)
405{
406 struct evtchn_alloc_unbound alloc_unbound;
407 int err;
408
409 alloc_unbound.dom = DOMID_SELF;
410 alloc_unbound.remote_dom = dev->otherend_id;
411
412 err = HYPERVISOR_event_channel_op(EVTCHNOP_alloc_unbound,
413 &alloc_unbound);
414 if (err)
415 xenbus_dev_fatal(dev, err, "allocating event channel");
416 else
417 *port = alloc_unbound.port;
418
419 return err;
420}
421EXPORT_SYMBOL_GPL(xenbus_alloc_evtchn);
422
423
424/**
425 * Free an existing event channel. Returns 0 on success or -errno on error.
426 */
427int xenbus_free_evtchn(struct xenbus_device *dev, int port)
428{
429 struct evtchn_close close;
430 int err;
431
432 close.port = port;
433
434 err = HYPERVISOR_event_channel_op(EVTCHNOP_close, &close);
435 if (err)
436 xenbus_dev_error(dev, err, "freeing event channel %d", port);
437
438 return err;
439}
440EXPORT_SYMBOL_GPL(xenbus_free_evtchn);
441
442
443/**
444 * xenbus_map_ring_valloc
445 * @dev: xenbus device
446 * @gnt_refs: grant reference array
447 * @nr_grefs: number of grant references
448 * @vaddr: pointer to address to be filled out by mapping
449 *
450 * Map @nr_grefs pages of memory into this domain from another
451 * domain's grant table. xenbus_map_ring_valloc allocates @nr_grefs
452 * pages of virtual address space, maps the pages to that address, and
453 * sets *vaddr to that address. Returns 0 on success, and GNTST_*
454 * (see xen/include/interface/grant_table.h) or -ENOMEM / -EINVAL on
455 * error. If an error is returned, device will switch to
456 * XenbusStateClosing and the error message will be saved in XenStore.
457 */
458int xenbus_map_ring_valloc(struct xenbus_device *dev, grant_ref_t *gnt_refs,
459 unsigned int nr_grefs, void **vaddr)
460{
461 int err;
462
463 err = ring_ops->map(dev, gnt_refs, nr_grefs, vaddr);
464 /* Some hypervisors are buggy and can return 1. */
465 if (err > 0)
466 err = GNTST_general_error;
467
468 return err;
469}
470EXPORT_SYMBOL_GPL(xenbus_map_ring_valloc);
471
472/* N.B. sizeof(phys_addr_t) doesn't always equal to sizeof(unsigned
473 * long), e.g. 32-on-64. Caller is responsible for preparing the
474 * right array to feed into this function */
475static int __xenbus_map_ring(struct xenbus_device *dev,
476 grant_ref_t *gnt_refs,
477 unsigned int nr_grefs,
478 grant_handle_t *handles,
479 phys_addr_t *addrs,
480 unsigned int flags,
481 bool *leaked)
482{
483 struct gnttab_map_grant_ref map[XENBUS_MAX_RING_GRANTS];
484 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
485 int i, j;
486 int err = GNTST_okay;
487
488 if (nr_grefs > XENBUS_MAX_RING_GRANTS)
489 return -EINVAL;
490
491 for (i = 0; i < nr_grefs; i++) {
492 memset(&map[i], 0, sizeof(map[i]));
493 gnttab_set_map_op(&map[i], addrs[i], flags, gnt_refs[i],
494 dev->otherend_id);
495 handles[i] = INVALID_GRANT_HANDLE;
496 }
497
498 gnttab_batch_map(map, i);
499
500 for (i = 0; i < nr_grefs; i++) {
501 if (map[i].status != GNTST_okay) {
502 err = map[i].status;
503 xenbus_dev_fatal(dev, map[i].status,
504 "mapping in shared page %d from domain %d",
505 gnt_refs[i], dev->otherend_id);
506 goto fail;
507 } else
508 handles[i] = map[i].handle;
509 }
510
511 return GNTST_okay;
512
513 fail:
514 for (i = j = 0; i < nr_grefs; i++) {
515 if (handles[i] != INVALID_GRANT_HANDLE) {
516 memset(&unmap[j], 0, sizeof(unmap[j]));
517 gnttab_set_unmap_op(&unmap[j], (phys_addr_t)addrs[i],
518 GNTMAP_host_map, handles[i]);
519 j++;
520 }
521 }
522
523 if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, j))
524 BUG();
525
526 *leaked = false;
527 for (i = 0; i < j; i++) {
528 if (unmap[i].status != GNTST_okay) {
529 *leaked = true;
530 break;
531 }
532 }
533
534 return err;
535}
536
537struct map_ring_valloc_hvm
538{
539 unsigned int idx;
540
541 /* Why do we need two arrays? See comment of __xenbus_map_ring */
