b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * This contains functions for filename crypto management |
| 4 | * |
| 5 | * Copyright (C) 2015, Google, Inc. |
| 6 | * Copyright (C) 2015, Motorola Mobility |
| 7 | * |
| 8 | * Written by Uday Savagaonkar, 2014. |
| 9 | * Modified by Jaegeuk Kim, 2015. |
| 10 | * |
| 11 | * This has not yet undergone a rigorous security audit. |
| 12 | */ |
| 13 | |
| 14 | #include <linux/namei.h> |
| 15 | #include <linux/scatterlist.h> |
| 16 | #include <crypto/hash.h> |
| 17 | #include <crypto/sha.h> |
| 18 | #include <crypto/skcipher.h> |
| 19 | #include "fscrypt_private.h" |
| 20 | |
| 21 | /* |
| 22 | * struct fscrypt_nokey_name - identifier for directory entry when key is absent |
| 23 | * |
| 24 | * When userspace lists an encrypted directory without access to the key, the |
| 25 | * filesystem must present a unique "no-key name" for each filename that allows |
| 26 | * it to find the directory entry again if requested. Naively, that would just |
| 27 | * mean using the ciphertext filenames. However, since the ciphertext filenames |
| 28 | * can contain illegal characters ('\0' and '/'), they must be encoded in some |
| 29 | * way. We use base64. But that can cause names to exceed NAME_MAX (255 |
| 30 | * bytes), so we also need to use a strong hash to abbreviate long names. |
| 31 | * |
| 32 | * The filesystem may also need another kind of hash, the "dirhash", to quickly |
| 33 | * find the directory entry. Since filesystems normally compute the dirhash |
| 34 | * over the on-disk filename (i.e. the ciphertext), it's not computable from |
| 35 | * no-key names that abbreviate the ciphertext using the strong hash to fit in |
| 36 | * NAME_MAX. It's also not computable if it's a keyed hash taken over the |
| 37 | * plaintext (but it may still be available in the on-disk directory entry); |
| 38 | * casefolded directories use this type of dirhash. At least in these cases, |
| 39 | * each no-key name must include the name's dirhash too. |
| 40 | * |
| 41 | * To meet all these requirements, we base64-encode the following |
| 42 | * variable-length structure. It contains the dirhash, or 0's if the filesystem |
| 43 | * didn't provide one; up to 149 bytes of the ciphertext name; and for |
| 44 | * ciphertexts longer than 149 bytes, also the SHA-256 of the remaining bytes. |
| 45 | * |
| 46 | * This ensures that each no-key name contains everything needed to find the |
| 47 | * directory entry again, contains only legal characters, doesn't exceed |
| 48 | * NAME_MAX, is unambiguous unless there's a SHA-256 collision, and that we only |
| 49 | * take the performance hit of SHA-256 on very long filenames (which are rare). |
| 50 | */ |
| 51 | struct fscrypt_nokey_name { |
| 52 | u32 dirhash[2]; |
| 53 | u8 bytes[149]; |
| 54 | u8 sha256[SHA256_DIGEST_SIZE]; |
| 55 | }; /* 189 bytes => 252 bytes base64-encoded, which is <= NAME_MAX (255) */ |
| 56 | |
| 57 | /* |
| 58 | * Decoded size of max-size nokey name, i.e. a name that was abbreviated using |
| 59 | * the strong hash and thus includes the 'sha256' field. This isn't simply |
| 60 | * sizeof(struct fscrypt_nokey_name), as the padding at the end isn't included. |
| 61 | */ |
| 62 | #define FSCRYPT_NOKEY_NAME_MAX offsetofend(struct fscrypt_nokey_name, sha256) |
| 63 | |
| 64 | static inline bool fscrypt_is_dot_dotdot(const struct qstr *str) |
