blob: 41b22c18b7c47388055699f292b4f332cf1ff4f5 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/mpage.h>
11#include <linux/backing-dev.h>
12#include <linux/blkdev.h>
13#include <linux/pagevec.h>
14#include <linux/swap.h>
15
16#include "f2fs.h"
17#include "node.h"
18#include "segment.h"
19#include "xattr.h"
20#include <trace/events/f2fs.h>
21
22#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
23
24static struct kmem_cache *nat_entry_slab;
25static struct kmem_cache *free_nid_slab;
26static struct kmem_cache *nat_entry_set_slab;
27static struct kmem_cache *fsync_node_entry_slab;
28
29/*
30 * Check whether the given nid is within node id range.
31 */
32int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
33{
34 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
35 set_sbi_flag(sbi, SBI_NEED_FSCK);
36 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
37 __func__, nid);
38 return -EFSCORRUPTED;
39 }
40 return 0;
41}
42
43bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
44{
45 struct f2fs_nm_info *nm_i = NM_I(sbi);
46 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
47 struct sysinfo val;
48 unsigned long avail_ram;
49 unsigned long mem_size = 0;
50 bool res = false;
51
52 if (!nm_i)
53 return true;
54
55 si_meminfo(&val);
56
57 /* only uses low memory */
58 avail_ram = val.totalram - val.totalhigh;
59
60 /*
61 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
62 */
63 if (type == FREE_NIDS) {
64 mem_size = (nm_i->nid_cnt[FREE_NID] *
65 sizeof(struct free_nid)) >> PAGE_SHIFT;
66 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
67 } else if (type == NAT_ENTRIES) {
68 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
69 sizeof(struct nat_entry)) >> PAGE_SHIFT;
70 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
71 if (excess_cached_nats(sbi))
72 res = false;
73 } else if (type == DIRTY_DENTS) {
74 if (sbi->sb->s_bdi->wb.dirty_exceeded)
75 return false;
76 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
77 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
78 } else if (type == INO_ENTRIES) {
79 int i;
80
81 for (i = 0; i < MAX_INO_ENTRY; i++)
82 mem_size += sbi->im[i].ino_num *
83 sizeof(struct ino_entry);
84 mem_size >>= PAGE_SHIFT;
85 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
86 } else if (type == EXTENT_CACHE) {
87 mem_size = (atomic_read(&sbi->total_ext_tree) *
88 sizeof(struct extent_tree) +
89 atomic_read(&sbi->total_ext_node) *
90 sizeof(struct extent_node)) >> PAGE_SHIFT;
91 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
92 } else if (type == INMEM_PAGES) {
93 /* it allows 20% / total_ram for inmemory pages */
94 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
95 res = mem_size < (val.totalram / 5);
96 } else if (type == DISCARD_CACHE) {
97 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
98 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
99 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
100 } else if (type == COMPRESS_PAGE) {
101#ifdef CONFIG_F2FS_FS_COMPRESSION
102 unsigned long free_ram = val.freeram;
103
104 /*
105 * free memory is lower than watermark or cached page count
106 * exceed threshold, deny caching compress page.
107 */
108 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
109 (COMPRESS_MAPPING(sbi)->nrpages <
110 free_ram * sbi->compress_percent / 100);
111#else
112 res = false;
113#endif
114 } else {
115 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
116 return true;
117 }
118 return res;
119}
120
121static void clear_node_page_dirty(struct page *page)
122{
123 if (PageDirty(page)) {
124 f2fs_clear_page_cache_dirty_tag(page);
125 clear_page_dirty_for_io(page);
126 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
127 }
128 ClearPageUptodate(page);
129}
130
131static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
132{
133 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
134}
135
136static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
137{
138 struct page *src_page;
139 struct page *dst_page;
140 pgoff_t dst_off;
141 void *src_addr;
142 void *dst_addr;
143 struct f2fs_nm_info *nm_i = NM_I(sbi);
144
145 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
146
147 /* get current nat block page with lock */
148 src_page = get_current_nat_page(sbi, nid);
149 if (IS_ERR(src_page))
150 return src_page;
151 dst_page = f2fs_grab_meta_page(sbi, dst_off);
152 f2fs_bug_on(sbi, PageDirty(src_page));
153
154 src_addr = page_address(src_page);
155 dst_addr = page_address(dst_page);
156 memcpy(dst_addr, src_addr, PAGE_SIZE);
157 set_page_dirty(dst_page);
158 f2fs_put_page(src_page, 1);
159
160 set_to_next_nat(nm_i, nid);
161
162 return dst_page;
163}
164
165static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
166{
167 struct nat_entry *new;
168
169 if (no_fail)
170 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
171 else
172 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
173 if (new) {
174 nat_set_nid(new, nid);
175 nat_reset_flag(new);
176 }
177 return new;
178}
179
180static void __free_nat_entry(struct nat_entry *e)
181{
182 kmem_cache_free(nat_entry_slab, e);
183}
184
185/* must be locked by nat_tree_lock */
186static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
187 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
188{
189 if (no_fail)
190 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
191 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
192 return NULL;
193
194 if (raw_ne)
195 node_info_from_raw_nat(&ne->ni, raw_ne);
196
197 spin_lock(&nm_i->nat_list_lock);
198 list_add_tail(&ne->list, &nm_i->nat_entries);
199 spin_unlock(&nm_i->nat_list_lock);
200
201 nm_i->nat_cnt[TOTAL_NAT]++;
202 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
203 return ne;
204}
205
206static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
207{
208 struct nat_entry *ne;
209
210 ne = radix_tree_lookup(&nm_i->nat_root, n);
211
212 /* for recent accessed nat entry, move it to tail of lru list */
213 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
214 spin_lock(&nm_i->nat_list_lock);
215 if (!list_empty(&ne->list))
216 list_move_tail(&ne->list, &nm_i->nat_entries);
217 spin_unlock(&nm_i->nat_list_lock);
218 }
219
220 return ne;
221}
222
223static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
224 nid_t start, unsigned int nr, struct nat_entry **ep)
225{
226 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
227}
228
229static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
230{
231 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
232 nm_i->nat_cnt[TOTAL_NAT]--;
