b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2007 Oracle. All rights reserved. |
| 4 | */ |
| 5 | |
| 6 | #include <linux/sched.h> |
| 7 | #include <linux/sched/signal.h> |
| 8 | #include <linux/pagemap.h> |
| 9 | #include <linux/writeback.h> |
| 10 | #include <linux/blkdev.h> |
| 11 | #include <linux/sort.h> |
| 12 | #include <linux/rcupdate.h> |
| 13 | #include <linux/kthread.h> |
| 14 | #include <linux/slab.h> |
| 15 | #include <linux/ratelimit.h> |
| 16 | #include <linux/percpu_counter.h> |
| 17 | #include <linux/lockdep.h> |
| 18 | #include <linux/crc32c.h> |
| 19 | #include "misc.h" |
| 20 | #include "tree-log.h" |
| 21 | #include "disk-io.h" |
| 22 | #include "print-tree.h" |
| 23 | #include "volumes.h" |
| 24 | #include "raid56.h" |
| 25 | #include "locking.h" |
| 26 | #include "free-space-cache.h" |
| 27 | #include "free-space-tree.h" |
| 28 | #include "sysfs.h" |
| 29 | #include "qgroup.h" |
| 30 | #include "ref-verify.h" |
| 31 | #include "space-info.h" |
| 32 | #include "block-rsv.h" |
| 33 | #include "delalloc-space.h" |
| 34 | #include "block-group.h" |
| 35 | #include "rcu-string.h" |
| 36 | |
| 37 | #undef SCRAMBLE_DELAYED_REFS |
| 38 | |
| 39 | |
| 40 | static int __btrfs_free_extent(struct btrfs_trans_handle *trans, |
| 41 | struct btrfs_delayed_ref_node *node, u64 parent, |
| 42 | u64 root_objectid, u64 owner_objectid, |
| 43 | u64 owner_offset, int refs_to_drop, |
| 44 | struct btrfs_delayed_extent_op *extra_op); |
| 45 | static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, |
| 46 | struct extent_buffer *leaf, |
| 47 | struct btrfs_extent_item *ei); |
| 48 | static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, |
| 49 | u64 parent, u64 root_objectid, |
| 50 | u64 flags, u64 owner, u64 offset, |
| 51 | struct btrfs_key *ins, int ref_mod); |
| 52 | static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, |
| 53 | struct btrfs_delayed_ref_node *node, |
| 54 | struct btrfs_delayed_extent_op *extent_op); |
| 55 | static int find_next_key(struct btrfs_path *path, int level, |
| 56 | struct btrfs_key *key); |
| 57 | |
| 58 | static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) |
| 59 | { |
| 60 | return (cache->flags & bits) == bits; |
| 61 | } |
| 62 | |
| 63 | int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, |
| 64 | u64 start, u64 num_bytes) |
| 65 | { |
| 66 | u64 end = start + num_bytes - 1; |
| 67 | set_extent_bits(&fs_info->freed_extents[0], |
| 68 | start, end, EXTENT_UPTODATE); |
| 69 | set_extent_bits(&fs_info->freed_extents[1], |
| 70 | start, end, EXTENT_UPTODATE); |
| 71 | return 0; |
| 72 | } |
| 73 | |
| 74 | void btrfs_free_excluded_extents(struct btrfs_block_group_cache *cache) |
| 75 | { |
| 76 | struct btrfs_fs_info *fs_info = cache->fs_info; |
| 77 | u64 start, end; |
| 78 | |
| 79 | start = cache->key.objectid; |
| 80 | end = start + cache->key.offset - 1; |
| 81 | |
| 82 | clear_extent_bits(&fs_info->freed_extents[0], |
| 83 | start, end, EXTENT_UPTODATE); |
| 84 | clear_extent_bits(&fs_info->freed_extents[1], |
| 85 | start, end, EXTENT_UPTODATE); |
| 86 | } |
| 87 | |
| 88 | static u64 generic_ref_to_space_flags(struct btrfs_ref *ref) |
| 89 | { |
| 90 | if (ref->type == BTRFS_REF_METADATA) { |
| 91 | if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID) |
| 92 | return BTRFS_BLOCK_GROUP_SYSTEM; |
| 93 | else |
| 94 | return BTRFS_BLOCK_GROUP_METADATA; |
| 95 | } |
| 96 | return BTRFS_BLOCK_GROUP_DATA; |
| 97 | } |
| 98 | |
| 99 | static void add_pinned_bytes(struct btrfs_fs_info *fs_info, |
| 100 | struct btrfs_ref *ref) |
| 101 | { |
| 102 | struct btrfs_space_info *space_info; |
| 103 | u64 flags = generic_ref_to_space_flags(ref); |
| 104 | |
| 105 | space_info = btrfs_find_space_info(fs_info, flags); |
| 106 | ASSERT(space_info); |
| 107 | percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len, |
| 108 | BTRFS_TOTAL_BYTES_PINNED_BATCH); |
| 109 | } |
| 110 | |
| 111 | static void sub_pinned_bytes(struct btrfs_fs_info *fs_info, |
| 112 | struct btrfs_ref *ref) |
| 113 | { |
| 114 | struct btrfs_space_info *space_info; |
| 115 | u64 flags = generic_ref_to_space_flags(ref); |
| 116 | |
| 117 | space_info = btrfs_find_space_info(fs_info, flags); |
| 118 | ASSERT(space_info); |
| 119 | percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len, |
| 120 | BTRFS_TOTAL_BYTES_PINNED_BATCH); |
| 121 | } |
| 122 | |
| 123 | /* simple helper to search for an existing data extent at a given offset */ |
| 124 | int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) |
| 125 | { |
| 126 | int ret; |
| 127 | struct btrfs_key key; |
| 128 | struct btrfs_path *path; |
| 129 | |
| 130 | path = btrfs_alloc_path(); |
| 131 | if (!path) |
| 132 | return -ENOMEM; |
| 133 | |
| 134 | key.objectid = start; |
| 135 | key.offset = len; |
| 136 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 137 | ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); |
| 138 | btrfs_free_path(path); |
| 139 | return ret; |
| 140 | } |
| 141 | |
| 142 | /* |
| 143 | * helper function to lookup reference count and flags of a tree block. |
| 144 | * |
| 145 | * the head node for delayed ref is used to store the sum of all the |
| 146 | * reference count modifications queued up in the rbtree. the head |
| 147 | * node may also store the extent flags to set. This way you can check |
| 148 | * to see what the reference count and extent flags would be if all of |
| 149 | * the delayed refs are not processed. |
| 150 | */ |
| 151 | int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, |
| 152 | struct btrfs_fs_info *fs_info, u64 bytenr, |
| 153 | u64 offset, int metadata, u64 *refs, u64 *flags) |
| 154 | { |
| 155 | struct btrfs_delayed_ref_head *head; |
| 156 | struct btrfs_delayed_ref_root *delayed_refs; |
| 157 | struct btrfs_path *path; |
| 158 | struct btrfs_extent_item *ei; |
| 159 | struct extent_buffer *leaf; |
| 160 | struct btrfs_key key; |
| 161 | u32 item_size; |
| 162 | u64 num_refs; |
| 163 | u64 extent_flags; |
| 164 | int ret; |
| 165 | |
| 166 | /* |
| 167 | * If we don't have skinny metadata, don't bother doing anything |
| 168 | * different |
| 169 | */ |
| 170 | if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { |
| 171 | offset = fs_info->nodesize; |
| 172 | metadata = 0; |
| 173 | } |
| 174 | |
| 175 | path = btrfs_alloc_path(); |
| 176 | if (!path) |
| 177 | return -ENOMEM; |
| 178 | |
| 179 | if (!trans) { |
| 180 | path->skip_locking = 1; |
| 181 | path->search_commit_root = 1; |
| 182 | } |
| 183 | |
| 184 | search_again: |
| 185 | key.objectid = bytenr; |
| 186 | key.offset = offset; |
| 187 | if (metadata) |
| 188 | key.type = BTRFS_METADATA_ITEM_KEY; |
| 189 | else |
| 190 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 191 | |
| 192 | ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); |
| 193 | if (ret < 0) |
| 194 | goto out_free; |
| 195 | |
| 196 | if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { |
| 197 | if (path->slots[0]) { |
| 198 | path->slots[0]--; |
| 199 | btrfs_item_key_to_cpu(path->nodes[0], &key, |
| 200 | path->slots[0]); |
| 201 | if (key.objectid == bytenr && |
| 202 | key.type == BTRFS_EXTENT_ITEM_KEY && |
| 203 | key.offset == fs_info->nodesize) |
| 204 | ret = 0; |
| 205 | } |
| 206 | } |
| 207 | |
| 208 | if (ret == 0) { |
| 209 | leaf = path->nodes[0]; |
| 210 | item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| 211 | if (item_size >= sizeof(*ei)) { |
| 212 | ei = btrfs_item_ptr(leaf, path->slots[0], |
| 213 | struct btrfs_extent_item); |
| 214 | num_refs = btrfs_extent_refs(leaf, ei); |
| 215 | extent_flags = btrfs_extent_flags(leaf, ei); |
| 216 | } else { |
| 217 | ret = -EINVAL; |
| 218 | btrfs_print_v0_err(fs_info); |
| 219 | if (trans) |
| 220 | btrfs_abort_transaction(trans, ret); |
| 221 | else |
| 222 | btrfs_handle_fs_error(fs_info, ret, NULL); |
| 223 | |
| 224 | goto out_free; |
| 225 | } |
| 226 | |
| 227 | BUG_ON(num_refs == 0); |
| 228 | } else { |
| 229 | num_refs = 0; |
| 230 | extent_flags = 0; |
| 231 | ret = 0; |
| 232 | } |
| 233 | |
| 234 | if (!trans) |
| 235 | goto out; |
| 236 | |
| 237 | delayed_refs = &trans->transaction->delayed_refs; |
| 238 | spin_lock(&delayed_refs->lock); |
| 239 | head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); |
| 240 | if (head) { |
| 241 | if (!mutex_trylock(&head->mutex)) { |
| 242 | refcount_inc(&head->refs); |
| 243 | spin_unlock(&delayed_refs->lock); |
| 244 | |
| 245 | btrfs_release_path(path); |
| 246 | |
| 247 | /* |
| 248 | * Mutex was contended, block until it's released and try |
| 249 | * again |
| 250 | */ |
| 251 | mutex_lock(&head->mutex); |
| 252 | mutex_unlock(&head->mutex); |
| 253 | btrfs_put_delayed_ref_head(head); |
| 254 | goto search_again; |
| 255 | } |
| 256 | spin_lock(&head->lock); |
| 257 | if (head->extent_op && head->extent_op->update_flags) |
| 258 | extent_flags |= head->extent_op->flags_to_set; |
| 259 | else |
| 260 | BUG_ON(num_refs == 0); |
| 261 | |
| 262 | num_refs += head->ref_mod; |
| 263 | spin_unlock(&head->lock); |
| 264 | mutex_unlock(&head->mutex); |
| 265 | } |
| 266 | spin_unlock(&delayed_refs->lock); |
| 267 | out: |
| 268 | WARN_ON(num_refs == 0); |
| 269 | if (refs) |
| 270 | *refs = num_refs; |
| 271 | if (flags) |
| 272 | *flags = extent_flags; |
| 273 | out_free: |
| 274 | btrfs_free_path(path); |
| 275 | return ret; |
| 276 | } |
| 277 | |
| 278 | /* |
| 279 | * Back reference rules. Back refs have three main goals: |
| 280 | * |
| 281 | * 1) differentiate between all holders of references to an extent so that |
| 282 | * when a reference is dropped we can make sure it was a valid reference |
| 283 | * before freeing the extent. |
| 284 | * |
| 285 | * 2) Provide enough information to quickly find the holders of an extent |
| 286 | * if we notice a given block is corrupted or bad. |
| 287 | * |
| 288 | * 3) Make it easy to migrate blocks for FS shrinking or storage pool |
| 289 | * maintenance. This is actually the same as #2, but with a slightly |
| 290 | * different use case. |
| 291 | * |
| 292 | * There are two kinds of back refs. The implicit back refs is optimized |
| 293 | * for pointers in non-shared tree blocks. For a given pointer in a block, |
| 294 | * back refs of this kind provide information about the block's owner tree |
| 295 | * and the pointer's key. These information allow us to find the block by |
| 296 | * b-tree searching. The full back refs is for pointers in tree blocks not |
| 297 | * referenced by their owner trees. The location of tree block is recorded |
| 298 | * in the back refs. Actually the full back refs is generic, and can be |
| 299 | * used in all cases the implicit back refs is used. The major shortcoming |
| 300 | * of the full back refs is its overhead. Every time a tree block gets |
| 301 | * COWed, we have to update back refs entry for all pointers in it. |
| 302 | * |
| 303 | * For a newly allocated tree block, we use implicit back refs for |
| 304 | * pointers in it. This means most tree related operations only involve |
| 305 | * implicit back refs. For a tree block created in old transaction, the |
| 306 | * only way to drop a reference to it is COW it. So we can detect the |
| 307 | * event that tree block loses its owner tree's reference and do the |
| 308 | * back refs conversion. |
| 309 | * |
| 310 | * When a tree block is COWed through a tree, there are four cases: |
| 311 | * |
| 312 | * The reference count of the block is one and the tree is the block's |
| 313 | * owner tree. Nothing to do in this case. |
| 314 | * |
| 315 | * The reference count of the block is one and the tree is not the |
| 316 | * block's owner tree. In this case, full back refs is used for pointers |
| 317 | * in the block. Remove these full back refs, add implicit back refs for |
| 318 | * every pointers in the new block. |
| 319 | * |
| 320 | * The reference count of the block is greater than one and the tree is |
| 321 | * the block's owner tree. In this case, implicit back refs is used for |
| 322 | * pointers in the block. Add full back refs for every pointers in the |
| 323 | * block, increase lower level extents' reference counts. The original |
| 324 | * implicit back refs are entailed to the new block. |
| 325 | * |
| 326 | * The reference count of the block is greater than one and the tree is |
| 327 | * not the block's owner tree. Add implicit back refs for every pointer in |
| 328 | * the new block, increase lower level extents' reference count. |
| 329 | * |
| 330 | * Back Reference Key composing: |
| 331 | * |
| 332 | * The key objectid corresponds to the first byte in the extent, |
| 333 | * The key type is used to differentiate between types of back refs. |
| 334 | * There are different meanings of the key offset for different types |
| 335 | * of back refs. |
| 336 | * |
| 337 | * File extents can be referenced by: |
| 338 | * |
| 339 | * - multiple snapshots, subvolumes, or different generations in one subvol |
| 340 | * - different files inside a single subvolume |
| 341 | * - different offsets inside a file (bookend extents in file.c) |
| 342 | * |
| 343 | * The extent ref structure for the implicit back refs has fields for: |
| 344 | * |
| 345 | * - Objectid of the subvolume root |
| 346 | * - objectid of the file holding the reference |
| 347 | * - original offset in the file |
| 348 | * - how many bookend extents |
| 349 | * |
| 350 | * The key offset for the implicit back refs is hash of the first |
| 351 | * three fields. |
| 352 | * |
| 353 | * The extent ref structure for the full back refs has field for: |
| 354 | * |
| 355 | * - number of pointers in the tree leaf |
| 356 | * |
| 357 | * The key offset for the implicit back refs is the first byte of |
| 358 | * the tree leaf |
| 359 | * |
| 360 | * When a file extent is allocated, The implicit back refs is used. |
| 361 | * the fields are filled in: |
| 362 | * |
| 363 | * (root_key.objectid, inode objectid, offset in file, 1) |
| 364 | * |
| 365 | * When a file extent is removed file truncation, we find the |
| 366 | * corresponding implicit back refs and check the following fields: |
| 367 | * |
| 368 | * (btrfs_header_owner(leaf), inode objectid, offset in file) |
| 369 | * |
| 370 | * Btree extents can be referenced by: |
| 371 | * |
| 372 | * - Different subvolumes |
| 373 | * |
| 374 | * Both the implicit back refs and the full back refs for tree blocks |
| 375 | * only consist of key. The key offset for the implicit back refs is |
| 376 | * objectid of block's owner tree. The key offset for the full back refs |
| 377 | * is the first byte of parent block. |
| 378 | * |
| 379 | * When implicit back refs is used, information about the lowest key and |
| 380 | * level of the tree block are required. These information are stored in |
| 381 | * tree block info structure. |
| 382 | */ |
| 383 | |
| 384 | /* |
| 385 | * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, |
| 386 | * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, |
| 387 | * is_data == BTRFS_REF_TYPE_ANY, either type is OK. |
| 388 | */ |
| 389 | int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, |
| 390 | struct btrfs_extent_inline_ref *iref, |
| 391 | enum btrfs_inline_ref_type is_data) |
| 392 | { |
| 393 | int type = btrfs_extent_inline_ref_type(eb, iref); |
| 394 | u64 offset = btrfs_extent_inline_ref_offset(eb, iref); |
| 395 | |
| 396 | if (type == BTRFS_TREE_BLOCK_REF_KEY || |
| 397 | type == BTRFS_SHARED_BLOCK_REF_KEY || |
| 398 | type == BTRFS_SHARED_DATA_REF_KEY || |
| 399 | type == BTRFS_EXTENT_DATA_REF_KEY) { |
| 400 | if (is_data == BTRFS_REF_TYPE_BLOCK) { |
| 401 | if (type == BTRFS_TREE_BLOCK_REF_KEY) |
| 402 | return type; |
| 403 | if (type == BTRFS_SHARED_BLOCK_REF_KEY) { |
| 404 | ASSERT(eb->fs_info); |
| 405 | /* |
| 406 | * Every shared one has parent tree block, |
| 407 | * which must be aligned to sector size. |
| 408 | */ |
| 409 | if (offset && |
| 410 | IS_ALIGNED(offset, eb->fs_info->sectorsize)) |
| 411 | return type; |
| 412 | } |
| 413 | } else if (is_data == BTRFS_REF_TYPE_DATA) { |
| 414 | if (type == BTRFS_EXTENT_DATA_REF_KEY) |
| 415 | return type; |
| 416 | if (type == BTRFS_SHARED_DATA_REF_KEY) { |
| 417 | ASSERT(eb->fs_info); |
| 418 | /* |
| 419 | * Every shared one has parent tree block, |
| 420 | * which must be aligned to sector size. |
| 421 | */ |
| 422 | if (offset && |
| 423 | IS_ALIGNED(offset, eb->fs_info->sectorsize)) |
| 424 | return type; |
| 425 | } |
| 426 | } else { |
| 427 | ASSERT(is_data == BTRFS_REF_TYPE_ANY); |
| 428 | return type; |
| 429 | } |
| 430 | } |
| 431 | |
| 432 | btrfs_print_leaf((struct extent_buffer *)eb); |
| 433 | btrfs_err(eb->fs_info, |
| 434 | "eb %llu iref 0x%lx invalid extent inline ref type %d", |
| 435 | eb->start, (unsigned long)iref, type); |
| 436 | WARN_ON(1); |
| 437 | |
| 438 | return BTRFS_REF_TYPE_INVALID; |
| 439 | } |
| 440 | |
| 441 | u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) |
| 442 | { |
| 443 | u32 high_crc = ~(u32)0; |
| 444 | u32 low_crc = ~(u32)0; |
| 445 | __le64 lenum; |
| 446 | |
| 447 | lenum = cpu_to_le64(root_objectid); |
| 448 | high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); |
| 449 | lenum = cpu_to_le64(owner); |
| 450 | low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); |
| 451 | lenum = cpu_to_le64(offset); |
| 452 | low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); |
| 453 | |
| 454 | return ((u64)high_crc << 31) ^ (u64)low_crc; |
| 455 | } |
| 456 | |
| 457 | static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, |
| 458 | struct btrfs_extent_data_ref *ref) |
| 459 | { |
| 460 | return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), |
| 461 | btrfs_extent_data_ref_objectid(leaf, ref), |
| 462 | btrfs_extent_data_ref_offset(leaf, ref)); |
| 463 | } |
| 464 | |
| 465 | static int match_extent_data_ref(struct extent_buffer *leaf, |
| 466 | struct btrfs_extent_data_ref *ref, |
| 467 | u64 root_objectid, u64 owner, u64 offset) |
| 468 | { |
| 469 | if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || |
| 470 | btrfs_extent_data_ref_objectid(leaf, ref) != owner || |
| 471 | btrfs_extent_data_ref_offset(leaf, ref) != offset) |
| 472 | return 0; |
| 473 | return 1; |
| 474 | } |
| 475 | |
| 476 | static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, |
| 477 | struct btrfs_path *path, |
| 478 | u64 bytenr, u64 parent, |
| 479 | u64 root_objectid, |
| 480 | u64 owner, u64 offset) |
| 481 | { |
| 482 | struct btrfs_root *root = trans->fs_info->extent_root; |
| 483 | struct btrfs_key key; |
| 484 | struct btrfs_extent_data_ref *ref; |
| 485 | struct extent_buffer *leaf; |
| 486 | u32 nritems; |
| 487 | int ret; |
| 488 | int recow; |
| 489 | int err = -ENOENT; |
| 490 | |
| 491 | key.objectid = bytenr; |
| 492 | if (parent) { |
| 493 | key.type = BTRFS_SHARED_DATA_REF_KEY; |
| 494 | key.offset = parent; |
| 495 | } else { |
| 496 | key.type = BTRFS_EXTENT_DATA_REF_KEY; |
| 497 | key.offset = hash_extent_data_ref(root_objectid, |
| 498 | owner, offset); |
| 499 | } |
| 500 | again: |
| 501 | recow = 0; |
| 502 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| 503 | if (ret < 0) { |
| 504 | err = ret; |
| 505 | goto fail; |
| 506 | } |
| 507 | |
| 508 | if (parent) { |
| 509 | if (!ret) |
| 510 | return 0; |
| 511 | goto fail; |
| 512 | } |
| 513 | |
| 514 | leaf = path->nodes[0]; |
| 515 | nritems = btrfs_header_nritems(leaf); |
| 516 | while (1) { |
| 517 | if (path->slots[0] >= nritems) { |
| 518 | ret = btrfs_next_leaf(root, path); |
| 519 | if (ret < 0) |
| 520 | err = ret; |
| 521 | if (ret) |
| 522 | goto fail; |
| 523 | |
| 524 | leaf = path->nodes[0]; |
| 525 | nritems = btrfs_header_nritems(leaf); |
| 526 | recow = 1; |
| 527 | } |
| 528 | |
| 529 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| 530 | if (key.objectid != bytenr || |
| 531 | key.type != BTRFS_EXTENT_DATA_REF_KEY) |
| 532 | goto fail; |
| 533 | |
| 534 | ref = btrfs_item_ptr(leaf, path->slots[0], |
| 535 | struct btrfs_extent_data_ref); |
| 536 | |
| 537 | if (match_extent_data_ref(leaf, ref, root_objectid, |
| 538 | owner, offset)) { |
| 539 | if (recow) { |
| 540 | btrfs_release_path(path); |
| 541 | goto again; |
| 542 | } |
| 543 | err = 0; |
| 544 | break; |
| 545 | } |
| 546 | path->slots[0]++; |
| 547 | } |
| 548 | fail: |
| 549 | return err; |
| 550 | } |
| 551 | |
| 552 | static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, |
| 553 | struct btrfs_path *path, |
| 554 | u64 bytenr, u64 parent, |
| 555 | u64 root_objectid, u64 owner, |
| 556 | u64 offset, int refs_to_add) |
| 557 | { |
| 558 | struct btrfs_root *root = trans->fs_info->extent_root; |
| 559 | struct btrfs_key key; |
| 560 | struct extent_buffer *leaf; |
| 561 | u32 size; |
| 562 | u32 num_refs; |
| 563 | int ret; |
| 564 | |
| 565 | key.objectid = bytenr; |
| 566 | if (parent) { |
| 567 | key.type = BTRFS_SHARED_DATA_REF_KEY; |
| 568 | key.offset = parent; |
| 569 | size = sizeof(struct btrfs_shared_data_ref); |
| 570 | } else { |
| 571 | key.type = BTRFS_EXTENT_DATA_REF_KEY; |
| 572 | key.offset = hash_extent_data_ref(root_objectid, |
| 573 | owner, offset); |
| 574 | size = sizeof(struct btrfs_extent_data_ref); |
| 575 | } |
| 576 | |
| 577 | ret = btrfs_insert_empty_item(trans, root, path, &key, size); |
| 578 | if (ret && ret != -EEXIST) |
| 579 | goto fail; |
| 580 | |
| 581 | leaf = path->nodes[0]; |
| 582 | if (parent) { |
| 583 | struct btrfs_shared_data_ref *ref; |
| 584 | ref = btrfs_item_ptr(leaf, path->slots[0], |
| 585 | struct btrfs_shared_data_ref); |
| 586 | if (ret == 0) { |
| 587 | btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); |
| 588 | } else { |
| 589 | num_refs = btrfs_shared_data_ref_count(leaf, ref); |
| 590 | num_refs += refs_to_add; |
| 591 | btrfs_set_shared_data_ref_count(leaf, ref, num_refs); |
| 592 | } |
| 593 | } else { |
| 594 | struct btrfs_extent_data_ref *ref; |
| 595 | while (ret == -EEXIST) { |
| 596 | ref = btrfs_item_ptr(leaf, path->slots[0], |
| 597 | struct btrfs_extent_data_ref); |
| 598 | if (match_extent_data_ref(leaf, ref, root_objectid, |
| 599 | owner, offset)) |
| 600 | break; |
| 601 | btrfs_release_path(path); |
| 602 | key.offset++; |
| 603 | ret = btrfs_insert_empty_item(trans, root, path, &key, |
| 604 | size); |
| 605 | if (ret && ret != -EEXIST) |
| 606 | goto fail; |
| 607 | |
| 608 | leaf = path->nodes[0]; |
| 609 | } |
| 610 | ref = btrfs_item_ptr(leaf, path->slots[0], |
| 611 | struct btrfs_extent_data_ref); |
| 612 | if (ret == 0) { |
| 613 | btrfs_set_extent_data_ref_root(leaf, ref, |
| 614 | root_objectid); |
| 615 | btrfs_set_extent_data_ref_objectid(leaf, ref, owner); |
| 616 | btrfs_set_extent_data_ref_offset(leaf, ref, offset); |
| 617 | btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); |
| 618 | } else { |
| 619 | num_refs = btrfs_extent_data_ref_count(leaf, ref); |
| 620 | num_refs += refs_to_add; |
| 621 | btrfs_set_extent_data_ref_count(leaf, ref, num_refs); |
| 622 | } |
| 623 | } |
| 624 | btrfs_mark_buffer_dirty(leaf); |
| 625 | ret = 0; |
| 626 | fail: |
| 627 | btrfs_release_path(path); |
| 628 | return ret; |
| 629 | } |
| 630 | |
| 631 | static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, |
| 632 | struct btrfs_path *path, |
| 633 | int refs_to_drop, int *last_ref) |
| 634 | { |
| 635 | struct btrfs_key key; |
| 636 | struct btrfs_extent_data_ref *ref1 = NULL; |
| 637 | struct btrfs_shared_data_ref *ref2 = NULL; |
| 638 | struct extent_buffer *leaf; |
| 639 | u32 num_refs = 0; |
| 640 | int ret = 0; |
| 641 | |
| 642 | leaf = path->nodes[0]; |
| 643 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| 644 | |
| 645 | if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { |
| 646 | ref1 = btrfs_item_ptr(leaf, path->slots[0], |
| 647 | struct btrfs_extent_data_ref); |
| 648 | num_refs = btrfs_extent_data_ref_count(leaf, ref1); |
| 649 | } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { |
| 650 | ref2 = btrfs_item_ptr(leaf, path->slots[0], |
| 651 | struct btrfs_shared_data_ref); |
| 652 | num_refs = btrfs_shared_data_ref_count(leaf, ref2); |
| 653 | } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { |
| 654 | btrfs_print_v0_err(trans->fs_info); |
| 655 | btrfs_abort_transaction(trans, -EINVAL); |
| 656 | return -EINVAL; |
| 657 | } else { |
| 658 | BUG(); |
| 659 | } |
| 660 | |
| 661 | BUG_ON(num_refs < refs_to_drop); |
| 662 | num_refs -= refs_to_drop; |
| 663 | |
| 664 | if (num_refs == 0) { |
| 665 | ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); |
| 666 | *last_ref = 1; |
| 667 | } else { |
| 668 | if (key.type == BTRFS_EXTENT_DATA_REF_KEY) |
| 669 | btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); |
| 670 | else if (key.type == BTRFS_SHARED_DATA_REF_KEY) |
| 671 | btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); |
| 672 | btrfs_mark_buffer_dirty(leaf); |
| 673 | } |
| 674 | return ret; |
| 675 | } |
| 676 | |
| 677 | static noinline u32 extent_data_ref_count(struct btrfs_path *path, |
| 678 | struct btrfs_extent_inline_ref *iref) |
| 679 | { |
| 680 | struct btrfs_key key; |
| 681 | struct extent_buffer *leaf; |
| 682 | struct btrfs_extent_data_ref *ref1; |
| 683 | struct btrfs_shared_data_ref *ref2; |
| 684 | u32 num_refs = 0; |
| 685 | int type; |
| 686 | |
| 687 | leaf = path->nodes[0]; |
| 688 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| 689 | |
| 690 | BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); |
| 691 | if (iref) { |
| 692 | /* |
| 693 | * If type is invalid, we should have bailed out earlier than |
| 694 | * this call. |
| 695 | */ |
| 696 | type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); |
| 697 | ASSERT(type != BTRFS_REF_TYPE_INVALID); |
| 698 | if (type == BTRFS_EXTENT_DATA_REF_KEY) { |
| 699 | ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); |
| 700 | num_refs = btrfs_extent_data_ref_count(leaf, ref1); |
| 701 | } else { |
| 702 | ref2 = (struct btrfs_shared_data_ref *)(iref + 1); |
| 703 | num_refs = btrfs_shared_data_ref_count(leaf, ref2); |
| 704 | } |
| 705 | } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { |
| 706 | ref1 = btrfs_item_ptr(leaf, path->slots[0], |
| 707 | struct btrfs_extent_data_ref); |
| 708 | num_refs = btrfs_extent_data_ref_count(leaf, ref1); |
| 709 | } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { |
| 710 | ref2 = btrfs_item_ptr(leaf, path->slots[0], |
| 711 | struct btrfs_shared_data_ref); |