| 65 | { |
| 66 | if (str->len == 1 && str->name[0] == '.') |
| 67 | return true; |
| 68 | |
| 69 | if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') |
| 70 | return true; |
| 71 | |
| 72 | return false; |
| 73 | } |
| 74 | |
| 75 | /** |
| 76 | * fscrypt_fname_encrypt() - encrypt a filename |
| 77 | * @inode: inode of the parent directory (for regular filenames) |
| 78 | * or of the symlink (for symlink targets) |
| 79 | * @iname: the filename to encrypt |
| 80 | * @out: (output) the encrypted filename |
| 81 | * @olen: size of the encrypted filename. It must be at least @iname->len. |
| 82 | * Any extra space is filled with NUL padding before encryption. |
| 83 | * |
| 84 | * Return: 0 on success, -errno on failure |
| 85 | */ |
| 86 | int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname, |
| 87 | u8 *out, unsigned int olen) |
| 88 | { |
| 89 | struct skcipher_request *req = NULL; |
| 90 | DECLARE_CRYPTO_WAIT(wait); |
| 91 | const struct fscrypt_info *ci = inode->i_crypt_info; |
| 92 | struct crypto_skcipher *tfm = ci->ci_enc_key.tfm; |
| 93 | union fscrypt_iv iv; |
| 94 | struct scatterlist sg; |
| 95 | int res; |
| 96 | |
| 97 | /* |
| 98 | * Copy the filename to the output buffer for encrypting in-place and |
| 99 | * pad it with the needed number of NUL bytes. |
| 100 | */ |
| 101 | if (WARN_ON(olen < iname->len)) |
| 102 | return -ENOBUFS; |
| 103 | memcpy(out, iname->name, iname->len); |
| 104 | memset(out + iname->len, 0, olen - iname->len); |
| 105 | |
| 106 | /* Initialize the IV */ |
| 107 | fscrypt_generate_iv(&iv, 0, ci); |
| 108 | |
| 109 | /* Set up the encryption request */ |
| 110 | req = skcipher_request_alloc(tfm, GFP_NOFS); |
| 111 | if (!req) |
| 112 | return -ENOMEM; |
| 113 | skcipher_request_set_callback(req, |
| 114 | CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, |
| 115 | crypto_req_done, &wait); |
| 116 | sg_init_one(&sg, out, olen); |
| 117 | skcipher_request_set_crypt(req, &sg, &sg, olen, &iv); |
| 118 | |
| 119 | /* Do the encryption */ |
| 120 | res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); |
| 121 | skcipher_request_free(req); |
| 122 | if (res < 0) { |
| 123 | fscrypt_err(inode, "Filename encryption failed: %d", res); |
| 124 | return res; |
| 125 | } |
| 126 | |
| 127 | return 0; |
| 128 | } |
| 129 | |
| 130 | /** |
| 131 | * fname_decrypt() - decrypt a filename |
| 132 | * @inode: inode of the parent directory (for regular filenames) |
| 133 | * or of the symlink (for symlink targets) |
| 134 | * @iname: the encrypted filename to decrypt |
| 135 | * @oname: (output) the decrypted filename. The caller must have allocated |
| 136 | * enough space for this, e.g. using fscrypt_fname_alloc_buffer(). |
| 137 | * |
| 138 | * Return: 0 on success, -errno on failure |
| 139 | */ |
| 140 | static int fname_decrypt(const struct inode *inode, |
| 141 | const struct fscrypt_str *iname, |
| 142 | struct fscrypt_str *oname) |
| 143 | { |
| 144 | struct skcipher_request *req = NULL; |
| 145 | DECLARE_CRYPTO_WAIT(wait); |
| 146 | struct scatterlist src_sg, dst_sg; |
| 147 | const struct fscrypt_info *ci = inode->i_crypt_info; |
| 148 | struct crypto_skcipher *tfm = ci->ci_enc_key.tfm; |
| 149 | union fscrypt_iv iv; |
| 150 | int res; |
| 151 | |
| 152 | /* Allocate request */ |
| 153 | req = skcipher_request_alloc(tfm, GFP_NOFS); |
| 154 | if (!req) |