233 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
234 __free_nat_entry(e);
235}
236
237static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
238 struct nat_entry *ne)
239{
240 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
241 struct nat_entry_set *head;
242
243 head = radix_tree_lookup(&nm_i->nat_set_root, set);
244 if (!head) {
245 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
246
247 INIT_LIST_HEAD(&head->entry_list);
248 INIT_LIST_HEAD(&head->set_list);
249 head->set = set;
250 head->entry_cnt = 0;
251 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
252 }
253 return head;
254}
255
256static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
257 struct nat_entry *ne)
258{
259 struct nat_entry_set *head;
260 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
261
262 if (!new_ne)
263 head = __grab_nat_entry_set(nm_i, ne);
264
265 /*
266 * update entry_cnt in below condition:
267 * 1. update NEW_ADDR to valid block address;
268 * 2. update old block address to new one;
269 */
270 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
271 !get_nat_flag(ne, IS_DIRTY)))
272 head->entry_cnt++;
273
274 set_nat_flag(ne, IS_PREALLOC, new_ne);
275
276 if (get_nat_flag(ne, IS_DIRTY))
277 goto refresh_list;
278
279 nm_i->nat_cnt[DIRTY_NAT]++;
280 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
281 set_nat_flag(ne, IS_DIRTY, true);
282refresh_list:
283 spin_lock(&nm_i->nat_list_lock);
284 if (new_ne)
285 list_del_init(&ne->list);
286 else
287 list_move_tail(&ne->list, &head->entry_list);
288 spin_unlock(&nm_i->nat_list_lock);
289}
290
291static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
292 struct nat_entry_set *set, struct nat_entry *ne)
293{
294 spin_lock(&nm_i->nat_list_lock);
295 list_move_tail(&ne->list, &nm_i->nat_entries);
296 spin_unlock(&nm_i->nat_list_lock);
297
298 set_nat_flag(ne, IS_DIRTY, false);
299 set->entry_cnt--;
300 nm_i->nat_cnt[DIRTY_NAT]--;
301 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
302}
303
304static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
305 nid_t start, unsigned int nr, struct nat_entry_set **ep)
306{
307 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
308 start, nr);
309}
310
311bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
312{
313 return NODE_MAPPING(sbi) == page->mapping &&
314 IS_DNODE(page) && is_cold_node(page);
315}
316
317void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
318{
319 spin_lock_init(&sbi->fsync_node_lock);
320 INIT_LIST_HEAD(&sbi->fsync_node_list);
321 sbi->fsync_seg_id = 0;
322 sbi->fsync_node_num = 0;
323}
324
325static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
326 struct page *page)
327{
328 struct fsync_node_entry *fn;
329 unsigned long flags;
330 unsigned int seq_id;
331
332 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
333
334 get_page(page);
335 fn->page = page;
336 INIT_LIST_HEAD(&fn->list);
337
338 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
339 list_add_tail(&fn->list, &sbi->fsync_node_list);
340 fn->seq_id = sbi->fsync_seg_id++;
341 seq_id = fn->seq_id;
342 sbi->fsync_node_num++;
343 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
344
345 return seq_id;
346}
347
348void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
349{
350 struct fsync_node_entry *fn;
351 unsigned long flags;
352
353 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
354 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
355 if (fn->page == page) {
356 list_del(&fn->list);
357 sbi->fsync_node_num--;
358 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
359 kmem_cache_free(fsync_node_entry_slab, fn);
360 put_page(page);
361 return;
362 }
363 }
364 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
365 f2fs_bug_on(sbi, 1);
366}
367
368void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
369{
370 unsigned long flags;
371
372 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
373 sbi->fsync_seg_id = 0;
374 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
375}
376
377int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
378{
379 struct f2fs_nm_info *nm_i = NM_I(sbi);
380 struct nat_entry *e;
381 bool need = false;
382
383 down_read(&nm_i->nat_tree_lock);
384 e = __lookup_nat_cache(nm_i, nid);
385 if (e) {
386 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
387 !get_nat_flag(e, HAS_FSYNCED_INODE))
388 need = true;
389 }
390 up_read(&nm_i->nat_tree_lock);
391 return need;
392}
393
394bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
395{
396 struct f2fs_nm_info *nm_i = NM_I(sbi);
397 struct nat_entry *e;
398 bool is_cp = true;
399
400 down_read(&nm_i->nat_tree_lock);
401 e = __lookup_nat_cache(nm_i, nid);
402 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
403 is_cp = false;
404 up_read(&nm_i->nat_tree_lock);
405 return is_cp;
406}
407
408bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
409{
410 struct f2fs_nm_info *nm_i = NM_I(sbi);
411 struct nat_entry *e;
412 bool need_update = true;
413
414 down_read(&nm_i->nat_tree_lock);
415 e = __lookup_nat_cache(nm_i, ino);
416 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
417 (get_nat_flag(e, IS_CHECKPOINTED) ||
418 get_nat_flag(e, HAS_FSYNCED_INODE)))
419 need_update = false;
420 up_read(&nm_i->nat_tree_lock);
421 return need_update;
422}
423
424/* must be locked by nat_tree_lock */
425static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
426 struct f2fs_nat_entry *ne)
427{
428 struct f2fs_nm_info *nm_i = NM_I(sbi);
429 struct nat_entry *new, *e;
430
431 new = __alloc_nat_entry(nid, false);
432 if (!new)
433 return;
434
435 down_write(&nm_i->nat_tree_lock);
436 e = __lookup_nat_cache(nm_i, nid);
437 if (!e)
438 e = __init_nat_entry(nm_i, new, ne, false);
439 else
440 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
441 nat_get_blkaddr(e) !=
442 le32_to_cpu(ne->block_addr) ||
443 nat_get_version(e) != ne->version);
444 up_write(&nm_i->nat_tree_lock);
445 if (e != new)
446 __free_nat_entry(new);
447}
448
449static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
450 block_t new_blkaddr, bool fsync_done)
451{
452 struct f2fs_nm_info *nm_i = NM_I(sbi);
453 struct nat_entry *e;
454 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
455
456 down_write(&nm_i->nat_tree_lock);
457 e = __lookup_nat_cache(nm_i, ni->nid);
458 if (!e) {
459 e = __init_nat_entry(nm_i, new, NULL, true);
460 copy_node_info(&e->ni, ni);
461 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
462 } else if (new_blkaddr == NEW_ADDR) {
463 /*
464 * when nid is reallocated,
465 * previous nat entry can be remained in nat cache.
