blob: 5dffc67745c80943a32c34ac3af3721b060885ca [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * #!-checking implemented by tytso.
10 */
11/*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26#include <linux/slab.h>
27#include <linux/file.h>
28#include <linux/fdtable.h>
29#include <linux/mm.h>
30#include <linux/vmacache.h>
31#include <linux/stat.h>
32#include <linux/fcntl.h>
33#include <linux/swap.h>
34#include <linux/string.h>
35#include <linux/init.h>
36#include <linux/sched/mm.h>
37#include <linux/sched/coredump.h>
38#include <linux/sched/signal.h>
39#include <linux/sched/numa_balancing.h>
40#include <linux/sched/task.h>
41#include <linux/pagemap.h>
42#include <linux/perf_event.h>
43#include <linux/highmem.h>
44#include <linux/spinlock.h>
45#include <linux/key.h>
46#include <linux/personality.h>
47#include <linux/binfmts.h>
48#include <linux/utsname.h>
49#include <linux/pid_namespace.h>
50#include <linux/module.h>
51#include <linux/namei.h>
52#include <linux/mount.h>
53#include <linux/security.h>
54#include <linux/syscalls.h>
55#include <linux/tsacct_kern.h>
56#include <linux/cn_proc.h>
57#include <linux/audit.h>
58#include <linux/tracehook.h>
59#include <linux/kmod.h>
60#include <linux/fsnotify.h>
61#include <linux/fs_struct.h>
62#include <linux/pipe_fs_i.h>
63#include <linux/oom.h>
64#include <linux/compat.h>
65#include <linux/vmalloc.h>
66
67#include <linux/uaccess.h>
68#include <asm/mmu_context.h>
69#include <asm/tlb.h>
70
71#include <trace/events/task.h>
72#include "internal.h"
73
74#include <trace/events/sched.h>
75
76int suid_dumpable = 0;
77
78static LIST_HEAD(formats);
79static DEFINE_RWLOCK(binfmt_lock);
80
81void __register_binfmt(struct linux_binfmt * fmt, int insert)
82{
83 BUG_ON(!fmt);
84 if (WARN_ON(!fmt->load_binary))
85 return;
86 write_lock(&binfmt_lock);
87 insert ? list_add(&fmt->lh, &formats) :
88 list_add_tail(&fmt->lh, &formats);
89 write_unlock(&binfmt_lock);
90}
91
92EXPORT_SYMBOL(__register_binfmt);
93
94void unregister_binfmt(struct linux_binfmt * fmt)
95{
96 write_lock(&binfmt_lock);
97 list_del(&fmt->lh);
98 write_unlock(&binfmt_lock);
99}
100
101EXPORT_SYMBOL(unregister_binfmt);
102
103static inline void put_binfmt(struct linux_binfmt * fmt)
104{
105 module_put(fmt->module);
106}
107
108bool path_noexec(const struct path *path)
109{
110 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
111 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
112}
113
114#ifdef CONFIG_USELIB
115/*
116 * Note that a shared library must be both readable and executable due to
117 * security reasons.
118 *
119 * Also note that we take the address to load from from the file itself.
120 */
121SYSCALL_DEFINE1(uselib, const char __user *, library)
122{
123 struct linux_binfmt *fmt;
124 struct file *file;
125 struct filename *tmp = getname(library);
126 int error = PTR_ERR(tmp);
127 static const struct open_flags uselib_flags = {
128 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
129 .acc_mode = MAY_READ | MAY_EXEC,
130 .intent = LOOKUP_OPEN,
131 .lookup_flags = LOOKUP_FOLLOW,
132 };
133
134 if (IS_ERR(tmp))
135 goto out;
136
137 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
138 putname(tmp);
139 error = PTR_ERR(file);
140 if (IS_ERR(file))
141 goto out;
142
143 error = -EINVAL;
144 if (!S_ISREG(file_inode(file)->i_mode))
145 goto exit;
146
147 error = -EACCES;
148 if (path_noexec(&file->f_path))
149 goto exit;
150
151 fsnotify_open(file);
152
153 error = -ENOEXEC;
154
155 read_lock(&binfmt_lock);
156 list_for_each_entry(fmt, &formats, lh) {
157 if (!fmt->load_shlib)
158 continue;
159 if (!try_module_get(fmt->module))
160 continue;
161 read_unlock(&binfmt_lock);
162 error = fmt->load_shlib(file);
163 read_lock(&binfmt_lock);
164 put_binfmt(fmt);
165 if (error != -ENOEXEC)
166 break;
167 }
168 read_unlock(&binfmt_lock);
169exit:
170 fput(file);
171out:
172 return error;
173}
174#endif /* #ifdef CONFIG_USELIB */
175
176#ifdef CONFIG_MMU
177/*
178 * The nascent bprm->mm is not visible until exec_mmap() but it can
179 * use a lot of memory, account these pages in current->mm temporary
180 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
181 * change the counter back via acct_arg_size(0).
182 */
183static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
184{
185 struct mm_struct *mm = current->mm;
186 long diff = (long)(pages - bprm->vma_pages);
187
188 if (!mm || !diff)
189 return;
190
191 bprm->vma_pages = pages;
192 add_mm_counter(mm, MM_ANONPAGES, diff);
193}
194
195static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
196 int write)
197{
198 struct page *page;
199 int ret;
200 unsigned int gup_flags = FOLL_FORCE;
201
202#ifdef CONFIG_STACK_GROWSUP
203 if (write) {
204 ret = expand_downwards(bprm->vma, pos);
205 if (ret < 0)
206 return NULL;
207 }
208#endif
209
210 if (write)
211 gup_flags |= FOLL_WRITE;
212
213 /*
214 * We are doing an exec(). 'current' is the process
215 * doing the exec and bprm->mm is the new process's mm.
216 */
217 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
218 &page, NULL, NULL);
219 if (ret <= 0)
220 return NULL;
221
222 if (write)
223 acct_arg_size(bprm, vma_pages(bprm->vma));
224
225 return page;
226}
227
228static void put_arg_page(struct page *page)
229{
230 put_page(page);
231}
232
233static void free_arg_pages(struct linux_binprm *bprm)
234{
235}
236
237static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
238 struct page *page)
239{
240 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
241}
242
243static int __bprm_mm_init(struct linux_binprm *bprm)
244{
245 int err;
246 struct vm_area_struct *vma = NULL;
247 struct mm_struct *mm = bprm->mm;
248
249 bprm->vma = vma = vm_area_alloc(mm);
250 if (!vma)
251 return -ENOMEM;
252 vma_set_anonymous(vma);
253
254 if (down_write_killable(&mm->mmap_sem)) {
255 err = -EINTR;
256 goto err_free;
257 }
258
259 /*
260 * Place the stack at the largest stack address the architecture
261 * supports. Later, we'll move this to an appropriate place. We don't
262 * use STACK_TOP because that can depend on attributes which aren't
263 * configured yet.
