blob: 1cd39f6a9c3ad4654934529b7018b66ed7c2d64a [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2
3#include "misc.h"
4#include "ctree.h"
5#include "space-info.h"
6#include "sysfs.h"
7#include "volumes.h"
8#include "free-space-cache.h"
9#include "ordered-data.h"
10#include "transaction.h"
11#include "block-group.h"
12
13u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
14 bool may_use_included)
15{
16 ASSERT(s_info);
17 return s_info->bytes_used + s_info->bytes_reserved +
18 s_info->bytes_pinned + s_info->bytes_readonly +
19 (may_use_included ? s_info->bytes_may_use : 0);
20}
21
22/*
23 * after adding space to the filesystem, we need to clear the full flags
24 * on all the space infos.
25 */
26void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
27{
28 struct list_head *head = &info->space_info;
29 struct btrfs_space_info *found;
30
31 rcu_read_lock();
32 list_for_each_entry_rcu(found, head, list)
33 found->full = 0;
34 rcu_read_unlock();
35}
36
37static int create_space_info(struct btrfs_fs_info *info, u64 flags)
38{
39
40 struct btrfs_space_info *space_info;
41 int i;
42 int ret;
43
44 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
45 if (!space_info)
46 return -ENOMEM;
47
48 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
49 GFP_KERNEL);
50 if (ret) {
51 kfree(space_info);
52 return ret;
53 }
54
55 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
56 INIT_LIST_HEAD(&space_info->block_groups[i]);
57 init_rwsem(&space_info->groups_sem);
58 spin_lock_init(&space_info->lock);
59 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
60 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
61 init_waitqueue_head(&space_info->wait);
62 INIT_LIST_HEAD(&space_info->ro_bgs);
63 INIT_LIST_HEAD(&space_info->tickets);
64 INIT_LIST_HEAD(&space_info->priority_tickets);
65
66 ret = btrfs_sysfs_add_space_info_type(info, space_info);
67 if (ret)
68 return ret;
69
70 list_add_rcu(&space_info->list, &info->space_info);
71 if (flags & BTRFS_BLOCK_GROUP_DATA)
72 info->data_sinfo = space_info;
73
74 return ret;
75}
76
77int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
78{
79 struct btrfs_super_block *disk_super;
80 u64 features;
81 u64 flags;
82 int mixed = 0;
83 int ret;
84
85 disk_super = fs_info->super_copy;
86 if (!btrfs_super_root(disk_super))
87 return -EINVAL;
88
89 features = btrfs_super_incompat_flags(disk_super);
90 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
91 mixed = 1;
92
93 flags = BTRFS_BLOCK_GROUP_SYSTEM;
94 ret = create_space_info(fs_info, flags);
95 if (ret)
96 goto out;
97
98 if (mixed) {
99 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
100 ret = create_space_info(fs_info, flags);
101 } else {
102 flags = BTRFS_BLOCK_GROUP_METADATA;
103 ret = create_space_info(fs_info, flags);
104 if (ret)
105 goto out;
106
107 flags = BTRFS_BLOCK_GROUP_DATA;
108 ret = create_space_info(fs_info, flags);
109 }
110out:
111 return ret;
112}
113
114void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
115 u64 total_bytes, u64 bytes_used,
116 u64 bytes_readonly,
117 struct btrfs_space_info **space_info)
118{
119 struct btrfs_space_info *found;
120 int factor;
121
122 factor = btrfs_bg_type_to_factor(flags);
123
124 found = btrfs_find_space_info(info, flags);
125 ASSERT(found);
126 spin_lock(&found->lock);
127 found->total_bytes += total_bytes;
128 found->disk_total += total_bytes * factor;
129 found->bytes_used += bytes_used;
130 found->disk_used += bytes_used * factor;
131 found->bytes_readonly += bytes_readonly;
132 if (total_bytes > 0)
133 found->full = 0;
134 btrfs_try_granting_tickets(info, found);
135 spin_unlock(&found->lock);
136 *space_info = found;
137}
138
139struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
140 u64 flags)
141{
142 struct list_head *head = &info->space_info;
143 struct btrfs_space_info *found;
144
145 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
146
147 rcu_read_lock();
148 list_for_each_entry_rcu(found, head, list) {
149 if (found->flags & flags) {
150 rcu_read_unlock();
151 return found;
152 }
153 }
154 rcu_read_unlock();
155 return NULL;
156}
157
158static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
159{
160 return (global->size << 1);
161}
162
163int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
164 struct btrfs_space_info *space_info, u64 bytes,
165 enum btrfs_reserve_flush_enum flush)
166{
167 u64 profile;
168 u64 avail;
169 u64 used;
170 int factor;
171
172 /* Don't overcommit when in mixed mode. */
173 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
174 return 0;
175
176 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
177 profile = btrfs_system_alloc_profile(fs_info);
178 else
179 profile = btrfs_metadata_alloc_profile(fs_info);
180
181 used = btrfs_space_info_used(space_info, true);
182 avail = atomic64_read(&fs_info->free_chunk_space);
183
184 /*
185 * If we have dup, raid1 or raid10 then only half of the free
186 * space is actually usable. For raid56, the space info used
187 * doesn't include the parity drive, so we don't have to
188 * change the math
189 */
190 factor = btrfs_bg_type_to_factor(profile);
191 avail = div_u64(avail, factor);
192
193 /*
194 * If we aren't flushing all things, let us overcommit up to
195 * 1/2th of the space. If we can flush, don't let us overcommit
196 * too much, let it overcommit up to 1/8 of the space.