466 * So, reinitialize it with new information.
467 */
468 copy_node_info(&e->ni, ni);
469 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
470 }
471 /* let's free early to reduce memory consumption */
472 if (e != new)
473 __free_nat_entry(new);
474
475 /* sanity check */
476 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
477 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
478 new_blkaddr == NULL_ADDR);
479 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
480 new_blkaddr == NEW_ADDR);
481 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
482 new_blkaddr == NEW_ADDR);
483
484 /* increment version no as node is removed */
485 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
486 unsigned char version = nat_get_version(e);
487
488 nat_set_version(e, inc_node_version(version));
489 }
490
491 /* change address */
492 nat_set_blkaddr(e, new_blkaddr);
493 if (!__is_valid_data_blkaddr(new_blkaddr))
494 set_nat_flag(e, IS_CHECKPOINTED, false);
495 __set_nat_cache_dirty(nm_i, e);
496
497 /* update fsync_mark if its inode nat entry is still alive */
498 if (ni->nid != ni->ino)
499 e = __lookup_nat_cache(nm_i, ni->ino);
500 if (e) {
501 if (fsync_done && ni->nid == ni->ino)
502 set_nat_flag(e, HAS_FSYNCED_INODE, true);
503 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
504 }
505 up_write(&nm_i->nat_tree_lock);
506}
507
508int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
509{
510 struct f2fs_nm_info *nm_i = NM_I(sbi);
511 int nr = nr_shrink;
512
513 if (!down_write_trylock(&nm_i->nat_tree_lock))
514 return 0;
515
516 spin_lock(&nm_i->nat_list_lock);
517 while (nr_shrink) {
518 struct nat_entry *ne;
519
520 if (list_empty(&nm_i->nat_entries))
521 break;
522
523 ne = list_first_entry(&nm_i->nat_entries,
524 struct nat_entry, list);
525 list_del(&ne->list);
526 spin_unlock(&nm_i->nat_list_lock);
527
528 __del_from_nat_cache(nm_i, ne);
529 nr_shrink--;
530
531 spin_lock(&nm_i->nat_list_lock);
532 }
533 spin_unlock(&nm_i->nat_list_lock);
534
535 up_write(&nm_i->nat_tree_lock);
536 return nr - nr_shrink;
537}
538
539int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
540 struct node_info *ni)
541{
542 struct f2fs_nm_info *nm_i = NM_I(sbi);
543 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
544 struct f2fs_journal *journal = curseg->journal;
545 nid_t start_nid = START_NID(nid);
546 struct f2fs_nat_block *nat_blk;
547 struct page *page = NULL;
548 struct f2fs_nat_entry ne;
549 struct nat_entry *e;
550 pgoff_t index;
551 block_t blkaddr;
552 int i;
553
554 ni->nid = nid;
555
556 /* Check nat cache */
557 down_read(&nm_i->nat_tree_lock);
558 e = __lookup_nat_cache(nm_i, nid);
559 if (e) {
560 ni->ino = nat_get_ino(e);
561 ni->blk_addr = nat_get_blkaddr(e);
562 ni->version = nat_get_version(e);
563 up_read(&nm_i->nat_tree_lock);
564 return 0;
565 }
566
567 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
568
569 /* Check current segment summary */
570 down_read(&curseg->journal_rwsem);
571 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
572 if (i >= 0) {
573 ne = nat_in_journal(journal, i);
574 node_info_from_raw_nat(ni, &ne);
575 }
576 up_read(&curseg->journal_rwsem);
577 if (i >= 0) {
578 up_read(&nm_i->nat_tree_lock);
579 goto cache;
580 }
581
582 /* Fill node_info from nat page */
583 index = current_nat_addr(sbi, nid);
584 up_read(&nm_i->nat_tree_lock);
585
586 page = f2fs_get_meta_page(sbi, index);
587 if (IS_ERR(page))
588 return PTR_ERR(page);
589
590 nat_blk = (struct f2fs_nat_block *)page_address(page);
591 ne = nat_blk->entries[nid - start_nid];
592 node_info_from_raw_nat(ni, &ne);
593 f2fs_put_page(page, 1);
594cache:
595 blkaddr = le32_to_cpu(ne.block_addr);
596 if (__is_valid_data_blkaddr(blkaddr) &&
597 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
598 return -EFAULT;
599
600 /* cache nat entry */
601 cache_nat_entry(sbi, nid, &ne);
602 return 0;
603}
604
605/*
606 * readahead MAX_RA_NODE number of node pages.
607 */
608static void f2fs_ra_node_pages(struct page *parent, int start, int n)
609{
610 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
611 struct blk_plug plug;
612 int i, end;
613 nid_t nid;
614
615 blk_start_plug(&plug);
616
617 /* Then, try readahead for siblings of the desired node */
618 end = start + n;
619 end = min(end, NIDS_PER_BLOCK);
620 for (i = start; i < end; i++) {
621 nid = get_nid(parent, i, false);
622 f2fs_ra_node_page(sbi, nid);
623 }
624
625 blk_finish_plug(&plug);
626}
627
628pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
629{
630 const long direct_index = ADDRS_PER_INODE(dn->inode);
631 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
632 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
633 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
634 int cur_level = dn->cur_level;
635 int max_level = dn->max_level;
636 pgoff_t base = 0;
637
638 if (!dn->max_level)
639 return pgofs + 1;
640
641 while (max_level-- > cur_level)
642 skipped_unit *= NIDS_PER_BLOCK;
643
644 switch (dn->max_level) {
645 case 3:
646 base += 2 * indirect_blks;
647 /* fall through */
648 case 2:
649 base += 2 * direct_blks;
650 /* fall through */
651 case 1:
652 base += direct_index;
653 break;
654 default:
655 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
656 }
657
658 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
659}
660
661/*
662 * The maximum depth is four.
