b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Key setup facility for FS encryption support. |
| 4 | * |
| 5 | * Copyright (C) 2015, Google, Inc. |
| 6 | * |
| 7 | * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar. |
| 8 | * Heavily modified since then. |
| 9 | */ |
| 10 | |
| 11 | #include <crypto/skcipher.h> |
| 12 | #include <linux/key.h> |
| 13 | #include <linux/random.h> |
| 14 | |
| 15 | #include "fscrypt_private.h" |
| 16 | |
| 17 | struct fscrypt_mode fscrypt_modes[] = { |
| 18 | [FSCRYPT_MODE_AES_256_XTS] = { |
| 19 | .friendly_name = "AES-256-XTS", |
| 20 | .cipher_str = "xts(aes)", |
| 21 | .keysize = 64, |
| 22 | .ivsize = 16, |
| 23 | .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS, |
| 24 | }, |
| 25 | [FSCRYPT_MODE_AES_256_CTS] = { |
| 26 | .friendly_name = "AES-256-CTS-CBC", |
| 27 | .cipher_str = "cts(cbc(aes))", |
| 28 | .keysize = 32, |
| 29 | .ivsize = 16, |
| 30 | }, |
| 31 | [FSCRYPT_MODE_AES_128_CBC] = { |
| 32 | .friendly_name = "AES-128-CBC-ESSIV", |
| 33 | .cipher_str = "essiv(cbc(aes),sha256)", |
| 34 | .keysize = 16, |
| 35 | .ivsize = 16, |
| 36 | .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV, |
| 37 | }, |
| 38 | [FSCRYPT_MODE_AES_128_CTS] = { |
| 39 | .friendly_name = "AES-128-CTS-CBC", |
| 40 | .cipher_str = "cts(cbc(aes))", |
| 41 | .keysize = 16, |
| 42 | .ivsize = 16, |
| 43 | }, |
| 44 | [FSCRYPT_MODE_ADIANTUM] = { |
| 45 | .friendly_name = "Adiantum", |
| 46 | .cipher_str = "adiantum(xchacha12,aes)", |
| 47 | .keysize = 32, |
| 48 | .ivsize = 32, |
| 49 | .blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM, |
| 50 | }, |
| 51 | }; |
| 52 | |
| 53 | static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex); |
| 54 | |
| 55 | static struct fscrypt_mode * |
| 56 | select_encryption_mode(const union fscrypt_policy *policy, |
| 57 | const struct inode *inode) |
| 58 | { |
| 59 | BUILD_BUG_ON(ARRAY_SIZE(fscrypt_modes) != FSCRYPT_MODE_MAX + 1); |
| 60 | |
| 61 | if (S_ISREG(inode->i_mode)) |
| 62 | return &fscrypt_modes[fscrypt_policy_contents_mode(policy)]; |
| 63 | |
| 64 | if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) |
| 65 | return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)]; |
| 66 | |
| 67 | WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n", |
| 68 | inode->i_ino, (inode->i_mode & S_IFMT)); |
| 69 | return ERR_PTR(-EINVAL); |
| 70 | } |
| 71 | |
| 72 | /* Create a symmetric cipher object for the given encryption mode and key */ |
| 73 | static struct crypto_skcipher * |
| 74 | fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key, |
| 75 | const struct inode *inode) |
| 76 | { |
| 77 | struct crypto_skcipher *tfm; |
| 78 | int err; |
| 79 | |
| 80 | tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0); |
| 81 | if (IS_ERR(tfm)) { |
| 82 | if (PTR_ERR(tfm) == -ENOENT) { |
| 83 | fscrypt_warn(inode, |
| 84 | "Missing crypto API support for %s (API name: \"%s\")", |
| 85 | mode->friendly_name, mode->cipher_str); |
| 86 | return ERR_PTR(-ENOPKG); |
| 87 | } |
| 88 | fscrypt_err(inode, "Error allocating '%s' transform: %ld", |
| 89 | mode->cipher_str, PTR_ERR(tfm)); |
| 90 | return tfm; |
| 91 | } |
| 92 | if (!xchg(&mode->logged_impl_name, 1)) { |
| 93 | /* |
| 94 | * fscrypt performance can vary greatly depending on which |
| 95 | * crypto algorithm implementation is used. Help people debug |
| 96 | * performance problems by logging the ->cra_driver_name the |
| 97 | * first time a mode is used. |
| 98 | */ |
| 99 | pr_info("fscrypt: %s using implementation \"%s\"\n", |
| 100 | mode->friendly_name, crypto_skcipher_driver_name(tfm)); |
| 101 | } |
| 102 | if (WARN_ON(crypto_skcipher_ivsize(tfm) != mode->ivsize)) { |
| 103 | err = -EINVAL; |