197 */
198 if (flush == BTRFS_RESERVE_FLUSH_ALL)
199 avail >>= 3;
200 else
201 avail >>= 1;
202
203 if (used + bytes < space_info->total_bytes + avail)
204 return 1;
205 return 0;
206}
207
208/*
209 * This is for space we already have accounted in space_info->bytes_may_use, so
210 * basically when we're returning space from block_rsv's.
211 */
212void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
213 struct btrfs_space_info *space_info)
214{
215 struct list_head *head;
216 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
217
218 lockdep_assert_held(&space_info->lock);
219
220 head = &space_info->priority_tickets;
221again:
222 while (!list_empty(head)) {
223 struct reserve_ticket *ticket;
224 u64 used = btrfs_space_info_used(space_info, true);
225
226 ticket = list_first_entry(head, struct reserve_ticket, list);
227
228 /* Check and see if our ticket can be satisified now. */
229 if ((used + ticket->bytes <= space_info->total_bytes) ||
230 btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
231 flush)) {
232 btrfs_space_info_update_bytes_may_use(fs_info,
233 space_info,
234 ticket->bytes);
235 list_del_init(&ticket->list);
236 ticket->bytes = 0;
237 space_info->tickets_id++;
238 wake_up(&ticket->wait);
239 } else {
240 break;
241 }
242 }
243
244 if (head == &space_info->priority_tickets) {
245 head = &space_info->tickets;
246 flush = BTRFS_RESERVE_FLUSH_ALL;
247 goto again;
248 }
249}
250
251#define DUMP_BLOCK_RSV(fs_info, rsv_name) \
252do { \
253 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \
254 spin_lock(&__rsv->lock); \
255 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \
256 __rsv->size, __rsv->reserved); \
257 spin_unlock(&__rsv->lock); \
258} while (0)
259
260static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
261 struct btrfs_space_info *info)
262{
263 lockdep_assert_held(&info->lock);
264
265 /* The free space could be negative in case of overcommit */
266 btrfs_info(fs_info, "space_info %llu has %lld free, is %sfull",
267 info->flags,
268 (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
269 info->full ? "" : "not ");
270 btrfs_info(fs_info,
271 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
272 info->total_bytes, info->bytes_used, info->bytes_pinned,
273 info->bytes_reserved, info->bytes_may_use,
274 info->bytes_readonly);
275
276 DUMP_BLOCK_RSV(fs_info, global_block_rsv);
277 DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
278 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
279 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
280 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
281
282}
283
284void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
285 struct btrfs_space_info *info, u64 bytes,
286 int dump_block_groups)
287{
288 struct btrfs_block_group_cache *cache;
289 int index = 0;
290
291 spin_lock(&info->lock);
292 __btrfs_dump_space_info(fs_info, info);
293 spin_unlock(&info->lock);
294
295 if (!dump_block_groups)
296 return;
297
298 down_read(&info->groups_sem);
299again:
300 list_for_each_entry(cache, &info->block_groups[index], list) {
301 spin_lock(&cache->lock);
302 btrfs_info(fs_info,
303 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
304 cache->key.objectid, cache->key.offset,
305 btrfs_block_group_used(&cache->item), cache->pinned,
306 cache->reserved, cache->ro ? "[readonly]" : "");
307 spin_unlock(&cache->lock);
308 btrfs_dump_free_space(cache, bytes);
309 }
310 if (++index < BTRFS_NR_RAID_TYPES)
311 goto again;
312 up_read(&info->groups_sem);
313}
314
315static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
316 unsigned long nr_pages, int nr_items)
317{
318 struct super_block *sb = fs_info->sb;
319
320 if (down_read_trylock(&sb->s_umount)) {
321 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
322 up_read(&sb->s_umount);
323 } else {
324 /*
325 * We needn't worry the filesystem going from r/w to r/o though
326 * we don't acquire ->s_umount mutex, because the filesystem
327 * should guarantee the delalloc inodes list be empty after
328 * the filesystem is readonly(all dirty pages are written to
329 * the disk).
