b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * linux/fs/buffer.c |
| 4 | * |
| 5 | * Copyright (C) 1991, 1992, 2002 Linus Torvalds |
| 6 | */ |
| 7 | |
| 8 | /* |
| 9 | * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 |
| 10 | * |
| 11 | * Removed a lot of unnecessary code and simplified things now that |
| 12 | * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 |
| 13 | * |
| 14 | * Speed up hash, lru, and free list operations. Use gfp() for allocating |
| 15 | * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM |
| 16 | * |
| 17 | * Added 32k buffer block sizes - these are required older ARM systems. - RMK |
| 18 | * |
| 19 | * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> |
| 20 | */ |
| 21 | |
| 22 | #include <linux/kernel.h> |
| 23 | #include <linux/sched/signal.h> |
| 24 | #include <linux/syscalls.h> |
| 25 | #include <linux/fs.h> |
| 26 | #include <linux/iomap.h> |
| 27 | #include <linux/mm.h> |
| 28 | #include <linux/percpu.h> |
| 29 | #include <linux/slab.h> |
| 30 | #include <linux/capability.h> |
| 31 | #include <linux/blkdev.h> |
| 32 | #include <linux/file.h> |
| 33 | #include <linux/quotaops.h> |
| 34 | #include <linux/highmem.h> |
| 35 | #include <linux/export.h> |
| 36 | #include <linux/backing-dev.h> |
| 37 | #include <linux/writeback.h> |
| 38 | #include <linux/hash.h> |
| 39 | #include <linux/suspend.h> |
| 40 | #include <linux/buffer_head.h> |
| 41 | #include <linux/task_io_accounting_ops.h> |
| 42 | #include <linux/bio.h> |
| 43 | #include <linux/cpu.h> |
| 44 | #include <linux/bitops.h> |
| 45 | #include <linux/mpage.h> |
| 46 | #include <linux/bit_spinlock.h> |
| 47 | #include <linux/pagevec.h> |
| 48 | #include <linux/sched/mm.h> |
| 49 | #include <trace/events/block.h> |
| 50 | #include <linux/fscrypt.h> |
| 51 | |
| 52 | static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); |
| 53 | static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, |
| 54 | enum rw_hint hint, struct writeback_control *wbc); |
| 55 | |
| 56 | #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) |
| 57 | |
| 58 | inline void touch_buffer(struct buffer_head *bh) |
| 59 | { |
| 60 | trace_block_touch_buffer(bh); |
| 61 | mark_page_accessed(bh->b_page); |
| 62 | } |
| 63 | EXPORT_SYMBOL(touch_buffer); |
| 64 | |
| 65 | void __lock_buffer(struct buffer_head *bh) |
| 66 | { |
| 67 | wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); |
| 68 | } |
| 69 | EXPORT_SYMBOL(__lock_buffer); |
| 70 | |
| 71 | void unlock_buffer(struct buffer_head *bh) |
| 72 | { |
| 73 | clear_bit_unlock(BH_Lock, &bh->b_state); |
| 74 | smp_mb__after_atomic(); |
| 75 | wake_up_bit(&bh->b_state, BH_Lock); |
| 76 | } |
| 77 | EXPORT_SYMBOL(unlock_buffer); |
| 78 | |
| 79 | /* |
| 80 | * Returns if the page has dirty or writeback buffers. If all the buffers |
| 81 | * are unlocked and clean then the PageDirty information is stale. If |
| 82 | * any of the pages are locked, it is assumed they are locked for IO. |
| 83 | */ |
| 84 | void buffer_check_dirty_writeback(struct page *page, |
| 85 | bool *dirty, bool *writeback) |
| 86 | { |
| 87 | struct buffer_head *head, *bh; |
| 88 | *dirty = false; |
| 89 | *writeback = false; |
| 90 | |
| 91 | BUG_ON(!PageLocked(page)); |
| 92 | |
| 93 | if (!page_has_buffers(page)) |
| 94 | return; |
| 95 | |
| 96 | if (PageWriteback(page)) |
| 97 | *writeback = true; |
| 98 | |
| 99 | head = page_buffers(page); |
| 100 | bh = head; |
| 101 | do { |
| 102 | if (buffer_locked(bh)) |
| 103 | *writeback = true; |
| 104 | |
| 105 | if (buffer_dirty(bh)) |
| 106 | *dirty = true; |
| 107 | |
| 108 | bh = bh->b_this_page; |
| 109 | } while (bh != head); |
| 110 | } |
| 111 | EXPORT_SYMBOL(buffer_check_dirty_writeback); |
| 112 | |
| 113 | /* |
| 114 | * Block until a buffer comes unlocked. This doesn't stop it |
| 115 | * from becoming locked again - you have to lock it yourself |
| 116 | * if you want to preserve its state. |
| 117 | */ |
| 118 | void __wait_on_buffer(struct buffer_head * bh) |
| 119 | { |
| 120 | wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); |
| 121 | } |
| 122 | EXPORT_SYMBOL(__wait_on_buffer); |
| 123 | |
| 124 | static void |
| 125 | __clear_page_buffers(struct page *page) |
| 126 | { |
| 127 | ClearPagePrivate(page); |
| 128 | set_page_private(page, 0); |
| 129 | put_page(page); |
| 130 | } |
| 131 | |
| 132 | static void buffer_io_error(struct buffer_head *bh, char *msg) |
| 133 | { |
| 134 | if (!test_bit(BH_Quiet, &bh->b_state)) |
| 135 | printk_ratelimited(KERN_ERR |
| 136 | "Buffer I/O error on dev %pg, logical block %llu%s\n", |
| 137 | bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); |
| 138 | } |
| 139 | |
| 140 | /* |
| 141 | * End-of-IO handler helper function which does not touch the bh after |
| 142 | * unlocking it. |
| 143 | * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but |
| 144 | * a race there is benign: unlock_buffer() only use the bh's address for |
| 145 | * hashing after unlocking the buffer, so it doesn't actually touch the bh |
| 146 | * itself. |
| 147 | */ |
| 148 | static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) |
| 149 | { |
| 150 | if (uptodate) { |
| 151 | set_buffer_uptodate(bh); |
| 152 | } else { |
| 153 | /* This happens, due to failed read-ahead attempts. */ |
| 154 | clear_buffer_uptodate(bh); |
| 155 | } |
| 156 | unlock_buffer(bh); |
| 157 | } |
| 158 | |
| 159 | /* |
| 160 | * Default synchronous end-of-IO handler.. Just mark it up-to-date and |
| 161 | * unlock the buffer. This is what ll_rw_block uses too. |
| 162 | */ |
| 163 | void end_buffer_read_sync(struct buffer_head *bh, int uptodate) |
| 164 | { |
| 165 | __end_buffer_read_notouch(bh, uptodate); |
| 166 | put_bh(bh); |
| 167 | } |
| 168 | EXPORT_SYMBOL(end_buffer_read_sync); |
| 169 | |
| 170 | void end_buffer_write_sync(struct buffer_head *bh, int uptodate) |
| 171 | { |
| 172 | if (uptodate) { |
| 173 | set_buffer_uptodate(bh); |
| 174 | } else { |
| 175 | buffer_io_error(bh, ", lost sync page write"); |
| 176 | mark_buffer_write_io_error(bh); |
| 177 | clear_buffer_uptodate(bh); |
| 178 | } |
| 179 | unlock_buffer(bh); |
| 180 | put_bh(bh); |
| 181 | } |
| 182 | EXPORT_SYMBOL(end_buffer_write_sync); |
| 183 | |
| 184 | /* |
| 185 | * Various filesystems appear to want __find_get_block to be non-blocking. |
| 186 | * But it's the page lock which protects the buffers. To get around this, |
| 187 | * we get exclusion from try_to_free_buffers with the blockdev mapping's |
| 188 | * private_lock. |
| 189 | * |
| 190 | * Hack idea: for the blockdev mapping, private_lock contention |
| 191 | * may be quite high. This code could TryLock the page, and if that |
| 192 | * succeeds, there is no need to take private_lock. |
| 193 | */ |
| 194 | static struct buffer_head * |
| 195 | __find_get_block_slow(struct block_device *bdev, sector_t block) |
| 196 | { |
| 197 | struct inode *bd_inode = bdev->bd_inode; |
| 198 | struct address_space *bd_mapping = bd_inode->i_mapping; |
| 199 | struct buffer_head *ret = NULL; |
| 200 | pgoff_t index; |
| 201 | struct buffer_head *bh; |
| 202 | struct buffer_head *head; |
| 203 | struct page *page; |
| 204 | int all_mapped = 1; |
| 205 | static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); |
| 206 | |
| 207 | index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); |
| 208 | page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); |
| 209 | if (!page) |
| 210 | goto out; |
| 211 | |
| 212 | spin_lock(&bd_mapping->private_lock); |
| 213 | if (!page_has_buffers(page)) |
| 214 | goto out_unlock; |
| 215 | head = page_buffers(page); |
| 216 | bh = head; |
| 217 | do { |
| 218 | if (!buffer_mapped(bh)) |
| 219 | all_mapped = 0; |
| 220 | else if (bh->b_blocknr == block) { |
| 221 | ret = bh; |
| 222 | get_bh(bh); |
| 223 | goto out_unlock; |
| 224 | } |
| 225 | bh = bh->b_this_page; |
| 226 | } while (bh != head); |
| 227 | |
| 228 | /* we might be here because some of the buffers on this page are |
| 229 | * not mapped. This is due to various races between |
| 230 | * file io on the block device and getblk. It gets dealt with |
| 231 | * elsewhere, don't buffer_error if we had some unmapped buffers |
| 232 | */ |
| 233 | ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); |
| 234 | if (all_mapped && __ratelimit(&last_warned)) { |
| 235 | printk("__find_get_block_slow() failed. block=%llu, " |
| 236 | "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " |
| 237 | "device %pg blocksize: %d\n", |
| 238 | (unsigned long long)block, |
| 239 | (unsigned long long)bh->b_blocknr, |
| 240 | bh->b_state, bh->b_size, bdev, |
| 241 | 1 << bd_inode->i_blkbits); |
| 242 | } |
| 243 | out_unlock: |
| 244 | spin_unlock(&bd_mapping->private_lock); |
| 245 | put_page(page); |
| 246 | out: |
| 247 | return ret; |
| 248 | } |
| 249 | |
| 250 | /* |
| 251 | * I/O completion handler for block_read_full_page() - pages |
| 252 | * which come unlocked at the end of I/O. |
| 253 | */ |
| 254 | static void end_buffer_async_read(struct buffer_head *bh, int uptodate) |
| 255 | { |
| 256 | unsigned long flags; |
| 257 | struct buffer_head *first; |
| 258 | struct buffer_head *tmp; |
| 259 | struct page *page; |
| 260 | int page_uptodate = 1; |
| 261 | |
| 262 | BUG_ON(!buffer_async_read(bh)); |
| 263 | |
| 264 | page = bh->b_page; |
| 265 | if (uptodate) { |
| 266 | set_buffer_uptodate(bh); |
| 267 | } else { |
| 268 | clear_buffer_uptodate(bh); |
| 269 | buffer_io_error(bh, ", async page read"); |
| 270 | SetPageError(page); |
| 271 | } |
| 272 | |
| 273 | /* |
| 274 | * Be _very_ careful from here on. Bad things can happen if |
| 275 | * two buffer heads end IO at almost the same time and both |
| 276 | * decide that the page is now completely done. |
| 277 | */ |
| 278 | first = page_buffers(page); |
| 279 | local_irq_save(flags); |
| 280 | bit_spin_lock(BH_Uptodate_Lock, &first->b_state); |
| 281 | clear_buffer_async_read(bh); |
| 282 | unlock_buffer(bh); |
| 283 | tmp = bh; |
| 284 | do { |
| 285 | if (!buffer_uptodate(tmp)) |
| 286 | page_uptodate = 0; |
| 287 | if (buffer_async_read(tmp)) { |
| 288 | BUG_ON(!buffer_locked(tmp)); |
| 289 | goto still_busy; |
| 290 | } |
| 291 | tmp = tmp->b_this_page; |
| 292 | } while (tmp != bh); |
| 293 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
| 294 | local_irq_restore(flags); |
| 295 | |
| 296 | /* |
| 297 | * If none of the buffers had errors and they are all |
| 298 | * uptodate then we can set the page uptodate. |
| 299 | */ |
| 300 | if (page_uptodate && !PageError(page)) |
| 301 | SetPageUptodate(page); |
| 302 | unlock_page(page); |
| 303 | return; |
| 304 | |
| 305 | still_busy: |
| 306 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
| 307 | local_irq_restore(flags); |
| 308 | return; |
| 309 | } |
| 310 | |
| 311 | /* |
| 312 | * Completion handler for block_write_full_page() - pages which are unlocked |
| 313 | * during I/O, and which have PageWriteback cleared upon I/O completion. |
| 314 | */ |
| 315 | void end_buffer_async_write(struct buffer_head *bh, int uptodate) |
| 316 | { |
| 317 | unsigned long flags; |
| 318 | struct buffer_head *first; |
| 319 | struct buffer_head *tmp; |
| 320 | struct page *page; |
| 321 | |
| 322 | BUG_ON(!buffer_async_write(bh)); |
| 323 | |
| 324 | page = bh->b_page; |
| 325 | if (uptodate) { |
| 326 | set_buffer_uptodate(bh); |
| 327 | } else { |
| 328 | buffer_io_error(bh, ", lost async page write"); |
| 329 | mark_buffer_write_io_error(bh); |
| 330 | clear_buffer_uptodate(bh); |
| 331 | SetPageError(page); |
| 332 | } |
| 333 | |
| 334 | first = page_buffers(page); |
| 335 | local_irq_save(flags); |
| 336 | bit_spin_lock(BH_Uptodate_Lock, &first->b_state); |
| 337 | |
| 338 | clear_buffer_async_write(bh); |
| 339 | unlock_buffer(bh); |
| 340 | tmp = bh->b_this_page; |
| 341 | while (tmp != bh) { |
| 342 | if (buffer_async_write(tmp)) { |
| 343 | BUG_ON(!buffer_locked(tmp)); |
| 344 | goto still_busy; |
| 345 | } |
| 346 | tmp = tmp->b_this_page; |
| 347 | } |
| 348 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
| 349 | local_irq_restore(flags); |
| 350 | end_page_writeback(page); |
| 351 | return; |
| 352 | |
| 353 | still_busy: |
| 354 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
| 355 | local_irq_restore(flags); |
| 356 | return; |
| 357 | } |
| 358 | EXPORT_SYMBOL(end_buffer_async_write); |
| 359 | |
| 360 | /* |
| 361 | * If a page's buffers are under async readin (end_buffer_async_read |
| 362 | * completion) then there is a possibility that another thread of |
| 363 | * control could lock one of the buffers after it has completed |
| 364 | * but while some of the other buffers have not completed. This |
| 365 | * locked buffer would confuse end_buffer_async_read() into not unlocking |
| 366 | * the page. So the absence of BH_Async_Read tells end_buffer_async_read() |
| 367 | * that this buffer is not under async I/O. |
| 368 | * |
| 369 | * The page comes unlocked when it has no locked buffer_async buffers |
| 370 | * left. |
| 371 | * |
| 372 | * PageLocked prevents anyone starting new async I/O reads any of |
| 373 | * the buffers. |
| 374 | * |
| 375 | * PageWriteback is used to prevent simultaneous writeout of the same |
| 376 | * page. |
| 377 | * |
| 378 | * PageLocked prevents anyone from starting writeback of a page which is |
| 379 | * under read I/O (PageWriteback is only ever set against a locked page). |
| 380 | */ |
| 381 | static void mark_buffer_async_read(struct buffer_head *bh) |
| 382 | { |
| 383 | bh->b_end_io = end_buffer_async_read; |
| 384 | set_buffer_async_read(bh); |
| 385 | } |
| 386 | |
| 387 | static void mark_buffer_async_write_endio(struct buffer_head *bh, |
| 388 | bh_end_io_t *handler) |
| 389 | { |
| 390 | bh->b_end_io = handler; |
| 391 | set_buffer_async_write(bh); |
| 392 | } |
| 393 | |
| 394 | void mark_buffer_async_write(struct buffer_head *bh) |
| 395 | { |
| 396 | mark_buffer_async_write_endio(bh, end_buffer_async_write); |
| 397 | } |
| 398 | EXPORT_SYMBOL(mark_buffer_async_write); |
| 399 | |
| 400 | |
| 401 | /* |
| 402 | * fs/buffer.c contains helper functions for buffer-backed address space's |
| 403 | * fsync functions. A common requirement for buffer-based filesystems is |
| 404 | * that certain data from the backing blockdev needs to be written out for |
| 405 | * a successful fsync(). For example, ext2 indirect blocks need to be |
| 406 | * written back and waited upon before fsync() returns. |
| 407 | * |
| 408 | * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), |
| 409 | * inode_has_buffers() and invalidate_inode_buffers() are provided for the |
| 410 | * management of a list of dependent buffers at ->i_mapping->private_list. |
| 411 | * |
| 412 | * Locking is a little subtle: try_to_free_buffers() will remove buffers |
| 413 | * from their controlling inode's queue when they are being freed. But |
| 414 | * try_to_free_buffers() will be operating against the *blockdev* mapping |
| 415 | * at the time, not against the S_ISREG file which depends on those buffers. |
| 416 | * So the locking for private_list is via the private_lock in the address_space |
| 417 | * which backs the buffers. Which is different from the address_space |
| 418 | * against which the buffers are listed. So for a particular address_space, |
| 419 | * mapping->private_lock does *not* protect mapping->private_list! In fact, |
