blob: e3a43bf63f06cd16bf254a04c6f1198a8e7767d7 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7#include <linux/slab.h>
8#include <linux/iversion.h>
9#include <linux/sched/mm.h>
10#include "misc.h"
11#include "delayed-inode.h"
12#include "disk-io.h"
13#include "transaction.h"
14#include "ctree.h"
15#include "qgroup.h"
16
17#define BTRFS_DELAYED_WRITEBACK 512
18#define BTRFS_DELAYED_BACKGROUND 128
19#define BTRFS_DELAYED_BATCH 16
20
21static struct kmem_cache *delayed_node_cache;
22
23int __init btrfs_delayed_inode_init(void)
24{
25 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
26 sizeof(struct btrfs_delayed_node),
27 0,
28 SLAB_MEM_SPREAD,
29 NULL);
30 if (!delayed_node_cache)
31 return -ENOMEM;
32 return 0;
33}
34
35void __cold btrfs_delayed_inode_exit(void)
36{
37 kmem_cache_destroy(delayed_node_cache);
38}
39
40static inline void btrfs_init_delayed_node(
41 struct btrfs_delayed_node *delayed_node,
42 struct btrfs_root *root, u64 inode_id)
43{
44 delayed_node->root = root;
45 delayed_node->inode_id = inode_id;
46 refcount_set(&delayed_node->refs, 0);
47 delayed_node->ins_root = RB_ROOT_CACHED;
48 delayed_node->del_root = RB_ROOT_CACHED;
49 mutex_init(&delayed_node->mutex);
50 INIT_LIST_HEAD(&delayed_node->n_list);
51 INIT_LIST_HEAD(&delayed_node->p_list);
52}
53
54static inline int btrfs_is_continuous_delayed_item(
55 struct btrfs_delayed_item *item1,
56 struct btrfs_delayed_item *item2)
57{
58 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
59 item1->key.objectid == item2->key.objectid &&
60 item1->key.type == item2->key.type &&
61 item1->key.offset + 1 == item2->key.offset)
62 return 1;
63 return 0;
64}
65
66static struct btrfs_delayed_node *btrfs_get_delayed_node(
67 struct btrfs_inode *btrfs_inode)
68{
69 struct btrfs_root *root = btrfs_inode->root;
70 u64 ino = btrfs_ino(btrfs_inode);
71 struct btrfs_delayed_node *node;
72
73 node = READ_ONCE(btrfs_inode->delayed_node);
74 if (node) {
75 refcount_inc(&node->refs);
76 return node;
77 }
78
79 spin_lock(&root->inode_lock);
80 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
81
82 if (node) {
83 if (btrfs_inode->delayed_node) {
84 refcount_inc(&node->refs); /* can be accessed */
85 BUG_ON(btrfs_inode->delayed_node != node);
86 spin_unlock(&root->inode_lock);
87 return node;
88 }
89
90 /*
91 * It's possible that we're racing into the middle of removing
92 * this node from the radix tree. In this case, the refcount
93 * was zero and it should never go back to one. Just return
94 * NULL like it was never in the radix at all; our release
95 * function is in the process of removing it.
96 *
97 * Some implementations of refcount_inc refuse to bump the
98 * refcount once it has hit zero. If we don't do this dance
99 * here, refcount_inc() may decide to just WARN_ONCE() instead
100 * of actually bumping the refcount.
101 *
102 * If this node is properly in the radix, we want to bump the
103 * refcount twice, once for the inode and once for this get
104 * operation.
105 */
106 if (refcount_inc_not_zero(&node->refs)) {
107 refcount_inc(&node->refs);
108 btrfs_inode->delayed_node = node;
109 } else {
110 node = NULL;
111 }
112
113 spin_unlock(&root->inode_lock);
114 return node;
115 }
116 spin_unlock(&root->inode_lock);
117
118 return NULL;
119}
120
121/* Will return either the node or PTR_ERR(-ENOMEM) */
122static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
123 struct btrfs_inode *btrfs_inode)
124{
125 struct btrfs_delayed_node *node;
126 struct btrfs_root *root = btrfs_inode->root;
127 u64 ino = btrfs_ino(btrfs_inode);
128 int ret;
129
130again:
131 node = btrfs_get_delayed_node(btrfs_inode);
132 if (node)
133 return node;
134
135 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
136 if (!node)
137 return ERR_PTR(-ENOMEM);
138 btrfs_init_delayed_node(node, root, ino);
139
140 /* cached in the btrfs inode and can be accessed */
141 refcount_set(&node->refs, 2);
142
143 ret = radix_tree_preload(GFP_NOFS);
144 if (ret) {
145 kmem_cache_free(delayed_node_cache, node);
146 return ERR_PTR(ret);
147 }
148
149 spin_lock(&root->inode_lock);
150 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
151 if (ret == -EEXIST) {
152 spin_unlock(&root->inode_lock);
153 kmem_cache_free(delayed_node_cache, node);
154 radix_tree_preload_end();
155 goto again;
156 }
157 btrfs_inode->delayed_node = node;
158 spin_unlock(&root->inode_lock);
159 radix_tree_preload_end();
160
161 return node;
162}
163
164/*
165 * Call it when holding delayed_node->mutex
166 *
167 * If mod = 1, add this node into the prepared list.
168 */
169static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
170 struct btrfs_delayed_node *node,
171 int mod)
172{
173 spin_lock(&root->lock);
174 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
175 if (!list_empty(&node->p_list))
176 list_move_tail(&node->p_list, &root->prepare_list);
177 else if (mod)
178 list_add_tail(&node->p_list, &root->prepare_list);
179 } else {
180 list_add_tail(&node->n_list, &root->node_list);
181 list_add_tail(&node->p_list, &root->prepare_list);
182 refcount_inc(&node->refs); /* inserted into list */
183 root->nodes++;
184 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
185 }
186 spin_unlock(&root->lock);
187}
188
189/* Call it when holding delayed_node->mutex */
190static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
191 struct btrfs_delayed_node *node)
192{
193 spin_lock(&root->lock);
194 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
195 root->nodes--;
196 refcount_dec(&node->refs); /* not in the list */
197 list_del_init(&node->n_list);
198 if (!list_empty(&node->p_list))
199 list_del_init(&node->p_list);
200 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
201 }
202 spin_unlock(&root->lock);
203}
204
205static struct btrfs_delayed_node *btrfs_first_delayed_node(
206 struct btrfs_delayed_root *delayed_root)
207{
208 struct list_head *p;
209 struct btrfs_delayed_node *node = NULL;
210
211 spin_lock(&delayed_root->lock);
212 if (list_empty(&delayed_root->node_list))
213 goto out;
214
215 p = delayed_root->node_list.next;
216 node = list_entry(p, struct btrfs_delayed_node, n_list);
217 refcount_inc(&node->refs);
218out:
219 spin_unlock(&delayed_root->lock);
220
221 return node;
222}
223
224static struct btrfs_delayed_node *btrfs_next_delayed_node(
225 struct btrfs_delayed_node *node)
226{
227 struct btrfs_delayed_root *delayed_root;
228 struct list_head *p;
229 struct btrfs_delayed_node *next = NULL;
230
231 delayed_root = node->root->fs_info->delayed_root;
232 spin_lock(&delayed_root->lock);
233 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
234 /* not in the list */
235 if (list_empty(&delayed_root->node_list))
236 goto out;
237 p = delayed_root->node_list.next;
238 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
239 goto out;
240 else
241 p = node->n_list.next;
242
243 next = list_entry(p, struct btrfs_delayed_node, n_list);
244 refcount_inc(&next->refs);
245out:
246 spin_unlock(&delayed_root->lock);
247
248 return next;
249}
250
251static void __btrfs_release_delayed_node(
252 struct btrfs_delayed_node *delayed_node,
253 int mod)
254{
255 struct btrfs_delayed_root *delayed_root;
256
257 if (!delayed_node)
258 return;
259
260 delayed_root = delayed_node->root->fs_info->delayed_root;
261
262 mutex_lock(&delayed_node->mutex);
263 if (delayed_node->count)
264 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
265 else
266 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
267 mutex_unlock(&delayed_node->mutex);
268
269 if (refcount_dec_and_test(&delayed_node->refs)) {
270 struct btrfs_root *root = delayed_node->root;
271
272 spin_lock(&root->inode_lock);
273 /*
274 * Once our refcount goes to zero, nobody is allowed to bump it
275 * back up. We can delete it now.