| 712 | num_refs = btrfs_shared_data_ref_count(leaf, ref2); |
| 713 | } else { |
| 714 | WARN_ON(1); |
| 715 | } |
| 716 | return num_refs; |
| 717 | } |
| 718 | |
| 719 | static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, |
| 720 | struct btrfs_path *path, |
| 721 | u64 bytenr, u64 parent, |
| 722 | u64 root_objectid) |
| 723 | { |
| 724 | struct btrfs_root *root = trans->fs_info->extent_root; |
| 725 | struct btrfs_key key; |
| 726 | int ret; |
| 727 | |
| 728 | key.objectid = bytenr; |
| 729 | if (parent) { |
| 730 | key.type = BTRFS_SHARED_BLOCK_REF_KEY; |
| 731 | key.offset = parent; |
| 732 | } else { |
| 733 | key.type = BTRFS_TREE_BLOCK_REF_KEY; |
| 734 | key.offset = root_objectid; |
| 735 | } |
| 736 | |
| 737 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| 738 | if (ret > 0) |
| 739 | ret = -ENOENT; |
| 740 | return ret; |
| 741 | } |
| 742 | |
| 743 | static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, |
| 744 | struct btrfs_path *path, |
| 745 | u64 bytenr, u64 parent, |
| 746 | u64 root_objectid) |
| 747 | { |
| 748 | struct btrfs_key key; |
| 749 | int ret; |
| 750 | |
| 751 | key.objectid = bytenr; |
| 752 | if (parent) { |
| 753 | key.type = BTRFS_SHARED_BLOCK_REF_KEY; |
| 754 | key.offset = parent; |
| 755 | } else { |
| 756 | key.type = BTRFS_TREE_BLOCK_REF_KEY; |
| 757 | key.offset = root_objectid; |
| 758 | } |
| 759 | |
| 760 | ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root, |
| 761 | path, &key, 0); |
| 762 | btrfs_release_path(path); |
| 763 | return ret; |
| 764 | } |
| 765 | |
| 766 | static inline int extent_ref_type(u64 parent, u64 owner) |
| 767 | { |
| 768 | int type; |
| 769 | if (owner < BTRFS_FIRST_FREE_OBJECTID) { |
| 770 | if (parent > 0) |
| 771 | type = BTRFS_SHARED_BLOCK_REF_KEY; |
| 772 | else |
| 773 | type = BTRFS_TREE_BLOCK_REF_KEY; |
| 774 | } else { |
| 775 | if (parent > 0) |
| 776 | type = BTRFS_SHARED_DATA_REF_KEY; |
| 777 | else |
| 778 | type = BTRFS_EXTENT_DATA_REF_KEY; |
| 779 | } |
| 780 | return type; |
| 781 | } |
| 782 | |
| 783 | static int find_next_key(struct btrfs_path *path, int level, |
| 784 | struct btrfs_key *key) |
| 785 | |
| 786 | { |
| 787 | for (; level < BTRFS_MAX_LEVEL; level++) { |
| 788 | if (!path->nodes[level]) |
| 789 | break; |
| 790 | if (path->slots[level] + 1 >= |
| 791 | btrfs_header_nritems(path->nodes[level])) |
| 792 | continue; |
| 793 | if (level == 0) |
| 794 | btrfs_item_key_to_cpu(path->nodes[level], key, |
| 795 | path->slots[level] + 1); |
| 796 | else |
| 797 | btrfs_node_key_to_cpu(path->nodes[level], key, |
| 798 | path->slots[level] + 1); |
| 799 | return 0; |
| 800 | } |
| 801 | return 1; |
| 802 | } |
| 803 | |
| 804 | /* |
| 805 | * look for inline back ref. if back ref is found, *ref_ret is set |
| 806 | * to the address of inline back ref, and 0 is returned. |
| 807 | * |
| 808 | * if back ref isn't found, *ref_ret is set to the address where it |
| 809 | * should be inserted, and -ENOENT is returned. |
| 810 | * |
| 811 | * if insert is true and there are too many inline back refs, the path |
| 812 | * points to the extent item, and -EAGAIN is returned. |
| 813 | * |
| 814 | * NOTE: inline back refs are ordered in the same way that back ref |
| 815 | * items in the tree are ordered. |
| 816 | */ |
| 817 | static noinline_for_stack |
| 818 | int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, |
| 819 | struct btrfs_path *path, |
| 820 | struct btrfs_extent_inline_ref **ref_ret, |
| 821 | u64 bytenr, u64 num_bytes, |
| 822 | u64 parent, u64 root_objectid, |
| 823 | u64 owner, u64 offset, int insert) |
| 824 | { |
| 825 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 826 | struct btrfs_root *root = fs_info->extent_root; |
| 827 | struct btrfs_key key; |
| 828 | struct extent_buffer *leaf; |
| 829 | struct btrfs_extent_item *ei; |
| 830 | struct btrfs_extent_inline_ref *iref; |
| 831 | u64 flags; |
| 832 | u64 item_size; |
| 833 | unsigned long ptr; |
| 834 | unsigned long end; |
| 835 | int extra_size; |
| 836 | int type; |
| 837 | int want; |
| 838 | int ret; |
| 839 | int err = 0; |
| 840 | bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); |
| 841 | int needed; |
| 842 | |
| 843 | key.objectid = bytenr; |
| 844 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 845 | key.offset = num_bytes; |
| 846 | |
| 847 | want = extent_ref_type(parent, owner); |
| 848 | if (insert) { |
| 849 | extra_size = btrfs_extent_inline_ref_size(want); |
| 850 | path->keep_locks = 1; |
| 851 | } else |
| 852 | extra_size = -1; |
| 853 | |
| 854 | /* |
| 855 | * Owner is our level, so we can just add one to get the level for the |
| 856 | * block we are interested in. |
| 857 | */ |
| 858 | if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { |
| 859 | key.type = BTRFS_METADATA_ITEM_KEY; |
| 860 | key.offset = owner; |
| 861 | } |
| 862 | |
| 863 | again: |
| 864 | ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); |
| 865 | if (ret < 0) { |
| 866 | err = ret; |
| 867 | goto out; |
| 868 | } |
| 869 | |
| 870 | /* |
| 871 | * We may be a newly converted file system which still has the old fat |
| 872 | * extent entries for metadata, so try and see if we have one of those. |
| 873 | */ |
| 874 | if (ret > 0 && skinny_metadata) { |
| 875 | skinny_metadata = false; |
| 876 | if (path->slots[0]) { |
| 877 | path->slots[0]--; |
| 878 | btrfs_item_key_to_cpu(path->nodes[0], &key, |
| 879 | path->slots[0]); |
| 880 | if (key.objectid == bytenr && |
| 881 | key.type == BTRFS_EXTENT_ITEM_KEY && |
| 882 | key.offset == num_bytes) |
| 883 | ret = 0; |
| 884 | } |
| 885 | if (ret) { |
| 886 | key.objectid = bytenr; |
| 887 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 888 | key.offset = num_bytes; |
| 889 | btrfs_release_path(path); |
| 890 | goto again; |
| 891 | } |
| 892 | } |
| 893 | |
| 894 | if (ret && !insert) { |
| 895 | err = -ENOENT; |
| 896 | goto out; |
| 897 | } else if (WARN_ON(ret)) { |
| 898 | btrfs_print_leaf(path->nodes[0]); |
| 899 | btrfs_err(fs_info, |
| 900 | "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu", |
| 901 | bytenr, num_bytes, parent, root_objectid, owner, |
| 902 | offset); |
| 903 | err = -EIO; |
| 904 | goto out; |
| 905 | } |
| 906 | |
| 907 | leaf = path->nodes[0]; |
| 908 | item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| 909 | if (unlikely(item_size < sizeof(*ei))) { |
| 910 | err = -EINVAL; |
| 911 | btrfs_print_v0_err(fs_info); |
| 912 | btrfs_abort_transaction(trans, err); |
| 913 | goto out; |
| 914 | } |
| 915 | |
| 916 | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| 917 | flags = btrfs_extent_flags(leaf, ei); |
| 918 | |
| 919 | ptr = (unsigned long)(ei + 1); |
| 920 | end = (unsigned long)ei + item_size; |
| 921 | |
| 922 | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { |
| 923 | ptr += sizeof(struct btrfs_tree_block_info); |
| 924 | BUG_ON(ptr > end); |
| 925 | } |
| 926 | |
| 927 | if (owner >= BTRFS_FIRST_FREE_OBJECTID) |
| 928 | needed = BTRFS_REF_TYPE_DATA; |
| 929 | else |
| 930 | needed = BTRFS_REF_TYPE_BLOCK; |
| 931 | |
| 932 | err = -ENOENT; |
| 933 | while (1) { |
| 934 | if (ptr >= end) { |
| 935 | WARN_ON(ptr > end); |
| 936 | break; |
| 937 | } |
| 938 | iref = (struct btrfs_extent_inline_ref *)ptr; |
| 939 | type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); |
| 940 | if (type == BTRFS_REF_TYPE_INVALID) { |
| 941 | err = -EUCLEAN; |
| 942 | goto out; |
| 943 | } |
| 944 | |
| 945 | if (want < type) |
| 946 | break; |
| 947 | if (want > type) { |
| 948 | ptr += btrfs_extent_inline_ref_size(type); |
| 949 | continue; |
| 950 | } |
| 951 | |
| 952 | if (type == BTRFS_EXTENT_DATA_REF_KEY) { |
| 953 | struct btrfs_extent_data_ref *dref; |
| 954 | dref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| 955 | if (match_extent_data_ref(leaf, dref, root_objectid, |
| 956 | owner, offset)) { |
| 957 | err = 0; |
| 958 | break; |
| 959 | } |
| 960 | if (hash_extent_data_ref_item(leaf, dref) < |
| 961 | hash_extent_data_ref(root_objectid, owner, offset)) |
| 962 | break; |
| 963 | } else { |
| 964 | u64 ref_offset; |
| 965 | ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); |
| 966 | if (parent > 0) { |
| 967 | if (parent == ref_offset) { |
| 968 | err = 0; |
| 969 | break; |
| 970 | } |
| 971 | if (ref_offset < parent) |
| 972 | break; |
| 973 | } else { |
| 974 | if (root_objectid == ref_offset) { |
| 975 | err = 0; |
| 976 | break; |
| 977 | } |
| 978 | if (ref_offset < root_objectid) |
| 979 | break; |
| 980 | } |
| 981 | } |
| 982 | ptr += btrfs_extent_inline_ref_size(type); |
| 983 | } |
| 984 | if (err == -ENOENT && insert) { |
| 985 | if (item_size + extra_size >= |
| 986 | BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { |
| 987 | err = -EAGAIN; |
| 988 | goto out; |
| 989 | } |
| 990 | /* |
| 991 | * To add new inline back ref, we have to make sure |
| 992 | * there is no corresponding back ref item. |
| 993 | * For simplicity, we just do not add new inline back |
| 994 | * ref if there is any kind of item for this block |
| 995 | */ |
| 996 | if (find_next_key(path, 0, &key) == 0 && |
| 997 | key.objectid == bytenr && |
| 998 | key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { |
| 999 | err = -EAGAIN; |
| 1000 | goto out; |
| 1001 | } |
| 1002 | } |
| 1003 | *ref_ret = (struct btrfs_extent_inline_ref *)ptr; |
| 1004 | out: |
| 1005 | if (insert) { |
| 1006 | path->keep_locks = 0; |
| 1007 | btrfs_unlock_up_safe(path, 1); |
| 1008 | } |
| 1009 | return err; |
| 1010 | } |
| 1011 | |
| 1012 | /* |
| 1013 | * helper to add new inline back ref |
| 1014 | */ |
| 1015 | static noinline_for_stack |
| 1016 | void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, |
| 1017 | struct btrfs_path *path, |
| 1018 | struct btrfs_extent_inline_ref *iref, |
| 1019 | u64 parent, u64 root_objectid, |
| 1020 | u64 owner, u64 offset, int refs_to_add, |
| 1021 | struct btrfs_delayed_extent_op *extent_op) |
| 1022 | { |
| 1023 | struct extent_buffer *leaf; |
| 1024 | struct btrfs_extent_item *ei; |
| 1025 | unsigned long ptr; |
| 1026 | unsigned long end; |
| 1027 | unsigned long item_offset; |
| 1028 | u64 refs; |
| 1029 | int size; |
| 1030 | int type; |
| 1031 | |
| 1032 | leaf = path->nodes[0]; |
| 1033 | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| 1034 | item_offset = (unsigned long)iref - (unsigned long)ei; |
| 1035 | |
| 1036 | type = extent_ref_type(parent, owner); |
| 1037 | size = btrfs_extent_inline_ref_size(type); |
| 1038 | |
| 1039 | btrfs_extend_item(path, size); |
| 1040 | |
| 1041 | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| 1042 | refs = btrfs_extent_refs(leaf, ei); |
| 1043 | refs += refs_to_add; |
| 1044 | btrfs_set_extent_refs(leaf, ei, refs); |
| 1045 | if (extent_op) |
| 1046 | __run_delayed_extent_op(extent_op, leaf, ei); |
| 1047 | |
| 1048 | ptr = (unsigned long)ei + item_offset; |
| 1049 | end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); |
| 1050 | if (ptr < end - size) |
| 1051 | memmove_extent_buffer(leaf, ptr + size, ptr, |
| 1052 | end - size - ptr); |
| 1053 | |
| 1054 | iref = (struct btrfs_extent_inline_ref *)ptr; |
| 1055 | btrfs_set_extent_inline_ref_type(leaf, iref, type); |
| 1056 | if (type == BTRFS_EXTENT_DATA_REF_KEY) { |
| 1057 | struct btrfs_extent_data_ref *dref; |
| 1058 | dref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| 1059 | btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); |
| 1060 | btrfs_set_extent_data_ref_objectid(leaf, dref, owner); |
| 1061 | btrfs_set_extent_data_ref_offset(leaf, dref, offset); |
| 1062 | btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); |
| 1063 | } else if (type == BTRFS_SHARED_DATA_REF_KEY) { |
| 1064 | struct btrfs_shared_data_ref *sref; |
| 1065 | sref = (struct btrfs_shared_data_ref *)(iref + 1); |
| 1066 | btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); |
| 1067 | btrfs_set_extent_inline_ref_offset(leaf, iref, parent); |
| 1068 | } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { |
| 1069 | btrfs_set_extent_inline_ref_offset(leaf, iref, parent); |
| 1070 | } else { |
| 1071 | btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); |
| 1072 | } |
| 1073 | btrfs_mark_buffer_dirty(leaf); |
| 1074 | } |
| 1075 | |
| 1076 | static int lookup_extent_backref(struct btrfs_trans_handle *trans, |
| 1077 | struct btrfs_path *path, |
| 1078 | struct btrfs_extent_inline_ref **ref_ret, |
| 1079 | u64 bytenr, u64 num_bytes, u64 parent, |
| 1080 | u64 root_objectid, u64 owner, u64 offset) |
| 1081 | { |
| 1082 | int ret; |
| 1083 | |
| 1084 | ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, |
| 1085 | num_bytes, parent, root_objectid, |
| 1086 | owner, offset, 0); |
| 1087 | if (ret != -ENOENT) |
| 1088 | return ret; |
| 1089 | |
| 1090 | btrfs_release_path(path); |
| 1091 | *ref_ret = NULL; |
| 1092 | |
| 1093 | if (owner < BTRFS_FIRST_FREE_OBJECTID) { |
| 1094 | ret = lookup_tree_block_ref(trans, path, bytenr, parent, |
| 1095 | root_objectid); |
| 1096 | } else { |
| 1097 | ret = lookup_extent_data_ref(trans, path, bytenr, parent, |
| 1098 | root_objectid, owner, offset); |
| 1099 | } |
| 1100 | return ret; |
| 1101 | } |
| 1102 | |
| 1103 | /* |
| 1104 | * helper to update/remove inline back ref |
| 1105 | */ |
| 1106 | static noinline_for_stack |
| 1107 | void update_inline_extent_backref(struct btrfs_path *path, |
| 1108 | struct btrfs_extent_inline_ref *iref, |
| 1109 | int refs_to_mod, |
| 1110 | struct btrfs_delayed_extent_op *extent_op, |
| 1111 | int *last_ref) |
| 1112 | { |
| 1113 | struct extent_buffer *leaf = path->nodes[0]; |
| 1114 | struct btrfs_extent_item *ei; |
| 1115 | struct btrfs_extent_data_ref *dref = NULL; |
| 1116 | struct btrfs_shared_data_ref *sref = NULL; |
| 1117 | unsigned long ptr; |
| 1118 | unsigned long end; |
| 1119 | u32 item_size; |
| 1120 | int size; |
| 1121 | int type; |
| 1122 | u64 refs; |
| 1123 | |
| 1124 | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| 1125 | refs = btrfs_extent_refs(leaf, ei); |
| 1126 | WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); |
| 1127 | refs += refs_to_mod; |
| 1128 | btrfs_set_extent_refs(leaf, ei, refs); |
| 1129 | if (extent_op) |
| 1130 | __run_delayed_extent_op(extent_op, leaf, ei); |
| 1131 | |
| 1132 | /* |
| 1133 | * If type is invalid, we should have bailed out after |
| 1134 | * lookup_inline_extent_backref(). |
| 1135 | */ |
| 1136 | type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); |
| 1137 | ASSERT(type != BTRFS_REF_TYPE_INVALID); |
| 1138 | |
| 1139 | if (type == BTRFS_EXTENT_DATA_REF_KEY) { |
| 1140 | dref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| 1141 | refs = btrfs_extent_data_ref_count(leaf, dref); |
| 1142 | } else if (type == BTRFS_SHARED_DATA_REF_KEY) { |
| 1143 | sref = (struct btrfs_shared_data_ref *)(iref + 1); |
| 1144 | refs = btrfs_shared_data_ref_count(leaf, sref); |
| 1145 | } else { |
| 1146 | refs = 1; |
| 1147 | BUG_ON(refs_to_mod != -1); |
| 1148 | } |
| 1149 | |
| 1150 | BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); |
| 1151 | refs += refs_to_mod; |
| 1152 | |
| 1153 | if (refs > 0) { |
| 1154 | if (type == BTRFS_EXTENT_DATA_REF_KEY) |
| 1155 | btrfs_set_extent_data_ref_count(leaf, dref, refs); |
| 1156 | else |
| 1157 | btrfs_set_shared_data_ref_count(leaf, sref, refs); |
| 1158 | } else { |
| 1159 | *last_ref = 1; |
| 1160 | size = btrfs_extent_inline_ref_size(type); |
| 1161 | item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| 1162 | ptr = (unsigned long)iref; |
| 1163 | end = (unsigned long)ei + item_size; |
| 1164 | if (ptr + size < end) |
| 1165 | memmove_extent_buffer(leaf, ptr, ptr + size, |
| 1166 | end - ptr - size); |
| 1167 | item_size -= size; |
| 1168 | btrfs_truncate_item(path, item_size, 1); |
| 1169 | } |
| 1170 | btrfs_mark_buffer_dirty(leaf); |
| 1171 | } |
| 1172 | |
| 1173 | static noinline_for_stack |
| 1174 | int insert_inline_extent_backref(struct btrfs_trans_handle *trans, |
| 1175 | struct btrfs_path *path, |
| 1176 | u64 bytenr, u64 num_bytes, u64 parent, |
| 1177 | u64 root_objectid, u64 owner, |
| 1178 | u64 offset, int refs_to_add, |
| 1179 | struct btrfs_delayed_extent_op *extent_op) |
| 1180 | { |
| 1181 | struct btrfs_extent_inline_ref *iref; |
| 1182 | int ret; |
| 1183 | |
| 1184 | ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, |
| 1185 | num_bytes, parent, root_objectid, |
| 1186 | owner, offset, 1); |
| 1187 | if (ret == 0) { |
| 1188 | BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); |
| 1189 | update_inline_extent_backref(path, iref, refs_to_add, |
| 1190 | extent_op, NULL); |
| 1191 | } else if (ret == -ENOENT) { |
| 1192 | setup_inline_extent_backref(trans->fs_info, path, iref, parent, |
| 1193 | root_objectid, owner, offset, |
| 1194 | refs_to_add, extent_op); |
| 1195 | ret = 0; |
| 1196 | } |
| 1197 | return ret; |
| 1198 | } |
| 1199 | |
| 1200 | static int insert_extent_backref(struct btrfs_trans_handle *trans, |
| 1201 | struct btrfs_path *path, |
| 1202 | u64 bytenr, u64 parent, u64 root_objectid, |
| 1203 | u64 owner, u64 offset, int refs_to_add) |
| 1204 | { |
| 1205 | int ret; |
| 1206 | if (owner < BTRFS_FIRST_FREE_OBJECTID) { |
| 1207 | BUG_ON(refs_to_add != 1); |
| 1208 | ret = insert_tree_block_ref(trans, path, bytenr, parent, |
| 1209 | root_objectid); |
| 1210 | } else { |
| 1211 | ret = insert_extent_data_ref(trans, path, bytenr, parent, |
| 1212 | root_objectid, owner, offset, |
| 1213 | refs_to_add); |
| 1214 | } |
| 1215 | return ret; |
| 1216 | } |
| 1217 | |
| 1218 | static int remove_extent_backref(struct btrfs_trans_handle *trans, |
| 1219 | struct btrfs_path *path, |
| 1220 | struct btrfs_extent_inline_ref *iref, |
| 1221 | int refs_to_drop, int is_data, int *last_ref) |
| 1222 | { |
| 1223 | int ret = 0; |
| 1224 | |
| 1225 | BUG_ON(!is_data && refs_to_drop != 1); |
| 1226 | if (iref) { |
| 1227 | update_inline_extent_backref(path, iref, -refs_to_drop, NULL, |
| 1228 | last_ref); |
| 1229 | } else if (is_data) { |
| 1230 | ret = remove_extent_data_ref(trans, path, refs_to_drop, |
| 1231 | last_ref); |
| 1232 | } else { |
| 1233 | *last_ref = 1; |
| 1234 | ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); |
| 1235 | } |
| 1236 | return ret; |
| 1237 | } |
| 1238 | |
| 1239 | static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, |
| 1240 | u64 *discarded_bytes) |
| 1241 | { |
| 1242 | int j, ret = 0; |
| 1243 | u64 bytes_left, end; |
| 1244 | u64 aligned_start = ALIGN(start, 1 << 9); |
| 1245 | |
| 1246 | /* Adjust the range to be aligned to 512B sectors if necessary. */ |
| 1247 | if (start != aligned_start) { |
| 1248 | len -= aligned_start - start; |
| 1249 | len = round_down(len, 1 << 9); |
| 1250 | start = aligned_start; |
| 1251 | } |
| 1252 | |
| 1253 | *discarded_bytes = 0; |
| 1254 | |
| 1255 | if (!len) |
| 1256 | return 0; |
| 1257 | |
| 1258 | end = start + len; |
| 1259 | bytes_left = len; |
| 1260 | |
| 1261 | /* Skip any superblocks on this device. */ |
| 1262 | for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { |
| 1263 | u64 sb_start = btrfs_sb_offset(j); |
| 1264 | u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; |
| 1265 | u64 size = sb_start - start; |
| 1266 | |
| 1267 | if (!in_range(sb_start, start, bytes_left) && |
| 1268 | !in_range(sb_end, start, bytes_left) && |
| 1269 | !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) |
| 1270 | continue; |
| 1271 | |
| 1272 | /* |
| 1273 | * Superblock spans beginning of range. Adjust start and |
| 1274 | * try again. |
| 1275 | */ |
| 1276 | if (sb_start <= start) { |
| 1277 | start += sb_end - start; |
| 1278 | if (start > end) { |
| 1279 | bytes_left = 0; |
| 1280 | break; |
| 1281 | } |
| 1282 | bytes_left = end - start; |
| 1283 | continue; |
| 1284 | } |
| 1285 | |
| 1286 | if (size) { |
| 1287 | ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, |
| 1288 | GFP_NOFS, 0); |
| 1289 | if (!ret) |
| 1290 | *discarded_bytes += size; |
| 1291 | else if (ret != -EOPNOTSUPP) |
| 1292 | return ret; |
| 1293 | } |
| 1294 | |
| 1295 | start = sb_end; |
| 1296 | if (start > end) { |
| 1297 | bytes_left = 0; |
| 1298 | break; |
| 1299 | } |
| 1300 | bytes_left = end - start; |
| 1301 | } |
| 1302 | |
| 1303 | if (bytes_left) { |
| 1304 | ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, |
| 1305 | GFP_NOFS, 0); |
| 1306 | if (!ret) |
| 1307 | *discarded_bytes += bytes_left; |
| 1308 | } |
| 1309 | return ret; |
| 1310 | } |
| 1311 | |
| 1312 | int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, |
| 1313 | u64 num_bytes, u64 *actual_bytes) |
| 1314 | { |
| 1315 | int ret = 0; |
| 1316 | u64 discarded_bytes = 0; |
| 1317 | u64 end = bytenr + num_bytes; |
| 1318 | u64 cur = bytenr; |
| 1319 | struct btrfs_bio *bbio = NULL; |
| 1320 | |
| 1321 | |
| 1322 | /* |
| 1323 | * Avoid races with device replace and make sure our bbio has devices |
| 1324 | * associated to its stripes that don't go away while we are discarding. |
| 1325 | */ |
| 1326 | btrfs_bio_counter_inc_blocked(fs_info); |
| 1327 | while (cur < end) { |
| 1328 | struct btrfs_bio_stripe *stripe; |
| 1329 | int i; |
| 1330 | |
| 1331 | num_bytes = end - cur; |
| 1332 | /* Tell the block device(s) that the sectors can be discarded */ |
| 1333 | ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur, |
| 1334 | &num_bytes, &bbio, 0); |
| 1335 | /* |
| 1336 | * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or |
| 1337 | * -EOPNOTSUPP. For any such error, @num_bytes is not updated, |
| 1338 | * thus we can't continue anyway. |
| 1339 | */ |
| 1340 | if (ret < 0) |
| 1341 | goto out; |
| 1342 | |
| 1343 | stripe = bbio->stripes; |
| 1344 | for (i = 0; i < bbio->num_stripes; i++, stripe++) { |
| 1345 | u64 bytes; |
| 1346 | struct request_queue *req_q; |
| 1347 | struct btrfs_device *device = stripe->dev; |
| 1348 | |
| 1349 | if (!device->bdev) { |
| 1350 | ASSERT(btrfs_test_opt(fs_info, DEGRADED)); |
| 1351 | continue; |
| 1352 | } |
| 1353 | req_q = bdev_get_queue(device->bdev); |
| 1354 | if (!blk_queue_discard(req_q)) |
| 1355 | continue; |
| 1356 | |
| 1357 | if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) |
| 1358 | continue; |
| 1359 | |
| 1360 | ret = btrfs_issue_discard(device->bdev, |
| 1361 | stripe->physical, |
| 1362 | stripe->length, |
| 1363 | &bytes); |
| 1364 | if (!ret) { |
| 1365 | discarded_bytes += bytes; |
| 1366 | } else if (ret != -EOPNOTSUPP) { |
| 1367 | /* |
| 1368 | * Logic errors or -ENOMEM, or -EIO, but |
| 1369 | * unlikely to happen. |
| 1370 | * |
| 1371 | * And since there are two loops, explicitly |
| 1372 | * go to out to avoid confusion. |
| 1373 | */ |
| 1374 | btrfs_put_bbio(bbio); |
| 1375 | goto out; |
| 1376 | } |
| 1377 | |
| 1378 | /* |
| 1379 | * Just in case we get back EOPNOTSUPP for some reason, |
| 1380 | * just ignore the return value so we don't screw up |
| 1381 | * people calling discard_extent. |
| 1382 | */ |
| 1383 | ret = 0; |
| 1384 | } |
| 1385 | btrfs_put_bbio(bbio); |
| 1386 | cur += num_bytes; |
| 1387 | } |
| 1388 | out: |
| 1389 | btrfs_bio_counter_dec(fs_info); |
| 1390 | |
| 1391 | if (actual_bytes) |
| 1392 | *actual_bytes = discarded_bytes; |
| 1393 | |
| 1394 | |
| 1395 | if (ret == -EOPNOTSUPP) |
| 1396 | ret = 0; |
| 1397 | return ret; |
| 1398 | } |
| 1399 | |
| 1400 | /* Can return -ENOMEM */ |
| 1401 | int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, |
| 1402 | struct btrfs_ref *generic_ref) |
| 1403 | { |
| 1404 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 1405 | int old_ref_mod, new_ref_mod; |
| 1406 | int ret; |
| 1407 | |
| 1408 | ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && |
| 1409 | generic_ref->action); |
| 1410 | BUG_ON(generic_ref->type == BTRFS_REF_METADATA && |
| 1411 | generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID); |
| 1412 | |
| 1413 | if (generic_ref->type == BTRFS_REF_METADATA) |
| 1414 | ret = btrfs_add_delayed_tree_ref(trans, generic_ref, |
| 1415 | NULL, &old_ref_mod, &new_ref_mod); |
| 1416 | else |
| 1417 | ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0, |
| 1418 | &old_ref_mod, &new_ref_mod); |
| 1419 | |
| 1420 | btrfs_ref_tree_mod(fs_info, generic_ref); |
| 1421 | |
| 1422 | if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) |
| 1423 | sub_pinned_bytes(fs_info, generic_ref); |
| 1424 | |
| 1425 | return ret; |
| 1426 | } |
| 1427 | |
| 1428 | /* |
| 1429 | * __btrfs_inc_extent_ref - insert backreference for a given extent |
| 1430 | * |
| 1431 | * @trans: Handle of transaction |
| 1432 | * |
| 1433 | * @node: The delayed ref node used to get the bytenr/length for |
| 1434 | * extent whose references are incremented. |
| 1435 | * |
| 1436 | * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ |
| 1437 | * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical |
| 1438 | * bytenr of the parent block. Since new extents are always |
| 1439 | * created with indirect references, this will only be the case |
| 1440 | * when relocating a shared extent. In that case, root_objectid |
| 1441 | * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must |
| 1442 | * be 0 |
| 1443 | * |
| 1444 | * @root_objectid: The id of the root where this modification has originated, |
| 1445 | * this can be either one of the well-known metadata trees or |
| 1446 | * the subvolume id which references this extent. |
| 1447 | * |
| 1448 | * @owner: For data extents it is the inode number of the owning file. |
| 1449 | * For metadata extents this parameter holds the level in the |
| 1450 | * tree of the extent. |
| 1451 | * |
| 1452 | * @offset: For metadata extents the offset is ignored and is currently |
| 1453 | * always passed as 0. For data extents it is the fileoffset |
| 1454 | * this extent belongs to. |
| 1455 | * |
| 1456 | * @refs_to_add Number of references to add |
| 1457 | * |
| 1458 | * @extent_op Pointer to a structure, holding information necessary when |
| 1459 | * updating a tree block's flags |
| 1460 | * |
| 1461 | */ |
| 1462 | static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, |
| 1463 | struct btrfs_delayed_ref_node *node, |
| 1464 | u64 parent, u64 root_objectid, |
| 1465 | u64 owner, u64 offset, int refs_to_add, |
| 1466 | struct btrfs_delayed_extent_op *extent_op) |
| 1467 | { |
| 1468 | struct btrfs_path *path; |
| 1469 | struct extent_buffer *leaf; |
| 1470 | struct btrfs_extent_item *item; |
| 1471 | struct btrfs_key key; |