264 */
265 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
266 vma->vm_end = STACK_TOP_MAX;
267 vma->vm_start = vma->vm_end - PAGE_SIZE;
268 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
269 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
270
271 err = insert_vm_struct(mm, vma);
272 if (err)
273 goto err;
274
275 mm->stack_vm = mm->total_vm = 1;
276 arch_bprm_mm_init(mm, vma);
277 up_write(&mm->mmap_sem);
278 bprm->p = vma->vm_end - sizeof(void *);
279 return 0;
280err:
281 up_write(&mm->mmap_sem);
282err_free:
283 bprm->vma = NULL;
284 vm_area_free(vma);
285 return err;
286}
287
288static bool valid_arg_len(struct linux_binprm *bprm, long len)
289{
290 return len <= MAX_ARG_STRLEN;
291}
292
293#else
294
295static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
296{
297}
298
299static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
300 int write)
301{
302 struct page *page;
303
304 page = bprm->page[pos / PAGE_SIZE];
305 if (!page && write) {
306 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
307 if (!page)
308 return NULL;
309 bprm->page[pos / PAGE_SIZE] = page;
310 }
311
312 return page;
313}
314
315static void put_arg_page(struct page *page)
316{
317}
318
319static void free_arg_page(struct linux_binprm *bprm, int i)
320{
321 if (bprm->page[i]) {
322 __free_page(bprm->page[i]);
323 bprm->page[i] = NULL;
324 }
325}
326
327static void free_arg_pages(struct linux_binprm *bprm)
328{
329 int i;
330
331 for (i = 0; i < MAX_ARG_PAGES; i++)
332 free_arg_page(bprm, i);
333}
334
335static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
336 struct page *page)
337{
338}
339
340static int __bprm_mm_init(struct linux_binprm *bprm)
341{
342 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
343 return 0;
344}
345
346static bool valid_arg_len(struct linux_binprm *bprm, long len)
347{
348 return len <= bprm->p;
349}
350
351#endif /* CONFIG_MMU */
352
353/*
354 * Create a new mm_struct and populate it with a temporary stack
355 * vm_area_struct. We don't have enough context at this point to set the stack
356 * flags, permissions, and offset, so we use temporary values. We'll update
357 * them later in setup_arg_pages().
358 */
359static int bprm_mm_init(struct linux_binprm *bprm)
360{
361 int err;
362 struct mm_struct *mm = NULL;
363
364 bprm->mm = mm = mm_alloc();
365 err = -ENOMEM;
366 if (!mm)
367 goto err;
368
369 /* Save current stack limit for all calculations made during exec. */
370 task_lock(current->group_leader);
371 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
372 task_unlock(current->group_leader);
373
374 err = __bprm_mm_init(bprm);
375 if (err)
376 goto err;
377
378 return 0;
379
380err:
381 if (mm) {
382 bprm->mm = NULL;
383 mmdrop(mm);
384 }
385
386 return err;
387}
388
389struct user_arg_ptr {
390#ifdef CONFIG_COMPAT
391 bool is_compat;
392#endif
393 union {
394 const char __user *const __user *native;
395#ifdef CONFIG_COMPAT
396 const compat_uptr_t __user *compat;
397#endif
398 } ptr;
399};
400
401static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
402{
403 const char __user *native;
404
405#ifdef CONFIG_COMPAT
406 if (unlikely(argv.is_compat)) {
407 compat_uptr_t compat;
408
409 if (get_user(compat, argv.ptr.compat + nr))
410 return ERR_PTR(-EFAULT);
411
412 return compat_ptr(compat);
413 }
414#endif
415
416 if (get_user(native, argv.ptr.native + nr))
417 return ERR_PTR(-EFAULT);
418
419 return native;
420}
421
422/*
423 * count() counts the number of strings in array ARGV.
424 */
425static int count(struct user_arg_ptr argv, int max)
426{
427 int i = 0;
428
429 if (argv.ptr.native != NULL) {
430 for (;;) {
431 const char __user *p = get_user_arg_ptr(argv, i);
432
433 if (!p)
434 break;
435
436 if (IS_ERR(p))
437 return -EFAULT;
438
439 if (i >= max)
440 return -E2BIG;
441 ++i;
442
443 if (fatal_signal_pending(current))
444 return -ERESTARTNOHAND;
445 cond_resched();
446 }
447 }
448 return i;
449}
450
451static int prepare_arg_pages(struct linux_binprm *bprm,
452 struct user_arg_ptr argv, struct user_arg_ptr envp)
453{
454 unsigned long limit, ptr_size;
455
456 bprm->argc = count(argv, MAX_ARG_STRINGS);
457 if (bprm->argc == 0)
458 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
459 current->comm, bprm->filename);
460 if (bprm->argc < 0)
461 return bprm->argc;
462
463 bprm->envc = count(envp, MAX_ARG_STRINGS);
464 if (bprm->envc < 0)
465 return bprm->envc;
466
467 /*
468 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
469 * (whichever is smaller) for the argv+env strings.
470 * This ensures that:
471 * - the remaining binfmt code will not run out of stack space,
472 * - the program will have a reasonable amount of stack left
473 * to work from.
474 */
475 limit = _STK_LIM / 4 * 3;
476 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
477 /*
478 * We've historically supported up to 32 pages (ARG_MAX)
479 * of argument strings even with small stacks
480 */
481 limit = max_t(unsigned long, limit, ARG_MAX);
482 /*
483 * We must account for the size of all the argv and envp pointers to
484 * the argv and envp strings, since they will also take up space in
485 * the stack. They aren't stored until much later when we can't
486 * signal to the parent that the child has run out of stack space.
487 * Instead, calculate it here so it's possible to fail gracefully.
488 *
489 * In the case of argc = 0, make sure there is space for adding a
490 * empty string (which will bump argc to 1), to ensure confused
491 * userspace programs don't start processing from argv[1], thinking
492 * argc can never be 0, to keep them from walking envp by accident.
493 * See do_execveat_common().
494 */
495 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
496 if (limit <= ptr_size)
497 return -E2BIG;
498 limit -= ptr_size;
499
500 bprm->argmin = bprm->p - limit;
501 return 0;
502}
503
504/*
505 * 'copy_strings()' copies argument/environment strings from the old
506 * processes's memory to the new process's stack. The call to get_user_pages()
507 * ensures the destination page is created and not swapped out.
508 */
509static int copy_strings(int argc, struct user_arg_ptr argv,
510 struct linux_binprm *bprm)
511{
512 struct page *kmapped_page = NULL;
513 char *kaddr = NULL;
514 unsigned long kpos = 0;
515 int ret;
516
517 while (argc-- > 0) {
518 const char __user *str;
519 int len;
520 unsigned long pos;
521
522 ret = -EFAULT;
523 str = get_user_arg_ptr(argv, argc);
524 if (IS_ERR(str))
525 goto out;
526
527 len = strnlen_user(str, MAX_ARG_STRLEN);
528 if (!len)
529 goto out;
530
531 ret = -E2BIG;
532 if (!valid_arg_len(bprm, len))
533 goto out;
534
535 /* We're going to work our way backwords. */
536 pos = bprm->p;
537 str += len;
538 bprm->p -= len;
539#ifdef CONFIG_MMU
540 if (bprm->p < bprm->argmin)
541 goto out;
542#endif
543
544 while (len > 0) {
545 int offset, bytes_to_copy;
546
547 if (fatal_signal_pending(current)) {
548 ret = -ERESTARTNOHAND;
549 goto out;
550 }
551 cond_resched();
552
553 offset = pos % PAGE_SIZE;
554 if (offset == 0)
555 offset = PAGE_SIZE;
556
557 bytes_to_copy = offset;
558 if (bytes_to_copy > len)
559 bytes_to_copy = len;
560
561 offset -= bytes_to_copy;
562 pos -= bytes_to_copy;
563 str -= bytes_to_copy;
564 len -= bytes_to_copy;
565
566 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
567 struct page *page;
568
569 page = get_arg_page(bprm, pos, 1);
570 if (!page) {
571 ret = -E2BIG;
572 goto out;
573 }
574
575 if (kmapped_page) {
576 flush_kernel_dcache_page(kmapped_page);
577 kunmap(kmapped_page);
578 put_arg_page(kmapped_page);
579 }
580 kmapped_page = page;
581 kaddr = kmap(kmapped_page);
582 kpos = pos & PAGE_MASK;
583 flush_arg_page(bprm, kpos, kmapped_page);
584 }
585 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
586 ret = -EFAULT;
587 goto out;
588 }
589 }
590 }
591 ret = 0;
592out:
593 if (kmapped_page) {
594 flush_kernel_dcache_page(kmapped_page);
595 kunmap(kmapped_page);
596 put_arg_page(kmapped_page);
597 }
598 return ret;
599}
600
601/*
602 * Like copy_strings, but get argv and its values from kernel memory.