276 */
277 ASSERT(refcount_read(&delayed_node->refs) == 0);
278 radix_tree_delete(&root->delayed_nodes_tree,
279 delayed_node->inode_id);
280 spin_unlock(&root->inode_lock);
281 kmem_cache_free(delayed_node_cache, delayed_node);
282 }
283}
284
285static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
286{
287 __btrfs_release_delayed_node(node, 0);
288}
289
290static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
291 struct btrfs_delayed_root *delayed_root)
292{
293 struct list_head *p;
294 struct btrfs_delayed_node *node = NULL;
295
296 spin_lock(&delayed_root->lock);
297 if (list_empty(&delayed_root->prepare_list))
298 goto out;
299
300 p = delayed_root->prepare_list.next;
301 list_del_init(p);
302 node = list_entry(p, struct btrfs_delayed_node, p_list);
303 refcount_inc(&node->refs);
304out:
305 spin_unlock(&delayed_root->lock);
306
307 return node;
308}
309
310static inline void btrfs_release_prepared_delayed_node(
311 struct btrfs_delayed_node *node)
312{
313 __btrfs_release_delayed_node(node, 1);
314}
315
316static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
317{
318 struct btrfs_delayed_item *item;
319 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
320 if (item) {
321 item->data_len = data_len;
322 item->ins_or_del = 0;
323 item->bytes_reserved = 0;
324 item->delayed_node = NULL;
325 refcount_set(&item->refs, 1);
326 }
327 return item;
328}
329
330/*
331 * __btrfs_lookup_delayed_item - look up the delayed item by key
332 * @delayed_node: pointer to the delayed node
333 * @key: the key to look up
334 * @prev: used to store the prev item if the right item isn't found
335 * @next: used to store the next item if the right item isn't found
336 *
337 * Note: if we don't find the right item, we will return the prev item and
338 * the next item.
339 */
340static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
341 struct rb_root *root,
342 struct btrfs_key *key,
343 struct btrfs_delayed_item **prev,
344 struct btrfs_delayed_item **next)
345{
346 struct rb_node *node, *prev_node = NULL;
347 struct btrfs_delayed_item *delayed_item = NULL;
348 int ret = 0;
349
350 node = root->rb_node;
351
352 while (node) {
353 delayed_item = rb_entry(node, struct btrfs_delayed_item,
354 rb_node);
355 prev_node = node;
356 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
357 if (ret < 0)
358 node = node->rb_right;
359 else if (ret > 0)
360 node = node->rb_left;
361 else
362 return delayed_item;
363 }
364
365 if (prev) {
366 if (!prev_node)
367 *prev = NULL;
368 else if (ret < 0)
369 *prev = delayed_item;
370 else if ((node = rb_prev(prev_node)) != NULL) {
371 *prev = rb_entry(node, struct btrfs_delayed_item,
372 rb_node);
373 } else
374 *prev = NULL;
375 }
376
377 if (next) {
378 if (!prev_node)
379 *next = NULL;
380 else if (ret > 0)
381 *next = delayed_item;
382 else if ((node = rb_next(prev_node)) != NULL) {
383 *next = rb_entry(node, struct btrfs_delayed_item,
384 rb_node);
385 } else
386 *next = NULL;
387 }
388 return NULL;
389}
390
391static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
392 struct btrfs_delayed_node *delayed_node,
393 struct btrfs_key *key)
394{
395 return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
396 NULL, NULL);
397}
398
399static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
400 struct btrfs_delayed_item *ins,
401 int action)
402{
403 struct rb_node **p, *node;
404 struct rb_node *parent_node = NULL;
405 struct rb_root_cached *root;
406 struct btrfs_delayed_item *item;
407 int cmp;
408 bool leftmost = true;
409
410 if (action == BTRFS_DELAYED_INSERTION_ITEM)
411 root = &delayed_node->ins_root;
412 else if (action == BTRFS_DELAYED_DELETION_ITEM)
413 root = &delayed_node->del_root;
414 else
415 BUG();
416 p = &root->rb_root.rb_node;
417 node = &ins->rb_node;
418
419 while (*p) {
420 parent_node = *p;
421 item = rb_entry(parent_node, struct btrfs_delayed_item,
422 rb_node);
423
424 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
425 if (cmp < 0) {
426 p = &(*p)->rb_right;
427 leftmost = false;
428 } else if (cmp > 0) {
429 p = &(*p)->rb_left;
430 } else {
431 return -EEXIST;
432 }
433 }
434
435 rb_link_node(node, parent_node, p);
436 rb_insert_color_cached(node, root, leftmost);
437 ins->delayed_node = delayed_node;
438 ins->ins_or_del = action;
439
440 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
441 action == BTRFS_DELAYED_INSERTION_ITEM &&
442 ins->key.offset >= delayed_node->index_cnt)
443 delayed_node->index_cnt = ins->key.offset + 1;
444
445 delayed_node->count++;
446 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
447 return 0;
448}
449
450static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
451 struct btrfs_delayed_item *item)
452{
453 return __btrfs_add_delayed_item(node, item,
454 BTRFS_DELAYED_INSERTION_ITEM);
455}
456
457static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
458 struct btrfs_delayed_item *item)
459{
460 return __btrfs_add_delayed_item(node, item,
461 BTRFS_DELAYED_DELETION_ITEM);
462}
463
464static void finish_one_item(struct btrfs_delayed_root *delayed_root)
465{
466 int seq = atomic_inc_return(&delayed_root->items_seq);
467
468 /* atomic_dec_return implies a barrier */
469 if ((atomic_dec_return(&delayed_root->items) <
470 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
471 cond_wake_up_nomb(&delayed_root->wait);
472}
473
474static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
475{
476 struct rb_root_cached *root;
477 struct btrfs_delayed_root *delayed_root;
478
479 /* Not associated with any delayed_node */
480 if (!delayed_item->delayed_node)
481 return;
482 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
483
484 BUG_ON(!delayed_root);
485 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
486 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
487
488 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
489 root = &delayed_item->delayed_node->ins_root;
490 else
491 root = &delayed_item->delayed_node->del_root;
492
493 rb_erase_cached(&delayed_item->rb_node, root);
494 delayed_item->delayed_node->count--;
495
496 finish_one_item(delayed_root);
497}
498
499static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
500{
501 if (item) {
502 __btrfs_remove_delayed_item(item);
503 if (refcount_dec_and_test(&item->refs))
504 kfree(item);
505 }
506}
507
508static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
509 struct btrfs_delayed_node *delayed_node)
510{
511 struct rb_node *p;
512 struct btrfs_delayed_item *item = NULL;
513
514 p = rb_first_cached(&delayed_node->ins_root);
515 if (p)
516 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
517
518 return item;
519}
520
521static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
522 struct btrfs_delayed_node *delayed_node)
523{
524 struct rb_node *p;
525 struct btrfs_delayed_item *item = NULL;
526
527 p = rb_first_cached(&delayed_node->del_root);
528 if (p)
529 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
530
531 return item;
532}
533
534static struct btrfs_delayed_item *__btrfs_next_delayed_item(
535 struct btrfs_delayed_item *item)
536{
537 struct rb_node *p;
538 struct btrfs_delayed_item *next = NULL;
539
540 p = rb_next(&item->rb_node);
541 if (p)
542 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
543
544 return next;
545}
546
547static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
548 struct btrfs_root *root,
549 struct btrfs_delayed_item *item)
550{
551 struct btrfs_block_rsv *src_rsv;
552 struct btrfs_block_rsv *dst_rsv;
553 struct btrfs_fs_info *fs_info = root->fs_info;
554 u64 num_bytes;
555 int ret;
556
557 if (!trans->bytes_reserved)
558 return 0;
559
560 src_rsv = trans->block_rsv;
561 dst_rsv = &fs_info->delayed_block_rsv;
562
563 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
564
565 /*
566 * Here we migrate space rsv from transaction rsv, since have already
567 * reserved space when starting a transaction. So no need to reserve
568 * qgroup space here.