| 1472 | u64 bytenr = node->bytenr; |
| 1473 | u64 num_bytes = node->num_bytes; |
| 1474 | u64 refs; |
| 1475 | int ret; |
| 1476 | |
| 1477 | path = btrfs_alloc_path(); |
| 1478 | if (!path) |
| 1479 | return -ENOMEM; |
| 1480 | |
| 1481 | path->reada = READA_FORWARD; |
| 1482 | path->leave_spinning = 1; |
| 1483 | /* this will setup the path even if it fails to insert the back ref */ |
| 1484 | ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, |
| 1485 | parent, root_objectid, owner, |
| 1486 | offset, refs_to_add, extent_op); |
| 1487 | if ((ret < 0 && ret != -EAGAIN) || !ret) |
| 1488 | goto out; |
| 1489 | |
| 1490 | /* |
| 1491 | * Ok we had -EAGAIN which means we didn't have space to insert and |
| 1492 | * inline extent ref, so just update the reference count and add a |
| 1493 | * normal backref. |
| 1494 | */ |
| 1495 | leaf = path->nodes[0]; |
| 1496 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| 1497 | item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| 1498 | refs = btrfs_extent_refs(leaf, item); |
| 1499 | btrfs_set_extent_refs(leaf, item, refs + refs_to_add); |
| 1500 | if (extent_op) |
| 1501 | __run_delayed_extent_op(extent_op, leaf, item); |
| 1502 | |
| 1503 | btrfs_mark_buffer_dirty(leaf); |
| 1504 | btrfs_release_path(path); |
| 1505 | |
| 1506 | path->reada = READA_FORWARD; |
| 1507 | path->leave_spinning = 1; |
| 1508 | /* now insert the actual backref */ |
| 1509 | ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid, |
| 1510 | owner, offset, refs_to_add); |
| 1511 | if (ret) |
| 1512 | btrfs_abort_transaction(trans, ret); |
| 1513 | out: |
| 1514 | btrfs_free_path(path); |
| 1515 | return ret; |
| 1516 | } |
| 1517 | |
| 1518 | static int run_delayed_data_ref(struct btrfs_trans_handle *trans, |
| 1519 | struct btrfs_delayed_ref_node *node, |
| 1520 | struct btrfs_delayed_extent_op *extent_op, |
| 1521 | int insert_reserved) |
| 1522 | { |
| 1523 | int ret = 0; |
| 1524 | struct btrfs_delayed_data_ref *ref; |
| 1525 | struct btrfs_key ins; |
| 1526 | u64 parent = 0; |
| 1527 | u64 ref_root = 0; |
| 1528 | u64 flags = 0; |
| 1529 | |
| 1530 | ins.objectid = node->bytenr; |
| 1531 | ins.offset = node->num_bytes; |
| 1532 | ins.type = BTRFS_EXTENT_ITEM_KEY; |
| 1533 | |
| 1534 | ref = btrfs_delayed_node_to_data_ref(node); |
| 1535 | trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); |
| 1536 | |
| 1537 | if (node->type == BTRFS_SHARED_DATA_REF_KEY) |
| 1538 | parent = ref->parent; |
| 1539 | ref_root = ref->root; |
| 1540 | |
| 1541 | if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { |
| 1542 | if (extent_op) |
| 1543 | flags |= extent_op->flags_to_set; |
| 1544 | ret = alloc_reserved_file_extent(trans, parent, ref_root, |
| 1545 | flags, ref->objectid, |
| 1546 | ref->offset, &ins, |
| 1547 | node->ref_mod); |
| 1548 | } else if (node->action == BTRFS_ADD_DELAYED_REF) { |
| 1549 | ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, |
| 1550 | ref->objectid, ref->offset, |
| 1551 | node->ref_mod, extent_op); |
| 1552 | } else if (node->action == BTRFS_DROP_DELAYED_REF) { |
| 1553 | ret = __btrfs_free_extent(trans, node, parent, |
| 1554 | ref_root, ref->objectid, |
| 1555 | ref->offset, node->ref_mod, |
| 1556 | extent_op); |
| 1557 | } else { |
| 1558 | BUG(); |
| 1559 | } |
| 1560 | return ret; |
| 1561 | } |
| 1562 | |
| 1563 | static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, |
| 1564 | struct extent_buffer *leaf, |
| 1565 | struct btrfs_extent_item *ei) |
| 1566 | { |
| 1567 | u64 flags = btrfs_extent_flags(leaf, ei); |
| 1568 | if (extent_op->update_flags) { |
| 1569 | flags |= extent_op->flags_to_set; |
| 1570 | btrfs_set_extent_flags(leaf, ei, flags); |
| 1571 | } |
| 1572 | |
| 1573 | if (extent_op->update_key) { |
| 1574 | struct btrfs_tree_block_info *bi; |
| 1575 | BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); |
| 1576 | bi = (struct btrfs_tree_block_info *)(ei + 1); |
| 1577 | btrfs_set_tree_block_key(leaf, bi, &extent_op->key); |
| 1578 | } |
| 1579 | } |
| 1580 | |
| 1581 | static int run_delayed_extent_op(struct btrfs_trans_handle *trans, |
| 1582 | struct btrfs_delayed_ref_head *head, |
| 1583 | struct btrfs_delayed_extent_op *extent_op) |
| 1584 | { |
| 1585 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 1586 | struct btrfs_key key; |
| 1587 | struct btrfs_path *path; |
| 1588 | struct btrfs_extent_item *ei; |
| 1589 | struct extent_buffer *leaf; |
| 1590 | u32 item_size; |
| 1591 | int ret; |
| 1592 | int err = 0; |
| 1593 | int metadata = !extent_op->is_data; |
| 1594 | |
| 1595 | if (TRANS_ABORTED(trans)) |
| 1596 | return 0; |
| 1597 | |
| 1598 | if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) |
| 1599 | metadata = 0; |
| 1600 | |
| 1601 | path = btrfs_alloc_path(); |
| 1602 | if (!path) |
| 1603 | return -ENOMEM; |
| 1604 | |
| 1605 | key.objectid = head->bytenr; |
| 1606 | |
| 1607 | if (metadata) { |
| 1608 | key.type = BTRFS_METADATA_ITEM_KEY; |
| 1609 | key.offset = extent_op->level; |
| 1610 | } else { |
| 1611 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 1612 | key.offset = head->num_bytes; |
| 1613 | } |
| 1614 | |
| 1615 | again: |
| 1616 | path->reada = READA_FORWARD; |
| 1617 | path->leave_spinning = 1; |
| 1618 | ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); |
| 1619 | if (ret < 0) { |
| 1620 | err = ret; |
| 1621 | goto out; |
| 1622 | } |
| 1623 | if (ret > 0) { |
| 1624 | if (metadata) { |
| 1625 | if (path->slots[0] > 0) { |
| 1626 | path->slots[0]--; |
| 1627 | btrfs_item_key_to_cpu(path->nodes[0], &key, |
| 1628 | path->slots[0]); |
| 1629 | if (key.objectid == head->bytenr && |
| 1630 | key.type == BTRFS_EXTENT_ITEM_KEY && |
| 1631 | key.offset == head->num_bytes) |
| 1632 | ret = 0; |
| 1633 | } |
| 1634 | if (ret > 0) { |
| 1635 | btrfs_release_path(path); |
| 1636 | metadata = 0; |
| 1637 | |
| 1638 | key.objectid = head->bytenr; |
| 1639 | key.offset = head->num_bytes; |
| 1640 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 1641 | goto again; |
| 1642 | } |
| 1643 | } else { |
| 1644 | err = -EIO; |
| 1645 | goto out; |
| 1646 | } |
| 1647 | } |
| 1648 | |
| 1649 | leaf = path->nodes[0]; |
| 1650 | item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| 1651 | |
| 1652 | if (unlikely(item_size < sizeof(*ei))) { |
| 1653 | err = -EINVAL; |
| 1654 | btrfs_print_v0_err(fs_info); |
| 1655 | btrfs_abort_transaction(trans, err); |
| 1656 | goto out; |
| 1657 | } |
| 1658 | |
| 1659 | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| 1660 | __run_delayed_extent_op(extent_op, leaf, ei); |
| 1661 | |
| 1662 | btrfs_mark_buffer_dirty(leaf); |
| 1663 | out: |
| 1664 | btrfs_free_path(path); |
| 1665 | return err; |
| 1666 | } |
| 1667 | |
| 1668 | static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, |
| 1669 | struct btrfs_delayed_ref_node *node, |
| 1670 | struct btrfs_delayed_extent_op *extent_op, |
| 1671 | int insert_reserved) |
| 1672 | { |
| 1673 | int ret = 0; |
| 1674 | struct btrfs_delayed_tree_ref *ref; |
| 1675 | u64 parent = 0; |
| 1676 | u64 ref_root = 0; |
| 1677 | |
| 1678 | ref = btrfs_delayed_node_to_tree_ref(node); |
| 1679 | trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); |
| 1680 | |
| 1681 | if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) |
| 1682 | parent = ref->parent; |
| 1683 | ref_root = ref->root; |
| 1684 | |
| 1685 | if (unlikely(node->ref_mod != 1)) { |
| 1686 | btrfs_err(trans->fs_info, |
| 1687 | "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu", |
| 1688 | node->bytenr, node->ref_mod, node->action, ref_root, |
| 1689 | parent); |
| 1690 | return -EUCLEAN; |
| 1691 | } |
| 1692 | if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { |
| 1693 | BUG_ON(!extent_op || !extent_op->update_flags); |
| 1694 | ret = alloc_reserved_tree_block(trans, node, extent_op); |
| 1695 | } else if (node->action == BTRFS_ADD_DELAYED_REF) { |
| 1696 | ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, |
| 1697 | ref->level, 0, 1, extent_op); |
| 1698 | } else if (node->action == BTRFS_DROP_DELAYED_REF) { |
| 1699 | ret = __btrfs_free_extent(trans, node, parent, ref_root, |
| 1700 | ref->level, 0, 1, extent_op); |
| 1701 | } else { |
| 1702 | BUG(); |
| 1703 | } |
| 1704 | return ret; |
| 1705 | } |
| 1706 | |
| 1707 | /* helper function to actually process a single delayed ref entry */ |
| 1708 | static int run_one_delayed_ref(struct btrfs_trans_handle *trans, |
| 1709 | struct btrfs_delayed_ref_node *node, |
| 1710 | struct btrfs_delayed_extent_op *extent_op, |
| 1711 | int insert_reserved) |
| 1712 | { |
| 1713 | int ret = 0; |
| 1714 | |
| 1715 | if (TRANS_ABORTED(trans)) { |
| 1716 | if (insert_reserved) |
| 1717 | btrfs_pin_extent(trans->fs_info, node->bytenr, |
| 1718 | node->num_bytes, 1); |
| 1719 | return 0; |
| 1720 | } |
| 1721 | |
| 1722 | if (node->type == BTRFS_TREE_BLOCK_REF_KEY || |
| 1723 | node->type == BTRFS_SHARED_BLOCK_REF_KEY) |
| 1724 | ret = run_delayed_tree_ref(trans, node, extent_op, |
| 1725 | insert_reserved); |
| 1726 | else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || |
| 1727 | node->type == BTRFS_SHARED_DATA_REF_KEY) |
| 1728 | ret = run_delayed_data_ref(trans, node, extent_op, |
| 1729 | insert_reserved); |
| 1730 | else |
| 1731 | BUG(); |
| 1732 | if (ret && insert_reserved) |
| 1733 | btrfs_pin_extent(trans->fs_info, node->bytenr, |
| 1734 | node->num_bytes, 1); |
| 1735 | return ret; |
| 1736 | } |
| 1737 | |
| 1738 | static inline struct btrfs_delayed_ref_node * |
| 1739 | select_delayed_ref(struct btrfs_delayed_ref_head *head) |
| 1740 | { |
| 1741 | struct btrfs_delayed_ref_node *ref; |
| 1742 | |
| 1743 | if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) |
| 1744 | return NULL; |
| 1745 | |
| 1746 | /* |
| 1747 | * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. |
| 1748 | * This is to prevent a ref count from going down to zero, which deletes |
| 1749 | * the extent item from the extent tree, when there still are references |
| 1750 | * to add, which would fail because they would not find the extent item. |
| 1751 | */ |
| 1752 | if (!list_empty(&head->ref_add_list)) |
| 1753 | return list_first_entry(&head->ref_add_list, |
| 1754 | struct btrfs_delayed_ref_node, add_list); |
| 1755 | |
| 1756 | ref = rb_entry(rb_first_cached(&head->ref_tree), |
| 1757 | struct btrfs_delayed_ref_node, ref_node); |
| 1758 | ASSERT(list_empty(&ref->add_list)); |
| 1759 | return ref; |
| 1760 | } |
| 1761 | |
| 1762 | static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, |
| 1763 | struct btrfs_delayed_ref_head *head) |
| 1764 | { |
| 1765 | spin_lock(&delayed_refs->lock); |
| 1766 | head->processing = 0; |
| 1767 | delayed_refs->num_heads_ready++; |
| 1768 | spin_unlock(&delayed_refs->lock); |
| 1769 | btrfs_delayed_ref_unlock(head); |
| 1770 | } |
| 1771 | |
| 1772 | static struct btrfs_delayed_extent_op *cleanup_extent_op( |
| 1773 | struct btrfs_delayed_ref_head *head) |
| 1774 | { |
| 1775 | struct btrfs_delayed_extent_op *extent_op = head->extent_op; |
| 1776 | |
| 1777 | if (!extent_op) |
| 1778 | return NULL; |
| 1779 | |
| 1780 | if (head->must_insert_reserved) { |
| 1781 | head->extent_op = NULL; |
| 1782 | btrfs_free_delayed_extent_op(extent_op); |
| 1783 | return NULL; |
| 1784 | } |
| 1785 | return extent_op; |
| 1786 | } |
| 1787 | |
| 1788 | static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, |
| 1789 | struct btrfs_delayed_ref_head *head) |
| 1790 | { |
| 1791 | struct btrfs_delayed_extent_op *extent_op; |
| 1792 | int ret; |
| 1793 | |
| 1794 | extent_op = cleanup_extent_op(head); |
| 1795 | if (!extent_op) |
| 1796 | return 0; |
| 1797 | head->extent_op = NULL; |
| 1798 | spin_unlock(&head->lock); |
| 1799 | ret = run_delayed_extent_op(trans, head, extent_op); |
| 1800 | btrfs_free_delayed_extent_op(extent_op); |
| 1801 | return ret ? ret : 1; |
| 1802 | } |
| 1803 | |
| 1804 | void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, |
| 1805 | struct btrfs_delayed_ref_root *delayed_refs, |
| 1806 | struct btrfs_delayed_ref_head *head) |
| 1807 | { |
| 1808 | int nr_items = 1; /* Dropping this ref head update. */ |
| 1809 | |
| 1810 | if (head->total_ref_mod < 0) { |
| 1811 | struct btrfs_space_info *space_info; |
| 1812 | u64 flags; |
| 1813 | |
| 1814 | if (head->is_data) |
| 1815 | flags = BTRFS_BLOCK_GROUP_DATA; |
| 1816 | else if (head->is_system) |
| 1817 | flags = BTRFS_BLOCK_GROUP_SYSTEM; |
| 1818 | else |
| 1819 | flags = BTRFS_BLOCK_GROUP_METADATA; |
| 1820 | space_info = btrfs_find_space_info(fs_info, flags); |
| 1821 | ASSERT(space_info); |
| 1822 | percpu_counter_add_batch(&space_info->total_bytes_pinned, |
| 1823 | -head->num_bytes, |
| 1824 | BTRFS_TOTAL_BYTES_PINNED_BATCH); |
| 1825 | |
| 1826 | /* |
| 1827 | * We had csum deletions accounted for in our delayed refs rsv, |
| 1828 | * we need to drop the csum leaves for this update from our |
| 1829 | * delayed_refs_rsv. |
| 1830 | */ |
| 1831 | if (head->is_data) { |
| 1832 | spin_lock(&delayed_refs->lock); |
| 1833 | delayed_refs->pending_csums -= head->num_bytes; |
| 1834 | spin_unlock(&delayed_refs->lock); |
| 1835 | nr_items += btrfs_csum_bytes_to_leaves(fs_info, |
| 1836 | head->num_bytes); |
| 1837 | } |
| 1838 | } |
| 1839 | |
| 1840 | btrfs_delayed_refs_rsv_release(fs_info, nr_items); |
| 1841 | } |
| 1842 | |
| 1843 | static int cleanup_ref_head(struct btrfs_trans_handle *trans, |
| 1844 | struct btrfs_delayed_ref_head *head) |
| 1845 | { |
| 1846 | |
| 1847 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 1848 | struct btrfs_delayed_ref_root *delayed_refs; |
| 1849 | int ret; |
| 1850 | |
| 1851 | delayed_refs = &trans->transaction->delayed_refs; |
| 1852 | |
| 1853 | ret = run_and_cleanup_extent_op(trans, head); |
| 1854 | if (ret < 0) { |
| 1855 | unselect_delayed_ref_head(delayed_refs, head); |
| 1856 | btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); |
| 1857 | return ret; |
| 1858 | } else if (ret) { |
| 1859 | return ret; |
| 1860 | } |
| 1861 | |
| 1862 | /* |
| 1863 | * Need to drop our head ref lock and re-acquire the delayed ref lock |
| 1864 | * and then re-check to make sure nobody got added. |
| 1865 | */ |
| 1866 | spin_unlock(&head->lock); |
| 1867 | spin_lock(&delayed_refs->lock); |
| 1868 | spin_lock(&head->lock); |
| 1869 | if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { |
| 1870 | spin_unlock(&head->lock); |
| 1871 | spin_unlock(&delayed_refs->lock); |
| 1872 | return 1; |
| 1873 | } |
| 1874 | btrfs_delete_ref_head(delayed_refs, head); |
| 1875 | spin_unlock(&head->lock); |
| 1876 | spin_unlock(&delayed_refs->lock); |
| 1877 | |
| 1878 | if (head->must_insert_reserved) { |
| 1879 | btrfs_pin_extent(fs_info, head->bytenr, |
| 1880 | head->num_bytes, 1); |
| 1881 | if (head->is_data) { |
| 1882 | ret = btrfs_del_csums(trans, fs_info->csum_root, |
| 1883 | head->bytenr, head->num_bytes); |
| 1884 | } |
| 1885 | } |
| 1886 | |
| 1887 | btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); |
| 1888 | |
| 1889 | trace_run_delayed_ref_head(fs_info, head, 0); |
| 1890 | btrfs_delayed_ref_unlock(head); |
| 1891 | btrfs_put_delayed_ref_head(head); |
| 1892 | return ret; |
| 1893 | } |
| 1894 | |
| 1895 | static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( |
| 1896 | struct btrfs_trans_handle *trans) |
| 1897 | { |
| 1898 | struct btrfs_delayed_ref_root *delayed_refs = |
| 1899 | &trans->transaction->delayed_refs; |
| 1900 | struct btrfs_delayed_ref_head *head = NULL; |
| 1901 | int ret; |
| 1902 | |
| 1903 | spin_lock(&delayed_refs->lock); |
| 1904 | head = btrfs_select_ref_head(delayed_refs); |
| 1905 | if (!head) { |
| 1906 | spin_unlock(&delayed_refs->lock); |
| 1907 | return head; |
| 1908 | } |
| 1909 | |
| 1910 | /* |
| 1911 | * Grab the lock that says we are going to process all the refs for |
| 1912 | * this head |
| 1913 | */ |
| 1914 | ret = btrfs_delayed_ref_lock(delayed_refs, head); |
| 1915 | spin_unlock(&delayed_refs->lock); |
| 1916 | |
| 1917 | /* |
| 1918 | * We may have dropped the spin lock to get the head mutex lock, and |
| 1919 | * that might have given someone else time to free the head. If that's |
| 1920 | * true, it has been removed from our list and we can move on. |
| 1921 | */ |
| 1922 | if (ret == -EAGAIN) |
| 1923 | head = ERR_PTR(-EAGAIN); |
| 1924 | |
| 1925 | return head; |
| 1926 | } |
| 1927 | |
| 1928 | static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, |
| 1929 | struct btrfs_delayed_ref_head *locked_ref, |
| 1930 | unsigned long *run_refs) |
| 1931 | { |
| 1932 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 1933 | struct btrfs_delayed_ref_root *delayed_refs; |
| 1934 | struct btrfs_delayed_extent_op *extent_op; |
| 1935 | struct btrfs_delayed_ref_node *ref; |
| 1936 | int must_insert_reserved = 0; |
| 1937 | int ret; |
| 1938 | |
| 1939 | delayed_refs = &trans->transaction->delayed_refs; |
| 1940 | |
| 1941 | lockdep_assert_held(&locked_ref->mutex); |
| 1942 | lockdep_assert_held(&locked_ref->lock); |
| 1943 | |
| 1944 | while ((ref = select_delayed_ref(locked_ref))) { |
| 1945 | if (ref->seq && |
| 1946 | btrfs_check_delayed_seq(fs_info, ref->seq)) { |
| 1947 | spin_unlock(&locked_ref->lock); |
| 1948 | unselect_delayed_ref_head(delayed_refs, locked_ref); |
| 1949 | return -EAGAIN; |
| 1950 | } |
| 1951 | |
| 1952 | (*run_refs)++; |
| 1953 | ref->in_tree = 0; |
| 1954 | rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); |
| 1955 | RB_CLEAR_NODE(&ref->ref_node); |
| 1956 | if (!list_empty(&ref->add_list)) |
| 1957 | list_del(&ref->add_list); |
| 1958 | /* |
| 1959 | * When we play the delayed ref, also correct the ref_mod on |
| 1960 | * head |
| 1961 | */ |
| 1962 | switch (ref->action) { |
| 1963 | case BTRFS_ADD_DELAYED_REF: |
| 1964 | case BTRFS_ADD_DELAYED_EXTENT: |
| 1965 | locked_ref->ref_mod -= ref->ref_mod; |
| 1966 | break; |
| 1967 | case BTRFS_DROP_DELAYED_REF: |
| 1968 | locked_ref->ref_mod += ref->ref_mod; |
| 1969 | break; |
| 1970 | default: |
| 1971 | WARN_ON(1); |
| 1972 | } |
| 1973 | atomic_dec(&delayed_refs->num_entries); |
| 1974 | |
| 1975 | /* |
| 1976 | * Record the must_insert_reserved flag before we drop the |
| 1977 | * spin lock. |
| 1978 | */ |
| 1979 | must_insert_reserved = locked_ref->must_insert_reserved; |
| 1980 | locked_ref->must_insert_reserved = 0; |
| 1981 | |
| 1982 | extent_op = locked_ref->extent_op; |
| 1983 | locked_ref->extent_op = NULL; |
| 1984 | spin_unlock(&locked_ref->lock); |
| 1985 | |
| 1986 | ret = run_one_delayed_ref(trans, ref, extent_op, |
| 1987 | must_insert_reserved); |
| 1988 | |
| 1989 | btrfs_free_delayed_extent_op(extent_op); |
| 1990 | if (ret) { |
| 1991 | unselect_delayed_ref_head(delayed_refs, locked_ref); |
| 1992 | btrfs_put_delayed_ref(ref); |
| 1993 | btrfs_debug(fs_info, "run_one_delayed_ref returned %d", |
| 1994 | ret); |
| 1995 | return ret; |
| 1996 | } |
| 1997 | |
| 1998 | btrfs_put_delayed_ref(ref); |
| 1999 | cond_resched(); |
| 2000 | |
| 2001 | spin_lock(&locked_ref->lock); |
| 2002 | btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); |
| 2003 | } |
| 2004 | |
| 2005 | return 0; |
| 2006 | } |
| 2007 | |
| 2008 | /* |
| 2009 | * Returns 0 on success or if called with an already aborted transaction. |
| 2010 | * Returns -ENOMEM or -EIO on failure and will abort the transaction. |
| 2011 | */ |
| 2012 | static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, |
| 2013 | unsigned long nr) |
| 2014 | { |
| 2015 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 2016 | struct btrfs_delayed_ref_root *delayed_refs; |
| 2017 | struct btrfs_delayed_ref_head *locked_ref = NULL; |
| 2018 | ktime_t start = ktime_get(); |
| 2019 | int ret; |
| 2020 | unsigned long count = 0; |
| 2021 | unsigned long actual_count = 0; |
| 2022 | |
| 2023 | delayed_refs = &trans->transaction->delayed_refs; |
| 2024 | do { |
| 2025 | if (!locked_ref) { |
| 2026 | locked_ref = btrfs_obtain_ref_head(trans); |
| 2027 | if (IS_ERR_OR_NULL(locked_ref)) { |
| 2028 | if (PTR_ERR(locked_ref) == -EAGAIN) { |
| 2029 | continue; |
| 2030 | } else { |
| 2031 | break; |
| 2032 | } |
| 2033 | } |
| 2034 | count++; |
| 2035 | } |
| 2036 | /* |
| 2037 | * We need to try and merge add/drops of the same ref since we |
| 2038 | * can run into issues with relocate dropping the implicit ref |
| 2039 | * and then it being added back again before the drop can |
| 2040 | * finish. If we merged anything we need to re-loop so we can |
| 2041 | * get a good ref. |
| 2042 | * Or we can get node references of the same type that weren't |
| 2043 | * merged when created due to bumps in the tree mod seq, and |
| 2044 | * we need to merge them to prevent adding an inline extent |
| 2045 | * backref before dropping it (triggering a BUG_ON at |
| 2046 | * insert_inline_extent_backref()). |
| 2047 | */ |
| 2048 | spin_lock(&locked_ref->lock); |
| 2049 | btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); |
| 2050 | |
| 2051 | ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, |
| 2052 | &actual_count); |
| 2053 | if (ret < 0 && ret != -EAGAIN) { |
| 2054 | /* |
| 2055 | * Error, btrfs_run_delayed_refs_for_head already |
| 2056 | * unlocked everything so just bail out |
| 2057 | */ |
| 2058 | return ret; |
| 2059 | } else if (!ret) { |
| 2060 | /* |
| 2061 | * Success, perform the usual cleanup of a processed |
| 2062 | * head |
| 2063 | */ |
| 2064 | ret = cleanup_ref_head(trans, locked_ref); |
| 2065 | if (ret > 0 ) { |
| 2066 | /* We dropped our lock, we need to loop. */ |
| 2067 | ret = 0; |
| 2068 | continue; |
| 2069 | } else if (ret) { |
| 2070 | return ret; |
| 2071 | } |
| 2072 | } |
| 2073 | |
| 2074 | /* |
| 2075 | * Either success case or btrfs_run_delayed_refs_for_head |
| 2076 | * returned -EAGAIN, meaning we need to select another head |
| 2077 | */ |
| 2078 | |
| 2079 | locked_ref = NULL; |
| 2080 | cond_resched(); |
| 2081 | } while ((nr != -1 && count < nr) || locked_ref); |
| 2082 | |
| 2083 | /* |
| 2084 | * We don't want to include ref heads since we can have empty ref heads |
| 2085 | * and those will drastically skew our runtime down since we just do |
| 2086 | * accounting, no actual extent tree updates. |
| 2087 | */ |
| 2088 | if (actual_count > 0) { |
| 2089 | u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); |
| 2090 | u64 avg; |
| 2091 | |
| 2092 | /* |
| 2093 | * We weigh the current average higher than our current runtime |
| 2094 | * to avoid large swings in the average. |
| 2095 | */ |
| 2096 | spin_lock(&delayed_refs->lock); |
| 2097 | avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; |
| 2098 | fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ |
| 2099 | spin_unlock(&delayed_refs->lock); |
| 2100 | } |
| 2101 | return 0; |
| 2102 | } |
| 2103 | |
| 2104 | #ifdef SCRAMBLE_DELAYED_REFS |
| 2105 | /* |
| 2106 | * Normally delayed refs get processed in ascending bytenr order. This |
| 2107 | * correlates in most cases to the order added. To expose dependencies on this |
| 2108 | * order, we start to process the tree in the middle instead of the beginning |
| 2109 | */ |
| 2110 | static u64 find_middle(struct rb_root *root) |
| 2111 | { |
| 2112 | struct rb_node *n = root->rb_node; |
| 2113 | struct btrfs_delayed_ref_node *entry; |
| 2114 | int alt = 1; |
| 2115 | u64 middle; |
| 2116 | u64 first = 0, last = 0; |
| 2117 | |
| 2118 | n = rb_first(root); |
| 2119 | if (n) { |
| 2120 | entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); |
| 2121 | first = entry->bytenr; |
| 2122 | } |
| 2123 | n = rb_last(root); |
| 2124 | if (n) { |
| 2125 | entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); |
| 2126 | last = entry->bytenr; |
| 2127 | } |
| 2128 | n = root->rb_node; |
| 2129 | |
| 2130 | while (n) { |
| 2131 | entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); |
| 2132 | WARN_ON(!entry->in_tree); |
| 2133 | |
| 2134 | middle = entry->bytenr; |
| 2135 | |
| 2136 | if (alt) |
| 2137 | n = n->rb_left; |
| 2138 | else |
| 2139 | n = n->rb_right; |
| 2140 | |
| 2141 | alt = 1 - alt; |
| 2142 | } |
| 2143 | return middle; |
| 2144 | } |
| 2145 | #endif |
| 2146 | |
| 2147 | static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads) |
| 2148 | { |
| 2149 | u64 num_bytes; |
| 2150 | |
| 2151 | num_bytes = heads * (sizeof(struct btrfs_extent_item) + |
| 2152 | sizeof(struct btrfs_extent_inline_ref)); |
| 2153 | if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) |
| 2154 | num_bytes += heads * sizeof(struct btrfs_tree_block_info); |
| 2155 | |
| 2156 | /* |
| 2157 | * We don't ever fill up leaves all the way so multiply by 2 just to be |
| 2158 | * closer to what we're really going to want to use. |
| 2159 | */ |
| 2160 | return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info)); |
| 2161 | } |
| 2162 | |
| 2163 | /* |
| 2164 | * Takes the number of bytes to be csumm'ed and figures out how many leaves it |
| 2165 | * would require to store the csums for that many bytes. |
| 2166 | */ |
| 2167 | u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes) |
| 2168 | { |
| 2169 | u64 csum_size; |
| 2170 | u64 num_csums_per_leaf; |
| 2171 | u64 num_csums; |
| 2172 | |
| 2173 | csum_size = BTRFS_MAX_ITEM_SIZE(fs_info); |
| 2174 | num_csums_per_leaf = div64_u64(csum_size, |
| 2175 | (u64)btrfs_super_csum_size(fs_info->super_copy)); |
| 2176 | num_csums = div64_u64(csum_bytes, fs_info->sectorsize); |
| 2177 | num_csums += num_csums_per_leaf - 1; |
| 2178 | num_csums = div64_u64(num_csums, num_csums_per_leaf); |
| 2179 | return num_csums; |
| 2180 | } |
| 2181 | |
| 2182 | /* |
| 2183 | * this starts processing the delayed reference count updates and |
| 2184 | * extent insertions we have queued up so far. count can be |
| 2185 | * 0, which means to process everything in the tree at the start |
| 2186 | * of the run (but not newly added entries), or it can be some target |
| 2187 | * number you'd like to process. |
| 2188 | * |
| 2189 | * Returns 0 on success or if called with an aborted transaction |
| 2190 | * Returns <0 on error and aborts the transaction |
| 2191 | */ |
| 2192 | int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, |
| 2193 | unsigned long count) |
| 2194 | { |
| 2195 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 2196 | struct rb_node *node; |
| 2197 | struct btrfs_delayed_ref_root *delayed_refs; |
| 2198 | struct btrfs_delayed_ref_head *head; |
| 2199 | int ret; |