330 */
331 btrfs_start_delalloc_roots(fs_info, nr_items);
332 if (!current->journal_info)
333 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
334 }
335}
336
337static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
338 u64 to_reclaim)
339{
340 u64 bytes;
341 u64 nr;
342
343 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
344 nr = div64_u64(to_reclaim, bytes);
345 if (!nr)
346 nr = 1;
347 return nr;
348}
349
350#define EXTENT_SIZE_PER_ITEM SZ_256K
351
352/*
353 * shrink metadata reservation for delalloc
354 */
355static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
356 u64 orig, bool wait_ordered)
357{
358 struct btrfs_space_info *space_info;
359 struct btrfs_trans_handle *trans;
360 u64 delalloc_bytes;
361 u64 dio_bytes;
362 u64 async_pages;
363 u64 items;
364 long time_left;
365 unsigned long nr_pages;
366 int loops;
367
368 /* Calc the number of the pages we need flush for space reservation */
369 items = calc_reclaim_items_nr(fs_info, to_reclaim);
370 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
371
372 trans = (struct btrfs_trans_handle *)current->journal_info;
373 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
374
375 delalloc_bytes = percpu_counter_sum_positive(
376 &fs_info->delalloc_bytes);
377 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
378 if (delalloc_bytes == 0 && dio_bytes == 0) {
379 if (trans)
380 return;
381 if (wait_ordered)
382 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
383 return;
384 }
385
386 /*
387 * If we are doing more ordered than delalloc we need to just wait on
388 * ordered extents, otherwise we'll waste time trying to flush delalloc
389 * that likely won't give us the space back we need.
390 */
391 if (dio_bytes > delalloc_bytes)
392 wait_ordered = true;
393
394 loops = 0;
395 while ((delalloc_bytes || dio_bytes) && loops < 3) {
396 nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
397
398 /*
399 * Triggers inode writeback for up to nr_pages. This will invoke
400 * ->writepages callback and trigger delalloc filling
401 * (btrfs_run_delalloc_range()).
402 */
403 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
404
405 /*
406 * We need to wait for the compressed pages to start before
407 * we continue.
408 */
409 async_pages = atomic_read(&fs_info->async_delalloc_pages);
410 if (!async_pages)
411 goto skip_async;
412
413 /*
414 * Calculate how many compressed pages we want to be written
415 * before we continue. I.e if there are more async pages than we
416 * require wait_event will wait until nr_pages are written.
417 */
418 if (async_pages <= nr_pages)
419 async_pages = 0;
420 else
421 async_pages -= nr_pages;
422
423 wait_event(fs_info->async_submit_wait,
424 atomic_read(&fs_info->async_delalloc_pages) <=
425 (int)async_pages);
426skip_async:
427 spin_lock(&space_info->lock);
428 if (list_empty(&space_info->tickets) &&
429 list_empty(&space_info->priority_tickets)) {
430 spin_unlock(&space_info->lock);
431 break;
432 }
433 spin_unlock(&space_info->lock);
434
435 loops++;
436 if (wait_ordered && !trans) {
437 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
438 } else {
439 time_left = schedule_timeout_killable(1);
440 if (time_left)
441 break;
442 }
443 delalloc_bytes = percpu_counter_sum_positive(
444 &fs_info->delalloc_bytes);
445 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
446 }
447}
448
449/**
450 * maybe_commit_transaction - possibly commit the transaction if its ok to
451 * @root - the root we're allocating for
452 * @bytes - the number of bytes we want to reserve
453 * @force - force the commit
454 *
455 * This will check to make sure that committing the transaction will actually
456 * get us somewhere and then commit the transaction if it does. Otherwise it
457 * will return -ENOSPC.