569 */
570 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
571 if (!ret) {
572 trace_btrfs_space_reservation(fs_info, "delayed_item",
573 item->key.objectid,
574 num_bytes, 1);
575 item->bytes_reserved = num_bytes;
576 }
577
578 return ret;
579}
580
581static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
582 struct btrfs_delayed_item *item)
583{
584 struct btrfs_block_rsv *rsv;
585 struct btrfs_fs_info *fs_info = root->fs_info;
586
587 if (!item->bytes_reserved)
588 return;
589
590 rsv = &fs_info->delayed_block_rsv;
591 /*
592 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
593 * to release/reserve qgroup space.
594 */
595 trace_btrfs_space_reservation(fs_info, "delayed_item",
596 item->key.objectid, item->bytes_reserved,
597 0);
598 btrfs_block_rsv_release(fs_info, rsv,
599 item->bytes_reserved);
600}
601
602static int btrfs_delayed_inode_reserve_metadata(
603 struct btrfs_trans_handle *trans,
604 struct btrfs_root *root,
605 struct btrfs_inode *inode,
606 struct btrfs_delayed_node *node)
607{
608 struct btrfs_fs_info *fs_info = root->fs_info;
609 struct btrfs_block_rsv *src_rsv;
610 struct btrfs_block_rsv *dst_rsv;
611 u64 num_bytes;
612 int ret;
613
614 src_rsv = trans->block_rsv;
615 dst_rsv = &fs_info->delayed_block_rsv;
616
617 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
618
619 /*
620 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
621 * which doesn't reserve space for speed. This is a problem since we
622 * still need to reserve space for this update, so try to reserve the
623 * space.
624 *
625 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
626 * we always reserve enough to update the inode item.
627 */
628 if (!src_rsv || (!trans->bytes_reserved &&
629 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
630 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
631 BTRFS_QGROUP_RSV_META_PREALLOC, true);
632 if (ret < 0)
633 return ret;
634 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
635 BTRFS_RESERVE_NO_FLUSH);
636 /*
637 * Since we're under a transaction reserve_metadata_bytes could
638 * try to commit the transaction which will make it return
639 * EAGAIN to make us stop the transaction we have, so return
640 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
641 */
642 if (ret == -EAGAIN) {
643 ret = -ENOSPC;
644 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
645 }
646 if (!ret) {
647 node->bytes_reserved = num_bytes;
648 trace_btrfs_space_reservation(fs_info,
649 "delayed_inode",
650 btrfs_ino(inode),
651 num_bytes, 1);
652 } else {
653 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
654 }
655 return ret;
656 }
657
658 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
659 if (!ret) {
660 trace_btrfs_space_reservation(fs_info, "delayed_inode",
661 btrfs_ino(inode), num_bytes, 1);
662 node->bytes_reserved = num_bytes;
663 }
664
665 return ret;
666}
667
668static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
669 struct btrfs_delayed_node *node,
670 bool qgroup_free)
671{
672 struct btrfs_block_rsv *rsv;
673
674 if (!node->bytes_reserved)
675 return;
676
677 rsv = &fs_info->delayed_block_rsv;
678 trace_btrfs_space_reservation(fs_info, "delayed_inode",
679 node->inode_id, node->bytes_reserved, 0);
680 btrfs_block_rsv_release(fs_info, rsv,
681 node->bytes_reserved);
682 if (qgroup_free)
683 btrfs_qgroup_free_meta_prealloc(node->root,
684 node->bytes_reserved);
685 else
686 btrfs_qgroup_convert_reserved_meta(node->root,
687 node->bytes_reserved);
688 node->bytes_reserved = 0;
689}
690
691/*
692 * This helper will insert some continuous items into the same leaf according
693 * to the free space of the leaf.
694 */
695static int btrfs_batch_insert_items(struct btrfs_root *root,
696 struct btrfs_path *path,
697 struct btrfs_delayed_item *item)
698{
699 struct btrfs_delayed_item *curr, *next;
700 int free_space;
701 int total_data_size = 0, total_size = 0;
702 struct extent_buffer *leaf;
703 char *data_ptr;
704 struct btrfs_key *keys;
705 u32 *data_size;
706 struct list_head head;
707 int slot;
708 int nitems;
709 int i;
710 int ret = 0;
711
712 BUG_ON(!path->nodes[0]);
713
714 leaf = path->nodes[0];
715 free_space = btrfs_leaf_free_space(leaf);
716 INIT_LIST_HEAD(&head);
717
718 next = item;
719 nitems = 0;
720
721 /*
722 * count the number of the continuous items that we can insert in batch
723 */
724 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
725 free_space) {
726 total_data_size += next->data_len;
727 total_size += next->data_len + sizeof(struct btrfs_item);
728 list_add_tail(&next->tree_list, &head);
729 nitems++;
730
731 curr = next;
732 next = __btrfs_next_delayed_item(curr);
733 if (!next)
734 break;
735
736 if (!btrfs_is_continuous_delayed_item(curr, next))
737 break;
738 }
739
740 if (!nitems) {
741 ret = 0;
742 goto out;
743 }
744
745 /*
746 * we need allocate some memory space, but it might cause the task
747 * to sleep, so we set all locked nodes in the path to blocking locks
748 * first.