603 */
604int copy_strings_kernel(int argc, const char *const *__argv,
605 struct linux_binprm *bprm)
606{
607 int r;
608 mm_segment_t oldfs = get_fs();
609 struct user_arg_ptr argv = {
610 .ptr.native = (const char __user *const __user *)__argv,
611 };
612
613 set_fs(KERNEL_DS);
614 r = copy_strings(argc, argv, bprm);
615 set_fs(oldfs);
616
617 return r;
618}
619EXPORT_SYMBOL(copy_strings_kernel);
620
621#ifdef CONFIG_MMU
622
623/*
624 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
625 * the binfmt code determines where the new stack should reside, we shift it to
626 * its final location. The process proceeds as follows:
627 *
628 * 1) Use shift to calculate the new vma endpoints.
629 * 2) Extend vma to cover both the old and new ranges. This ensures the
630 * arguments passed to subsequent functions are consistent.
631 * 3) Move vma's page tables to the new range.
632 * 4) Free up any cleared pgd range.
633 * 5) Shrink the vma to cover only the new range.
634 */
635static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
636{
637 struct mm_struct *mm = vma->vm_mm;
638 unsigned long old_start = vma->vm_start;
639 unsigned long old_end = vma->vm_end;
640 unsigned long length = old_end - old_start;
641 unsigned long new_start = old_start - shift;
642 unsigned long new_end = old_end - shift;
643 struct mmu_gather tlb;
644
645 BUG_ON(new_start > new_end);
646
647 /*
648 * ensure there are no vmas between where we want to go
649 * and where we are
650 */
651 if (vma != find_vma(mm, new_start))
652 return -EFAULT;
653
654 /*
655 * cover the whole range: [new_start, old_end)
656 */
657 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
658 return -ENOMEM;
659
660 /*
661 * move the page tables downwards, on failure we rely on
662 * process cleanup to remove whatever mess we made.
663 */
664 if (length != move_page_tables(vma, old_start,
665 vma, new_start, length, false))
666 return -ENOMEM;
667
668 lru_add_drain();
669 tlb_gather_mmu(&tlb, mm, old_start, old_end);
670 if (new_end > old_start) {
671 /*
672 * when the old and new regions overlap clear from new_end.
673 */
674 free_pgd_range(&tlb, new_end, old_end, new_end,
675 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
676 } else {
677 /*
678 * otherwise, clean from old_start; this is done to not touch
679 * the address space in [new_end, old_start) some architectures
680 * have constraints on va-space that make this illegal (IA64) -
681 * for the others its just a little faster.
682 */
683 free_pgd_range(&tlb, old_start, old_end, new_end,
684 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
685 }
686 tlb_finish_mmu(&tlb, old_start, old_end);
687
688 /*
689 * Shrink the vma to just the new range. Always succeeds.
690 */
691 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
692
693 return 0;
694}
695
696/*
697 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
698 * the stack is optionally relocated, and some extra space is added.
699 */
700int setup_arg_pages(struct linux_binprm *bprm,
701 unsigned long stack_top,
702 int executable_stack)
703{
704 unsigned long ret;
705 unsigned long stack_shift;
706 struct mm_struct *mm = current->mm;
707 struct vm_area_struct *vma = bprm->vma;
708 struct vm_area_struct *prev = NULL;
709 unsigned long vm_flags;
710 unsigned long stack_base;
711 unsigned long stack_size;
712 unsigned long stack_expand;
713 unsigned long rlim_stack;
714
715#ifdef CONFIG_STACK_GROWSUP
716 /* Limit stack size */
717 stack_base = bprm->rlim_stack.rlim_max;
718 if (stack_base > STACK_SIZE_MAX)
719 stack_base = STACK_SIZE_MAX;
720
721 /* Add space for stack randomization. */
722 if (current->flags & PF_RANDOMIZE)
723 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
724
725 /* Make sure we didn't let the argument array grow too large. */
726 if (vma->vm_end - vma->vm_start > stack_base)
727 return -ENOMEM;
728
729 stack_base = PAGE_ALIGN(stack_top - stack_base);
730
731 stack_shift = vma->vm_start - stack_base;
732 mm->arg_start = bprm->p - stack_shift;
733 bprm->p = vma->vm_end - stack_shift;
734#else
735 stack_top = arch_align_stack(stack_top);
736 stack_top = PAGE_ALIGN(stack_top);
737
738 if (unlikely(stack_top < mmap_min_addr) ||
739 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
740 return -ENOMEM;
741
742 stack_shift = vma->vm_end - stack_top;
743
744 bprm->p -= stack_shift;
745 mm->arg_start = bprm->p;
746#endif
747
748 if (bprm->loader)
749 bprm->loader -= stack_shift;
750 bprm->exec -= stack_shift;
751
752 if (down_write_killable(&mm->mmap_sem))
753 return -EINTR;
754
755 vm_flags = VM_STACK_FLAGS;
756
757 /*
758 * Adjust stack execute permissions; explicitly enable for
759 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
760 * (arch default) otherwise.
761 */
762 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
763 vm_flags |= VM_EXEC;
764 else if (executable_stack == EXSTACK_DISABLE_X)
765 vm_flags &= ~VM_EXEC;
766 vm_flags |= mm->def_flags;
767 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
768
769 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
770 vm_flags);
771 if (ret)
772 goto out_unlock;
773 BUG_ON(prev != vma);
774
775 /* Move stack pages down in memory. */
776 if (stack_shift) {
777 ret = shift_arg_pages(vma, stack_shift);
778 if (ret)
779 goto out_unlock;
780 }
781
782 /* mprotect_fixup is overkill to remove the temporary stack flags */
783 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
784
785 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
786 stack_size = vma->vm_end - vma->vm_start;
787 /*
788 * Align this down to a page boundary as expand_stack
789 * will align it up.
790 */
791 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
792#ifdef CONFIG_STACK_GROWSUP
793 if (stack_size + stack_expand > rlim_stack)
794 stack_base = vma->vm_start + rlim_stack;
795 else
796 stack_base = vma->vm_end + stack_expand;
797#else
798 if (stack_size + stack_expand > rlim_stack)
799 stack_base = vma->vm_end - rlim_stack;
800 else
801 stack_base = vma->vm_start - stack_expand;
802#endif
803 current->mm->start_stack = bprm->p;
804 ret = expand_stack(vma, stack_base);
805 if (ret)
806 ret = -EFAULT;
807
808out_unlock:
809 up_write(&mm->mmap_sem);
810 return ret;
811}
812EXPORT_SYMBOL(setup_arg_pages);
813
814#else
815
816/*
817 * Transfer the program arguments and environment from the holding pages
818 * onto the stack. The provided stack pointer is adjusted accordingly.
