b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * fs/f2fs/inline.c |
| 4 | * Copyright (c) 2013, Intel Corporation |
| 5 | * Authors: Huajun Li <huajun.li@intel.com> |
| 6 | * Haicheng Li <haicheng.li@intel.com> |
| 7 | */ |
| 8 | |
| 9 | #include <linux/fs.h> |
| 10 | #include <linux/f2fs_fs.h> |
| 11 | |
| 12 | #include "f2fs.h" |
| 13 | #include "node.h" |
| 14 | #include <trace/events/f2fs.h> |
| 15 | #include <trace/events/android_fs.h> |
| 16 | |
| 17 | bool f2fs_may_inline_data(struct inode *inode) |
| 18 | { |
| 19 | if (f2fs_is_atomic_file(inode)) |
| 20 | return false; |
| 21 | |
| 22 | if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode)) |
| 23 | return false; |
| 24 | |
| 25 | if (i_size_read(inode) > MAX_INLINE_DATA(inode)) |
| 26 | return false; |
| 27 | |
| 28 | if (f2fs_post_read_required(inode)) |
| 29 | return false; |
| 30 | |
| 31 | return true; |
| 32 | } |
| 33 | |
| 34 | bool f2fs_may_inline_dentry(struct inode *inode) |
| 35 | { |
| 36 | if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY)) |
| 37 | return false; |
| 38 | |
| 39 | if (!S_ISDIR(inode->i_mode)) |
| 40 | return false; |
| 41 | |
| 42 | return true; |
| 43 | } |
| 44 | |
| 45 | void f2fs_do_read_inline_data(struct page *page, struct page *ipage) |
| 46 | { |
| 47 | struct inode *inode = page->mapping->host; |
| 48 | |
| 49 | if (PageUptodate(page)) |
| 50 | return; |
| 51 | |
| 52 | f2fs_bug_on(F2FS_P_SB(page), page->index); |
| 53 | |
| 54 | zero_user_segment(page, MAX_INLINE_DATA(inode), PAGE_SIZE); |
| 55 | |
| 56 | /* Copy the whole inline data block */ |
| 57 | memcpy_to_page(page, 0, inline_data_addr(inode, ipage), |
| 58 | MAX_INLINE_DATA(inode)); |
| 59 | if (!PageUptodate(page)) |
| 60 | SetPageUptodate(page); |
| 61 | } |
| 62 | |
| 63 | void f2fs_truncate_inline_inode(struct inode *inode, |
| 64 | struct page *ipage, u64 from) |
| 65 | { |
| 66 | void *addr; |
| 67 | |
| 68 | if (from >= MAX_INLINE_DATA(inode)) |
| 69 | return; |
| 70 | |
| 71 | addr = inline_data_addr(inode, ipage); |
| 72 | |
| 73 | f2fs_wait_on_page_writeback(ipage, NODE, true, true); |
| 74 | memset(addr + from, 0, MAX_INLINE_DATA(inode) - from); |
| 75 | set_page_dirty(ipage); |
| 76 | |
| 77 | if (from == 0) |
| 78 | clear_inode_flag(inode, FI_DATA_EXIST); |
| 79 | } |
| 80 | |
| 81 | int f2fs_read_inline_data(struct inode *inode, struct page *page) |
| 82 | { |
| 83 | struct page *ipage; |
| 84 | |
| 85 | if (trace_android_fs_dataread_start_enabled()) { |
| 86 | char *path, pathbuf[MAX_TRACE_PATHBUF_LEN]; |
| 87 | |
| 88 | path = android_fstrace_get_pathname(pathbuf, |
| 89 | MAX_TRACE_PATHBUF_LEN, |
| 90 | inode); |
| 91 | trace_android_fs_dataread_start(inode, page_offset(page), |
| 92 | PAGE_SIZE, current->pid, |
| 93 | path, current->comm); |
| 94 | } |
| 95 | |
| 96 | ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); |
| 97 | if (IS_ERR(ipage)) { |
| 98 | trace_android_fs_dataread_end(inode, page_offset(page), |
| 99 | PAGE_SIZE); |
| 100 | unlock_page(page); |
| 101 | return PTR_ERR(ipage); |
| 102 | } |
| 103 | |
| 104 | if (!f2fs_has_inline_data(inode)) { |
| 105 | f2fs_put_page(ipage, 1); |
| 106 | trace_android_fs_dataread_end(inode, page_offset(page), |
| 107 | PAGE_SIZE); |
| 108 | return -EAGAIN; |