458 */
459static int may_commit_transaction(struct btrfs_fs_info *fs_info,
460 struct btrfs_space_info *space_info)
461{
462 struct reserve_ticket *ticket = NULL;
463 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
464 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
465 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
466 struct btrfs_trans_handle *trans;
467 u64 bytes_needed;
468 u64 reclaim_bytes = 0;
469 u64 cur_free_bytes = 0;
470
471 trans = (struct btrfs_trans_handle *)current->journal_info;
472 if (trans)
473 return -EAGAIN;
474
475 spin_lock(&space_info->lock);
476 cur_free_bytes = btrfs_space_info_used(space_info, true);
477 if (cur_free_bytes < space_info->total_bytes)
478 cur_free_bytes = space_info->total_bytes - cur_free_bytes;
479 else
480 cur_free_bytes = 0;
481
482 if (!list_empty(&space_info->priority_tickets))
483 ticket = list_first_entry(&space_info->priority_tickets,
484 struct reserve_ticket, list);
485 else if (!list_empty(&space_info->tickets))
486 ticket = list_first_entry(&space_info->tickets,
487 struct reserve_ticket, list);
488 bytes_needed = (ticket) ? ticket->bytes : 0;
489
490 if (bytes_needed > cur_free_bytes)
491 bytes_needed -= cur_free_bytes;
492 else
493 bytes_needed = 0;
494 spin_unlock(&space_info->lock);
495
496 if (!bytes_needed)
497 return 0;
498
499 trans = btrfs_join_transaction(fs_info->extent_root);
500 if (IS_ERR(trans))
501 return PTR_ERR(trans);
502
503 /*
504 * See if there is enough pinned space to make this reservation, or if
505 * we have block groups that are going to be freed, allowing us to
506 * possibly do a chunk allocation the next loop through.
507 */
508 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
509 __percpu_counter_compare(&space_info->total_bytes_pinned,
510 bytes_needed,
511 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
512 goto commit;
513
514 /*
515 * See if there is some space in the delayed insertion reservation for
516 * this reservation.
517 */
518 if (space_info != delayed_rsv->space_info)
519 goto enospc;
520
521 spin_lock(&delayed_rsv->lock);
522 reclaim_bytes += delayed_rsv->reserved;
523 spin_unlock(&delayed_rsv->lock);
524
525 spin_lock(&delayed_refs_rsv->lock);
526 reclaim_bytes += delayed_refs_rsv->reserved;
527 spin_unlock(&delayed_refs_rsv->lock);
528
529 spin_lock(&trans_rsv->lock);
530 reclaim_bytes += trans_rsv->reserved;
531 spin_unlock(&trans_rsv->lock);
532
533 if (reclaim_bytes >= bytes_needed)
534 goto commit;
535 bytes_needed -= reclaim_bytes;
536
537 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
538 bytes_needed,
539 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
540 goto enospc;
541
542commit:
543 return btrfs_commit_transaction(trans);
544enospc:
545 btrfs_end_transaction(trans);
546 return -ENOSPC;
547}
548
549/*
550 * Try to flush some data based on policy set by @state. This is only advisory
551 * and may fail for various reasons. The caller is supposed to examine the
552 * state of @space_info to detect the outcome.
553 */
554static void flush_space(struct btrfs_fs_info *fs_info,
555 struct btrfs_space_info *space_info, u64 num_bytes,
556 int state)
557{
558 struct btrfs_root *root = fs_info->extent_root;
559 struct btrfs_trans_handle *trans;
560 int nr;
561 int ret = 0;
562
563 switch (state) {
564 case FLUSH_DELAYED_ITEMS_NR:
565 case FLUSH_DELAYED_ITEMS:
566 if (state == FLUSH_DELAYED_ITEMS_NR)
567 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
568 else
569 nr = -1;
570
571 trans = btrfs_join_transaction(root);
572 if (IS_ERR(trans)) {
573 ret = PTR_ERR(trans);
574 break;
575 }
576 ret = btrfs_run_delayed_items_nr(trans, nr);
577 btrfs_end_transaction(trans);
578 break;
579 case FLUSH_DELALLOC:
580 case FLUSH_DELALLOC_WAIT:
581 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
582 state == FLUSH_DELALLOC_WAIT);
583 break;
584 case FLUSH_DELAYED_REFS_NR:
585 case FLUSH_DELAYED_REFS:
586 trans = btrfs_join_transaction(root);
587 if (IS_ERR(trans)) {
588 ret = PTR_ERR(trans);
589 break;
590 }
591 if (state == FLUSH_DELAYED_REFS_NR)
592 nr = calc_reclaim_items_nr(fs_info, num_bytes);
593 else
594 nr = 0;
595 btrfs_run_delayed_refs(trans, nr);
596 btrfs_end_transaction(trans);
597 break;
598 case ALLOC_CHUNK:
599 case ALLOC_CHUNK_FORCE:
600 trans = btrfs_join_transaction(root);
601 if (IS_ERR(trans)) {
602 ret = PTR_ERR(trans);
603 break;
604 }
605 ret = btrfs_chunk_alloc(trans,
606 btrfs_metadata_alloc_profile(fs_info),
607 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
608 CHUNK_ALLOC_FORCE);
609 btrfs_end_transaction(trans);
610 if (ret > 0 || ret == -ENOSPC)
611 ret = 0;
612 break;
613 case RUN_DELAYED_IPUTS:
614 /*
615 * If we have pending delayed iputs then we could free up a
616 * bunch of pinned space, so make sure we run the iputs before
617 * we do our pinned bytes check below.