| 155 | return -ENOMEM; |
| 156 | skcipher_request_set_callback(req, |
| 157 | CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, |
| 158 | crypto_req_done, &wait); |
| 159 | |
| 160 | /* Initialize IV */ |
| 161 | fscrypt_generate_iv(&iv, 0, ci); |
| 162 | |
| 163 | /* Create decryption request */ |
| 164 | sg_init_one(&src_sg, iname->name, iname->len); |
| 165 | sg_init_one(&dst_sg, oname->name, oname->len); |
| 166 | skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, &iv); |
| 167 | res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait); |
| 168 | skcipher_request_free(req); |
| 169 | if (res < 0) { |
| 170 | fscrypt_err(inode, "Filename decryption failed: %d", res); |
| 171 | return res; |
| 172 | } |
| 173 | |
| 174 | oname->len = strnlen(oname->name, iname->len); |
| 175 | return 0; |
| 176 | } |
| 177 | |
| 178 | static const char lookup_table[65] = |
| 179 | "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,"; |
| 180 | |
| 181 | #define BASE64_CHARS(nbytes) DIV_ROUND_UP((nbytes) * 4, 3) |
| 182 | |
| 183 | /** |
| 184 | * base64_encode() - base64-encode some bytes |
| 185 | * @src: the bytes to encode |
| 186 | * @len: number of bytes to encode |
| 187 | * @dst: (output) the base64-encoded string. Not NUL-terminated. |
| 188 | * |
| 189 | * Encodes the input string using characters from the set [A-Za-z0-9+,]. |
| 190 | * The encoded string is roughly 4/3 times the size of the input string. |
| 191 | * |
| 192 | * Return: length of the encoded string |
| 193 | */ |
| 194 | static int base64_encode(const u8 *src, int len, char *dst) |
| 195 | { |
| 196 | int i, bits = 0, ac = 0; |
| 197 | char *cp = dst; |
| 198 | |
| 199 | for (i = 0; i < len; i++) { |
| 200 | ac += src[i] << bits; |
| 201 | bits += 8; |
| 202 | do { |
| 203 | *cp++ = lookup_table[ac & 0x3f]; |
| 204 | ac >>= 6; |
| 205 | bits -= 6; |
| 206 | } while (bits >= 6); |
| 207 | } |
| 208 | if (bits) |
| 209 | *cp++ = lookup_table[ac & 0x3f]; |
| 210 | return cp - dst; |
| 211 | } |
| 212 | |
| 213 | static int base64_decode(const char *src, int len, u8 *dst) |
| 214 | { |
| 215 | int i, bits = 0, ac = 0; |
| 216 | const char *p; |
| 217 | u8 *cp = dst; |
| 218 | |
| 219 | for (i = 0; i < len; i++) { |
| 220 | p = strchr(lookup_table, src[i]); |
| 221 | if (p == NULL || src[i] == 0) |
| 222 | return -2; |
| 223 | ac += (p - lookup_table) << bits; |
| 224 | bits += 6; |
| 225 | if (bits >= 8) { |
| 226 | *cp++ = ac & 0xff; |
| 227 | ac >>= 8; |
| 228 | bits -= 8; |
| 229 | } |
| 230 | } |
| 231 | if (ac) |
| 232 | return -1; |
| 233 | return cp - dst; |
| 234 | } |
| 235 | |
| 236 | bool fscrypt_fname_encrypted_size(const union fscrypt_policy *policy, |
| 237 | u32 orig_len, u32 max_len, |
| 238 | u32 *encrypted_len_ret) |
| 239 | { |
| 240 | int padding = 4 << (fscrypt_policy_flags(policy) & |
| 241 | FSCRYPT_POLICY_FLAGS_PAD_MASK); |
| 242 | u32 encrypted_len; |
| 243 | |
| 244 | if (orig_len > max_len) |
| 245 | return false; |
| 246 | encrypted_len = max(orig_len, (u32)FS_CRYPTO_BLOCK_SIZE); |
| 247 | encrypted_len = round_up(encrypted_len, padding); |
| 248 | *encrypted_len_ret = min(encrypted_len, max_len); |
| 249 | return true; |
| 250 | } |
| 251 | |
| 252 | /** |
| 253 | * fscrypt_fname_alloc_buffer() - allocate a buffer for presented filenames |
| 254 | * @max_encrypted_len: maximum length of encrypted filenames the buffer will be |