819 */
820int transfer_args_to_stack(struct linux_binprm *bprm,
821 unsigned long *sp_location)
822{
823 unsigned long index, stop, sp;
824 int ret = 0;
825
826 stop = bprm->p >> PAGE_SHIFT;
827 sp = *sp_location;
828
829 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
830 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
831 char *src = kmap(bprm->page[index]) + offset;
832 sp -= PAGE_SIZE - offset;
833 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
834 ret = -EFAULT;
835 kunmap(bprm->page[index]);
836 if (ret)
837 goto out;
838 }
839
840 bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
841 *sp_location = sp;
842
843out:
844 return ret;
845}
846EXPORT_SYMBOL(transfer_args_to_stack);
847
848#endif /* CONFIG_MMU */
849
850static struct file *do_open_execat(int fd, struct filename *name, int flags)
851{
852 struct file *file;
853 int err;
854 struct open_flags open_exec_flags = {
855 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
856 .acc_mode = MAY_EXEC,
857 .intent = LOOKUP_OPEN,
858 .lookup_flags = LOOKUP_FOLLOW,
859 };
860
861 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
862 return ERR_PTR(-EINVAL);
863 if (flags & AT_SYMLINK_NOFOLLOW)
864 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
865 if (flags & AT_EMPTY_PATH)
866 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
867
868 file = do_filp_open(fd, name, &open_exec_flags);
869 if (IS_ERR(file))
870 goto out;
871
872 err = -EACCES;
873 if (!S_ISREG(file_inode(file)->i_mode))
874 goto exit;
875
876 if (path_noexec(&file->f_path))
877 goto exit;
878
879 err = deny_write_access(file);
880 if (err)
881 goto exit;
882
883 if (name->name[0] != '\0')
884 fsnotify_open(file);
885
886out:
887 return file;
888
889exit:
890 fput(file);
891 return ERR_PTR(err);
892}
893
894struct file *open_exec(const char *name)
895{
896 struct filename *filename = getname_kernel(name);
897 struct file *f = ERR_CAST(filename);
898
899 if (!IS_ERR(filename)) {
900 f = do_open_execat(AT_FDCWD, filename, 0);
901 putname(filename);
902 }
903 return f;
904}
905EXPORT_SYMBOL(open_exec);
906
907int kernel_read_file(struct file *file, void **buf, loff_t *size,
908 loff_t max_size, enum kernel_read_file_id id)
909{
910 loff_t i_size, pos;
911 ssize_t bytes = 0;
912 int ret;
913
914 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
915 return -EINVAL;
916
917 ret = deny_write_access(file);
918 if (ret)
919 return ret;
920
921 ret = security_kernel_read_file(file, id);
922 if (ret)
923 goto out;
924
925 i_size = i_size_read(file_inode(file));
926 if (i_size <= 0) {
927 ret = -EINVAL;
928 goto out;
929 }
930 if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
931 ret = -EFBIG;
932 goto out;
933 }
934
935 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
936 *buf = vmalloc(i_size);
937 if (!*buf) {
938 ret = -ENOMEM;
939 goto out;
940 }
941
942 pos = 0;
943 while (pos < i_size) {
944 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
945 if (bytes < 0) {
946 ret = bytes;
947 goto out_free;
948 }
949
950 if (bytes == 0)
951 break;
952 }
953
954 if (pos != i_size) {
955 ret = -EIO;
956 goto out_free;
957 }
958
959 ret = security_kernel_post_read_file(file, *buf, i_size, id);
960 if (!ret)
961 *size = pos;
962
963out_free:
964 if (ret < 0) {
965 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
966 vfree(*buf);
967 *buf = NULL;
968 }
969 }
970
971out:
972 allow_write_access(file);
973 return ret;
974}
975EXPORT_SYMBOL_GPL(kernel_read_file);
976
977int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
978 loff_t max_size, enum kernel_read_file_id id)
979{
980 struct file *file;
981 int ret;
982
983 if (!path || !*path)
984 return -EINVAL;
985
986 file = filp_open(path, O_RDONLY, 0);
987 if (IS_ERR(file))
988 return PTR_ERR(file);
989
990 ret = kernel_read_file(file, buf, size, max_size, id);
991 fput(file);
992 return ret;
993}
994EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
995
996int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
997 enum kernel_read_file_id id)
998{
999 struct fd f = fdget(fd);
1000 int ret = -EBADF;
1001
1002 if (!f.file || !(f.file->f_mode & FMODE_READ))
1003 goto out;
1004
1005 ret = kernel_read_file(f.file, buf, size, max_size, id);
1006out:
1007 fdput(f);
1008 return ret;
1009}
1010EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1011
1012ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1013{
1014 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1015 if (res > 0)
1016 flush_icache_range(addr, addr + len);
1017 return res;
1018}
1019EXPORT_SYMBOL(read_code);
1020
1021/*
1022 * Maps the mm_struct mm into the current task struct.
1023 * On success, this function returns with exec_update_lock
1024 * held for writing.
1025 */
1026static int exec_mmap(struct mm_struct *mm)
1027{
1028 struct task_struct *tsk;
1029 struct mm_struct *old_mm, *active_mm;
1030 int ret;
1031
1032 /* Notify parent that we're no longer interested in the old VM */
1033 tsk = current;
1034 old_mm = current->mm;
1035 exec_mm_release(tsk, old_mm);
1036
1037 ret = down_write_killable(&tsk->signal->exec_update_lock);
1038 if (ret)
1039 return ret;
1040
1041 if (old_mm) {
1042 sync_mm_rss(old_mm);
1043 /*
1044 * Make sure that if there is a core dump in progress
1045 * for the old mm, we get out and die instead of going
1046 * through with the exec. We must hold mmap_sem around
1047 * checking core_state and changing tsk->mm.
1048 */
1049 down_read(&old_mm->mmap_sem);
1050 if (unlikely(old_mm->core_state)) {
1051 up_read(&old_mm->mmap_sem);
1052 up_write(&tsk->signal->exec_update_lock);
1053 return -EINTR;
1054 }
1055 }
1056
1057 task_lock(tsk);
1058 membarrier_exec_mmap(mm);
1059
1060 local_irq_disable();
1061 active_mm = tsk->active_mm;
1062 tsk->active_mm = mm;
1063 tsk->mm = mm;
1064 /*
1065 * This prevents preemption while active_mm is being loaded and
1066 * it and mm are being updated, which could cause problems for
1067 * lazy tlb mm refcounting when these are updated by context
1068 * switches. Not all architectures can handle irqs off over
1069 * activate_mm yet.
1070 */
1071 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1072 local_irq_enable();
1073 activate_mm(active_mm, mm);
1074 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1075 local_irq_enable();
1076 tsk->mm->vmacache_seqnum = 0;
1077 vmacache_flush(tsk);
1078 task_unlock(tsk);
1079 if (old_mm) {
1080 up_read(&old_mm->mmap_sem);
1081 BUG_ON(active_mm != old_mm);
1082 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1083 mm_update_next_owner(old_mm);
1084 mmput(old_mm);
1085 return 0;
1086 }
1087 mmdrop(active_mm);
1088 return 0;
1089}
1090
1091/*
1092 * This function makes sure the current process has its own signal table,
1093 * so that flush_signal_handlers can later reset the handlers without
1094 * disturbing other processes. (Other processes might share the signal
1095 * table via the CLONE_SIGHAND option to clone().)
1096 */
1097static int de_thread(struct task_struct *tsk)
1098{
1099 struct signal_struct *sig = tsk->signal;
1100 struct sighand_struct *oldsighand = tsk->sighand;
1101 spinlock_t *lock = &oldsighand->siglock;
1102
1103 if (thread_group_empty(tsk))
1104 goto no_thread_group;
1105
1106 /*
1107 * Kill all other threads in the thread group.