| 420 | * mapping->private_list will always be protected by the backing blockdev's |
| 421 | * ->private_lock. |
| 422 | * |
| 423 | * Which introduces a requirement: all buffers on an address_space's |
| 424 | * ->private_list must be from the same address_space: the blockdev's. |
| 425 | * |
| 426 | * address_spaces which do not place buffers at ->private_list via these |
| 427 | * utility functions are free to use private_lock and private_list for |
| 428 | * whatever they want. The only requirement is that list_empty(private_list) |
| 429 | * be true at clear_inode() time. |
| 430 | * |
| 431 | * FIXME: clear_inode should not call invalidate_inode_buffers(). The |
| 432 | * filesystems should do that. invalidate_inode_buffers() should just go |
| 433 | * BUG_ON(!list_empty). |
| 434 | * |
| 435 | * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should |
| 436 | * take an address_space, not an inode. And it should be called |
| 437 | * mark_buffer_dirty_fsync() to clearly define why those buffers are being |
| 438 | * queued up. |
| 439 | * |
| 440 | * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the |
| 441 | * list if it is already on a list. Because if the buffer is on a list, |
| 442 | * it *must* already be on the right one. If not, the filesystem is being |
| 443 | * silly. This will save a ton of locking. But first we have to ensure |
| 444 | * that buffers are taken *off* the old inode's list when they are freed |
| 445 | * (presumably in truncate). That requires careful auditing of all |
| 446 | * filesystems (do it inside bforget()). It could also be done by bringing |
| 447 | * b_inode back. |
| 448 | */ |
| 449 | |
| 450 | /* |
| 451 | * The buffer's backing address_space's private_lock must be held |
| 452 | */ |
| 453 | static void __remove_assoc_queue(struct buffer_head *bh) |
| 454 | { |
| 455 | list_del_init(&bh->b_assoc_buffers); |
| 456 | WARN_ON(!bh->b_assoc_map); |
| 457 | bh->b_assoc_map = NULL; |
| 458 | } |
| 459 | |
| 460 | int inode_has_buffers(struct inode *inode) |
| 461 | { |
| 462 | return !list_empty(&inode->i_data.private_list); |
| 463 | } |
| 464 | |
| 465 | /* |
| 466 | * osync is designed to support O_SYNC io. It waits synchronously for |
| 467 | * all already-submitted IO to complete, but does not queue any new |
| 468 | * writes to the disk. |
| 469 | * |
| 470 | * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as |
| 471 | * you dirty the buffers, and then use osync_inode_buffers to wait for |
| 472 | * completion. Any other dirty buffers which are not yet queued for |
| 473 | * write will not be flushed to disk by the osync. |
| 474 | */ |
| 475 | static int osync_buffers_list(spinlock_t *lock, struct list_head *list) |
| 476 | { |
| 477 | struct buffer_head *bh; |
| 478 | struct list_head *p; |
| 479 | int err = 0; |
| 480 | |
| 481 | spin_lock(lock); |
| 482 | repeat: |
| 483 | list_for_each_prev(p, list) { |
| 484 | bh = BH_ENTRY(p); |
| 485 | if (buffer_locked(bh)) { |
| 486 | get_bh(bh); |
| 487 | spin_unlock(lock); |
| 488 | wait_on_buffer(bh); |
| 489 | if (!buffer_uptodate(bh)) |
| 490 | err = -EIO; |
| 491 | brelse(bh); |
| 492 | spin_lock(lock); |
| 493 | goto repeat; |
| 494 | } |
| 495 | } |
| 496 | spin_unlock(lock); |
| 497 | return err; |
| 498 | } |
| 499 | |
| 500 | void emergency_thaw_bdev(struct super_block *sb) |
| 501 | { |
| 502 | while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) |
| 503 | printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); |
| 504 | } |
| 505 | |
| 506 | /** |
| 507 | * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers |
| 508 | * @mapping: the mapping which wants those buffers written |
| 509 | * |
| 510 | * Starts I/O against the buffers at mapping->private_list, and waits upon |
| 511 | * that I/O. |
| 512 | * |
| 513 | * Basically, this is a convenience function for fsync(). |
| 514 | * @mapping is a file or directory which needs those buffers to be written for |
| 515 | * a successful fsync(). |
| 516 | */ |
| 517 | int sync_mapping_buffers(struct address_space *mapping) |
| 518 | { |
| 519 | struct address_space *buffer_mapping = mapping->private_data; |
| 520 | |
| 521 | if (buffer_mapping == NULL || list_empty(&mapping->private_list)) |
| 522 | return 0; |
| 523 | |
| 524 | return fsync_buffers_list(&buffer_mapping->private_lock, |
| 525 | &mapping->private_list); |
| 526 | } |
| 527 | EXPORT_SYMBOL(sync_mapping_buffers); |
| 528 | |
| 529 | /* |
| 530 | * Called when we've recently written block `bblock', and it is known that |
| 531 | * `bblock' was for a buffer_boundary() buffer. This means that the block at |
| 532 | * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's |
| 533 | * dirty, schedule it for IO. So that indirects merge nicely with their data. |
| 534 | */ |
| 535 | void write_boundary_block(struct block_device *bdev, |
| 536 | sector_t bblock, unsigned blocksize) |
| 537 | { |
| 538 | struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); |
| 539 | if (bh) { |
| 540 | if (buffer_dirty(bh)) |
| 541 | ll_rw_block(REQ_OP_WRITE, 0, 1, &bh); |
| 542 | put_bh(bh); |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) |
| 547 | { |
| 548 | struct address_space *mapping = inode->i_mapping; |
| 549 | struct address_space *buffer_mapping = bh->b_page->mapping; |
| 550 | |
| 551 | mark_buffer_dirty(bh); |
| 552 | if (!mapping->private_data) { |
| 553 | mapping->private_data = buffer_mapping; |
| 554 | } else { |
| 555 | BUG_ON(mapping->private_data != buffer_mapping); |
| 556 | } |
| 557 | if (!bh->b_assoc_map) { |
| 558 | spin_lock(&buffer_mapping->private_lock); |
| 559 | list_move_tail(&bh->b_assoc_buffers, |
| 560 | &mapping->private_list); |
| 561 | bh->b_assoc_map = mapping; |
| 562 | spin_unlock(&buffer_mapping->private_lock); |
| 563 | } |
| 564 | } |
| 565 | EXPORT_SYMBOL(mark_buffer_dirty_inode); |
| 566 | |
| 567 | /* |
| 568 | * Mark the page dirty, and set it dirty in the page cache, and mark the inode |
| 569 | * dirty. |
| 570 | * |
| 571 | * If warn is true, then emit a warning if the page is not uptodate and has |
| 572 | * not been truncated. |
| 573 | * |
| 574 | * The caller must hold lock_page_memcg(). |
| 575 | */ |
| 576 | void __set_page_dirty(struct page *page, struct address_space *mapping, |
| 577 | int warn) |
| 578 | { |
| 579 | unsigned long flags; |
| 580 | |
| 581 | xa_lock_irqsave(&mapping->i_pages, flags); |
| 582 | if (page->mapping) { /* Race with truncate? */ |
| 583 | WARN_ON_ONCE(warn && !PageUptodate(page)); |
| 584 | account_page_dirtied(page, mapping); |
| 585 | __xa_set_mark(&mapping->i_pages, page_index(page), |
| 586 | PAGECACHE_TAG_DIRTY); |
| 587 | } |
| 588 | xa_unlock_irqrestore(&mapping->i_pages, flags); |
| 589 | } |
| 590 | EXPORT_SYMBOL_GPL(__set_page_dirty); |
| 591 | |
| 592 | /* |
| 593 | * Add a page to the dirty page list. |
| 594 | * |
| 595 | * It is a sad fact of life that this function is called from several places |
| 596 | * deeply under spinlocking. It may not sleep. |
| 597 | * |
| 598 | * If the page has buffers, the uptodate buffers are set dirty, to preserve |
| 599 | * dirty-state coherency between the page and the buffers. It the page does |
| 600 | * not have buffers then when they are later attached they will all be set |
| 601 | * dirty. |
| 602 | * |
| 603 | * The buffers are dirtied before the page is dirtied. There's a small race |
| 604 | * window in which a writepage caller may see the page cleanness but not the |
| 605 | * buffer dirtiness. That's fine. If this code were to set the page dirty |
| 606 | * before the buffers, a concurrent writepage caller could clear the page dirty |
| 607 | * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean |
| 608 | * page on the dirty page list. |
| 609 | * |
| 610 | * We use private_lock to lock against try_to_free_buffers while using the |
| 611 | * page's buffer list. Also use this to protect against clean buffers being |
| 612 | * added to the page after it was set dirty. |
| 613 | * |
| 614 | * FIXME: may need to call ->reservepage here as well. That's rather up to the |
| 615 | * address_space though. |
| 616 | */ |
| 617 | int __set_page_dirty_buffers(struct page *page) |
| 618 | { |
| 619 | int newly_dirty; |
| 620 | struct address_space *mapping = page_mapping(page); |
| 621 | |
| 622 | if (unlikely(!mapping)) |
| 623 | return !TestSetPageDirty(page); |
| 624 | |
| 625 | spin_lock(&mapping->private_lock); |
| 626 | if (page_has_buffers(page)) { |
| 627 | struct buffer_head *head = page_buffers(page); |
| 628 | struct buffer_head *bh = head; |
| 629 | |
| 630 | do { |
| 631 | set_buffer_dirty(bh); |
| 632 | bh = bh->b_this_page; |
| 633 | } while (bh != head); |
| 634 | } |
| 635 | /* |
| 636 | * Lock out page->mem_cgroup migration to keep PageDirty |
| 637 | * synchronized with per-memcg dirty page counters. |
| 638 | */ |
| 639 | lock_page_memcg(page); |
| 640 | newly_dirty = !TestSetPageDirty(page); |
| 641 | spin_unlock(&mapping->private_lock); |
| 642 | |
| 643 | if (newly_dirty) |
| 644 | __set_page_dirty(page, mapping, 1); |
| 645 | |
| 646 | unlock_page_memcg(page); |
| 647 | |
| 648 | if (newly_dirty) |
| 649 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); |
| 650 | |
| 651 | return newly_dirty; |
| 652 | } |
| 653 | EXPORT_SYMBOL(__set_page_dirty_buffers); |
| 654 | |
| 655 | /* |
| 656 | * Write out and wait upon a list of buffers. |
| 657 | * |
| 658 | * We have conflicting pressures: we want to make sure that all |
| 659 | * initially dirty buffers get waited on, but that any subsequently |
| 660 | * dirtied buffers don't. After all, we don't want fsync to last |
| 661 | * forever if somebody is actively writing to the file. |
| 662 | * |
| 663 | * Do this in two main stages: first we copy dirty buffers to a |
| 664 | * temporary inode list, queueing the writes as we go. Then we clean |
| 665 | * up, waiting for those writes to complete. |
| 666 | * |
| 667 | * During this second stage, any subsequent updates to the file may end |
| 668 | * up refiling the buffer on the original inode's dirty list again, so |
| 669 | * there is a chance we will end up with a buffer queued for write but |
| 670 | * not yet completed on that list. So, as a final cleanup we go through |
| 671 | * the osync code to catch these locked, dirty buffers without requeuing |
| 672 | * any newly dirty buffers for write. |
| 673 | */ |
| 674 | static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) |
| 675 | { |
| 676 | struct buffer_head *bh; |
| 677 | struct list_head tmp; |
| 678 | struct address_space *mapping; |
| 679 | int err = 0, err2; |
| 680 | struct blk_plug plug; |
| 681 | |
| 682 | INIT_LIST_HEAD(&tmp); |
| 683 | blk_start_plug(&plug); |
| 684 | |
| 685 | spin_lock(lock); |
| 686 | while (!list_empty(list)) { |
| 687 | bh = BH_ENTRY(list->next); |
| 688 | mapping = bh->b_assoc_map; |
| 689 | __remove_assoc_queue(bh); |
| 690 | /* Avoid race with mark_buffer_dirty_inode() which does |
| 691 | * a lockless check and we rely on seeing the dirty bit */ |
| 692 | smp_mb(); |
| 693 | if (buffer_dirty(bh) || buffer_locked(bh)) { |
| 694 | list_add(&bh->b_assoc_buffers, &tmp); |
| 695 | bh->b_assoc_map = mapping; |
| 696 | if (buffer_dirty(bh)) { |
| 697 | get_bh(bh); |
| 698 | spin_unlock(lock); |
| 699 | /* |
| 700 | * Ensure any pending I/O completes so that |
| 701 | * write_dirty_buffer() actually writes the |
| 702 | * current contents - it is a noop if I/O is |
| 703 | * still in flight on potentially older |
| 704 | * contents. |
| 705 | */ |
| 706 | write_dirty_buffer(bh, REQ_SYNC); |
| 707 | |
| 708 | /* |
| 709 | * Kick off IO for the previous mapping. Note |
| 710 | * that we will not run the very last mapping, |
| 711 | * wait_on_buffer() will do that for us |
| 712 | * through sync_buffer(). |
| 713 | */ |
| 714 | brelse(bh); |
| 715 | spin_lock(lock); |
| 716 | } |
| 717 | } |
| 718 | } |
| 719 | |
| 720 | spin_unlock(lock); |
| 721 | blk_finish_plug(&plug); |
| 722 | spin_lock(lock); |
| 723 | |
| 724 | while (!list_empty(&tmp)) { |
| 725 | bh = BH_ENTRY(tmp.prev); |
| 726 | get_bh(bh); |
| 727 | mapping = bh->b_assoc_map; |
| 728 | __remove_assoc_queue(bh); |
| 729 | /* Avoid race with mark_buffer_dirty_inode() which does |
| 730 | * a lockless check and we rely on seeing the dirty bit */ |
| 731 | smp_mb(); |
| 732 | if (buffer_dirty(bh)) { |
| 733 | list_add(&bh->b_assoc_buffers, |
| 734 | &mapping->private_list); |
| 735 | bh->b_assoc_map = mapping; |
| 736 | } |
| 737 | spin_unlock(lock); |
| 738 | wait_on_buffer(bh); |
| 739 | if (!buffer_uptodate(bh)) |
| 740 | err = -EIO; |
| 741 | brelse(bh); |
| 742 | spin_lock(lock); |
| 743 | } |
| 744 | |
| 745 | spin_unlock(lock); |
| 746 | err2 = osync_buffers_list(lock, list); |
| 747 | if (err) |
| 748 | return err; |
| 749 | else |
| 750 | return err2; |
| 751 | } |
| 752 | |
| 753 | /* |
| 754 | * Invalidate any and all dirty buffers on a given inode. We are |
| 755 | * probably unmounting the fs, but that doesn't mean we have already |
| 756 | * done a sync(). Just drop the buffers from the inode list. |
| 757 | * |
| 758 | * NOTE: we take the inode's blockdev's mapping's private_lock. Which |
| 759 | * assumes that all the buffers are against the blockdev. Not true |
| 760 | * for reiserfs. |
| 761 | */ |
| 762 | void invalidate_inode_buffers(struct inode *inode) |
| 763 | { |
| 764 | if (inode_has_buffers(inode)) { |
| 765 | struct address_space *mapping = &inode->i_data; |
| 766 | struct list_head *list = &mapping->private_list; |
| 767 | struct address_space *buffer_mapping = mapping->private_data; |
| 768 | |
| 769 | spin_lock(&buffer_mapping->private_lock); |
| 770 | while (!list_empty(list)) |
| 771 | __remove_assoc_queue(BH_ENTRY(list->next)); |
| 772 | spin_unlock(&buffer_mapping->private_lock); |
| 773 | } |
| 774 | } |
| 775 | EXPORT_SYMBOL(invalidate_inode_buffers); |
| 776 | |
| 777 | /* |
| 778 | * Remove any clean buffers from the inode's buffer list. This is called |
| 779 | * when we're trying to free the inode itself. Those buffers can pin it. |
| 780 | * |
| 781 | * Returns true if all buffers were removed. |
| 782 | */ |
| 783 | int remove_inode_buffers(struct inode *inode) |
| 784 | { |
| 785 | int ret = 1; |
| 786 | |
| 787 | if (inode_has_buffers(inode)) { |
| 788 | struct address_space *mapping = &inode->i_data; |
| 789 | struct list_head *list = &mapping->private_list; |
| 790 | struct address_space *buffer_mapping = mapping->private_data; |
| 791 | |
| 792 | spin_lock(&buffer_mapping->private_lock); |
| 793 | while (!list_empty(list)) { |
| 794 | struct buffer_head *bh = BH_ENTRY(list->next); |
| 795 | if (buffer_dirty(bh)) { |
| 796 | ret = 0; |
| 797 | break; |
| 798 | } |
| 799 | __remove_assoc_queue(bh); |
| 800 | } |
| 801 | spin_unlock(&buffer_mapping->private_lock); |
| 802 | } |
| 803 | return ret; |
| 804 | } |
| 805 | |
| 806 | /* |
| 807 | * Create the appropriate buffers when given a page for data area and |
| 808 | * the size of each buffer.. Use the bh->b_this_page linked list to |
| 809 | * follow the buffers created. Return NULL if unable to create more |
| 810 | * buffers. |
| 811 | * |
| 812 | * The retry flag is used to differentiate async IO (paging, swapping) |
| 813 | * which may not fail from ordinary buffer allocations. |