542 phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS];
543 unsigned long addrs[XENBUS_MAX_RING_GRANTS];
544};
545
546static void xenbus_map_ring_setup_grant_hvm(unsigned long gfn,
547 unsigned int goffset,
548 unsigned int len,
549 void *data)
550{
551 struct map_ring_valloc_hvm *info = data;
552 unsigned long vaddr = (unsigned long)gfn_to_virt(gfn);
553
554 info->phys_addrs[info->idx] = vaddr;
555 info->addrs[info->idx] = vaddr;
556
557 info->idx++;
558}
559
560static int xenbus_map_ring_valloc_hvm(struct xenbus_device *dev,
561 grant_ref_t *gnt_ref,
562 unsigned int nr_grefs,
563 void **vaddr)
564{
565 struct xenbus_map_node *node;
566 int err;
567 void *addr;
568 bool leaked = false;
569 struct map_ring_valloc_hvm info = {
570 .idx = 0,
571 };
572 unsigned int nr_pages = XENBUS_PAGES(nr_grefs);
573
574 if (nr_grefs > XENBUS_MAX_RING_GRANTS)
575 return -EINVAL;
576
577 *vaddr = NULL;
578
579 node = kzalloc(sizeof(*node), GFP_KERNEL);
580 if (!node)
581 return -ENOMEM;
582
583 err = alloc_xenballooned_pages(nr_pages, node->hvm.pages);
584 if (err)
585 goto out_err;
586
587 gnttab_foreach_grant(node->hvm.pages, nr_grefs,
588 xenbus_map_ring_setup_grant_hvm,
589 &info);
590
591 err = __xenbus_map_ring(dev, gnt_ref, nr_grefs, node->handles,
592 info.phys_addrs, GNTMAP_host_map, &leaked);
593 node->nr_handles = nr_grefs;
594
595 if (err)
596 goto out_free_ballooned_pages;
597
598 addr = vmap(node->hvm.pages, nr_pages, VM_MAP | VM_IOREMAP,
599 PAGE_KERNEL);
600 if (!addr) {
601 err = -ENOMEM;
602 goto out_xenbus_unmap_ring;
603 }
604
605 node->hvm.addr = addr;
606
607 spin_lock(&xenbus_valloc_lock);
608 list_add(&node->next, &xenbus_valloc_pages);
609 spin_unlock(&xenbus_valloc_lock);
610
611 *vaddr = addr;
612 return 0;
613
614 out_xenbus_unmap_ring:
615 if (!leaked)
616 xenbus_unmap_ring(dev, node->handles, nr_grefs, info.addrs);
617 else
618 pr_alert("leaking %p size %u page(s)",
619 addr, nr_pages);
620 out_free_ballooned_pages:
621 if (!leaked)
622 free_xenballooned_pages(nr_pages, node->hvm.pages);
623 out_err:
624 kfree(node);
625 return err;
626}
627
628
629/**
630 * xenbus_map_ring
631 * @dev: xenbus device
632 * @gnt_refs: grant reference array
633 * @nr_grefs: number of grant reference
634 * @handles: pointer to grant handle to be filled
635 * @vaddrs: addresses to be mapped to
636 * @leaked: fail to clean up a failed map, caller should not free vaddr
637 *
638 * Map pages of memory into this domain from another domain's grant table.
639 * xenbus_map_ring does not allocate the virtual address space (you must do
640 * this yourself!). It only maps in the pages to the specified address.
641 * Returns 0 on success, and GNTST_* (see xen/include/interface/grant_table.h)
642 * or -ENOMEM / -EINVAL on error. If an error is returned, device will switch to
643 * XenbusStateClosing and the first error message will be saved in XenStore.
644 * Further more if we fail to map the ring, caller should check @leaked.
645 * If @leaked is not zero it means xenbus_map_ring fails to clean up, caller
646 * should not free the address space of @vaddr.
647 */
648int xenbus_map_ring(struct xenbus_device *dev, grant_ref_t *gnt_refs,
649 unsigned int nr_grefs, grant_handle_t *handles,
650 unsigned long *vaddrs, bool *leaked)
651{
652 phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS];
653 int i;
654
655 if (nr_grefs > XENBUS_MAX_RING_GRANTS)
656 return -EINVAL;
657
658 for (i = 0; i < nr_grefs; i++)
659 phys_addrs[i] = (unsigned long)vaddrs[i];
660
661 return __xenbus_map_ring(dev, gnt_refs, nr_grefs, handles,
662 phys_addrs, GNTMAP_host_map, leaked);
663}
664EXPORT_SYMBOL_GPL(xenbus_map_ring);
665
666
667/**
668 * xenbus_unmap_ring_vfree
669 * @dev: xenbus device
670 * @vaddr: addr to unmap
671 *
672 * Based on Rusty Russell's skeleton driver's unmap_page.