| 2200 | int run_all = count == (unsigned long)-1; |
| 2201 | |
| 2202 | /* We'll clean this up in btrfs_cleanup_transaction */ |
| 2203 | if (TRANS_ABORTED(trans)) |
| 2204 | return 0; |
| 2205 | |
| 2206 | if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) |
| 2207 | return 0; |
| 2208 | |
| 2209 | delayed_refs = &trans->transaction->delayed_refs; |
| 2210 | if (count == 0) |
| 2211 | count = atomic_read(&delayed_refs->num_entries) * 2; |
| 2212 | |
| 2213 | again: |
| 2214 | #ifdef SCRAMBLE_DELAYED_REFS |
| 2215 | delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); |
| 2216 | #endif |
| 2217 | ret = __btrfs_run_delayed_refs(trans, count); |
| 2218 | if (ret < 0) { |
| 2219 | btrfs_abort_transaction(trans, ret); |
| 2220 | return ret; |
| 2221 | } |
| 2222 | |
| 2223 | if (run_all) { |
| 2224 | btrfs_create_pending_block_groups(trans); |
| 2225 | |
| 2226 | spin_lock(&delayed_refs->lock); |
| 2227 | node = rb_first_cached(&delayed_refs->href_root); |
| 2228 | if (!node) { |
| 2229 | spin_unlock(&delayed_refs->lock); |
| 2230 | goto out; |
| 2231 | } |
| 2232 | head = rb_entry(node, struct btrfs_delayed_ref_head, |
| 2233 | href_node); |
| 2234 | refcount_inc(&head->refs); |
| 2235 | spin_unlock(&delayed_refs->lock); |
| 2236 | |
| 2237 | /* Mutex was contended, block until it's released and retry. */ |
| 2238 | mutex_lock(&head->mutex); |
| 2239 | mutex_unlock(&head->mutex); |
| 2240 | |
| 2241 | btrfs_put_delayed_ref_head(head); |
| 2242 | cond_resched(); |
| 2243 | goto again; |
| 2244 | } |
| 2245 | out: |
| 2246 | return 0; |
| 2247 | } |
| 2248 | |
| 2249 | int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, |
| 2250 | u64 bytenr, u64 num_bytes, u64 flags, |
| 2251 | int level, int is_data) |
| 2252 | { |
| 2253 | struct btrfs_delayed_extent_op *extent_op; |
| 2254 | int ret; |
| 2255 | |
| 2256 | extent_op = btrfs_alloc_delayed_extent_op(); |
| 2257 | if (!extent_op) |
| 2258 | return -ENOMEM; |
| 2259 | |
| 2260 | extent_op->flags_to_set = flags; |
| 2261 | extent_op->update_flags = true; |
| 2262 | extent_op->update_key = false; |
| 2263 | extent_op->is_data = is_data ? true : false; |
| 2264 | extent_op->level = level; |
| 2265 | |
| 2266 | ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op); |
| 2267 | if (ret) |
| 2268 | btrfs_free_delayed_extent_op(extent_op); |
| 2269 | return ret; |
| 2270 | } |
| 2271 | |
| 2272 | static noinline int check_delayed_ref(struct btrfs_root *root, |
| 2273 | struct btrfs_path *path, |
| 2274 | u64 objectid, u64 offset, u64 bytenr) |
| 2275 | { |
| 2276 | struct btrfs_delayed_ref_head *head; |
| 2277 | struct btrfs_delayed_ref_node *ref; |
| 2278 | struct btrfs_delayed_data_ref *data_ref; |
| 2279 | struct btrfs_delayed_ref_root *delayed_refs; |
| 2280 | struct btrfs_transaction *cur_trans; |
| 2281 | struct rb_node *node; |
| 2282 | int ret = 0; |
| 2283 | |
| 2284 | spin_lock(&root->fs_info->trans_lock); |
| 2285 | cur_trans = root->fs_info->running_transaction; |
| 2286 | if (cur_trans) |
| 2287 | refcount_inc(&cur_trans->use_count); |
| 2288 | spin_unlock(&root->fs_info->trans_lock); |
| 2289 | if (!cur_trans) |
| 2290 | return 0; |
| 2291 | |
| 2292 | delayed_refs = &cur_trans->delayed_refs; |
| 2293 | spin_lock(&delayed_refs->lock); |
| 2294 | head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); |
| 2295 | if (!head) { |
| 2296 | spin_unlock(&delayed_refs->lock); |
| 2297 | btrfs_put_transaction(cur_trans); |
| 2298 | return 0; |
| 2299 | } |
| 2300 | |
| 2301 | if (!mutex_trylock(&head->mutex)) { |
| 2302 | refcount_inc(&head->refs); |
| 2303 | spin_unlock(&delayed_refs->lock); |
| 2304 | |
| 2305 | btrfs_release_path(path); |
| 2306 | |
| 2307 | /* |
| 2308 | * Mutex was contended, block until it's released and let |
| 2309 | * caller try again |
| 2310 | */ |
| 2311 | mutex_lock(&head->mutex); |
| 2312 | mutex_unlock(&head->mutex); |
| 2313 | btrfs_put_delayed_ref_head(head); |
| 2314 | btrfs_put_transaction(cur_trans); |
| 2315 | return -EAGAIN; |
| 2316 | } |
| 2317 | spin_unlock(&delayed_refs->lock); |
| 2318 | |
| 2319 | spin_lock(&head->lock); |
| 2320 | /* |
| 2321 | * XXX: We should replace this with a proper search function in the |
| 2322 | * future. |
| 2323 | */ |
| 2324 | for (node = rb_first_cached(&head->ref_tree); node; |
| 2325 | node = rb_next(node)) { |
| 2326 | ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); |
| 2327 | /* If it's a shared ref we know a cross reference exists */ |
| 2328 | if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { |
| 2329 | ret = 1; |
| 2330 | break; |
| 2331 | } |
| 2332 | |
| 2333 | data_ref = btrfs_delayed_node_to_data_ref(ref); |
| 2334 | |
| 2335 | /* |
| 2336 | * If our ref doesn't match the one we're currently looking at |
| 2337 | * then we have a cross reference. |
| 2338 | */ |
| 2339 | if (data_ref->root != root->root_key.objectid || |
| 2340 | data_ref->objectid != objectid || |
| 2341 | data_ref->offset != offset) { |
| 2342 | ret = 1; |
| 2343 | break; |
| 2344 | } |
| 2345 | } |
| 2346 | spin_unlock(&head->lock); |
| 2347 | mutex_unlock(&head->mutex); |
| 2348 | btrfs_put_transaction(cur_trans); |
| 2349 | return ret; |
| 2350 | } |
| 2351 | |
| 2352 | static noinline int check_committed_ref(struct btrfs_root *root, |
| 2353 | struct btrfs_path *path, |
| 2354 | u64 objectid, u64 offset, u64 bytenr, |
| 2355 | bool strict) |
| 2356 | { |
| 2357 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 2358 | struct btrfs_root *extent_root = fs_info->extent_root; |
| 2359 | struct extent_buffer *leaf; |
| 2360 | struct btrfs_extent_data_ref *ref; |
| 2361 | struct btrfs_extent_inline_ref *iref; |
| 2362 | struct btrfs_extent_item *ei; |
| 2363 | struct btrfs_key key; |
| 2364 | u32 item_size; |
| 2365 | int type; |
| 2366 | int ret; |
| 2367 | |
| 2368 | key.objectid = bytenr; |
| 2369 | key.offset = (u64)-1; |
| 2370 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 2371 | |
| 2372 | ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); |
| 2373 | if (ret < 0) |
| 2374 | goto out; |
| 2375 | BUG_ON(ret == 0); /* Corruption */ |
| 2376 | |
| 2377 | ret = -ENOENT; |
| 2378 | if (path->slots[0] == 0) |
| 2379 | goto out; |
| 2380 | |
| 2381 | path->slots[0]--; |
| 2382 | leaf = path->nodes[0]; |
| 2383 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| 2384 | |
| 2385 | if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) |
| 2386 | goto out; |
| 2387 | |
| 2388 | ret = 1; |
| 2389 | item_size = btrfs_item_size_nr(leaf, path->slots[0]); |
| 2390 | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); |
| 2391 | |
| 2392 | /* If extent item has more than 1 inline ref then it's shared */ |
| 2393 | if (item_size != sizeof(*ei) + |
| 2394 | btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) |
| 2395 | goto out; |
| 2396 | |
| 2397 | /* |
| 2398 | * If extent created before last snapshot => it's shared unless the |
| 2399 | * snapshot has been deleted. Use the heuristic if strict is false. |
| 2400 | */ |
| 2401 | if (!strict && |
| 2402 | (btrfs_extent_generation(leaf, ei) <= |
| 2403 | btrfs_root_last_snapshot(&root->root_item))) |
| 2404 | goto out; |
| 2405 | |
| 2406 | iref = (struct btrfs_extent_inline_ref *)(ei + 1); |
| 2407 | |
| 2408 | /* If this extent has SHARED_DATA_REF then it's shared */ |
| 2409 | type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); |
| 2410 | if (type != BTRFS_EXTENT_DATA_REF_KEY) |
| 2411 | goto out; |
| 2412 | |
| 2413 | ref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| 2414 | if (btrfs_extent_refs(leaf, ei) != |
| 2415 | btrfs_extent_data_ref_count(leaf, ref) || |
| 2416 | btrfs_extent_data_ref_root(leaf, ref) != |
| 2417 | root->root_key.objectid || |
| 2418 | btrfs_extent_data_ref_objectid(leaf, ref) != objectid || |
| 2419 | btrfs_extent_data_ref_offset(leaf, ref) != offset) |
| 2420 | goto out; |
| 2421 | |
| 2422 | ret = 0; |
| 2423 | out: |
| 2424 | return ret; |
| 2425 | } |
| 2426 | |
| 2427 | int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, |
| 2428 | u64 bytenr, bool strict) |
| 2429 | { |
| 2430 | struct btrfs_path *path; |
| 2431 | int ret; |
| 2432 | |
| 2433 | path = btrfs_alloc_path(); |
| 2434 | if (!path) |
| 2435 | return -ENOMEM; |
| 2436 | |
| 2437 | do { |
| 2438 | ret = check_committed_ref(root, path, objectid, |
| 2439 | offset, bytenr, strict); |
| 2440 | if (ret && ret != -ENOENT) |
| 2441 | goto out; |
| 2442 | |
| 2443 | ret = check_delayed_ref(root, path, objectid, offset, bytenr); |
| 2444 | } while (ret == -EAGAIN); |
| 2445 | |
| 2446 | out: |
| 2447 | btrfs_free_path(path); |
| 2448 | if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) |
| 2449 | WARN_ON(ret > 0); |
| 2450 | return ret; |
| 2451 | } |
| 2452 | |
| 2453 | static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, |
| 2454 | struct btrfs_root *root, |
| 2455 | struct extent_buffer *buf, |
| 2456 | int full_backref, int inc) |
| 2457 | { |
| 2458 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 2459 | u64 bytenr; |
| 2460 | u64 num_bytes; |
| 2461 | u64 parent; |
| 2462 | u64 ref_root; |
| 2463 | u32 nritems; |
| 2464 | struct btrfs_key key; |
| 2465 | struct btrfs_file_extent_item *fi; |
| 2466 | struct btrfs_ref generic_ref = { 0 }; |
| 2467 | bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); |
| 2468 | int i; |
| 2469 | int action; |
| 2470 | int level; |
| 2471 | int ret = 0; |
| 2472 | |
| 2473 | if (btrfs_is_testing(fs_info)) |
| 2474 | return 0; |
| 2475 | |
| 2476 | ref_root = btrfs_header_owner(buf); |
| 2477 | nritems = btrfs_header_nritems(buf); |
| 2478 | level = btrfs_header_level(buf); |
| 2479 | |
| 2480 | if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) |
| 2481 | return 0; |
| 2482 | |
| 2483 | if (full_backref) |
| 2484 | parent = buf->start; |
| 2485 | else |
| 2486 | parent = 0; |
| 2487 | if (inc) |
| 2488 | action = BTRFS_ADD_DELAYED_REF; |
| 2489 | else |
| 2490 | action = BTRFS_DROP_DELAYED_REF; |
| 2491 | |
| 2492 | for (i = 0; i < nritems; i++) { |
| 2493 | if (level == 0) { |
| 2494 | btrfs_item_key_to_cpu(buf, &key, i); |
| 2495 | if (key.type != BTRFS_EXTENT_DATA_KEY) |
| 2496 | continue; |
| 2497 | fi = btrfs_item_ptr(buf, i, |
| 2498 | struct btrfs_file_extent_item); |
| 2499 | if (btrfs_file_extent_type(buf, fi) == |
| 2500 | BTRFS_FILE_EXTENT_INLINE) |
| 2501 | continue; |
| 2502 | bytenr = btrfs_file_extent_disk_bytenr(buf, fi); |
| 2503 | if (bytenr == 0) |
| 2504 | continue; |
| 2505 | |
| 2506 | num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); |
| 2507 | key.offset -= btrfs_file_extent_offset(buf, fi); |
| 2508 | btrfs_init_generic_ref(&generic_ref, action, bytenr, |
| 2509 | num_bytes, parent); |
| 2510 | generic_ref.real_root = root->root_key.objectid; |
| 2511 | btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, |
| 2512 | key.offset); |
| 2513 | generic_ref.skip_qgroup = for_reloc; |
| 2514 | if (inc) |
| 2515 | ret = btrfs_inc_extent_ref(trans, &generic_ref); |
| 2516 | else |
| 2517 | ret = btrfs_free_extent(trans, &generic_ref); |
| 2518 | if (ret) |
| 2519 | goto fail; |
| 2520 | } else { |
| 2521 | bytenr = btrfs_node_blockptr(buf, i); |
| 2522 | num_bytes = fs_info->nodesize; |
| 2523 | btrfs_init_generic_ref(&generic_ref, action, bytenr, |
| 2524 | num_bytes, parent); |
| 2525 | generic_ref.real_root = root->root_key.objectid; |
| 2526 | btrfs_init_tree_ref(&generic_ref, level - 1, ref_root); |
| 2527 | generic_ref.skip_qgroup = for_reloc; |
| 2528 | if (inc) |
| 2529 | ret = btrfs_inc_extent_ref(trans, &generic_ref); |
| 2530 | else |
| 2531 | ret = btrfs_free_extent(trans, &generic_ref); |
| 2532 | if (ret) |
| 2533 | goto fail; |
| 2534 | } |
| 2535 | } |
| 2536 | return 0; |
| 2537 | fail: |
| 2538 | return ret; |
| 2539 | } |
| 2540 | |
| 2541 | int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| 2542 | struct extent_buffer *buf, int full_backref) |
| 2543 | { |
| 2544 | return __btrfs_mod_ref(trans, root, buf, full_backref, 1); |
| 2545 | } |
| 2546 | |
| 2547 | int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| 2548 | struct extent_buffer *buf, int full_backref) |
| 2549 | { |
| 2550 | return __btrfs_mod_ref(trans, root, buf, full_backref, 0); |
| 2551 | } |
| 2552 | |
| 2553 | int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) |
| 2554 | { |
| 2555 | struct btrfs_block_group_cache *block_group; |
| 2556 | int readonly = 0; |
| 2557 | |
| 2558 | block_group = btrfs_lookup_block_group(fs_info, bytenr); |
| 2559 | if (!block_group || block_group->ro) |
| 2560 | readonly = 1; |
| 2561 | if (block_group) |
| 2562 | btrfs_put_block_group(block_group); |
| 2563 | return readonly; |
| 2564 | } |
| 2565 | |
| 2566 | static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) |
| 2567 | { |
| 2568 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 2569 | u64 flags; |
| 2570 | u64 ret; |
| 2571 | |
| 2572 | if (data) |
| 2573 | flags = BTRFS_BLOCK_GROUP_DATA; |
| 2574 | else if (root == fs_info->chunk_root) |
| 2575 | flags = BTRFS_BLOCK_GROUP_SYSTEM; |
| 2576 | else |
| 2577 | flags = BTRFS_BLOCK_GROUP_METADATA; |
| 2578 | |
| 2579 | ret = btrfs_get_alloc_profile(fs_info, flags); |
| 2580 | return ret; |
| 2581 | } |
| 2582 | |
| 2583 | static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) |
| 2584 | { |
| 2585 | struct btrfs_block_group_cache *cache; |
| 2586 | u64 bytenr; |
| 2587 | |
| 2588 | spin_lock(&fs_info->block_group_cache_lock); |
| 2589 | bytenr = fs_info->first_logical_byte; |
| 2590 | spin_unlock(&fs_info->block_group_cache_lock); |
| 2591 | |
| 2592 | if (bytenr < (u64)-1) |
| 2593 | return bytenr; |
| 2594 | |
| 2595 | cache = btrfs_lookup_first_block_group(fs_info, search_start); |
| 2596 | if (!cache) |
| 2597 | return 0; |
| 2598 | |
| 2599 | bytenr = cache->key.objectid; |
| 2600 | btrfs_put_block_group(cache); |
| 2601 | |
| 2602 | return bytenr; |
| 2603 | } |
| 2604 | |
| 2605 | static int pin_down_extent(struct btrfs_block_group_cache *cache, |
| 2606 | u64 bytenr, u64 num_bytes, int reserved) |
| 2607 | { |
| 2608 | struct btrfs_fs_info *fs_info = cache->fs_info; |
| 2609 | |
| 2610 | spin_lock(&cache->space_info->lock); |
| 2611 | spin_lock(&cache->lock); |
| 2612 | cache->pinned += num_bytes; |
| 2613 | btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, |
| 2614 | num_bytes); |
| 2615 | if (reserved) { |
| 2616 | cache->reserved -= num_bytes; |
| 2617 | cache->space_info->bytes_reserved -= num_bytes; |
| 2618 | } |
| 2619 | spin_unlock(&cache->lock); |
| 2620 | spin_unlock(&cache->space_info->lock); |
| 2621 | |
| 2622 | percpu_counter_add_batch(&cache->space_info->total_bytes_pinned, |
| 2623 | num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH); |
| 2624 | set_extent_dirty(fs_info->pinned_extents, bytenr, |
| 2625 | bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); |
| 2626 | return 0; |
| 2627 | } |
| 2628 | |
| 2629 | /* |
| 2630 | * this function must be called within transaction |
| 2631 | */ |
| 2632 | int btrfs_pin_extent(struct btrfs_fs_info *fs_info, |
| 2633 | u64 bytenr, u64 num_bytes, int reserved) |
| 2634 | { |
| 2635 | struct btrfs_block_group_cache *cache; |
| 2636 | |
| 2637 | cache = btrfs_lookup_block_group(fs_info, bytenr); |
| 2638 | BUG_ON(!cache); /* Logic error */ |
| 2639 | |
| 2640 | pin_down_extent(cache, bytenr, num_bytes, reserved); |
| 2641 | |
| 2642 | btrfs_put_block_group(cache); |
| 2643 | return 0; |
| 2644 | } |
| 2645 | |
| 2646 | /* |
| 2647 | * this function must be called within transaction |
| 2648 | */ |
| 2649 | int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info, |
| 2650 | u64 bytenr, u64 num_bytes) |
| 2651 | { |
| 2652 | struct btrfs_block_group_cache *cache; |
| 2653 | int ret; |
| 2654 | |
| 2655 | cache = btrfs_lookup_block_group(fs_info, bytenr); |
| 2656 | if (!cache) |
| 2657 | return -EINVAL; |
| 2658 | |
| 2659 | /* |
| 2660 | * pull in the free space cache (if any) so that our pin |
| 2661 | * removes the free space from the cache. We have load_only set |
| 2662 | * to one because the slow code to read in the free extents does check |
| 2663 | * the pinned extents. |
| 2664 | */ |
| 2665 | btrfs_cache_block_group(cache, 1); |
| 2666 | |
| 2667 | pin_down_extent(cache, bytenr, num_bytes, 0); |
| 2668 | |
| 2669 | /* remove us from the free space cache (if we're there at all) */ |
| 2670 | ret = btrfs_remove_free_space(cache, bytenr, num_bytes); |
| 2671 | btrfs_put_block_group(cache); |
| 2672 | return ret; |
| 2673 | } |
| 2674 | |
| 2675 | static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, |
| 2676 | u64 start, u64 num_bytes) |
| 2677 | { |
| 2678 | int ret; |
| 2679 | struct btrfs_block_group_cache *block_group; |
| 2680 | struct btrfs_caching_control *caching_ctl; |
| 2681 | |
| 2682 | block_group = btrfs_lookup_block_group(fs_info, start); |
| 2683 | if (!block_group) |
| 2684 | return -EINVAL; |
| 2685 | |
| 2686 | btrfs_cache_block_group(block_group, 0); |
| 2687 | caching_ctl = btrfs_get_caching_control(block_group); |
| 2688 | |
| 2689 | if (!caching_ctl) { |
| 2690 | /* Logic error */ |
| 2691 | BUG_ON(!btrfs_block_group_cache_done(block_group)); |
| 2692 | ret = btrfs_remove_free_space(block_group, start, num_bytes); |
| 2693 | } else { |
| 2694 | mutex_lock(&caching_ctl->mutex); |
| 2695 | |
| 2696 | if (start >= caching_ctl->progress) { |
| 2697 | ret = btrfs_add_excluded_extent(fs_info, start, |
| 2698 | num_bytes); |
| 2699 | } else if (start + num_bytes <= caching_ctl->progress) { |
| 2700 | ret = btrfs_remove_free_space(block_group, |
| 2701 | start, num_bytes); |
| 2702 | } else { |
| 2703 | num_bytes = caching_ctl->progress - start; |
| 2704 | ret = btrfs_remove_free_space(block_group, |
| 2705 | start, num_bytes); |
| 2706 | if (ret) |
| 2707 | goto out_lock; |
| 2708 | |
| 2709 | num_bytes = (start + num_bytes) - |
| 2710 | caching_ctl->progress; |
| 2711 | start = caching_ctl->progress; |
| 2712 | ret = btrfs_add_excluded_extent(fs_info, start, |
| 2713 | num_bytes); |
| 2714 | } |
| 2715 | out_lock: |
| 2716 | mutex_unlock(&caching_ctl->mutex); |
| 2717 | btrfs_put_caching_control(caching_ctl); |
| 2718 | } |
| 2719 | btrfs_put_block_group(block_group); |
| 2720 | return ret; |
| 2721 | } |
| 2722 | |
| 2723 | int btrfs_exclude_logged_extents(struct extent_buffer *eb) |
| 2724 | { |
| 2725 | struct btrfs_fs_info *fs_info = eb->fs_info; |
| 2726 | struct btrfs_file_extent_item *item; |
| 2727 | struct btrfs_key key; |
| 2728 | int found_type; |
| 2729 | int i; |
| 2730 | int ret = 0; |
| 2731 | |
| 2732 | if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) |
| 2733 | return 0; |
| 2734 | |
| 2735 | for (i = 0; i < btrfs_header_nritems(eb); i++) { |
| 2736 | btrfs_item_key_to_cpu(eb, &key, i); |
| 2737 | if (key.type != BTRFS_EXTENT_DATA_KEY) |
| 2738 | continue; |
| 2739 | item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); |
| 2740 | found_type = btrfs_file_extent_type(eb, item); |
| 2741 | if (found_type == BTRFS_FILE_EXTENT_INLINE) |
| 2742 | continue; |
| 2743 | if (btrfs_file_extent_disk_bytenr(eb, item) == 0) |
| 2744 | continue; |
| 2745 | key.objectid = btrfs_file_extent_disk_bytenr(eb, item); |
| 2746 | key.offset = btrfs_file_extent_disk_num_bytes(eb, item); |
| 2747 | ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); |
| 2748 | if (ret) |
| 2749 | break; |
| 2750 | } |
| 2751 | |
| 2752 | return ret; |
| 2753 | } |
| 2754 | |
| 2755 | static void |
| 2756 | btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg) |
| 2757 | { |
| 2758 | atomic_inc(&bg->reservations); |
| 2759 | } |
| 2760 | |
| 2761 | void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info) |
| 2762 | { |
| 2763 | struct btrfs_caching_control *next; |
| 2764 | struct btrfs_caching_control *caching_ctl; |
| 2765 | struct btrfs_block_group_cache *cache; |
| 2766 | |
| 2767 | down_write(&fs_info->commit_root_sem); |
| 2768 | |
| 2769 | list_for_each_entry_safe(caching_ctl, next, |
| 2770 | &fs_info->caching_block_groups, list) { |
| 2771 | cache = caching_ctl->block_group; |
| 2772 | if (btrfs_block_group_cache_done(cache)) { |
| 2773 | cache->last_byte_to_unpin = (u64)-1; |
| 2774 | list_del_init(&caching_ctl->list); |
| 2775 | btrfs_put_caching_control(caching_ctl); |
| 2776 | } else { |
| 2777 | cache->last_byte_to_unpin = caching_ctl->progress; |
| 2778 | } |
| 2779 | } |
| 2780 | |
| 2781 | if (fs_info->pinned_extents == &fs_info->freed_extents[0]) |
| 2782 | fs_info->pinned_extents = &fs_info->freed_extents[1]; |
| 2783 | else |
| 2784 | fs_info->pinned_extents = &fs_info->freed_extents[0]; |
| 2785 | |
| 2786 | up_write(&fs_info->commit_root_sem); |
| 2787 | |
| 2788 | btrfs_update_global_block_rsv(fs_info); |
| 2789 | } |
| 2790 | |
| 2791 | /* |
| 2792 | * Returns the free cluster for the given space info and sets empty_cluster to |
| 2793 | * what it should be based on the mount options. |
| 2794 | */ |
| 2795 | static struct btrfs_free_cluster * |
| 2796 | fetch_cluster_info(struct btrfs_fs_info *fs_info, |
| 2797 | struct btrfs_space_info *space_info, u64 *empty_cluster) |
| 2798 | { |
| 2799 | struct btrfs_free_cluster *ret = NULL; |
| 2800 | |
| 2801 | *empty_cluster = 0; |
| 2802 | if (btrfs_mixed_space_info(space_info)) |
| 2803 | return ret; |
| 2804 | |
| 2805 | if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { |
| 2806 | ret = &fs_info->meta_alloc_cluster; |
| 2807 | if (btrfs_test_opt(fs_info, SSD)) |
| 2808 | *empty_cluster = SZ_2M; |
| 2809 | else |
| 2810 | *empty_cluster = SZ_64K; |
| 2811 | } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && |
| 2812 | btrfs_test_opt(fs_info, SSD_SPREAD)) { |
| 2813 | *empty_cluster = SZ_2M; |
| 2814 | ret = &fs_info->data_alloc_cluster; |
| 2815 | } |
| 2816 | |
| 2817 | return ret; |
| 2818 | } |
| 2819 | |
| 2820 | static int unpin_extent_range(struct btrfs_fs_info *fs_info, |
| 2821 | u64 start, u64 end, |
| 2822 | const bool return_free_space) |
| 2823 | { |
| 2824 | struct btrfs_block_group_cache *cache = NULL; |
| 2825 | struct btrfs_space_info *space_info; |
| 2826 | struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; |
| 2827 | struct btrfs_free_cluster *cluster = NULL; |
| 2828 | u64 len; |
| 2829 | u64 total_unpinned = 0; |
| 2830 | u64 empty_cluster = 0; |
| 2831 | bool readonly; |
| 2832 | |
| 2833 | while (start <= end) { |
| 2834 | readonly = false; |
| 2835 | if (!cache || |
| 2836 | start >= cache->key.objectid + cache->key.offset) { |
| 2837 | if (cache) |
| 2838 | btrfs_put_block_group(cache); |
| 2839 | total_unpinned = 0; |
| 2840 | cache = btrfs_lookup_block_group(fs_info, start); |
| 2841 | BUG_ON(!cache); /* Logic error */ |
| 2842 | |
| 2843 | cluster = fetch_cluster_info(fs_info, |
| 2844 | cache->space_info, |
| 2845 | &empty_cluster); |
| 2846 | empty_cluster <<= 1; |
| 2847 | } |
| 2848 | |
| 2849 | len = cache->key.objectid + cache->key.offset - start; |
| 2850 | len = min(len, end + 1 - start); |
| 2851 | |
| 2852 | if (start < cache->last_byte_to_unpin && return_free_space) { |
| 2853 | u64 add_len = min(len, cache->last_byte_to_unpin - start); |
| 2854 | |
| 2855 | btrfs_add_free_space(cache, start, add_len); |
| 2856 | } |
| 2857 | |
| 2858 | start += len; |
| 2859 | total_unpinned += len; |
| 2860 | space_info = cache->space_info; |
| 2861 | |
| 2862 | /* |
| 2863 | * If this space cluster has been marked as fragmented and we've |
| 2864 | * unpinned enough in this block group to potentially allow a |
| 2865 | * cluster to be created inside of it go ahead and clear the |
| 2866 | * fragmented check. |
| 2867 | */ |
| 2868 | if (cluster && cluster->fragmented && |
| 2869 | total_unpinned > empty_cluster) { |
| 2870 | spin_lock(&cluster->lock); |
| 2871 | cluster->fragmented = 0; |
| 2872 | spin_unlock(&cluster->lock); |
| 2873 | } |
| 2874 | |
| 2875 | spin_lock(&space_info->lock); |
| 2876 | spin_lock(&cache->lock); |
| 2877 | cache->pinned -= len; |
| 2878 | btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); |
| 2879 | space_info->max_extent_size = 0; |
| 2880 | percpu_counter_add_batch(&space_info->total_bytes_pinned, |
| 2881 | -len, BTRFS_TOTAL_BYTES_PINNED_BATCH); |
| 2882 | if (cache->ro) { |
| 2883 | space_info->bytes_readonly += len; |
| 2884 | readonly = true; |
| 2885 | } |
| 2886 | spin_unlock(&cache->lock); |
| 2887 | if (!readonly && return_free_space && |
| 2888 | global_rsv->space_info == space_info) { |
| 2889 | u64 to_add = len; |
| 2890 | |
| 2891 | spin_lock(&global_rsv->lock); |
| 2892 | if (!global_rsv->full) { |
| 2893 | to_add = min(len, global_rsv->size - |
| 2894 | global_rsv->reserved); |
| 2895 | global_rsv->reserved += to_add; |
| 2896 | btrfs_space_info_update_bytes_may_use(fs_info, |
| 2897 | space_info, to_add); |
| 2898 | if (global_rsv->reserved >= global_rsv->size) |
| 2899 | global_rsv->full = 1; |
| 2900 | len -= to_add; |
| 2901 | } |
| 2902 | spin_unlock(&global_rsv->lock); |
| 2903 | /* Add to any tickets we may have */ |
| 2904 | if (len) |
| 2905 | btrfs_try_granting_tickets(fs_info, |
| 2906 | space_info); |
| 2907 | } |
| 2908 | spin_unlock(&space_info->lock); |
| 2909 | } |
| 2910 | |
| 2911 | if (cache) |
| 2912 | btrfs_put_block_group(cache); |
| 2913 | return 0; |
| 2914 | } |
| 2915 | |
| 2916 | int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) |
| 2917 | { |
| 2918 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 2919 | struct btrfs_block_group_cache *block_group, *tmp; |
| 2920 | struct list_head *deleted_bgs; |
| 2921 | struct extent_io_tree *unpin; |
| 2922 | u64 start; |
| 2923 | u64 end; |
| 2924 | int ret; |
| 2925 | |
| 2926 | if (fs_info->pinned_extents == &fs_info->freed_extents[0]) |
| 2927 | unpin = &fs_info->freed_extents[1]; |
| 2928 | else |
| 2929 | unpin = &fs_info->freed_extents[0]; |
| 2930 | |
| 2931 | while (!TRANS_ABORTED(trans)) { |
| 2932 | struct extent_state *cached_state = NULL; |
| 2933 | |
| 2934 | mutex_lock(&fs_info->unused_bg_unpin_mutex); |
| 2935 | ret = find_first_extent_bit(unpin, 0, &start, &end, |
| 2936 | EXTENT_DIRTY, &cached_state); |
| 2937 | if (ret) { |
| 2938 | mutex_unlock(&fs_info->unused_bg_unpin_mutex); |
| 2939 | break; |
| 2940 | } |
| 2941 | |
| 2942 | if (btrfs_test_opt(fs_info, DISCARD)) |
| 2943 | ret = btrfs_discard_extent(fs_info, start, |
| 2944 | end + 1 - start, NULL); |
| 2945 | |
| 2946 | clear_extent_dirty(unpin, start, end, &cached_state); |
| 2947 | unpin_extent_range(fs_info, start, end, true); |