618 */
619 btrfs_run_delayed_iputs(fs_info);
620 btrfs_wait_on_delayed_iputs(fs_info);
621 break;
622 case COMMIT_TRANS:
623 ret = may_commit_transaction(fs_info, space_info);
624 break;
625 default:
626 ret = -ENOSPC;
627 break;
628 }
629
630 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
631 ret);
632 return;
633}
634
635static inline u64
636btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
637 struct btrfs_space_info *space_info)
638{
639 struct reserve_ticket *ticket;
640 u64 used;
641 u64 expected;
642 u64 to_reclaim = 0;
643
644 list_for_each_entry(ticket, &space_info->tickets, list)
645 to_reclaim += ticket->bytes;
646 list_for_each_entry(ticket, &space_info->priority_tickets, list)
647 to_reclaim += ticket->bytes;
648 if (to_reclaim)
649 return to_reclaim;
650
651 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
652 if (btrfs_can_overcommit(fs_info, space_info, to_reclaim,
653 BTRFS_RESERVE_FLUSH_ALL))
654 return 0;
655
656 used = btrfs_space_info_used(space_info, true);
657
658 if (btrfs_can_overcommit(fs_info, space_info, SZ_1M,
659 BTRFS_RESERVE_FLUSH_ALL))
660 expected = div_factor_fine(space_info->total_bytes, 95);
661 else
662 expected = div_factor_fine(space_info->total_bytes, 90);
663
664 if (used > expected)
665 to_reclaim = used - expected;
666 else
667 to_reclaim = 0;
668 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
669 space_info->bytes_reserved);
670 return to_reclaim;
671}
672
673static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
674 struct btrfs_space_info *space_info,
675 u64 used)
676{
677 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
678
679 /* If we're just plain full then async reclaim just slows us down. */
680 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
681 return 0;
682
683 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info))
684 return 0;
685
686 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
687 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
688}
689
690static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
691 struct btrfs_space_info *space_info,
692 struct reserve_ticket *ticket)
693{
694 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
695 u64 min_bytes;
696
697 if (global_rsv->space_info != space_info)
698 return false;
699
700 spin_lock(&global_rsv->lock);
701 min_bytes = div_factor(global_rsv->size, 5);
702 if (global_rsv->reserved < min_bytes + ticket->bytes) {
703 spin_unlock(&global_rsv->lock);
704 return false;
705 }
706 global_rsv->reserved -= ticket->bytes;
707 ticket->bytes = 0;
708 list_del_init(&ticket->list);
709 wake_up(&ticket->wait);
710 space_info->tickets_id++;
711 if (global_rsv->reserved < global_rsv->size)
712 global_rsv->full = 0;
713 spin_unlock(&global_rsv->lock);
714
715 return true;
716}
717
718/*
719 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
720 * @fs_info - fs_info for this fs
721 * @space_info - the space info we were flushing
722 *
723 * We call this when we've exhausted our flushing ability and haven't made
724 * progress in satisfying tickets. The reservation code handles tickets in
725 * order, so if there is a large ticket first and then smaller ones we could
726 * very well satisfy the smaller tickets. This will attempt to wake up any
727 * tickets in the list to catch this case.
728 *
729 * This function returns true if it was able to make progress by clearing out
730 * other tickets, or if it stumbles across a ticket that was smaller than the
731 * first ticket.