673 * Unmap a page of memory in this domain that was imported from another domain.
674 * Use xenbus_unmap_ring_vfree if you mapped in your memory with
675 * xenbus_map_ring_valloc (it will free the virtual address space).
676 * Returns 0 on success and returns GNTST_* on error
677 * (see xen/include/interface/grant_table.h).
678 */
679int xenbus_unmap_ring_vfree(struct xenbus_device *dev, void *vaddr)
680{
681 return ring_ops->unmap(dev, vaddr);
682}
683EXPORT_SYMBOL_GPL(xenbus_unmap_ring_vfree);
684
685#ifdef CONFIG_XEN_PV
686static int xenbus_map_ring_valloc_pv(struct xenbus_device *dev,
687 grant_ref_t *gnt_refs,
688 unsigned int nr_grefs,
689 void **vaddr)
690{
691 struct xenbus_map_node *node;
692 struct vm_struct *area;
693 pte_t *ptes[XENBUS_MAX_RING_GRANTS];
694 phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS];
695 int err = GNTST_okay;
696 int i;
697 bool leaked;
698
699 *vaddr = NULL;
700
701 if (nr_grefs > XENBUS_MAX_RING_GRANTS)
702 return -EINVAL;
703
704 node = kzalloc(sizeof(*node), GFP_KERNEL);
705 if (!node)
706 return -ENOMEM;
707
708 area = alloc_vm_area(XEN_PAGE_SIZE * nr_grefs, ptes);
709 if (!area) {
710 kfree(node);
711 return -ENOMEM;
712 }
713
714 for (i = 0; i < nr_grefs; i++)
715 phys_addrs[i] = arbitrary_virt_to_machine(ptes[i]).maddr;
716
717 err = __xenbus_map_ring(dev, gnt_refs, nr_grefs, node->handles,
718 phys_addrs,
719 GNTMAP_host_map | GNTMAP_contains_pte,
720 &leaked);
721 if (err)
722 goto failed;
723
724 node->nr_handles = nr_grefs;
725 node->pv.area = area;
726
727 spin_lock(&xenbus_valloc_lock);
728 list_add(&node->next, &xenbus_valloc_pages);
729 spin_unlock(&xenbus_valloc_lock);
730
731 *vaddr = area->addr;
732 return 0;
733
734failed:
735 if (!leaked)
736 free_vm_area(area);
737 else
738 pr_alert("leaking VM area %p size %u page(s)", area, nr_grefs);
739
740 kfree(node);
741 return err;
742}
743
744static int xenbus_unmap_ring_vfree_pv(struct xenbus_device *dev, void *vaddr)
745{
746 struct xenbus_map_node *node;
747 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
748 unsigned int level;
749 int i;
750 bool leaked = false;
751 int err;
752
753 spin_lock(&xenbus_valloc_lock);
754 list_for_each_entry(node, &xenbus_valloc_pages, next) {
755 if (node->pv.area->addr == vaddr) {
756 list_del(&node->next);
757 goto found;
758 }
759 }
760 node = NULL;
761 found:
762 spin_unlock(&xenbus_valloc_lock);
763
764 if (!node) {
765 xenbus_dev_error(dev, -ENOENT,
766 "can't find mapped virtual address %p", vaddr);
767 return GNTST_bad_virt_addr;
768 }
769
770 for (i = 0; i < node->nr_handles; i++) {
771 unsigned long addr;
772
773 memset(&unmap[i], 0, sizeof(unmap[i]));
774 addr = (unsigned long)vaddr + (XEN_PAGE_SIZE * i);
775 unmap[i].host_addr = arbitrary_virt_to_machine(
776 lookup_address(addr, &level)).maddr;
777 unmap[i].dev_bus_addr = 0;
778 unmap[i].handle = node->handles[i];
779 }
780
781 if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i))
782 BUG();
783
784 err = GNTST_okay;
785 leaked = false;
786 for (i = 0; i < node->nr_handles; i++) {
787 if (unmap[i].status != GNTST_okay) {
788 leaked = true;
789 xenbus_dev_error(dev, unmap[i].status,
790 "unmapping page at handle %d error %d",
791 node->handles[i], unmap[i].status);
792 err = unmap[i].status;
793 break;
794 }
795 }
796
797 if (!leaked)
798 free_vm_area(node->pv.area);
799 else
800 pr_alert("leaking VM area %p size %u page(s)",
801 node->pv.area, node->nr_handles);
802
803 kfree(node);
804 return err;
805}
806
807static const struct xenbus_ring_ops ring_ops_pv = {
808 .map = xenbus_map_ring_valloc_pv,
809 .unmap = xenbus_unmap_ring_vfree_pv,