| 104 | goto err_free_tfm; |
| 105 | } |
| 106 | crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); |
| 107 | err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize); |
| 108 | if (err) |
| 109 | goto err_free_tfm; |
| 110 | |
| 111 | return tfm; |
| 112 | |
| 113 | err_free_tfm: |
| 114 | crypto_free_skcipher(tfm); |
| 115 | return ERR_PTR(err); |
| 116 | } |
| 117 | |
| 118 | /* |
| 119 | * Prepare the crypto transform object or blk-crypto key in @prep_key, given the |
| 120 | * raw key, encryption mode, and flag indicating which encryption implementation |
| 121 | * (fs-layer or blk-crypto) will be used. |
| 122 | */ |
| 123 | int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key, |
| 124 | const u8 *raw_key, unsigned int raw_key_size, |
| 125 | bool is_hw_wrapped, const struct fscrypt_info *ci) |
| 126 | { |
| 127 | struct crypto_skcipher *tfm; |
| 128 | |
| 129 | if (fscrypt_using_inline_encryption(ci)) |
| 130 | return fscrypt_prepare_inline_crypt_key(prep_key, |
| 131 | raw_key, raw_key_size, is_hw_wrapped, ci); |
| 132 | |
| 133 | if (WARN_ON(is_hw_wrapped || raw_key_size != ci->ci_mode->keysize)) |
| 134 | return -EINVAL; |
| 135 | |
| 136 | tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode); |
| 137 | if (IS_ERR(tfm)) |
| 138 | return PTR_ERR(tfm); |
| 139 | /* |
| 140 | * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared(). |
| 141 | * I.e., here we publish ->tfm with a RELEASE barrier so that |
| 142 | * concurrent tasks can ACQUIRE it. Note that this concurrency is only |
| 143 | * possible for per-mode keys, not for per-file keys. |
| 144 | */ |
| 145 | smp_store_release(&prep_key->tfm, tfm); |
| 146 | return 0; |
| 147 | } |
| 148 | |
| 149 | /* Destroy a crypto transform object and/or blk-crypto key. */ |
| 150 | void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key) |
| 151 | { |
| 152 | crypto_free_skcipher(prep_key->tfm); |
| 153 | fscrypt_destroy_inline_crypt_key(prep_key); |
| 154 | } |
| 155 | |
| 156 | /* Given a per-file encryption key, set up the file's crypto transform object */ |
| 157 | int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key) |
| 158 | { |
| 159 | ci->ci_owns_key = true; |
| 160 | return fscrypt_prepare_key(&ci->ci_enc_key, raw_key, |
| 161 | ci->ci_mode->keysize, |
| 162 | false /*is_hw_wrapped*/, ci); |
| 163 | } |
| 164 | |
| 165 | static int setup_per_mode_enc_key(struct fscrypt_info *ci, |
| 166 | struct fscrypt_master_key *mk, |
| 167 | struct fscrypt_prepared_key *keys, |
| 168 | u8 hkdf_context, bool include_fs_uuid) |
| 169 | { |
| 170 | const struct inode *inode = ci->ci_inode; |
| 171 | const struct super_block *sb = inode->i_sb; |
| 172 | struct fscrypt_mode *mode = ci->ci_mode; |
| 173 | const u8 mode_num = mode - fscrypt_modes; |
| 174 | struct fscrypt_prepared_key *prep_key; |
| 175 | u8 mode_key[FSCRYPT_MAX_KEY_SIZE]; |
| 176 | u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)]; |
| 177 | unsigned int hkdf_infolen = 0; |
| 178 | int err; |
| 179 | |
| 180 | if (WARN_ON(mode_num > FSCRYPT_MODE_MAX)) |
| 181 | return -EINVAL; |
| 182 | |
| 183 | prep_key = &keys[mode_num]; |
| 184 | if (fscrypt_is_key_prepared(prep_key, ci)) { |
| 185 | ci->ci_enc_key = *prep_key; |
| 186 | return 0; |
| 187 | } |
| 188 | |
| 189 | mutex_lock(&fscrypt_mode_key_setup_mutex); |
| 190 | |
| 191 | if (fscrypt_is_key_prepared(prep_key, ci)) |
| 192 | goto done_unlock; |
| 193 | |
| 194 | if (mk->mk_secret.is_hw_wrapped && S_ISREG(inode->i_mode)) { |
| 195 | int i; |
| 196 | |
| 197 | if (!fscrypt_using_inline_encryption(ci)) { |
| 198 | fscrypt_warn(ci->ci_inode, |
| 199 | "Hardware-wrapped keys require inline encryption (-o inlinecrypt)"); |