| 814 | */ |
| 815 | struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, |
| 816 | bool retry) |
| 817 | { |
| 818 | struct buffer_head *bh, *head; |
| 819 | gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; |
| 820 | long offset; |
| 821 | struct mem_cgroup *memcg; |
| 822 | |
| 823 | if (retry) |
| 824 | gfp |= __GFP_NOFAIL; |
| 825 | |
| 826 | memcg = get_mem_cgroup_from_page(page); |
| 827 | memalloc_use_memcg(memcg); |
| 828 | |
| 829 | head = NULL; |
| 830 | offset = PAGE_SIZE; |
| 831 | while ((offset -= size) >= 0) { |
| 832 | bh = alloc_buffer_head(gfp); |
| 833 | if (!bh) |
| 834 | goto no_grow; |
| 835 | |
| 836 | bh->b_this_page = head; |
| 837 | bh->b_blocknr = -1; |
| 838 | head = bh; |
| 839 | |
| 840 | bh->b_size = size; |
| 841 | |
| 842 | /* Link the buffer to its page */ |
| 843 | set_bh_page(bh, page, offset); |
| 844 | } |
| 845 | out: |
| 846 | memalloc_unuse_memcg(); |
| 847 | mem_cgroup_put(memcg); |
| 848 | return head; |
| 849 | /* |
| 850 | * In case anything failed, we just free everything we got. |
| 851 | */ |
| 852 | no_grow: |
| 853 | if (head) { |
| 854 | do { |
| 855 | bh = head; |
| 856 | head = head->b_this_page; |
| 857 | free_buffer_head(bh); |
| 858 | } while (head); |
| 859 | } |
| 860 | |
| 861 | goto out; |
| 862 | } |
| 863 | EXPORT_SYMBOL_GPL(alloc_page_buffers); |
| 864 | |
| 865 | static inline void |
| 866 | link_dev_buffers(struct page *page, struct buffer_head *head) |
| 867 | { |
| 868 | struct buffer_head *bh, *tail; |
| 869 | |
| 870 | bh = head; |
| 871 | do { |
| 872 | tail = bh; |
| 873 | bh = bh->b_this_page; |
| 874 | } while (bh); |
| 875 | tail->b_this_page = head; |
| 876 | attach_page_buffers(page, head); |
| 877 | } |
| 878 | |
| 879 | static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) |
| 880 | { |
| 881 | sector_t retval = ~((sector_t)0); |
| 882 | loff_t sz = i_size_read(bdev->bd_inode); |
| 883 | |
| 884 | if (sz) { |
| 885 | unsigned int sizebits = blksize_bits(size); |
| 886 | retval = (sz >> sizebits); |
| 887 | } |
| 888 | return retval; |
| 889 | } |
| 890 | |
| 891 | /* |
| 892 | * Initialise the state of a blockdev page's buffers. |
| 893 | */ |
| 894 | static sector_t |
| 895 | init_page_buffers(struct page *page, struct block_device *bdev, |
| 896 | sector_t block, int size) |
| 897 | { |
| 898 | struct buffer_head *head = page_buffers(page); |
| 899 | struct buffer_head *bh = head; |
| 900 | int uptodate = PageUptodate(page); |
| 901 | sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); |
| 902 | |
| 903 | do { |
| 904 | if (!buffer_mapped(bh)) { |
| 905 | bh->b_end_io = NULL; |
| 906 | bh->b_private = NULL; |
| 907 | bh->b_bdev = bdev; |
| 908 | bh->b_blocknr = block; |
| 909 | if (uptodate) |
| 910 | set_buffer_uptodate(bh); |
| 911 | if (block < end_block) |
| 912 | set_buffer_mapped(bh); |
| 913 | } |
| 914 | block++; |
| 915 | bh = bh->b_this_page; |
| 916 | } while (bh != head); |
| 917 | |
| 918 | /* |
| 919 | * Caller needs to validate requested block against end of device. |
| 920 | */ |
| 921 | return end_block; |
| 922 | } |
| 923 | |
| 924 | /* |
| 925 | * Create the page-cache page that contains the requested block. |
| 926 | * |
| 927 | * This is used purely for blockdev mappings. |
| 928 | */ |
| 929 | static int |
| 930 | grow_dev_page(struct block_device *bdev, sector_t block, |
| 931 | pgoff_t index, int size, int sizebits, gfp_t gfp) |
| 932 | { |
| 933 | struct inode *inode = bdev->bd_inode; |
| 934 | struct page *page; |
| 935 | struct buffer_head *bh; |
| 936 | sector_t end_block; |
| 937 | int ret = 0; /* Will call free_more_memory() */ |
| 938 | gfp_t gfp_mask; |
| 939 | |
| 940 | gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; |
| 941 | |
| 942 | /* |
| 943 | * XXX: __getblk_slow() can not really deal with failure and |
| 944 | * will endlessly loop on improvised global reclaim. Prefer |
| 945 | * looping in the allocator rather than here, at least that |
| 946 | * code knows what it's doing. |
| 947 | */ |
| 948 | gfp_mask |= __GFP_NOFAIL; |
| 949 | |
| 950 | page = find_or_create_page(inode->i_mapping, index, gfp_mask); |
| 951 | |
| 952 | BUG_ON(!PageLocked(page)); |
| 953 | |
| 954 | if (page_has_buffers(page)) { |
| 955 | bh = page_buffers(page); |
| 956 | if (bh->b_size == size) { |
| 957 | end_block = init_page_buffers(page, bdev, |
| 958 | (sector_t)index << sizebits, |
| 959 | size); |
| 960 | goto done; |
| 961 | } |
| 962 | if (!try_to_free_buffers(page)) |
| 963 | goto failed; |
| 964 | } |
| 965 | |
| 966 | /* |
| 967 | * Allocate some buffers for this page |
| 968 | */ |
| 969 | bh = alloc_page_buffers(page, size, true); |
| 970 | |
| 971 | /* |
| 972 | * Link the page to the buffers and initialise them. Take the |
| 973 | * lock to be atomic wrt __find_get_block(), which does not |
| 974 | * run under the page lock. |
| 975 | */ |
| 976 | spin_lock(&inode->i_mapping->private_lock); |
| 977 | link_dev_buffers(page, bh); |
| 978 | end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, |
| 979 | size); |
| 980 | spin_unlock(&inode->i_mapping->private_lock); |
| 981 | done: |
| 982 | ret = (block < end_block) ? 1 : -ENXIO; |
| 983 | failed: |
| 984 | unlock_page(page); |
| 985 | put_page(page); |
| 986 | return ret; |
| 987 | } |
| 988 | |
| 989 | /* |
| 990 | * Create buffers for the specified block device block's page. If |
| 991 | * that page was dirty, the buffers are set dirty also. |
| 992 | */ |
| 993 | static int |
| 994 | grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) |
| 995 | { |
| 996 | pgoff_t index; |
| 997 | int sizebits; |
| 998 | |
| 999 | sizebits = -1; |
| 1000 | do { |
| 1001 | sizebits++; |
| 1002 | } while ((size << sizebits) < PAGE_SIZE); |
| 1003 | |
| 1004 | index = block >> sizebits; |
| 1005 | |
| 1006 | /* |
| 1007 | * Check for a block which wants to lie outside our maximum possible |
| 1008 | * pagecache index. (this comparison is done using sector_t types). |
| 1009 | */ |
| 1010 | if (unlikely(index != block >> sizebits)) { |
| 1011 | printk(KERN_ERR "%s: requested out-of-range block %llu for " |
| 1012 | "device %pg\n", |
| 1013 | __func__, (unsigned long long)block, |
| 1014 | bdev); |
| 1015 | return -EIO; |
| 1016 | } |
| 1017 | |
| 1018 | /* Create a page with the proper size buffers.. */ |
| 1019 | return grow_dev_page(bdev, block, index, size, sizebits, gfp); |
| 1020 | } |
| 1021 | |
| 1022 | static struct buffer_head * |
| 1023 | __getblk_slow(struct block_device *bdev, sector_t block, |
| 1024 | unsigned size, gfp_t gfp) |
| 1025 | { |
| 1026 | /* Size must be multiple of hard sectorsize */ |
| 1027 | if (unlikely(size & (bdev_logical_block_size(bdev)-1) || |
| 1028 | (size < 512 || size > PAGE_SIZE))) { |
| 1029 | printk(KERN_ERR "getblk(): invalid block size %d requested\n", |
| 1030 | size); |
| 1031 | printk(KERN_ERR "logical block size: %d\n", |
| 1032 | bdev_logical_block_size(bdev)); |
| 1033 | |
| 1034 | dump_stack(); |
| 1035 | return NULL; |
| 1036 | } |
| 1037 | |
| 1038 | for (;;) { |
| 1039 | struct buffer_head *bh; |
| 1040 | int ret; |
| 1041 | |
| 1042 | bh = __find_get_block(bdev, block, size); |
| 1043 | if (bh) |
| 1044 | return bh; |
| 1045 | |
| 1046 | ret = grow_buffers(bdev, block, size, gfp); |
| 1047 | if (ret < 0) |
| 1048 | return NULL; |
| 1049 | } |
| 1050 | } |
| 1051 | |
| 1052 | /* |
| 1053 | * The relationship between dirty buffers and dirty pages: |
| 1054 | * |
| 1055 | * Whenever a page has any dirty buffers, the page's dirty bit is set, and |
| 1056 | * the page is tagged dirty in the page cache. |
| 1057 | * |
| 1058 | * At all times, the dirtiness of the buffers represents the dirtiness of |
| 1059 | * subsections of the page. If the page has buffers, the page dirty bit is |
| 1060 | * merely a hint about the true dirty state. |
| 1061 | * |
| 1062 | * When a page is set dirty in its entirety, all its buffers are marked dirty |
| 1063 | * (if the page has buffers). |
| 1064 | * |
| 1065 | * When a buffer is marked dirty, its page is dirtied, but the page's other |
| 1066 | * buffers are not. |
| 1067 | * |
| 1068 | * Also. When blockdev buffers are explicitly read with bread(), they |
| 1069 | * individually become uptodate. But their backing page remains not |
| 1070 | * uptodate - even if all of its buffers are uptodate. A subsequent |
| 1071 | * block_read_full_page() against that page will discover all the uptodate |
| 1072 | * buffers, will set the page uptodate and will perform no I/O. |
| 1073 | */ |
| 1074 | |
| 1075 | /** |
| 1076 | * mark_buffer_dirty - mark a buffer_head as needing writeout |
| 1077 | * @bh: the buffer_head to mark dirty |
| 1078 | * |
| 1079 | * mark_buffer_dirty() will set the dirty bit against the buffer, then set |
| 1080 | * its backing page dirty, then tag the page as dirty in the page cache |
| 1081 | * and then attach the address_space's inode to its superblock's dirty |
| 1082 | * inode list. |
| 1083 | * |
| 1084 | * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, |
| 1085 | * i_pages lock and mapping->host->i_lock. |
| 1086 | */ |
| 1087 | void mark_buffer_dirty(struct buffer_head *bh) |
| 1088 | { |
| 1089 | WARN_ON_ONCE(!buffer_uptodate(bh)); |
| 1090 | |
| 1091 | trace_block_dirty_buffer(bh); |
| 1092 | |
| 1093 | /* |
| 1094 | * Very *carefully* optimize the it-is-already-dirty case. |
| 1095 | * |
| 1096 | * Don't let the final "is it dirty" escape to before we |
| 1097 | * perhaps modified the buffer. |
| 1098 | */ |
| 1099 | if (buffer_dirty(bh)) { |
| 1100 | smp_mb(); |
| 1101 | if (buffer_dirty(bh)) |
| 1102 | return; |
| 1103 | } |
| 1104 | |
| 1105 | if (!test_set_buffer_dirty(bh)) { |
| 1106 | struct page *page = bh->b_page; |
| 1107 | struct address_space *mapping = NULL; |
| 1108 | |
| 1109 | lock_page_memcg(page); |
| 1110 | if (!TestSetPageDirty(page)) { |
| 1111 | mapping = page_mapping(page); |
| 1112 | if (mapping) |
| 1113 | __set_page_dirty(page, mapping, 0); |
| 1114 | } |
| 1115 | unlock_page_memcg(page); |
| 1116 | if (mapping) |
| 1117 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); |
| 1118 | } |
| 1119 | } |
| 1120 | EXPORT_SYMBOL(mark_buffer_dirty); |
| 1121 | |
| 1122 | void mark_buffer_write_io_error(struct buffer_head *bh) |
| 1123 | { |
| 1124 | set_buffer_write_io_error(bh); |
| 1125 | /* FIXME: do we need to set this in both places? */ |
| 1126 | if (bh->b_page && bh->b_page->mapping) |
| 1127 | mapping_set_error(bh->b_page->mapping, -EIO); |
| 1128 | if (bh->b_assoc_map) |
| 1129 | mapping_set_error(bh->b_assoc_map, -EIO); |
| 1130 | } |
| 1131 | EXPORT_SYMBOL(mark_buffer_write_io_error); |
| 1132 | |
| 1133 | /* |
| 1134 | * Decrement a buffer_head's reference count. If all buffers against a page |
| 1135 | * have zero reference count, are clean and unlocked, and if the page is clean |
| 1136 | * and unlocked then try_to_free_buffers() may strip the buffers from the page |
| 1137 | * in preparation for freeing it (sometimes, rarely, buffers are removed from |
| 1138 | * a page but it ends up not being freed, and buffers may later be reattached). |
| 1139 | */ |
| 1140 | void __brelse(struct buffer_head * buf) |
| 1141 | { |
| 1142 | if (atomic_read(&buf->b_count)) { |
| 1143 | put_bh(buf); |
| 1144 | return; |
| 1145 | } |
| 1146 | WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); |
| 1147 | } |
| 1148 | EXPORT_SYMBOL(__brelse); |
| 1149 | |
| 1150 | /* |
| 1151 | * bforget() is like brelse(), except it discards any |
| 1152 | * potentially dirty data. |
| 1153 | */ |
| 1154 | void __bforget(struct buffer_head *bh) |
| 1155 | { |
| 1156 | clear_buffer_dirty(bh); |
| 1157 | if (bh->b_assoc_map) { |
| 1158 | struct address_space *buffer_mapping = bh->b_page->mapping; |
| 1159 | |
| 1160 | spin_lock(&buffer_mapping->private_lock); |
| 1161 | list_del_init(&bh->b_assoc_buffers); |
| 1162 | bh->b_assoc_map = NULL; |
| 1163 | spin_unlock(&buffer_mapping->private_lock); |
| 1164 | } |
| 1165 | __brelse(bh); |
| 1166 | } |
| 1167 | EXPORT_SYMBOL(__bforget); |
| 1168 | |
| 1169 | static struct buffer_head *__bread_slow(struct buffer_head *bh) |
| 1170 | { |
| 1171 | lock_buffer(bh); |
| 1172 | if (buffer_uptodate(bh)) { |
| 1173 | unlock_buffer(bh); |
| 1174 | return bh; |
| 1175 | } else { |
| 1176 | get_bh(bh); |
| 1177 | bh->b_end_io = end_buffer_read_sync; |
| 1178 | submit_bh(REQ_OP_READ, 0, bh); |
| 1179 | wait_on_buffer(bh); |
| 1180 | if (buffer_uptodate(bh)) |
| 1181 | return bh; |
| 1182 | } |
| 1183 | brelse(bh); |
| 1184 | return NULL; |
| 1185 | } |
| 1186 | |
| 1187 | /* |
| 1188 | * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). |
| 1189 | * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their |
| 1190 | * refcount elevated by one when they're in an LRU. A buffer can only appear |
| 1191 | * once in a particular CPU's LRU. A single buffer can be present in multiple |
| 1192 | * CPU's LRUs at the same time. |
| 1193 | * |
| 1194 | * This is a transparent caching front-end to sb_bread(), sb_getblk() and |
| 1195 | * sb_find_get_block(). |
| 1196 | * |
| 1197 | * The LRUs themselves only need locking against invalidate_bh_lrus. We use |
| 1198 | * a local interrupt disable for that. |
| 1199 | */ |
| 1200 | |
| 1201 | #define BH_LRU_SIZE 16 |
| 1202 | |
| 1203 | struct bh_lru { |
| 1204 | struct buffer_head *bhs[BH_LRU_SIZE]; |
| 1205 | }; |
| 1206 | |
| 1207 | static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; |
| 1208 | |
| 1209 | #ifdef CONFIG_SMP |
| 1210 | #define bh_lru_lock() local_irq_disable() |
| 1211 | #define bh_lru_unlock() local_irq_enable() |
| 1212 | #else |
| 1213 | #define bh_lru_lock() preempt_disable() |
| 1214 | #define bh_lru_unlock() preempt_enable() |
| 1215 | #endif |
| 1216 | |
| 1217 | static inline void check_irqs_on(void) |
| 1218 | { |
| 1219 | #ifdef irqs_disabled |
| 1220 | BUG_ON(irqs_disabled()); |
| 1221 | #endif |
| 1222 | } |
| 1223 | |
| 1224 | /* |
| 1225 | * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is |
| 1226 | * inserted at the front, and the buffer_head at the back if any is evicted. |
| 1227 | * Or, if already in the LRU it is moved to the front. |
| 1228 | */ |
| 1229 | static void bh_lru_install(struct buffer_head *bh) |
| 1230 | { |
| 1231 | struct buffer_head *evictee = bh; |
| 1232 | struct bh_lru *b; |
| 1233 | int i; |
| 1234 | |
| 1235 | check_irqs_on(); |
| 1236 | bh_lru_lock(); |
| 1237 | |
| 1238 | b = this_cpu_ptr(&bh_lrus); |
| 1239 | for (i = 0; i < BH_LRU_SIZE; i++) { |
| 1240 | swap(evictee, b->bhs[i]); |
| 1241 | if (evictee == bh) { |
| 1242 | bh_lru_unlock(); |
| 1243 | return; |
| 1244 | } |
| 1245 | } |
| 1246 | |
| 1247 | get_bh(bh); |
| 1248 | bh_lru_unlock(); |
| 1249 | brelse(evictee); |
| 1250 | } |
| 1251 | |
| 1252 | /* |
| 1253 | * Look up the bh in this cpu's LRU. If it's there, move it to the head. |
| 1254 | */ |
| 1255 | static struct buffer_head * |
| 1256 | lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) |
| 1257 | { |
| 1258 | struct buffer_head *ret = NULL; |
| 1259 | unsigned int i; |
| 1260 | |
| 1261 | check_irqs_on(); |
| 1262 | bh_lru_lock(); |
| 1263 | for (i = 0; i < BH_LRU_SIZE; i++) { |
| 1264 | struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); |
| 1265 | |
| 1266 | if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && |
| 1267 | bh->b_size == size) { |
| 1268 | if (i) { |
| 1269 | while (i) { |
