blob: 027b1b63b65444c49ab51c73da4e24a0e65cf37c [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * This contains functions for filename crypto management
4 *
5 * Copyright (C) 2015, Google, Inc.
6 * Copyright (C) 2015, Motorola Mobility
7 *
8 * Written by Uday Savagaonkar, 2014.
9 * Modified by Jaegeuk Kim, 2015.
10 *
11 * This has not yet undergone a rigorous security audit.
12 */
13
14#include <linux/namei.h>
15#include <linux/scatterlist.h>
16#include <crypto/hash.h>
17#include <crypto/sha.h>
18#include <crypto/skcipher.h>
19#include "fscrypt_private.h"
20
21/*
22 * struct fscrypt_nokey_name - identifier for directory entry when key is absent
23 *
24 * When userspace lists an encrypted directory without access to the key, the
25 * filesystem must present a unique "no-key name" for each filename that allows
26 * it to find the directory entry again if requested. Naively, that would just
27 * mean using the ciphertext filenames. However, since the ciphertext filenames
28 * can contain illegal characters ('\0' and '/'), they must be encoded in some
29 * way. We use base64. But that can cause names to exceed NAME_MAX (255
30 * bytes), so we also need to use a strong hash to abbreviate long names.
31 *
32 * The filesystem may also need another kind of hash, the "dirhash", to quickly
33 * find the directory entry. Since filesystems normally compute the dirhash
34 * over the on-disk filename (i.e. the ciphertext), it's not computable from
35 * no-key names that abbreviate the ciphertext using the strong hash to fit in
36 * NAME_MAX. It's also not computable if it's a keyed hash taken over the
37 * plaintext (but it may still be available in the on-disk directory entry);
38 * casefolded directories use this type of dirhash. At least in these cases,
39 * each no-key name must include the name's dirhash too.
40 *
41 * To meet all these requirements, we base64-encode the following
42 * variable-length structure. It contains the dirhash, or 0's if the filesystem
43 * didn't provide one; up to 149 bytes of the ciphertext name; and for
44 * ciphertexts longer than 149 bytes, also the SHA-256 of the remaining bytes.
45 *
46 * This ensures that each no-key name contains everything needed to find the
47 * directory entry again, contains only legal characters, doesn't exceed
48 * NAME_MAX, is unambiguous unless there's a SHA-256 collision, and that we only
49 * take the performance hit of SHA-256 on very long filenames (which are rare).
50 */
51struct fscrypt_nokey_name {
52 u32 dirhash[2];
53 u8 bytes[149];
54 u8 sha256[SHA256_DIGEST_SIZE];
55}; /* 189 bytes => 252 bytes base64-encoded, which is <= NAME_MAX (255) */
56
57/*
58 * Decoded size of max-size nokey name, i.e. a name that was abbreviated using
59 * the strong hash and thus includes the 'sha256' field. This isn't simply
60 * sizeof(struct fscrypt_nokey_name), as the padding at the end isn't included.
61 */
62#define FSCRYPT_NOKEY_NAME_MAX offsetofend(struct fscrypt_nokey_name, sha256)
63
64static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
65{
66 if (str->len == 1 && str->name[0] == '.')
67 return true;
68
69 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
70 return true;
71
72 return false;
73}
74
75/**
76 * fscrypt_fname_encrypt() - encrypt a filename
77 * @inode: inode of the parent directory (for regular filenames)
78 * or of the symlink (for symlink targets)
79 * @iname: the filename to encrypt
80 * @out: (output) the encrypted filename
81 * @olen: size of the encrypted filename. It must be at least @iname->len.
82 * Any extra space is filled with NUL padding before encryption.
83 *
84 * Return: 0 on success, -errno on failure
85 */
86int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
87 u8 *out, unsigned int olen)
88{
89 struct skcipher_request *req = NULL;
90 DECLARE_CRYPTO_WAIT(wait);
91 const struct fscrypt_info *ci = inode->i_crypt_info;
92 struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
93 union fscrypt_iv iv;
94 struct scatterlist sg;
95 int res;
96
97 /*
98 * Copy the filename to the output buffer for encrypting in-place and
99 * pad it with the needed number of NUL bytes.