663 * Offset[0] will have raw inode offset.
664 */
665static int get_node_path(struct inode *inode, long block,
666 int offset[4], unsigned int noffset[4])
667{
668 const long direct_index = ADDRS_PER_INODE(inode);
669 const long direct_blks = ADDRS_PER_BLOCK(inode);
670 const long dptrs_per_blk = NIDS_PER_BLOCK;
671 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
672 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
673 int n = 0;
674 int level = 0;
675
676 noffset[0] = 0;
677
678 if (block < direct_index) {
679 offset[n] = block;
680 goto got;
681 }
682 block -= direct_index;
683 if (block < direct_blks) {
684 offset[n++] = NODE_DIR1_BLOCK;
685 noffset[n] = 1;
686 offset[n] = block;
687 level = 1;
688 goto got;
689 }
690 block -= direct_blks;
691 if (block < direct_blks) {
692 offset[n++] = NODE_DIR2_BLOCK;
693 noffset[n] = 2;
694 offset[n] = block;
695 level = 1;
696 goto got;
697 }
698 block -= direct_blks;
699 if (block < indirect_blks) {
700 offset[n++] = NODE_IND1_BLOCK;
701 noffset[n] = 3;
702 offset[n++] = block / direct_blks;
703 noffset[n] = 4 + offset[n - 1];
704 offset[n] = block % direct_blks;
705 level = 2;
706 goto got;
707 }
708 block -= indirect_blks;
709 if (block < indirect_blks) {
710 offset[n++] = NODE_IND2_BLOCK;
711 noffset[n] = 4 + dptrs_per_blk;
712 offset[n++] = block / direct_blks;
713 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
714 offset[n] = block % direct_blks;
715 level = 2;
716 goto got;
717 }
718 block -= indirect_blks;
719 if (block < dindirect_blks) {
720 offset[n++] = NODE_DIND_BLOCK;
721 noffset[n] = 5 + (dptrs_per_blk * 2);
722 offset[n++] = block / indirect_blks;
723 noffset[n] = 6 + (dptrs_per_blk * 2) +
724 offset[n - 1] * (dptrs_per_blk + 1);
725 offset[n++] = (block / direct_blks) % dptrs_per_blk;
726 noffset[n] = 7 + (dptrs_per_blk * 2) +
727 offset[n - 2] * (dptrs_per_blk + 1) +
728 offset[n - 1];
729 offset[n] = block % direct_blks;
730 level = 3;
731 goto got;
732 } else {
733 return -E2BIG;
734 }
735got:
736 return level;
737}
738
739/*
740 * Caller should call f2fs_put_dnode(dn).
741 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
742 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
743 */
744int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
745{
746 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
747 struct page *npage[4];
748 struct page *parent = NULL;
749 int offset[4];
750 unsigned int noffset[4];
751 nid_t nids[4];
752 int level, i = 0;
753 int err = 0;
754
755 level = get_node_path(dn->inode, index, offset, noffset);
756 if (level < 0)
757 return level;
758
759 nids[0] = dn->inode->i_ino;
760 npage[0] = dn->inode_page;
761
762 if (!npage[0]) {
763 npage[0] = f2fs_get_node_page(sbi, nids[0]);
764 if (IS_ERR(npage[0]))
765 return PTR_ERR(npage[0]);
766 }
767
768 /* if inline_data is set, should not report any block indices */
769 if (f2fs_has_inline_data(dn->inode) && index) {
770 err = -ENOENT;
771 f2fs_put_page(npage[0], 1);
772 goto release_out;
773 }
774
775 parent = npage[0];
776 if (level != 0)
777 nids[1] = get_nid(parent, offset[0], true);
778 dn->inode_page = npage[0];
779 dn->inode_page_locked = true;
780
781 /* get indirect or direct nodes */
782 for (i = 1; i <= level; i++) {
783 bool done = false;
784
785 if (!nids[i] && mode == ALLOC_NODE) {
786 /* alloc new node */
787 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
788 err = -ENOSPC;
789 goto release_pages;
790 }
791
792 dn->nid = nids[i];
793 npage[i] = f2fs_new_node_page(dn, noffset[i]);
794 if (IS_ERR(npage[i])) {
795 f2fs_alloc_nid_failed(sbi, nids[i]);
796 err = PTR_ERR(npage[i]);
797 goto release_pages;
798 }
799
800 set_nid(parent, offset[i - 1], nids[i], i == 1);
801 f2fs_alloc_nid_done(sbi, nids[i]);
802 done = true;
803 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
804 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
805 if (IS_ERR(npage[i])) {
806 err = PTR_ERR(npage[i]);
807 goto release_pages;
808 }
809 done = true;
810 }
811 if (i == 1) {
812 dn->inode_page_locked = false;
813 unlock_page(parent);
814 } else {
815 f2fs_put_page(parent, 1);
816 }
817
818 if (!done) {
819 npage[i] = f2fs_get_node_page(sbi, nids[i]);
820 if (IS_ERR(npage[i])) {
821 err = PTR_ERR(npage[i]);
822 f2fs_put_page(npage[0], 0);
823 goto release_out;
824 }
825 }
826 if (i < level) {
827 parent = npage[i];
828 nids[i + 1] = get_nid(parent, offset[i], false);
829 }
830 }
831 dn->nid = nids[level];
832 dn->ofs_in_node = offset[level];
833 dn->node_page = npage[level];
834 dn->data_blkaddr = f2fs_data_blkaddr(dn);
835 return 0;
836
837release_pages:
838 f2fs_put_page(parent, 1);
839 if (i > 1)
840 f2fs_put_page(npage[0], 0);
841release_out:
842 dn->inode_page = NULL;
843 dn->node_page = NULL;
844 if (err == -ENOENT) {
845 dn->cur_level = i;
846 dn->max_level = level;
847 dn->ofs_in_node = offset[level];
848 }
849 return err;
850}
851
852static int truncate_node(struct dnode_of_data *dn)
853{
854 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
855 struct node_info ni;