| 1270 | __this_cpu_write(bh_lrus.bhs[i], |
| 1271 | __this_cpu_read(bh_lrus.bhs[i - 1])); |
| 1272 | i--; |
| 1273 | } |
| 1274 | __this_cpu_write(bh_lrus.bhs[0], bh); |
| 1275 | } |
| 1276 | get_bh(bh); |
| 1277 | ret = bh; |
| 1278 | break; |
| 1279 | } |
| 1280 | } |
| 1281 | bh_lru_unlock(); |
| 1282 | return ret; |
| 1283 | } |
| 1284 | |
| 1285 | /* |
| 1286 | * Perform a pagecache lookup for the matching buffer. If it's there, refresh |
| 1287 | * it in the LRU and mark it as accessed. If it is not present then return |
| 1288 | * NULL |
| 1289 | */ |
| 1290 | struct buffer_head * |
| 1291 | __find_get_block(struct block_device *bdev, sector_t block, unsigned size) |
| 1292 | { |
| 1293 | struct buffer_head *bh = lookup_bh_lru(bdev, block, size); |
| 1294 | |
| 1295 | if (bh == NULL) { |
| 1296 | /* __find_get_block_slow will mark the page accessed */ |
| 1297 | bh = __find_get_block_slow(bdev, block); |
| 1298 | if (bh) |
| 1299 | bh_lru_install(bh); |
| 1300 | } else |
| 1301 | touch_buffer(bh); |
| 1302 | |
| 1303 | return bh; |
| 1304 | } |
| 1305 | EXPORT_SYMBOL(__find_get_block); |
| 1306 | |
| 1307 | /* |
| 1308 | * __getblk_gfp() will locate (and, if necessary, create) the buffer_head |
| 1309 | * which corresponds to the passed block_device, block and size. The |
| 1310 | * returned buffer has its reference count incremented. |
| 1311 | * |
| 1312 | * __getblk_gfp() will lock up the machine if grow_dev_page's |
| 1313 | * try_to_free_buffers() attempt is failing. FIXME, perhaps? |
| 1314 | */ |
| 1315 | struct buffer_head * |
| 1316 | __getblk_gfp(struct block_device *bdev, sector_t block, |
| 1317 | unsigned size, gfp_t gfp) |
| 1318 | { |
| 1319 | struct buffer_head *bh = __find_get_block(bdev, block, size); |
| 1320 | |
| 1321 | might_sleep(); |
| 1322 | if (bh == NULL) |
| 1323 | bh = __getblk_slow(bdev, block, size, gfp); |
| 1324 | return bh; |
| 1325 | } |
| 1326 | EXPORT_SYMBOL(__getblk_gfp); |
| 1327 | |
| 1328 | /* |
| 1329 | * Do async read-ahead on a buffer.. |
| 1330 | */ |
| 1331 | void __breadahead(struct block_device *bdev, sector_t block, unsigned size) |
| 1332 | { |
| 1333 | struct buffer_head *bh = __getblk(bdev, block, size); |
| 1334 | if (likely(bh)) { |
| 1335 | ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); |
| 1336 | brelse(bh); |
| 1337 | } |
| 1338 | } |
| 1339 | EXPORT_SYMBOL(__breadahead); |
| 1340 | |
| 1341 | void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size, |
| 1342 | gfp_t gfp) |
| 1343 | { |
| 1344 | struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); |
| 1345 | if (likely(bh)) { |
| 1346 | ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); |
| 1347 | brelse(bh); |
| 1348 | } |
| 1349 | } |
| 1350 | EXPORT_SYMBOL(__breadahead_gfp); |
| 1351 | |
| 1352 | /** |
| 1353 | * __bread_gfp() - reads a specified block and returns the bh |
| 1354 | * @bdev: the block_device to read from |
| 1355 | * @block: number of block |
| 1356 | * @size: size (in bytes) to read |
| 1357 | * @gfp: page allocation flag |
| 1358 | * |
| 1359 | * Reads a specified block, and returns buffer head that contains it. |
| 1360 | * The page cache can be allocated from non-movable area |
| 1361 | * not to prevent page migration if you set gfp to zero. |
| 1362 | * It returns NULL if the block was unreadable. |
| 1363 | */ |
| 1364 | struct buffer_head * |
| 1365 | __bread_gfp(struct block_device *bdev, sector_t block, |
| 1366 | unsigned size, gfp_t gfp) |
| 1367 | { |
| 1368 | struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); |
| 1369 | |
| 1370 | if (likely(bh) && !buffer_uptodate(bh)) |
| 1371 | bh = __bread_slow(bh); |
| 1372 | return bh; |
| 1373 | } |
| 1374 | EXPORT_SYMBOL(__bread_gfp); |
| 1375 | |
| 1376 | /* |
| 1377 | * invalidate_bh_lrus() is called rarely - but not only at unmount. |
| 1378 | * This doesn't race because it runs in each cpu either in irq |
| 1379 | * or with preempt disabled. |
| 1380 | */ |
| 1381 | static void invalidate_bh_lru(void *arg) |
| 1382 | { |
| 1383 | struct bh_lru *b = &get_cpu_var(bh_lrus); |
| 1384 | int i; |
| 1385 | |
| 1386 | for (i = 0; i < BH_LRU_SIZE; i++) { |
| 1387 | brelse(b->bhs[i]); |
| 1388 | b->bhs[i] = NULL; |
| 1389 | } |
| 1390 | put_cpu_var(bh_lrus); |
| 1391 | } |
| 1392 | |
| 1393 | static bool has_bh_in_lru(int cpu, void *dummy) |
| 1394 | { |
| 1395 | struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); |
| 1396 | int i; |
| 1397 | |
| 1398 | for (i = 0; i < BH_LRU_SIZE; i++) { |
| 1399 | if (b->bhs[i]) |
| 1400 | return 1; |
| 1401 | } |
| 1402 | |
| 1403 | return 0; |
| 1404 | } |
| 1405 | |
| 1406 | void invalidate_bh_lrus(void) |
| 1407 | { |
| 1408 | on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); |
| 1409 | } |
| 1410 | EXPORT_SYMBOL_GPL(invalidate_bh_lrus); |
| 1411 | |
| 1412 | void set_bh_page(struct buffer_head *bh, |
| 1413 | struct page *page, unsigned long offset) |
| 1414 | { |
| 1415 | bh->b_page = page; |
| 1416 | BUG_ON(offset >= PAGE_SIZE); |
| 1417 | if (PageHighMem(page)) |
| 1418 | /* |
| 1419 | * This catches illegal uses and preserves the offset: |
| 1420 | */ |
| 1421 | bh->b_data = (char *)(0 + offset); |
| 1422 | else |
| 1423 | bh->b_data = page_address(page) + offset; |
| 1424 | } |
| 1425 | EXPORT_SYMBOL(set_bh_page); |
| 1426 | |
| 1427 | /* |
| 1428 | * Called when truncating a buffer on a page completely. |
| 1429 | */ |
| 1430 | |
| 1431 | /* Bits that are cleared during an invalidate */ |
| 1432 | #define BUFFER_FLAGS_DISCARD \ |
| 1433 | (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ |
| 1434 | 1 << BH_Delay | 1 << BH_Unwritten) |
| 1435 | |
| 1436 | static void discard_buffer(struct buffer_head * bh) |
| 1437 | { |
| 1438 | unsigned long b_state, b_state_old; |
| 1439 | |
| 1440 | lock_buffer(bh); |
| 1441 | clear_buffer_dirty(bh); |
| 1442 | bh->b_bdev = NULL; |
| 1443 | b_state = bh->b_state; |
| 1444 | for (;;) { |
| 1445 | b_state_old = cmpxchg(&bh->b_state, b_state, |
| 1446 | (b_state & ~BUFFER_FLAGS_DISCARD)); |
| 1447 | if (b_state_old == b_state) |
| 1448 | break; |
| 1449 | b_state = b_state_old; |
| 1450 | } |
| 1451 | unlock_buffer(bh); |
| 1452 | } |
| 1453 | |
| 1454 | /** |
| 1455 | * block_invalidatepage - invalidate part or all of a buffer-backed page |
| 1456 | * |
| 1457 | * @page: the page which is affected |
| 1458 | * @offset: start of the range to invalidate |
| 1459 | * @length: length of the range to invalidate |
| 1460 | * |
| 1461 | * block_invalidatepage() is called when all or part of the page has become |
| 1462 | * invalidated by a truncate operation. |
| 1463 | * |
| 1464 | * block_invalidatepage() does not have to release all buffers, but it must |
| 1465 | * ensure that no dirty buffer is left outside @offset and that no I/O |
| 1466 | * is underway against any of the blocks which are outside the truncation |
| 1467 | * point. Because the caller is about to free (and possibly reuse) those |
| 1468 | * blocks on-disk. |
| 1469 | */ |
| 1470 | void block_invalidatepage(struct page *page, unsigned int offset, |
| 1471 | unsigned int length) |
| 1472 | { |
| 1473 | struct buffer_head *head, *bh, *next; |
| 1474 | unsigned int curr_off = 0; |
| 1475 | unsigned int stop = length + offset; |
| 1476 | |
| 1477 | BUG_ON(!PageLocked(page)); |
| 1478 | if (!page_has_buffers(page)) |
| 1479 | goto out; |
| 1480 | |
| 1481 | /* |
| 1482 | * Check for overflow |
| 1483 | */ |
| 1484 | BUG_ON(stop > PAGE_SIZE || stop < length); |
| 1485 | |
| 1486 | head = page_buffers(page); |
| 1487 | bh = head; |
| 1488 | do { |
| 1489 | unsigned int next_off = curr_off + bh->b_size; |
| 1490 | next = bh->b_this_page; |
| 1491 | |
| 1492 | /* |
| 1493 | * Are we still fully in range ? |
| 1494 | */ |
| 1495 | if (next_off > stop) |
| 1496 | goto out; |
| 1497 | |
| 1498 | /* |
| 1499 | * is this block fully invalidated? |
| 1500 | */ |
| 1501 | if (offset <= curr_off) |
| 1502 | discard_buffer(bh); |
| 1503 | curr_off = next_off; |
| 1504 | bh = next; |
| 1505 | } while (bh != head); |
| 1506 | |
| 1507 | /* |
| 1508 | * We release buffers only if the entire page is being invalidated. |
| 1509 | * The get_block cached value has been unconditionally invalidated, |
| 1510 | * so real IO is not possible anymore. |
| 1511 | */ |
| 1512 | if (length == PAGE_SIZE) |
| 1513 | try_to_release_page(page, 0); |
| 1514 | out: |
| 1515 | return; |
| 1516 | } |
| 1517 | EXPORT_SYMBOL(block_invalidatepage); |
| 1518 | |
| 1519 | |
| 1520 | /* |
| 1521 | * We attach and possibly dirty the buffers atomically wrt |
| 1522 | * __set_page_dirty_buffers() via private_lock. try_to_free_buffers |
| 1523 | * is already excluded via the page lock. |
| 1524 | */ |
| 1525 | void create_empty_buffers(struct page *page, |
| 1526 | unsigned long blocksize, unsigned long b_state) |
| 1527 | { |
| 1528 | struct buffer_head *bh, *head, *tail; |
| 1529 | |
| 1530 | head = alloc_page_buffers(page, blocksize, true); |
| 1531 | bh = head; |
| 1532 | do { |
| 1533 | bh->b_state |= b_state; |
| 1534 | tail = bh; |
| 1535 | bh = bh->b_this_page; |
| 1536 | } while (bh); |
| 1537 | tail->b_this_page = head; |
| 1538 | |
| 1539 | spin_lock(&page->mapping->private_lock); |
| 1540 | if (PageUptodate(page) || PageDirty(page)) { |
| 1541 | bh = head; |
| 1542 | do { |
| 1543 | if (PageDirty(page)) |
| 1544 | set_buffer_dirty(bh); |
| 1545 | if (PageUptodate(page)) |
| 1546 | set_buffer_uptodate(bh); |
| 1547 | bh = bh->b_this_page; |
| 1548 | } while (bh != head); |
| 1549 | } |
| 1550 | attach_page_buffers(page, head); |
| 1551 | spin_unlock(&page->mapping->private_lock); |
| 1552 | } |
| 1553 | EXPORT_SYMBOL(create_empty_buffers); |
| 1554 | |
| 1555 | /** |
| 1556 | * clean_bdev_aliases: clean a range of buffers in block device |
| 1557 | * @bdev: Block device to clean buffers in |
| 1558 | * @block: Start of a range of blocks to clean |
| 1559 | * @len: Number of blocks to clean |
| 1560 | * |
| 1561 | * We are taking a range of blocks for data and we don't want writeback of any |
| 1562 | * buffer-cache aliases starting from return from this function and until the |
| 1563 | * moment when something will explicitly mark the buffer dirty (hopefully that |
| 1564 | * will not happen until we will free that block ;-) We don't even need to mark |
| 1565 | * it not-uptodate - nobody can expect anything from a newly allocated buffer |
| 1566 | * anyway. We used to use unmap_buffer() for such invalidation, but that was |
| 1567 | * wrong. We definitely don't want to mark the alias unmapped, for example - it |
| 1568 | * would confuse anyone who might pick it with bread() afterwards... |
| 1569 | * |
| 1570 | * Also.. Note that bforget() doesn't lock the buffer. So there can be |
| 1571 | * writeout I/O going on against recently-freed buffers. We don't wait on that |
| 1572 | * I/O in bforget() - it's more efficient to wait on the I/O only if we really |
| 1573 | * need to. That happens here. |
| 1574 | */ |
| 1575 | void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) |
| 1576 | { |
| 1577 | struct inode *bd_inode = bdev->bd_inode; |
| 1578 | struct address_space *bd_mapping = bd_inode->i_mapping; |
| 1579 | struct pagevec pvec; |
| 1580 | pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); |
| 1581 | pgoff_t end; |
| 1582 | int i, count; |
| 1583 | struct buffer_head *bh; |
| 1584 | struct buffer_head *head; |
| 1585 | |
| 1586 | end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); |
| 1587 | pagevec_init(&pvec); |
| 1588 | while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) { |
| 1589 | count = pagevec_count(&pvec); |
| 1590 | for (i = 0; i < count; i++) { |
| 1591 | struct page *page = pvec.pages[i]; |
| 1592 | |
| 1593 | if (!page_has_buffers(page)) |
| 1594 | continue; |
| 1595 | /* |
| 1596 | * We use page lock instead of bd_mapping->private_lock |
| 1597 | * to pin buffers here since we can afford to sleep and |
| 1598 | * it scales better than a global spinlock lock. |
| 1599 | */ |
| 1600 | lock_page(page); |
| 1601 | /* Recheck when the page is locked which pins bhs */ |
| 1602 | if (!page_has_buffers(page)) |
| 1603 | goto unlock_page; |
| 1604 | head = page_buffers(page); |
| 1605 | bh = head; |
| 1606 | do { |
| 1607 | if (!buffer_mapped(bh) || (bh->b_blocknr < block)) |
| 1608 | goto next; |
| 1609 | if (bh->b_blocknr >= block + len) |
| 1610 | break; |
| 1611 | clear_buffer_dirty(bh); |
| 1612 | wait_on_buffer(bh); |
| 1613 | clear_buffer_req(bh); |
| 1614 | next: |
| 1615 | bh = bh->b_this_page; |
| 1616 | } while (bh != head); |
| 1617 | unlock_page: |
| 1618 | unlock_page(page); |
| 1619 | } |
| 1620 | pagevec_release(&pvec); |
| 1621 | cond_resched(); |
| 1622 | /* End of range already reached? */ |
| 1623 | if (index > end || !index) |
| 1624 | break; |
| 1625 | } |
| 1626 | } |
| 1627 | EXPORT_SYMBOL(clean_bdev_aliases); |
| 1628 | |
| 1629 | /* |
| 1630 | * Size is a power-of-two in the range 512..PAGE_SIZE, |
| 1631 | * and the case we care about most is PAGE_SIZE. |
| 1632 | * |
| 1633 | * So this *could* possibly be written with those |
| 1634 | * constraints in mind (relevant mostly if some |
| 1635 | * architecture has a slow bit-scan instruction) |
| 1636 | */ |
| 1637 | static inline int block_size_bits(unsigned int blocksize) |
| 1638 | { |
| 1639 | return ilog2(blocksize); |
| 1640 | } |
| 1641 | |
| 1642 | static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) |
| 1643 | { |
| 1644 | BUG_ON(!PageLocked(page)); |
| 1645 | |
| 1646 | if (!page_has_buffers(page)) |
| 1647 | create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits), |
| 1648 | b_state); |
| 1649 | return page_buffers(page); |
| 1650 | } |
| 1651 | |
| 1652 | /* |
| 1653 | * NOTE! All mapped/uptodate combinations are valid: |
| 1654 | * |
| 1655 | * Mapped Uptodate Meaning |
| 1656 | * |
| 1657 | * No No "unknown" - must do get_block() |
| 1658 | * No Yes "hole" - zero-filled |
| 1659 | * Yes No "allocated" - allocated on disk, not read in |
| 1660 | * Yes Yes "valid" - allocated and up-to-date in memory. |
| 1661 | * |
| 1662 | * "Dirty" is valid only with the last case (mapped+uptodate). |
| 1663 | */ |
| 1664 | |
| 1665 | /* |
| 1666 | * While block_write_full_page is writing back the dirty buffers under |
| 1667 | * the page lock, whoever dirtied the buffers may decide to clean them |
| 1668 | * again at any time. We handle that by only looking at the buffer |
| 1669 | * state inside lock_buffer(). |
| 1670 | * |
| 1671 | * If block_write_full_page() is called for regular writeback |
| 1672 | * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a |
| 1673 | * locked buffer. This only can happen if someone has written the buffer |
| 1674 | * directly, with submit_bh(). At the address_space level PageWriteback |
| 1675 | * prevents this contention from occurring. |
| 1676 | * |
| 1677 | * If block_write_full_page() is called with wbc->sync_mode == |
| 1678 | * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this |
| 1679 | * causes the writes to be flagged as synchronous writes. |
| 1680 | */ |
| 1681 | int __block_write_full_page(struct inode *inode, struct page *page, |
| 1682 | get_block_t *get_block, struct writeback_control *wbc, |
| 1683 | bh_end_io_t *handler) |
| 1684 | { |
| 1685 | int err; |
| 1686 | sector_t block; |
| 1687 | sector_t last_block; |