| 109 | } |
| 110 | |
| 111 | if (page->index) |
| 112 | zero_user_segment(page, 0, PAGE_SIZE); |
| 113 | else |
| 114 | f2fs_do_read_inline_data(page, ipage); |
| 115 | |
| 116 | if (!PageUptodate(page)) |
| 117 | SetPageUptodate(page); |
| 118 | f2fs_put_page(ipage, 1); |
| 119 | trace_android_fs_dataread_end(inode, page_offset(page), |
| 120 | PAGE_SIZE); |
| 121 | unlock_page(page); |
| 122 | return 0; |
| 123 | } |
| 124 | |
| 125 | int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page) |
| 126 | { |
| 127 | struct f2fs_io_info fio = { |
| 128 | .sbi = F2FS_I_SB(dn->inode), |
| 129 | .ino = dn->inode->i_ino, |
| 130 | .type = DATA, |
| 131 | .op = REQ_OP_WRITE, |
| 132 | .op_flags = REQ_SYNC | REQ_PRIO, |
| 133 | .page = page, |
| 134 | .encrypted_page = NULL, |
| 135 | .io_type = FS_DATA_IO, |
| 136 | }; |
| 137 | struct node_info ni; |
| 138 | int dirty, err; |
| 139 | |
| 140 | if (!f2fs_exist_data(dn->inode)) |
| 141 | goto clear_out; |
| 142 | |
| 143 | err = f2fs_reserve_block(dn, 0); |
| 144 | if (err) |
| 145 | return err; |
| 146 | |
| 147 | err = f2fs_get_node_info(fio.sbi, dn->nid, &ni); |
| 148 | if (err) { |
| 149 | f2fs_truncate_data_blocks_range(dn, 1); |
| 150 | f2fs_put_dnode(dn); |
| 151 | return err; |
| 152 | } |
| 153 | |
| 154 | fio.version = ni.version; |
| 155 | |
| 156 | if (unlikely(dn->data_blkaddr != NEW_ADDR)) { |
| 157 | f2fs_put_dnode(dn); |
| 158 | set_sbi_flag(fio.sbi, SBI_NEED_FSCK); |
| 159 | f2fs_warn(fio.sbi, "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, run fsck to fix.", |
| 160 | __func__, dn->inode->i_ino, dn->data_blkaddr); |
| 161 | return -EFSCORRUPTED; |
| 162 | } |
| 163 | |
| 164 | f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page)); |
| 165 | |
| 166 | f2fs_do_read_inline_data(page, dn->inode_page); |
| 167 | set_page_dirty(page); |
| 168 | |
| 169 | /* clear dirty state */ |
| 170 | dirty = clear_page_dirty_for_io(page); |
| 171 | |
| 172 | /* write data page to try to make data consistent */ |
| 173 | set_page_writeback(page); |
| 174 | ClearPageError(page); |
| 175 | fio.old_blkaddr = dn->data_blkaddr; |
| 176 | set_inode_flag(dn->inode, FI_HOT_DATA); |
| 177 | f2fs_outplace_write_data(dn, &fio); |
| 178 | f2fs_wait_on_page_writeback(page, DATA, true, true); |
| 179 | if (dirty) { |
| 180 | inode_dec_dirty_pages(dn->inode); |
| 181 | f2fs_remove_dirty_inode(dn->inode); |
| 182 | } |
| 183 | |
| 184 | /* this converted inline_data should be recovered. */ |
| 185 | set_inode_flag(dn->inode, FI_APPEND_WRITE); |
| 186 | |
| 187 | /* clear inline data and flag after data writeback */ |
| 188 | f2fs_truncate_inline_inode(dn->inode, dn->inode_page, 0); |
| 189 | clear_page_private_inline(dn->inode_page); |
| 190 | clear_out: |
| 191 | stat_dec_inline_inode(dn->inode); |
| 192 | clear_inode_flag(dn->inode, FI_INLINE_DATA); |
| 193 | f2fs_put_dnode(dn); |
| 194 | return 0; |
| 195 | } |
| 196 | |
| 197 | int f2fs_convert_inline_inode(struct inode *inode) |
| 198 | { |
| 199 | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| 200 | struct dnode_of_data dn; |
| 201 | struct page *ipage, *page; |
| 202 | int err = 0; |
| 203 | |
| 204 | if (!f2fs_has_inline_data(inode) || |
| 205 | f2fs_hw_is_readonly(sbi) || f2fs_readonly(sbi->sb)) |