749 */
750 btrfs_set_path_blocking(path);
751
752 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
753 if (!keys) {
754 ret = -ENOMEM;
755 goto out;
756 }
757
758 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
759 if (!data_size) {
760 ret = -ENOMEM;
761 goto error;
762 }
763
764 /* get keys of all the delayed items */
765 i = 0;
766 list_for_each_entry(next, &head, tree_list) {
767 keys[i] = next->key;
768 data_size[i] = next->data_len;
769 i++;
770 }
771
772 /* insert the keys of the items */
773 setup_items_for_insert(root, path, keys, data_size,
774 total_data_size, total_size, nitems);
775
776 /* insert the dir index items */
777 slot = path->slots[0];
778 list_for_each_entry_safe(curr, next, &head, tree_list) {
779 data_ptr = btrfs_item_ptr(leaf, slot, char);
780 write_extent_buffer(leaf, &curr->data,
781 (unsigned long)data_ptr,
782 curr->data_len);
783 slot++;
784
785 btrfs_delayed_item_release_metadata(root, curr);
786
787 list_del(&curr->tree_list);
788 btrfs_release_delayed_item(curr);
789 }
790
791error:
792 kfree(data_size);
793 kfree(keys);
794out:
795 return ret;
796}
797
798/*
799 * This helper can just do simple insertion that needn't extend item for new
800 * data, such as directory name index insertion, inode insertion.
801 */
802static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
803 struct btrfs_root *root,
804 struct btrfs_path *path,
805 struct btrfs_delayed_item *delayed_item)
806{
807 struct extent_buffer *leaf;
808 unsigned int nofs_flag;
809 char *ptr;
810 int ret;
811
812 nofs_flag = memalloc_nofs_save();
813 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
814 delayed_item->data_len);
815 memalloc_nofs_restore(nofs_flag);
816 if (ret < 0 && ret != -EEXIST)
817 return ret;
818
819 leaf = path->nodes[0];
820
821 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
822
823 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
824 delayed_item->data_len);
825 btrfs_mark_buffer_dirty(leaf);
826
827 btrfs_delayed_item_release_metadata(root, delayed_item);
828 return 0;
829}
830
831/*
832 * we insert an item first, then if there are some continuous items, we try
833 * to insert those items into the same leaf.
834 */
835static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
836 struct btrfs_path *path,
837 struct btrfs_root *root,
838 struct btrfs_delayed_node *node)
839{
840 struct btrfs_delayed_item *curr, *prev;
841 int ret = 0;
842
843do_again:
844 mutex_lock(&node->mutex);
845 curr = __btrfs_first_delayed_insertion_item(node);
846 if (!curr)
847 goto insert_end;
848
849 ret = btrfs_insert_delayed_item(trans, root, path, curr);
850 if (ret < 0) {
851 btrfs_release_path(path);
852 goto insert_end;
853 }
854
855 prev = curr;
856 curr = __btrfs_next_delayed_item(prev);
857 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
858 /* insert the continuous items into the same leaf */
859 path->slots[0]++;
860 btrfs_batch_insert_items(root, path, curr);
861 }
862 btrfs_release_delayed_item(prev);
863 btrfs_mark_buffer_dirty(path->nodes[0]);
864
865 btrfs_release_path(path);
866 mutex_unlock(&node->mutex);
867 goto do_again;
868
869insert_end:
870 mutex_unlock(&node->mutex);
871 return ret;
872}
873
874static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
875 struct btrfs_root *root,
876 struct btrfs_path *path,
877 struct btrfs_delayed_item *item)
878{
879 struct btrfs_delayed_item *curr, *next;
880 struct extent_buffer *leaf;
881 struct btrfs_key key;
882 struct list_head head;
883 int nitems, i, last_item;
884 int ret = 0;
885
886 BUG_ON(!path->nodes[0]);
887
888 leaf = path->nodes[0];
889
890 i = path->slots[0];
891 last_item = btrfs_header_nritems(leaf) - 1;
892 if (i > last_item)
893 return -ENOENT; /* FIXME: Is errno suitable? */
894
895 next = item;
896 INIT_LIST_HEAD(&head);
897 btrfs_item_key_to_cpu(leaf, &key, i);
898 nitems = 0;
899 /*
900 * count the number of the dir index items that we can delete in batch
901 */
902 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
903 list_add_tail(&next->tree_list, &head);
904 nitems++;
905
906 curr = next;
907 next = __btrfs_next_delayed_item(curr);
908 if (!next)
909 break;
910
911 if (!btrfs_is_continuous_delayed_item(curr, next))
912 break;
913
914 i++;
915 if (i > last_item)
916 break;
917 btrfs_item_key_to_cpu(leaf, &key, i);
918 }
919
920 if (!nitems)
921 return 0;
922
923 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
924 if (ret)
925 goto out;
926
927 list_for_each_entry_safe(curr, next, &head, tree_list) {
928 btrfs_delayed_item_release_metadata(root, curr);
929 list_del(&curr->tree_list);
930 btrfs_release_delayed_item(curr);
931 }
932
933out:
934 return ret;
935}
936
937static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
938 struct btrfs_path *path,
939 struct btrfs_root *root,
940 struct btrfs_delayed_node *node)
941{
942 struct btrfs_delayed_item *curr, *prev;
943 unsigned int nofs_flag;
944 int ret = 0;
945
946do_again:
947 mutex_lock(&node->mutex);
948 curr = __btrfs_first_delayed_deletion_item(node);
949 if (!curr)
950 goto delete_fail;
951
952 nofs_flag = memalloc_nofs_save();
953 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
954 memalloc_nofs_restore(nofs_flag);
955 if (ret < 0)
956 goto delete_fail;
957 else if (ret > 0) {
958 /*
959 * can't find the item which the node points to, so this node
960 * is invalid, just drop it.