| 1688 | struct buffer_head *bh, *head; |
| 1689 | unsigned int blocksize, bbits; |
| 1690 | int nr_underway = 0; |
| 1691 | int write_flags = wbc_to_write_flags(wbc); |
| 1692 | |
| 1693 | head = create_page_buffers(page, inode, |
| 1694 | (1 << BH_Dirty)|(1 << BH_Uptodate)); |
| 1695 | |
| 1696 | /* |
| 1697 | * Be very careful. We have no exclusion from __set_page_dirty_buffers |
| 1698 | * here, and the (potentially unmapped) buffers may become dirty at |
| 1699 | * any time. If a buffer becomes dirty here after we've inspected it |
| 1700 | * then we just miss that fact, and the page stays dirty. |
| 1701 | * |
| 1702 | * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; |
| 1703 | * handle that here by just cleaning them. |
| 1704 | */ |
| 1705 | |
| 1706 | bh = head; |
| 1707 | blocksize = bh->b_size; |
| 1708 | bbits = block_size_bits(blocksize); |
| 1709 | |
| 1710 | block = (sector_t)page->index << (PAGE_SHIFT - bbits); |
| 1711 | last_block = (i_size_read(inode) - 1) >> bbits; |
| 1712 | |
| 1713 | /* |
| 1714 | * Get all the dirty buffers mapped to disk addresses and |
| 1715 | * handle any aliases from the underlying blockdev's mapping. |
| 1716 | */ |
| 1717 | do { |
| 1718 | if (block > last_block) { |
| 1719 | /* |
| 1720 | * mapped buffers outside i_size will occur, because |
| 1721 | * this page can be outside i_size when there is a |
| 1722 | * truncate in progress. |
| 1723 | */ |
| 1724 | /* |
| 1725 | * The buffer was zeroed by block_write_full_page() |
| 1726 | */ |
| 1727 | clear_buffer_dirty(bh); |
| 1728 | set_buffer_uptodate(bh); |
| 1729 | } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && |
| 1730 | buffer_dirty(bh)) { |
| 1731 | WARN_ON(bh->b_size != blocksize); |
| 1732 | err = get_block(inode, block, bh, 1); |
| 1733 | if (err) |
| 1734 | goto recover; |
| 1735 | clear_buffer_delay(bh); |
| 1736 | if (buffer_new(bh)) { |
| 1737 | /* blockdev mappings never come here */ |
| 1738 | clear_buffer_new(bh); |
| 1739 | clean_bdev_bh_alias(bh); |
| 1740 | } |
| 1741 | } |
| 1742 | bh = bh->b_this_page; |
| 1743 | block++; |
| 1744 | } while (bh != head); |
| 1745 | |
| 1746 | do { |
| 1747 | if (!buffer_mapped(bh)) |
| 1748 | continue; |
| 1749 | /* |
| 1750 | * If it's a fully non-blocking write attempt and we cannot |
| 1751 | * lock the buffer then redirty the page. Note that this can |
| 1752 | * potentially cause a busy-wait loop from writeback threads |
| 1753 | * and kswapd activity, but those code paths have their own |
| 1754 | * higher-level throttling. |
| 1755 | */ |
| 1756 | if (wbc->sync_mode != WB_SYNC_NONE) { |
| 1757 | lock_buffer(bh); |
| 1758 | } else if (!trylock_buffer(bh)) { |
| 1759 | redirty_page_for_writepage(wbc, page); |
| 1760 | continue; |
| 1761 | } |
| 1762 | if (test_clear_buffer_dirty(bh)) { |
| 1763 | mark_buffer_async_write_endio(bh, handler); |
| 1764 | } else { |
| 1765 | unlock_buffer(bh); |
| 1766 | } |
| 1767 | } while ((bh = bh->b_this_page) != head); |
| 1768 | |
| 1769 | /* |
| 1770 | * The page and its buffers are protected by PageWriteback(), so we can |
| 1771 | * drop the bh refcounts early. |
| 1772 | */ |
| 1773 | BUG_ON(PageWriteback(page)); |
| 1774 | set_page_writeback(page); |
| 1775 | |
| 1776 | do { |
| 1777 | struct buffer_head *next = bh->b_this_page; |
| 1778 | if (buffer_async_write(bh)) { |
| 1779 | submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, |
| 1780 | inode->i_write_hint, wbc); |
| 1781 | nr_underway++; |
| 1782 | } |
| 1783 | bh = next; |
| 1784 | } while (bh != head); |
| 1785 | unlock_page(page); |
| 1786 | |
| 1787 | err = 0; |
| 1788 | done: |
| 1789 | if (nr_underway == 0) { |
| 1790 | /* |
| 1791 | * The page was marked dirty, but the buffers were |
| 1792 | * clean. Someone wrote them back by hand with |
| 1793 | * ll_rw_block/submit_bh. A rare case. |
| 1794 | */ |
| 1795 | end_page_writeback(page); |
| 1796 | |
| 1797 | /* |
| 1798 | * The page and buffer_heads can be released at any time from |
| 1799 | * here on. |
| 1800 | */ |
| 1801 | } |
| 1802 | return err; |
| 1803 | |
| 1804 | recover: |
| 1805 | /* |
| 1806 | * ENOSPC, or some other error. We may already have added some |
| 1807 | * blocks to the file, so we need to write these out to avoid |
| 1808 | * exposing stale data. |
| 1809 | * The page is currently locked and not marked for writeback |
| 1810 | */ |
| 1811 | bh = head; |
| 1812 | /* Recovery: lock and submit the mapped buffers */ |
| 1813 | do { |
| 1814 | if (buffer_mapped(bh) && buffer_dirty(bh) && |
| 1815 | !buffer_delay(bh)) { |
| 1816 | lock_buffer(bh); |
| 1817 | mark_buffer_async_write_endio(bh, handler); |
| 1818 | } else { |
| 1819 | /* |
| 1820 | * The buffer may have been set dirty during |
| 1821 | * attachment to a dirty page. |
| 1822 | */ |
| 1823 | clear_buffer_dirty(bh); |
| 1824 | } |
| 1825 | } while ((bh = bh->b_this_page) != head); |
| 1826 | SetPageError(page); |
| 1827 | BUG_ON(PageWriteback(page)); |
| 1828 | mapping_set_error(page->mapping, err); |
| 1829 | set_page_writeback(page); |
| 1830 | do { |
| 1831 | struct buffer_head *next = bh->b_this_page; |
| 1832 | if (buffer_async_write(bh)) { |
| 1833 | clear_buffer_dirty(bh); |
| 1834 | submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, |
| 1835 | inode->i_write_hint, wbc); |
| 1836 | nr_underway++; |
| 1837 | } |
| 1838 | bh = next; |
| 1839 | } while (bh != head); |
| 1840 | unlock_page(page); |
| 1841 | goto done; |
| 1842 | } |
| 1843 | EXPORT_SYMBOL(__block_write_full_page); |
| 1844 | |
| 1845 | /* |
| 1846 | * If a page has any new buffers, zero them out here, and mark them uptodate |
| 1847 | * and dirty so they'll be written out (in order to prevent uninitialised |
| 1848 | * block data from leaking). And clear the new bit. |
| 1849 | */ |
| 1850 | void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) |
| 1851 | { |
| 1852 | unsigned int block_start, block_end; |
| 1853 | struct buffer_head *head, *bh; |
| 1854 | |
| 1855 | BUG_ON(!PageLocked(page)); |
| 1856 | if (!page_has_buffers(page)) |
| 1857 | return; |
| 1858 | |
| 1859 | bh = head = page_buffers(page); |
| 1860 | block_start = 0; |
| 1861 | do { |
| 1862 | block_end = block_start + bh->b_size; |
| 1863 | |
| 1864 | if (buffer_new(bh)) { |
| 1865 | if (block_end > from && block_start < to) { |
| 1866 | if (!PageUptodate(page)) { |
| 1867 | unsigned start, size; |
| 1868 | |
| 1869 | start = max(from, block_start); |
| 1870 | size = min(to, block_end) - start; |
| 1871 | |
| 1872 | zero_user(page, start, size); |
| 1873 | set_buffer_uptodate(bh); |
| 1874 | } |
| 1875 | |
| 1876 | clear_buffer_new(bh); |
| 1877 | mark_buffer_dirty(bh); |
| 1878 | } |
| 1879 | } |
| 1880 | |
| 1881 | block_start = block_end; |
| 1882 | bh = bh->b_this_page; |
| 1883 | } while (bh != head); |
| 1884 | } |
| 1885 | EXPORT_SYMBOL(page_zero_new_buffers); |
| 1886 | |
| 1887 | static void |
| 1888 | iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, |
| 1889 | struct iomap *iomap) |
| 1890 | { |
| 1891 | loff_t offset = block << inode->i_blkbits; |
| 1892 | |
| 1893 | bh->b_bdev = iomap->bdev; |
| 1894 | |
| 1895 | /* |
| 1896 | * Block points to offset in file we need to map, iomap contains |
| 1897 | * the offset at which the map starts. If the map ends before the |
| 1898 | * current block, then do not map the buffer and let the caller |
| 1899 | * handle it. |
| 1900 | */ |
| 1901 | BUG_ON(offset >= iomap->offset + iomap->length); |
| 1902 | |
| 1903 | switch (iomap->type) { |
| 1904 | case IOMAP_HOLE: |
| 1905 | /* |
| 1906 | * If the buffer is not up to date or beyond the current EOF, |
| 1907 | * we need to mark it as new to ensure sub-block zeroing is |
| 1908 | * executed if necessary. |
| 1909 | */ |
| 1910 | if (!buffer_uptodate(bh) || |
| 1911 | (offset >= i_size_read(inode))) |
| 1912 | set_buffer_new(bh); |
| 1913 | break; |
| 1914 | case IOMAP_DELALLOC: |
| 1915 | if (!buffer_uptodate(bh) || |
| 1916 | (offset >= i_size_read(inode))) |
| 1917 | set_buffer_new(bh); |
| 1918 | set_buffer_uptodate(bh); |
| 1919 | set_buffer_mapped(bh); |
| 1920 | set_buffer_delay(bh); |
| 1921 | break; |
| 1922 | case IOMAP_UNWRITTEN: |
| 1923 | /* |
| 1924 | * For unwritten regions, we always need to ensure that regions |
| 1925 | * in the block we are not writing to are zeroed. Mark the |
| 1926 | * buffer as new to ensure this. |
| 1927 | */ |
| 1928 | set_buffer_new(bh); |
| 1929 | set_buffer_unwritten(bh); |
| 1930 | /* FALLTHRU */ |
| 1931 | case IOMAP_MAPPED: |
| 1932 | if ((iomap->flags & IOMAP_F_NEW) || |
| 1933 | offset >= i_size_read(inode)) |
| 1934 | set_buffer_new(bh); |
| 1935 | bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> |
| 1936 | inode->i_blkbits; |
| 1937 | set_buffer_mapped(bh); |
| 1938 | break; |
| 1939 | } |
| 1940 | } |
| 1941 | |
| 1942 | int __block_write_begin_int(struct page *page, loff_t pos, unsigned len, |
| 1943 | get_block_t *get_block, struct iomap *iomap) |
| 1944 | { |
| 1945 | unsigned from = pos & (PAGE_SIZE - 1); |
| 1946 | unsigned to = from + len; |
| 1947 | struct inode *inode = page->mapping->host; |
| 1948 | unsigned block_start, block_end; |
| 1949 | sector_t block; |
| 1950 | int err = 0; |
| 1951 | unsigned blocksize, bbits; |
| 1952 | struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; |
| 1953 | |
| 1954 | BUG_ON(!PageLocked(page)); |
| 1955 | BUG_ON(from > PAGE_SIZE); |
| 1956 | BUG_ON(to > PAGE_SIZE); |
| 1957 | BUG_ON(from > to); |
| 1958 | |
| 1959 | head = create_page_buffers(page, inode, 0); |
| 1960 | blocksize = head->b_size; |
| 1961 | bbits = block_size_bits(blocksize); |
| 1962 | |
| 1963 | block = (sector_t)page->index << (PAGE_SHIFT - bbits); |
| 1964 | |
| 1965 | for(bh = head, block_start = 0; bh != head || !block_start; |
| 1966 | block++, block_start=block_end, bh = bh->b_this_page) { |
| 1967 | block_end = block_start + blocksize; |
| 1968 | if (block_end <= from || block_start >= to) { |
| 1969 | if (PageUptodate(page)) { |
| 1970 | if (!buffer_uptodate(bh)) |
| 1971 | set_buffer_uptodate(bh); |
| 1972 | } |
| 1973 | continue; |
| 1974 | } |
| 1975 | if (buffer_new(bh)) |
| 1976 | clear_buffer_new(bh); |
| 1977 | if (!buffer_mapped(bh)) { |
| 1978 | WARN_ON(bh->b_size != blocksize); |
| 1979 | if (get_block) { |
| 1980 | err = get_block(inode, block, bh, 1); |
| 1981 | if (err) |
| 1982 | break; |
| 1983 | } else { |
| 1984 | iomap_to_bh(inode, block, bh, iomap); |
| 1985 | } |
| 1986 | |
| 1987 | if (buffer_new(bh)) { |
| 1988 | clean_bdev_bh_alias(bh); |
| 1989 | if (PageUptodate(page)) { |
| 1990 | clear_buffer_new(bh); |
| 1991 | set_buffer_uptodate(bh); |
| 1992 | mark_buffer_dirty(bh); |
| 1993 | continue; |
| 1994 | } |
| 1995 | if (block_end > to || block_start < from) |
| 1996 | zero_user_segments(page, |
| 1997 | to, block_end, |
| 1998 | block_start, from); |
| 1999 | continue; |
| 2000 | } |
| 2001 | } |
| 2002 | if (PageUptodate(page)) { |
| 2003 | if (!buffer_uptodate(bh)) |
| 2004 | set_buffer_uptodate(bh); |
| 2005 | continue; |
| 2006 | } |
| 2007 | if (!buffer_uptodate(bh) && !buffer_delay(bh) && |
| 2008 | !buffer_unwritten(bh) && |
| 2009 | (block_start < from || block_end > to)) { |
| 2010 | ll_rw_block(REQ_OP_READ, 0, 1, &bh); |
| 2011 | *wait_bh++=bh; |
| 2012 | } |
| 2013 | } |
| 2014 | /* |
| 2015 | * If we issued read requests - let them complete. |
| 2016 | */ |
| 2017 | while(wait_bh > wait) { |
| 2018 | wait_on_buffer(*--wait_bh); |
| 2019 | if (!buffer_uptodate(*wait_bh)) |
| 2020 | err = -EIO; |
| 2021 | } |
| 2022 | if (unlikely(err)) |
| 2023 | page_zero_new_buffers(page, from, to); |
| 2024 | return err; |
| 2025 | } |
| 2026 | |
| 2027 | int __block_write_begin(struct page *page, loff_t pos, unsigned len, |
| 2028 | get_block_t *get_block) |
| 2029 | { |
| 2030 | return __block_write_begin_int(page, pos, len, get_block, NULL); |
| 2031 | } |
| 2032 | EXPORT_SYMBOL(__block_write_begin); |
| 2033 | |
| 2034 | static int __block_commit_write(struct inode *inode, struct page *page, |
| 2035 | unsigned from, unsigned to) |
| 2036 | { |
| 2037 | unsigned block_start, block_end; |
| 2038 | int partial = 0; |
| 2039 | unsigned blocksize; |
| 2040 | struct buffer_head *bh, *head; |
| 2041 | |
| 2042 | bh = head = page_buffers(page); |
| 2043 | blocksize = bh->b_size; |
| 2044 | |
| 2045 | block_start = 0; |
| 2046 | do { |
| 2047 | block_end = block_start + blocksize; |
| 2048 | if (block_end <= from || block_start >= to) { |
| 2049 | if (!buffer_uptodate(bh)) |
| 2050 | partial = 1; |
| 2051 | } else { |
| 2052 | set_buffer_uptodate(bh); |
| 2053 | mark_buffer_dirty(bh); |
| 2054 | } |
| 2055 | clear_buffer_new(bh); |
| 2056 | |
| 2057 | block_start = block_end; |
| 2058 | bh = bh->b_this_page; |
| 2059 | } while (bh != head); |
| 2060 | |
| 2061 | /* |
| 2062 | * If this is a partial write which happened to make all buffers |
| 2063 | * uptodate then we can optimize away a bogus readpage() for |
| 2064 | * the next read(). Here we 'discover' whether the page went |
| 2065 | * uptodate as a result of this (potentially partial) write. |
| 2066 | */ |
| 2067 | if (!partial) |
| 2068 | SetPageUptodate(page); |
| 2069 | return 0; |
| 2070 | } |
| 2071 | |
| 2072 | /* |
| 2073 | * block_write_begin takes care of the basic task of block allocation and |
| 2074 | * bringing partial write blocks uptodate first. |
| 2075 | * |
| 2076 | * The filesystem needs to handle block truncation upon failure. |
| 2077 | */ |
| 2078 | int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, |
| 2079 | unsigned flags, struct page **pagep, get_block_t *get_block) |
| 2080 | { |
| 2081 | pgoff_t index = pos >> PAGE_SHIFT; |
| 2082 | struct page *page; |
| 2083 | int status; |
| 2084 | |
| 2085 | page = grab_cache_page_write_begin(mapping, index, flags); |
| 2086 | if (!page) |
| 2087 | return -ENOMEM; |
| 2088 | |
| 2089 | status = __block_write_begin(page, pos, len, get_block); |
| 2090 | if (unlikely(status)) { |
| 2091 | unlock_page(page); |
| 2092 | put_page(page); |
| 2093 | page = NULL; |
| 2094 | } |
| 2095 | |
| 2096 | *pagep = page; |
| 2097 | return status; |
| 2098 | } |
| 2099 | EXPORT_SYMBOL(block_write_begin); |
| 2100 | |
| 2101 | int block_write_end(struct file *file, struct address_space *mapping, |
| 2102 | loff_t pos, unsigned len, unsigned copied, |
| 2103 | struct page *page, void *fsdata) |
| 2104 | { |
| 2105 | struct inode *inode = mapping->host; |
| 2106 | unsigned start; |
| 2107 | |
| 2108 | start = pos & (PAGE_SIZE - 1); |
| 2109 | |
| 2110 | if (unlikely(copied < len)) { |
| 2111 | /* |
| 2112 | * The buffers that were written will now be uptodate, so we |
| 2113 | * don't have to worry about a readpage reading them and |
| 2114 | * overwriting a partial write. However if we have encountered |
| 2115 | * a short write and only partially written into a buffer, it |
| 2116 | * will not be marked uptodate, so a readpage might come in and |
| 2117 | * destroy our partial write. |
| 2118 | * |
| 2119 | * Do the simplest thing, and just treat any short write to a |
| 2120 | * non uptodate page as a zero-length write, and force the |
| 2121 | * caller to redo the whole thing. |
| 2122 | */ |
| 2123 | if (!PageUptodate(page)) |
| 2124 | copied = 0; |
| 2125 | |
| 2126 | page_zero_new_buffers(page, start+copied, start+len); |
| 2127 | } |
| 2128 | flush_dcache_page(page); |
| 2129 | |