| 206 | return 0; |
| 207 | |
| 208 | err = dquot_initialize(inode); |
| 209 | if (err) |
| 210 | return err; |
| 211 | |
| 212 | page = f2fs_grab_cache_page(inode->i_mapping, 0, false); |
| 213 | if (!page) |
| 214 | return -ENOMEM; |
| 215 | |
| 216 | f2fs_lock_op(sbi); |
| 217 | |
| 218 | ipage = f2fs_get_node_page(sbi, inode->i_ino); |
| 219 | if (IS_ERR(ipage)) { |
| 220 | err = PTR_ERR(ipage); |
| 221 | goto out; |
| 222 | } |
| 223 | |
| 224 | set_new_dnode(&dn, inode, ipage, ipage, 0); |
| 225 | |
| 226 | if (f2fs_has_inline_data(inode)) |
| 227 | err = f2fs_convert_inline_page(&dn, page); |
| 228 | |
| 229 | f2fs_put_dnode(&dn); |
| 230 | out: |
| 231 | f2fs_unlock_op(sbi); |
| 232 | |
| 233 | f2fs_put_page(page, 1); |
| 234 | |
| 235 | if (!err) |
| 236 | f2fs_balance_fs(sbi, dn.node_changed); |
| 237 | |
| 238 | return err; |
| 239 | } |
| 240 | |
| 241 | int f2fs_write_inline_data(struct inode *inode, struct page *page) |
| 242 | { |
| 243 | struct dnode_of_data dn; |
| 244 | int err; |
| 245 | |
| 246 | set_new_dnode(&dn, inode, NULL, NULL, 0); |
| 247 | err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); |
| 248 | if (err) |
| 249 | return err; |
| 250 | |
| 251 | if (!f2fs_has_inline_data(inode)) { |
| 252 | f2fs_put_dnode(&dn); |
| 253 | return -EAGAIN; |
| 254 | } |
| 255 | |
| 256 | f2fs_bug_on(F2FS_I_SB(inode), page->index); |
| 257 | |
| 258 | f2fs_wait_on_page_writeback(dn.inode_page, NODE, true, true); |
| 259 | memcpy_from_page(inline_data_addr(inode, dn.inode_page), |
| 260 | page, 0, MAX_INLINE_DATA(inode)); |
| 261 | set_page_dirty(dn.inode_page); |
| 262 | |
| 263 | f2fs_clear_page_cache_dirty_tag(page); |
| 264 | |
| 265 | set_inode_flag(inode, FI_APPEND_WRITE); |
| 266 | set_inode_flag(inode, FI_DATA_EXIST); |
| 267 | |
| 268 | clear_page_private_inline(dn.inode_page); |
| 269 | f2fs_put_dnode(&dn); |
| 270 | return 0; |
| 271 | } |
| 272 | |
| 273 | int f2fs_recover_inline_data(struct inode *inode, struct page *npage) |
| 274 | { |
| 275 | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| 276 | struct f2fs_inode *ri = NULL; |
| 277 | void *src_addr, *dst_addr; |
| 278 | struct page *ipage; |
| 279 | |
| 280 | /* |
| 281 | * The inline_data recovery policy is as follows. |
| 282 | * [prev.] [next] of inline_data flag |
| 283 | * o o -> recover inline_data |
| 284 | * o x -> remove inline_data, and then recover data blocks |
| 285 | * x o -> remove data blocks, and then recover inline_data |
| 286 | * x x -> recover data blocks |
| 287 | */ |
| 288 | if (IS_INODE(npage)) |
| 289 | ri = F2FS_INODE(npage); |
| 290 | |
| 291 | if (f2fs_has_inline_data(inode) && |
| 292 | ri && (ri->i_inline & F2FS_INLINE_DATA)) { |
| 293 | process_inline: |
| 294 | ipage = f2fs_get_node_page(sbi, inode->i_ino); |
| 295 | if (IS_ERR(ipage)) |
| 296 | return PTR_ERR(ipage); |
| 297 | |
| 298 | f2fs_wait_on_page_writeback(ipage, NODE, true, true); |
| 299 | |
| 300 | src_addr = inline_data_addr(inode, npage); |
| 301 | dst_addr = inline_data_addr(inode, ipage); |
| 302 | memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode)); |
| 303 | |
| 304 | set_inode_flag(inode, FI_INLINE_DATA); |
| 305 | set_inode_flag(inode, FI_DATA_EXIST); |
| 306 | |
| 307 | set_page_dirty(ipage); |