1108 */
1109 spin_lock_irq(lock);
1110 if (signal_group_exit(sig)) {
1111 /*
1112 * Another group action in progress, just
1113 * return so that the signal is processed.
1114 */
1115 spin_unlock_irq(lock);
1116 return -EAGAIN;
1117 }
1118
1119 sig->group_exit_task = tsk;
1120 sig->notify_count = zap_other_threads(tsk);
1121 if (!thread_group_leader(tsk))
1122 sig->notify_count--;
1123
1124 while (sig->notify_count) {
1125 __set_current_state(TASK_KILLABLE);
1126 spin_unlock_irq(lock);
1127 schedule();
1128 if (__fatal_signal_pending(tsk))
1129 goto killed;
1130 spin_lock_irq(lock);
1131 }
1132 spin_unlock_irq(lock);
1133
1134 /*
1135 * At this point all other threads have exited, all we have to
1136 * do is to wait for the thread group leader to become inactive,
1137 * and to assume its PID:
1138 */
1139 if (!thread_group_leader(tsk)) {
1140 struct task_struct *leader = tsk->group_leader;
1141
1142 for (;;) {
1143 cgroup_threadgroup_change_begin(tsk);
1144 write_lock_irq(&tasklist_lock);
1145 /*
1146 * Do this under tasklist_lock to ensure that
1147 * exit_notify() can't miss ->group_exit_task
1148 */
1149 sig->notify_count = -1;
1150 if (likely(leader->exit_state))
1151 break;
1152 __set_current_state(TASK_KILLABLE);
1153 write_unlock_irq(&tasklist_lock);
1154 cgroup_threadgroup_change_end(tsk);
1155 schedule();
1156 if (__fatal_signal_pending(tsk))
1157 goto killed;
1158 }
1159
1160 /*
1161 * The only record we have of the real-time age of a
1162 * process, regardless of execs it's done, is start_time.
1163 * All the past CPU time is accumulated in signal_struct
1164 * from sister threads now dead. But in this non-leader
1165 * exec, nothing survives from the original leader thread,
1166 * whose birth marks the true age of this process now.
1167 * When we take on its identity by switching to its PID, we
1168 * also take its birthdate (always earlier than our own).
1169 */
1170 tsk->start_time = leader->start_time;
1171 tsk->real_start_time = leader->real_start_time;
1172
1173 BUG_ON(!same_thread_group(leader, tsk));
1174 BUG_ON(has_group_leader_pid(tsk));
1175 /*
1176 * An exec() starts a new thread group with the
1177 * TGID of the previous thread group. Rehash the
1178 * two threads with a switched PID, and release
1179 * the former thread group leader:
1180 */
1181
1182 /* Become a process group leader with the old leader's pid.
1183 * The old leader becomes a thread of the this thread group.
1184 * Note: The old leader also uses this pid until release_task
1185 * is called. Odd but simple and correct.
1186 */
1187 tsk->pid = leader->pid;
1188 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1189 transfer_pid(leader, tsk, PIDTYPE_TGID);
1190 transfer_pid(leader, tsk, PIDTYPE_PGID);
1191 transfer_pid(leader, tsk, PIDTYPE_SID);
1192
1193 list_replace_rcu(&leader->tasks, &tsk->tasks);
1194 list_replace_init(&leader->sibling, &tsk->sibling);
1195
1196 tsk->group_leader = tsk;
1197 leader->group_leader = tsk;
1198
1199 tsk->exit_signal = SIGCHLD;
1200 leader->exit_signal = -1;
1201
1202 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1203 leader->exit_state = EXIT_DEAD;
1204
1205 /*
1206 * We are going to release_task()->ptrace_unlink() silently,
1207 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1208 * the tracer wont't block again waiting for this thread.
1209 */
1210 if (unlikely(leader->ptrace))
1211 __wake_up_parent(leader, leader->parent);
1212 write_unlock_irq(&tasklist_lock);
1213 cgroup_threadgroup_change_end(tsk);
1214
1215 release_task(leader);
1216 }
1217
1218 sig->group_exit_task = NULL;
1219 sig->notify_count = 0;
1220
1221no_thread_group:
1222 /* we have changed execution domain */
1223 tsk->exit_signal = SIGCHLD;
1224
1225#ifdef CONFIG_POSIX_TIMERS
1226 exit_itimers(sig);
1227 flush_itimer_signals();
1228#endif
1229
1230 if (refcount_read(&oldsighand->count) != 1) {
1231 struct sighand_struct *newsighand;
1232 /*
1233 * This ->sighand is shared with the CLONE_SIGHAND
1234 * but not CLONE_THREAD task, switch to the new one.
1235 */
1236 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1237 if (!newsighand)
1238 return -ENOMEM;
1239
1240 refcount_set(&newsighand->count, 1);
1241 memcpy(newsighand->action, oldsighand->action,
1242 sizeof(newsighand->action));
1243
1244 write_lock_irq(&tasklist_lock);
1245 spin_lock(&oldsighand->siglock);
1246 rcu_assign_pointer(tsk->sighand, newsighand);
1247 spin_unlock(&oldsighand->siglock);
1248 write_unlock_irq(&tasklist_lock);
1249
1250 __cleanup_sighand(oldsighand);
1251 }
1252
1253 BUG_ON(!thread_group_leader(tsk));
1254 return 0;
1255
1256killed:
1257 /* protects against exit_notify() and __exit_signal() */
1258 read_lock(&tasklist_lock);
1259 sig->group_exit_task = NULL;
1260 sig->notify_count = 0;
1261 read_unlock(&tasklist_lock);
1262 return -EAGAIN;
1263}
1264
1265char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1266{
1267 task_lock(tsk);
1268 strncpy(buf, tsk->comm, buf_size);
1269 task_unlock(tsk);
1270 return buf;
1271}
1272EXPORT_SYMBOL_GPL(__get_task_comm);
1273
1274/*
1275 * These functions flushes out all traces of the currently running executable
1276 * so that a new one can be started
1277 */
1278
1279void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1280{
1281 task_lock(tsk);
1282 trace_task_rename(tsk, buf);
1283 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1284 task_unlock(tsk);
1285 perf_event_comm(tsk, exec);
1286}
1287
1288/*
1289 * Calling this is the point of no return. None of the failures will be
1290 * seen by userspace since either the process is already taking a fatal
1291 * signal (via de_thread() or coredump), or will have SEGV raised
1292 * (after exec_mmap()) by search_binary_handlers (see below).
1293 */
1294int flush_old_exec(struct linux_binprm * bprm)
1295{
1296 int retval;
1297
1298 /*
1299 * Make sure we have a private signal table and that
1300 * we are unassociated from the previous thread group.
1301 */
1302 retval = de_thread(current);
1303 if (retval)
1304 goto out;
1305
1306 /*
1307 * Must be called _before_ exec_mmap() as bprm->mm is
1308 * not visibile until then. This also enables the update
1309 * to be lockless.
1310 */
1311 set_mm_exe_file(bprm->mm, bprm->file);
1312
1313 would_dump(bprm, bprm->file);
1314
1315 /*
1316 * Release all of the old mmap stuff
1317 */
1318 acct_arg_size(bprm, 0);
1319 retval = exec_mmap(bprm->mm);
1320 if (retval)
1321 goto out;
1322
1323 /*
1324 * After setting bprm->called_exec_mmap (to mark that current is
1325 * using the prepared mm now), we have nothing left of the original
1326 * process. If anything from here on returns an error, the check
1327 * in search_binary_handler() will SEGV current.