| 2130 | /* This could be a short (even 0-length) commit */ |
| 2131 | __block_commit_write(inode, page, start, start+copied); |
| 2132 | |
| 2133 | return copied; |
| 2134 | } |
| 2135 | EXPORT_SYMBOL(block_write_end); |
| 2136 | |
| 2137 | int generic_write_end(struct file *file, struct address_space *mapping, |
| 2138 | loff_t pos, unsigned len, unsigned copied, |
| 2139 | struct page *page, void *fsdata) |
| 2140 | { |
| 2141 | struct inode *inode = mapping->host; |
| 2142 | loff_t old_size = inode->i_size; |
| 2143 | bool i_size_changed = false; |
| 2144 | |
| 2145 | copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); |
| 2146 | |
| 2147 | /* |
| 2148 | * No need to use i_size_read() here, the i_size cannot change under us |
| 2149 | * because we hold i_rwsem. |
| 2150 | * |
| 2151 | * But it's important to update i_size while still holding page lock: |
| 2152 | * page writeout could otherwise come in and zero beyond i_size. |
| 2153 | */ |
| 2154 | if (pos + copied > inode->i_size) { |
| 2155 | i_size_write(inode, pos + copied); |
| 2156 | i_size_changed = true; |
| 2157 | } |
| 2158 | |
| 2159 | unlock_page(page); |
| 2160 | put_page(page); |
| 2161 | |
| 2162 | if (old_size < pos) |
| 2163 | pagecache_isize_extended(inode, old_size, pos); |
| 2164 | /* |
| 2165 | * Don't mark the inode dirty under page lock. First, it unnecessarily |
| 2166 | * makes the holding time of page lock longer. Second, it forces lock |
| 2167 | * ordering of page lock and transaction start for journaling |
| 2168 | * filesystems. |
| 2169 | */ |
| 2170 | if (i_size_changed) |
| 2171 | mark_inode_dirty(inode); |
| 2172 | return copied; |
| 2173 | } |
| 2174 | EXPORT_SYMBOL(generic_write_end); |
| 2175 | |
| 2176 | /* |
| 2177 | * block_is_partially_uptodate checks whether buffers within a page are |
| 2178 | * uptodate or not. |
| 2179 | * |
| 2180 | * Returns true if all buffers which correspond to a file portion |
| 2181 | * we want to read are uptodate. |
| 2182 | */ |
| 2183 | int block_is_partially_uptodate(struct page *page, unsigned long from, |
| 2184 | unsigned long count) |
| 2185 | { |
| 2186 | unsigned block_start, block_end, blocksize; |
| 2187 | unsigned to; |
| 2188 | struct buffer_head *bh, *head; |
| 2189 | int ret = 1; |
| 2190 | |
| 2191 | if (!page_has_buffers(page)) |
| 2192 | return 0; |
| 2193 | |
| 2194 | head = page_buffers(page); |
| 2195 | blocksize = head->b_size; |
| 2196 | to = min_t(unsigned, PAGE_SIZE - from, count); |
| 2197 | to = from + to; |
| 2198 | if (from < blocksize && to > PAGE_SIZE - blocksize) |
| 2199 | return 0; |
| 2200 | |
| 2201 | bh = head; |
| 2202 | block_start = 0; |
| 2203 | do { |
| 2204 | block_end = block_start + blocksize; |
| 2205 | if (block_end > from && block_start < to) { |
| 2206 | if (!buffer_uptodate(bh)) { |
| 2207 | ret = 0; |
| 2208 | break; |
| 2209 | } |
| 2210 | if (block_end >= to) |
| 2211 | break; |
| 2212 | } |
| 2213 | block_start = block_end; |
| 2214 | bh = bh->b_this_page; |
| 2215 | } while (bh != head); |
| 2216 | |
| 2217 | return ret; |
| 2218 | } |
| 2219 | EXPORT_SYMBOL(block_is_partially_uptodate); |
| 2220 | |
| 2221 | /* |
| 2222 | * Generic "read page" function for block devices that have the normal |
| 2223 | * get_block functionality. This is most of the block device filesystems. |
| 2224 | * Reads the page asynchronously --- the unlock_buffer() and |
| 2225 | * set/clear_buffer_uptodate() functions propagate buffer state into the |
| 2226 | * page struct once IO has completed. |
| 2227 | */ |
| 2228 | int block_read_full_page(struct page *page, get_block_t *get_block) |
| 2229 | { |
| 2230 | struct inode *inode = page->mapping->host; |
| 2231 | sector_t iblock, lblock; |
| 2232 | struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; |
| 2233 | unsigned int blocksize, bbits; |
| 2234 | int nr, i; |
| 2235 | int fully_mapped = 1; |
| 2236 | |
| 2237 | head = create_page_buffers(page, inode, 0); |
| 2238 | blocksize = head->b_size; |
| 2239 | bbits = block_size_bits(blocksize); |
| 2240 | |
| 2241 | iblock = (sector_t)page->index << (PAGE_SHIFT - bbits); |
| 2242 | lblock = (i_size_read(inode)+blocksize-1) >> bbits; |
| 2243 | bh = head; |
| 2244 | nr = 0; |
| 2245 | i = 0; |
| 2246 | |
| 2247 | do { |
| 2248 | if (buffer_uptodate(bh)) |
| 2249 | continue; |
| 2250 | |
| 2251 | if (!buffer_mapped(bh)) { |
| 2252 | int err = 0; |
| 2253 | |
| 2254 | fully_mapped = 0; |
| 2255 | if (iblock < lblock) { |
| 2256 | WARN_ON(bh->b_size != blocksize); |
| 2257 | err = get_block(inode, iblock, bh, 0); |
| 2258 | if (err) |
| 2259 | SetPageError(page); |
| 2260 | } |
| 2261 | if (!buffer_mapped(bh)) { |
| 2262 | zero_user(page, i * blocksize, blocksize); |
| 2263 | if (!err) |
| 2264 | set_buffer_uptodate(bh); |
| 2265 | continue; |
| 2266 | } |
| 2267 | /* |
| 2268 | * get_block() might have updated the buffer |
| 2269 | * synchronously |
| 2270 | */ |
| 2271 | if (buffer_uptodate(bh)) |
| 2272 | continue; |
| 2273 | } |
| 2274 | arr[nr++] = bh; |
| 2275 | } while (i++, iblock++, (bh = bh->b_this_page) != head); |
| 2276 | |
| 2277 | if (fully_mapped) |
| 2278 | SetPageMappedToDisk(page); |
| 2279 | |
| 2280 | if (!nr) { |
| 2281 | /* |
| 2282 | * All buffers are uptodate - we can set the page uptodate |
| 2283 | * as well. But not if get_block() returned an error. |
| 2284 | */ |
| 2285 | if (!PageError(page)) |
| 2286 | SetPageUptodate(page); |
| 2287 | unlock_page(page); |
| 2288 | return 0; |
| 2289 | } |
| 2290 | |
| 2291 | /* Stage two: lock the buffers */ |
| 2292 | for (i = 0; i < nr; i++) { |
| 2293 | bh = arr[i]; |
| 2294 | lock_buffer(bh); |
| 2295 | mark_buffer_async_read(bh); |
| 2296 | } |
| 2297 | |
| 2298 | /* |
| 2299 | * Stage 3: start the IO. Check for uptodateness |
| 2300 | * inside the buffer lock in case another process reading |
| 2301 | * the underlying blockdev brought it uptodate (the sct fix). |
| 2302 | */ |
| 2303 | for (i = 0; i < nr; i++) { |
| 2304 | bh = arr[i]; |
| 2305 | if (buffer_uptodate(bh)) |
| 2306 | end_buffer_async_read(bh, 1); |
| 2307 | else |
| 2308 | submit_bh(REQ_OP_READ, 0, bh); |
| 2309 | } |
| 2310 | return 0; |
| 2311 | } |
| 2312 | EXPORT_SYMBOL(block_read_full_page); |
| 2313 | |
| 2314 | /* utility function for filesystems that need to do work on expanding |
| 2315 | * truncates. Uses filesystem pagecache writes to allow the filesystem to |
| 2316 | * deal with the hole. |
| 2317 | */ |
| 2318 | int generic_cont_expand_simple(struct inode *inode, loff_t size) |
| 2319 | { |
| 2320 | struct address_space *mapping = inode->i_mapping; |
| 2321 | struct page *page; |
| 2322 | void *fsdata = NULL; |
| 2323 | int err; |
| 2324 | |
| 2325 | err = inode_newsize_ok(inode, size); |
| 2326 | if (err) |
| 2327 | goto out; |
| 2328 | |
| 2329 | err = pagecache_write_begin(NULL, mapping, size, 0, |
| 2330 | AOP_FLAG_CONT_EXPAND, &page, &fsdata); |
| 2331 | if (err) |
| 2332 | goto out; |
| 2333 | |
| 2334 | err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); |
| 2335 | BUG_ON(err > 0); |
| 2336 | |
| 2337 | out: |
| 2338 | return err; |
| 2339 | } |
| 2340 | EXPORT_SYMBOL(generic_cont_expand_simple); |
| 2341 | |
| 2342 | static int cont_expand_zero(struct file *file, struct address_space *mapping, |
| 2343 | loff_t pos, loff_t *bytes) |
| 2344 | { |
| 2345 | struct inode *inode = mapping->host; |
| 2346 | unsigned int blocksize = i_blocksize(inode); |
| 2347 | struct page *page; |
| 2348 | void *fsdata = NULL; |
| 2349 | pgoff_t index, curidx; |
| 2350 | loff_t curpos; |
| 2351 | unsigned zerofrom, offset, len; |
| 2352 | int err = 0; |
| 2353 | |
| 2354 | index = pos >> PAGE_SHIFT; |
| 2355 | offset = pos & ~PAGE_MASK; |
| 2356 | |
| 2357 | while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { |
| 2358 | zerofrom = curpos & ~PAGE_MASK; |
| 2359 | if (zerofrom & (blocksize-1)) { |
| 2360 | *bytes |= (blocksize-1); |
| 2361 | (*bytes)++; |
| 2362 | } |
| 2363 | len = PAGE_SIZE - zerofrom; |
| 2364 | |
| 2365 | err = pagecache_write_begin(file, mapping, curpos, len, 0, |
| 2366 | &page, &fsdata); |
| 2367 | if (err) |
| 2368 | goto out; |
| 2369 | zero_user(page, zerofrom, len); |
| 2370 | err = pagecache_write_end(file, mapping, curpos, len, len, |
| 2371 | page, fsdata); |
| 2372 | if (err < 0) |
| 2373 | goto out; |
| 2374 | BUG_ON(err != len); |
| 2375 | err = 0; |
| 2376 | |
| 2377 | balance_dirty_pages_ratelimited(mapping); |
| 2378 | |
| 2379 | if (fatal_signal_pending(current)) { |
| 2380 | err = -EINTR; |
| 2381 | goto out; |
| 2382 | } |
| 2383 | } |
| 2384 | |
| 2385 | /* page covers the boundary, find the boundary offset */ |
| 2386 | if (index == curidx) { |
| 2387 | zerofrom = curpos & ~PAGE_MASK; |
| 2388 | /* if we will expand the thing last block will be filled */ |
| 2389 | if (offset <= zerofrom) { |
| 2390 | goto out; |
| 2391 | } |
| 2392 | if (zerofrom & (blocksize-1)) { |
| 2393 | *bytes |= (blocksize-1); |
| 2394 | (*bytes)++; |
| 2395 | } |
| 2396 | len = offset - zerofrom; |
| 2397 | |
| 2398 | err = pagecache_write_begin(file, mapping, curpos, len, 0, |
| 2399 | &page, &fsdata); |
| 2400 | if (err) |
| 2401 | goto out; |
| 2402 | zero_user(page, zerofrom, len); |
| 2403 | err = pagecache_write_end(file, mapping, curpos, len, len, |
| 2404 | page, fsdata); |
| 2405 | if (err < 0) |
| 2406 | goto out; |
| 2407 | BUG_ON(err != len); |
| 2408 | err = 0; |
| 2409 | } |
| 2410 | out: |
| 2411 | return err; |
| 2412 | } |
| 2413 | |
| 2414 | /* |
| 2415 | * For moronic filesystems that do not allow holes in file. |
| 2416 | * We may have to extend the file. |
| 2417 | */ |
| 2418 | int cont_write_begin(struct file *file, struct address_space *mapping, |
| 2419 | loff_t pos, unsigned len, unsigned flags, |
| 2420 | struct page **pagep, void **fsdata, |
| 2421 | get_block_t *get_block, loff_t *bytes) |
| 2422 | { |
| 2423 | struct inode *inode = mapping->host; |
| 2424 | unsigned int blocksize = i_blocksize(inode); |
| 2425 | unsigned int zerofrom; |
| 2426 | int err; |
| 2427 | |
| 2428 | err = cont_expand_zero(file, mapping, pos, bytes); |
| 2429 | if (err) |
| 2430 | return err; |
| 2431 | |
| 2432 | zerofrom = *bytes & ~PAGE_MASK; |
| 2433 | if (pos+len > *bytes && zerofrom & (blocksize-1)) { |
| 2434 | *bytes |= (blocksize-1); |
| 2435 | (*bytes)++; |
| 2436 | } |
| 2437 | |
| 2438 | return block_write_begin(mapping, pos, len, flags, pagep, get_block); |
| 2439 | } |
| 2440 | EXPORT_SYMBOL(cont_write_begin); |
| 2441 | |
| 2442 | int block_commit_write(struct page *page, unsigned from, unsigned to) |
| 2443 | { |
| 2444 | struct inode *inode = page->mapping->host; |
| 2445 | __block_commit_write(inode,page,from,to); |
| 2446 | return 0; |
| 2447 | } |
| 2448 | EXPORT_SYMBOL(block_commit_write); |
| 2449 | |
| 2450 | /* |
| 2451 | * block_page_mkwrite() is not allowed to change the file size as it gets |
| 2452 | * called from a page fault handler when a page is first dirtied. Hence we must |
| 2453 | * be careful to check for EOF conditions here. We set the page up correctly |
| 2454 | * for a written page which means we get ENOSPC checking when writing into |
| 2455 | * holes and correct delalloc and unwritten extent mapping on filesystems that |
| 2456 | * support these features. |
| 2457 | * |
| 2458 | * We are not allowed to take the i_mutex here so we have to play games to |
| 2459 | * protect against truncate races as the page could now be beyond EOF. Because |
| 2460 | * truncate writes the inode size before removing pages, once we have the |
| 2461 | * page lock we can determine safely if the page is beyond EOF. If it is not |
| 2462 | * beyond EOF, then the page is guaranteed safe against truncation until we |
| 2463 | * unlock the page. |
| 2464 | * |
| 2465 | * Direct callers of this function should protect against filesystem freezing |
| 2466 | * using sb_start_pagefault() - sb_end_pagefault() functions. |
| 2467 | */ |
| 2468 | int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, |
| 2469 | get_block_t get_block) |
| 2470 | { |
| 2471 | struct page *page = vmf->page; |
| 2472 | struct inode *inode = file_inode(vma->vm_file); |
| 2473 | unsigned long end; |
| 2474 | loff_t size; |
| 2475 | int ret; |
| 2476 | |
| 2477 | lock_page(page); |
| 2478 | size = i_size_read(inode); |
| 2479 | if ((page->mapping != inode->i_mapping) || |
| 2480 | (page_offset(page) > size)) { |
| 2481 | /* We overload EFAULT to mean page got truncated */ |
| 2482 | ret = -EFAULT; |
| 2483 | goto out_unlock; |
| 2484 | } |
| 2485 | |
| 2486 | /* page is wholly or partially inside EOF */ |
| 2487 | if (((page->index + 1) << PAGE_SHIFT) > size) |
| 2488 | end = size & ~PAGE_MASK; |
| 2489 | else |
| 2490 | end = PAGE_SIZE; |
| 2491 | |
| 2492 | ret = __block_write_begin(page, 0, end, get_block); |
| 2493 | if (!ret) |
| 2494 | ret = block_commit_write(page, 0, end); |
| 2495 | |
| 2496 | if (unlikely(ret < 0)) |
| 2497 | goto out_unlock; |
| 2498 | set_page_dirty(page); |
| 2499 | wait_for_stable_page(page); |
| 2500 | return 0; |
| 2501 | out_unlock: |
| 2502 | unlock_page(page); |
| 2503 | return ret; |
| 2504 | } |
| 2505 | EXPORT_SYMBOL(block_page_mkwrite); |
| 2506 | |
| 2507 | /* |
| 2508 | * nobh_write_begin()'s prereads are special: the buffer_heads are freed |
| 2509 | * immediately, while under the page lock. So it needs a special end_io |
| 2510 | * handler which does not touch the bh after unlocking it. |
| 2511 | */ |
| 2512 | static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) |
| 2513 | { |
| 2514 | __end_buffer_read_notouch(bh, uptodate); |
| 2515 | } |
| 2516 | |
| 2517 | /* |
| 2518 | * Attach the singly-linked list of buffers created by nobh_write_begin, to |
| 2519 | * the page (converting it to circular linked list and taking care of page |
| 2520 | * dirty races). |
| 2521 | */ |
| 2522 | static void attach_nobh_buffers(struct page *page, struct buffer_head *head) |
| 2523 | { |
| 2524 | struct buffer_head *bh; |
| 2525 | |
| 2526 | BUG_ON(!PageLocked(page)); |
| 2527 | |
| 2528 | spin_lock(&page->mapping->private_lock); |
| 2529 | bh = head; |
| 2530 | do { |
| 2531 | if (PageDirty(page)) |
| 2532 | set_buffer_dirty(bh); |
| 2533 | if (!bh->b_this_page) |
| 2534 | bh->b_this_page = head; |
| 2535 | bh = bh->b_this_page; |
| 2536 | } while (bh != head); |
| 2537 | attach_page_buffers(page, head); |
| 2538 | spin_unlock(&page->mapping->private_lock); |
| 2539 | } |
| 2540 | |
| 2541 | /* |
| 2542 | * On entry, the page is fully not uptodate. |
| 2543 | * On exit the page is fully uptodate in the areas outside (from,to) |
| 2544 | * The filesystem needs to handle block truncation upon failure. |
| 2545 | */ |
| 2546 | int nobh_write_begin(struct address_space *mapping, |
| 2547 | loff_t pos, unsigned len, unsigned flags, |
| 2548 | struct page **pagep, void **fsdata, |
| 2549 | get_block_t *get_block) |
| 2550 | { |
| 2551 | struct inode *inode = mapping->host; |
| 2552 | const unsigned blkbits = inode->i_blkbits; |
| 2553 | const unsigned blocksize = 1 << blkbits; |
| 2554 | struct buffer_head *head, *bh; |
| 2555 | struct page *page; |
| 2556 | pgoff_t index; |
| 2557 | unsigned from, to; |
| 2558 | unsigned block_in_page; |
| 2559 | unsigned block_start, block_end; |
| 2560 | sector_t block_in_file; |
| 2561 | int nr_reads = 0; |
| 2562 | int ret = 0; |
| 2563 | int is_mapped_to_disk = 1; |