| 308 | f2fs_put_page(ipage, 1); |
| 309 | return 1; |
| 310 | } |
| 311 | |
| 312 | if (f2fs_has_inline_data(inode)) { |
| 313 | ipage = f2fs_get_node_page(sbi, inode->i_ino); |
| 314 | if (IS_ERR(ipage)) |
| 315 | return PTR_ERR(ipage); |
| 316 | f2fs_truncate_inline_inode(inode, ipage, 0); |
| 317 | stat_dec_inline_inode(inode); |
| 318 | clear_inode_flag(inode, FI_INLINE_DATA); |
| 319 | f2fs_put_page(ipage, 1); |
| 320 | } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) { |
| 321 | int ret; |
| 322 | |
| 323 | ret = f2fs_truncate_blocks(inode, 0, false); |
| 324 | if (ret) |
| 325 | return ret; |
| 326 | stat_inc_inline_inode(inode); |
| 327 | goto process_inline; |
| 328 | } |
| 329 | return 0; |
| 330 | } |
| 331 | |
| 332 | struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, |
| 333 | const struct f2fs_filename *fname, |
| 334 | struct page **res_page) |
| 335 | { |
| 336 | struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb); |
| 337 | struct f2fs_dir_entry *de; |
| 338 | struct f2fs_dentry_ptr d; |
| 339 | struct page *ipage; |
| 340 | void *inline_dentry; |
| 341 | |
| 342 | ipage = f2fs_get_node_page(sbi, dir->i_ino); |
| 343 | if (IS_ERR(ipage)) { |
| 344 | *res_page = ipage; |
| 345 | return NULL; |
| 346 | } |
| 347 | |
| 348 | inline_dentry = inline_data_addr(dir, ipage); |
| 349 | |
| 350 | make_dentry_ptr_inline(dir, &d, inline_dentry); |
| 351 | de = f2fs_find_target_dentry(&d, fname, NULL); |
| 352 | unlock_page(ipage); |
| 353 | if (IS_ERR(de)) { |
| 354 | *res_page = ERR_CAST(de); |
| 355 | de = NULL; |
| 356 | } |
| 357 | if (de) |
| 358 | *res_page = ipage; |
| 359 | else |
| 360 | f2fs_put_page(ipage, 0); |
| 361 | |
| 362 | return de; |
| 363 | } |
| 364 | |
| 365 | int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, |
| 366 | struct page *ipage) |
| 367 | { |
| 368 | struct f2fs_dentry_ptr d; |
| 369 | void *inline_dentry; |
| 370 | |
| 371 | inline_dentry = inline_data_addr(inode, ipage); |
| 372 | |
| 373 | make_dentry_ptr_inline(inode, &d, inline_dentry); |
| 374 | f2fs_do_make_empty_dir(inode, parent, &d); |
| 375 | |
| 376 | set_page_dirty(ipage); |
| 377 | |
| 378 | /* update i_size to MAX_INLINE_DATA */ |
| 379 | if (i_size_read(inode) < MAX_INLINE_DATA(inode)) |
| 380 | f2fs_i_size_write(inode, MAX_INLINE_DATA(inode)); |
| 381 | return 0; |
| 382 | } |
| 383 | |
| 384 | /* |
| 385 | * NOTE: ipage is grabbed by caller, but if any error occurs, we should |
| 386 | * release ipage in this function. |
| 387 | */ |
| 388 | static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage, |
| 389 | void *inline_dentry) |
| 390 | { |
| 391 | struct page *page; |
| 392 | struct dnode_of_data dn; |
| 393 | struct f2fs_dentry_block *dentry_blk; |
| 394 | struct f2fs_dentry_ptr src, dst; |
| 395 | int err; |
| 396 | |
| 397 | page = f2fs_grab_cache_page(dir->i_mapping, 0, true); |
| 398 | if (!page) { |
| 399 | f2fs_put_page(ipage, 1); |
| 400 | return -ENOMEM; |
| 401 | } |
| 402 | |
| 403 | set_new_dnode(&dn, dir, ipage, NULL, 0); |
| 404 | err = f2fs_reserve_block(&dn, 0); |
| 405 | if (err) |
| 406 | goto out; |
| 407 | |
| 408 | if (unlikely(dn.data_blkaddr != NEW_ADDR)) { |
| 409 | f2fs_put_dnode(&dn); |
| 410 | set_sbi_flag(F2FS_P_SB(page), SBI_NEED_FSCK); |