| 255 | * used to present |
| 256 | * @crypto_str: (output) buffer to allocate |
| 257 | * |
| 258 | * Allocate a buffer that is large enough to hold any decrypted or encoded |
| 259 | * filename (null-terminated), for the given maximum encrypted filename length. |
| 260 | * |
| 261 | * Return: 0 on success, -errno on failure |
| 262 | */ |
| 263 | int fscrypt_fname_alloc_buffer(u32 max_encrypted_len, |
| 264 | struct fscrypt_str *crypto_str) |
| 265 | { |
| 266 | const u32 max_encoded_len = BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX); |
| 267 | u32 max_presented_len; |
| 268 | |
| 269 | max_presented_len = max(max_encoded_len, max_encrypted_len); |
| 270 | |
| 271 | crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS); |
| 272 | if (!crypto_str->name) |
| 273 | return -ENOMEM; |
| 274 | crypto_str->len = max_presented_len; |
| 275 | return 0; |
| 276 | } |
| 277 | EXPORT_SYMBOL(fscrypt_fname_alloc_buffer); |
| 278 | |
| 279 | /** |
| 280 | * fscrypt_fname_free_buffer() - free a buffer for presented filenames |
| 281 | * @crypto_str: the buffer to free |
| 282 | * |
| 283 | * Free a buffer that was allocated by fscrypt_fname_alloc_buffer(). |
| 284 | */ |
| 285 | void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str) |
| 286 | { |
| 287 | if (!crypto_str) |
| 288 | return; |
| 289 | kfree(crypto_str->name); |
| 290 | crypto_str->name = NULL; |
| 291 | } |
| 292 | EXPORT_SYMBOL(fscrypt_fname_free_buffer); |
| 293 | |
| 294 | /** |
| 295 | * fscrypt_fname_disk_to_usr() - convert an encrypted filename to |
| 296 | * user-presentable form |
| 297 | * @inode: inode of the parent directory (for regular filenames) |
| 298 | * or of the symlink (for symlink targets) |
| 299 | * @hash: first part of the name's dirhash, if applicable. This only needs to |
| 300 | * be provided if the filename is located in an indexed directory whose |
| 301 | * encryption key may be unavailable. Not needed for symlink targets. |
| 302 | * @minor_hash: second part of the name's dirhash, if applicable |
| 303 | * @iname: encrypted filename to convert. May also be "." or "..", which |
| 304 | * aren't actually encrypted. |
| 305 | * @oname: output buffer for the user-presentable filename. The caller must |
| 306 | * have allocated enough space for this, e.g. using |
| 307 | * fscrypt_fname_alloc_buffer(). |
| 308 | * |
| 309 | * If the key is available, we'll decrypt the disk name. Otherwise, we'll |
| 310 | * encode it for presentation in fscrypt_nokey_name format. |
| 311 | * See struct fscrypt_nokey_name for details. |
| 312 | * |
| 313 | * Return: 0 on success, -errno on failure |
| 314 | */ |
| 315 | int fscrypt_fname_disk_to_usr(const struct inode *inode, |
| 316 | u32 hash, u32 minor_hash, |
| 317 | const struct fscrypt_str *iname, |
| 318 | struct fscrypt_str *oname) |
| 319 | { |
| 320 | const struct qstr qname = FSTR_TO_QSTR(iname); |
| 321 | struct fscrypt_nokey_name nokey_name; |
| 322 | u32 size; /* size of the unencoded no-key name */ |
| 323 | |
| 324 | if (fscrypt_is_dot_dotdot(&qname)) { |
| 325 | oname->name[0] = '.'; |
| 326 | oname->name[iname->len - 1] = '.'; |
| 327 | oname->len = iname->len; |
| 328 | return 0; |
| 329 | } |
| 330 | |
| 331 | if (iname->len < FS_CRYPTO_BLOCK_SIZE) |
| 332 | return -EUCLEAN; |
| 333 | |
| 334 | if (fscrypt_has_encryption_key(inode)) |