1328 */
1329 bprm->called_exec_mmap = 1;
1330 bprm->mm = NULL;
1331
1332 set_fs(USER_DS);
1333 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1334 PF_NOFREEZE | PF_NO_SETAFFINITY);
1335 flush_thread();
1336 current->personality &= ~bprm->per_clear;
1337
1338 /*
1339 * We have to apply CLOEXEC before we change whether the process is
1340 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1341 * trying to access the should-be-closed file descriptors of a process
1342 * undergoing exec(2).
1343 */
1344 do_close_on_exec(current->files);
1345 return 0;
1346
1347out:
1348 return retval;
1349}
1350EXPORT_SYMBOL(flush_old_exec);
1351
1352void would_dump(struct linux_binprm *bprm, struct file *file)
1353{
1354 struct inode *inode = file_inode(file);
1355 if (inode_permission(inode, MAY_READ) < 0) {
1356 struct user_namespace *old, *user_ns;
1357 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1358
1359 /* Ensure mm->user_ns contains the executable */
1360 user_ns = old = bprm->mm->user_ns;
1361 while ((user_ns != &init_user_ns) &&
1362 !privileged_wrt_inode_uidgid(user_ns, inode))
1363 user_ns = user_ns->parent;
1364
1365 if (old != user_ns) {
1366 bprm->mm->user_ns = get_user_ns(user_ns);
1367 put_user_ns(old);
1368 }
1369 }
1370}
1371EXPORT_SYMBOL(would_dump);
1372
1373void setup_new_exec(struct linux_binprm * bprm)
1374{
1375 /*
1376 * Once here, prepare_binrpm() will not be called any more, so
1377 * the final state of setuid/setgid/fscaps can be merged into the
1378 * secureexec flag.
1379 */
1380 bprm->secureexec |= bprm->cap_elevated;
1381
1382 if (bprm->secureexec) {
1383 /* Make sure parent cannot signal privileged process. */
1384 current->pdeath_signal = 0;
1385
1386 /*
1387 * For secureexec, reset the stack limit to sane default to
1388 * avoid bad behavior from the prior rlimits. This has to
1389 * happen before arch_pick_mmap_layout(), which examines
1390 * RLIMIT_STACK, but after the point of no return to avoid
1391 * needing to clean up the change on failure.
1392 */
1393 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1394 bprm->rlim_stack.rlim_cur = _STK_LIM;
1395 }
1396
1397 arch_pick_mmap_layout(current->mm, &bprm->rlim_stack);
1398
1399 current->sas_ss_sp = current->sas_ss_size = 0;
1400
1401 /*
1402 * Figure out dumpability. Note that this checking only of current
1403 * is wrong, but userspace depends on it. This should be testing
1404 * bprm->secureexec instead.
1405 */
1406 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1407 !(uid_eq(current_euid(), current_uid()) &&
1408 gid_eq(current_egid(), current_gid())))
1409 set_dumpable(current->mm, suid_dumpable);
1410 else
1411 set_dumpable(current->mm, SUID_DUMP_USER);
1412
1413 arch_setup_new_exec();
1414 perf_event_exec();
1415 __set_task_comm(current, kbasename(bprm->filename), true);
1416
1417 /* Set the new mm task size. We have to do that late because it may
1418 * depend on TIF_32BIT which is only updated in flush_thread() on
1419 * some architectures like powerpc
1420 */
1421 current->mm->task_size = TASK_SIZE;
1422
1423 /* An exec changes our domain. We are no longer part of the thread
1424 group */
1425 WRITE_ONCE(current->self_exec_id, current->self_exec_id + 1);
1426 flush_signal_handlers(current, 0);
1427}
1428EXPORT_SYMBOL(setup_new_exec);
1429
1430/* Runs immediately before start_thread() takes over. */
1431void finalize_exec(struct linux_binprm *bprm)
1432{
1433 /* Store any stack rlimit changes before starting thread. */
1434 task_lock(current->group_leader);
1435 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1436 task_unlock(current->group_leader);
1437}
1438EXPORT_SYMBOL(finalize_exec);
1439
1440/*
1441 * Prepare credentials and lock ->cred_guard_mutex.
1442 * install_exec_creds() commits the new creds and drops the lock.
1443 * Or, if exec fails before, free_bprm() should release ->cred and
1444 * and unlock.
1445 */
1446static int prepare_bprm_creds(struct linux_binprm *bprm)
1447{
1448 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1449 return -ERESTARTNOINTR;
1450
1451 bprm->cred = prepare_exec_creds();
1452 if (likely(bprm->cred))
1453 return 0;
1454
1455 mutex_unlock(&current->signal->cred_guard_mutex);
1456 return -ENOMEM;
1457}
1458
1459static void free_bprm(struct linux_binprm *bprm)
1460{
1461 free_arg_pages(bprm);
1462 if (bprm->cred) {
1463 if (bprm->called_exec_mmap)
1464 up_write(&current->signal->exec_update_lock);
1465 mutex_unlock(&current->signal->cred_guard_mutex);
1466 abort_creds(bprm->cred);
1467 }
1468 if (bprm->file) {
1469 allow_write_access(bprm->file);
1470 fput(bprm->file);
1471 }
1472 /* If a binfmt changed the interp, free it. */
1473 if (bprm->interp != bprm->filename)
1474 kfree(bprm->interp);
1475 kfree(bprm);
1476}
1477
1478int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1479{
1480 /* If a binfmt changed the interp, free it first. */
1481 if (bprm->interp != bprm->filename)
1482 kfree(bprm->interp);
1483 bprm->interp = kstrdup(interp, GFP_KERNEL);
1484 if (!bprm->interp)
1485 return -ENOMEM;
1486 return 0;
1487}
1488EXPORT_SYMBOL(bprm_change_interp);
1489
1490/*
1491 * install the new credentials for this executable
1492 */
1493void install_exec_creds(struct linux_binprm *bprm)
1494{
1495 security_bprm_committing_creds(bprm);
1496
1497 commit_creds(bprm->cred);
1498 bprm->cred = NULL;
1499
1500 /*
1501 * Disable monitoring for regular users
1502 * when executing setuid binaries. Must
1503 * wait until new credentials are committed
1504 * by commit_creds() above
1505 */
1506 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1507 perf_event_exit_task(current);
1508 /*
1509 * cred_guard_mutex must be held at least to this point to prevent
1510 * ptrace_attach() from altering our determination of the task's
1511 * credentials; any time after this it may be unlocked.
1512 */
1513 security_bprm_committed_creds(bprm);
1514 up_write(&current->signal->exec_update_lock);
1515 mutex_unlock(&current->signal->cred_guard_mutex);
1516}
1517EXPORT_SYMBOL(install_exec_creds);
1518
1519/*
1520 * determine how safe it is to execute the proposed program
1521 * - the caller must hold ->cred_guard_mutex to protect against
1522 * PTRACE_ATTACH or seccomp thread-sync
1523 */
1524static void check_unsafe_exec(struct linux_binprm *bprm)
1525{
1526 struct task_struct *p = current, *t;
1527 unsigned n_fs;
1528
1529 if (p->ptrace)
1530 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1531
1532 /*
1533 * This isn't strictly necessary, but it makes it harder for LSMs to
1534 * mess up.