| 411 | f2fs_warn(F2FS_P_SB(page), "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, run fsck to fix.", |
| 412 | __func__, dir->i_ino, dn.data_blkaddr); |
| 413 | err = -EFSCORRUPTED; |
| 414 | goto out; |
| 415 | } |
| 416 | |
| 417 | f2fs_wait_on_page_writeback(page, DATA, true, true); |
| 418 | |
| 419 | dentry_blk = page_address(page); |
| 420 | |
| 421 | /* |
| 422 | * Start by zeroing the full block, to ensure that all unused space is |
| 423 | * zeroed and no uninitialized memory is leaked to disk. |
| 424 | */ |
| 425 | memset(dentry_blk, 0, F2FS_BLKSIZE); |
| 426 | |
| 427 | make_dentry_ptr_inline(dir, &src, inline_dentry); |
| 428 | make_dentry_ptr_block(dir, &dst, dentry_blk); |
| 429 | |
| 430 | /* copy data from inline dentry block to new dentry block */ |
| 431 | memcpy(dst.bitmap, src.bitmap, src.nr_bitmap); |
| 432 | memcpy(dst.dentry, src.dentry, SIZE_OF_DIR_ENTRY * src.max); |
| 433 | memcpy(dst.filename, src.filename, src.max * F2FS_SLOT_LEN); |
| 434 | |
| 435 | if (!PageUptodate(page)) |
| 436 | SetPageUptodate(page); |
| 437 | set_page_dirty(page); |
| 438 | |
| 439 | /* clear inline dir and flag after data writeback */ |
| 440 | f2fs_truncate_inline_inode(dir, ipage, 0); |
| 441 | |
| 442 | stat_dec_inline_dir(dir); |
| 443 | clear_inode_flag(dir, FI_INLINE_DENTRY); |
| 444 | |
| 445 | /* |
| 446 | * should retrieve reserved space which was used to keep |
| 447 | * inline_dentry's structure for backward compatibility. |
| 448 | */ |
| 449 | if (!f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(dir)) && |
| 450 | !f2fs_has_inline_xattr(dir)) |
| 451 | F2FS_I(dir)->i_inline_xattr_size = 0; |
| 452 | |
| 453 | f2fs_i_depth_write(dir, 1); |
| 454 | if (i_size_read(dir) < PAGE_SIZE) |
| 455 | f2fs_i_size_write(dir, PAGE_SIZE); |
| 456 | out: |
| 457 | f2fs_put_page(page, 1); |
| 458 | return err; |
| 459 | } |
| 460 | |
| 461 | static int f2fs_add_inline_entries(struct inode *dir, void *inline_dentry) |
| 462 | { |
| 463 | struct f2fs_dentry_ptr d; |
| 464 | unsigned long bit_pos = 0; |
| 465 | int err = 0; |
| 466 | |
| 467 | make_dentry_ptr_inline(dir, &d, inline_dentry); |
| 468 | |
| 469 | while (bit_pos < d.max) { |
| 470 | struct f2fs_dir_entry *de; |
| 471 | struct f2fs_filename fname; |
| 472 | nid_t ino; |
| 473 | umode_t fake_mode; |
| 474 | |
| 475 | if (!test_bit_le(bit_pos, d.bitmap)) { |
| 476 | bit_pos++; |
| 477 | continue; |
| 478 | } |
| 479 | |
| 480 | de = &d.dentry[bit_pos]; |
| 481 | |
| 482 | if (unlikely(!de->name_len)) { |
| 483 | bit_pos++; |
| 484 | continue; |
| 485 | } |
| 486 | |
| 487 | /* |
| 488 | * We only need the disk_name and hash to move the dentry. |
| 489 | * We don't need the original or casefolded filenames. |
| 490 | */ |
| 491 | memset(&fname, 0, sizeof(fname)); |
| 492 | fname.disk_name.name = d.filename[bit_pos]; |
| 493 | fname.disk_name.len = le16_to_cpu(de->name_len); |
| 494 | fname.hash = de->hash_code; |
| 495 | |
| 496 | ino = le32_to_cpu(de->ino); |
| 497 | fake_mode = f2fs_get_de_type(de) << S_SHIFT; |
| 498 | |
| 499 | err = f2fs_add_regular_entry(dir, &fname, NULL, ino, fake_mode); |
| 500 | if (err) |
| 501 | goto punch_dentry_pages; |
| 502 | |
| 503 | bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len)); |
| 504 | } |