| 2948 | mutex_unlock(&fs_info->unused_bg_unpin_mutex); |
| 2949 | free_extent_state(cached_state); |
| 2950 | cond_resched(); |
| 2951 | } |
| 2952 | |
| 2953 | /* |
| 2954 | * Transaction is finished. We don't need the lock anymore. We |
| 2955 | * do need to clean up the block groups in case of a transaction |
| 2956 | * abort. |
| 2957 | */ |
| 2958 | deleted_bgs = &trans->transaction->deleted_bgs; |
| 2959 | list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { |
| 2960 | u64 trimmed = 0; |
| 2961 | |
| 2962 | ret = -EROFS; |
| 2963 | if (!TRANS_ABORTED(trans)) |
| 2964 | ret = btrfs_discard_extent(fs_info, |
| 2965 | block_group->key.objectid, |
| 2966 | block_group->key.offset, |
| 2967 | &trimmed); |
| 2968 | |
| 2969 | list_del_init(&block_group->bg_list); |
| 2970 | btrfs_put_block_group_trimming(block_group); |
| 2971 | btrfs_put_block_group(block_group); |
| 2972 | |
| 2973 | if (ret) { |
| 2974 | const char *errstr = btrfs_decode_error(ret); |
| 2975 | btrfs_warn(fs_info, |
| 2976 | "discard failed while removing blockgroup: errno=%d %s", |
| 2977 | ret, errstr); |
| 2978 | } |
| 2979 | } |
| 2980 | |
| 2981 | return 0; |
| 2982 | } |
| 2983 | |
| 2984 | static int __btrfs_free_extent(struct btrfs_trans_handle *trans, |
| 2985 | struct btrfs_delayed_ref_node *node, u64 parent, |
| 2986 | u64 root_objectid, u64 owner_objectid, |
| 2987 | u64 owner_offset, int refs_to_drop, |
| 2988 | struct btrfs_delayed_extent_op *extent_op) |
| 2989 | { |
| 2990 | struct btrfs_fs_info *info = trans->fs_info; |
| 2991 | struct btrfs_key key; |
| 2992 | struct btrfs_path *path; |
| 2993 | struct btrfs_root *extent_root = info->extent_root; |
| 2994 | struct extent_buffer *leaf; |
| 2995 | struct btrfs_extent_item *ei; |
| 2996 | struct btrfs_extent_inline_ref *iref; |
| 2997 | int ret; |
| 2998 | int is_data; |
| 2999 | int extent_slot = 0; |
| 3000 | int found_extent = 0; |
| 3001 | int num_to_del = 1; |
| 3002 | u32 item_size; |
| 3003 | u64 refs; |
| 3004 | u64 bytenr = node->bytenr; |
| 3005 | u64 num_bytes = node->num_bytes; |
| 3006 | int last_ref = 0; |
| 3007 | bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); |
| 3008 | |
| 3009 | path = btrfs_alloc_path(); |
| 3010 | if (!path) |
| 3011 | return -ENOMEM; |
| 3012 | |
| 3013 | path->reada = READA_FORWARD; |
| 3014 | path->leave_spinning = 1; |
| 3015 | |
| 3016 | is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; |
| 3017 | BUG_ON(!is_data && refs_to_drop != 1); |
| 3018 | |
| 3019 | if (is_data) |
| 3020 | skinny_metadata = false; |
| 3021 | |
| 3022 | ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, |
| 3023 | parent, root_objectid, owner_objectid, |
| 3024 | owner_offset); |
| 3025 | if (ret == 0) { |
| 3026 | extent_slot = path->slots[0]; |
| 3027 | while (extent_slot >= 0) { |
| 3028 | btrfs_item_key_to_cpu(path->nodes[0], &key, |
| 3029 | extent_slot); |
| 3030 | if (key.objectid != bytenr) |
| 3031 | break; |
| 3032 | if (key.type == BTRFS_EXTENT_ITEM_KEY && |
| 3033 | key.offset == num_bytes) { |
| 3034 | found_extent = 1; |
| 3035 | break; |
| 3036 | } |
| 3037 | if (key.type == BTRFS_METADATA_ITEM_KEY && |
| 3038 | key.offset == owner_objectid) { |
| 3039 | found_extent = 1; |
| 3040 | break; |
| 3041 | } |
| 3042 | if (path->slots[0] - extent_slot > 5) |
| 3043 | break; |
| 3044 | extent_slot--; |
| 3045 | } |
| 3046 | |
| 3047 | if (!found_extent) { |
| 3048 | BUG_ON(iref); |
| 3049 | ret = remove_extent_backref(trans, path, NULL, |
| 3050 | refs_to_drop, |
| 3051 | is_data, &last_ref); |
| 3052 | if (ret) { |
| 3053 | btrfs_abort_transaction(trans, ret); |
| 3054 | goto out; |
| 3055 | } |
| 3056 | btrfs_release_path(path); |
| 3057 | path->leave_spinning = 1; |
| 3058 | |
| 3059 | key.objectid = bytenr; |
| 3060 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 3061 | key.offset = num_bytes; |
| 3062 | |
| 3063 | if (!is_data && skinny_metadata) { |
| 3064 | key.type = BTRFS_METADATA_ITEM_KEY; |
| 3065 | key.offset = owner_objectid; |
| 3066 | } |
| 3067 | |
| 3068 | ret = btrfs_search_slot(trans, extent_root, |
| 3069 | &key, path, -1, 1); |
| 3070 | if (ret > 0 && skinny_metadata && path->slots[0]) { |
| 3071 | /* |
| 3072 | * Couldn't find our skinny metadata item, |
| 3073 | * see if we have ye olde extent item. |
| 3074 | */ |
| 3075 | path->slots[0]--; |
| 3076 | btrfs_item_key_to_cpu(path->nodes[0], &key, |
| 3077 | path->slots[0]); |
| 3078 | if (key.objectid == bytenr && |
| 3079 | key.type == BTRFS_EXTENT_ITEM_KEY && |
| 3080 | key.offset == num_bytes) |
| 3081 | ret = 0; |
| 3082 | } |
| 3083 | |
| 3084 | if (ret > 0 && skinny_metadata) { |
| 3085 | skinny_metadata = false; |
| 3086 | key.objectid = bytenr; |
| 3087 | key.type = BTRFS_EXTENT_ITEM_KEY; |
| 3088 | key.offset = num_bytes; |
| 3089 | btrfs_release_path(path); |
| 3090 | ret = btrfs_search_slot(trans, extent_root, |
| 3091 | &key, path, -1, 1); |
| 3092 | } |
| 3093 | |
| 3094 | if (ret) { |
| 3095 | btrfs_err(info, |
| 3096 | "umm, got %d back from search, was looking for %llu", |
| 3097 | ret, bytenr); |
| 3098 | if (ret > 0) |
| 3099 | btrfs_print_leaf(path->nodes[0]); |
| 3100 | } |
| 3101 | if (ret < 0) { |
| 3102 | btrfs_abort_transaction(trans, ret); |
| 3103 | goto out; |
| 3104 | } |
| 3105 | extent_slot = path->slots[0]; |
| 3106 | } |
| 3107 | } else if (WARN_ON(ret == -ENOENT)) { |
| 3108 | btrfs_print_leaf(path->nodes[0]); |
| 3109 | btrfs_err(info, |
| 3110 | "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", |
| 3111 | bytenr, parent, root_objectid, owner_objectid, |
| 3112 | owner_offset); |
| 3113 | btrfs_abort_transaction(trans, ret); |
| 3114 | goto out; |
| 3115 | } else { |
| 3116 | btrfs_abort_transaction(trans, ret); |
| 3117 | goto out; |
| 3118 | } |
| 3119 | |
| 3120 | leaf = path->nodes[0]; |
| 3121 | item_size = btrfs_item_size_nr(leaf, extent_slot); |
| 3122 | if (unlikely(item_size < sizeof(*ei))) { |
| 3123 | ret = -EINVAL; |
| 3124 | btrfs_print_v0_err(info); |
| 3125 | btrfs_abort_transaction(trans, ret); |
| 3126 | goto out; |
| 3127 | } |
| 3128 | ei = btrfs_item_ptr(leaf, extent_slot, |
| 3129 | struct btrfs_extent_item); |
| 3130 | if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && |
| 3131 | key.type == BTRFS_EXTENT_ITEM_KEY) { |
| 3132 | struct btrfs_tree_block_info *bi; |
| 3133 | BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); |
| 3134 | bi = (struct btrfs_tree_block_info *)(ei + 1); |
| 3135 | WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); |
| 3136 | } |
| 3137 | |
| 3138 | refs = btrfs_extent_refs(leaf, ei); |
| 3139 | if (refs < refs_to_drop) { |
| 3140 | btrfs_err(info, |
| 3141 | "trying to drop %d refs but we only have %Lu for bytenr %Lu", |
| 3142 | refs_to_drop, refs, bytenr); |
| 3143 | ret = -EINVAL; |
| 3144 | btrfs_abort_transaction(trans, ret); |
| 3145 | goto out; |
| 3146 | } |
| 3147 | refs -= refs_to_drop; |
| 3148 | |
| 3149 | if (refs > 0) { |
| 3150 | if (extent_op) |
| 3151 | __run_delayed_extent_op(extent_op, leaf, ei); |
| 3152 | /* |
| 3153 | * In the case of inline back ref, reference count will |
| 3154 | * be updated by remove_extent_backref |
| 3155 | */ |
| 3156 | if (iref) { |
| 3157 | BUG_ON(!found_extent); |
| 3158 | } else { |
| 3159 | btrfs_set_extent_refs(leaf, ei, refs); |
| 3160 | btrfs_mark_buffer_dirty(leaf); |
| 3161 | } |
| 3162 | if (found_extent) { |
| 3163 | ret = remove_extent_backref(trans, path, iref, |
| 3164 | refs_to_drop, is_data, |
| 3165 | &last_ref); |
| 3166 | if (ret) { |
| 3167 | btrfs_abort_transaction(trans, ret); |
| 3168 | goto out; |
| 3169 | } |
| 3170 | } |
| 3171 | } else { |
| 3172 | if (found_extent) { |
| 3173 | BUG_ON(is_data && refs_to_drop != |
| 3174 | extent_data_ref_count(path, iref)); |
| 3175 | if (iref) { |
| 3176 | BUG_ON(path->slots[0] != extent_slot); |
| 3177 | } else { |
| 3178 | BUG_ON(path->slots[0] != extent_slot + 1); |
| 3179 | path->slots[0] = extent_slot; |
| 3180 | num_to_del = 2; |
| 3181 | } |
| 3182 | } |
| 3183 | |
| 3184 | last_ref = 1; |
| 3185 | ret = btrfs_del_items(trans, extent_root, path, path->slots[0], |
| 3186 | num_to_del); |
| 3187 | if (ret) { |
| 3188 | btrfs_abort_transaction(trans, ret); |
| 3189 | goto out; |
| 3190 | } |
| 3191 | btrfs_release_path(path); |
| 3192 | |
| 3193 | if (is_data) { |
| 3194 | ret = btrfs_del_csums(trans, info->csum_root, bytenr, |
| 3195 | num_bytes); |
| 3196 | if (ret) { |
| 3197 | btrfs_abort_transaction(trans, ret); |
| 3198 | goto out; |
| 3199 | } |
| 3200 | } |
| 3201 | |
| 3202 | ret = add_to_free_space_tree(trans, bytenr, num_bytes); |
| 3203 | if (ret) { |
| 3204 | btrfs_abort_transaction(trans, ret); |
| 3205 | goto out; |
| 3206 | } |
| 3207 | |
| 3208 | ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0); |
| 3209 | if (ret) { |
| 3210 | btrfs_abort_transaction(trans, ret); |
| 3211 | goto out; |
| 3212 | } |
| 3213 | } |
| 3214 | btrfs_release_path(path); |
| 3215 | |
| 3216 | out: |
| 3217 | btrfs_free_path(path); |
| 3218 | return ret; |
| 3219 | } |
| 3220 | |
| 3221 | /* |
| 3222 | * when we free an block, it is possible (and likely) that we free the last |
| 3223 | * delayed ref for that extent as well. This searches the delayed ref tree for |
| 3224 | * a given extent, and if there are no other delayed refs to be processed, it |
| 3225 | * removes it from the tree. |
| 3226 | */ |
| 3227 | static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, |
| 3228 | u64 bytenr) |
| 3229 | { |
| 3230 | struct btrfs_delayed_ref_head *head; |
| 3231 | struct btrfs_delayed_ref_root *delayed_refs; |
| 3232 | int ret = 0; |
| 3233 | |
| 3234 | delayed_refs = &trans->transaction->delayed_refs; |
| 3235 | spin_lock(&delayed_refs->lock); |
| 3236 | head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); |
| 3237 | if (!head) |
| 3238 | goto out_delayed_unlock; |
| 3239 | |
| 3240 | spin_lock(&head->lock); |
| 3241 | if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) |
| 3242 | goto out; |
| 3243 | |
| 3244 | if (cleanup_extent_op(head) != NULL) |
| 3245 | goto out; |
| 3246 | |
| 3247 | /* |
| 3248 | * waiting for the lock here would deadlock. If someone else has it |
| 3249 | * locked they are already in the process of dropping it anyway |
| 3250 | */ |
| 3251 | if (!mutex_trylock(&head->mutex)) |
| 3252 | goto out; |
| 3253 | |
| 3254 | btrfs_delete_ref_head(delayed_refs, head); |
| 3255 | head->processing = 0; |
| 3256 | |
| 3257 | spin_unlock(&head->lock); |
| 3258 | spin_unlock(&delayed_refs->lock); |
| 3259 | |
| 3260 | BUG_ON(head->extent_op); |
| 3261 | if (head->must_insert_reserved) |
| 3262 | ret = 1; |
| 3263 | |
| 3264 | btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); |
| 3265 | mutex_unlock(&head->mutex); |
| 3266 | btrfs_put_delayed_ref_head(head); |
| 3267 | return ret; |
| 3268 | out: |
| 3269 | spin_unlock(&head->lock); |
| 3270 | |
| 3271 | out_delayed_unlock: |
| 3272 | spin_unlock(&delayed_refs->lock); |
| 3273 | return 0; |
| 3274 | } |
| 3275 | |
| 3276 | void btrfs_free_tree_block(struct btrfs_trans_handle *trans, |
| 3277 | struct btrfs_root *root, |
| 3278 | struct extent_buffer *buf, |
| 3279 | u64 parent, int last_ref) |
| 3280 | { |
| 3281 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 3282 | struct btrfs_ref generic_ref = { 0 }; |
| 3283 | int pin = 1; |
| 3284 | int ret; |
| 3285 | |
| 3286 | btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, |
| 3287 | buf->start, buf->len, parent); |
| 3288 | btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), |
| 3289 | root->root_key.objectid); |
| 3290 | |
| 3291 | if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { |
| 3292 | int old_ref_mod, new_ref_mod; |
| 3293 | |
| 3294 | btrfs_ref_tree_mod(fs_info, &generic_ref); |
| 3295 | ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL, |
| 3296 | &old_ref_mod, &new_ref_mod); |
| 3297 | BUG_ON(ret); /* -ENOMEM */ |
| 3298 | pin = old_ref_mod >= 0 && new_ref_mod < 0; |
| 3299 | } |
| 3300 | |
| 3301 | if (last_ref && btrfs_header_generation(buf) == trans->transid) { |
| 3302 | struct btrfs_block_group_cache *cache; |
| 3303 | |
| 3304 | if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { |
| 3305 | ret = check_ref_cleanup(trans, buf->start); |
| 3306 | if (!ret) |
| 3307 | goto out; |
| 3308 | } |
| 3309 | |
| 3310 | pin = 0; |
| 3311 | cache = btrfs_lookup_block_group(fs_info, buf->start); |
| 3312 | |
| 3313 | if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { |
| 3314 | pin_down_extent(cache, buf->start, buf->len, 1); |
| 3315 | btrfs_put_block_group(cache); |
| 3316 | goto out; |
| 3317 | } |
| 3318 | |
| 3319 | WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); |
| 3320 | |
| 3321 | btrfs_add_free_space(cache, buf->start, buf->len); |
| 3322 | btrfs_free_reserved_bytes(cache, buf->len, 0); |
| 3323 | btrfs_put_block_group(cache); |
| 3324 | trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); |
| 3325 | } |
| 3326 | out: |
| 3327 | if (pin) |
| 3328 | add_pinned_bytes(fs_info, &generic_ref); |
| 3329 | |
| 3330 | if (last_ref) { |
| 3331 | /* |
| 3332 | * Deleting the buffer, clear the corrupt flag since it doesn't |
| 3333 | * matter anymore. |
| 3334 | */ |
| 3335 | clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); |
| 3336 | } |
| 3337 | } |
| 3338 | |
| 3339 | /* Can return -ENOMEM */ |
| 3340 | int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) |
| 3341 | { |
| 3342 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 3343 | int old_ref_mod, new_ref_mod; |
| 3344 | int ret; |
| 3345 | |
| 3346 | if (btrfs_is_testing(fs_info)) |
| 3347 | return 0; |
| 3348 | |
| 3349 | /* |
| 3350 | * tree log blocks never actually go into the extent allocation |
| 3351 | * tree, just update pinning info and exit early. |
| 3352 | */ |
| 3353 | if ((ref->type == BTRFS_REF_METADATA && |
| 3354 | ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || |
| 3355 | (ref->type == BTRFS_REF_DATA && |
| 3356 | ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) { |
| 3357 | /* unlocks the pinned mutex */ |
| 3358 | btrfs_pin_extent(fs_info, ref->bytenr, ref->len, 1); |
| 3359 | old_ref_mod = new_ref_mod = 0; |
| 3360 | ret = 0; |
| 3361 | } else if (ref->type == BTRFS_REF_METADATA) { |
| 3362 | ret = btrfs_add_delayed_tree_ref(trans, ref, NULL, |
| 3363 | &old_ref_mod, &new_ref_mod); |
| 3364 | } else { |
| 3365 | ret = btrfs_add_delayed_data_ref(trans, ref, 0, |
| 3366 | &old_ref_mod, &new_ref_mod); |
| 3367 | } |
| 3368 | |
| 3369 | if (!((ref->type == BTRFS_REF_METADATA && |
| 3370 | ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || |
| 3371 | (ref->type == BTRFS_REF_DATA && |
| 3372 | ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID))) |
| 3373 | btrfs_ref_tree_mod(fs_info, ref); |
| 3374 | |
| 3375 | if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) |
| 3376 | add_pinned_bytes(fs_info, ref); |
| 3377 | |
| 3378 | return ret; |
| 3379 | } |
| 3380 | |
| 3381 | enum btrfs_loop_type { |
| 3382 | LOOP_CACHING_NOWAIT, |
| 3383 | LOOP_CACHING_WAIT, |
| 3384 | LOOP_ALLOC_CHUNK, |
| 3385 | LOOP_NO_EMPTY_SIZE, |
| 3386 | }; |
| 3387 | |
| 3388 | static inline void |
| 3389 | btrfs_lock_block_group(struct btrfs_block_group_cache *cache, |
| 3390 | int delalloc) |
| 3391 | { |
| 3392 | if (delalloc) |
| 3393 | down_read(&cache->data_rwsem); |
| 3394 | } |
| 3395 | |
| 3396 | static inline void |
| 3397 | btrfs_grab_block_group(struct btrfs_block_group_cache *cache, |
| 3398 | int delalloc) |
| 3399 | { |
| 3400 | btrfs_get_block_group(cache); |
| 3401 | if (delalloc) |
| 3402 | down_read(&cache->data_rwsem); |
| 3403 | } |
| 3404 | |
| 3405 | static struct btrfs_block_group_cache * |
| 3406 | btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, |
| 3407 | struct btrfs_free_cluster *cluster, |
| 3408 | int delalloc) |
| 3409 | { |
| 3410 | struct btrfs_block_group_cache *used_bg = NULL; |
| 3411 | |
| 3412 | spin_lock(&cluster->refill_lock); |
| 3413 | while (1) { |
| 3414 | used_bg = cluster->block_group; |
| 3415 | if (!used_bg) |
| 3416 | return NULL; |
| 3417 | |
| 3418 | if (used_bg == block_group) |
| 3419 | return used_bg; |
| 3420 | |
| 3421 | btrfs_get_block_group(used_bg); |
| 3422 | |
| 3423 | if (!delalloc) |
| 3424 | return used_bg; |
| 3425 | |
| 3426 | if (down_read_trylock(&used_bg->data_rwsem)) |
| 3427 | return used_bg; |
| 3428 | |
| 3429 | spin_unlock(&cluster->refill_lock); |
| 3430 | |
| 3431 | /* We should only have one-level nested. */ |
| 3432 | down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); |
| 3433 | |
| 3434 | spin_lock(&cluster->refill_lock); |
| 3435 | if (used_bg == cluster->block_group) |
| 3436 | return used_bg; |
| 3437 | |
| 3438 | up_read(&used_bg->data_rwsem); |
| 3439 | btrfs_put_block_group(used_bg); |
| 3440 | } |
| 3441 | } |
| 3442 | |
| 3443 | static inline void |
| 3444 | btrfs_release_block_group(struct btrfs_block_group_cache *cache, |
| 3445 | int delalloc) |
| 3446 | { |
| 3447 | if (delalloc) |
| 3448 | up_read(&cache->data_rwsem); |
| 3449 | btrfs_put_block_group(cache); |
| 3450 | } |
| 3451 | |
| 3452 | /* |
| 3453 | * Structure used internally for find_free_extent() function. Wraps needed |
| 3454 | * parameters. |
| 3455 | */ |
| 3456 | struct find_free_extent_ctl { |
| 3457 | /* Basic allocation info */ |
| 3458 | u64 ram_bytes; |
| 3459 | u64 num_bytes; |
| 3460 | u64 empty_size; |
| 3461 | u64 flags; |
| 3462 | int delalloc; |
| 3463 | |
| 3464 | /* Where to start the search inside the bg */ |
| 3465 | u64 search_start; |
| 3466 | |
| 3467 | /* For clustered allocation */ |
| 3468 | u64 empty_cluster; |
| 3469 | |
| 3470 | bool have_caching_bg; |
| 3471 | bool orig_have_caching_bg; |
| 3472 | |
| 3473 | /* RAID index, converted from flags */ |
| 3474 | int index; |
| 3475 | |
| 3476 | /* |
| 3477 | * Current loop number, check find_free_extent_update_loop() for details |
| 3478 | */ |
| 3479 | int loop; |
| 3480 | |
| 3481 | /* |
| 3482 | * Whether we're refilling a cluster, if true we need to re-search |
| 3483 | * current block group but don't try to refill the cluster again. |
| 3484 | */ |
| 3485 | bool retry_clustered; |
| 3486 | |
| 3487 | /* |
| 3488 | * Whether we're updating free space cache, if true we need to re-search |
| 3489 | * current block group but don't try updating free space cache again. |
| 3490 | */ |
| 3491 | bool retry_unclustered; |
| 3492 | |
| 3493 | /* If current block group is cached */ |
| 3494 | int cached; |
| 3495 | |
| 3496 | /* Max contiguous hole found */ |
| 3497 | u64 max_extent_size; |
| 3498 | |
| 3499 | /* Total free space from free space cache, not always contiguous */ |
| 3500 | u64 total_free_space; |
| 3501 | |
| 3502 | /* Found result */ |
| 3503 | u64 found_offset; |
| 3504 | }; |
| 3505 | |
| 3506 | |
| 3507 | /* |
| 3508 | * Helper function for find_free_extent(). |
| 3509 | * |
| 3510 | * Return -ENOENT to inform caller that we need fallback to unclustered mode. |
| 3511 | * Return -EAGAIN to inform caller that we need to re-search this block group |
| 3512 | * Return >0 to inform caller that we find nothing |
| 3513 | * Return 0 means we have found a location and set ffe_ctl->found_offset. |
| 3514 | */ |
| 3515 | static int find_free_extent_clustered(struct btrfs_block_group_cache *bg, |
| 3516 | struct btrfs_free_cluster *last_ptr, |
| 3517 | struct find_free_extent_ctl *ffe_ctl, |
| 3518 | struct btrfs_block_group_cache **cluster_bg_ret) |
| 3519 | { |
| 3520 | struct btrfs_block_group_cache *cluster_bg; |
| 3521 | u64 aligned_cluster; |
| 3522 | u64 offset; |
| 3523 | int ret; |
| 3524 | |
| 3525 | cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); |
| 3526 | if (!cluster_bg) |
| 3527 | goto refill_cluster; |
| 3528 | if (cluster_bg != bg && (cluster_bg->ro || |
| 3529 | !block_group_bits(cluster_bg, ffe_ctl->flags))) |
| 3530 | goto release_cluster; |
| 3531 | |
| 3532 | offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, |
| 3533 | ffe_ctl->num_bytes, cluster_bg->key.objectid, |
| 3534 | &ffe_ctl->max_extent_size); |
| 3535 | if (offset) { |
| 3536 | /* We have a block, we're done */ |
| 3537 | spin_unlock(&last_ptr->refill_lock); |
| 3538 | trace_btrfs_reserve_extent_cluster(cluster_bg, |
| 3539 | ffe_ctl->search_start, ffe_ctl->num_bytes); |
| 3540 | *cluster_bg_ret = cluster_bg; |
| 3541 | ffe_ctl->found_offset = offset; |
| 3542 | return 0; |
| 3543 | } |
| 3544 | WARN_ON(last_ptr->block_group != cluster_bg); |
| 3545 | |
| 3546 | release_cluster: |
| 3547 | /* |
| 3548 | * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so |
| 3549 | * lets just skip it and let the allocator find whatever block it can |
| 3550 | * find. If we reach this point, we will have tried the cluster |
| 3551 | * allocator plenty of times and not have found anything, so we are |
| 3552 | * likely way too fragmented for the clustering stuff to find anything. |
| 3553 | * |
| 3554 | * However, if the cluster is taken from the current block group, |
| 3555 | * release the cluster first, so that we stand a better chance of |
| 3556 | * succeeding in the unclustered allocation. |
| 3557 | */ |
| 3558 | if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { |
| 3559 | spin_unlock(&last_ptr->refill_lock); |
| 3560 | btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); |
| 3561 | return -ENOENT; |
| 3562 | } |
| 3563 | |
| 3564 | /* This cluster didn't work out, free it and start over */ |
| 3565 | btrfs_return_cluster_to_free_space(NULL, last_ptr); |
| 3566 | |
| 3567 | if (cluster_bg != bg) |
| 3568 | btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); |
| 3569 | |
| 3570 | refill_cluster: |
| 3571 | if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { |
| 3572 | spin_unlock(&last_ptr->refill_lock); |
| 3573 | return -ENOENT; |
| 3574 | } |
| 3575 | |
| 3576 | aligned_cluster = max_t(u64, |
| 3577 | ffe_ctl->empty_cluster + ffe_ctl->empty_size, |
| 3578 | bg->full_stripe_len); |
| 3579 | ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, |
| 3580 | ffe_ctl->num_bytes, aligned_cluster); |
| 3581 | if (ret == 0) { |
| 3582 | /* Now pull our allocation out of this cluster */ |
| 3583 | offset = btrfs_alloc_from_cluster(bg, last_ptr, |
| 3584 | ffe_ctl->num_bytes, ffe_ctl->search_start, |
| 3585 | &ffe_ctl->max_extent_size); |
| 3586 | if (offset) { |
| 3587 | /* We found one, proceed */ |
| 3588 | spin_unlock(&last_ptr->refill_lock); |
| 3589 | trace_btrfs_reserve_extent_cluster(bg, |
| 3590 | ffe_ctl->search_start, |
| 3591 | ffe_ctl->num_bytes); |
| 3592 | ffe_ctl->found_offset = offset; |
| 3593 | return 0; |
| 3594 | } |
| 3595 | } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && |
| 3596 | !ffe_ctl->retry_clustered) { |
| 3597 | spin_unlock(&last_ptr->refill_lock); |
| 3598 | |
| 3599 | ffe_ctl->retry_clustered = true; |
| 3600 | btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + |
| 3601 | ffe_ctl->empty_cluster + ffe_ctl->empty_size); |
| 3602 | return -EAGAIN; |
| 3603 | } |
| 3604 | /* |
| 3605 | * At this point we either didn't find a cluster or we weren't able to |
| 3606 | * allocate a block from our cluster. Free the cluster we've been |
| 3607 | * trying to use, and go to the next block group. |
| 3608 | */ |
| 3609 | btrfs_return_cluster_to_free_space(NULL, last_ptr); |
| 3610 | spin_unlock(&last_ptr->refill_lock); |
| 3611 | return 1; |
| 3612 | } |
| 3613 | |
| 3614 | /* |
| 3615 | * Return >0 to inform caller that we find nothing |
| 3616 | * Return 0 when we found an free extent and set ffe_ctrl->found_offset |
| 3617 | * Return -EAGAIN to inform caller that we need to re-search this block group |
| 3618 | */ |
| 3619 | static int find_free_extent_unclustered(struct btrfs_block_group_cache *bg, |
| 3620 | struct btrfs_free_cluster *last_ptr, |
| 3621 | struct find_free_extent_ctl *ffe_ctl) |
| 3622 | { |
| 3623 | u64 offset; |
| 3624 | |
| 3625 | /* |
| 3626 | * We are doing an unclustered allocation, set the fragmented flag so |
| 3627 | * we don't bother trying to setup a cluster again until we get more |
| 3628 | * space. |
| 3629 | */ |
| 3630 | if (unlikely(last_ptr)) { |
| 3631 | spin_lock(&last_ptr->lock); |
| 3632 | last_ptr->fragmented = 1; |
| 3633 | spin_unlock(&last_ptr->lock); |
| 3634 | } |
| 3635 | if (ffe_ctl->cached) { |
| 3636 | struct btrfs_free_space_ctl *free_space_ctl; |
| 3637 | |
| 3638 | free_space_ctl = bg->free_space_ctl; |
| 3639 | spin_lock(&free_space_ctl->tree_lock); |
| 3640 | if (free_space_ctl->free_space < |
| 3641 | ffe_ctl->num_bytes + ffe_ctl->empty_cluster + |
| 3642 | ffe_ctl->empty_size) { |
| 3643 | ffe_ctl->total_free_space = max_t(u64, |
| 3644 | ffe_ctl->total_free_space, |
| 3645 | free_space_ctl->free_space); |
| 3646 | spin_unlock(&free_space_ctl->tree_lock); |
| 3647 | return 1; |
| 3648 | } |
| 3649 | spin_unlock(&free_space_ctl->tree_lock); |
| 3650 | } |
| 3651 | |
| 3652 | offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, |
| 3653 | ffe_ctl->num_bytes, ffe_ctl->empty_size, |
| 3654 | &ffe_ctl->max_extent_size); |
| 3655 | |
| 3656 | /* |
| 3657 | * If we didn't find a chunk, and we haven't failed on this block group |
| 3658 | * before, and this block group is in the middle of caching and we are |
| 3659 | * ok with waiting, then go ahead and wait for progress to be made, and |
| 3660 | * set @retry_unclustered to true. |
| 3661 | * |
| 3662 | * If @retry_unclustered is true then we've already waited on this |
| 3663 | * block group once and should move on to the next block group. |
| 3664 | */ |
| 3665 | if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached && |
| 3666 | ffe_ctl->loop > LOOP_CACHING_NOWAIT) { |
| 3667 | btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + |
| 3668 | ffe_ctl->empty_size); |
| 3669 | ffe_ctl->retry_unclustered = true; |
| 3670 | return -EAGAIN; |
| 3671 | } else if (!offset) { |
| 3672 | return 1; |
| 3673 | } |
| 3674 | ffe_ctl->found_offset = offset; |
| 3675 | return 0; |
| 3676 | } |
| 3677 | |
| 3678 | /* |
| 3679 | * Return >0 means caller needs to re-search for free extent |
| 3680 | * Return 0 means we have the needed free extent. |
| 3681 | * Return <0 means we failed to locate any free extent. |
| 3682 | */ |
| 3683 | static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, |
| 3684 | struct btrfs_free_cluster *last_ptr, |
| 3685 | struct btrfs_key *ins, |
| 3686 | struct find_free_extent_ctl *ffe_ctl, |