961 */
962 prev = curr;
963 curr = __btrfs_next_delayed_item(prev);
964 btrfs_release_delayed_item(prev);
965 ret = 0;
966 btrfs_release_path(path);
967 if (curr) {
968 mutex_unlock(&node->mutex);
969 goto do_again;
970 } else
971 goto delete_fail;
972 }
973
974 btrfs_batch_delete_items(trans, root, path, curr);
975 btrfs_release_path(path);
976 mutex_unlock(&node->mutex);
977 goto do_again;
978
979delete_fail:
980 btrfs_release_path(path);
981 mutex_unlock(&node->mutex);
982 return ret;
983}
984
985static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
986{
987 struct btrfs_delayed_root *delayed_root;
988
989 if (delayed_node &&
990 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
991 ASSERT(delayed_node->root);
992 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
993 delayed_node->count--;
994
995 delayed_root = delayed_node->root->fs_info->delayed_root;
996 finish_one_item(delayed_root);
997 }
998}
999
1000static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1001{
1002 struct btrfs_delayed_root *delayed_root;
1003
1004 ASSERT(delayed_node->root);
1005 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1006 delayed_node->count--;
1007
1008 delayed_root = delayed_node->root->fs_info->delayed_root;
1009 finish_one_item(delayed_root);
1010}
1011
1012static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1013 struct btrfs_root *root,
1014 struct btrfs_path *path,
1015 struct btrfs_delayed_node *node)
1016{
1017 struct btrfs_fs_info *fs_info = root->fs_info;
1018 struct btrfs_key key;
1019 struct btrfs_inode_item *inode_item;
1020 struct extent_buffer *leaf;
1021 unsigned int nofs_flag;
1022 int mod;
1023 int ret;
1024
1025 key.objectid = node->inode_id;
1026 key.type = BTRFS_INODE_ITEM_KEY;
1027 key.offset = 0;
1028
1029 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1030 mod = -1;
1031 else
1032 mod = 1;
1033
1034 nofs_flag = memalloc_nofs_save();
1035 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1036 memalloc_nofs_restore(nofs_flag);
1037 if (ret > 0)
1038 ret = -ENOENT;
1039 if (ret < 0)
1040 goto out;
1041
1042 leaf = path->nodes[0];
1043 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1044 struct btrfs_inode_item);
1045 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1046 sizeof(struct btrfs_inode_item));
1047 btrfs_mark_buffer_dirty(leaf);
1048
1049 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1050 goto no_iref;
1051
1052 path->slots[0]++;
1053 if (path->slots[0] >= btrfs_header_nritems(leaf))
1054 goto search;
1055again:
1056 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1057 if (key.objectid != node->inode_id)
1058 goto out;
1059
1060 if (key.type != BTRFS_INODE_REF_KEY &&
1061 key.type != BTRFS_INODE_EXTREF_KEY)
1062 goto out;
1063
1064 /*
1065 * Delayed iref deletion is for the inode who has only one link,
1066 * so there is only one iref. The case that several irefs are
1067 * in the same item doesn't exist.
1068 */
1069 btrfs_del_item(trans, root, path);
1070out:
1071 btrfs_release_delayed_iref(node);
1072no_iref:
1073 btrfs_release_path(path);
1074err_out:
1075 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1076 btrfs_release_delayed_inode(node);
1077
1078 /*
1079 * If we fail to update the delayed inode we need to abort the
1080 * transaction, because we could leave the inode with the improper
1081 * counts behind.
1082 */
1083 if (ret && ret != -ENOENT)
1084 btrfs_abort_transaction(trans, ret);
1085
1086 return ret;
1087
1088search:
1089 btrfs_release_path(path);
1090
1091 key.type = BTRFS_INODE_EXTREF_KEY;
1092 key.offset = -1;
1093
1094 nofs_flag = memalloc_nofs_save();
1095 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1096 memalloc_nofs_restore(nofs_flag);
1097 if (ret < 0)
1098 goto err_out;
1099 ASSERT(ret);
1100
1101 ret = 0;
1102 leaf = path->nodes[0];
1103 path->slots[0]--;
1104 goto again;
1105}
1106
1107static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1108 struct btrfs_root *root,
1109 struct btrfs_path *path,
1110 struct btrfs_delayed_node *node)
1111{
1112 int ret;
1113
1114 mutex_lock(&node->mutex);
1115 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1116 mutex_unlock(&node->mutex);
1117 return 0;
1118 }
1119
1120 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1121 mutex_unlock(&node->mutex);
1122 return ret;
1123}
1124
1125static inline int
1126__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1127 struct btrfs_path *path,
1128 struct btrfs_delayed_node *node)
1129{
1130 int ret;
1131
1132 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1133 if (ret)
1134 return ret;
1135
1136 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1137 if (ret)
1138 return ret;
1139
1140 ret = btrfs_record_root_in_trans(trans, node->root);
1141 if (ret)
1142 return ret;
1143 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1144 return ret;
1145}
1146
1147/*
1148 * Called when committing the transaction.
1149 * Returns 0 on success.
1150 * Returns < 0 on error and returns with an aborted transaction with any
1151 * outstanding delayed items cleaned up.
1152 */
1153static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1154{
1155 struct btrfs_fs_info *fs_info = trans->fs_info;
1156 struct btrfs_delayed_root *delayed_root;
1157 struct btrfs_delayed_node *curr_node, *prev_node;
1158 struct btrfs_path *path;
1159 struct btrfs_block_rsv *block_rsv;
1160 int ret = 0;
1161 bool count = (nr > 0);
1162
1163 if (TRANS_ABORTED(trans))
1164 return -EIO;
1165
1166 path = btrfs_alloc_path();
1167 if (!path)
1168 return -ENOMEM;
1169 path->leave_spinning = 1;
1170
1171 block_rsv = trans->block_rsv;
1172 trans->block_rsv = &fs_info->delayed_block_rsv;
1173
1174 delayed_root = fs_info->delayed_root;
1175
1176 curr_node = btrfs_first_delayed_node(delayed_root);
1177 while (curr_node && (!count || (count && nr--))) {
1178 ret = __btrfs_commit_inode_delayed_items(trans, path,
1179 curr_node);
1180 if (ret) {
1181 btrfs_abort_transaction(trans, ret);
1182 break;
1183 }
1184
1185 prev_node = curr_node;
1186 curr_node = btrfs_next_delayed_node(curr_node);
1187 /*
1188 * See the comment below about releasing path before releasing
1189 * node. If the commit of delayed items was successful the path
1190 * should always be released, but in case of an error, it may
1191 * point to locked extent buffers (a leaf at the very least).
1192 */
1193 ASSERT(path->nodes[0] == NULL);
1194 btrfs_release_delayed_node(prev_node);
1195 }
1196
1197 /*
1198 * Release the path to avoid a potential deadlock and lockdep splat when
1199 * releasing the delayed node, as that requires taking the delayed node's
1200 * mutex. If another task starts running delayed items before we take
1201 * the mutex, it will first lock the mutex and then it may try to lock
1202 * the same btree path (leaf).