856 int err;
857 pgoff_t index;
858
859 err = f2fs_get_node_info(sbi, dn->nid, &ni);
860 if (err)
861 return err;
862
863 /* Deallocate node address */
864 f2fs_invalidate_blocks(sbi, ni.blk_addr);
865 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
866 set_node_addr(sbi, &ni, NULL_ADDR, false);
867
868 if (dn->nid == dn->inode->i_ino) {
869 f2fs_remove_orphan_inode(sbi, dn->nid);
870 dec_valid_inode_count(sbi);
871 f2fs_inode_synced(dn->inode);
872 }
873
874 clear_node_page_dirty(dn->node_page);
875 set_sbi_flag(sbi, SBI_IS_DIRTY);
876
877 index = dn->node_page->index;
878 f2fs_put_page(dn->node_page, 1);
879
880 invalidate_mapping_pages(NODE_MAPPING(sbi),
881 index, index);
882
883 dn->node_page = NULL;
884 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
885
886 return 0;
887}
888
889static int truncate_dnode(struct dnode_of_data *dn)
890{
891 struct page *page;
892 int err;
893
894 if (dn->nid == 0)
895 return 1;
896
897 /* get direct node */
898 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
899 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
900 return 1;
901 else if (IS_ERR(page))
902 return PTR_ERR(page);
903
904 /* Make dnode_of_data for parameter */
905 dn->node_page = page;
906 dn->ofs_in_node = 0;
907 f2fs_truncate_data_blocks(dn);
908 err = truncate_node(dn);
909 if (err) {
910 f2fs_put_page(page, 1);
911 return err;
912 }
913
914 return 1;
915}
916
917static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
918 int ofs, int depth)
919{
920 struct dnode_of_data rdn = *dn;
921 struct page *page;
922 struct f2fs_node *rn;
923 nid_t child_nid;
924 unsigned int child_nofs;
925 int freed = 0;
926 int i, ret;
927
928 if (dn->nid == 0)
929 return NIDS_PER_BLOCK + 1;
930
931 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
932
933 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
934 if (IS_ERR(page)) {
935 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
936 return PTR_ERR(page);
937 }
938
939 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
940
941 rn = F2FS_NODE(page);
942 if (depth < 3) {
943 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
944 child_nid = le32_to_cpu(rn->in.nid[i]);
945 if (child_nid == 0)
946 continue;
947 rdn.nid = child_nid;
948 ret = truncate_dnode(&rdn);
949 if (ret < 0)
950 goto out_err;
951 if (set_nid(page, i, 0, false))
952 dn->node_changed = true;
953 }
954 } else {
955 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
956 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
957 child_nid = le32_to_cpu(rn->in.nid[i]);
958 if (child_nid == 0) {
959 child_nofs += NIDS_PER_BLOCK + 1;
960 continue;
961 }
962 rdn.nid = child_nid;
963 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
964 if (ret == (NIDS_PER_BLOCK + 1)) {
965 if (set_nid(page, i, 0, false))
966 dn->node_changed = true;
967 child_nofs += ret;
968 } else if (ret < 0 && ret != -ENOENT) {
969 goto out_err;
970 }
971 }
972 freed = child_nofs;
973 }
974
975 if (!ofs) {
976 /* remove current indirect node */
977 dn->node_page = page;
978 ret = truncate_node(dn);
979 if (ret)
980 goto out_err;
981 freed++;
982 } else {
983 f2fs_put_page(page, 1);
984 }
985 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
986 return freed;
987
988out_err:
989 f2fs_put_page(page, 1);
990 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
991 return ret;
992}
993
994static int truncate_partial_nodes(struct dnode_of_data *dn,
995 struct f2fs_inode *ri, int *offset, int depth)
996{
997 struct page *pages[2];
998 nid_t nid[3];
999 nid_t child_nid;
1000 int err = 0;
1001 int i;
1002 int idx = depth - 2;
1003
1004 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1005 if (!nid[0])
1006 return 0;
1007
1008 /* get indirect nodes in the path */
1009 for (i = 0; i < idx + 1; i++) {
1010 /* reference count'll be increased */
1011 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1012 if (IS_ERR(pages[i])) {
1013 err = PTR_ERR(pages[i]);
1014 idx = i - 1;
1015 goto fail;
1016 }
1017 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1018 }
1019
1020 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1021
1022 /* free direct nodes linked to a partial indirect node */
1023 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1024 child_nid = get_nid(pages[idx], i, false);
1025 if (!child_nid)
1026 continue;
1027 dn->nid = child_nid;
1028 err = truncate_dnode(dn);
1029 if (err < 0)
1030 goto fail;
1031 if (set_nid(pages[idx], i, 0, false))
1032 dn->node_changed = true;
1033 }
1034
1035 if (offset[idx + 1] == 0) {
1036 dn->node_page = pages[idx];
1037 dn->nid = nid[idx];
1038 err = truncate_node(dn);
1039 if (err)
1040 goto fail;
1041 } else {
1042 f2fs_put_page(pages[idx], 1);
1043 }
1044 offset[idx]++;
1045 offset[idx + 1] = 0;
1046 idx--;
1047fail:
1048 for (i = idx; i >= 0; i--)
1049 f2fs_put_page(pages[i], 1);
1050
1051 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1052
1053 return err;
1054}
1055
1056/*
1057 * All the block addresses of data and nodes should be nullified.