| 3687 | int full_search, bool use_cluster) |
| 3688 | { |
| 3689 | struct btrfs_root *root = fs_info->extent_root; |
| 3690 | int ret; |
| 3691 | |
| 3692 | if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && |
| 3693 | ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) |
| 3694 | ffe_ctl->orig_have_caching_bg = true; |
| 3695 | |
| 3696 | if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT && |
| 3697 | ffe_ctl->have_caching_bg) |
| 3698 | return 1; |
| 3699 | |
| 3700 | if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES) |
| 3701 | return 1; |
| 3702 | |
| 3703 | if (ins->objectid) { |
| 3704 | if (!use_cluster && last_ptr) { |
| 3705 | spin_lock(&last_ptr->lock); |
| 3706 | last_ptr->window_start = ins->objectid; |
| 3707 | spin_unlock(&last_ptr->lock); |
| 3708 | } |
| 3709 | return 0; |
| 3710 | } |
| 3711 | |
| 3712 | /* |
| 3713 | * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking |
| 3714 | * caching kthreads as we move along |
| 3715 | * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching |
| 3716 | * LOOP_ALLOC_CHUNK, force a chunk allocation and try again |
| 3717 | * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try |
| 3718 | * again |
| 3719 | */ |
| 3720 | if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { |
| 3721 | ffe_ctl->index = 0; |
| 3722 | if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) { |
| 3723 | /* |
| 3724 | * We want to skip the LOOP_CACHING_WAIT step if we |
| 3725 | * don't have any uncached bgs and we've already done a |
| 3726 | * full search through. |
| 3727 | */ |
| 3728 | if (ffe_ctl->orig_have_caching_bg || !full_search) |
| 3729 | ffe_ctl->loop = LOOP_CACHING_WAIT; |
| 3730 | else |
| 3731 | ffe_ctl->loop = LOOP_ALLOC_CHUNK; |
| 3732 | } else { |
| 3733 | ffe_ctl->loop++; |
| 3734 | } |
| 3735 | |
| 3736 | if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { |
| 3737 | struct btrfs_trans_handle *trans; |
| 3738 | int exist = 0; |
| 3739 | |
| 3740 | trans = current->journal_info; |
| 3741 | if (trans) |
| 3742 | exist = 1; |
| 3743 | else |
| 3744 | trans = btrfs_join_transaction(root); |
| 3745 | |
| 3746 | if (IS_ERR(trans)) { |
| 3747 | ret = PTR_ERR(trans); |
| 3748 | return ret; |
| 3749 | } |
| 3750 | |
| 3751 | ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, |
| 3752 | CHUNK_ALLOC_FORCE); |
| 3753 | |
| 3754 | /* |
| 3755 | * If we can't allocate a new chunk we've already looped |
| 3756 | * through at least once, move on to the NO_EMPTY_SIZE |
| 3757 | * case. |
| 3758 | */ |
| 3759 | if (ret == -ENOSPC) |
| 3760 | ffe_ctl->loop = LOOP_NO_EMPTY_SIZE; |
| 3761 | |
| 3762 | /* Do not bail out on ENOSPC since we can do more. */ |
| 3763 | if (ret < 0 && ret != -ENOSPC) |
| 3764 | btrfs_abort_transaction(trans, ret); |
| 3765 | else |
| 3766 | ret = 0; |
| 3767 | if (!exist) |
| 3768 | btrfs_end_transaction(trans); |
| 3769 | if (ret) |
| 3770 | return ret; |
| 3771 | } |
| 3772 | |
| 3773 | if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { |
| 3774 | /* |
| 3775 | * Don't loop again if we already have no empty_size and |
| 3776 | * no empty_cluster. |
| 3777 | */ |
| 3778 | if (ffe_ctl->empty_size == 0 && |
| 3779 | ffe_ctl->empty_cluster == 0) |
| 3780 | return -ENOSPC; |
| 3781 | ffe_ctl->empty_size = 0; |
| 3782 | ffe_ctl->empty_cluster = 0; |
| 3783 | } |
| 3784 | return 1; |
| 3785 | } |
| 3786 | return -ENOSPC; |
| 3787 | } |
| 3788 | |
| 3789 | /* |
| 3790 | * walks the btree of allocated extents and find a hole of a given size. |
| 3791 | * The key ins is changed to record the hole: |
| 3792 | * ins->objectid == start position |
| 3793 | * ins->flags = BTRFS_EXTENT_ITEM_KEY |
| 3794 | * ins->offset == the size of the hole. |
| 3795 | * Any available blocks before search_start are skipped. |
| 3796 | * |
| 3797 | * If there is no suitable free space, we will record the max size of |
| 3798 | * the free space extent currently. |
| 3799 | * |
| 3800 | * The overall logic and call chain: |
| 3801 | * |
| 3802 | * find_free_extent() |
| 3803 | * |- Iterate through all block groups |
| 3804 | * | |- Get a valid block group |
| 3805 | * | |- Try to do clustered allocation in that block group |
| 3806 | * | |- Try to do unclustered allocation in that block group |
| 3807 | * | |- Check if the result is valid |
| 3808 | * | | |- If valid, then exit |
| 3809 | * | |- Jump to next block group |
| 3810 | * | |
| 3811 | * |- Push harder to find free extents |
| 3812 | * |- If not found, re-iterate all block groups |
| 3813 | */ |
| 3814 | static noinline int find_free_extent(struct btrfs_root *root, |
| 3815 | u64 ram_bytes, u64 num_bytes, u64 empty_size, |
| 3816 | u64 hint_byte, struct btrfs_key *ins, |
| 3817 | u64 flags, int delalloc) |
| 3818 | { |
| 3819 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 3820 | int ret = 0; |
| 3821 | int cache_block_group_error = 0; |
| 3822 | struct btrfs_free_cluster *last_ptr = NULL; |
| 3823 | struct btrfs_block_group_cache *block_group = NULL; |
| 3824 | struct find_free_extent_ctl ffe_ctl = {0}; |
| 3825 | struct btrfs_space_info *space_info; |
| 3826 | bool use_cluster = true; |
| 3827 | bool full_search = false; |
| 3828 | |
| 3829 | WARN_ON(num_bytes < fs_info->sectorsize); |
| 3830 | |
| 3831 | ffe_ctl.ram_bytes = ram_bytes; |
| 3832 | ffe_ctl.num_bytes = num_bytes; |
| 3833 | ffe_ctl.empty_size = empty_size; |
| 3834 | ffe_ctl.flags = flags; |
| 3835 | ffe_ctl.search_start = 0; |
| 3836 | ffe_ctl.retry_clustered = false; |
| 3837 | ffe_ctl.retry_unclustered = false; |
| 3838 | ffe_ctl.delalloc = delalloc; |
| 3839 | ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags); |
| 3840 | ffe_ctl.have_caching_bg = false; |
| 3841 | ffe_ctl.orig_have_caching_bg = false; |
| 3842 | ffe_ctl.found_offset = 0; |
| 3843 | |
| 3844 | ins->type = BTRFS_EXTENT_ITEM_KEY; |
| 3845 | ins->objectid = 0; |
| 3846 | ins->offset = 0; |
| 3847 | |
| 3848 | trace_find_free_extent(root, num_bytes, empty_size, flags); |
| 3849 | |
| 3850 | space_info = btrfs_find_space_info(fs_info, flags); |
| 3851 | if (!space_info) { |
| 3852 | btrfs_err(fs_info, "No space info for %llu", flags); |
| 3853 | return -ENOSPC; |
| 3854 | } |
| 3855 | |
| 3856 | /* |
| 3857 | * If our free space is heavily fragmented we may not be able to make |
| 3858 | * big contiguous allocations, so instead of doing the expensive search |
| 3859 | * for free space, simply return ENOSPC with our max_extent_size so we |
| 3860 | * can go ahead and search for a more manageable chunk. |
| 3861 | * |
| 3862 | * If our max_extent_size is large enough for our allocation simply |
| 3863 | * disable clustering since we will likely not be able to find enough |
| 3864 | * space to create a cluster and induce latency trying. |
| 3865 | */ |
| 3866 | if (unlikely(space_info->max_extent_size)) { |
| 3867 | spin_lock(&space_info->lock); |
| 3868 | if (space_info->max_extent_size && |
| 3869 | num_bytes > space_info->max_extent_size) { |
| 3870 | ins->offset = space_info->max_extent_size; |
| 3871 | spin_unlock(&space_info->lock); |
| 3872 | return -ENOSPC; |
| 3873 | } else if (space_info->max_extent_size) { |
| 3874 | use_cluster = false; |
| 3875 | } |
| 3876 | spin_unlock(&space_info->lock); |
| 3877 | } |
| 3878 | |
| 3879 | last_ptr = fetch_cluster_info(fs_info, space_info, |
| 3880 | &ffe_ctl.empty_cluster); |
| 3881 | if (last_ptr) { |
| 3882 | spin_lock(&last_ptr->lock); |
| 3883 | if (last_ptr->block_group) |
| 3884 | hint_byte = last_ptr->window_start; |
| 3885 | if (last_ptr->fragmented) { |
| 3886 | /* |
| 3887 | * We still set window_start so we can keep track of the |
| 3888 | * last place we found an allocation to try and save |
| 3889 | * some time. |
| 3890 | */ |
| 3891 | hint_byte = last_ptr->window_start; |
| 3892 | use_cluster = false; |
| 3893 | } |
| 3894 | spin_unlock(&last_ptr->lock); |
| 3895 | } |
| 3896 | |
| 3897 | ffe_ctl.search_start = max(ffe_ctl.search_start, |
| 3898 | first_logical_byte(fs_info, 0)); |
| 3899 | ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte); |
| 3900 | if (ffe_ctl.search_start == hint_byte) { |
| 3901 | block_group = btrfs_lookup_block_group(fs_info, |
| 3902 | ffe_ctl.search_start); |
| 3903 | /* |
| 3904 | * we don't want to use the block group if it doesn't match our |
| 3905 | * allocation bits, or if its not cached. |
| 3906 | * |
| 3907 | * However if we are re-searching with an ideal block group |
| 3908 | * picked out then we don't care that the block group is cached. |
| 3909 | */ |
| 3910 | if (block_group && block_group_bits(block_group, flags) && |
| 3911 | block_group->cached != BTRFS_CACHE_NO) { |
| 3912 | down_read(&space_info->groups_sem); |
| 3913 | if (list_empty(&block_group->list) || |
| 3914 | block_group->ro) { |
| 3915 | /* |
| 3916 | * someone is removing this block group, |
| 3917 | * we can't jump into the have_block_group |
| 3918 | * target because our list pointers are not |
| 3919 | * valid |
| 3920 | */ |
| 3921 | btrfs_put_block_group(block_group); |
| 3922 | up_read(&space_info->groups_sem); |
| 3923 | } else { |
| 3924 | ffe_ctl.index = btrfs_bg_flags_to_raid_index( |
| 3925 | block_group->flags); |
| 3926 | btrfs_lock_block_group(block_group, delalloc); |
| 3927 | goto have_block_group; |
| 3928 | } |
| 3929 | } else if (block_group) { |
| 3930 | btrfs_put_block_group(block_group); |
| 3931 | } |
| 3932 | } |
| 3933 | search: |
| 3934 | ffe_ctl.have_caching_bg = false; |
| 3935 | if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) || |
| 3936 | ffe_ctl.index == 0) |
| 3937 | full_search = true; |
| 3938 | down_read(&space_info->groups_sem); |
| 3939 | list_for_each_entry(block_group, |
| 3940 | &space_info->block_groups[ffe_ctl.index], list) { |
| 3941 | /* If the block group is read-only, we can skip it entirely. */ |
| 3942 | if (unlikely(block_group->ro)) |
| 3943 | continue; |
| 3944 | |
| 3945 | btrfs_grab_block_group(block_group, delalloc); |
| 3946 | ffe_ctl.search_start = block_group->key.objectid; |
| 3947 | |
| 3948 | /* |
| 3949 | * this can happen if we end up cycling through all the |
| 3950 | * raid types, but we want to make sure we only allocate |
| 3951 | * for the proper type. |
| 3952 | */ |
| 3953 | if (!block_group_bits(block_group, flags)) { |
| 3954 | u64 extra = BTRFS_BLOCK_GROUP_DUP | |
| 3955 | BTRFS_BLOCK_GROUP_RAID1_MASK | |
| 3956 | BTRFS_BLOCK_GROUP_RAID56_MASK | |
| 3957 | BTRFS_BLOCK_GROUP_RAID10; |
| 3958 | |
| 3959 | /* |
| 3960 | * if they asked for extra copies and this block group |
| 3961 | * doesn't provide them, bail. This does allow us to |
| 3962 | * fill raid0 from raid1. |
| 3963 | */ |
| 3964 | if ((flags & extra) && !(block_group->flags & extra)) |
| 3965 | goto loop; |
| 3966 | |
| 3967 | /* |
| 3968 | * This block group has different flags than we want. |
| 3969 | * It's possible that we have MIXED_GROUP flag but no |
| 3970 | * block group is mixed. Just skip such block group. |
| 3971 | */ |
| 3972 | btrfs_release_block_group(block_group, delalloc); |
| 3973 | continue; |
| 3974 | } |
| 3975 | |
| 3976 | have_block_group: |
| 3977 | ffe_ctl.cached = btrfs_block_group_cache_done(block_group); |
| 3978 | if (unlikely(!ffe_ctl.cached)) { |
| 3979 | ffe_ctl.have_caching_bg = true; |
| 3980 | ret = btrfs_cache_block_group(block_group, 0); |
| 3981 | |
| 3982 | /* |
| 3983 | * If we get ENOMEM here or something else we want to |
| 3984 | * try other block groups, because it may not be fatal. |
| 3985 | * However if we can't find anything else we need to |
| 3986 | * save our return here so that we return the actual |
| 3987 | * error that caused problems, not ENOSPC. |
| 3988 | */ |
| 3989 | if (ret < 0) { |
| 3990 | if (!cache_block_group_error) |
| 3991 | cache_block_group_error = ret; |
| 3992 | ret = 0; |
| 3993 | goto loop; |
| 3994 | } |
| 3995 | ret = 0; |
| 3996 | } |
| 3997 | |
| 3998 | if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) { |
| 3999 | if (!cache_block_group_error) |
| 4000 | cache_block_group_error = -EIO; |
| 4001 | goto loop; |
| 4002 | } |
| 4003 | |
| 4004 | /* |
| 4005 | * Ok we want to try and use the cluster allocator, so |
| 4006 | * lets look there |
| 4007 | */ |
| 4008 | if (last_ptr && use_cluster) { |
| 4009 | struct btrfs_block_group_cache *cluster_bg = NULL; |
| 4010 | |
| 4011 | ret = find_free_extent_clustered(block_group, last_ptr, |
| 4012 | &ffe_ctl, &cluster_bg); |
| 4013 | |
| 4014 | if (ret == 0) { |
| 4015 | if (cluster_bg && cluster_bg != block_group) { |
| 4016 | btrfs_release_block_group(block_group, |
| 4017 | delalloc); |
| 4018 | block_group = cluster_bg; |
| 4019 | } |
| 4020 | goto checks; |
| 4021 | } else if (ret == -EAGAIN) { |
| 4022 | goto have_block_group; |
| 4023 | } else if (ret > 0) { |
| 4024 | goto loop; |
| 4025 | } |
| 4026 | /* ret == -ENOENT case falls through */ |
| 4027 | } |
| 4028 | |
| 4029 | ret = find_free_extent_unclustered(block_group, last_ptr, |
| 4030 | &ffe_ctl); |
| 4031 | if (ret == -EAGAIN) |
| 4032 | goto have_block_group; |
| 4033 | else if (ret > 0) |
| 4034 | goto loop; |
| 4035 | /* ret == 0 case falls through */ |
| 4036 | checks: |
| 4037 | ffe_ctl.search_start = round_up(ffe_ctl.found_offset, |
| 4038 | fs_info->stripesize); |
| 4039 | |
| 4040 | /* move on to the next group */ |
| 4041 | if (ffe_ctl.search_start + num_bytes > |
| 4042 | block_group->key.objectid + block_group->key.offset) { |
| 4043 | btrfs_add_free_space(block_group, ffe_ctl.found_offset, |
| 4044 | num_bytes); |
| 4045 | goto loop; |
| 4046 | } |
| 4047 | |
| 4048 | if (ffe_ctl.found_offset < ffe_ctl.search_start) |
| 4049 | btrfs_add_free_space(block_group, ffe_ctl.found_offset, |
| 4050 | ffe_ctl.search_start - ffe_ctl.found_offset); |
| 4051 | |
| 4052 | ret = btrfs_add_reserved_bytes(block_group, ram_bytes, |
| 4053 | num_bytes, delalloc); |
| 4054 | if (ret == -EAGAIN) { |
| 4055 | btrfs_add_free_space(block_group, ffe_ctl.found_offset, |
| 4056 | num_bytes); |
| 4057 | goto loop; |
| 4058 | } |
| 4059 | btrfs_inc_block_group_reservations(block_group); |
| 4060 | |
| 4061 | /* we are all good, lets return */ |
| 4062 | ins->objectid = ffe_ctl.search_start; |
| 4063 | ins->offset = num_bytes; |
| 4064 | |
| 4065 | trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start, |
| 4066 | num_bytes); |
| 4067 | btrfs_release_block_group(block_group, delalloc); |
| 4068 | break; |
| 4069 | loop: |
| 4070 | ffe_ctl.retry_clustered = false; |
| 4071 | ffe_ctl.retry_unclustered = false; |
| 4072 | BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != |
| 4073 | ffe_ctl.index); |
| 4074 | btrfs_release_block_group(block_group, delalloc); |
| 4075 | cond_resched(); |
| 4076 | } |
| 4077 | up_read(&space_info->groups_sem); |
| 4078 | |
| 4079 | ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl, |
| 4080 | full_search, use_cluster); |
| 4081 | if (ret > 0) |
| 4082 | goto search; |
| 4083 | |
| 4084 | if (ret == -ENOSPC && !cache_block_group_error) { |
| 4085 | /* |
| 4086 | * Use ffe_ctl->total_free_space as fallback if we can't find |
| 4087 | * any contiguous hole. |
| 4088 | */ |
| 4089 | if (!ffe_ctl.max_extent_size) |
| 4090 | ffe_ctl.max_extent_size = ffe_ctl.total_free_space; |
| 4091 | spin_lock(&space_info->lock); |
| 4092 | space_info->max_extent_size = ffe_ctl.max_extent_size; |
| 4093 | spin_unlock(&space_info->lock); |
| 4094 | ins->offset = ffe_ctl.max_extent_size; |
| 4095 | } else if (ret == -ENOSPC) { |
| 4096 | ret = cache_block_group_error; |
| 4097 | } |
| 4098 | return ret; |
| 4099 | } |
| 4100 | |
| 4101 | /* |
| 4102 | * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a |
| 4103 | * hole that is at least as big as @num_bytes. |
| 4104 | * |
| 4105 | * @root - The root that will contain this extent |
| 4106 | * |
| 4107 | * @ram_bytes - The amount of space in ram that @num_bytes take. This |
| 4108 | * is used for accounting purposes. This value differs |
| 4109 | * from @num_bytes only in the case of compressed extents. |
| 4110 | * |
| 4111 | * @num_bytes - Number of bytes to allocate on-disk. |
| 4112 | * |
| 4113 | * @min_alloc_size - Indicates the minimum amount of space that the |
| 4114 | * allocator should try to satisfy. In some cases |
| 4115 | * @num_bytes may be larger than what is required and if |
| 4116 | * the filesystem is fragmented then allocation fails. |
| 4117 | * However, the presence of @min_alloc_size gives a |
| 4118 | * chance to try and satisfy the smaller allocation. |
| 4119 | * |
| 4120 | * @empty_size - A hint that you plan on doing more COW. This is the |
| 4121 | * size in bytes the allocator should try to find free |
| 4122 | * next to the block it returns. This is just a hint and |
| 4123 | * may be ignored by the allocator. |
| 4124 | * |
| 4125 | * @hint_byte - Hint to the allocator to start searching above the byte |
| 4126 | * address passed. It might be ignored. |
| 4127 | * |
| 4128 | * @ins - This key is modified to record the found hole. It will |
| 4129 | * have the following values: |
| 4130 | * ins->objectid == start position |
| 4131 | * ins->flags = BTRFS_EXTENT_ITEM_KEY |
| 4132 | * ins->offset == the size of the hole. |
| 4133 | * |
| 4134 | * @is_data - Boolean flag indicating whether an extent is |
| 4135 | * allocated for data (true) or metadata (false) |
| 4136 | * |
| 4137 | * @delalloc - Boolean flag indicating whether this allocation is for |
| 4138 | * delalloc or not. If 'true' data_rwsem of block groups |
| 4139 | * is going to be acquired. |
| 4140 | * |
| 4141 | * |
| 4142 | * Returns 0 when an allocation succeeded or < 0 when an error occurred. In |
| 4143 | * case -ENOSPC is returned then @ins->offset will contain the size of the |
| 4144 | * largest available hole the allocator managed to find. |
| 4145 | */ |
| 4146 | int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, |
| 4147 | u64 num_bytes, u64 min_alloc_size, |
| 4148 | u64 empty_size, u64 hint_byte, |
| 4149 | struct btrfs_key *ins, int is_data, int delalloc) |
| 4150 | { |
| 4151 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 4152 | bool final_tried = num_bytes == min_alloc_size; |
| 4153 | u64 flags; |
| 4154 | int ret; |
| 4155 | |
| 4156 | flags = get_alloc_profile_by_root(root, is_data); |
| 4157 | again: |
| 4158 | WARN_ON(num_bytes < fs_info->sectorsize); |
| 4159 | ret = find_free_extent(root, ram_bytes, num_bytes, empty_size, |
| 4160 | hint_byte, ins, flags, delalloc); |
| 4161 | if (!ret && !is_data) { |
| 4162 | btrfs_dec_block_group_reservations(fs_info, ins->objectid); |
| 4163 | } else if (ret == -ENOSPC) { |
| 4164 | if (!final_tried && ins->offset) { |
| 4165 | num_bytes = min(num_bytes >> 1, ins->offset); |
| 4166 | num_bytes = round_down(num_bytes, |
| 4167 | fs_info->sectorsize); |
| 4168 | num_bytes = max(num_bytes, min_alloc_size); |
| 4169 | ram_bytes = num_bytes; |
| 4170 | if (num_bytes == min_alloc_size) |
| 4171 | final_tried = true; |
| 4172 | goto again; |
| 4173 | } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { |
| 4174 | struct btrfs_space_info *sinfo; |
| 4175 | |
| 4176 | sinfo = btrfs_find_space_info(fs_info, flags); |
| 4177 | btrfs_err(fs_info, |
| 4178 | "allocation failed flags %llu, wanted %llu", |
| 4179 | flags, num_bytes); |
| 4180 | if (sinfo) |
| 4181 | btrfs_dump_space_info(fs_info, sinfo, |
| 4182 | num_bytes, 1); |
| 4183 | } |
| 4184 | } |
| 4185 | |
| 4186 | return ret; |
| 4187 | } |
| 4188 | |
| 4189 | static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, |
| 4190 | u64 start, u64 len, |
| 4191 | int pin, int delalloc) |
| 4192 | { |
| 4193 | struct btrfs_block_group_cache *cache; |
| 4194 | int ret = 0; |
| 4195 | |
| 4196 | cache = btrfs_lookup_block_group(fs_info, start); |
| 4197 | if (!cache) { |
| 4198 | btrfs_err(fs_info, "Unable to find block group for %llu", |
| 4199 | start); |
| 4200 | return -ENOSPC; |
| 4201 | } |
| 4202 | |
| 4203 | if (pin) |
| 4204 | pin_down_extent(cache, start, len, 1); |
| 4205 | else { |
| 4206 | if (btrfs_test_opt(fs_info, DISCARD)) |
| 4207 | ret = btrfs_discard_extent(fs_info, start, len, NULL); |
| 4208 | btrfs_add_free_space(cache, start, len); |
| 4209 | btrfs_free_reserved_bytes(cache, len, delalloc); |
| 4210 | trace_btrfs_reserved_extent_free(fs_info, start, len); |
| 4211 | } |
| 4212 | |
| 4213 | btrfs_put_block_group(cache); |
| 4214 | return ret; |
| 4215 | } |
| 4216 | |
| 4217 | int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, |
| 4218 | u64 start, u64 len, int delalloc) |
| 4219 | { |
| 4220 | return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc); |
| 4221 | } |
| 4222 | |
| 4223 | int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info, |
| 4224 | u64 start, u64 len) |
| 4225 | { |
| 4226 | return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0); |
| 4227 | } |
| 4228 | |
| 4229 | static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, |
| 4230 | u64 parent, u64 root_objectid, |
| 4231 | u64 flags, u64 owner, u64 offset, |
| 4232 | struct btrfs_key *ins, int ref_mod) |
| 4233 | { |
| 4234 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 4235 | int ret; |
| 4236 | struct btrfs_extent_item *extent_item; |
| 4237 | struct btrfs_extent_inline_ref *iref; |
| 4238 | struct btrfs_path *path; |
| 4239 | struct extent_buffer *leaf; |
| 4240 | int type; |
| 4241 | u32 size; |
| 4242 | |
| 4243 | if (parent > 0) |
| 4244 | type = BTRFS_SHARED_DATA_REF_KEY; |
| 4245 | else |
| 4246 | type = BTRFS_EXTENT_DATA_REF_KEY; |
| 4247 | |
| 4248 | size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); |
| 4249 | |
| 4250 | path = btrfs_alloc_path(); |
| 4251 | if (!path) |
| 4252 | return -ENOMEM; |
| 4253 | |
| 4254 | path->leave_spinning = 1; |
| 4255 | ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, |
| 4256 | ins, size); |
| 4257 | if (ret) { |
| 4258 | btrfs_free_path(path); |
| 4259 | return ret; |
| 4260 | } |
| 4261 | |
| 4262 | leaf = path->nodes[0]; |
| 4263 | extent_item = btrfs_item_ptr(leaf, path->slots[0], |
| 4264 | struct btrfs_extent_item); |
| 4265 | btrfs_set_extent_refs(leaf, extent_item, ref_mod); |
| 4266 | btrfs_set_extent_generation(leaf, extent_item, trans->transid); |
| 4267 | btrfs_set_extent_flags(leaf, extent_item, |
| 4268 | flags | BTRFS_EXTENT_FLAG_DATA); |
| 4269 | |
| 4270 | iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); |
| 4271 | btrfs_set_extent_inline_ref_type(leaf, iref, type); |
| 4272 | if (parent > 0) { |
| 4273 | struct btrfs_shared_data_ref *ref; |
| 4274 | ref = (struct btrfs_shared_data_ref *)(iref + 1); |
| 4275 | btrfs_set_extent_inline_ref_offset(leaf, iref, parent); |
| 4276 | btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); |
| 4277 | } else { |
| 4278 | struct btrfs_extent_data_ref *ref; |
| 4279 | ref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| 4280 | btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); |
| 4281 | btrfs_set_extent_data_ref_objectid(leaf, ref, owner); |
| 4282 | btrfs_set_extent_data_ref_offset(leaf, ref, offset); |
| 4283 | btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); |
| 4284 | } |
| 4285 | |
| 4286 | btrfs_mark_buffer_dirty(path->nodes[0]); |
| 4287 | btrfs_free_path(path); |
| 4288 | |
| 4289 | ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset); |
| 4290 | if (ret) |
| 4291 | return ret; |
| 4292 | |
| 4293 | ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1); |
| 4294 | if (ret) { /* -ENOENT, logic error */ |
| 4295 | btrfs_err(fs_info, "update block group failed for %llu %llu", |
| 4296 | ins->objectid, ins->offset); |
| 4297 | BUG(); |
| 4298 | } |
| 4299 | trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); |
| 4300 | return ret; |
| 4301 | } |
| 4302 | |
| 4303 | static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, |
| 4304 | struct btrfs_delayed_ref_node *node, |
| 4305 | struct btrfs_delayed_extent_op *extent_op) |
| 4306 | { |
| 4307 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 4308 | int ret; |
| 4309 | struct btrfs_extent_item *extent_item; |
| 4310 | struct btrfs_key extent_key; |
| 4311 | struct btrfs_tree_block_info *block_info; |
| 4312 | struct btrfs_extent_inline_ref *iref; |
| 4313 | struct btrfs_path *path; |
| 4314 | struct extent_buffer *leaf; |
| 4315 | struct btrfs_delayed_tree_ref *ref; |
| 4316 | u32 size = sizeof(*extent_item) + sizeof(*iref); |
| 4317 | u64 num_bytes; |
| 4318 | u64 flags = extent_op->flags_to_set; |
| 4319 | bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); |
| 4320 | |
| 4321 | ref = btrfs_delayed_node_to_tree_ref(node); |
| 4322 | |
| 4323 | extent_key.objectid = node->bytenr; |
| 4324 | if (skinny_metadata) { |
| 4325 | extent_key.offset = ref->level; |
| 4326 | extent_key.type = BTRFS_METADATA_ITEM_KEY; |
| 4327 | num_bytes = fs_info->nodesize; |
| 4328 | } else { |
| 4329 | extent_key.offset = node->num_bytes; |
| 4330 | extent_key.type = BTRFS_EXTENT_ITEM_KEY; |
| 4331 | size += sizeof(*block_info); |
| 4332 | num_bytes = node->num_bytes; |
| 4333 | } |
| 4334 | |
| 4335 | path = btrfs_alloc_path(); |
| 4336 | if (!path) |
| 4337 | return -ENOMEM; |
| 4338 | |
| 4339 | path->leave_spinning = 1; |
| 4340 | ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, |
| 4341 | &extent_key, size); |
| 4342 | if (ret) { |
| 4343 | btrfs_free_path(path); |
| 4344 | return ret; |
| 4345 | } |
| 4346 | |
| 4347 | leaf = path->nodes[0]; |
| 4348 | extent_item = btrfs_item_ptr(leaf, path->slots[0], |
| 4349 | struct btrfs_extent_item); |
| 4350 | btrfs_set_extent_refs(leaf, extent_item, 1); |
| 4351 | btrfs_set_extent_generation(leaf, extent_item, trans->transid); |
| 4352 | btrfs_set_extent_flags(leaf, extent_item, |
| 4353 | flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); |
| 4354 | |
| 4355 | if (skinny_metadata) { |
| 4356 | iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); |
| 4357 | } else { |
| 4358 | block_info = (struct btrfs_tree_block_info *)(extent_item + 1); |
| 4359 | btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); |
| 4360 | btrfs_set_tree_block_level(leaf, block_info, ref->level); |
| 4361 | iref = (struct btrfs_extent_inline_ref *)(block_info + 1); |
| 4362 | } |
| 4363 | |
| 4364 | if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { |
| 4365 | BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); |
| 4366 | btrfs_set_extent_inline_ref_type(leaf, iref, |
| 4367 | BTRFS_SHARED_BLOCK_REF_KEY); |
| 4368 | btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); |