1203 */
1204 btrfs_free_path(path);
1205
1206 if (curr_node)
1207 btrfs_release_delayed_node(curr_node);
1208 trans->block_rsv = block_rsv;
1209
1210 return ret;
1211}
1212
1213int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1214{
1215 return __btrfs_run_delayed_items(trans, -1);
1216}
1217
1218int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1219{
1220 return __btrfs_run_delayed_items(trans, nr);
1221}
1222
1223int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1224 struct btrfs_inode *inode)
1225{
1226 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1227 struct btrfs_path *path;
1228 struct btrfs_block_rsv *block_rsv;
1229 int ret;
1230
1231 if (!delayed_node)
1232 return 0;
1233
1234 mutex_lock(&delayed_node->mutex);
1235 if (!delayed_node->count) {
1236 mutex_unlock(&delayed_node->mutex);
1237 btrfs_release_delayed_node(delayed_node);
1238 return 0;
1239 }
1240 mutex_unlock(&delayed_node->mutex);
1241
1242 path = btrfs_alloc_path();
1243 if (!path) {
1244 btrfs_release_delayed_node(delayed_node);
1245 return -ENOMEM;
1246 }
1247 path->leave_spinning = 1;
1248
1249 block_rsv = trans->block_rsv;
1250 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1251
1252 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1253
1254 btrfs_release_delayed_node(delayed_node);
1255 btrfs_free_path(path);
1256 trans->block_rsv = block_rsv;
1257
1258 return ret;
1259}
1260
1261int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1262{
1263 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1264 struct btrfs_trans_handle *trans;
1265 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1266 struct btrfs_path *path;
1267 struct btrfs_block_rsv *block_rsv;
1268 int ret;
1269
1270 if (!delayed_node)
1271 return 0;
1272
1273 mutex_lock(&delayed_node->mutex);
1274 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1275 mutex_unlock(&delayed_node->mutex);
1276 btrfs_release_delayed_node(delayed_node);
1277 return 0;
1278 }
1279 mutex_unlock(&delayed_node->mutex);
1280
1281 trans = btrfs_join_transaction(delayed_node->root);
1282 if (IS_ERR(trans)) {
1283 ret = PTR_ERR(trans);
1284 goto out;
1285 }
1286
1287 path = btrfs_alloc_path();
1288 if (!path) {
1289 ret = -ENOMEM;
1290 goto trans_out;
1291 }
1292 path->leave_spinning = 1;
1293
1294 block_rsv = trans->block_rsv;
1295 trans->block_rsv = &fs_info->delayed_block_rsv;
1296
1297 mutex_lock(&delayed_node->mutex);
1298 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1299 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1300 path, delayed_node);
1301 else
1302 ret = 0;
1303 mutex_unlock(&delayed_node->mutex);
1304
1305 btrfs_free_path(path);
1306 trans->block_rsv = block_rsv;
1307trans_out:
1308 btrfs_end_transaction(trans);
1309 btrfs_btree_balance_dirty(fs_info);
1310out:
1311 btrfs_release_delayed_node(delayed_node);
1312
1313 return ret;
1314}
1315
1316void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1317{
1318 struct btrfs_delayed_node *delayed_node;
1319
1320 delayed_node = READ_ONCE(inode->delayed_node);
1321 if (!delayed_node)
1322 return;
1323
1324 inode->delayed_node = NULL;
1325 btrfs_release_delayed_node(delayed_node);
1326}
1327
1328struct btrfs_async_delayed_work {
1329 struct btrfs_delayed_root *delayed_root;
1330 int nr;
1331 struct btrfs_work work;
1332};
1333
1334static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1335{
1336 struct btrfs_async_delayed_work *async_work;
1337 struct btrfs_delayed_root *delayed_root;
1338 struct btrfs_trans_handle *trans;
1339 struct btrfs_path *path;
1340 struct btrfs_delayed_node *delayed_node = NULL;
1341 struct btrfs_root *root;
1342 struct btrfs_block_rsv *block_rsv;
1343 int total_done = 0;
1344
1345 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1346 delayed_root = async_work->delayed_root;
1347
1348 path = btrfs_alloc_path();
1349 if (!path)
1350 goto out;
1351
1352 do {
1353 if (atomic_read(&delayed_root->items) <
1354 BTRFS_DELAYED_BACKGROUND / 2)
1355 break;
1356
1357 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1358 if (!delayed_node)
1359 break;
1360
1361 path->leave_spinning = 1;
1362 root = delayed_node->root;
1363
1364 trans = btrfs_join_transaction(root);
1365 if (IS_ERR(trans)) {
1366 btrfs_release_path(path);
1367 btrfs_release_prepared_delayed_node(delayed_node);
1368 total_done++;
1369 continue;
1370 }
1371
1372 block_rsv = trans->block_rsv;
1373 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1374
1375 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1376
1377 trans->block_rsv = block_rsv;
1378 btrfs_end_transaction(trans);
1379 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1380
1381 btrfs_release_path(path);
1382 btrfs_release_prepared_delayed_node(delayed_node);
1383 total_done++;
1384
1385 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1386 || total_done < async_work->nr);
1387
1388 btrfs_free_path(path);
1389out:
1390 wake_up(&delayed_root->wait);
1391 kfree(async_work);
1392}
1393
1394
1395static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1396 struct btrfs_fs_info *fs_info, int nr)
1397{
1398 struct btrfs_async_delayed_work *async_work;
1399
1400 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1401 if (!async_work)
1402 return -ENOMEM;
1403
1404 async_work->delayed_root = delayed_root;
1405 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1406 NULL);
1407 async_work->nr = nr;
1408
1409 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1410 return 0;
1411}
1412
1413void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1414{
1415 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1416}
1417
1418static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1419{
1420 int val = atomic_read(&delayed_root->items_seq);
1421
1422 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1423 return 1;
1424
1425 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1426 return 1;
1427
1428 return 0;
1429}
1430
1431void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1432{
1433 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1434
1435 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1436 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1437 return;
1438
1439 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1440 int seq;
1441 int ret;
1442
1443 seq = atomic_read(&delayed_root->items_seq);
1444
1445 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1446 if (ret)
1447 return;
1448
1449 wait_event_interruptible(delayed_root->wait,
1450 could_end_wait(delayed_root, seq));
1451 return;
1452 }
1453
1454 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1455}
1456
1457/* Will return 0 or -ENOMEM */
1458int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1459 const char *name, int name_len,
1460 struct btrfs_inode *dir,
1461 struct btrfs_disk_key *disk_key, u8 type,
1462 u64 index)
1463{
1464 struct btrfs_delayed_node *delayed_node;
1465 struct btrfs_delayed_item *delayed_item;
1466 struct btrfs_dir_item *dir_item;
1467 int ret;
1468
1469 delayed_node = btrfs_get_or_create_delayed_node(dir);
1470 if (IS_ERR(delayed_node))
1471 return PTR_ERR(delayed_node);
1472
1473 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1474 if (!delayed_item) {
1475 ret = -ENOMEM;
1476 goto release_node;
1477 }
1478
1479 delayed_item->key.objectid = btrfs_ino(dir);
1480 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1481 delayed_item->key.offset = index;
1482
1483 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1484 dir_item->location = *disk_key;
1485 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1486 btrfs_set_stack_dir_data_len(dir_item, 0);
1487 btrfs_set_stack_dir_name_len(dir_item, name_len);
1488 btrfs_set_stack_dir_type(dir_item, type);
1489 memcpy((char *)(dir_item + 1), name, name_len);
1490
1491 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1492 /*
1493 * we have reserved enough space when we start a new transaction,
1494 * so reserving metadata failure is impossible
1495 */
1496 BUG_ON(ret);
1497
1498 mutex_lock(&delayed_node->mutex);
1499 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1500 if (unlikely(ret)) {
1501 btrfs_err(trans->fs_info,
1502 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1503 name_len, name, delayed_node->root->root_key.objectid,
1504 delayed_node->inode_id, ret);
1505 BUG();
1506 }
1507 mutex_unlock(&delayed_node->mutex);
1508
1509release_node:
1510 btrfs_release_delayed_node(delayed_node);
1511 return ret;
1512}
1513
1514static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1515 struct btrfs_delayed_node *node,
1516 struct btrfs_key *key)
1517{
1518 struct btrfs_delayed_item *item;
1519
1520 mutex_lock(&node->mutex);
1521 item = __btrfs_lookup_delayed_insertion_item(node, key);
1522 if (!item) {
1523 mutex_unlock(&node->mutex);
1524 return 1;
1525 }
1526
1527 btrfs_delayed_item_release_metadata(node->root, item);
1528 btrfs_release_delayed_item(item);
1529 mutex_unlock(&node->mutex);
1530 return 0;
1531}
1532
1533int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1534 struct btrfs_inode *dir, u64 index)
1535{
1536 struct btrfs_delayed_node *node;
1537 struct btrfs_delayed_item *item;
1538 struct btrfs_key item_key;
1539 int ret;
1540
1541 node = btrfs_get_or_create_delayed_node(dir);
1542 if (IS_ERR(node))
1543 return PTR_ERR(node);
1544
1545 item_key.objectid = btrfs_ino(dir);
1546 item_key.type = BTRFS_DIR_INDEX_KEY;
1547 item_key.offset = index;
1548
1549 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1550 &item_key);
1551 if (!ret)
1552 goto end;
1553
1554 item = btrfs_alloc_delayed_item(0);
1555 if (!item) {
1556 ret = -ENOMEM;
1557 goto end;
1558 }
1559
1560 item->key = item_key;
1561
1562 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1563 /*
1564 * we have reserved enough space when we start a new transaction,
1565 * so reserving metadata failure is impossible.