732 */
733static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
734 struct btrfs_space_info *space_info)
735{
736 struct reserve_ticket *ticket;
737 u64 tickets_id = space_info->tickets_id;
738 u64 first_ticket_bytes = 0;
739
740 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
741 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
742 __btrfs_dump_space_info(fs_info, space_info);
743 }
744
745 while (!list_empty(&space_info->tickets) &&
746 tickets_id == space_info->tickets_id) {
747 ticket = list_first_entry(&space_info->tickets,
748 struct reserve_ticket, list);
749
750 if (ticket->steal &&
751 steal_from_global_rsv(fs_info, space_info, ticket))
752 return true;
753
754 /*
755 * may_commit_transaction will avoid committing the transaction
756 * if it doesn't feel like the space reclaimed by the commit
757 * would result in the ticket succeeding. However if we have a
758 * smaller ticket in the queue it may be small enough to be
759 * satisified by committing the transaction, so if any
760 * subsequent ticket is smaller than the first ticket go ahead
761 * and send us back for another loop through the enospc flushing
762 * code.
763 */
764 if (first_ticket_bytes == 0)
765 first_ticket_bytes = ticket->bytes;
766 else if (first_ticket_bytes > ticket->bytes)
767 return true;
768
769 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
770 btrfs_info(fs_info, "failing ticket with %llu bytes",
771 ticket->bytes);
772
773 list_del_init(&ticket->list);
774 ticket->error = -ENOSPC;
775 wake_up(&ticket->wait);
776
777 /*
778 * We're just throwing tickets away, so more flushing may not
779 * trip over btrfs_try_granting_tickets, so we need to call it
780 * here to see if we can make progress with the next ticket in
781 * the list.
782 */
783 btrfs_try_granting_tickets(fs_info, space_info);
784 }
785 return (tickets_id != space_info->tickets_id);
786}
787
788/*
789 * This is for normal flushers, we can wait all goddamned day if we want to. We
790 * will loop and continuously try to flush as long as we are making progress.
791 * We count progress as clearing off tickets each time we have to loop.
792 */
793static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
794{
795 struct btrfs_fs_info *fs_info;
796 struct btrfs_space_info *space_info;
797 u64 to_reclaim;
798 int flush_state;
799 int commit_cycles = 0;
800 u64 last_tickets_id;
801
802 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
803 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
804
805 spin_lock(&space_info->lock);
806 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
807 if (!to_reclaim) {
808 space_info->flush = 0;
809 spin_unlock(&space_info->lock);
810 return;
811 }
812 last_tickets_id = space_info->tickets_id;
813 spin_unlock(&space_info->lock);
814
815 flush_state = FLUSH_DELAYED_ITEMS_NR;
816 do {
817 flush_space(fs_info, space_info, to_reclaim, flush_state);
818 spin_lock(&space_info->lock);
819 if (list_empty(&space_info->tickets)) {
820 space_info->flush = 0;
821 spin_unlock(&space_info->lock);
822 return;
823 }
824 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
825 space_info);
826 if (last_tickets_id == space_info->tickets_id) {
827 flush_state++;
828 } else {
829 last_tickets_id = space_info->tickets_id;
830 flush_state = FLUSH_DELAYED_ITEMS_NR;
831 if (commit_cycles)
832 commit_cycles--;
833 }
834
835 /*
836 * We don't want to force a chunk allocation until we've tried
837 * pretty hard to reclaim space. Think of the case where we
838 * freed up a bunch of space and so have a lot of pinned space
839 * to reclaim. We would rather use that than possibly create a
840 * underutilized metadata chunk. So if this is our first run
841 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
842 * commit the transaction. If nothing has changed the next go
843 * around then we can force a chunk allocation.