1535 */
1536 if (task_no_new_privs(current))
1537 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1538
1539 t = p;
1540 n_fs = 1;
1541 spin_lock(&p->fs->lock);
1542 rcu_read_lock();
1543 while_each_thread(p, t) {
1544 if (t->fs == p->fs)
1545 n_fs++;
1546 }
1547 rcu_read_unlock();
1548
1549 if (p->fs->users > n_fs)
1550 bprm->unsafe |= LSM_UNSAFE_SHARE;
1551 else
1552 p->fs->in_exec = 1;
1553 spin_unlock(&p->fs->lock);
1554}
1555
1556static void bprm_fill_uid(struct linux_binprm *bprm)
1557{
1558 struct inode *inode;
1559 unsigned int mode;
1560 kuid_t uid;
1561 kgid_t gid;
1562 int err;
1563
1564 /*
1565 * Since this can be called multiple times (via prepare_binprm),
1566 * we must clear any previous work done when setting set[ug]id
1567 * bits from any earlier bprm->file uses (for example when run
1568 * first for a setuid script then again for its interpreter).
1569 */
1570 bprm->cred->euid = current_euid();
1571 bprm->cred->egid = current_egid();
1572
1573 if (!mnt_may_suid(bprm->file->f_path.mnt))
1574 return;
1575
1576 if (task_no_new_privs(current))
1577 return;
1578
1579 inode = bprm->file->f_path.dentry->d_inode;
1580 mode = READ_ONCE(inode->i_mode);
1581 if (!(mode & (S_ISUID|S_ISGID)))
1582 return;
1583
1584 /* Be careful if suid/sgid is set */
1585 inode_lock(inode);
1586
1587 /* Atomically reload and check mode/uid/gid now that lock held. */
1588 mode = inode->i_mode;
1589 uid = inode->i_uid;
1590 gid = inode->i_gid;
1591 err = inode_permission(inode, MAY_EXEC);
1592 inode_unlock(inode);
1593
1594 /* Did the exec bit vanish out from under us? Give up. */
1595 if (err)
1596 return;
1597
1598 /* We ignore suid/sgid if there are no mappings for them in the ns */
1599 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1600 !kgid_has_mapping(bprm->cred->user_ns, gid))
1601 return;
1602
1603 if (mode & S_ISUID) {
1604 bprm->per_clear |= PER_CLEAR_ON_SETID;
1605 bprm->cred->euid = uid;
1606 }
1607
1608 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1609 bprm->per_clear |= PER_CLEAR_ON_SETID;
1610 bprm->cred->egid = gid;
1611 }
1612}
1613
1614/*
1615 * Fill the binprm structure from the inode.
1616 * Check permissions, then read the first BINPRM_BUF_SIZE bytes
1617 *
1618 * This may be called multiple times for binary chains (scripts for example).
1619 */
1620int prepare_binprm(struct linux_binprm *bprm)
1621{
1622 int retval;
1623 loff_t pos = 0;
1624
1625 bprm_fill_uid(bprm);
1626
1627 /* fill in binprm security blob */
1628 retval = security_bprm_set_creds(bprm);
1629 if (retval)
1630 return retval;
1631 bprm->called_set_creds = 1;
1632
1633 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1634 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1635}
1636
1637EXPORT_SYMBOL(prepare_binprm);
1638
1639/*
1640 * Arguments are '\0' separated strings found at the location bprm->p
1641 * points to; chop off the first by relocating brpm->p to right after
1642 * the first '\0' encountered.
1643 */
1644int remove_arg_zero(struct linux_binprm *bprm)
1645{
1646 int ret = 0;
1647 unsigned long offset;
1648 char *kaddr;
1649 struct page *page;
1650
1651 if (!bprm->argc)
1652 return 0;
1653
1654 do {
1655 offset = bprm->p & ~PAGE_MASK;
1656 page = get_arg_page(bprm, bprm->p, 0);
1657 if (!page) {
1658 ret = -EFAULT;
1659 goto out;
1660 }
1661 kaddr = kmap_atomic(page);
1662
1663 for (; offset < PAGE_SIZE && kaddr[offset];
1664 offset++, bprm->p++)
1665 ;
1666
1667 kunmap_atomic(kaddr);
1668 put_arg_page(page);
1669 } while (offset == PAGE_SIZE);
1670
1671 bprm->p++;
1672 bprm->argc--;
1673 ret = 0;
1674
1675out:
1676 return ret;
1677}
1678EXPORT_SYMBOL(remove_arg_zero);
1679
1680#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1681/*
1682 * cycle the list of binary formats handler, until one recognizes the image
1683 */
1684int search_binary_handler(struct linux_binprm *bprm)
1685{
1686 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1687 struct linux_binfmt *fmt;
1688 int retval;
1689
1690 /* This allows 4 levels of binfmt rewrites before failing hard. */
1691 if (bprm->recursion_depth > 5)
1692 return -ELOOP;
1693
1694 retval = security_bprm_check(bprm);
1695 if (retval)
1696 return retval;
1697
1698 retval = -ENOENT;
1699 retry:
1700 read_lock(&binfmt_lock);
1701 list_for_each_entry(fmt, &formats, lh) {
1702 if (!try_module_get(fmt->module))
1703 continue;
1704 read_unlock(&binfmt_lock);
1705
1706 bprm->recursion_depth++;
1707 retval = fmt->load_binary(bprm);
1708 bprm->recursion_depth--;
1709
1710 read_lock(&binfmt_lock);
1711 put_binfmt(fmt);
1712 if (retval < 0 && bprm->called_exec_mmap) {
1713 /* we got to flush_old_exec() and failed after it */
1714 read_unlock(&binfmt_lock);
1715 force_sigsegv(SIGSEGV);
1716 return retval;
1717 }
1718 if (retval != -ENOEXEC || !bprm->file) {
1719 read_unlock(&binfmt_lock);
1720 return retval;
1721 }
1722 }
1723 read_unlock(&binfmt_lock);
1724
1725 if (need_retry) {
1726 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1727 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1728 return retval;
1729 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1730 return retval;
1731 need_retry = false;
1732 goto retry;
1733 }
1734
1735 return retval;
1736}
1737EXPORT_SYMBOL(search_binary_handler);
1738
1739static int exec_binprm(struct linux_binprm *bprm)
1740{
1741 pid_t old_pid, old_vpid;
1742 int ret;
1743
1744 /* Need to fetch pid before load_binary changes it */
1745 old_pid = current->pid;
1746 rcu_read_lock();
1747 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1748 rcu_read_unlock();
1749
1750 ret = search_binary_handler(bprm);
1751 if (ret >= 0) {
1752 audit_bprm(bprm);
1753 trace_sched_process_exec(current, old_pid, bprm);
1754 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1755 proc_exec_connector(current);
1756 }
1757
1758 return ret;
1759}
1760
1761/*
1762 * sys_execve() executes a new program.
1763 */
1764static int __do_execve_file(int fd, struct filename *filename,
1765 struct user_arg_ptr argv,
1766 struct user_arg_ptr envp,
1767 int flags, struct file *file)
1768{
1769 char *pathbuf = NULL;
1770 struct linux_binprm *bprm;
1771 struct files_struct *displaced;
1772 int retval;
1773
1774 if (IS_ERR(filename))
1775 return PTR_ERR(filename);
1776
1777 /*
1778 * We move the actual failure in case of RLIMIT_NPROC excess from
1779 * set*uid() to execve() because too many poorly written programs
1780 * don't check setuid() return code. Here we additionally recheck
1781 * whether NPROC limit is still exceeded.