| 505 | return 0; |
| 506 | punch_dentry_pages: |
| 507 | truncate_inode_pages(&dir->i_data, 0); |
| 508 | f2fs_truncate_blocks(dir, 0, false); |
| 509 | f2fs_remove_dirty_inode(dir); |
| 510 | return err; |
| 511 | } |
| 512 | |
| 513 | static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage, |
| 514 | void *inline_dentry) |
| 515 | { |
| 516 | void *backup_dentry; |
| 517 | int err; |
| 518 | |
| 519 | backup_dentry = f2fs_kmalloc(F2FS_I_SB(dir), |
| 520 | MAX_INLINE_DATA(dir), GFP_F2FS_ZERO); |
| 521 | if (!backup_dentry) { |
| 522 | f2fs_put_page(ipage, 1); |
| 523 | return -ENOMEM; |
| 524 | } |
| 525 | |
| 526 | memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA(dir)); |
| 527 | f2fs_truncate_inline_inode(dir, ipage, 0); |
| 528 | |
| 529 | unlock_page(ipage); |
| 530 | |
| 531 | err = f2fs_add_inline_entries(dir, backup_dentry); |
| 532 | if (err) |
| 533 | goto recover; |
| 534 | |
| 535 | lock_page(ipage); |
| 536 | |
| 537 | stat_dec_inline_dir(dir); |
| 538 | clear_inode_flag(dir, FI_INLINE_DENTRY); |
| 539 | |
| 540 | /* |
| 541 | * should retrieve reserved space which was used to keep |
| 542 | * inline_dentry's structure for backward compatibility. |
| 543 | */ |
| 544 | if (!f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(dir)) && |
| 545 | !f2fs_has_inline_xattr(dir)) |
| 546 | F2FS_I(dir)->i_inline_xattr_size = 0; |
| 547 | |
| 548 | kfree(backup_dentry); |
| 549 | return 0; |
| 550 | recover: |
| 551 | lock_page(ipage); |
| 552 | f2fs_wait_on_page_writeback(ipage, NODE, true, true); |
| 553 | memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA(dir)); |
| 554 | f2fs_i_depth_write(dir, 0); |
| 555 | f2fs_i_size_write(dir, MAX_INLINE_DATA(dir)); |
| 556 | set_page_dirty(ipage); |
| 557 | f2fs_put_page(ipage, 1); |
| 558 | |
| 559 | kfree(backup_dentry); |
| 560 | return err; |
| 561 | } |
| 562 | |
| 563 | static int do_convert_inline_dir(struct inode *dir, struct page *ipage, |
| 564 | void *inline_dentry) |
| 565 | { |
| 566 | if (!F2FS_I(dir)->i_dir_level) |
| 567 | return f2fs_move_inline_dirents(dir, ipage, inline_dentry); |
| 568 | else |
| 569 | return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry); |
| 570 | } |
| 571 | |
| 572 | int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry) |
| 573 | { |
| 574 | struct f2fs_sb_info *sbi = F2FS_I_SB(dir); |
| 575 | struct page *ipage; |
| 576 | struct f2fs_filename fname; |
| 577 | void *inline_dentry = NULL; |
| 578 | int err = 0; |
| 579 | |
| 580 | if (!f2fs_has_inline_dentry(dir)) |
| 581 | return 0; |
| 582 | |
| 583 | f2fs_lock_op(sbi); |
| 584 | |
| 585 | err = f2fs_setup_filename(dir, &dentry->d_name, 0, &fname); |
| 586 | if (err) |
| 587 | goto out; |
| 588 | |
| 589 | ipage = f2fs_get_node_page(sbi, dir->i_ino); |
| 590 | if (IS_ERR(ipage)) { |
| 591 | err = PTR_ERR(ipage); |
| 592 | goto out_fname; |
| 593 | } |
| 594 | |
| 595 | if (f2fs_has_enough_room(dir, ipage, &fname)) { |
| 596 | f2fs_put_page(ipage, 1); |
| 597 | goto out_fname; |
| 598 | } |
| 599 | |
| 600 | inline_dentry = inline_data_addr(dir, ipage); |
| 601 | |
| 602 | err = do_convert_inline_dir(dir, ipage, inline_dentry); |
| 603 | if (!err) |
| 604 | f2fs_put_page(ipage, 1); |
| 605 | out_fname: |
| 606 | f2fs_free_filename(&fname); |