100 */
101 if (WARN_ON(olen < iname->len))
102 return -ENOBUFS;
103 memcpy(out, iname->name, iname->len);
104 memset(out + iname->len, 0, olen - iname->len);
105
106 /* Initialize the IV */
107 fscrypt_generate_iv(&iv, 0, ci);
108
109 /* Set up the encryption request */
110 req = skcipher_request_alloc(tfm, GFP_NOFS);
111 if (!req)
112 return -ENOMEM;
113 skcipher_request_set_callback(req,
114 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
115 crypto_req_done, &wait);
116 sg_init_one(&sg, out, olen);
117 skcipher_request_set_crypt(req, &sg, &sg, olen, &iv);
118
119 /* Do the encryption */
120 res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
121 skcipher_request_free(req);
122 if (res < 0) {
123 fscrypt_err(inode, "Filename encryption failed: %d", res);
124 return res;
125 }
126
127 return 0;
128}
129
130/**
131 * fname_decrypt() - decrypt a filename
132 * @inode: inode of the parent directory (for regular filenames)
133 * or of the symlink (for symlink targets)
134 * @iname: the encrypted filename to decrypt
135 * @oname: (output) the decrypted filename. The caller must have allocated
136 * enough space for this, e.g. using fscrypt_fname_alloc_buffer().
137 *
138 * Return: 0 on success, -errno on failure
139 */
140static int fname_decrypt(const struct inode *inode,
141 const struct fscrypt_str *iname,
142 struct fscrypt_str *oname)
143{
144 struct skcipher_request *req = NULL;
145 DECLARE_CRYPTO_WAIT(wait);
146 struct scatterlist src_sg, dst_sg;
147 const struct fscrypt_info *ci = inode->i_crypt_info;
148 struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
149 union fscrypt_iv iv;
150 int res;
151
152 /* Allocate request */
153 req = skcipher_request_alloc(tfm, GFP_NOFS);
154 if (!req)
155 return -ENOMEM;
156 skcipher_request_set_callback(req,
157 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
158 crypto_req_done, &wait);
159
160 /* Initialize IV */
161 fscrypt_generate_iv(&iv, 0, ci);
162
163 /* Create decryption request */
164 sg_init_one(&src_sg, iname->name, iname->len);
165 sg_init_one(&dst_sg, oname->name, oname->len);
166 skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, &iv);
167 res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
168 skcipher_request_free(req);
169 if (res < 0) {
170 fscrypt_err(inode, "Filename decryption failed: %d", res);
171 return res;
172 }
173
174 oname->len = strnlen(oname->name, iname->len);
175 return 0;
176}
177
178static const char lookup_table[65] =
179 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,";
180
181#define BASE64_CHARS(nbytes) DIV_ROUND_UP((nbytes) * 4, 3)
182
183/**
184 * base64_encode() - base64-encode some bytes
185 * @src: the bytes to encode
186 * @len: number of bytes to encode
187 * @dst: (output) the base64-encoded string. Not NUL-terminated.
188 *
189 * Encodes the input string using characters from the set [A-Za-z0-9+,].
190 * The encoded string is roughly 4/3 times the size of the input string.
191 *
192 * Return: length of the encoded string
193 */
194static int base64_encode(const u8 *src, int len, char *dst)
195{
196 int i, bits = 0, ac = 0;
197 char *cp = dst;
198
199 for (i = 0; i < len; i++) {
200 ac += src[i] << bits;
201 bits += 8;
202 do {
203 *cp++ = lookup_table[ac & 0x3f];
204 ac >>= 6;
205 bits -= 6;
206 } while (bits >= 6);
207 }
208 if (bits)
209 *cp++ = lookup_table[ac & 0x3f];
210 return cp - dst;
211}
212
213static int base64_decode(const char *src, int len, u8 *dst)
214{
215 int i, bits = 0, ac = 0;
216 const char *p;
217 u8 *cp = dst;
218
219 for (i = 0; i < len; i++) {
220 p = strchr(lookup_table, src[i]);
221 if (p == NULL || src[i] == 0)
222 return -2;
223 ac += (p - lookup_table) << bits;
224 bits += 6;
225 if (bits >= 8) {
226 *cp++ = ac & 0xff;
227 ac >>= 8;
228 bits -= 8;
229 }
230 }
231 if (ac)
232 return -1;
233 return cp - dst;
234}
235
236bool fscrypt_fname_encrypted_size(const union fscrypt_policy *policy,
237 u32 orig_len, u32 max_len,
238 u32 *encrypted_len_ret)
239{
240 int padding = 4 << (fscrypt_policy_flags(policy) &
241 FSCRYPT_POLICY_FLAGS_PAD_MASK);
242 u32 encrypted_len;
243
244 if (orig_len > max_len)
245 return false;
246 encrypted_len = max(orig_len, (u32)FS_CRYPTO_BLOCK_SIZE);
247 encrypted_len = round_up(encrypted_len, padding);
248 *encrypted_len_ret = min(encrypted_len, max_len);
249 return true;
250}
251
252/**
253 * fscrypt_fname_alloc_buffer() - allocate a buffer for presented filenames
254 * @max_encrypted_len: maximum length of encrypted filenames the buffer will be
255 * used to present
256 * @crypto_str: (output) buffer to allocate
257 *
258 * Allocate a buffer that is large enough to hold any decrypted or encoded
259 * filename (null-terminated), for the given maximum encrypted filename length.