| 200 | err = -EINVAL; |
| 201 | goto out_unlock; |
| 202 | } |
| 203 | for (i = 0; i <= FSCRYPT_MODE_MAX; i++) { |
| 204 | if (fscrypt_is_key_prepared(&keys[i], ci)) { |
| 205 | fscrypt_warn(ci->ci_inode, |
| 206 | "Each hardware-wrapped key can only be used with one encryption mode"); |
| 207 | err = -EINVAL; |
| 208 | goto out_unlock; |
| 209 | } |
| 210 | } |
| 211 | err = fscrypt_prepare_key(prep_key, mk->mk_secret.raw, |
| 212 | mk->mk_secret.size, true, ci); |
| 213 | if (err) |
| 214 | goto out_unlock; |
| 215 | } else { |
| 216 | BUILD_BUG_ON(sizeof(mode_num) != 1); |
| 217 | BUILD_BUG_ON(sizeof(sb->s_uuid) != 16); |
| 218 | BUILD_BUG_ON(sizeof(hkdf_info) != 17); |
| 219 | hkdf_info[hkdf_infolen++] = mode_num; |
| 220 | if (include_fs_uuid) { |
| 221 | memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid, |
| 222 | sizeof(sb->s_uuid)); |
| 223 | hkdf_infolen += sizeof(sb->s_uuid); |
| 224 | } |
| 225 | err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, |
| 226 | hkdf_context, hkdf_info, hkdf_infolen, |
| 227 | mode_key, mode->keysize); |
| 228 | if (err) |
| 229 | goto out_unlock; |
| 230 | err = fscrypt_prepare_key(prep_key, mode_key, mode->keysize, |
| 231 | false /*is_hw_wrapped*/, ci); |
| 232 | memzero_explicit(mode_key, mode->keysize); |
| 233 | if (err) |
| 234 | goto out_unlock; |
| 235 | } |
| 236 | done_unlock: |
| 237 | ci->ci_enc_key = *prep_key; |
| 238 | err = 0; |
| 239 | out_unlock: |
| 240 | mutex_unlock(&fscrypt_mode_key_setup_mutex); |
| 241 | return err; |
| 242 | } |
| 243 | |
| 244 | int fscrypt_derive_dirhash_key(struct fscrypt_info *ci, |
| 245 | const struct fscrypt_master_key *mk) |
| 246 | { |
| 247 | int err; |
| 248 | |
| 249 | err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, HKDF_CONTEXT_DIRHASH_KEY, |
| 250 | ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE, |
| 251 | (u8 *)&ci->ci_dirhash_key, |
| 252 | sizeof(ci->ci_dirhash_key)); |
| 253 | if (err) |
| 254 | return err; |
| 255 | ci->ci_dirhash_key_initialized = true; |
| 256 | return 0; |
| 257 | } |
| 258 | |
| 259 | void fscrypt_hash_inode_number(struct fscrypt_info *ci, |
| 260 | const struct fscrypt_master_key *mk) |
| 261 | { |
| 262 | WARN_ON(ci->ci_inode->i_ino == 0); |
| 263 | WARN_ON(!mk->mk_ino_hash_key_initialized); |
| 264 | |
| 265 | ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino, |
| 266 | &mk->mk_ino_hash_key); |
| 267 | } |
| 268 | |
| 269 | static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info *ci, |
| 270 | struct fscrypt_master_key *mk) |
| 271 | { |
| 272 | int err; |
| 273 | |
| 274 | err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys, |
| 275 | HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true); |
| 276 | if (err) |
| 277 | return err; |
| 278 | |
| 279 | /* pairs with smp_store_release() below */ |
| 280 | if (!smp_load_acquire(&mk->mk_ino_hash_key_initialized)) { |
| 281 | |
| 282 | mutex_lock(&fscrypt_mode_key_setup_mutex); |
| 283 | |
| 284 | if (mk->mk_ino_hash_key_initialized) |
| 285 | goto unlock; |
| 286 | |
| 287 | err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, |
| 288 | HKDF_CONTEXT_INODE_HASH_KEY, NULL, 0, |
| 289 | (u8 *)&mk->mk_ino_hash_key, |
| 290 | sizeof(mk->mk_ino_hash_key)); |
| 291 | if (err) |
| 292 | goto unlock; |
| 293 | /* pairs with smp_load_acquire() above */ |
| 294 | smp_store_release(&mk->mk_ino_hash_key_initialized, true); |
| 295 | unlock: |
| 296 | mutex_unlock(&fscrypt_mode_key_setup_mutex); |
| 297 | if (err) |
| 298 | return err; |
| 299 | } |
| 300 | |
| 301 | /* |
| 302 | * New inodes may not have an inode number assigned yet. |
| 303 | * Hashing their inode number is delayed until later. |
| 304 | */ |
| 305 | if (ci->ci_inode->i_ino) |