| 607 | out: |
| 608 | f2fs_unlock_op(sbi); |
| 609 | return err; |
| 610 | } |
| 611 | |
| 612 | int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname, |
| 613 | struct inode *inode, nid_t ino, umode_t mode) |
| 614 | { |
| 615 | struct f2fs_sb_info *sbi = F2FS_I_SB(dir); |
| 616 | struct page *ipage; |
| 617 | unsigned int bit_pos; |
| 618 | void *inline_dentry = NULL; |
| 619 | struct f2fs_dentry_ptr d; |
| 620 | int slots = GET_DENTRY_SLOTS(fname->disk_name.len); |
| 621 | struct page *page = NULL; |
| 622 | int err = 0; |
| 623 | |
| 624 | ipage = f2fs_get_node_page(sbi, dir->i_ino); |
| 625 | if (IS_ERR(ipage)) |
| 626 | return PTR_ERR(ipage); |
| 627 | |
| 628 | inline_dentry = inline_data_addr(dir, ipage); |
| 629 | make_dentry_ptr_inline(dir, &d, inline_dentry); |
| 630 | |
| 631 | bit_pos = f2fs_room_for_filename(d.bitmap, slots, d.max); |
| 632 | if (bit_pos >= d.max) { |
| 633 | err = do_convert_inline_dir(dir, ipage, inline_dentry); |
| 634 | if (err) |
| 635 | return err; |
| 636 | err = -EAGAIN; |
| 637 | goto out; |
| 638 | } |
| 639 | |
| 640 | if (inode) { |
| 641 | down_write(&F2FS_I(inode)->i_sem); |
| 642 | page = f2fs_init_inode_metadata(inode, dir, fname, ipage); |
| 643 | if (IS_ERR(page)) { |
| 644 | err = PTR_ERR(page); |
| 645 | goto fail; |
| 646 | } |
| 647 | } |
| 648 | |
| 649 | f2fs_wait_on_page_writeback(ipage, NODE, true, true); |
| 650 | |
| 651 | f2fs_update_dentry(ino, mode, &d, &fname->disk_name, fname->hash, |
| 652 | bit_pos); |
| 653 | |
| 654 | set_page_dirty(ipage); |
| 655 | |
| 656 | /* we don't need to mark_inode_dirty now */ |
| 657 | if (inode) { |
| 658 | f2fs_i_pino_write(inode, dir->i_ino); |
| 659 | |
| 660 | /* synchronize inode page's data from inode cache */ |
| 661 | if (is_inode_flag_set(inode, FI_NEW_INODE)) |
| 662 | f2fs_update_inode(inode, page); |
| 663 | |
| 664 | f2fs_put_page(page, 1); |
| 665 | } |
| 666 | |
| 667 | f2fs_update_parent_metadata(dir, inode, 0); |
| 668 | fail: |
| 669 | if (inode) |
| 670 | up_write(&F2FS_I(inode)->i_sem); |
| 671 | out: |
| 672 | f2fs_put_page(ipage, 1); |
| 673 | return err; |
| 674 | } |
| 675 | |
| 676 | void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, |
| 677 | struct inode *dir, struct inode *inode) |
| 678 | { |
| 679 | struct f2fs_dentry_ptr d; |
| 680 | void *inline_dentry; |
| 681 | int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len)); |
| 682 | unsigned int bit_pos; |
| 683 | int i; |
| 684 | |
| 685 | lock_page(page); |
| 686 | f2fs_wait_on_page_writeback(page, NODE, true, true); |
| 687 | |
| 688 | inline_dentry = inline_data_addr(dir, page); |
| 689 | make_dentry_ptr_inline(dir, &d, inline_dentry); |
| 690 | |
| 691 | bit_pos = dentry - d.dentry; |
| 692 | for (i = 0; i < slots; i++) |
| 693 | __clear_bit_le(bit_pos + i, d.bitmap); |
| 694 | |
| 695 | set_page_dirty(page); |
| 696 | f2fs_put_page(page, 1); |
| 697 | |
| 698 | dir->i_ctime = dir->i_mtime = current_time(dir); |
| 699 | f2fs_mark_inode_dirty_sync(dir, false); |
| 700 | |
| 701 | if (inode) |
| 702 | f2fs_drop_nlink(dir, inode); |
| 703 | } |
| 704 | |
| 705 | bool f2fs_empty_inline_dir(struct inode *dir) |
| 706 | { |
| 707 | struct f2fs_sb_info *sbi = F2FS_I_SB(dir); |
| 708 | struct page *ipage; |