| 4369 | } else { |
| 4370 | btrfs_set_extent_inline_ref_type(leaf, iref, |
| 4371 | BTRFS_TREE_BLOCK_REF_KEY); |
| 4372 | btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); |
| 4373 | } |
| 4374 | |
| 4375 | btrfs_mark_buffer_dirty(leaf); |
| 4376 | btrfs_free_path(path); |
| 4377 | |
| 4378 | ret = remove_from_free_space_tree(trans, extent_key.objectid, |
| 4379 | num_bytes); |
| 4380 | if (ret) |
| 4381 | return ret; |
| 4382 | |
| 4383 | ret = btrfs_update_block_group(trans, extent_key.objectid, |
| 4384 | fs_info->nodesize, 1); |
| 4385 | if (ret) { /* -ENOENT, logic error */ |
| 4386 | btrfs_err(fs_info, "update block group failed for %llu %llu", |
| 4387 | extent_key.objectid, extent_key.offset); |
| 4388 | BUG(); |
| 4389 | } |
| 4390 | |
| 4391 | trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid, |
| 4392 | fs_info->nodesize); |
| 4393 | return ret; |
| 4394 | } |
| 4395 | |
| 4396 | int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, |
| 4397 | struct btrfs_root *root, u64 owner, |
| 4398 | u64 offset, u64 ram_bytes, |
| 4399 | struct btrfs_key *ins) |
| 4400 | { |
| 4401 | struct btrfs_ref generic_ref = { 0 }; |
| 4402 | int ret; |
| 4403 | |
| 4404 | BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); |
| 4405 | |
| 4406 | btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, |
| 4407 | ins->objectid, ins->offset, 0); |
| 4408 | btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset); |
| 4409 | btrfs_ref_tree_mod(root->fs_info, &generic_ref); |
| 4410 | ret = btrfs_add_delayed_data_ref(trans, &generic_ref, |
| 4411 | ram_bytes, NULL, NULL); |
| 4412 | return ret; |
| 4413 | } |
| 4414 | |
| 4415 | /* |
| 4416 | * this is used by the tree logging recovery code. It records that |
| 4417 | * an extent has been allocated and makes sure to clear the free |
| 4418 | * space cache bits as well |
| 4419 | */ |
| 4420 | int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, |
| 4421 | u64 root_objectid, u64 owner, u64 offset, |
| 4422 | struct btrfs_key *ins) |
| 4423 | { |
| 4424 | struct btrfs_fs_info *fs_info = trans->fs_info; |
| 4425 | int ret; |
| 4426 | struct btrfs_block_group_cache *block_group; |
| 4427 | struct btrfs_space_info *space_info; |
| 4428 | |
| 4429 | /* |
| 4430 | * Mixed block groups will exclude before processing the log so we only |
| 4431 | * need to do the exclude dance if this fs isn't mixed. |
| 4432 | */ |
| 4433 | if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { |
| 4434 | ret = __exclude_logged_extent(fs_info, ins->objectid, |
| 4435 | ins->offset); |
| 4436 | if (ret) |
| 4437 | return ret; |
| 4438 | } |
| 4439 | |
| 4440 | block_group = btrfs_lookup_block_group(fs_info, ins->objectid); |
| 4441 | if (!block_group) |
| 4442 | return -EINVAL; |
| 4443 | |
| 4444 | space_info = block_group->space_info; |
| 4445 | spin_lock(&space_info->lock); |
| 4446 | spin_lock(&block_group->lock); |
| 4447 | space_info->bytes_reserved += ins->offset; |
| 4448 | block_group->reserved += ins->offset; |
| 4449 | spin_unlock(&block_group->lock); |
| 4450 | spin_unlock(&space_info->lock); |
| 4451 | |
| 4452 | ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, |
| 4453 | offset, ins, 1); |
| 4454 | if (ret) |
| 4455 | btrfs_pin_extent(fs_info, ins->objectid, ins->offset, 1); |
| 4456 | btrfs_put_block_group(block_group); |
| 4457 | return ret; |
| 4458 | } |
| 4459 | |
| 4460 | static struct extent_buffer * |
| 4461 | btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, |
| 4462 | u64 bytenr, int level, u64 owner) |
| 4463 | { |
| 4464 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 4465 | struct extent_buffer *buf; |
| 4466 | |
| 4467 | buf = btrfs_find_create_tree_block(fs_info, bytenr); |
| 4468 | if (IS_ERR(buf)) |
| 4469 | return buf; |
| 4470 | |
| 4471 | /* |
| 4472 | * Extra safety check in case the extent tree is corrupted and extent |
| 4473 | * allocator chooses to use a tree block which is already used and |
| 4474 | * locked. |
| 4475 | */ |
| 4476 | if (buf->lock_owner == current->pid) { |
| 4477 | btrfs_err_rl(fs_info, |
| 4478 | "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", |
| 4479 | buf->start, btrfs_header_owner(buf), current->pid); |
| 4480 | free_extent_buffer(buf); |
| 4481 | return ERR_PTR(-EUCLEAN); |
| 4482 | } |
| 4483 | |
| 4484 | btrfs_set_buffer_lockdep_class(owner, buf, level); |
| 4485 | btrfs_tree_lock(buf); |
| 4486 | btrfs_clean_tree_block(buf); |
| 4487 | clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); |
| 4488 | |
| 4489 | btrfs_set_lock_blocking_write(buf); |
| 4490 | set_extent_buffer_uptodate(buf); |
| 4491 | |
| 4492 | memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); |
| 4493 | btrfs_set_header_level(buf, level); |
| 4494 | btrfs_set_header_bytenr(buf, buf->start); |
| 4495 | btrfs_set_header_generation(buf, trans->transid); |
| 4496 | btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); |
| 4497 | btrfs_set_header_owner(buf, owner); |
| 4498 | write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); |
| 4499 | write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); |
| 4500 | if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { |
| 4501 | buf->log_index = root->log_transid % 2; |
| 4502 | /* |
| 4503 | * we allow two log transactions at a time, use different |
| 4504 | * EXTENT bit to differentiate dirty pages. |
| 4505 | */ |
| 4506 | if (buf->log_index == 0) |
| 4507 | set_extent_dirty(&root->dirty_log_pages, buf->start, |
| 4508 | buf->start + buf->len - 1, GFP_NOFS); |
| 4509 | else |
| 4510 | set_extent_new(&root->dirty_log_pages, buf->start, |
| 4511 | buf->start + buf->len - 1); |
| 4512 | } else { |
| 4513 | buf->log_index = -1; |
| 4514 | set_extent_dirty(&trans->transaction->dirty_pages, buf->start, |
| 4515 | buf->start + buf->len - 1, GFP_NOFS); |
| 4516 | } |
| 4517 | trans->dirty = true; |
| 4518 | /* this returns a buffer locked for blocking */ |
| 4519 | return buf; |
| 4520 | } |
| 4521 | |
| 4522 | /* |
| 4523 | * finds a free extent and does all the dirty work required for allocation |
| 4524 | * returns the tree buffer or an ERR_PTR on error. |
| 4525 | */ |
| 4526 | struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, |
| 4527 | struct btrfs_root *root, |
| 4528 | u64 parent, u64 root_objectid, |
| 4529 | const struct btrfs_disk_key *key, |
| 4530 | int level, u64 hint, |
| 4531 | u64 empty_size) |
| 4532 | { |
| 4533 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 4534 | struct btrfs_key ins; |
| 4535 | struct btrfs_block_rsv *block_rsv; |
| 4536 | struct extent_buffer *buf; |
| 4537 | struct btrfs_delayed_extent_op *extent_op; |
| 4538 | struct btrfs_ref generic_ref = { 0 }; |
| 4539 | u64 flags = 0; |
| 4540 | int ret; |
| 4541 | u32 blocksize = fs_info->nodesize; |
| 4542 | bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); |
| 4543 | |
| 4544 | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS |
| 4545 | if (btrfs_is_testing(fs_info)) { |
| 4546 | buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, |
| 4547 | level, root_objectid); |
| 4548 | if (!IS_ERR(buf)) |
| 4549 | root->alloc_bytenr += blocksize; |
| 4550 | return buf; |
| 4551 | } |
| 4552 | #endif |
| 4553 | |
| 4554 | block_rsv = btrfs_use_block_rsv(trans, root, blocksize); |
| 4555 | if (IS_ERR(block_rsv)) |
| 4556 | return ERR_CAST(block_rsv); |
| 4557 | |
| 4558 | ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, |
| 4559 | empty_size, hint, &ins, 0, 0); |
| 4560 | if (ret) |
| 4561 | goto out_unuse; |
| 4562 | |
| 4563 | buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, |
| 4564 | root_objectid); |
| 4565 | if (IS_ERR(buf)) { |
| 4566 | ret = PTR_ERR(buf); |
| 4567 | goto out_free_reserved; |
| 4568 | } |
| 4569 | |
| 4570 | if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { |
| 4571 | if (parent == 0) |
| 4572 | parent = ins.objectid; |
| 4573 | flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; |
| 4574 | } else |
| 4575 | BUG_ON(parent > 0); |
| 4576 | |
| 4577 | if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { |
| 4578 | extent_op = btrfs_alloc_delayed_extent_op(); |
| 4579 | if (!extent_op) { |
| 4580 | ret = -ENOMEM; |
| 4581 | goto out_free_buf; |
| 4582 | } |
| 4583 | if (key) |
| 4584 | memcpy(&extent_op->key, key, sizeof(extent_op->key)); |
| 4585 | else |
| 4586 | memset(&extent_op->key, 0, sizeof(extent_op->key)); |
| 4587 | extent_op->flags_to_set = flags; |
| 4588 | extent_op->update_key = skinny_metadata ? false : true; |
| 4589 | extent_op->update_flags = true; |
| 4590 | extent_op->is_data = false; |
| 4591 | extent_op->level = level; |
| 4592 | |
| 4593 | btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, |
| 4594 | ins.objectid, ins.offset, parent); |
| 4595 | generic_ref.real_root = root->root_key.objectid; |
| 4596 | btrfs_init_tree_ref(&generic_ref, level, root_objectid); |
| 4597 | btrfs_ref_tree_mod(fs_info, &generic_ref); |
| 4598 | ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, |
| 4599 | extent_op, NULL, NULL); |
| 4600 | if (ret) |
| 4601 | goto out_free_delayed; |
| 4602 | } |
| 4603 | return buf; |
| 4604 | |
| 4605 | out_free_delayed: |
| 4606 | btrfs_free_delayed_extent_op(extent_op); |
| 4607 | out_free_buf: |
| 4608 | btrfs_tree_unlock(buf); |
| 4609 | free_extent_buffer(buf); |
| 4610 | out_free_reserved: |
| 4611 | btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); |
| 4612 | out_unuse: |
| 4613 | btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); |
| 4614 | return ERR_PTR(ret); |
| 4615 | } |
| 4616 | |
| 4617 | struct walk_control { |
| 4618 | u64 refs[BTRFS_MAX_LEVEL]; |
| 4619 | u64 flags[BTRFS_MAX_LEVEL]; |
| 4620 | struct btrfs_key update_progress; |
| 4621 | struct btrfs_key drop_progress; |
| 4622 | int drop_level; |
| 4623 | int stage; |
| 4624 | int level; |
| 4625 | int shared_level; |
| 4626 | int update_ref; |
| 4627 | int keep_locks; |
| 4628 | int reada_slot; |
| 4629 | int reada_count; |
| 4630 | int restarted; |
| 4631 | }; |
| 4632 | |
| 4633 | #define DROP_REFERENCE 1 |
| 4634 | #define UPDATE_BACKREF 2 |
| 4635 | |
| 4636 | static noinline void reada_walk_down(struct btrfs_trans_handle *trans, |
| 4637 | struct btrfs_root *root, |
| 4638 | struct walk_control *wc, |
| 4639 | struct btrfs_path *path) |
| 4640 | { |
| 4641 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 4642 | u64 bytenr; |
| 4643 | u64 generation; |
| 4644 | u64 refs; |
| 4645 | u64 flags; |
| 4646 | u32 nritems; |
| 4647 | struct btrfs_key key; |
| 4648 | struct extent_buffer *eb; |
| 4649 | int ret; |
| 4650 | int slot; |
| 4651 | int nread = 0; |
| 4652 | |
| 4653 | if (path->slots[wc->level] < wc->reada_slot) { |
| 4654 | wc->reada_count = wc->reada_count * 2 / 3; |
| 4655 | wc->reada_count = max(wc->reada_count, 2); |
| 4656 | } else { |
| 4657 | wc->reada_count = wc->reada_count * 3 / 2; |
| 4658 | wc->reada_count = min_t(int, wc->reada_count, |
| 4659 | BTRFS_NODEPTRS_PER_BLOCK(fs_info)); |
| 4660 | } |
| 4661 | |
| 4662 | eb = path->nodes[wc->level]; |
| 4663 | nritems = btrfs_header_nritems(eb); |
| 4664 | |
| 4665 | for (slot = path->slots[wc->level]; slot < nritems; slot++) { |
| 4666 | if (nread >= wc->reada_count) |
| 4667 | break; |
| 4668 | |
| 4669 | cond_resched(); |
| 4670 | bytenr = btrfs_node_blockptr(eb, slot); |
| 4671 | generation = btrfs_node_ptr_generation(eb, slot); |
| 4672 | |
| 4673 | if (slot == path->slots[wc->level]) |
| 4674 | goto reada; |
| 4675 | |
| 4676 | if (wc->stage == UPDATE_BACKREF && |
| 4677 | generation <= root->root_key.offset) |
| 4678 | continue; |
| 4679 | |
| 4680 | /* We don't lock the tree block, it's OK to be racy here */ |
| 4681 | ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, |
| 4682 | wc->level - 1, 1, &refs, |
| 4683 | &flags); |
| 4684 | /* We don't care about errors in readahead. */ |
| 4685 | if (ret < 0) |
| 4686 | continue; |
| 4687 | |
| 4688 | /* |
| 4689 | * This could be racey, it's conceivable that we raced and end |
| 4690 | * up with a bogus refs count, if that's the case just skip, if |
| 4691 | * we are actually corrupt we will notice when we look up |
| 4692 | * everything again with our locks. |
| 4693 | */ |
| 4694 | if (refs == 0) |
| 4695 | continue; |
| 4696 | |
| 4697 | if (wc->stage == DROP_REFERENCE) { |
| 4698 | if (refs == 1) |
| 4699 | goto reada; |
| 4700 | |
| 4701 | if (wc->level == 1 && |
| 4702 | (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) |
| 4703 | continue; |
| 4704 | if (!wc->update_ref || |
| 4705 | generation <= root->root_key.offset) |
| 4706 | continue; |
| 4707 | btrfs_node_key_to_cpu(eb, &key, slot); |
| 4708 | ret = btrfs_comp_cpu_keys(&key, |
| 4709 | &wc->update_progress); |
| 4710 | if (ret < 0) |
| 4711 | continue; |
| 4712 | } else { |
| 4713 | if (wc->level == 1 && |
| 4714 | (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) |
| 4715 | continue; |
| 4716 | } |
| 4717 | reada: |
| 4718 | readahead_tree_block(fs_info, bytenr); |
| 4719 | nread++; |
| 4720 | } |
| 4721 | wc->reada_slot = slot; |
| 4722 | } |
| 4723 | |
| 4724 | /* |
| 4725 | * helper to process tree block while walking down the tree. |
| 4726 | * |
| 4727 | * when wc->stage == UPDATE_BACKREF, this function updates |
| 4728 | * back refs for pointers in the block. |
| 4729 | * |
| 4730 | * NOTE: return value 1 means we should stop walking down. |
| 4731 | */ |
| 4732 | static noinline int walk_down_proc(struct btrfs_trans_handle *trans, |
| 4733 | struct btrfs_root *root, |
| 4734 | struct btrfs_path *path, |
| 4735 | struct walk_control *wc, int lookup_info) |
| 4736 | { |
| 4737 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 4738 | int level = wc->level; |
| 4739 | struct extent_buffer *eb = path->nodes[level]; |
| 4740 | u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; |
| 4741 | int ret; |
| 4742 | |
| 4743 | if (wc->stage == UPDATE_BACKREF && |
| 4744 | btrfs_header_owner(eb) != root->root_key.objectid) |
| 4745 | return 1; |
| 4746 | |
| 4747 | /* |
| 4748 | * when reference count of tree block is 1, it won't increase |
| 4749 | * again. once full backref flag is set, we never clear it. |
| 4750 | */ |
| 4751 | if (lookup_info && |
| 4752 | ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || |
| 4753 | (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { |
| 4754 | ASSERT(path->locks[level]); |
| 4755 | ret = btrfs_lookup_extent_info(trans, fs_info, |
| 4756 | eb->start, level, 1, |
| 4757 | &wc->refs[level], |
| 4758 | &wc->flags[level]); |
| 4759 | BUG_ON(ret == -ENOMEM); |
| 4760 | if (ret) |
| 4761 | return ret; |
| 4762 | if (unlikely(wc->refs[level] == 0)) { |
| 4763 | btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", |
| 4764 | eb->start); |
| 4765 | return -EUCLEAN; |
| 4766 | } |
| 4767 | } |
| 4768 | |
| 4769 | if (wc->stage == DROP_REFERENCE) { |
| 4770 | if (wc->refs[level] > 1) |
| 4771 | return 1; |
| 4772 | |
| 4773 | if (path->locks[level] && !wc->keep_locks) { |
| 4774 | btrfs_tree_unlock_rw(eb, path->locks[level]); |
| 4775 | path->locks[level] = 0; |
| 4776 | } |
| 4777 | return 0; |
| 4778 | } |
| 4779 | |
| 4780 | /* wc->stage == UPDATE_BACKREF */ |
| 4781 | if (!(wc->flags[level] & flag)) { |
| 4782 | ASSERT(path->locks[level]); |
| 4783 | ret = btrfs_inc_ref(trans, root, eb, 1); |
| 4784 | BUG_ON(ret); /* -ENOMEM */ |
| 4785 | ret = btrfs_dec_ref(trans, root, eb, 0); |
| 4786 | BUG_ON(ret); /* -ENOMEM */ |
| 4787 | ret = btrfs_set_disk_extent_flags(trans, eb->start, |
| 4788 | eb->len, flag, |
| 4789 | btrfs_header_level(eb), 0); |
| 4790 | BUG_ON(ret); /* -ENOMEM */ |
| 4791 | wc->flags[level] |= flag; |
| 4792 | } |
| 4793 | |
| 4794 | /* |
| 4795 | * the block is shared by multiple trees, so it's not good to |
| 4796 | * keep the tree lock |
| 4797 | */ |
| 4798 | if (path->locks[level] && level > 0) { |
| 4799 | btrfs_tree_unlock_rw(eb, path->locks[level]); |
| 4800 | path->locks[level] = 0; |
| 4801 | } |
| 4802 | return 0; |
| 4803 | } |
| 4804 | |
| 4805 | /* |
| 4806 | * This is used to verify a ref exists for this root to deal with a bug where we |
| 4807 | * would have a drop_progress key that hadn't been updated properly. |
| 4808 | */ |
| 4809 | static int check_ref_exists(struct btrfs_trans_handle *trans, |
| 4810 | struct btrfs_root *root, u64 bytenr, u64 parent, |
| 4811 | int level) |
| 4812 | { |
| 4813 | struct btrfs_path *path; |
| 4814 | struct btrfs_extent_inline_ref *iref; |
| 4815 | int ret; |
| 4816 | |
| 4817 | path = btrfs_alloc_path(); |
| 4818 | if (!path) |
| 4819 | return -ENOMEM; |
| 4820 | |
| 4821 | ret = lookup_extent_backref(trans, path, &iref, bytenr, |
| 4822 | root->fs_info->nodesize, parent, |
| 4823 | root->root_key.objectid, level, 0); |
| 4824 | btrfs_free_path(path); |
| 4825 | if (ret == -ENOENT) |
| 4826 | return 0; |
| 4827 | if (ret < 0) |
| 4828 | return ret; |
| 4829 | return 1; |
| 4830 | } |
| 4831 | |
| 4832 | /* |
| 4833 | * helper to process tree block pointer. |
| 4834 | * |
| 4835 | * when wc->stage == DROP_REFERENCE, this function checks |
| 4836 | * reference count of the block pointed to. if the block |
| 4837 | * is shared and we need update back refs for the subtree |
| 4838 | * rooted at the block, this function changes wc->stage to |
| 4839 | * UPDATE_BACKREF. if the block is shared and there is no |
| 4840 | * need to update back, this function drops the reference |
| 4841 | * to the block. |
| 4842 | * |
| 4843 | * NOTE: return value 1 means we should stop walking down. |
| 4844 | */ |
| 4845 | static noinline int do_walk_down(struct btrfs_trans_handle *trans, |
| 4846 | struct btrfs_root *root, |
| 4847 | struct btrfs_path *path, |
| 4848 | struct walk_control *wc, int *lookup_info) |
| 4849 | { |
| 4850 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 4851 | u64 bytenr; |
| 4852 | u64 generation; |
| 4853 | u64 parent; |
| 4854 | struct btrfs_key key; |
| 4855 | struct btrfs_key first_key; |
| 4856 | struct btrfs_ref ref = { 0 }; |
| 4857 | struct extent_buffer *next; |
| 4858 | int level = wc->level; |
| 4859 | int reada = 0; |
| 4860 | int ret = 0; |
| 4861 | bool need_account = false; |
| 4862 | |
| 4863 | generation = btrfs_node_ptr_generation(path->nodes[level], |
| 4864 | path->slots[level]); |
| 4865 | /* |
| 4866 | * if the lower level block was created before the snapshot |
| 4867 | * was created, we know there is no need to update back refs |
| 4868 | * for the subtree |
| 4869 | */ |
| 4870 | if (wc->stage == UPDATE_BACKREF && |
| 4871 | generation <= root->root_key.offset) { |
| 4872 | *lookup_info = 1; |
| 4873 | return 1; |
| 4874 | } |
| 4875 | |
| 4876 | bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); |
| 4877 | btrfs_node_key_to_cpu(path->nodes[level], &first_key, |
| 4878 | path->slots[level]); |
| 4879 | |
| 4880 | next = find_extent_buffer(fs_info, bytenr); |
| 4881 | if (!next) { |
| 4882 | next = btrfs_find_create_tree_block(fs_info, bytenr); |
| 4883 | if (IS_ERR(next)) |
| 4884 | return PTR_ERR(next); |
| 4885 | |
| 4886 | btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, |
| 4887 | level - 1); |
| 4888 | reada = 1; |
| 4889 | } |
| 4890 | btrfs_tree_lock(next); |
| 4891 | btrfs_set_lock_blocking_write(next); |
| 4892 | |
| 4893 | ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, |
| 4894 | &wc->refs[level - 1], |
| 4895 | &wc->flags[level - 1]); |
| 4896 | if (ret < 0) |
| 4897 | goto out_unlock; |
| 4898 | |
| 4899 | if (unlikely(wc->refs[level - 1] == 0)) { |
| 4900 | btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", |
| 4901 | bytenr); |
| 4902 | ret = -EUCLEAN; |
| 4903 | goto out_unlock; |
| 4904 | } |
| 4905 | *lookup_info = 0; |
| 4906 | |
| 4907 | if (wc->stage == DROP_REFERENCE) { |
| 4908 | if (wc->refs[level - 1] > 1) { |
| 4909 | need_account = true; |
| 4910 | if (level == 1 && |
| 4911 | (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) |
| 4912 | goto skip; |
| 4913 | |
| 4914 | if (!wc->update_ref || |
| 4915 | generation <= root->root_key.offset) |
| 4916 | goto skip; |
| 4917 | |
| 4918 | btrfs_node_key_to_cpu(path->nodes[level], &key, |
| 4919 | path->slots[level]); |
| 4920 | ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); |
| 4921 | if (ret < 0) |
| 4922 | goto skip; |
| 4923 | |
| 4924 | wc->stage = UPDATE_BACKREF; |
| 4925 | wc->shared_level = level - 1; |
| 4926 | } |
| 4927 | } else { |
| 4928 | if (level == 1 && |
| 4929 | (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) |
| 4930 | goto skip; |
| 4931 | } |
| 4932 | |
| 4933 | if (!btrfs_buffer_uptodate(next, generation, 0)) { |
| 4934 | btrfs_tree_unlock(next); |
| 4935 | free_extent_buffer(next); |
| 4936 | next = NULL; |
| 4937 | *lookup_info = 1; |
| 4938 | } |
| 4939 | |
| 4940 | if (!next) { |
| 4941 | if (reada && level == 1) |
| 4942 | reada_walk_down(trans, root, wc, path); |
| 4943 | next = read_tree_block(fs_info, bytenr, generation, level - 1, |
| 4944 | &first_key); |
| 4945 | if (IS_ERR(next)) { |
| 4946 | return PTR_ERR(next); |
| 4947 | } else if (!extent_buffer_uptodate(next)) { |
| 4948 | free_extent_buffer(next); |
| 4949 | return -EIO; |
| 4950 | } |
| 4951 | btrfs_tree_lock(next); |
| 4952 | btrfs_set_lock_blocking_write(next); |
| 4953 | } |
| 4954 | |
| 4955 | level--; |
| 4956 | ASSERT(level == btrfs_header_level(next)); |
| 4957 | if (level != btrfs_header_level(next)) { |
| 4958 | btrfs_err(root->fs_info, "mismatched level"); |
| 4959 | ret = -EIO; |
| 4960 | goto out_unlock; |
| 4961 | } |
| 4962 | path->nodes[level] = next; |
| 4963 | path->slots[level] = 0; |
| 4964 | path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; |
| 4965 | wc->level = level; |
| 4966 | if (wc->level == 1) |
| 4967 | wc->reada_slot = 0; |
| 4968 | return 0; |
| 4969 | skip: |
| 4970 | wc->refs[level - 1] = 0; |
| 4971 | wc->flags[level - 1] = 0; |
| 4972 | if (wc->stage == DROP_REFERENCE) { |
| 4973 | if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { |
| 4974 | parent = path->nodes[level]->start; |
| 4975 | } else { |
| 4976 | ASSERT(root->root_key.objectid == |
| 4977 | btrfs_header_owner(path->nodes[level])); |
| 4978 | if (root->root_key.objectid != |
| 4979 | btrfs_header_owner(path->nodes[level])) { |
| 4980 | btrfs_err(root->fs_info, |
| 4981 | "mismatched block owner"); |
| 4982 | ret = -EIO; |
| 4983 | goto out_unlock; |
| 4984 | } |
| 4985 | parent = 0; |
| 4986 | } |
| 4987 | |
| 4988 | /* |
| 4989 | * If we had a drop_progress we need to verify the refs are set |
| 4990 | * as expected. If we find our ref then we know that from here |
| 4991 | * on out everything should be correct, and we can clear the |
| 4992 | * ->restarted flag. |
| 4993 | */ |
| 4994 | if (wc->restarted) { |
| 4995 | ret = check_ref_exists(trans, root, bytenr, parent, |
| 4996 | level - 1); |
| 4997 | if (ret < 0) |
| 4998 | goto out_unlock; |
| 4999 | if (ret == 0) |
| 5000 | goto no_delete; |
| 5001 | ret = 0; |
| 5002 | wc->restarted = 0; |
| 5003 | } |
| 5004 | |
| 5005 | /* |
| 5006 | * Reloc tree doesn't contribute to qgroup numbers, and we have |
| 5007 | * already accounted them at merge time (replace_path), |
| 5008 | * thus we could skip expensive subtree trace here. |
| 5009 | */ |
| 5010 | if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && |
| 5011 | need_account) { |
| 5012 | ret = btrfs_qgroup_trace_subtree(trans, next, |
| 5013 | generation, level - 1); |
| 5014 | if (ret) { |
| 5015 | btrfs_err_rl(fs_info, |
| 5016 | "Error %d accounting shared subtree. Quota is out of sync, rescan required.", |
| 5017 | ret); |
| 5018 | } |
| 5019 | } |
| 5020 | |
| 5021 | /* |
| 5022 | * We need to update the next key in our walk control so we can |
| 5023 | * update the drop_progress key accordingly. We don't care if |
| 5024 | * find_next_key doesn't find a key because that means we're at |
| 5025 | * the end and are going to clean up now. |
| 5026 | */ |
| 5027 | wc->drop_level = level; |
| 5028 | find_next_key(path, level, &wc->drop_progress); |
| 5029 | |
| 5030 | btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, |
| 5031 | fs_info->nodesize, parent); |
| 5032 | btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid); |
| 5033 | ret = btrfs_free_extent(trans, &ref); |
| 5034 | if (ret) |
| 5035 | goto out_unlock; |
| 5036 | } |
| 5037 | no_delete: |
| 5038 | *lookup_info = 1; |
| 5039 | ret = 1; |
| 5040 | |
| 5041 | out_unlock: |
| 5042 | btrfs_tree_unlock(next); |
| 5043 | free_extent_buffer(next); |
| 5044 | |
| 5045 | return ret; |
| 5046 | } |
| 5047 | |
| 5048 | /* |
| 5049 | * helper to process tree block while walking up the tree. |
| 5050 | * |
| 5051 | * when wc->stage == DROP_REFERENCE, this function drops |
| 5052 | * reference count on the block. |
| 5053 | * |
| 5054 | * when wc->stage == UPDATE_BACKREF, this function changes |
| 5055 | * wc->stage back to DROP_REFERENCE if we changed wc->stage |
| 5056 | * to UPDATE_BACKREF previously while processing the block. |
| 5057 | * |
| 5058 | * NOTE: return value 1 means we should stop walking up. |
| 5059 | */ |
| 5060 | static noinline int walk_up_proc(struct btrfs_trans_handle *trans, |
| 5061 | struct btrfs_root *root, |
| 5062 | struct btrfs_path *path, |
| 5063 | struct walk_control *wc) |
| 5064 | { |
| 5065 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 5066 | int ret; |
| 5067 | int level = wc->level; |
| 5068 | struct extent_buffer *eb = path->nodes[level]; |
| 5069 | u64 parent = 0; |
| 5070 | |
| 5071 | if (wc->stage == UPDATE_BACKREF) { |
| 5072 | BUG_ON(wc->shared_level < level); |
| 5073 | if (level < wc->shared_level) |
| 5074 | goto out; |
| 5075 | |
| 5076 | ret = find_next_key(path, level + 1, &wc->update_progress); |
| 5077 | if (ret > 0) |
| 5078 | wc->update_ref = 0; |
| 5079 | |
| 5080 | wc->stage = DROP_REFERENCE; |
| 5081 | wc->shared_level = -1; |
| 5082 | path->slots[level] = 0; |
| 5083 | |
| 5084 | /* |
| 5085 | * check reference count again if the block isn't locked. |
| 5086 | * we should start walking down the tree again if reference |
| 5087 | * count is one. |
| 5088 | */ |
| 5089 | if (!path->locks[level]) { |
| 5090 | BUG_ON(level == 0); |
| 5091 | btrfs_tree_lock(eb); |
| 5092 | btrfs_set_lock_blocking_write(eb); |
| 5093 | path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; |
| 5094 | |
| 5095 | ret = btrfs_lookup_extent_info(trans, fs_info, |
| 5096 | eb->start, level, 1, |
| 5097 | &wc->refs[level], |