| 306 | fscrypt_hash_inode_number(ci, mk); |
| 307 | return 0; |
| 308 | } |
| 309 | |
| 310 | static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci, |
| 311 | struct fscrypt_master_key *mk, |
| 312 | bool need_dirhash_key) |
| 313 | { |
| 314 | int err; |
| 315 | |
| 316 | if (mk->mk_secret.is_hw_wrapped && |
| 317 | !(ci->ci_policy.v2.flags & (FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64 | |
| 318 | FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32))) { |
| 319 | fscrypt_warn(ci->ci_inode, |
| 320 | "Hardware-wrapped keys are only supported with IV_INO_LBLK policies"); |
| 321 | return -EINVAL; |
| 322 | } |
| 323 | |
| 324 | if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) { |
| 325 | /* |
| 326 | * DIRECT_KEY: instead of deriving per-file encryption keys, the |
| 327 | * per-file nonce will be included in all the IVs. But unlike |
| 328 | * v1 policies, for v2 policies in this case we don't encrypt |
| 329 | * with the master key directly but rather derive a per-mode |
| 330 | * encryption key. This ensures that the master key is |
| 331 | * consistently used only for HKDF, avoiding key reuse issues. |
| 332 | */ |
| 333 | err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_keys, |
| 334 | HKDF_CONTEXT_DIRECT_KEY, false); |
| 335 | } else if (ci->ci_policy.v2.flags & |
| 336 | FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) { |
| 337 | /* |
| 338 | * IV_INO_LBLK_64: encryption keys are derived from (master_key, |
| 339 | * mode_num, filesystem_uuid), and inode number is included in |
| 340 | * the IVs. This format is optimized for use with inline |
| 341 | * encryption hardware compliant with the UFS standard. |
| 342 | */ |
| 343 | err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_keys, |
| 344 | HKDF_CONTEXT_IV_INO_LBLK_64_KEY, |
| 345 | true); |
| 346 | } else if (ci->ci_policy.v2.flags & |
| 347 | FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) { |
| 348 | err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk); |
| 349 | } else { |
| 350 | u8 derived_key[FSCRYPT_MAX_KEY_SIZE]; |
| 351 | |
| 352 | err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, |
| 353 | HKDF_CONTEXT_PER_FILE_ENC_KEY, |
| 354 | ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE, |
| 355 | derived_key, ci->ci_mode->keysize); |
| 356 | if (err) |
| 357 | return err; |
| 358 | |
| 359 | err = fscrypt_set_per_file_enc_key(ci, derived_key); |
| 360 | memzero_explicit(derived_key, ci->ci_mode->keysize); |
| 361 | } |
| 362 | if (err) |
| 363 | return err; |
| 364 | |
| 365 | /* Derive a secret dirhash key for directories that need it. */ |
| 366 | if (need_dirhash_key) { |
| 367 | err = fscrypt_derive_dirhash_key(ci, mk); |
| 368 | if (err) |
| 369 | return err; |
| 370 | } |
| 371 | |
| 372 | return 0; |
| 373 | } |
| 374 | |
| 375 | /* |
| 376 | * Find the master key, then set up the inode's actual encryption key. |
| 377 | * |
| 378 | * If the master key is found in the filesystem-level keyring, then the |
| 379 | * corresponding 'struct key' is returned in *master_key_ret with its semaphore |
| 380 | * read-locked. This is needed to ensure that only one task links the |
| 381 | * fscrypt_info into ->mk_decrypted_inodes (as multiple tasks may race to create |
| 382 | * an fscrypt_info for the same inode), and to synchronize the master key being |
| 383 | * removed with a new inode starting to use it. |
| 384 | */ |
| 385 | static int setup_file_encryption_key(struct fscrypt_info *ci, |
| 386 | bool need_dirhash_key, |
| 387 | struct key **master_key_ret) |
| 388 | { |
| 389 | struct key *key; |
| 390 | struct fscrypt_master_key *mk = NULL; |
| 391 | struct fscrypt_key_specifier mk_spec; |