844 */
845 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
846 flush_state++;
847
848 if (flush_state > COMMIT_TRANS) {
849 commit_cycles++;
850 if (commit_cycles > 2) {
851 if (maybe_fail_all_tickets(fs_info, space_info)) {
852 flush_state = FLUSH_DELAYED_ITEMS_NR;
853 commit_cycles--;
854 } else {
855 space_info->flush = 0;
856 }
857 } else {
858 flush_state = FLUSH_DELAYED_ITEMS_NR;
859 }
860 }
861 spin_unlock(&space_info->lock);
862 } while (flush_state <= COMMIT_TRANS);
863}
864
865void btrfs_init_async_reclaim_work(struct work_struct *work)
866{
867 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
868}
869
870static const enum btrfs_flush_state priority_flush_states[] = {
871 FLUSH_DELAYED_ITEMS_NR,
872 FLUSH_DELAYED_ITEMS,
873 ALLOC_CHUNK,
874};
875
876static const enum btrfs_flush_state evict_flush_states[] = {
877 FLUSH_DELAYED_ITEMS_NR,
878 FLUSH_DELAYED_ITEMS,
879 FLUSH_DELAYED_REFS_NR,
880 FLUSH_DELAYED_REFS,
881 FLUSH_DELALLOC,
882 FLUSH_DELALLOC_WAIT,
883 ALLOC_CHUNK,
884 COMMIT_TRANS,
885};
886
887static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
888 struct btrfs_space_info *space_info,
889 struct reserve_ticket *ticket,
890 const enum btrfs_flush_state *states,
891 int states_nr)
892{
893 u64 to_reclaim;
894 int flush_state;
895
896 spin_lock(&space_info->lock);
897 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
898 if (!to_reclaim) {
899 spin_unlock(&space_info->lock);
900 return;
901 }
902 spin_unlock(&space_info->lock);
903
904 flush_state = 0;
905 do {
906 flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
907 flush_state++;
908 spin_lock(&space_info->lock);
909 if (ticket->bytes == 0) {
910 spin_unlock(&space_info->lock);
911 return;
912 }
913 spin_unlock(&space_info->lock);
914 } while (flush_state < states_nr);
915}
916
917static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
918 struct btrfs_space_info *space_info,
919 struct reserve_ticket *ticket)
920
921{
922 DEFINE_WAIT(wait);
923 int ret = 0;
924
925 spin_lock(&space_info->lock);
926 while (ticket->bytes > 0 && ticket->error == 0) {
927 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
928 if (ret) {
929 /*
930 * Delete us from the list. After we unlock the space
931 * info, we don't want the async reclaim job to reserve
932 * space for this ticket. If that would happen, then the
933 * ticket's task would not known that space was reserved
934 * despite getting an error, resulting in a space leak
935 * (bytes_may_use counter of our space_info).
936 */
937 list_del_init(&ticket->list);
938 ticket->error = -EINTR;
939 break;
940 }
941 spin_unlock(&space_info->lock);
942
943 schedule();
944
945 finish_wait(&ticket->wait, &wait);
946 spin_lock(&space_info->lock);
947 }
948 spin_unlock(&space_info->lock);
949}
950
951/**
952 * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
953 * @fs_info - the fs
954 * @space_info - the space_info for the reservation
955 * @ticket - the ticket for the reservation
956 * @flush - how much we can flush
957 *
958 * This does the work of figuring out how to flush for the ticket, waiting for
959 * the reservation, and returning the appropriate error if there is one.
960 */
961static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
962 struct btrfs_space_info *space_info,
963 struct reserve_ticket *ticket,
964 enum btrfs_reserve_flush_enum flush)
965{
966 int ret;
967
968 switch (flush) {
969 case BTRFS_RESERVE_FLUSH_ALL:
970 case BTRFS_RESERVE_FLUSH_ALL_STEAL:
971 wait_reserve_ticket(fs_info, space_info, ticket);
972 break;
973 case BTRFS_RESERVE_FLUSH_LIMIT:
974 priority_reclaim_metadata_space(fs_info, space_info, ticket,
975 priority_flush_states,
976 ARRAY_SIZE(priority_flush_states));
977 break;
978 case BTRFS_RESERVE_FLUSH_EVICT:
979 priority_reclaim_metadata_space(fs_info, space_info, ticket,
980 evict_flush_states,
981 ARRAY_SIZE(evict_flush_states));
982 break;
983 default:
984 ASSERT(0);
985 break;
986 }
987
988 spin_lock(&space_info->lock);
989 ret = ticket->error;
990 if (ticket->bytes || ticket->error) {
991 /*
992 * Need to delete here for priority tickets. For regular tickets
993 * either the async reclaim job deletes the ticket from the list
994 * or we delete it ourselves at wait_reserve_ticket().
995 */
996 list_del_init(&ticket->list);
997 if (!ret)
998 ret = -ENOSPC;
999 }
1000 spin_unlock(&space_info->lock);
1001 ASSERT(list_empty(&ticket->list));
1002 /*
1003 * Check that we can't have an error set if the reservation succeeded,
1004 * as that would confuse tasks and lead them to error out without
1005 * releasing reserved space (if an error happens the expectation is that
1006 * space wasn't reserved at all).