260 *
261 * Return: 0 on success, -errno on failure
262 */
263int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
264 struct fscrypt_str *crypto_str)
265{
266 const u32 max_encoded_len = BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX);
267 u32 max_presented_len;
268
269 max_presented_len = max(max_encoded_len, max_encrypted_len);
270
271 crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS);
272 if (!crypto_str->name)
273 return -ENOMEM;
274 crypto_str->len = max_presented_len;
275 return 0;
276}
277EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);
278
279/**
280 * fscrypt_fname_free_buffer() - free a buffer for presented filenames
281 * @crypto_str: the buffer to free
282 *
283 * Free a buffer that was allocated by fscrypt_fname_alloc_buffer().
284 */
285void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
286{
287 if (!crypto_str)
288 return;
289 kfree(crypto_str->name);
290 crypto_str->name = NULL;
291}
292EXPORT_SYMBOL(fscrypt_fname_free_buffer);
293
294/**
295 * fscrypt_fname_disk_to_usr() - convert an encrypted filename to
296 * user-presentable form
297 * @inode: inode of the parent directory (for regular filenames)
298 * or of the symlink (for symlink targets)
299 * @hash: first part of the name's dirhash, if applicable. This only needs to
300 * be provided if the filename is located in an indexed directory whose
301 * encryption key may be unavailable. Not needed for symlink targets.
302 * @minor_hash: second part of the name's dirhash, if applicable
303 * @iname: encrypted filename to convert. May also be "." or "..", which
304 * aren't actually encrypted.
305 * @oname: output buffer for the user-presentable filename. The caller must
306 * have allocated enough space for this, e.g. using
307 * fscrypt_fname_alloc_buffer().
308 *
309 * If the key is available, we'll decrypt the disk name. Otherwise, we'll
310 * encode it for presentation in fscrypt_nokey_name format.
311 * See struct fscrypt_nokey_name for details.
312 *
313 * Return: 0 on success, -errno on failure
314 */
315int fscrypt_fname_disk_to_usr(const struct inode *inode,
316 u32 hash, u32 minor_hash,
317 const struct fscrypt_str *iname,
318 struct fscrypt_str *oname)
319{
320 const struct qstr qname = FSTR_TO_QSTR(iname);
321 struct fscrypt_nokey_name nokey_name;
322 u32 size; /* size of the unencoded no-key name */
323
324 if (fscrypt_is_dot_dotdot(&qname)) {
325 oname->name[0] = '.';
326 oname->name[iname->len - 1] = '.';
327 oname->len = iname->len;
328 return 0;
329 }
330
331 if (iname->len < FS_CRYPTO_BLOCK_SIZE)
332 return -EUCLEAN;
333
334 if (fscrypt_has_encryption_key(inode))
335 return fname_decrypt(inode, iname, oname);
336
337 /*
338 * Sanity check that struct fscrypt_nokey_name doesn't have padding
339 * between fields and that its encoded size never exceeds NAME_MAX.