1566 */
1567 if (ret < 0) {
1568 btrfs_err(trans->fs_info,
1569"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1570 btrfs_release_delayed_item(item);
1571 goto end;
1572 }
1573
1574 mutex_lock(&node->mutex);
1575 ret = __btrfs_add_delayed_deletion_item(node, item);
1576 if (unlikely(ret)) {
1577 btrfs_err(trans->fs_info,
1578 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1579 index, node->root->root_key.objectid,
1580 node->inode_id, ret);
1581 btrfs_delayed_item_release_metadata(dir->root, item);
1582 btrfs_release_delayed_item(item);
1583 }
1584 mutex_unlock(&node->mutex);
1585end:
1586 btrfs_release_delayed_node(node);
1587 return ret;
1588}
1589
1590int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1591{
1592 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1593
1594 if (!delayed_node)
1595 return -ENOENT;
1596
1597 /*
1598 * Since we have held i_mutex of this directory, it is impossible that
1599 * a new directory index is added into the delayed node and index_cnt
1600 * is updated now. So we needn't lock the delayed node.
1601 */
1602 if (!delayed_node->index_cnt) {
1603 btrfs_release_delayed_node(delayed_node);
1604 return -EINVAL;
1605 }
1606
1607 inode->index_cnt = delayed_node->index_cnt;
1608 btrfs_release_delayed_node(delayed_node);
1609 return 0;
1610}
1611
1612bool btrfs_readdir_get_delayed_items(struct inode *inode,
1613 struct list_head *ins_list,
1614 struct list_head *del_list)
1615{
1616 struct btrfs_delayed_node *delayed_node;
1617 struct btrfs_delayed_item *item;
1618
1619 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1620 if (!delayed_node)
1621 return false;
1622
1623 /*
1624 * We can only do one readdir with delayed items at a time because of
1625 * item->readdir_list.
1626 */
1627 inode_unlock_shared(inode);
1628 inode_lock(inode);
1629
1630 mutex_lock(&delayed_node->mutex);
1631 item = __btrfs_first_delayed_insertion_item(delayed_node);
1632 while (item) {
1633 refcount_inc(&item->refs);
1634 list_add_tail(&item->readdir_list, ins_list);
1635 item = __btrfs_next_delayed_item(item);
1636 }
1637
1638 item = __btrfs_first_delayed_deletion_item(delayed_node);
1639 while (item) {
1640 refcount_inc(&item->refs);
1641 list_add_tail(&item->readdir_list, del_list);
1642 item = __btrfs_next_delayed_item(item);
1643 }
1644 mutex_unlock(&delayed_node->mutex);
1645 /*
1646 * This delayed node is still cached in the btrfs inode, so refs
1647 * must be > 1 now, and we needn't check it is going to be freed
1648 * or not.
1649 *
1650 * Besides that, this function is used to read dir, we do not
1651 * insert/delete delayed items in this period. So we also needn't
1652 * requeue or dequeue this delayed node.
1653 */
1654 refcount_dec(&delayed_node->refs);
1655
1656 return true;
1657}
1658
1659void btrfs_readdir_put_delayed_items(struct inode *inode,
1660 struct list_head *ins_list,
1661 struct list_head *del_list)
1662{
1663 struct btrfs_delayed_item *curr, *next;
1664
1665 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1666 list_del(&curr->readdir_list);
1667 if (refcount_dec_and_test(&curr->refs))
1668 kfree(curr);
1669 }
1670
1671 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1672 list_del(&curr->readdir_list);
1673 if (refcount_dec_and_test(&curr->refs))
1674 kfree(curr);
1675 }
1676
1677 /*
1678 * The VFS is going to do up_read(), so we need to downgrade back to a
1679 * read lock.
1680 */
1681 downgrade_write(&inode->i_rwsem);
1682}
1683
1684int btrfs_should_delete_dir_index(struct list_head *del_list,
1685 u64 index)
1686{
1687 struct btrfs_delayed_item *curr;
1688 int ret = 0;
1689
1690 list_for_each_entry(curr, del_list, readdir_list) {
1691 if (curr->key.offset > index)
1692 break;
1693 if (curr->key.offset == index) {
1694 ret = 1;
1695 break;
1696 }
1697 }
1698 return ret;
1699}
1700
1701/*
1702 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1703 *
1704 */
1705int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1706 struct list_head *ins_list)
1707{
1708 struct btrfs_dir_item *di;
1709 struct btrfs_delayed_item *curr, *next;
1710 struct btrfs_key location;
1711 char *name;
1712 int name_len;
1713 int over = 0;
1714 unsigned char d_type;
1715
1716 if (list_empty(ins_list))
1717 return 0;
1718
1719 /*
1720 * Changing the data of the delayed item is impossible. So
1721 * we needn't lock them. And we have held i_mutex of the
1722 * directory, nobody can delete any directory indexes now.