| 392 | int err; |
| 393 | |
| 394 | switch (ci->ci_policy.version) { |
| 395 | case FSCRYPT_POLICY_V1: |
| 396 | mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR; |
| 397 | memcpy(mk_spec.u.descriptor, |
| 398 | ci->ci_policy.v1.master_key_descriptor, |
| 399 | FSCRYPT_KEY_DESCRIPTOR_SIZE); |
| 400 | break; |
| 401 | case FSCRYPT_POLICY_V2: |
| 402 | mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; |
| 403 | memcpy(mk_spec.u.identifier, |
| 404 | ci->ci_policy.v2.master_key_identifier, |
| 405 | FSCRYPT_KEY_IDENTIFIER_SIZE); |
| 406 | break; |
| 407 | default: |
| 408 | WARN_ON(1); |
| 409 | return -EINVAL; |
| 410 | } |
| 411 | |
| 412 | key = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec); |
| 413 | if (IS_ERR(key)) { |
| 414 | if (key != ERR_PTR(-ENOKEY) || |
| 415 | ci->ci_policy.version != FSCRYPT_POLICY_V1) |
| 416 | return PTR_ERR(key); |
| 417 | |
| 418 | err = fscrypt_select_encryption_impl(ci, false); |
| 419 | if (err) |
| 420 | return err; |
| 421 | |
| 422 | /* |
| 423 | * As a legacy fallback for v1 policies, search for the key in |
| 424 | * the current task's subscribed keyrings too. Don't move this |
| 425 | * to before the search of ->s_master_keys, since users |
| 426 | * shouldn't be able to override filesystem-level keys. |
| 427 | */ |
| 428 | return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci); |
| 429 | } |
| 430 | |
| 431 | mk = key->payload.data[0]; |
| 432 | down_read(&key->sem); |
| 433 | |
| 434 | /* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */ |
| 435 | if (!is_master_key_secret_present(&mk->mk_secret)) { |
| 436 | err = -ENOKEY; |
| 437 | goto out_release_key; |
| 438 | } |
| 439 | |
| 440 | /* |
| 441 | * Require that the master key be at least as long as the derived key. |
| 442 | * Otherwise, the derived key cannot possibly contain as much entropy as |
| 443 | * that required by the encryption mode it will be used for. For v1 |
| 444 | * policies it's also required for the KDF to work at all. |
| 445 | */ |
| 446 | if (mk->mk_secret.size < ci->ci_mode->keysize) { |
| 447 | fscrypt_warn(NULL, |
| 448 | "key with %s %*phN is too short (got %u bytes, need %u+ bytes)", |
| 449 | master_key_spec_type(&mk_spec), |
| 450 | master_key_spec_len(&mk_spec), (u8 *)&mk_spec.u, |
| 451 | mk->mk_secret.size, ci->ci_mode->keysize); |
| 452 | err = -ENOKEY; |
| 453 | goto out_release_key; |
| 454 | } |
| 455 | |
| 456 | err = fscrypt_select_encryption_impl(ci, mk->mk_secret.is_hw_wrapped); |
| 457 | if (err) |
| 458 | goto out_release_key; |
| 459 | |
| 460 | switch (ci->ci_policy.version) { |
| 461 | case FSCRYPT_POLICY_V1: |
| 462 | err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw); |
| 463 | break; |
| 464 | case FSCRYPT_POLICY_V2: |
| 465 | err = fscrypt_setup_v2_file_key(ci, mk, need_dirhash_key); |
| 466 | break; |
| 467 | default: |
| 468 | WARN_ON(1); |
| 469 | err = -EINVAL; |
| 470 | break; |
| 471 | } |
| 472 | if (err) |
| 473 | goto out_release_key; |
| 474 | |
| 475 | *master_key_ret = key; |
| 476 | return 0; |
| 477 | |
| 478 | out_release_key: |
| 479 | up_read(&key->sem); |
| 480 | key_put(key); |
| 481 | return err; |
| 482 | } |
| 483 | |
| 484 | static void put_crypt_info(struct fscrypt_info *ci) |
| 485 | { |
| 486 | struct key *key; |
| 487 | |
| 488 | if (!ci) |
| 489 | return; |
| 490 | |
| 491 | if (ci->ci_direct_key) |
| 492 | fscrypt_put_direct_key(ci->ci_direct_key); |
| 493 | else if (ci->ci_owns_key) |
| 494 | fscrypt_destroy_prepared_key(&ci->ci_enc_key); |
| 495 | |
| 496 | key = ci->ci_master_key; |
| 497 | if (key) { |
| 498 | struct fscrypt_master_key *mk = key->payload.data[0]; |
| 499 | |
| 500 | /* |