340 */
341 BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, dirhash) !=
342 offsetof(struct fscrypt_nokey_name, bytes));
343 BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, bytes) !=
344 offsetof(struct fscrypt_nokey_name, sha256));
345 BUILD_BUG_ON(BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX) > NAME_MAX);
346
347 nokey_name.dirhash[0] = hash;
348 nokey_name.dirhash[1] = minor_hash;
349 if (iname->len <= sizeof(nokey_name.bytes)) {
350 memcpy(nokey_name.bytes, iname->name, iname->len);
351 size = offsetof(struct fscrypt_nokey_name, bytes[iname->len]);
352 } else {
353 memcpy(nokey_name.bytes, iname->name, sizeof(nokey_name.bytes));
354 /* Compute strong hash of remaining part of name. */
355 sha256(&iname->name[sizeof(nokey_name.bytes)],
356 iname->len - sizeof(nokey_name.bytes),
357 nokey_name.sha256);
358 size = FSCRYPT_NOKEY_NAME_MAX;
359 }
360 oname->len = base64_encode((const u8 *)&nokey_name, size, oname->name);
361 return 0;
362}
363EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
364
365/**
366 * fscrypt_setup_filename() - prepare to search a possibly encrypted directory
367 * @dir: the directory that will be searched
368 * @iname: the user-provided filename being searched for
369 * @lookup: 1 if we're allowed to proceed without the key because it's
370 * ->lookup() or we're finding the dir_entry for deletion; 0 if we cannot
371 * proceed without the key because we're going to create the dir_entry.
372 * @fname: the filename information to be filled in
373 *
374 * Given a user-provided filename @iname, this function sets @fname->disk_name
375 * to the name that would be stored in the on-disk directory entry, if possible.
376 * If the directory is unencrypted this is simply @iname. Else, if we have the
377 * directory's encryption key, then @iname is the plaintext, so we encrypt it to
378 * get the disk_name.
379 *
380 * Else, for keyless @lookup operations, @iname should be a no-key name, so we
381 * decode it to get the struct fscrypt_nokey_name. Non-@lookup operations will
382 * be impossible in this case, so we fail them with ENOKEY.
383 *
384 * If successful, fscrypt_free_filename() must be called later to clean up.
385 *
386 * Return: 0 on success, -errno on failure
387 */
388int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
389 int lookup, struct fscrypt_name *fname)
390{
391 struct fscrypt_nokey_name *nokey_name;
392 int ret;
393
394 memset(fname, 0, sizeof(struct fscrypt_name));
395 fname->usr_fname = iname;
396
397 if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) {
398 fname->disk_name.name = (unsigned char *)iname->name;
399 fname->disk_name.len = iname->len;
400 return 0;
401 }
402 ret = fscrypt_get_encryption_info(dir, lookup);
403 if (ret)
404 return ret;
405
406 if (fscrypt_has_encryption_key(dir)) {
407 if (!fscrypt_fname_encrypted_size(&dir->i_crypt_info->ci_policy,
408 iname->len,
409 dir->i_sb->s_cop->max_namelen,
410 &fname->crypto_buf.len))
411 return -ENAMETOOLONG;
412 fname->crypto_buf.name = kmalloc(fname->crypto_buf.len,
413 GFP_NOFS);
414 if (!fname->crypto_buf.name)
415 return -ENOMEM;
416
417 ret = fscrypt_fname_encrypt(dir, iname, fname->crypto_buf.name,
418 fname->crypto_buf.len);
419 if (ret)
420 goto errout;
421 fname->disk_name.name = fname->crypto_buf.name;
422 fname->disk_name.len = fname->crypto_buf.len;
423 return 0;
424 }
425 if (!lookup)
426 return -ENOKEY;
427 fname->is_nokey_name = true;
428
429 /*
430 * We don't have the key and we are doing a lookup; decode the
431 * user-supplied name
432 */
433
434 if (iname->len > BASE64_CHARS(FSCRYPT_NOKEY_NAME_MAX))
435 return -ENOENT;
436
437 fname->crypto_buf.name = kmalloc(FSCRYPT_NOKEY_NAME_MAX, GFP_KERNEL);
438 if (fname->crypto_buf.name == NULL)
439 return -ENOMEM;
440
441 ret = base64_decode(iname->name, iname->len, fname->crypto_buf.name);
442 if (ret < (int)offsetof(struct fscrypt_nokey_name, bytes[1]) ||
443 (ret > offsetof(struct fscrypt_nokey_name, sha256) &&
444 ret != FSCRYPT_NOKEY_NAME_MAX)) {
445 ret = -ENOENT;
446 goto errout;
447 }
448 fname->crypto_buf.len = ret;
449
450 nokey_name = (void *)fname->crypto_buf.name;
451 fname->hash = nokey_name->dirhash[0];
452 fname->minor_hash = nokey_name->dirhash[1];
453 if (ret != FSCRYPT_NOKEY_NAME_MAX) {
454 /* The full ciphertext filename is available. */
455 fname->disk_name.name = nokey_name->bytes;
456 fname->disk_name.len =
457 ret - offsetof(struct fscrypt_nokey_name, bytes);
458 }
459 return 0;
460
461errout:
462 kfree(fname->crypto_buf.name);
463 return ret;
464}
465EXPORT_SYMBOL(fscrypt_setup_filename);
466
467/**
468 * fscrypt_match_name() - test whether the given name matches a directory entry
469 * @fname: the name being searched for
470 * @de_name: the name from the directory entry
471 * @de_name_len: the length of @de_name in bytes
472 *
473 * Normally @fname->disk_name will be set, and in that case we simply compare
474 * that to the name stored in the directory entry. The only exception is that
475 * if we don't have the key for an encrypted directory and the name we're
476 * looking for is very long, then we won't have the full disk_name and instead
477 * we'll need to match against a fscrypt_nokey_name that includes a strong hash.