| 2564 | |
| 2565 | index = pos >> PAGE_SHIFT; |
| 2566 | from = pos & (PAGE_SIZE - 1); |
| 2567 | to = from + len; |
| 2568 | |
| 2569 | page = grab_cache_page_write_begin(mapping, index, flags); |
| 2570 | if (!page) |
| 2571 | return -ENOMEM; |
| 2572 | *pagep = page; |
| 2573 | *fsdata = NULL; |
| 2574 | |
| 2575 | if (page_has_buffers(page)) { |
| 2576 | ret = __block_write_begin(page, pos, len, get_block); |
| 2577 | if (unlikely(ret)) |
| 2578 | goto out_release; |
| 2579 | return ret; |
| 2580 | } |
| 2581 | |
| 2582 | if (PageMappedToDisk(page)) |
| 2583 | return 0; |
| 2584 | |
| 2585 | /* |
| 2586 | * Allocate buffers so that we can keep track of state, and potentially |
| 2587 | * attach them to the page if an error occurs. In the common case of |
| 2588 | * no error, they will just be freed again without ever being attached |
| 2589 | * to the page (which is all OK, because we're under the page lock). |
| 2590 | * |
| 2591 | * Be careful: the buffer linked list is a NULL terminated one, rather |
| 2592 | * than the circular one we're used to. |
| 2593 | */ |
| 2594 | head = alloc_page_buffers(page, blocksize, false); |
| 2595 | if (!head) { |
| 2596 | ret = -ENOMEM; |
| 2597 | goto out_release; |
| 2598 | } |
| 2599 | |
| 2600 | block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); |
| 2601 | |
| 2602 | /* |
| 2603 | * We loop across all blocks in the page, whether or not they are |
| 2604 | * part of the affected region. This is so we can discover if the |
| 2605 | * page is fully mapped-to-disk. |
| 2606 | */ |
| 2607 | for (block_start = 0, block_in_page = 0, bh = head; |
| 2608 | block_start < PAGE_SIZE; |
| 2609 | block_in_page++, block_start += blocksize, bh = bh->b_this_page) { |
| 2610 | int create; |
| 2611 | |
| 2612 | block_end = block_start + blocksize; |
| 2613 | bh->b_state = 0; |
| 2614 | create = 1; |
| 2615 | if (block_start >= to) |
| 2616 | create = 0; |
| 2617 | ret = get_block(inode, block_in_file + block_in_page, |
| 2618 | bh, create); |
| 2619 | if (ret) |
| 2620 | goto failed; |
| 2621 | if (!buffer_mapped(bh)) |
| 2622 | is_mapped_to_disk = 0; |
| 2623 | if (buffer_new(bh)) |
| 2624 | clean_bdev_bh_alias(bh); |
| 2625 | if (PageUptodate(page)) { |
| 2626 | set_buffer_uptodate(bh); |
| 2627 | continue; |
| 2628 | } |
| 2629 | if (buffer_new(bh) || !buffer_mapped(bh)) { |
| 2630 | zero_user_segments(page, block_start, from, |
| 2631 | to, block_end); |
| 2632 | continue; |
| 2633 | } |
| 2634 | if (buffer_uptodate(bh)) |
| 2635 | continue; /* reiserfs does this */ |
| 2636 | if (block_start < from || block_end > to) { |
| 2637 | lock_buffer(bh); |
| 2638 | bh->b_end_io = end_buffer_read_nobh; |
| 2639 | submit_bh(REQ_OP_READ, 0, bh); |
| 2640 | nr_reads++; |
| 2641 | } |
| 2642 | } |
| 2643 | |
| 2644 | if (nr_reads) { |
| 2645 | /* |
| 2646 | * The page is locked, so these buffers are protected from |
| 2647 | * any VM or truncate activity. Hence we don't need to care |
| 2648 | * for the buffer_head refcounts. |
| 2649 | */ |
| 2650 | for (bh = head; bh; bh = bh->b_this_page) { |
| 2651 | wait_on_buffer(bh); |
| 2652 | if (!buffer_uptodate(bh)) |
| 2653 | ret = -EIO; |
| 2654 | } |
| 2655 | if (ret) |
| 2656 | goto failed; |
| 2657 | } |
| 2658 | |
| 2659 | if (is_mapped_to_disk) |
| 2660 | SetPageMappedToDisk(page); |
| 2661 | |
| 2662 | *fsdata = head; /* to be released by nobh_write_end */ |
| 2663 | |
| 2664 | return 0; |
| 2665 | |
| 2666 | failed: |
| 2667 | BUG_ON(!ret); |
| 2668 | /* |
| 2669 | * Error recovery is a bit difficult. We need to zero out blocks that |
| 2670 | * were newly allocated, and dirty them to ensure they get written out. |
| 2671 | * Buffers need to be attached to the page at this point, otherwise |
| 2672 | * the handling of potential IO errors during writeout would be hard |
| 2673 | * (could try doing synchronous writeout, but what if that fails too?) |
| 2674 | */ |
| 2675 | attach_nobh_buffers(page, head); |
| 2676 | page_zero_new_buffers(page, from, to); |
| 2677 | |
| 2678 | out_release: |
| 2679 | unlock_page(page); |
| 2680 | put_page(page); |
| 2681 | *pagep = NULL; |
| 2682 | |
| 2683 | return ret; |
| 2684 | } |
| 2685 | EXPORT_SYMBOL(nobh_write_begin); |
| 2686 | |
| 2687 | int nobh_write_end(struct file *file, struct address_space *mapping, |
| 2688 | loff_t pos, unsigned len, unsigned copied, |
| 2689 | struct page *page, void *fsdata) |
| 2690 | { |
| 2691 | struct inode *inode = page->mapping->host; |
| 2692 | struct buffer_head *head = fsdata; |
| 2693 | struct buffer_head *bh; |
| 2694 | BUG_ON(fsdata != NULL && page_has_buffers(page)); |
| 2695 | |
| 2696 | if (unlikely(copied < len) && head) |
| 2697 | attach_nobh_buffers(page, head); |
| 2698 | if (page_has_buffers(page)) |
| 2699 | return generic_write_end(file, mapping, pos, len, |
| 2700 | copied, page, fsdata); |
| 2701 | |
| 2702 | SetPageUptodate(page); |
| 2703 | set_page_dirty(page); |
| 2704 | if (pos+copied > inode->i_size) { |
| 2705 | i_size_write(inode, pos+copied); |
| 2706 | mark_inode_dirty(inode); |
| 2707 | } |
| 2708 | |
| 2709 | unlock_page(page); |
| 2710 | put_page(page); |
| 2711 | |
| 2712 | while (head) { |
| 2713 | bh = head; |
| 2714 | head = head->b_this_page; |
| 2715 | free_buffer_head(bh); |
| 2716 | } |
| 2717 | |
| 2718 | return copied; |
| 2719 | } |
| 2720 | EXPORT_SYMBOL(nobh_write_end); |
| 2721 | |
| 2722 | /* |
| 2723 | * nobh_writepage() - based on block_full_write_page() except |
| 2724 | * that it tries to operate without attaching bufferheads to |
| 2725 | * the page. |
| 2726 | */ |
| 2727 | int nobh_writepage(struct page *page, get_block_t *get_block, |
| 2728 | struct writeback_control *wbc) |
| 2729 | { |
| 2730 | struct inode * const inode = page->mapping->host; |
| 2731 | loff_t i_size = i_size_read(inode); |
| 2732 | const pgoff_t end_index = i_size >> PAGE_SHIFT; |
| 2733 | unsigned offset; |
| 2734 | int ret; |
| 2735 | |
| 2736 | /* Is the page fully inside i_size? */ |
| 2737 | if (page->index < end_index) |
| 2738 | goto out; |
| 2739 | |
| 2740 | /* Is the page fully outside i_size? (truncate in progress) */ |
| 2741 | offset = i_size & (PAGE_SIZE-1); |
| 2742 | if (page->index >= end_index+1 || !offset) { |
| 2743 | unlock_page(page); |
| 2744 | return 0; /* don't care */ |
| 2745 | } |
| 2746 | |
| 2747 | /* |
| 2748 | * The page straddles i_size. It must be zeroed out on each and every |
| 2749 | * writepage invocation because it may be mmapped. "A file is mapped |
| 2750 | * in multiples of the page size. For a file that is not a multiple of |
| 2751 | * the page size, the remaining memory is zeroed when mapped, and |
| 2752 | * writes to that region are not written out to the file." |
| 2753 | */ |
| 2754 | zero_user_segment(page, offset, PAGE_SIZE); |
| 2755 | out: |
| 2756 | ret = mpage_writepage(page, get_block, wbc); |
| 2757 | if (ret == -EAGAIN) |
| 2758 | ret = __block_write_full_page(inode, page, get_block, wbc, |
| 2759 | end_buffer_async_write); |
| 2760 | return ret; |
| 2761 | } |
| 2762 | EXPORT_SYMBOL(nobh_writepage); |
| 2763 | |
| 2764 | int nobh_truncate_page(struct address_space *mapping, |
| 2765 | loff_t from, get_block_t *get_block) |
| 2766 | { |
| 2767 | pgoff_t index = from >> PAGE_SHIFT; |
| 2768 | unsigned offset = from & (PAGE_SIZE-1); |
| 2769 | unsigned blocksize; |
| 2770 | sector_t iblock; |
| 2771 | unsigned length, pos; |
| 2772 | struct inode *inode = mapping->host; |
| 2773 | struct page *page; |
| 2774 | struct buffer_head map_bh; |
| 2775 | int err; |
| 2776 | |
| 2777 | blocksize = i_blocksize(inode); |
| 2778 | length = offset & (blocksize - 1); |
| 2779 | |
| 2780 | /* Block boundary? Nothing to do */ |
| 2781 | if (!length) |
| 2782 | return 0; |
| 2783 | |
| 2784 | length = blocksize - length; |
| 2785 | iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); |
| 2786 | |
| 2787 | page = grab_cache_page(mapping, index); |
| 2788 | err = -ENOMEM; |
| 2789 | if (!page) |
| 2790 | goto out; |
| 2791 | |
| 2792 | if (page_has_buffers(page)) { |
| 2793 | has_buffers: |
| 2794 | unlock_page(page); |
| 2795 | put_page(page); |
| 2796 | return block_truncate_page(mapping, from, get_block); |
| 2797 | } |
| 2798 | |
| 2799 | /* Find the buffer that contains "offset" */ |
| 2800 | pos = blocksize; |
| 2801 | while (offset >= pos) { |
| 2802 | iblock++; |
| 2803 | pos += blocksize; |
| 2804 | } |
| 2805 | |
| 2806 | map_bh.b_size = blocksize; |
| 2807 | map_bh.b_state = 0; |
| 2808 | err = get_block(inode, iblock, &map_bh, 0); |
| 2809 | if (err) |
| 2810 | goto unlock; |
| 2811 | /* unmapped? It's a hole - nothing to do */ |
| 2812 | if (!buffer_mapped(&map_bh)) |
| 2813 | goto unlock; |
| 2814 | |
| 2815 | /* Ok, it's mapped. Make sure it's up-to-date */ |
| 2816 | if (!PageUptodate(page)) { |
| 2817 | err = mapping->a_ops->readpage(NULL, page); |
| 2818 | if (err) { |
| 2819 | put_page(page); |
| 2820 | goto out; |
| 2821 | } |
| 2822 | lock_page(page); |
| 2823 | if (!PageUptodate(page)) { |
| 2824 | err = -EIO; |
| 2825 | goto unlock; |
| 2826 | } |
| 2827 | if (page_has_buffers(page)) |
| 2828 | goto has_buffers; |
| 2829 | } |
| 2830 | zero_user(page, offset, length); |
| 2831 | set_page_dirty(page); |
| 2832 | err = 0; |
| 2833 | |
| 2834 | unlock: |
| 2835 | unlock_page(page); |
| 2836 | put_page(page); |
| 2837 | out: |
| 2838 | return err; |
| 2839 | } |
| 2840 | EXPORT_SYMBOL(nobh_truncate_page); |
| 2841 | |
| 2842 | int block_truncate_page(struct address_space *mapping, |
| 2843 | loff_t from, get_block_t *get_block) |
| 2844 | { |
| 2845 | pgoff_t index = from >> PAGE_SHIFT; |
| 2846 | unsigned offset = from & (PAGE_SIZE-1); |
| 2847 | unsigned blocksize; |
| 2848 | sector_t iblock; |
| 2849 | unsigned length, pos; |
| 2850 | struct inode *inode = mapping->host; |
| 2851 | struct page *page; |
| 2852 | struct buffer_head *bh; |
| 2853 | int err; |
| 2854 | |
| 2855 | blocksize = i_blocksize(inode); |
| 2856 | length = offset & (blocksize - 1); |
| 2857 | |
| 2858 | /* Block boundary? Nothing to do */ |
| 2859 | if (!length) |
| 2860 | return 0; |
| 2861 | |
| 2862 | length = blocksize - length; |
| 2863 | iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); |
| 2864 | |
| 2865 | page = grab_cache_page(mapping, index); |
| 2866 | err = -ENOMEM; |
| 2867 | if (!page) |
| 2868 | goto out; |
| 2869 | |
| 2870 | if (!page_has_buffers(page)) |
| 2871 | create_empty_buffers(page, blocksize, 0); |
| 2872 | |
| 2873 | /* Find the buffer that contains "offset" */ |
| 2874 | bh = page_buffers(page); |
| 2875 | pos = blocksize; |
| 2876 | while (offset >= pos) { |
| 2877 | bh = bh->b_this_page; |
| 2878 | iblock++; |
| 2879 | pos += blocksize; |
| 2880 | } |
| 2881 | |
| 2882 | err = 0; |
| 2883 | if (!buffer_mapped(bh)) { |
| 2884 | WARN_ON(bh->b_size != blocksize); |
| 2885 | err = get_block(inode, iblock, bh, 0); |
| 2886 | if (err) |
| 2887 | goto unlock; |
| 2888 | /* unmapped? It's a hole - nothing to do */ |
| 2889 | if (!buffer_mapped(bh)) |
| 2890 | goto unlock; |
| 2891 | } |
| 2892 | |
| 2893 | /* Ok, it's mapped. Make sure it's up-to-date */ |
| 2894 | if (PageUptodate(page)) |
| 2895 | set_buffer_uptodate(bh); |
| 2896 | |
| 2897 | if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { |
| 2898 | err = -EIO; |
| 2899 | ll_rw_block(REQ_OP_READ, 0, 1, &bh); |
| 2900 | wait_on_buffer(bh); |
| 2901 | /* Uhhuh. Read error. Complain and punt. */ |
| 2902 | if (!buffer_uptodate(bh)) |
| 2903 | goto unlock; |
| 2904 | } |
| 2905 | |
| 2906 | zero_user(page, offset, length); |
| 2907 | mark_buffer_dirty(bh); |
| 2908 | err = 0; |
| 2909 | |
| 2910 | unlock: |
| 2911 | unlock_page(page); |
| 2912 | put_page(page); |
| 2913 | out: |
| 2914 | return err; |
| 2915 | } |
| 2916 | EXPORT_SYMBOL(block_truncate_page); |
| 2917 | |
| 2918 | /* |
| 2919 | * The generic ->writepage function for buffer-backed address_spaces |
| 2920 | */ |
| 2921 | int block_write_full_page(struct page *page, get_block_t *get_block, |
| 2922 | struct writeback_control *wbc) |
| 2923 | { |
| 2924 | struct inode * const inode = page->mapping->host; |
| 2925 | loff_t i_size = i_size_read(inode); |
| 2926 | const pgoff_t end_index = i_size >> PAGE_SHIFT; |
| 2927 | unsigned offset; |
| 2928 | |
| 2929 | /* Is the page fully inside i_size? */ |
| 2930 | if (page->index < end_index) |
| 2931 | return __block_write_full_page(inode, page, get_block, wbc, |
| 2932 | end_buffer_async_write); |
| 2933 | |
| 2934 | /* Is the page fully outside i_size? (truncate in progress) */ |
| 2935 | offset = i_size & (PAGE_SIZE-1); |
| 2936 | if (page->index >= end_index+1 || !offset) { |
| 2937 | unlock_page(page); |
| 2938 | return 0; /* don't care */ |
| 2939 | } |
| 2940 | |
| 2941 | /* |
| 2942 | * The page straddles i_size. It must be zeroed out on each and every |
| 2943 | * writepage invocation because it may be mmapped. "A file is mapped |
| 2944 | * in multiples of the page size. For a file that is not a multiple of |
| 2945 | * the page size, the remaining memory is zeroed when mapped, and |
| 2946 | * writes to that region are not written out to the file." |
| 2947 | */ |
| 2948 | zero_user_segment(page, offset, PAGE_SIZE); |
| 2949 | return __block_write_full_page(inode, page, get_block, wbc, |
| 2950 | end_buffer_async_write); |
| 2951 | } |
| 2952 | EXPORT_SYMBOL(block_write_full_page); |
| 2953 | |
| 2954 | sector_t generic_block_bmap(struct address_space *mapping, sector_t block, |
| 2955 | get_block_t *get_block) |
| 2956 | { |
| 2957 | struct inode *inode = mapping->host; |
| 2958 | struct buffer_head tmp = { |
| 2959 | .b_size = i_blocksize(inode), |
| 2960 | }; |
| 2961 | |
| 2962 | get_block(inode, block, &tmp, 0); |
| 2963 | return tmp.b_blocknr; |
| 2964 | } |
| 2965 | EXPORT_SYMBOL(generic_block_bmap); |
| 2966 | |
| 2967 | static void end_bio_bh_io_sync(struct bio *bio) |
| 2968 | { |
| 2969 | struct buffer_head *bh = bio->bi_private; |
| 2970 | |
| 2971 | if (unlikely(bio_flagged(bio, BIO_QUIET))) |
| 2972 | set_bit(BH_Quiet, &bh->b_state); |
| 2973 | |
| 2974 | bh->b_end_io(bh, !bio->bi_status); |
| 2975 | bio_put(bio); |
| 2976 | } |
| 2977 | |
| 2978 | /* |
| 2979 | * This allows us to do IO even on the odd last sectors |
| 2980 | * of a device, even if the block size is some multiple |
| 2981 | * of the physical sector size. |
| 2982 | * |
| 2983 | * We'll just truncate the bio to the size of the device, |
| 2984 | * and clear the end of the buffer head manually. |
| 2985 | * |
| 2986 | * Truly out-of-range accesses will turn into actual IO |
| 2987 | * errors, this only handles the "we need to be able to |
| 2988 | * do IO at the final sector" case. |
| 2989 | */ |
| 2990 | void guard_bio_eod(struct bio *bio) |
| 2991 | { |
| 2992 | sector_t maxsector; |
| 2993 | struct hd_struct *part; |
| 2994 | |
| 2995 | rcu_read_lock(); |
| 2996 | part = __disk_get_part(bio->bi_disk, bio->bi_partno); |
| 2997 | if (part) |
| 2998 | maxsector = part_nr_sects_read(part); |
| 2999 | else |
| 3000 | maxsector = get_capacity(bio->bi_disk); |
| 3001 | rcu_read_unlock(); |
| 3002 | |
| 3003 | if (!maxsector) |
| 3004 | return; |
| 3005 | |
| 3006 | /* |
| 3007 | * If the *whole* IO is past the end of the device, |
| 3008 | * let it through, and the IO layer will turn it into |
| 3009 | * an EIO. |
| 3010 | */ |
| 3011 | if (unlikely(bio->bi_iter.bi_sector >= maxsector)) |