1723 */
1724 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1725 list_del(&curr->readdir_list);
1726
1727 if (curr->key.offset < ctx->pos) {
1728 if (refcount_dec_and_test(&curr->refs))
1729 kfree(curr);
1730 continue;
1731 }
1732
1733 ctx->pos = curr->key.offset;
1734
1735 di = (struct btrfs_dir_item *)curr->data;
1736 name = (char *)(di + 1);
1737 name_len = btrfs_stack_dir_name_len(di);
1738
1739 d_type = fs_ftype_to_dtype(di->type);
1740 btrfs_disk_key_to_cpu(&location, &di->location);
1741
1742 over = !dir_emit(ctx, name, name_len,
1743 location.objectid, d_type);
1744
1745 if (refcount_dec_and_test(&curr->refs))
1746 kfree(curr);
1747
1748 if (over)
1749 return 1;
1750 ctx->pos++;
1751 }
1752 return 0;
1753}
1754
1755static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1756 struct btrfs_inode_item *inode_item,
1757 struct inode *inode)
1758{
1759 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1760 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1761 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1762 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1763 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1764 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1765 btrfs_set_stack_inode_generation(inode_item,
1766 BTRFS_I(inode)->generation);
1767 btrfs_set_stack_inode_sequence(inode_item,
1768 inode_peek_iversion(inode));
1769 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1770 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1771 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1772 btrfs_set_stack_inode_block_group(inode_item, 0);
1773
1774 btrfs_set_stack_timespec_sec(&inode_item->atime,
1775 inode->i_atime.tv_sec);
1776 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1777 inode->i_atime.tv_nsec);
1778
1779 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1780 inode->i_mtime.tv_sec);
1781 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1782 inode->i_mtime.tv_nsec);
1783
1784 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1785 inode->i_ctime.tv_sec);
1786 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1787 inode->i_ctime.tv_nsec);
1788
1789 btrfs_set_stack_timespec_sec(&inode_item->otime,
1790 BTRFS_I(inode)->i_otime.tv_sec);
1791 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1792 BTRFS_I(inode)->i_otime.tv_nsec);
1793}
1794
1795int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1796{
1797 struct btrfs_delayed_node *delayed_node;
1798 struct btrfs_inode_item *inode_item;
1799
1800 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1801 if (!delayed_node)
1802 return -ENOENT;
1803
1804 mutex_lock(&delayed_node->mutex);
1805 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1806 mutex_unlock(&delayed_node->mutex);
1807 btrfs_release_delayed_node(delayed_node);
1808 return -ENOENT;
1809 }
1810
1811 inode_item = &delayed_node->inode_item;
1812
1813 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1814 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1815 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1816 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1817 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1818 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1819 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1820 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1821
1822 inode_set_iversion_queried(inode,
1823 btrfs_stack_inode_sequence(inode_item));
1824 inode->i_rdev = 0;
1825 *rdev = btrfs_stack_inode_rdev(inode_item);
1826 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1827
1828 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1829 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1830
1831 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1832 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1833
1834 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1835 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1836
1837 BTRFS_I(inode)->i_otime.tv_sec =
1838 btrfs_stack_timespec_sec(&inode_item->otime);
1839 BTRFS_I(inode)->i_otime.tv_nsec =
1840 btrfs_stack_timespec_nsec(&inode_item->otime);
1841
1842 inode->i_generation = BTRFS_I(inode)->generation;
1843 BTRFS_I(inode)->index_cnt = (u64)-1;
1844
1845 mutex_unlock(&delayed_node->mutex);
1846 btrfs_release_delayed_node(delayed_node);
1847 return 0;
1848}
1849
1850int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1851 struct btrfs_root *root, struct inode *inode)
1852{
1853 struct btrfs_delayed_node *delayed_node;
1854 int ret = 0;
1855
1856 delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1857 if (IS_ERR(delayed_node))
1858 return PTR_ERR(delayed_node);
1859
1860 mutex_lock(&delayed_node->mutex);
1861 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1862 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1863 goto release_node;
1864 }
1865
1866 ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1867 delayed_node);
1868 if (ret)
1869 goto release_node;
1870
1871 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1872 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1873 delayed_node->count++;
1874 atomic_inc(&root->fs_info->delayed_root->items);
1875release_node:
1876 mutex_unlock(&delayed_node->mutex);
1877 btrfs_release_delayed_node(delayed_node);
1878 return ret;
1879}
1880
1881int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1882{
1883 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1884 struct btrfs_delayed_node *delayed_node;
1885
1886 /*
1887 * we don't do delayed inode updates during log recovery because it
1888 * leads to enospc problems. This means we also can't do
1889 * delayed inode refs
1890 */
1891 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1892 return -EAGAIN;
1893
1894 delayed_node = btrfs_get_or_create_delayed_node(inode);
1895 if (IS_ERR(delayed_node))
1896 return PTR_ERR(delayed_node);
1897
1898 /*
1899 * We don't reserve space for inode ref deletion is because:
1900 * - We ONLY do async inode ref deletion for the inode who has only
1901 * one link(i_nlink == 1), it means there is only one inode ref.
1902 * And in most case, the inode ref and the inode item are in the
1903 * same leaf, and we will deal with them at the same time.
1904 * Since we are sure we will reserve the space for the inode item,
1905 * it is unnecessary to reserve space for inode ref deletion.
1906 * - If the inode ref and the inode item are not in the same leaf,
1907 * We also needn't worry about enospc problem, because we reserve
1908 * much more space for the inode update than it needs.
1909 * - At the worst, we can steal some space from the global reservation.
1910 * It is very rare.
1911 */
1912 mutex_lock(&delayed_node->mutex);
1913 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1914 goto release_node;
1915
1916 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1917 delayed_node->count++;
1918 atomic_inc(&fs_info->delayed_root->items);
1919release_node:
1920 mutex_unlock(&delayed_node->mutex);
1921 btrfs_release_delayed_node(delayed_node);
1922 return 0;
1923}
1924
1925static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1926{
1927 struct btrfs_root *root = delayed_node->root;
1928 struct btrfs_fs_info *fs_info = root->fs_info;
1929 struct btrfs_delayed_item *curr_item, *prev_item;
1930
1931 mutex_lock(&delayed_node->mutex);
1932 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1933 while (curr_item) {
1934 btrfs_delayed_item_release_metadata(root, curr_item);
1935 prev_item = curr_item;
1936 curr_item = __btrfs_next_delayed_item(prev_item);
1937 btrfs_release_delayed_item(prev_item);
1938 }
1939
1940 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1941 while (curr_item) {
1942 btrfs_delayed_item_release_metadata(root, curr_item);
1943 prev_item = curr_item;
1944 curr_item = __btrfs_next_delayed_item(prev_item);
1945 btrfs_release_delayed_item(prev_item);
1946 }
1947
1948 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1949 btrfs_release_delayed_iref(delayed_node);
1950
1951 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1952 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1953 btrfs_release_delayed_inode(delayed_node);
1954 }
1955 mutex_unlock(&delayed_node->mutex);
1956}
1957
1958void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1959{
1960 struct btrfs_delayed_node *delayed_node;
1961
1962 delayed_node = btrfs_get_delayed_node(inode);
1963 if (!delayed_node)
1964 return;
1965
1966 __btrfs_kill_delayed_node(delayed_node);
1967 btrfs_release_delayed_node(delayed_node);
1968}
1969
1970void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1971{
1972 u64 inode_id = 0;
1973 struct btrfs_delayed_node *delayed_nodes[8];
1974 int i, n;
1975
1976 while (1) {
1977 spin_lock(&root->inode_lock);
1978 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1979 (void **)delayed_nodes, inode_id,
1980 ARRAY_SIZE(delayed_nodes));
1981 if (!n) {
1982 spin_unlock(&root->inode_lock);
1983 break;
1984 }
1985
1986 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1987 for (i = 0; i < n; i++) {
1988 /*
1989 * Don't increase refs in case the node is dead and
1990 * about to be removed from the tree in the loop below
1991 */
1992 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1993 delayed_nodes[i] = NULL;
1994 }
1995 spin_unlock(&root->inode_lock);
1996
1997 for (i = 0; i < n; i++) {
1998 if (!delayed_nodes[i])
1999 continue;
2000 __btrfs_kill_delayed_node(delayed_nodes[i]);
2001 btrfs_release_delayed_node(delayed_nodes[i]);
2002 }
2003 }
2004}
2005
2006void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2007{
2008 struct btrfs_delayed_node *curr_node, *prev_node;
2009
2010 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2011 while (curr_node) {
2012 __btrfs_kill_delayed_node(curr_node);
2013
2014 prev_node = curr_node;
2015 curr_node = btrfs_next_delayed_node(curr_node);
2016 btrfs_release_delayed_node(prev_node);
2017 }
2018}
2019