810};
811#endif
812
813struct unmap_ring_vfree_hvm
814{
815 unsigned int idx;
816 unsigned long addrs[XENBUS_MAX_RING_GRANTS];
817};
818
819static void xenbus_unmap_ring_setup_grant_hvm(unsigned long gfn,
820 unsigned int goffset,
821 unsigned int len,
822 void *data)
823{
824 struct unmap_ring_vfree_hvm *info = data;
825
826 info->addrs[info->idx] = (unsigned long)gfn_to_virt(gfn);
827
828 info->idx++;
829}
830
831static int xenbus_unmap_ring_vfree_hvm(struct xenbus_device *dev, void *vaddr)
832{
833 int rv;
834 struct xenbus_map_node *node;
835 void *addr;
836 struct unmap_ring_vfree_hvm info = {
837 .idx = 0,
838 };
839 unsigned int nr_pages;
840
841 spin_lock(&xenbus_valloc_lock);
842 list_for_each_entry(node, &xenbus_valloc_pages, next) {
843 addr = node->hvm.addr;
844 if (addr == vaddr) {
845 list_del(&node->next);
846 goto found;
847 }
848 }
849 node = addr = NULL;
850 found:
851 spin_unlock(&xenbus_valloc_lock);
852
853 if (!node) {
854 xenbus_dev_error(dev, -ENOENT,
855 "can't find mapped virtual address %p", vaddr);
856 return GNTST_bad_virt_addr;
857 }
858
859 nr_pages = XENBUS_PAGES(node->nr_handles);
860
861 gnttab_foreach_grant(node->hvm.pages, node->nr_handles,
862 xenbus_unmap_ring_setup_grant_hvm,
863 &info);
864
865 rv = xenbus_unmap_ring(dev, node->handles, node->nr_handles,
866 info.addrs);
867 if (!rv) {
868 vunmap(vaddr);
869 free_xenballooned_pages(nr_pages, node->hvm.pages);
870 }
871 else
872 WARN(1, "Leaking %p, size %u page(s)\n", vaddr, nr_pages);
873
874 kfree(node);
875 return rv;
876}
877
878/**
879 * xenbus_unmap_ring
880 * @dev: xenbus device
881 * @handles: grant handle array
882 * @nr_handles: number of handles in the array
883 * @vaddrs: addresses to unmap
884 *
885 * Unmap memory in this domain that was imported from another domain.
886 * Returns 0 on success and returns GNTST_* on error
887 * (see xen/include/interface/grant_table.h).
888 */
889int xenbus_unmap_ring(struct xenbus_device *dev,
890 grant_handle_t *handles, unsigned int nr_handles,
891 unsigned long *vaddrs)
892{
893 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
894 int i;
895 int err;
896
897 if (nr_handles > XENBUS_MAX_RING_GRANTS)
898 return -EINVAL;
899
900 for (i = 0; i < nr_handles; i++)
901 gnttab_set_unmap_op(&unmap[i], vaddrs[i],
902 GNTMAP_host_map, handles[i]);
903
904 if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i))
905 BUG();
906
907 err = GNTST_okay;
908 for (i = 0; i < nr_handles; i++) {
909 if (unmap[i].status != GNTST_okay) {
910 xenbus_dev_error(dev, unmap[i].status,
911 "unmapping page at handle %d error %d",
912 handles[i], unmap[i].status);
913 err = unmap[i].status;
914 break;
915 }
916 }
917
918 return err;
919}
920EXPORT_SYMBOL_GPL(xenbus_unmap_ring);
921
922
923/**
924 * xenbus_read_driver_state
925 * @path: path for driver
926 *
927 * Return the state of the driver rooted at the given store path, or
928 * XenbusStateUnknown if no state can be read.
929 */
930enum xenbus_state xenbus_read_driver_state(const char *path)
931{
932 enum xenbus_state result;
933 int err = xenbus_gather(XBT_NIL, path, "state", "%d", &result, NULL);
934 if (err)
935 result = XenbusStateUnknown;
936
937 return result;
938}
939EXPORT_SYMBOL_GPL(xenbus_read_driver_state);
940
941static const struct xenbus_ring_ops ring_ops_hvm = {
942 .map = xenbus_map_ring_valloc_hvm,
943 .unmap = xenbus_unmap_ring_vfree_hvm,
944};
945
946void __init xenbus_ring_ops_init(void)
947{
948#ifdef CONFIG_XEN_PV
949 if (!xen_feature(XENFEAT_auto_translated_physmap))
950 ring_ops = &ring_ops_pv;
951 else
952#endif
953 ring_ops = &ring_ops_hvm;
954}