| 501 | * Remove this inode from the list of inodes that were unlocked |
| 502 | * with the master key. |
| 503 | * |
| 504 | * In addition, if we're removing the last inode from a key that |
| 505 | * already had its secret removed, invalidate the key so that it |
| 506 | * gets removed from ->s_master_keys. |
| 507 | */ |
| 508 | spin_lock(&mk->mk_decrypted_inodes_lock); |
| 509 | list_del(&ci->ci_master_key_link); |
| 510 | spin_unlock(&mk->mk_decrypted_inodes_lock); |
| 511 | if (refcount_dec_and_test(&mk->mk_refcount)) |
| 512 | key_invalidate(key); |
| 513 | key_put(key); |
| 514 | } |
| 515 | memzero_explicit(ci, sizeof(*ci)); |
| 516 | kmem_cache_free(fscrypt_info_cachep, ci); |
| 517 | } |
| 518 | |
| 519 | static int |
| 520 | fscrypt_setup_encryption_info(struct inode *inode, |
| 521 | const union fscrypt_policy *policy, |
| 522 | const u8 nonce[FSCRYPT_FILE_NONCE_SIZE], |
| 523 | bool need_dirhash_key) |
| 524 | { |
| 525 | struct fscrypt_info *crypt_info; |
| 526 | struct fscrypt_mode *mode; |
| 527 | struct key *master_key = NULL; |
| 528 | int res; |
| 529 | |
| 530 | res = fscrypt_initialize(inode->i_sb->s_cop->flags); |
| 531 | if (res) |
| 532 | return res; |
| 533 | |
| 534 | crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_KERNEL); |
| 535 | if (!crypt_info) |
| 536 | return -ENOMEM; |
| 537 | |
| 538 | crypt_info->ci_inode = inode; |
| 539 | crypt_info->ci_policy = *policy; |
| 540 | memcpy(crypt_info->ci_nonce, nonce, FSCRYPT_FILE_NONCE_SIZE); |
| 541 | |
| 542 | mode = select_encryption_mode(&crypt_info->ci_policy, inode); |
| 543 | if (IS_ERR(mode)) { |
| 544 | res = PTR_ERR(mode); |
| 545 | goto out; |
| 546 | } |
| 547 | WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE); |
| 548 | crypt_info->ci_mode = mode; |
| 549 | |
| 550 | res = setup_file_encryption_key(crypt_info, need_dirhash_key, |
| 551 | &master_key); |
| 552 | if (res) |
| 553 | goto out; |
| 554 | |
| 555 | /* |
| 556 | * For existing inodes, multiple tasks may race to set ->i_crypt_info. |
| 557 | * So use cmpxchg_release(). This pairs with the smp_load_acquire() in |
| 558 | * fscrypt_get_info(). I.e., here we publish ->i_crypt_info with a |
| 559 | * RELEASE barrier so that other tasks can ACQUIRE it. |
| 560 | */ |
| 561 | if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) { |
| 562 | /* |
| 563 | * We won the race and set ->i_crypt_info to our crypt_info. |
| 564 | * Now link it into the master key's inode list. |
| 565 | */ |
| 566 | if (master_key) { |
| 567 | struct fscrypt_master_key *mk = |
| 568 | master_key->payload.data[0]; |
| 569 | |
| 570 | refcount_inc(&mk->mk_refcount); |
| 571 | crypt_info->ci_master_key = key_get(master_key); |
| 572 | spin_lock(&mk->mk_decrypted_inodes_lock); |
| 573 | list_add(&crypt_info->ci_master_key_link, |
| 574 | &mk->mk_decrypted_inodes); |
| 575 | spin_unlock(&mk->mk_decrypted_inodes_lock); |
| 576 | } |
| 577 | crypt_info = NULL; |
| 578 | } |
| 579 | res = 0; |
| 580 | out: |
| 581 | if (master_key) { |
| 582 | up_read(&master_key->sem); |
| 583 | key_put(master_key); |
| 584 | } |
| 585 | put_crypt_info(crypt_info); |
| 586 | return res; |
| 587 | } |
| 588 | |
| 589 | /** |
| 590 | * fscrypt_get_encryption_info() - set up an inode's encryption key |
| 591 | * @inode: the inode to set up the key for. Must be encrypted. |
| 592 | * @allow_unsupported: if %true, treat an unsupported encryption policy (or |
| 593 | * unrecognized encryption context) the same way as the key |
| 594 | * being unavailable, instead of returning an error. Use |
| 595 | * %false unless the operation being performed is needed in |
| 596 | * order for files (or directories) to be deleted. |
| 597 | * |
| 598 | * Set up ->i_crypt_info, if it hasn't already been done. |