478 *
479 * Return: %true if the name matches, otherwise %false.
480 */
481bool fscrypt_match_name(const struct fscrypt_name *fname,
482 const u8 *de_name, u32 de_name_len)
483{
484 const struct fscrypt_nokey_name *nokey_name =
485 (const void *)fname->crypto_buf.name;
486 u8 digest[SHA256_DIGEST_SIZE];
487
488 if (likely(fname->disk_name.name)) {
489 if (de_name_len != fname->disk_name.len)
490 return false;
491 return !memcmp(de_name, fname->disk_name.name, de_name_len);
492 }
493 if (de_name_len <= sizeof(nokey_name->bytes))
494 return false;
495 if (memcmp(de_name, nokey_name->bytes, sizeof(nokey_name->bytes)))
496 return false;
497 sha256(&de_name[sizeof(nokey_name->bytes)],
498 de_name_len - sizeof(nokey_name->bytes), digest);
499 return !memcmp(digest, nokey_name->sha256, sizeof(digest));
500}
501EXPORT_SYMBOL_GPL(fscrypt_match_name);
502
503/**
504 * fscrypt_fname_siphash() - calculate the SipHash of a filename
505 * @dir: the parent directory
506 * @name: the filename to calculate the SipHash of
507 *
508 * Given a plaintext filename @name and a directory @dir which uses SipHash as
509 * its dirhash method and has had its fscrypt key set up, this function
510 * calculates the SipHash of that name using the directory's secret dirhash key.
511 *
512 * Return: the SipHash of @name using the hash key of @dir
513 */
514u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name)
515{
516 const struct fscrypt_info *ci = dir->i_crypt_info;
517
518 WARN_ON(!ci->ci_dirhash_key_initialized);
519
520 return siphash(name->name, name->len, &ci->ci_dirhash_key);
521}
522EXPORT_SYMBOL_GPL(fscrypt_fname_siphash);
523
524/*
525 * Validate dentries in encrypted directories to make sure we aren't potentially
526 * caching stale dentries after a key has been added.
527 */
528int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
529{
530 struct dentry *dir;
531 int err;
532 int valid;
533
534 /*
535 * Plaintext names are always valid, since fscrypt doesn't support
536 * reverting to no-key names without evicting the directory's inode
537 * -- which implies eviction of the dentries in the directory.
538 */
539 if (!(dentry->d_flags & DCACHE_NOKEY_NAME))
540 return 1;
541
542 /*
543 * No-key name; valid if the directory's key is still unavailable.
544 *
545 * Although fscrypt forbids rename() on no-key names, we still must use
546 * dget_parent() here rather than use ->d_parent directly. That's
547 * because a corrupted fs image may contain directory hard links, which
548 * the VFS handles by moving the directory's dentry tree in the dcache
549 * each time ->lookup() finds the directory and it already has a dentry
550 * elsewhere. Thus ->d_parent can be changing, and we must safely grab
551 * a reference to some ->d_parent to prevent it from being freed.
552 */
553
554 if (flags & LOOKUP_RCU)
555 return -ECHILD;
556
557 dir = dget_parent(dentry);
558 /*
559 * Pass allow_unsupported=true, so that files with an unsupported
560 * encryption policy can be deleted.
561 */
562 err = fscrypt_get_encryption_info(d_inode(dir), true);
563 valid = !fscrypt_has_encryption_key(d_inode(dir));
564 dput(dir);
565
566 if (err < 0)
567 return err;
568
569 return valid;
570}
571EXPORT_SYMBOL_GPL(fscrypt_d_revalidate);