1007 */
1008 ASSERT(!(ticket->bytes == 0 && ticket->error));
1009 return ret;
1010}
1011
1012/**
1013 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1014 * @root - the root we're allocating for
1015 * @space_info - the space info we want to allocate from
1016 * @orig_bytes - the number of bytes we want
1017 * @flush - whether or not we can flush to make our reservation
1018 *
1019 * This will reserve orig_bytes number of bytes from the space info associated
1020 * with the block_rsv. If there is not enough space it will make an attempt to
1021 * flush out space to make room. It will do this by flushing delalloc if
1022 * possible or committing the transaction. If flush is 0 then no attempts to
1023 * regain reservations will be made and this will fail if there is not enough
1024 * space already.
1025 */
1026static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1027 struct btrfs_space_info *space_info,
1028 u64 orig_bytes,
1029 enum btrfs_reserve_flush_enum flush)
1030{
1031 struct reserve_ticket ticket;
1032 u64 used;
1033 int ret = 0;
1034 bool pending_tickets;
1035
1036 ASSERT(orig_bytes);
1037 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1038
1039 spin_lock(&space_info->lock);
1040 ret = -ENOSPC;
1041 used = btrfs_space_info_used(space_info, true);
1042 pending_tickets = !list_empty(&space_info->tickets) ||
1043 !list_empty(&space_info->priority_tickets);
1044
1045 /*
1046 * Carry on if we have enough space (short-circuit) OR call
1047 * can_overcommit() to ensure we can overcommit to continue.
1048 */
1049 if (!pending_tickets &&
1050 ((used + orig_bytes <= space_info->total_bytes) ||
1051 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1052 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1053 orig_bytes);
1054 ret = 0;
1055 }
1056
1057 /*
1058 * If we couldn't make a reservation then setup our reservation ticket
1059 * and kick the async worker if it's not already running.
1060 *
1061 * If we are a priority flusher then we just need to add our ticket to
1062 * the list and we will do our own flushing further down.
1063 */
1064 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1065 ticket.bytes = orig_bytes;
1066 ticket.error = 0;
1067 init_waitqueue_head(&ticket.wait);
1068 ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1069 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1070 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
1071 list_add_tail(&ticket.list, &space_info->tickets);
1072 if (!space_info->flush) {
1073 space_info->flush = 1;
1074 trace_btrfs_trigger_flush(fs_info,
1075 space_info->flags,
1076 orig_bytes, flush,
1077 "enospc");
1078 queue_work(system_unbound_wq,
1079 &fs_info->async_reclaim_work);
1080 }
1081 } else {
1082 list_add_tail(&ticket.list,
1083 &space_info->priority_tickets);
1084 }
1085 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1086 used += orig_bytes;
1087 /*
1088 * We will do the space reservation dance during log replay,
1089 * which means we won't have fs_info->fs_root set, so don't do
1090 * the async reclaim as we will panic.
1091 */
1092 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1093 need_do_async_reclaim(fs_info, space_info, used) &&
1094 !work_busy(&fs_info->async_reclaim_work)) {
1095 trace_btrfs_trigger_flush(fs_info, space_info->flags,
1096 orig_bytes, flush, "preempt");
1097 queue_work(system_unbound_wq,
1098 &fs_info->async_reclaim_work);
1099 }
1100 }
1101 spin_unlock(&space_info->lock);
1102 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1103 return ret;
1104
1105 return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1106}
1107
1108/**
1109 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1110 * @root - the root we're allocating for
1111 * @block_rsv - the block_rsv we're allocating for
1112 * @orig_bytes - the number of bytes we want
1113 * @flush - whether or not we can flush to make our reservation
1114 *
1115 * This will reserve orig_bytes number of bytes from the space info associated
1116 * with the block_rsv. If there is not enough space it will make an attempt to
1117 * flush out space to make room. It will do this by flushing delalloc if
1118 * possible or committing the transaction. If flush is 0 then no attempts to
1119 * regain reservations will be made and this will fail if there is not enough
1120 * space already.
1121 */
1122int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1123 struct btrfs_block_rsv *block_rsv,
1124 u64 orig_bytes,
1125 enum btrfs_reserve_flush_enum flush)
1126{
1127 struct btrfs_fs_info *fs_info = root->fs_info;
1128 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1129 int ret;
1130
1131 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
1132 orig_bytes, flush);
1133 if (ret == -ENOSPC &&
1134 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1135 if (block_rsv != global_rsv &&
1136 !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1137 ret = 0;
1138 }
1139 if (ret == -ENOSPC) {
1140 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1141 block_rsv->space_info->flags,
1142 orig_bytes, 1);
1143
1144 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1145 btrfs_dump_space_info(fs_info, block_rsv->space_info,
1146 orig_bytes, 0);
1147 }
1148 return ret;
1149}