| 599 | * |
| 600 | * Note: unless ->i_crypt_info is already set, this isn't %GFP_NOFS-safe. So |
| 601 | * generally this shouldn't be called from within a filesystem transaction. |
| 602 | * |
| 603 | * Return: 0 if ->i_crypt_info was set or was already set, *or* if the |
| 604 | * encryption key is unavailable. (Use fscrypt_has_encryption_key() to |
| 605 | * distinguish these cases.) Also can return another -errno code. |
| 606 | */ |
| 607 | int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported) |
| 608 | { |
| 609 | int res; |
| 610 | union fscrypt_context ctx; |
| 611 | union fscrypt_policy policy; |
| 612 | |
| 613 | if (fscrypt_has_encryption_key(inode)) |
| 614 | return 0; |
| 615 | |
| 616 | res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx)); |
| 617 | if (res < 0) { |
| 618 | if (res == -ERANGE && allow_unsupported) |
| 619 | return 0; |
| 620 | fscrypt_warn(inode, "Error %d getting encryption context", res); |
| 621 | return res; |
| 622 | } |
| 623 | |
| 624 | res = fscrypt_policy_from_context(&policy, &ctx, res); |
| 625 | if (res) { |
| 626 | if (allow_unsupported) |
| 627 | return 0; |
| 628 | fscrypt_warn(inode, |
| 629 | "Unrecognized or corrupt encryption context"); |
| 630 | return res; |
| 631 | } |
| 632 | |
| 633 | if (!fscrypt_supported_policy(&policy, inode)) { |
| 634 | if (allow_unsupported) |
| 635 | return 0; |
| 636 | return -EINVAL; |
| 637 | } |
| 638 | |
| 639 | res = fscrypt_setup_encryption_info(inode, &policy, |
| 640 | fscrypt_context_nonce(&ctx), |
| 641 | IS_CASEFOLDED(inode) && |
| 642 | S_ISDIR(inode->i_mode)); |
| 643 | |
| 644 | if (res == -ENOPKG && allow_unsupported) /* Algorithm unavailable? */ |
| 645 | res = 0; |
| 646 | if (res == -ENOKEY) |
| 647 | res = 0; |
| 648 | return res; |
| 649 | } |
| 650 | |
| 651 | /** |
| 652 | * fscrypt_prepare_new_inode() - prepare to create a new inode in a directory |
| 653 | * @dir: a possibly-encrypted directory |
| 654 | * @inode: the new inode. ->i_mode must be set already. |
| 655 | * ->i_ino doesn't need to be set yet. |
| 656 | * @encrypt_ret: (output) set to %true if the new inode will be encrypted |
| 657 | * |
| 658 | * If the directory is encrypted, set up its ->i_crypt_info in preparation for |
| 659 | * encrypting the name of the new file. Also, if the new inode will be |
| 660 | * encrypted, set up its ->i_crypt_info and set *encrypt_ret=true. |
| 661 | * |
| 662 | * This isn't %GFP_NOFS-safe, and therefore it should be called before starting |
| 663 | * any filesystem transaction to create the inode. For this reason, ->i_ino |
| 664 | * isn't required to be set yet, as the filesystem may not have set it yet. |
| 665 | * |
| 666 | * This doesn't persist the new inode's encryption context. That still needs to |
| 667 | * be done later by calling fscrypt_set_context(). |
| 668 | * |
| 669 | * Return: 0 on success, -ENOKEY if the encryption key is missing, or another |
| 670 | * -errno code |
| 671 | */ |
| 672 | int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, |
| 673 | bool *encrypt_ret) |
| 674 | { |
| 675 | const union fscrypt_policy *policy; |
| 676 | u8 nonce[FSCRYPT_FILE_NONCE_SIZE]; |
| 677 | |
| 678 | policy = fscrypt_policy_to_inherit(dir); |
| 679 | if (policy == NULL) |
| 680 | return 0; |
| 681 | if (IS_ERR(policy)) |
| 682 | return PTR_ERR(policy); |
| 683 | |
| 684 | if (WARN_ON_ONCE(inode->i_mode == 0)) |
| 685 | return -EINVAL; |
| 686 | |
| 687 | /* |
| 688 | * Only regular files, directories, and symlinks are encrypted. |
| 689 | * Special files like device nodes and named pipes aren't. |
| 690 | */ |
| 691 | if (!S_ISREG(inode->i_mode) && |
| 692 | !S_ISDIR(inode->i_mode) && |