| 709 | unsigned int bit_pos = 2; |
| 710 | void *inline_dentry; |
| 711 | struct f2fs_dentry_ptr d; |
| 712 | |
| 713 | ipage = f2fs_get_node_page(sbi, dir->i_ino); |
| 714 | if (IS_ERR(ipage)) |
| 715 | return false; |
| 716 | |
| 717 | inline_dentry = inline_data_addr(dir, ipage); |
| 718 | make_dentry_ptr_inline(dir, &d, inline_dentry); |
| 719 | |
| 720 | bit_pos = find_next_bit_le(d.bitmap, d.max, bit_pos); |
| 721 | |
| 722 | f2fs_put_page(ipage, 1); |
| 723 | |
| 724 | if (bit_pos < d.max) |
| 725 | return false; |
| 726 | |
| 727 | return true; |
| 728 | } |
| 729 | |
| 730 | int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, |
| 731 | struct fscrypt_str *fstr) |
| 732 | { |
| 733 | struct inode *inode = file_inode(file); |
| 734 | struct page *ipage = NULL; |
| 735 | struct f2fs_dentry_ptr d; |
| 736 | void *inline_dentry = NULL; |
| 737 | int err; |
| 738 | |
| 739 | make_dentry_ptr_inline(inode, &d, inline_dentry); |
| 740 | |
| 741 | if (ctx->pos == d.max) |
| 742 | return 0; |
| 743 | |
| 744 | ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); |
| 745 | if (IS_ERR(ipage)) |
| 746 | return PTR_ERR(ipage); |
| 747 | |
| 748 | /* |
| 749 | * f2fs_readdir was protected by inode.i_rwsem, it is safe to access |
| 750 | * ipage without page's lock held. |
| 751 | */ |
| 752 | unlock_page(ipage); |
| 753 | |
| 754 | inline_dentry = inline_data_addr(inode, ipage); |
| 755 | |
| 756 | make_dentry_ptr_inline(inode, &d, inline_dentry); |
| 757 | |
| 758 | err = f2fs_fill_dentries(ctx, &d, 0, fstr); |
| 759 | if (!err) |
| 760 | ctx->pos = d.max; |
| 761 | |
| 762 | f2fs_put_page(ipage, 0); |
| 763 | return err < 0 ? err : 0; |
| 764 | } |
| 765 | |
| 766 | int f2fs_inline_data_fiemap(struct inode *inode, |
| 767 | struct fiemap_extent_info *fieinfo, __u64 start, __u64 len) |
| 768 | { |
| 769 | __u64 byteaddr, ilen; |
| 770 | __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED | |
| 771 | FIEMAP_EXTENT_LAST; |
| 772 | struct node_info ni; |
| 773 | struct page *ipage; |
| 774 | int err = 0; |
| 775 | |
| 776 | ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); |
| 777 | if (IS_ERR(ipage)) |
| 778 | return PTR_ERR(ipage); |
| 779 | |
| 780 | if ((S_ISREG(inode->i_mode) || S_ISLNK(inode->i_mode)) && |
| 781 | !f2fs_has_inline_data(inode)) { |
| 782 | err = -EAGAIN; |
| 783 | goto out; |
| 784 | } |
| 785 | |
| 786 | if (S_ISDIR(inode->i_mode) && !f2fs_has_inline_dentry(inode)) { |
| 787 | err = -EAGAIN; |
| 788 | goto out; |
| 789 | } |
| 790 | |
| 791 | ilen = min_t(size_t, MAX_INLINE_DATA(inode), i_size_read(inode)); |
| 792 | if (start >= ilen) |
| 793 | goto out; |
| 794 | if (start + len < ilen) |
| 795 | ilen = start + len; |
| 796 | ilen -= start; |
| 797 | |
| 798 | err = f2fs_get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni); |
| 799 | if (err) |
| 800 | goto out; |
| 801 | |
| 802 | byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits; |
| 803 | byteaddr += (char *)inline_data_addr(inode, ipage) - |
| 804 | (char *)F2FS_INODE(ipage); |
| 805 | err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags); |
| 806 | trace_f2fs_fiemap(inode, start, byteaddr, ilen, flags, err); |
| 807 | out: |
| 808 | f2fs_put_page(ipage, 1); |
| 809 | return err; |
| 810 | } |