| 3012 | return; |
| 3013 | |
| 3014 | maxsector -= bio->bi_iter.bi_sector; |
| 3015 | if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) |
| 3016 | return; |
| 3017 | |
| 3018 | bio_truncate(bio, maxsector << 9); |
| 3019 | } |
| 3020 | |
| 3021 | static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, |
| 3022 | enum rw_hint write_hint, struct writeback_control *wbc) |
| 3023 | { |
| 3024 | struct bio *bio; |
| 3025 | |
| 3026 | BUG_ON(!buffer_locked(bh)); |
| 3027 | BUG_ON(!buffer_mapped(bh)); |
| 3028 | BUG_ON(!bh->b_end_io); |
| 3029 | BUG_ON(buffer_delay(bh)); |
| 3030 | BUG_ON(buffer_unwritten(bh)); |
| 3031 | |
| 3032 | /* |
| 3033 | * Only clear out a write error when rewriting |
| 3034 | */ |
| 3035 | if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) |
| 3036 | clear_buffer_write_io_error(bh); |
| 3037 | |
| 3038 | /* |
| 3039 | * from here on down, it's all bio -- do the initial mapping, |
| 3040 | * submit_bio -> generic_make_request may further map this bio around |
| 3041 | */ |
| 3042 | bio = bio_alloc(GFP_NOIO, 1); |
| 3043 | |
| 3044 | fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); |
| 3045 | |
| 3046 | bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); |
| 3047 | bio_set_dev(bio, bh->b_bdev); |
| 3048 | bio->bi_write_hint = write_hint; |
| 3049 | |
| 3050 | bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); |
| 3051 | BUG_ON(bio->bi_iter.bi_size != bh->b_size); |
| 3052 | |
| 3053 | bio->bi_end_io = end_bio_bh_io_sync; |
| 3054 | bio->bi_private = bh; |
| 3055 | |
| 3056 | if (buffer_meta(bh)) |
| 3057 | op_flags |= REQ_META; |
| 3058 | if (buffer_prio(bh)) |
| 3059 | op_flags |= REQ_PRIO; |
| 3060 | bio_set_op_attrs(bio, op, op_flags); |
| 3061 | |
| 3062 | /* Take care of bh's that straddle the end of the device */ |
| 3063 | guard_bio_eod(bio); |
| 3064 | |
| 3065 | if (wbc) { |
| 3066 | wbc_init_bio(wbc, bio); |
| 3067 | wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size); |
| 3068 | } |
| 3069 | |
| 3070 | submit_bio(bio); |
| 3071 | return 0; |
| 3072 | } |
| 3073 | |
| 3074 | int submit_bh(int op, int op_flags, struct buffer_head *bh) |
| 3075 | { |
| 3076 | return submit_bh_wbc(op, op_flags, bh, 0, NULL); |
| 3077 | } |
| 3078 | EXPORT_SYMBOL(submit_bh); |
| 3079 | |
| 3080 | /** |
| 3081 | * ll_rw_block: low-level access to block devices (DEPRECATED) |
| 3082 | * @op: whether to %READ or %WRITE |
| 3083 | * @op_flags: req_flag_bits |
| 3084 | * @nr: number of &struct buffer_heads in the array |
| 3085 | * @bhs: array of pointers to &struct buffer_head |
| 3086 | * |
| 3087 | * ll_rw_block() takes an array of pointers to &struct buffer_heads, and |
| 3088 | * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE. |
| 3089 | * @op_flags contains flags modifying the detailed I/O behavior, most notably |
| 3090 | * %REQ_RAHEAD. |
| 3091 | * |
| 3092 | * This function drops any buffer that it cannot get a lock on (with the |
| 3093 | * BH_Lock state bit), any buffer that appears to be clean when doing a write |
| 3094 | * request, and any buffer that appears to be up-to-date when doing read |
| 3095 | * request. Further it marks as clean buffers that are processed for |
| 3096 | * writing (the buffer cache won't assume that they are actually clean |
| 3097 | * until the buffer gets unlocked). |
| 3098 | * |
| 3099 | * ll_rw_block sets b_end_io to simple completion handler that marks |
| 3100 | * the buffer up-to-date (if appropriate), unlocks the buffer and wakes |
| 3101 | * any waiters. |
| 3102 | * |
| 3103 | * All of the buffers must be for the same device, and must also be a |
| 3104 | * multiple of the current approved size for the device. |
| 3105 | */ |
| 3106 | void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[]) |
| 3107 | { |
| 3108 | int i; |
| 3109 | |
| 3110 | for (i = 0; i < nr; i++) { |
| 3111 | struct buffer_head *bh = bhs[i]; |
| 3112 | |
| 3113 | if (!trylock_buffer(bh)) |
| 3114 | continue; |
| 3115 | if (op == WRITE) { |
| 3116 | if (test_clear_buffer_dirty(bh)) { |
| 3117 | bh->b_end_io = end_buffer_write_sync; |
| 3118 | get_bh(bh); |
| 3119 | submit_bh(op, op_flags, bh); |
| 3120 | continue; |
| 3121 | } |
| 3122 | } else { |
| 3123 | if (!buffer_uptodate(bh)) { |
| 3124 | bh->b_end_io = end_buffer_read_sync; |
| 3125 | get_bh(bh); |
| 3126 | submit_bh(op, op_flags, bh); |
| 3127 | continue; |
| 3128 | } |
| 3129 | } |
| 3130 | unlock_buffer(bh); |
| 3131 | } |
| 3132 | } |
| 3133 | EXPORT_SYMBOL(ll_rw_block); |
| 3134 | |
| 3135 | void write_dirty_buffer(struct buffer_head *bh, int op_flags) |
| 3136 | { |
| 3137 | lock_buffer(bh); |
| 3138 | if (!test_clear_buffer_dirty(bh)) { |
| 3139 | unlock_buffer(bh); |
| 3140 | return; |
| 3141 | } |
| 3142 | bh->b_end_io = end_buffer_write_sync; |
| 3143 | get_bh(bh); |
| 3144 | submit_bh(REQ_OP_WRITE, op_flags, bh); |
| 3145 | } |
| 3146 | EXPORT_SYMBOL(write_dirty_buffer); |
| 3147 | |
| 3148 | /* |
| 3149 | * For a data-integrity writeout, we need to wait upon any in-progress I/O |
| 3150 | * and then start new I/O and then wait upon it. The caller must have a ref on |
| 3151 | * the buffer_head. |
| 3152 | */ |
| 3153 | int __sync_dirty_buffer(struct buffer_head *bh, int op_flags) |
| 3154 | { |
| 3155 | int ret = 0; |
| 3156 | |
| 3157 | WARN_ON(atomic_read(&bh->b_count) < 1); |
| 3158 | lock_buffer(bh); |
| 3159 | if (test_clear_buffer_dirty(bh)) { |
| 3160 | /* |
| 3161 | * The bh should be mapped, but it might not be if the |
| 3162 | * device was hot-removed. Not much we can do but fail the I/O. |
| 3163 | */ |
| 3164 | if (!buffer_mapped(bh)) { |
| 3165 | unlock_buffer(bh); |
| 3166 | return -EIO; |
| 3167 | } |
| 3168 | |
| 3169 | get_bh(bh); |
| 3170 | bh->b_end_io = end_buffer_write_sync; |
| 3171 | ret = submit_bh(REQ_OP_WRITE, op_flags, bh); |
| 3172 | wait_on_buffer(bh); |
| 3173 | if (!ret && !buffer_uptodate(bh)) |
| 3174 | ret = -EIO; |
| 3175 | } else { |
| 3176 | unlock_buffer(bh); |
| 3177 | } |
| 3178 | return ret; |
| 3179 | } |
| 3180 | EXPORT_SYMBOL(__sync_dirty_buffer); |
| 3181 | |
| 3182 | int sync_dirty_buffer(struct buffer_head *bh) |
| 3183 | { |
| 3184 | return __sync_dirty_buffer(bh, REQ_SYNC); |
| 3185 | } |
| 3186 | EXPORT_SYMBOL(sync_dirty_buffer); |
| 3187 | |
| 3188 | /* |
| 3189 | * try_to_free_buffers() checks if all the buffers on this particular page |
| 3190 | * are unused, and releases them if so. |
| 3191 | * |
| 3192 | * Exclusion against try_to_free_buffers may be obtained by either |
| 3193 | * locking the page or by holding its mapping's private_lock. |
| 3194 | * |
| 3195 | * If the page is dirty but all the buffers are clean then we need to |
| 3196 | * be sure to mark the page clean as well. This is because the page |
| 3197 | * may be against a block device, and a later reattachment of buffers |
| 3198 | * to a dirty page will set *all* buffers dirty. Which would corrupt |
| 3199 | * filesystem data on the same device. |
| 3200 | * |
| 3201 | * The same applies to regular filesystem pages: if all the buffers are |
| 3202 | * clean then we set the page clean and proceed. To do that, we require |
| 3203 | * total exclusion from __set_page_dirty_buffers(). That is obtained with |
| 3204 | * private_lock. |
| 3205 | * |
| 3206 | * try_to_free_buffers() is non-blocking. |
| 3207 | */ |
| 3208 | static inline int buffer_busy(struct buffer_head *bh) |
| 3209 | { |
| 3210 | return atomic_read(&bh->b_count) | |
| 3211 | (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); |
| 3212 | } |
| 3213 | |
| 3214 | static int |
| 3215 | drop_buffers(struct page *page, struct buffer_head **buffers_to_free) |
| 3216 | { |
| 3217 | struct buffer_head *head = page_buffers(page); |
| 3218 | struct buffer_head *bh; |
| 3219 | |
| 3220 | bh = head; |
| 3221 | do { |
| 3222 | if (buffer_busy(bh)) |
| 3223 | goto failed; |
| 3224 | bh = bh->b_this_page; |
| 3225 | } while (bh != head); |
| 3226 | |
| 3227 | do { |
| 3228 | struct buffer_head *next = bh->b_this_page; |
| 3229 | |
| 3230 | if (bh->b_assoc_map) |
| 3231 | __remove_assoc_queue(bh); |
| 3232 | bh = next; |
| 3233 | } while (bh != head); |
| 3234 | *buffers_to_free = head; |
| 3235 | __clear_page_buffers(page); |
| 3236 | return 1; |
| 3237 | failed: |
| 3238 | return 0; |
| 3239 | } |
| 3240 | |
| 3241 | int try_to_free_buffers(struct page *page) |
| 3242 | { |
| 3243 | struct address_space * const mapping = page->mapping; |
| 3244 | struct buffer_head *buffers_to_free = NULL; |
| 3245 | int ret = 0; |
| 3246 | |
| 3247 | BUG_ON(!PageLocked(page)); |
| 3248 | if (PageWriteback(page)) |
| 3249 | return 0; |
| 3250 | |
| 3251 | if (mapping == NULL) { /* can this still happen? */ |
| 3252 | ret = drop_buffers(page, &buffers_to_free); |
| 3253 | goto out; |
| 3254 | } |
| 3255 | |
| 3256 | spin_lock(&mapping->private_lock); |
| 3257 | ret = drop_buffers(page, &buffers_to_free); |
| 3258 | |
| 3259 | /* |
| 3260 | * If the filesystem writes its buffers by hand (eg ext3) |
| 3261 | * then we can have clean buffers against a dirty page. We |
| 3262 | * clean the page here; otherwise the VM will never notice |
| 3263 | * that the filesystem did any IO at all. |
| 3264 | * |
| 3265 | * Also, during truncate, discard_buffer will have marked all |
| 3266 | * the page's buffers clean. We discover that here and clean |
| 3267 | * the page also. |
| 3268 | * |
| 3269 | * private_lock must be held over this entire operation in order |
| 3270 | * to synchronise against __set_page_dirty_buffers and prevent the |
| 3271 | * dirty bit from being lost. |
| 3272 | */ |
| 3273 | if (ret) |
| 3274 | cancel_dirty_page(page); |
| 3275 | spin_unlock(&mapping->private_lock); |
| 3276 | out: |
| 3277 | if (buffers_to_free) { |
| 3278 | struct buffer_head *bh = buffers_to_free; |
| 3279 | |
| 3280 | do { |
| 3281 | struct buffer_head *next = bh->b_this_page; |
| 3282 | free_buffer_head(bh); |
| 3283 | bh = next; |
| 3284 | } while (bh != buffers_to_free); |
| 3285 | } |
| 3286 | return ret; |
| 3287 | } |
| 3288 | EXPORT_SYMBOL(try_to_free_buffers); |
| 3289 | |
| 3290 | /* |
| 3291 | * There are no bdflush tunables left. But distributions are |
| 3292 | * still running obsolete flush daemons, so we terminate them here. |
| 3293 | * |
| 3294 | * Use of bdflush() is deprecated and will be removed in a future kernel. |
| 3295 | * The `flush-X' kernel threads fully replace bdflush daemons and this call. |
| 3296 | */ |
| 3297 | SYSCALL_DEFINE2(bdflush, int, func, long, data) |
| 3298 | { |
| 3299 | static int msg_count; |
| 3300 | |
| 3301 | if (!capable(CAP_SYS_ADMIN)) |
| 3302 | return -EPERM; |
| 3303 | |
| 3304 | if (msg_count < 5) { |
| 3305 | msg_count++; |
| 3306 | printk(KERN_INFO |
| 3307 | "warning: process `%s' used the obsolete bdflush" |
| 3308 | " system call\n", current->comm); |
| 3309 | printk(KERN_INFO "Fix your initscripts?\n"); |
| 3310 | } |
| 3311 | |
| 3312 | if (func == 1) |
| 3313 | do_exit(0); |
| 3314 | return 0; |
| 3315 | } |
| 3316 | |
| 3317 | /* |
| 3318 | * Buffer-head allocation |
| 3319 | */ |
| 3320 | static struct kmem_cache *bh_cachep __read_mostly; |
| 3321 | |
| 3322 | /* |
| 3323 | * Once the number of bh's in the machine exceeds this level, we start |
| 3324 | * stripping them in writeback. |
| 3325 | */ |
| 3326 | static unsigned long max_buffer_heads; |
| 3327 | |
| 3328 | int buffer_heads_over_limit; |
| 3329 | |
| 3330 | struct bh_accounting { |
| 3331 | int nr; /* Number of live bh's */ |
| 3332 | int ratelimit; /* Limit cacheline bouncing */ |
| 3333 | }; |
| 3334 | |
| 3335 | static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; |
| 3336 | |
| 3337 | static void recalc_bh_state(void) |
| 3338 | { |
| 3339 | int i; |
| 3340 | int tot = 0; |
| 3341 | |
| 3342 | if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) |
| 3343 | return; |
| 3344 | __this_cpu_write(bh_accounting.ratelimit, 0); |
| 3345 | for_each_online_cpu(i) |
| 3346 | tot += per_cpu(bh_accounting, i).nr; |
| 3347 | buffer_heads_over_limit = (tot > max_buffer_heads); |
| 3348 | } |
| 3349 | |
| 3350 | struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) |
| 3351 | { |
| 3352 | struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); |
| 3353 | if (ret) { |
| 3354 | INIT_LIST_HEAD(&ret->b_assoc_buffers); |
| 3355 | preempt_disable(); |
| 3356 | __this_cpu_inc(bh_accounting.nr); |
| 3357 | recalc_bh_state(); |
| 3358 | preempt_enable(); |
| 3359 | } |
| 3360 | return ret; |
| 3361 | } |
| 3362 | EXPORT_SYMBOL(alloc_buffer_head); |
| 3363 | |
| 3364 | void free_buffer_head(struct buffer_head *bh) |
| 3365 | { |
| 3366 | BUG_ON(!list_empty(&bh->b_assoc_buffers)); |
| 3367 | kmem_cache_free(bh_cachep, bh); |
| 3368 | preempt_disable(); |
| 3369 | __this_cpu_dec(bh_accounting.nr); |
| 3370 | recalc_bh_state(); |
| 3371 | preempt_enable(); |
| 3372 | } |
| 3373 | EXPORT_SYMBOL(free_buffer_head); |
| 3374 | |
| 3375 | static int buffer_exit_cpu_dead(unsigned int cpu) |
| 3376 | { |
| 3377 | int i; |
| 3378 | struct bh_lru *b = &per_cpu(bh_lrus, cpu); |
| 3379 | |
| 3380 | for (i = 0; i < BH_LRU_SIZE; i++) { |
| 3381 | brelse(b->bhs[i]); |
| 3382 | b->bhs[i] = NULL; |
| 3383 | } |
| 3384 | this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); |
| 3385 | per_cpu(bh_accounting, cpu).nr = 0; |
| 3386 | return 0; |
| 3387 | } |
| 3388 | |
| 3389 | /** |
| 3390 | * bh_uptodate_or_lock - Test whether the buffer is uptodate |
| 3391 | * @bh: struct buffer_head |
| 3392 | * |
| 3393 | * Return true if the buffer is up-to-date and false, |
| 3394 | * with the buffer locked, if not. |
| 3395 | */ |
| 3396 | int bh_uptodate_or_lock(struct buffer_head *bh) |
| 3397 | { |
| 3398 | if (!buffer_uptodate(bh)) { |
| 3399 | lock_buffer(bh); |
| 3400 | if (!buffer_uptodate(bh)) |
| 3401 | return 0; |
| 3402 | unlock_buffer(bh); |
| 3403 | } |
| 3404 | return 1; |
| 3405 | } |
| 3406 | EXPORT_SYMBOL(bh_uptodate_or_lock); |
| 3407 | |
| 3408 | /** |
| 3409 | * bh_submit_read - Submit a locked buffer for reading |
| 3410 | * @bh: struct buffer_head |
| 3411 | * |
| 3412 | * Returns zero on success and -EIO on error. |
| 3413 | */ |
| 3414 | int bh_submit_read(struct buffer_head *bh) |
| 3415 | { |
| 3416 | BUG_ON(!buffer_locked(bh)); |
| 3417 | |
| 3418 | if (buffer_uptodate(bh)) { |
| 3419 | unlock_buffer(bh); |
| 3420 | return 0; |
| 3421 | } |
| 3422 | |
| 3423 | get_bh(bh); |
| 3424 | bh->b_end_io = end_buffer_read_sync; |
| 3425 | submit_bh(REQ_OP_READ, 0, bh); |
| 3426 | wait_on_buffer(bh); |
| 3427 | if (buffer_uptodate(bh)) |
| 3428 | return 0; |
| 3429 | return -EIO; |
| 3430 | } |
| 3431 | EXPORT_SYMBOL(bh_submit_read); |
| 3432 | |
| 3433 | void __init buffer_init(void) |
| 3434 | { |
| 3435 | unsigned long nrpages; |
| 3436 | int ret; |
| 3437 | |
| 3438 | bh_cachep = kmem_cache_create("buffer_head", |
| 3439 | sizeof(struct buffer_head), 0, |
| 3440 | (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| |
| 3441 | SLAB_MEM_SPREAD), |
| 3442 | NULL); |
| 3443 | |
| 3444 | /* |
| 3445 | * Limit the bh occupancy to 10% of ZONE_NORMAL |
| 3446 | */ |
| 3447 | nrpages = (nr_free_buffer_pages() * 10) / 100; |
| 3448 | max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); |
| 3449 | ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", |
| 3450 | NULL, buffer_exit_cpu_dead); |
| 3451 | WARN_ON(ret < 0); |
| 3452 | } |