| 693 | !S_ISLNK(inode->i_mode)) |
| 694 | return 0; |
| 695 | |
| 696 | *encrypt_ret = true; |
| 697 | |
| 698 | get_random_bytes(nonce, FSCRYPT_FILE_NONCE_SIZE); |
| 699 | return fscrypt_setup_encryption_info(inode, policy, nonce, |
| 700 | IS_CASEFOLDED(dir) && |
| 701 | S_ISDIR(inode->i_mode)); |
| 702 | } |
| 703 | EXPORT_SYMBOL_GPL(fscrypt_prepare_new_inode); |
| 704 | |
| 705 | /** |
| 706 | * fscrypt_put_encryption_info() - free most of an inode's fscrypt data |
| 707 | * @inode: an inode being evicted |
| 708 | * |
| 709 | * Free the inode's fscrypt_info. Filesystems must call this when the inode is |
| 710 | * being evicted. An RCU grace period need not have elapsed yet. |
| 711 | */ |
| 712 | void fscrypt_put_encryption_info(struct inode *inode) |
| 713 | { |
| 714 | put_crypt_info(inode->i_crypt_info); |
| 715 | inode->i_crypt_info = NULL; |
| 716 | } |
| 717 | EXPORT_SYMBOL(fscrypt_put_encryption_info); |
| 718 | |
| 719 | /** |
| 720 | * fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay |
| 721 | * @inode: an inode being freed |
| 722 | * |
| 723 | * Free the inode's cached decrypted symlink target, if any. Filesystems must |
| 724 | * call this after an RCU grace period, just before they free the inode. |
| 725 | */ |
| 726 | void fscrypt_free_inode(struct inode *inode) |
| 727 | { |
| 728 | if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) { |
| 729 | kfree(inode->i_link); |
| 730 | inode->i_link = NULL; |
| 731 | } |
| 732 | } |
| 733 | EXPORT_SYMBOL(fscrypt_free_inode); |
| 734 | |
| 735 | /** |
| 736 | * fscrypt_drop_inode() - check whether the inode's master key has been removed |
| 737 | * @inode: an inode being considered for eviction |
| 738 | * |
| 739 | * Filesystems supporting fscrypt must call this from their ->drop_inode() |
| 740 | * method so that encrypted inodes are evicted as soon as they're no longer in |
| 741 | * use and their master key has been removed. |
| 742 | * |
| 743 | * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0 |
| 744 | */ |
| 745 | int fscrypt_drop_inode(struct inode *inode) |
| 746 | { |
| 747 | const struct fscrypt_info *ci = fscrypt_get_info(inode); |
| 748 | const struct fscrypt_master_key *mk; |
| 749 | |
| 750 | /* |
| 751 | * If ci is NULL, then the inode doesn't have an encryption key set up |
| 752 | * so it's irrelevant. If ci_master_key is NULL, then the master key |
| 753 | * was provided via the legacy mechanism of the process-subscribed |
| 754 | * keyrings, so we don't know whether it's been removed or not. |
| 755 | */ |
| 756 | if (!ci || !ci->ci_master_key) |
| 757 | return 0; |
| 758 | mk = ci->ci_master_key->payload.data[0]; |
| 759 | |
| 760 | /* |
| 761 | * With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes |
| 762 | * protected by the key were cleaned by sync_filesystem(). But if |
| 763 | * userspace is still using the files, inodes can be dirtied between |
| 764 | * then and now. We mustn't lose any writes, so skip dirty inodes here. |
| 765 | */ |
| 766 | if (inode->i_state & I_DIRTY_ALL) |
| 767 | return 0; |
| 768 | |
| 769 | /* |
| 770 | * Note: since we aren't holding the key semaphore, the result here can |
| 771 | * immediately become outdated. But there's no correctness problem with |
| 772 | * unnecessarily evicting. Nor is there a correctness problem with not |
| 773 | * evicting while iput() is racing with the key being removed, since |
| 774 | * then the thread removing the key will either evict the inode itself |
| 775 | * or will correctly detect that it wasn't evicted due to the race. |
| 776 | */ |
| 777 | return !is_master_key_secret_present(&mk->mk_secret); |
| 778 | } |
| 779 | EXPORT_SYMBOL_GPL(fscrypt_drop_inode); |