| 335 | return fname_decrypt(inode, iname, oname); |
| 336 | |
| 337 | /* |
| 338 | * Sanity check that struct fscrypt_nokey_name doesn't have padding |
| 339 | * between fields and that its encoded size never exceeds NAME_MAX. |
| 340 | */ |
| 341 | BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, dirhash) != |
| 342 | offsetof(struct fscrypt_nokey_name, bytes)); |
| 343 | BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, bytes) != |
| 344 | offsetof(struct fscrypt_nokey_name, sha256)); |
| 345 | BUILD_BUG_ON(BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX) > NAME_MAX); |
| 346 | |
| 347 | nokey_name.dirhash[0] = hash; |
| 348 | nokey_name.dirhash[1] = minor_hash; |
| 349 | if (iname->len <= sizeof(nokey_name.bytes)) { |
| 350 | memcpy(nokey_name.bytes, iname->name, iname->len); |
| 351 | size = offsetof(struct fscrypt_nokey_name, bytes[iname->len]); |
| 352 | } else { |
| 353 | memcpy(nokey_name.bytes, iname->name, sizeof(nokey_name.bytes)); |
| 354 | /* Compute strong hash of remaining part of name. */ |
| 355 | sha256(&iname->name[sizeof(nokey_name.bytes)], |
| 356 | iname->len - sizeof(nokey_name.bytes), |
| 357 | nokey_name.sha256); |
| 358 | size = FSCRYPT_NOKEY_NAME_MAX; |
| 359 | } |
| 360 | oname->len = base64_encode((const u8 *)&nokey_name, size, oname->name); |
| 361 | return 0; |
| 362 | } |
| 363 | EXPORT_SYMBOL(fscrypt_fname_disk_to_usr); |
| 364 | |
| 365 | /** |
| 366 | * fscrypt_setup_filename() - prepare to search a possibly encrypted directory |
| 367 | * @dir: the directory that will be searched |
| 368 | * @iname: the user-provided filename being searched for |
| 369 | * @lookup: 1 if we're allowed to proceed without the key because it's |
| 370 | * ->lookup() or we're finding the dir_entry for deletion; 0 if we cannot |
| 371 | * proceed without the key because we're going to create the dir_entry. |
| 372 | * @fname: the filename information to be filled in |
| 373 | * |
| 374 | * Given a user-provided filename @iname, this function sets @fname->disk_name |
| 375 | * to the name that would be stored in the on-disk directory entry, if possible. |
| 376 | * If the directory is unencrypted this is simply @iname. Else, if we have the |
| 377 | * directory's encryption key, then @iname is the plaintext, so we encrypt it to |
| 378 | * get the disk_name. |
| 379 | * |
| 380 | * Else, for keyless @lookup operations, @iname should be a no-key name, so we |
| 381 | * decode it to get the struct fscrypt_nokey_name. Non-@lookup operations will |
| 382 | * be impossible in this case, so we fail them with ENOKEY. |
| 383 | * |
| 384 | * If successful, fscrypt_free_filename() must be called later to clean up. |
| 385 | * |
| 386 | * Return: 0 on success, -errno on failure |
| 387 | */ |
| 388 | int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname, |
| 389 | int lookup, struct fscrypt_name *fname) |
| 390 | { |
| 391 | struct fscrypt_nokey_name *nokey_name; |
| 392 | int ret; |
| 393 | |
| 394 | memset(fname, 0, sizeof(struct fscrypt_name)); |
| 395 | fname->usr_fname = iname; |
| 396 | |
| 397 | if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) { |
| 398 | fname->disk_name.name = (unsigned char *)iname->name; |
| 399 | fname->disk_name.len = iname->len; |
| 400 | return 0; |
| 401 | } |
| 402 | ret = fscrypt_get_encryption_info(dir, lookup); |
| 403 | if (ret) |
| 404 | return ret; |