1058 */
1059int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1060{
1061 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1062 int err = 0, cont = 1;
1063 int level, offset[4], noffset[4];
1064 unsigned int nofs = 0;
1065 struct f2fs_inode *ri;
1066 struct dnode_of_data dn;
1067 struct page *page;
1068
1069 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1070
1071 level = get_node_path(inode, from, offset, noffset);
1072 if (level < 0) {
1073 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1074 return level;
1075 }
1076
1077 page = f2fs_get_node_page(sbi, inode->i_ino);
1078 if (IS_ERR(page)) {
1079 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1080 return PTR_ERR(page);
1081 }
1082
1083 set_new_dnode(&dn, inode, page, NULL, 0);
1084 unlock_page(page);
1085
1086 ri = F2FS_INODE(page);
1087 switch (level) {
1088 case 0:
1089 case 1:
1090 nofs = noffset[1];
1091 break;
1092 case 2:
1093 nofs = noffset[1];
1094 if (!offset[level - 1])
1095 goto skip_partial;
1096 err = truncate_partial_nodes(&dn, ri, offset, level);
1097 if (err < 0 && err != -ENOENT)
1098 goto fail;
1099 nofs += 1 + NIDS_PER_BLOCK;
1100 break;
1101 case 3:
1102 nofs = 5 + 2 * NIDS_PER_BLOCK;
1103 if (!offset[level - 1])
1104 goto skip_partial;
1105 err = truncate_partial_nodes(&dn, ri, offset, level);
1106 if (err < 0 && err != -ENOENT)
1107 goto fail;
1108 break;
1109 default:
1110 BUG();
1111 }
1112
1113skip_partial:
1114 while (cont) {
1115 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1116 switch (offset[0]) {
1117 case NODE_DIR1_BLOCK:
1118 case NODE_DIR2_BLOCK:
1119 err = truncate_dnode(&dn);
1120 break;
1121
1122 case NODE_IND1_BLOCK:
1123 case NODE_IND2_BLOCK:
1124 err = truncate_nodes(&dn, nofs, offset[1], 2);
1125 break;
1126
1127 case NODE_DIND_BLOCK:
1128 err = truncate_nodes(&dn, nofs, offset[1], 3);
1129 cont = 0;
1130 break;
1131
1132 default:
1133 BUG();
1134 }
1135 if (err < 0 && err != -ENOENT)
1136 goto fail;
1137 if (offset[1] == 0 &&
1138 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1139 lock_page(page);
1140 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1141 f2fs_wait_on_page_writeback(page, NODE, true, true);
1142 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1143 set_page_dirty(page);
1144 unlock_page(page);
1145 }
1146 offset[1] = 0;
1147 offset[0]++;
1148 nofs += err;
1149 }
1150fail:
1151 f2fs_put_page(page, 0);
1152 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1153 return err > 0 ? 0 : err;
1154}
1155
1156/* caller must lock inode page */
1157int f2fs_truncate_xattr_node(struct inode *inode)
1158{
1159 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1160 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1161 struct dnode_of_data dn;
1162 struct page *npage;
1163 int err;
1164
1165 if (!nid)
1166 return 0;
1167
1168 npage = f2fs_get_node_page(sbi, nid);
1169 if (IS_ERR(npage))
1170 return PTR_ERR(npage);
1171
1172 set_new_dnode(&dn, inode, NULL, npage, nid);
1173 err = truncate_node(&dn);
1174 if (err) {
1175 f2fs_put_page(npage, 1);
1176 return err;
1177 }
1178
1179 f2fs_i_xnid_write(inode, 0);
1180
1181 return 0;
1182}
1183
1184/*
1185 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1186 * f2fs_unlock_op().
1187 */
1188int f2fs_remove_inode_page(struct inode *inode)
1189{
1190 struct dnode_of_data dn;
1191 int err;
1192
1193 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1194 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1195 if (err)
1196 return err;
1197
1198 err = f2fs_truncate_xattr_node(inode);
1199 if (err) {
1200 f2fs_put_dnode(&dn);
1201 return err;
1202 }
1203
1204 /* remove potential inline_data blocks */
1205 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1206 S_ISLNK(inode->i_mode))
1207 f2fs_truncate_data_blocks_range(&dn, 1);
1208
1209 /* 0 is possible, after f2fs_new_inode() has failed */
1210 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1211 f2fs_put_dnode(&dn);
1212 return -EIO;
1213 }
1214
1215 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1216 f2fs_warn(F2FS_I_SB(inode),
1217 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1218 inode->i_ino, (unsigned long long)inode->i_blocks);
1219 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1220 }
1221
1222 /* will put inode & node pages */
1223 err = truncate_node(&dn);
1224 if (err) {
1225 f2fs_put_dnode(&dn);
1226 return err;
1227 }
1228 return 0;
1229}
1230
1231struct page *f2fs_new_inode_page(struct inode *inode)
1232{
1233 struct dnode_of_data dn;
1234
1235 /* allocate inode page for new inode */
1236 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1237
1238 /* caller should f2fs_put_page(page, 1); */
1239 return f2fs_new_node_page(&dn, 0);
1240}
1241
1242struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1243{
1244 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1245 struct node_info new_ni;
1246 struct page *page;
1247 int err;
1248
1249 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1250 return ERR_PTR(-EPERM);
1251
1252 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1253 if (!page)
1254 return ERR_PTR(-ENOMEM);
1255
1256 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1257 goto fail;
1258
1259#ifdef CONFIG_F2FS_CHECK_FS
1260 err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1261 if (err) {
1262 dec_valid_node_count(sbi, dn->inode, !ofs);
1263 goto fail;
1264 }
1265 if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1266 err = -EFSCORRUPTED;
1267 dec_valid_node_count(sbi, dn->inode, !ofs);
1268 set_sbi_flag(sbi, SBI_NEED_FSCK);
1269 goto fail;
1270 }
1271#endif
1272 new_ni.nid = dn->nid;
1273 new_ni.ino = dn->inode->i_ino;
1274 new_ni.blk_addr = NULL_ADDR;
1275 new_ni.flag = 0;
1276 new_ni.version = 0;
1277 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1278
1279 f2fs_wait_on_page_writeback(page, NODE, true, true);
1280 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1281 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1282 if (!PageUptodate(page))
1283 SetPageUptodate(page);
1284 if (set_page_dirty(page))
1285 dn->node_changed = true;
1286
1287 if (f2fs_has_xattr_block(ofs))
1288 f2fs_i_xnid_write(dn->inode, dn->nid);
1289
1290 if (ofs == 0)
1291 inc_valid_inode_count(sbi);
1292 return page;
1293fail:
1294 clear_node_page_dirty(page);
1295 f2fs_put_page(page, 1);
1296 return ERR_PTR(err);
1297}
1298
1299/*
1300 * Caller should do after getting the following values.