| 5098 | &wc->flags[level]); |
| 5099 | if (ret < 0) { |
| 5100 | btrfs_tree_unlock_rw(eb, path->locks[level]); |
| 5101 | path->locks[level] = 0; |
| 5102 | return ret; |
| 5103 | } |
| 5104 | if (unlikely(wc->refs[level] == 0)) { |
| 5105 | btrfs_tree_unlock_rw(eb, path->locks[level]); |
| 5106 | btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", |
| 5107 | eb->start); |
| 5108 | return -EUCLEAN; |
| 5109 | } |
| 5110 | if (wc->refs[level] == 1) { |
| 5111 | btrfs_tree_unlock_rw(eb, path->locks[level]); |
| 5112 | path->locks[level] = 0; |
| 5113 | return 1; |
| 5114 | } |
| 5115 | } |
| 5116 | } |
| 5117 | |
| 5118 | /* wc->stage == DROP_REFERENCE */ |
| 5119 | BUG_ON(wc->refs[level] > 1 && !path->locks[level]); |
| 5120 | |
| 5121 | if (wc->refs[level] == 1) { |
| 5122 | if (level == 0) { |
| 5123 | if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) |
| 5124 | ret = btrfs_dec_ref(trans, root, eb, 1); |
| 5125 | else |
| 5126 | ret = btrfs_dec_ref(trans, root, eb, 0); |
| 5127 | BUG_ON(ret); /* -ENOMEM */ |
| 5128 | if (is_fstree(root->root_key.objectid)) { |
| 5129 | ret = btrfs_qgroup_trace_leaf_items(trans, eb); |
| 5130 | if (ret) { |
| 5131 | btrfs_err_rl(fs_info, |
| 5132 | "error %d accounting leaf items, quota is out of sync, rescan required", |
| 5133 | ret); |
| 5134 | } |
| 5135 | } |
| 5136 | } |
| 5137 | /* make block locked assertion in btrfs_clean_tree_block happy */ |
| 5138 | if (!path->locks[level] && |
| 5139 | btrfs_header_generation(eb) == trans->transid) { |
| 5140 | btrfs_tree_lock(eb); |
| 5141 | btrfs_set_lock_blocking_write(eb); |
| 5142 | path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; |
| 5143 | } |
| 5144 | btrfs_clean_tree_block(eb); |
| 5145 | } |
| 5146 | |
| 5147 | if (eb == root->node) { |
| 5148 | if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) |
| 5149 | parent = eb->start; |
| 5150 | else if (root->root_key.objectid != btrfs_header_owner(eb)) |
| 5151 | goto owner_mismatch; |
| 5152 | } else { |
| 5153 | if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) |
| 5154 | parent = path->nodes[level + 1]->start; |
| 5155 | else if (root->root_key.objectid != |
| 5156 | btrfs_header_owner(path->nodes[level + 1])) |
| 5157 | goto owner_mismatch; |
| 5158 | } |
| 5159 | |
| 5160 | btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); |
| 5161 | out: |
| 5162 | wc->refs[level] = 0; |
| 5163 | wc->flags[level] = 0; |
| 5164 | return 0; |
| 5165 | |
| 5166 | owner_mismatch: |
| 5167 | btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", |
| 5168 | btrfs_header_owner(eb), root->root_key.objectid); |
| 5169 | return -EUCLEAN; |
| 5170 | } |
| 5171 | |
| 5172 | static noinline int walk_down_tree(struct btrfs_trans_handle *trans, |
| 5173 | struct btrfs_root *root, |
| 5174 | struct btrfs_path *path, |
| 5175 | struct walk_control *wc) |
| 5176 | { |
| 5177 | int level = wc->level; |
| 5178 | int lookup_info = 1; |
| 5179 | int ret; |
| 5180 | |
| 5181 | while (level >= 0) { |
| 5182 | ret = walk_down_proc(trans, root, path, wc, lookup_info); |
| 5183 | if (ret > 0) |
| 5184 | break; |
| 5185 | |
| 5186 | if (level == 0) |
| 5187 | break; |
| 5188 | |
| 5189 | if (path->slots[level] >= |
| 5190 | btrfs_header_nritems(path->nodes[level])) |
| 5191 | break; |
| 5192 | |
| 5193 | ret = do_walk_down(trans, root, path, wc, &lookup_info); |
| 5194 | if (ret > 0) { |
| 5195 | path->slots[level]++; |
| 5196 | continue; |
| 5197 | } else if (ret < 0) |
| 5198 | return ret; |
| 5199 | level = wc->level; |
| 5200 | } |
| 5201 | return 0; |
| 5202 | } |
| 5203 | |
| 5204 | static noinline int walk_up_tree(struct btrfs_trans_handle *trans, |
| 5205 | struct btrfs_root *root, |
| 5206 | struct btrfs_path *path, |
| 5207 | struct walk_control *wc, int max_level) |
| 5208 | { |
| 5209 | int level = wc->level; |
| 5210 | int ret; |
| 5211 | |
| 5212 | path->slots[level] = btrfs_header_nritems(path->nodes[level]); |
| 5213 | while (level < max_level && path->nodes[level]) { |
| 5214 | wc->level = level; |
| 5215 | if (path->slots[level] + 1 < |
| 5216 | btrfs_header_nritems(path->nodes[level])) { |
| 5217 | path->slots[level]++; |
| 5218 | return 0; |
| 5219 | } else { |
| 5220 | ret = walk_up_proc(trans, root, path, wc); |
| 5221 | if (ret > 0) |
| 5222 | return 0; |
| 5223 | if (ret < 0) |
| 5224 | return ret; |
| 5225 | |
| 5226 | if (path->locks[level]) { |
| 5227 | btrfs_tree_unlock_rw(path->nodes[level], |
| 5228 | path->locks[level]); |
| 5229 | path->locks[level] = 0; |
| 5230 | } |
| 5231 | free_extent_buffer(path->nodes[level]); |
| 5232 | path->nodes[level] = NULL; |
| 5233 | level++; |
| 5234 | } |
| 5235 | } |
| 5236 | return 1; |
| 5237 | } |
| 5238 | |
| 5239 | /* |
| 5240 | * drop a subvolume tree. |
| 5241 | * |
| 5242 | * this function traverses the tree freeing any blocks that only |
| 5243 | * referenced by the tree. |
| 5244 | * |
| 5245 | * when a shared tree block is found. this function decreases its |
| 5246 | * reference count by one. if update_ref is true, this function |
| 5247 | * also make sure backrefs for the shared block and all lower level |
| 5248 | * blocks are properly updated. |
| 5249 | * |
| 5250 | * If called with for_reloc == 0, may exit early with -EAGAIN |
| 5251 | */ |
| 5252 | int btrfs_drop_snapshot(struct btrfs_root *root, |
| 5253 | struct btrfs_block_rsv *block_rsv, int update_ref, |
| 5254 | int for_reloc) |
| 5255 | { |
| 5256 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 5257 | struct btrfs_path *path; |
| 5258 | struct btrfs_trans_handle *trans; |
| 5259 | struct btrfs_root *tree_root = fs_info->tree_root; |
| 5260 | struct btrfs_root_item *root_item = &root->root_item; |
| 5261 | struct walk_control *wc; |
| 5262 | struct btrfs_key key; |
| 5263 | int err = 0; |
| 5264 | int ret; |
| 5265 | int level; |
| 5266 | bool root_dropped = false; |
| 5267 | |
| 5268 | btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); |
| 5269 | |
| 5270 | path = btrfs_alloc_path(); |
| 5271 | if (!path) { |
| 5272 | err = -ENOMEM; |
| 5273 | goto out; |
| 5274 | } |
| 5275 | |
| 5276 | wc = kzalloc(sizeof(*wc), GFP_NOFS); |
| 5277 | if (!wc) { |
| 5278 | btrfs_free_path(path); |
| 5279 | err = -ENOMEM; |
| 5280 | goto out; |
| 5281 | } |
| 5282 | |
| 5283 | /* |
| 5284 | * Use join to avoid potential EINTR from transaction start. See |
| 5285 | * wait_reserve_ticket and the whole reservation callchain. |
| 5286 | */ |
| 5287 | if (for_reloc) |
| 5288 | trans = btrfs_join_transaction(tree_root); |
| 5289 | else |
| 5290 | trans = btrfs_start_transaction(tree_root, 0); |
| 5291 | if (IS_ERR(trans)) { |
| 5292 | err = PTR_ERR(trans); |
| 5293 | goto out_free; |
| 5294 | } |
| 5295 | |
| 5296 | err = btrfs_run_delayed_items(trans); |
| 5297 | if (err) |
| 5298 | goto out_end_trans; |
| 5299 | |
| 5300 | if (block_rsv) |
| 5301 | trans->block_rsv = block_rsv; |
| 5302 | |
| 5303 | /* |
| 5304 | * This will help us catch people modifying the fs tree while we're |
| 5305 | * dropping it. It is unsafe to mess with the fs tree while it's being |
| 5306 | * dropped as we unlock the root node and parent nodes as we walk down |
| 5307 | * the tree, assuming nothing will change. If something does change |
| 5308 | * then we'll have stale information and drop references to blocks we've |
| 5309 | * already dropped. |
| 5310 | */ |
| 5311 | set_bit(BTRFS_ROOT_DELETING, &root->state); |
| 5312 | if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { |
| 5313 | level = btrfs_header_level(root->node); |
| 5314 | path->nodes[level] = btrfs_lock_root_node(root); |
| 5315 | btrfs_set_lock_blocking_write(path->nodes[level]); |
| 5316 | path->slots[level] = 0; |
| 5317 | path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; |
| 5318 | memset(&wc->update_progress, 0, |
| 5319 | sizeof(wc->update_progress)); |
| 5320 | } else { |
| 5321 | btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); |
| 5322 | memcpy(&wc->update_progress, &key, |
| 5323 | sizeof(wc->update_progress)); |
| 5324 | |
| 5325 | level = root_item->drop_level; |
| 5326 | BUG_ON(level == 0); |
| 5327 | path->lowest_level = level; |
| 5328 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| 5329 | path->lowest_level = 0; |
| 5330 | if (ret < 0) { |
| 5331 | err = ret; |
| 5332 | goto out_end_trans; |
| 5333 | } |
| 5334 | WARN_ON(ret > 0); |
| 5335 | |
| 5336 | /* |
| 5337 | * unlock our path, this is safe because only this |
| 5338 | * function is allowed to delete this snapshot |
| 5339 | */ |
| 5340 | btrfs_unlock_up_safe(path, 0); |
| 5341 | |
| 5342 | level = btrfs_header_level(root->node); |
| 5343 | while (1) { |
| 5344 | btrfs_tree_lock(path->nodes[level]); |
| 5345 | btrfs_set_lock_blocking_write(path->nodes[level]); |
| 5346 | path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; |
| 5347 | |
| 5348 | ret = btrfs_lookup_extent_info(trans, fs_info, |
| 5349 | path->nodes[level]->start, |
| 5350 | level, 1, &wc->refs[level], |
| 5351 | &wc->flags[level]); |
| 5352 | if (ret < 0) { |
| 5353 | err = ret; |
| 5354 | goto out_end_trans; |
| 5355 | } |
| 5356 | BUG_ON(wc->refs[level] == 0); |
| 5357 | |
| 5358 | if (level == root_item->drop_level) |
| 5359 | break; |
| 5360 | |
| 5361 | btrfs_tree_unlock(path->nodes[level]); |
| 5362 | path->locks[level] = 0; |
| 5363 | WARN_ON(wc->refs[level] != 1); |
| 5364 | level--; |
| 5365 | } |
| 5366 | } |
| 5367 | |
| 5368 | wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); |
| 5369 | wc->level = level; |
| 5370 | wc->shared_level = -1; |
| 5371 | wc->stage = DROP_REFERENCE; |
| 5372 | wc->update_ref = update_ref; |
| 5373 | wc->keep_locks = 0; |
| 5374 | wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); |
| 5375 | |
| 5376 | while (1) { |
| 5377 | |
| 5378 | ret = walk_down_tree(trans, root, path, wc); |
| 5379 | if (ret < 0) { |
| 5380 | err = ret; |
| 5381 | break; |
| 5382 | } |
| 5383 | |
| 5384 | ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); |
| 5385 | if (ret < 0) { |
| 5386 | err = ret; |
| 5387 | break; |
| 5388 | } |
| 5389 | |
| 5390 | if (ret > 0) { |
| 5391 | BUG_ON(wc->stage != DROP_REFERENCE); |
| 5392 | break; |
| 5393 | } |
| 5394 | |
| 5395 | if (wc->stage == DROP_REFERENCE) { |
| 5396 | wc->drop_level = wc->level; |
| 5397 | btrfs_node_key_to_cpu(path->nodes[wc->drop_level], |
| 5398 | &wc->drop_progress, |
| 5399 | path->slots[wc->drop_level]); |
| 5400 | } |
| 5401 | btrfs_cpu_key_to_disk(&root_item->drop_progress, |
| 5402 | &wc->drop_progress); |
| 5403 | root_item->drop_level = wc->drop_level; |
| 5404 | |
| 5405 | BUG_ON(wc->level == 0); |
| 5406 | if (btrfs_should_end_transaction(trans) || |
| 5407 | (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { |
| 5408 | ret = btrfs_update_root(trans, tree_root, |
| 5409 | &root->root_key, |
| 5410 | root_item); |
| 5411 | if (ret) { |
| 5412 | btrfs_abort_transaction(trans, ret); |
| 5413 | err = ret; |
| 5414 | goto out_end_trans; |
| 5415 | } |
| 5416 | |
| 5417 | btrfs_end_transaction_throttle(trans); |
| 5418 | if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { |
| 5419 | btrfs_debug(fs_info, |
| 5420 | "drop snapshot early exit"); |
| 5421 | err = -EAGAIN; |
| 5422 | goto out_free; |
| 5423 | } |
| 5424 | |
| 5425 | /* |
| 5426 | * Use join to avoid potential EINTR from transaction |
| 5427 | * start. See wait_reserve_ticket and the whole |
| 5428 | * reservation callchain. |
| 5429 | */ |
| 5430 | if (for_reloc) |
| 5431 | trans = btrfs_join_transaction(tree_root); |
| 5432 | else |
| 5433 | trans = btrfs_start_transaction(tree_root, 0); |
| 5434 | if (IS_ERR(trans)) { |
| 5435 | err = PTR_ERR(trans); |
| 5436 | goto out_free; |
| 5437 | } |
| 5438 | if (block_rsv) |
| 5439 | trans->block_rsv = block_rsv; |
| 5440 | } |
| 5441 | } |
| 5442 | btrfs_release_path(path); |
| 5443 | if (err) |
| 5444 | goto out_end_trans; |
| 5445 | |
| 5446 | ret = btrfs_del_root(trans, &root->root_key); |
| 5447 | if (ret) { |
| 5448 | btrfs_abort_transaction(trans, ret); |
| 5449 | err = ret; |
| 5450 | goto out_end_trans; |
| 5451 | } |
| 5452 | |
| 5453 | if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { |
| 5454 | ret = btrfs_find_root(tree_root, &root->root_key, path, |
| 5455 | NULL, NULL); |
| 5456 | if (ret < 0) { |
| 5457 | btrfs_abort_transaction(trans, ret); |
| 5458 | err = ret; |
| 5459 | goto out_end_trans; |
| 5460 | } else if (ret > 0) { |
| 5461 | /* if we fail to delete the orphan item this time |
| 5462 | * around, it'll get picked up the next time. |
| 5463 | * |
| 5464 | * The most common failure here is just -ENOENT. |
| 5465 | */ |
| 5466 | btrfs_del_orphan_item(trans, tree_root, |
| 5467 | root->root_key.objectid); |
| 5468 | } |
| 5469 | } |
| 5470 | |
| 5471 | if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { |
| 5472 | btrfs_add_dropped_root(trans, root); |
| 5473 | } else { |
| 5474 | free_extent_buffer(root->node); |
| 5475 | free_extent_buffer(root->commit_root); |
| 5476 | btrfs_put_fs_root(root); |
| 5477 | } |
| 5478 | root_dropped = true; |
| 5479 | out_end_trans: |
| 5480 | btrfs_end_transaction_throttle(trans); |
| 5481 | out_free: |
| 5482 | kfree(wc); |
| 5483 | btrfs_free_path(path); |
| 5484 | out: |
| 5485 | /* |
| 5486 | * So if we need to stop dropping the snapshot for whatever reason we |
| 5487 | * need to make sure to add it back to the dead root list so that we |
| 5488 | * keep trying to do the work later. This also cleans up roots if we |
| 5489 | * don't have it in the radix (like when we recover after a power fail |
| 5490 | * or unmount) so we don't leak memory. |
| 5491 | */ |
| 5492 | if (!for_reloc && !root_dropped) |
| 5493 | btrfs_add_dead_root(root); |
| 5494 | return err; |
| 5495 | } |
| 5496 | |
| 5497 | /* |
| 5498 | * drop subtree rooted at tree block 'node'. |
| 5499 | * |
| 5500 | * NOTE: this function will unlock and release tree block 'node' |
| 5501 | * only used by relocation code |
| 5502 | */ |
| 5503 | int btrfs_drop_subtree(struct btrfs_trans_handle *trans, |
| 5504 | struct btrfs_root *root, |
| 5505 | struct extent_buffer *node, |
| 5506 | struct extent_buffer *parent) |
| 5507 | { |
| 5508 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 5509 | struct btrfs_path *path; |
| 5510 | struct walk_control *wc; |
| 5511 | int level; |
| 5512 | int parent_level; |
| 5513 | int ret = 0; |
| 5514 | int wret; |
| 5515 | |
| 5516 | BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); |
| 5517 | |
| 5518 | path = btrfs_alloc_path(); |
| 5519 | if (!path) |
| 5520 | return -ENOMEM; |
| 5521 | |
| 5522 | wc = kzalloc(sizeof(*wc), GFP_NOFS); |
| 5523 | if (!wc) { |
| 5524 | btrfs_free_path(path); |
| 5525 | return -ENOMEM; |
| 5526 | } |
| 5527 | |
| 5528 | btrfs_assert_tree_locked(parent); |
| 5529 | parent_level = btrfs_header_level(parent); |
| 5530 | extent_buffer_get(parent); |
| 5531 | path->nodes[parent_level] = parent; |
| 5532 | path->slots[parent_level] = btrfs_header_nritems(parent); |
| 5533 | |
| 5534 | btrfs_assert_tree_locked(node); |
| 5535 | level = btrfs_header_level(node); |
| 5536 | path->nodes[level] = node; |
| 5537 | path->slots[level] = 0; |
| 5538 | path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; |
| 5539 | |
| 5540 | wc->refs[parent_level] = 1; |
| 5541 | wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; |
| 5542 | wc->level = level; |
| 5543 | wc->shared_level = -1; |
| 5544 | wc->stage = DROP_REFERENCE; |
| 5545 | wc->update_ref = 0; |
| 5546 | wc->keep_locks = 1; |
| 5547 | wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); |
| 5548 | |
| 5549 | while (1) { |
| 5550 | wret = walk_down_tree(trans, root, path, wc); |
| 5551 | if (wret < 0) { |
| 5552 | ret = wret; |
| 5553 | break; |
| 5554 | } |
| 5555 | |
| 5556 | wret = walk_up_tree(trans, root, path, wc, parent_level); |
| 5557 | if (wret < 0) |
| 5558 | ret = wret; |
| 5559 | if (wret != 0) |
| 5560 | break; |
| 5561 | } |
| 5562 | |
| 5563 | kfree(wc); |
| 5564 | btrfs_free_path(path); |
| 5565 | return ret; |
| 5566 | } |
| 5567 | |
| 5568 | /* |
| 5569 | * helper to account the unused space of all the readonly block group in the |
| 5570 | * space_info. takes mirrors into account. |
| 5571 | */ |
| 5572 | u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) |
| 5573 | { |
| 5574 | struct btrfs_block_group_cache *block_group; |
| 5575 | u64 free_bytes = 0; |
| 5576 | int factor; |
| 5577 | |
| 5578 | /* It's df, we don't care if it's racy */ |
| 5579 | if (list_empty(&sinfo->ro_bgs)) |
| 5580 | return 0; |
| 5581 | |
| 5582 | spin_lock(&sinfo->lock); |
| 5583 | list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { |
| 5584 | spin_lock(&block_group->lock); |
| 5585 | |
| 5586 | if (!block_group->ro) { |
| 5587 | spin_unlock(&block_group->lock); |
| 5588 | continue; |
| 5589 | } |
| 5590 | |
| 5591 | factor = btrfs_bg_type_to_factor(block_group->flags); |
| 5592 | free_bytes += (block_group->key.offset - |
| 5593 | btrfs_block_group_used(&block_group->item)) * |
| 5594 | factor; |
| 5595 | |
| 5596 | spin_unlock(&block_group->lock); |
| 5597 | } |
| 5598 | spin_unlock(&sinfo->lock); |
| 5599 | |
| 5600 | return free_bytes; |
| 5601 | } |
| 5602 | |
| 5603 | int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, |
| 5604 | u64 start, u64 end) |
| 5605 | { |
| 5606 | return unpin_extent_range(fs_info, start, end, false); |
| 5607 | } |
| 5608 | |
| 5609 | /* |
| 5610 | * It used to be that old block groups would be left around forever. |
| 5611 | * Iterating over them would be enough to trim unused space. Since we |
| 5612 | * now automatically remove them, we also need to iterate over unallocated |
| 5613 | * space. |
| 5614 | * |
| 5615 | * We don't want a transaction for this since the discard may take a |
| 5616 | * substantial amount of time. We don't require that a transaction be |
| 5617 | * running, but we do need to take a running transaction into account |
| 5618 | * to ensure that we're not discarding chunks that were released or |
| 5619 | * allocated in the current transaction. |
| 5620 | * |
| 5621 | * Holding the chunks lock will prevent other threads from allocating |
| 5622 | * or releasing chunks, but it won't prevent a running transaction |
| 5623 | * from committing and releasing the memory that the pending chunks |
| 5624 | * list head uses. For that, we need to take a reference to the |
| 5625 | * transaction and hold the commit root sem. We only need to hold |
| 5626 | * it while performing the free space search since we have already |
| 5627 | * held back allocations. |
| 5628 | */ |
| 5629 | static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) |
| 5630 | { |
| 5631 | u64 start = SZ_1M, len = 0, end = 0; |
| 5632 | int ret; |
| 5633 | |
| 5634 | *trimmed = 0; |
| 5635 | |
| 5636 | /* Discard not supported = nothing to do. */ |
| 5637 | if (!blk_queue_discard(bdev_get_queue(device->bdev))) |
| 5638 | return 0; |
| 5639 | |
| 5640 | /* Not writable = nothing to do. */ |
| 5641 | if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) |
| 5642 | return 0; |
| 5643 | |
| 5644 | /* No free space = nothing to do. */ |
| 5645 | if (device->total_bytes <= device->bytes_used) |
| 5646 | return 0; |
| 5647 | |
| 5648 | ret = 0; |
| 5649 | |
| 5650 | while (1) { |
| 5651 | struct btrfs_fs_info *fs_info = device->fs_info; |
| 5652 | u64 bytes; |
| 5653 | |
| 5654 | ret = mutex_lock_interruptible(&fs_info->chunk_mutex); |
| 5655 | if (ret) |
| 5656 | break; |
| 5657 | |
| 5658 | find_first_clear_extent_bit(&device->alloc_state, start, |
| 5659 | &start, &end, |
| 5660 | CHUNK_TRIMMED | CHUNK_ALLOCATED); |
| 5661 | |
| 5662 | /* Check if there are any CHUNK_* bits left */ |
| 5663 | if (start > device->total_bytes) { |
| 5664 | WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); |
| 5665 | btrfs_warn_in_rcu(fs_info, |
| 5666 | "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", |
| 5667 | start, end - start + 1, |
| 5668 | rcu_str_deref(device->name), |
| 5669 | device->total_bytes); |
| 5670 | mutex_unlock(&fs_info->chunk_mutex); |
| 5671 | ret = 0; |
| 5672 | break; |
| 5673 | } |
| 5674 | |
| 5675 | /* Ensure we skip the reserved area in the first 1M */ |
| 5676 | start = max_t(u64, start, SZ_1M); |
| 5677 | |
| 5678 | /* |
| 5679 | * If find_first_clear_extent_bit find a range that spans the |
| 5680 | * end of the device it will set end to -1, in this case it's up |
| 5681 | * to the caller to trim the value to the size of the device. |
| 5682 | */ |
| 5683 | end = min(end, device->total_bytes - 1); |
| 5684 | |
| 5685 | len = end - start + 1; |
| 5686 | |
| 5687 | /* We didn't find any extents */ |
| 5688 | if (!len) { |
| 5689 | mutex_unlock(&fs_info->chunk_mutex); |
| 5690 | ret = 0; |
| 5691 | break; |
| 5692 | } |
| 5693 | |
| 5694 | ret = btrfs_issue_discard(device->bdev, start, len, |
| 5695 | &bytes); |
| 5696 | if (!ret) |
| 5697 | set_extent_bits(&device->alloc_state, start, |
| 5698 | start + bytes - 1, |
| 5699 | CHUNK_TRIMMED); |
| 5700 | mutex_unlock(&fs_info->chunk_mutex); |
| 5701 | |
| 5702 | if (ret) |
| 5703 | break; |
| 5704 | |
| 5705 | start += len; |
| 5706 | *trimmed += bytes; |
| 5707 | |
| 5708 | if (fatal_signal_pending(current)) { |
| 5709 | ret = -ERESTARTSYS; |
| 5710 | break; |
| 5711 | } |
| 5712 | |
| 5713 | cond_resched(); |
| 5714 | } |
| 5715 | |
| 5716 | return ret; |
| 5717 | } |
| 5718 | |
| 5719 | /* |
| 5720 | * Trim the whole filesystem by: |
| 5721 | * 1) trimming the free space in each block group |
| 5722 | * 2) trimming the unallocated space on each device |
| 5723 | * |
| 5724 | * This will also continue trimming even if a block group or device encounters |
| 5725 | * an error. The return value will be the last error, or 0 if nothing bad |
| 5726 | * happens. |
| 5727 | */ |
| 5728 | int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) |
| 5729 | { |
| 5730 | struct btrfs_block_group_cache *cache = NULL; |
| 5731 | struct btrfs_device *device; |
| 5732 | struct list_head *devices; |
| 5733 | u64 group_trimmed; |
| 5734 | u64 range_end = U64_MAX; |
| 5735 | u64 start; |
| 5736 | u64 end; |
| 5737 | u64 trimmed = 0; |
| 5738 | u64 bg_failed = 0; |
| 5739 | u64 dev_failed = 0; |
| 5740 | int bg_ret = 0; |
| 5741 | int dev_ret = 0; |
| 5742 | int ret = 0; |
| 5743 | |
| 5744 | /* |
| 5745 | * Check range overflow if range->len is set. |
| 5746 | * The default range->len is U64_MAX. |
| 5747 | */ |
| 5748 | if (range->len != U64_MAX && |
| 5749 | check_add_overflow(range->start, range->len, &range_end)) |
| 5750 | return -EINVAL; |
| 5751 | |
| 5752 | cache = btrfs_lookup_first_block_group(fs_info, range->start); |
| 5753 | for (; cache; cache = btrfs_next_block_group(cache)) { |
| 5754 | if (cache->key.objectid >= range_end) { |
| 5755 | btrfs_put_block_group(cache); |
| 5756 | break; |
| 5757 | } |
| 5758 | |
| 5759 | start = max(range->start, cache->key.objectid); |
| 5760 | end = min(range_end, cache->key.objectid + cache->key.offset); |
| 5761 | |
| 5762 | if (end - start >= range->minlen) { |
| 5763 | if (!btrfs_block_group_cache_done(cache)) { |
| 5764 | ret = btrfs_cache_block_group(cache, 0); |
| 5765 | if (ret) { |
| 5766 | bg_failed++; |
| 5767 | bg_ret = ret; |
| 5768 | continue; |
| 5769 | } |
| 5770 | ret = btrfs_wait_block_group_cache_done(cache); |
| 5771 | if (ret) { |
| 5772 | bg_failed++; |
| 5773 | bg_ret = ret; |
| 5774 | continue; |
| 5775 | } |
| 5776 | } |
| 5777 | ret = btrfs_trim_block_group(cache, |
| 5778 | &group_trimmed, |
| 5779 | start, |
| 5780 | end, |
| 5781 | range->minlen); |
| 5782 | |
| 5783 | trimmed += group_trimmed; |
| 5784 | if (ret) { |
| 5785 | bg_failed++; |
| 5786 | bg_ret = ret; |
| 5787 | continue; |
| 5788 | } |
| 5789 | } |
| 5790 | } |
| 5791 | |
| 5792 | if (bg_failed) |
| 5793 | btrfs_warn(fs_info, |
| 5794 | "failed to trim %llu block group(s), last error %d", |
| 5795 | bg_failed, bg_ret); |
| 5796 | mutex_lock(&fs_info->fs_devices->device_list_mutex); |
| 5797 | devices = &fs_info->fs_devices->devices; |
| 5798 | list_for_each_entry(device, devices, dev_list) { |
| 5799 | if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) |
| 5800 | continue; |
| 5801 | |
| 5802 | ret = btrfs_trim_free_extents(device, &group_trimmed); |
| 5803 | if (ret) { |
| 5804 | dev_failed++; |
| 5805 | dev_ret = ret; |
| 5806 | break; |
| 5807 | } |
| 5808 | |
| 5809 | trimmed += group_trimmed; |
| 5810 | } |
| 5811 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| 5812 | |
| 5813 | if (dev_failed) |
| 5814 | btrfs_warn(fs_info, |
| 5815 | "failed to trim %llu device(s), last error %d", |
| 5816 | dev_failed, dev_ret); |
| 5817 | range->len = trimmed; |
| 5818 | if (bg_ret) |
| 5819 | return bg_ret; |
| 5820 | return dev_ret; |
| 5821 | } |
| 5822 | |
| 5823 | /* |
| 5824 | * btrfs_{start,end}_write_no_snapshotting() are similar to |
| 5825 | * mnt_{want,drop}_write(), they are used to prevent some tasks from writing |
| 5826 | * data into the page cache through nocow before the subvolume is snapshoted, |
| 5827 | * but flush the data into disk after the snapshot creation, or to prevent |
| 5828 | * operations while snapshotting is ongoing and that cause the snapshot to be |
| 5829 | * inconsistent (writes followed by expanding truncates for example). |
| 5830 | */ |
| 5831 | void btrfs_end_write_no_snapshotting(struct btrfs_root *root) |
| 5832 | { |
| 5833 | percpu_counter_dec(&root->subv_writers->counter); |
| 5834 | cond_wake_up(&root->subv_writers->wait); |
| 5835 | } |
| 5836 | |
| 5837 | int btrfs_start_write_no_snapshotting(struct btrfs_root *root) |
| 5838 | { |
| 5839 | if (atomic_read(&root->will_be_snapshotted)) |
| 5840 | return 0; |
| 5841 | |
| 5842 | percpu_counter_inc(&root->subv_writers->counter); |
| 5843 | /* |
| 5844 | * Make sure counter is updated before we check for snapshot creation. |
| 5845 | */ |
| 5846 | smp_mb(); |
| 5847 | if (atomic_read(&root->will_be_snapshotted)) { |
| 5848 | btrfs_end_write_no_snapshotting(root); |
| 5849 | return 0; |
| 5850 | } |
| 5851 | return 1; |
| 5852 | } |
| 5853 | |
| 5854 | void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) |
| 5855 | { |
| 5856 | while (true) { |
| 5857 | int ret; |
| 5858 | |
| 5859 | ret = btrfs_start_write_no_snapshotting(root); |
| 5860 | if (ret) |
| 5861 | break; |
| 5862 | wait_var_event(&root->will_be_snapshotted, |
| 5863 | !atomic_read(&root->will_be_snapshotted)); |
| 5864 | } |
| 5865 | } |