| 405 | |
| 406 | if (fscrypt_has_encryption_key(dir)) { |
| 407 | if (!fscrypt_fname_encrypted_size(&dir->i_crypt_info->ci_policy, |
| 408 | iname->len, |
| 409 | dir->i_sb->s_cop->max_namelen, |
| 410 | &fname->crypto_buf.len)) |
| 411 | return -ENAMETOOLONG; |
| 412 | fname->crypto_buf.name = kmalloc(fname->crypto_buf.len, |
| 413 | GFP_NOFS); |
| 414 | if (!fname->crypto_buf.name) |
| 415 | return -ENOMEM; |
| 416 | |
| 417 | ret = fscrypt_fname_encrypt(dir, iname, fname->crypto_buf.name, |
| 418 | fname->crypto_buf.len); |
| 419 | if (ret) |
| 420 | goto errout; |
| 421 | fname->disk_name.name = fname->crypto_buf.name; |
| 422 | fname->disk_name.len = fname->crypto_buf.len; |
| 423 | return 0; |
| 424 | } |
| 425 | if (!lookup) |
| 426 | return -ENOKEY; |
| 427 | fname->is_nokey_name = true; |
| 428 | |
| 429 | /* |
| 430 | * We don't have the key and we are doing a lookup; decode the |
| 431 | * user-supplied name |
| 432 | */ |
| 433 | |
| 434 | if (iname->len > BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX)) |
| 435 | return -ENOENT; |
| 436 | |
| 437 | fname->crypto_buf.name = kmalloc(FSCRYPT_NOKEY_NAME_MAX, GFP_KERNEL); |
| 438 | if (fname->crypto_buf.name == NULL) |
| 439 | return -ENOMEM; |
| 440 | |
| 441 | ret = base64_decode(iname->name, iname->len, fname->crypto_buf.name); |
| 442 | if (ret < (int)offsetof(struct fscrypt_nokey_name, bytes[1]) || |
| 443 | (ret > offsetof(struct fscrypt_nokey_name, sha256) && |
| 444 | ret != FSCRYPT_NOKEY_NAME_MAX)) { |
| 445 | ret = -ENOENT; |
| 446 | goto errout; |
| 447 | } |
| 448 | fname->crypto_buf.len = ret; |
| 449 | |
| 450 | nokey_name = (void *)fname->crypto_buf.name; |
| 451 | fname->hash = nokey_name->dirhash[0]; |
| 452 | fname->minor_hash = nokey_name->dirhash[1]; |
| 453 | if (ret != FSCRYPT_NOKEY_NAME_MAX) { |
| 454 | /* The full ciphertext filename is available. */ |
| 455 | fname->disk_name.name = nokey_name->bytes; |
| 456 | fname->disk_name.len = |
| 457 | ret - offsetof(struct fscrypt_nokey_name, bytes); |
| 458 | } |
| 459 | return 0; |
| 460 | |
| 461 | errout: |
| 462 | kfree(fname->crypto_buf.name); |
| 463 | return ret; |
| 464 | } |
| 465 | EXPORT_SYMBOL(fscrypt_setup_filename); |
| 466 | |
| 467 | /** |
| 468 | * fscrypt_match_name() - test whether the given name matches a directory entry |
| 469 | * @fname: the name being searched for |
| 470 | * @de_name: the name from the directory entry |
| 471 | * @de_name_len: the length of @de_name in bytes |
| 472 | * |
| 473 | * Normally @fname->disk_name will be set, and in that case we simply compare |
| 474 | * that to the name stored in the directory entry. The only exception is that |
| 475 | * if we don't have the key for an encrypted directory and the name we're |
| 476 | * looking for is very long, then we won't have the full disk_name and instead |
| 477 | * we'll need to match against a fscrypt_nokey_name that includes a strong hash. |
| 478 | * |
| 479 | * Return: %true if the name matches, otherwise %false. |
| 480 | */ |
| 481 | bool fscrypt_match_name(const struct fscrypt_name *fname, |
| 482 | const u8 *de_name, u32 de_name_len) |
| 483 | { |
| 484 | const struct fscrypt_nokey_name *nokey_name = |
| 485 | (const void *)fname->crypto_buf.name; |
| 486 | u8 digest[SHA256_DIGEST_SIZE]; |
| 487 | |
| 488 | if (likely(fname->disk_name.name)) { |
| 489 | if (de_name_len != fname->disk_name.len) |