1782 */
1783 if ((current->flags & PF_NPROC_EXCEEDED) &&
1784 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1785 retval = -EAGAIN;
1786 goto out_ret;
1787 }
1788
1789 /* We're below the limit (still or again), so we don't want to make
1790 * further execve() calls fail. */
1791 current->flags &= ~PF_NPROC_EXCEEDED;
1792
1793 retval = unshare_files(&displaced);
1794 if (retval)
1795 goto out_ret;
1796
1797 retval = -ENOMEM;
1798 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1799 if (!bprm)
1800 goto out_files;
1801
1802 retval = prepare_bprm_creds(bprm);
1803 if (retval)
1804 goto out_free;
1805
1806 check_unsafe_exec(bprm);
1807 current->in_execve = 1;
1808
1809 if (!file)
1810 file = do_open_execat(fd, filename, flags);
1811 retval = PTR_ERR(file);
1812 if (IS_ERR(file))
1813 goto out_unmark;
1814
1815 sched_exec();
1816
1817 bprm->file = file;
1818 if (!filename) {
1819 bprm->filename = "none";
1820 } else if (fd == AT_FDCWD || filename->name[0] == '/') {
1821 bprm->filename = filename->name;
1822 } else {
1823 if (filename->name[0] == '\0')
1824 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1825 else
1826 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1827 fd, filename->name);
1828 if (!pathbuf) {
1829 retval = -ENOMEM;
1830 goto out_unmark;
1831 }
1832 /*
1833 * Record that a name derived from an O_CLOEXEC fd will be
1834 * inaccessible after exec. Relies on having exclusive access to
1835 * current->files (due to unshare_files above).
1836 */
1837 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1838 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1839 bprm->filename = pathbuf;
1840 }
1841 bprm->interp = bprm->filename;
1842
1843 retval = bprm_mm_init(bprm);
1844 if (retval)
1845 goto out_unmark;
1846
1847 retval = prepare_arg_pages(bprm, argv, envp);
1848 if (retval < 0)
1849 goto out;
1850
1851 retval = prepare_binprm(bprm);
1852 if (retval < 0)
1853 goto out;
1854
1855 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1856 if (retval < 0)
1857 goto out;
1858
1859 bprm->exec = bprm->p;
1860 retval = copy_strings(bprm->envc, envp, bprm);
1861 if (retval < 0)
1862 goto out;
1863
1864 retval = copy_strings(bprm->argc, argv, bprm);
1865 if (retval < 0)
1866 goto out;
1867
1868 /*
1869 * When argv is empty, add an empty string ("") as argv[0] to
1870 * ensure confused userspace programs that start processing
1871 * from argv[1] won't end up walking envp. See also
1872 * bprm_stack_limits().
1873 */
1874 if (bprm->argc == 0) {
1875 const char *argv[] = { "", NULL };
1876 retval = copy_strings_kernel(1, argv, bprm);
1877 if (retval < 0)
1878 goto out;
1879 bprm->argc = 1;
1880 }
1881
1882 retval = exec_binprm(bprm);
1883 if (retval < 0)
1884 goto out;
1885
1886 /* execve succeeded */
1887 current->fs->in_exec = 0;
1888 current->in_execve = 0;
1889 rseq_execve(current);
1890 acct_update_integrals(current);
1891 task_numa_free(current, false);
1892 free_bprm(bprm);
1893 kfree(pathbuf);
1894 if (filename)
1895 putname(filename);
1896 if (displaced)
1897 put_files_struct(displaced);
1898 return retval;
1899
1900out:
1901 if (bprm->mm) {
1902 acct_arg_size(bprm, 0);
1903 mmput(bprm->mm);
1904 }
1905
1906out_unmark:
1907 current->fs->in_exec = 0;
1908 current->in_execve = 0;
1909
1910out_free:
1911 free_bprm(bprm);
1912 kfree(pathbuf);
1913
1914out_files:
1915 if (displaced)
1916 reset_files_struct(displaced);
1917out_ret:
1918 if (filename)
1919 putname(filename);
1920 return retval;
1921}
1922
1923static int do_execveat_common(int fd, struct filename *filename,
1924 struct user_arg_ptr argv,
1925 struct user_arg_ptr envp,
1926 int flags)
1927{
1928 return __do_execve_file(fd, filename, argv, envp, flags, NULL);
1929}
1930
1931int do_execve_file(struct file *file, void *__argv, void *__envp)
1932{
1933 struct user_arg_ptr argv = { .ptr.native = __argv };
1934 struct user_arg_ptr envp = { .ptr.native = __envp };
1935
1936 return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file);
1937}
1938
1939int do_execve(struct filename *filename,
1940 const char __user *const __user *__argv,
1941 const char __user *const __user *__envp)
1942{
1943 struct user_arg_ptr argv = { .ptr.native = __argv };
1944 struct user_arg_ptr envp = { .ptr.native = __envp };
1945 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1946}
1947
1948int do_execveat(int fd, struct filename *filename,
1949 const char __user *const __user *__argv,
1950 const char __user *const __user *__envp,
1951 int flags)
1952{
1953 struct user_arg_ptr argv = { .ptr.native = __argv };
1954 struct user_arg_ptr envp = { .ptr.native = __envp };
1955
1956 return do_execveat_common(fd, filename, argv, envp, flags);
1957}
1958
1959#ifdef CONFIG_COMPAT
1960static int compat_do_execve(struct filename *filename,
1961 const compat_uptr_t __user *__argv,
1962 const compat_uptr_t __user *__envp)
1963{
1964 struct user_arg_ptr argv = {
1965 .is_compat = true,
1966 .ptr.compat = __argv,
1967 };
1968 struct user_arg_ptr envp = {
1969 .is_compat = true,
1970 .ptr.compat = __envp,
1971 };
1972 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1973}
1974
1975static int compat_do_execveat(int fd, struct filename *filename,
1976 const compat_uptr_t __user *__argv,
1977 const compat_uptr_t __user *__envp,
1978 int flags)
1979{
1980 struct user_arg_ptr argv = {
1981 .is_compat = true,
1982 .ptr.compat = __argv,
1983 };
1984 struct user_arg_ptr envp = {
1985 .is_compat = true,
1986 .ptr.compat = __envp,
1987 };
1988 return do_execveat_common(fd, filename, argv, envp, flags);
1989}
1990#endif
1991
1992void set_binfmt(struct linux_binfmt *new)
1993{
1994 struct mm_struct *mm = current->mm;
1995
1996 if (mm->binfmt)
1997 module_put(mm->binfmt->module);
1998
1999 mm->binfmt = new;
2000 if (new)
2001 __module_get(new->module);
2002}
2003EXPORT_SYMBOL(set_binfmt);
2004
2005/*
2006 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2007 */
2008void set_dumpable(struct mm_struct *mm, int value)
2009{
2010 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2011 return;
2012
2013 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2014}
2015
2016SYSCALL_DEFINE3(execve,
2017 const char __user *, filename,
2018 const char __user *const __user *, argv,
2019 const char __user *const __user *, envp)
2020{
2021 return do_execve(getname(filename), argv, envp);
2022}
2023
2024SYSCALL_DEFINE5(execveat,
2025 int, fd, const char __user *, filename,
2026 const char __user *const __user *, argv,
2027 const char __user *const __user *, envp,
2028 int, flags)
2029{
2030 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2031
2032 return do_execveat(fd,
2033 getname_flags(filename, lookup_flags, NULL),
2034 argv, envp, flags);
2035}
2036
2037#ifdef CONFIG_COMPAT
2038COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2039 const compat_uptr_t __user *, argv,
2040 const compat_uptr_t __user *, envp)
2041{
2042 return compat_do_execve(getname(filename), argv, envp);
2043}
2044
2045COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2046 const char __user *, filename,
2047 const compat_uptr_t __user *, argv,
2048 const compat_uptr_t __user *, envp,
2049 int, flags)
2050{
2051 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2052
2053 return compat_do_execveat(fd,
2054 getname_flags(filename, lookup_flags, NULL),
2055 argv, envp, flags);
2056}
2057#endif