1301 * 0: f2fs_put_page(page, 0)
1302 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1303 */
1304static int read_node_page(struct page *page, int op_flags)
1305{
1306 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1307 struct node_info ni;
1308 struct f2fs_io_info fio = {
1309 .sbi = sbi,
1310 .type = NODE,
1311 .op = REQ_OP_READ,
1312 .op_flags = op_flags,
1313 .page = page,
1314 .encrypted_page = NULL,
1315 };
1316 int err;
1317
1318 if (PageUptodate(page)) {
1319 if (!f2fs_inode_chksum_verify(sbi, page)) {
1320 ClearPageUptodate(page);
1321 return -EFSBADCRC;
1322 }
1323 return LOCKED_PAGE;
1324 }
1325
1326 err = f2fs_get_node_info(sbi, page->index, &ni);
1327 if (err)
1328 return err;
1329
1330 if (unlikely(ni.blk_addr == NULL_ADDR) ||
1331 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1332 ClearPageUptodate(page);
1333 return -ENOENT;
1334 }
1335
1336 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1337
1338 err = f2fs_submit_page_bio(&fio);
1339
1340 if (!err)
1341 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1342
1343 return err;
1344}
1345
1346/*
1347 * Readahead a node page
1348 */
1349void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1350{
1351 struct page *apage;
1352 int err;
1353
1354 if (!nid)
1355 return;
1356 if (f2fs_check_nid_range(sbi, nid))
1357 return;
1358
1359 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1360 if (apage)
1361 return;
1362
1363 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1364 if (!apage)
1365 return;
1366
1367 err = read_node_page(apage, REQ_RAHEAD);
1368 f2fs_put_page(apage, err ? 1 : 0);
1369}
1370
1371static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1372 struct page *parent, int start)
1373{
1374 struct page *page;
1375 int err;
1376
1377 if (!nid)
1378 return ERR_PTR(-ENOENT);
1379 if (f2fs_check_nid_range(sbi, nid))
1380 return ERR_PTR(-EINVAL);
1381repeat:
1382 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1383 if (!page)
1384 return ERR_PTR(-ENOMEM);
1385
1386 err = read_node_page(page, 0);
1387 if (err < 0) {
1388 f2fs_put_page(page, 1);
1389 return ERR_PTR(err);
1390 } else if (err == LOCKED_PAGE) {
1391 err = 0;
1392 goto page_hit;
1393 }
1394
1395 if (parent)
1396 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1397
1398 lock_page(page);
1399
1400 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1401 f2fs_put_page(page, 1);
1402 goto repeat;
1403 }
1404
1405 if (unlikely(!PageUptodate(page))) {
1406 err = -EIO;
1407 goto out_err;
1408 }
1409
1410 if (!f2fs_inode_chksum_verify(sbi, page)) {
1411 err = -EFSBADCRC;
1412 goto out_err;
1413 }
1414page_hit:
1415 if (unlikely(nid != nid_of_node(page))) {
1416 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1417 nid, nid_of_node(page), ino_of_node(page),
1418 ofs_of_node(page), cpver_of_node(page),
1419 next_blkaddr_of_node(page));
1420 set_sbi_flag(sbi, SBI_NEED_FSCK);
1421 err = -EINVAL;
1422out_err:
1423 ClearPageUptodate(page);
1424 f2fs_put_page(page, 1);
1425 return ERR_PTR(err);
1426 }
1427 return page;
1428}
1429
1430struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1431{
1432 return __get_node_page(sbi, nid, NULL, 0);
1433}
1434
1435struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1436{
1437 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1438 nid_t nid = get_nid(parent, start, false);
1439
1440 return __get_node_page(sbi, nid, parent, start);
1441}
1442
1443static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1444{
1445 struct inode *inode;
1446 struct page *page;
1447 int ret;
1448
1449 /* should flush inline_data before evict_inode */
1450 inode = ilookup(sbi->sb, ino);
1451 if (!inode)
1452 return;
1453
1454 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1455 FGP_LOCK|FGP_NOWAIT, 0);
1456 if (!page)
1457 goto iput_out;
1458
1459 if (!PageUptodate(page))
1460 goto page_out;
1461
1462 if (!PageDirty(page))
1463 goto page_out;
1464
1465 if (!clear_page_dirty_for_io(page))
1466 goto page_out;
1467
1468 ret = f2fs_write_inline_data(inode, page);
1469 inode_dec_dirty_pages(inode);
1470 f2fs_remove_dirty_inode(inode);
1471 if (ret)
1472 set_page_dirty(page);
1473page_out:
1474 f2fs_put_page(page, 1);
1475iput_out:
1476 iput(inode);
1477}
1478
1479static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1480{
1481 pgoff_t index;
1482 struct pagevec pvec;
1483 struct page *last_page = NULL;
1484 int nr_pages;
1485
1486 pagevec_init(&pvec);
1487 index = 0;
1488
1489 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1490 PAGECACHE_TAG_DIRTY))) {
1491 int i;
1492
1493 for (i = 0; i < nr_pages; i++) {
1494 struct page *page = pvec.pages[i];
1495
1496 if (unlikely(f2fs_cp_error(sbi))) {
1497 f2fs_put_page(last_page, 0);
1498 pagevec_release(&pvec);
1499 return ERR_PTR(-EIO);
1500 }
1501
1502 if (!IS_DNODE(page) || !is_cold_node(page))
1503 continue;
1504 if (ino_of_node(page) != ino)
1505 continue;
1506
1507 lock_page(page);
1508
1509 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1510continue_unlock:
1511 unlock_page(page);
1512 continue;
1513 }
1514 if (ino_of_node(page) != ino)
1515 goto continue_unlock;
1516
1517 if (!PageDirty(page)) {