| 490 | return false; |
| 491 | return !memcmp(de_name, fname->disk_name.name, de_name_len); |
| 492 | } |
| 493 | if (de_name_len <= sizeof(nokey_name->bytes)) |
| 494 | return false; |
| 495 | if (memcmp(de_name, nokey_name->bytes, sizeof(nokey_name->bytes))) |
| 496 | return false; |
| 497 | sha256(&de_name[sizeof(nokey_name->bytes)], |
| 498 | de_name_len - sizeof(nokey_name->bytes), digest); |
| 499 | return !memcmp(digest, nokey_name->sha256, sizeof(digest)); |
| 500 | } |
| 501 | EXPORT_SYMBOL_GPL(fscrypt_match_name); |
| 502 | |
| 503 | /** |
| 504 | * fscrypt_fname_siphash() - calculate the SipHash of a filename |
| 505 | * @dir: the parent directory |
| 506 | * @name: the filename to calculate the SipHash of |
| 507 | * |
| 508 | * Given a plaintext filename @name and a directory @dir which uses SipHash as |
| 509 | * its dirhash method and has had its fscrypt key set up, this function |
| 510 | * calculates the SipHash of that name using the directory's secret dirhash key. |
| 511 | * |
| 512 | * Return: the SipHash of @name using the hash key of @dir |
| 513 | */ |
| 514 | u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name) |
| 515 | { |
| 516 | const struct fscrypt_info *ci = dir->i_crypt_info; |
| 517 | |
| 518 | WARN_ON(!ci->ci_dirhash_key_initialized); |
| 519 | |
| 520 | return siphash(name->name, name->len, &ci->ci_dirhash_key); |
| 521 | } |
| 522 | EXPORT_SYMBOL_GPL(fscrypt_fname_siphash); |
| 523 | |
| 524 | /* |
| 525 | * Validate dentries in encrypted directories to make sure we aren't potentially |
| 526 | * caching stale dentries after a key has been added. |
| 527 | */ |
| 528 | int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags) |
| 529 | { |
| 530 | struct dentry *dir; |
| 531 | int err; |
| 532 | int valid; |
| 533 | |
| 534 | /* |
| 535 | * Plaintext names are always valid, since fscrypt doesn't support |
| 536 | * reverting to no-key names without evicting the directory's inode |
| 537 | * -- which implies eviction of the dentries in the directory. |
| 538 | */ |
| 539 | if (!(dentry->d_flags & DCACHE_NOKEY_NAME)) |
| 540 | return 1; |
| 541 | |
| 542 | /* |
| 543 | * No-key name; valid if the directory's key is still unavailable. |
| 544 | * |
| 545 | * Although fscrypt forbids rename() on no-key names, we still must use |
| 546 | * dget_parent() here rather than use ->d_parent directly. That's |
| 547 | * because a corrupted fs image may contain directory hard links, which |
| 548 | * the VFS handles by moving the directory's dentry tree in the dcache |
| 549 | * each time ->lookup() finds the directory and it already has a dentry |
| 550 | * elsewhere. Thus ->d_parent can be changing, and we must safely grab |
| 551 | * a reference to some ->d_parent to prevent it from being freed. |
| 552 | */ |
| 553 | |
| 554 | if (flags & LOOKUP_RCU) |
| 555 | return -ECHILD; |
| 556 | |
| 557 | dir = dget_parent(dentry); |
| 558 | /* |
| 559 | * Pass allow_unsupported=true, so that files with an unsupported |
| 560 | * encryption policy can be deleted. |
| 561 | */ |
| 562 | err = fscrypt_get_encryption_info(d_inode(dir), true); |
| 563 | valid = !fscrypt_has_encryption_key(d_inode(dir)); |
| 564 | dput(dir); |
| 565 | |
| 566 | if (err < 0) |
| 567 | return err; |
| 568 | |
| 569 | return valid; |
| 570 | } |
| 571 | EXPORT_SYMBOL_GPL(fscrypt_d_revalidate); |