1518 /* someone wrote it for us */
1519 goto continue_unlock;
1520 }
1521
1522 if (last_page)
1523 f2fs_put_page(last_page, 0);
1524
1525 get_page(page);
1526 last_page = page;
1527 unlock_page(page);
1528 }
1529 pagevec_release(&pvec);
1530 cond_resched();
1531 }
1532 return last_page;
1533}
1534
1535static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1536 struct writeback_control *wbc, bool do_balance,
1537 enum iostat_type io_type, unsigned int *seq_id)
1538{
1539 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1540 nid_t nid;
1541 struct node_info ni;
1542 struct f2fs_io_info fio = {
1543 .sbi = sbi,
1544 .ino = ino_of_node(page),
1545 .type = NODE,
1546 .op = REQ_OP_WRITE,
1547 .op_flags = wbc_to_write_flags(wbc),
1548 .page = page,
1549 .encrypted_page = NULL,
1550 .submitted = false,
1551 .io_type = io_type,
1552 .io_wbc = wbc,
1553 };
1554 unsigned int seq;
1555
1556 trace_f2fs_writepage(page, NODE);
1557
1558 if (unlikely(f2fs_cp_error(sbi))) {
1559 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1560 ClearPageUptodate(page);
1561 dec_page_count(sbi, F2FS_DIRTY_NODES);
1562 unlock_page(page);
1563 return 0;
1564 }
1565 goto redirty_out;
1566 }
1567
1568 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1569 goto redirty_out;
1570
1571 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1572 wbc->sync_mode == WB_SYNC_NONE &&
1573 IS_DNODE(page) && is_cold_node(page))
1574 goto redirty_out;
1575
1576 /* get old block addr of this node page */
1577 nid = nid_of_node(page);
1578 f2fs_bug_on(sbi, page->index != nid);
1579
1580 if (f2fs_get_node_info(sbi, nid, &ni))
1581 goto redirty_out;
1582
1583 if (wbc->for_reclaim) {
1584 if (!down_read_trylock(&sbi->node_write))
1585 goto redirty_out;
1586 } else {
1587 down_read(&sbi->node_write);
1588 }
1589
1590 /* This page is already truncated */
1591 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1592 ClearPageUptodate(page);
1593 dec_page_count(sbi, F2FS_DIRTY_NODES);
1594 up_read(&sbi->node_write);
1595 unlock_page(page);
1596 return 0;
1597 }
1598
1599 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1600 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1601 DATA_GENERIC_ENHANCE)) {
1602 up_read(&sbi->node_write);
1603 goto redirty_out;
1604 }
1605
1606 if (atomic && !test_opt(sbi, NOBARRIER))
1607 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1608
1609 /* should add to global list before clearing PAGECACHE status */
1610 if (f2fs_in_warm_node_list(sbi, page)) {
1611 seq = f2fs_add_fsync_node_entry(sbi, page);
1612 if (seq_id)
1613 *seq_id = seq;
1614 }
1615
1616 set_page_writeback(page);
1617 ClearPageError(page);
1618
1619 fio.old_blkaddr = ni.blk_addr;
1620 f2fs_do_write_node_page(nid, &fio);
1621 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1622 dec_page_count(sbi, F2FS_DIRTY_NODES);
1623 up_read(&sbi->node_write);
1624
1625 if (wbc->for_reclaim) {
1626 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1627 submitted = NULL;
1628 }
1629
1630 unlock_page(page);
1631
1632 if (unlikely(f2fs_cp_error(sbi))) {
1633 f2fs_submit_merged_write(sbi, NODE);
1634 submitted = NULL;
1635 }
1636 if (submitted)
1637 *submitted = fio.submitted;
1638
1639 if (do_balance)
1640 f2fs_balance_fs(sbi, false);
1641 return 0;
1642
1643redirty_out:
1644 redirty_page_for_writepage(wbc, page);
1645 return AOP_WRITEPAGE_ACTIVATE;
1646}
1647
1648int f2fs_move_node_page(struct page *node_page, int gc_type)
1649{
1650 int err = 0;
1651
1652 if (gc_type == FG_GC) {
1653 struct writeback_control wbc = {
1654 .sync_mode = WB_SYNC_ALL,
1655 .nr_to_write = 1,
1656 .for_reclaim = 0,
1657 };
1658
1659 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1660
1661 set_page_dirty(node_page);
1662
1663 if (!clear_page_dirty_for_io(node_page)) {
1664 err = -EAGAIN;
1665 goto out_page;
1666 }
1667
1668 if (__write_node_page(node_page, false, NULL,
1669 &wbc, false, FS_GC_NODE_IO, NULL)) {
1670 err = -EAGAIN;
1671 unlock_page(node_page);
1672 }
1673 goto release_page;
1674 } else {
1675 /* set page dirty and write it */
1676 if (!PageWriteback(node_page))
1677 set_page_dirty(node_page);
1678 }
1679out_page:
1680 unlock_page(node_page);
1681release_page:
1682 f2fs_put_page(node_page, 0);
1683 return err;
1684}
1685
1686static int f2fs_write_node_page(struct page *page,
1687 struct writeback_control *wbc)
1688{
1689 return __write_node_page(page, false, NULL, wbc, false,
1690 FS_NODE_IO, NULL);
1691}
1692
1693int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1694 struct writeback_control *wbc, bool atomic,
1695 unsigned int *seq_id)
1696{
1697 pgoff_t index;
1698 struct pagevec pvec;
1699 int ret = 0;
1700 struct page *last_page = NULL;
1701 bool marked = false;
1702 nid_t ino = inode->i_ino;
1703 int nr_pages;
1704 int nwritten = 0;
1705
1706 if (atomic) {
1707 last_page = last_fsync_dnode(sbi, ino);
1708 if (IS_ERR_OR_NULL(last_page))
1709 return PTR_ERR_OR_ZERO(last_page);
1710 }
1711retry:
1712 pagevec_init(&pvec);
1713 index = 0;
1714
1715 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1716 PAGECACHE_TAG_DIRTY))) {
1717 int i;
1718
1719 for (i = 0; i < nr_pages; i++) {
1720 struct page *page = pvec.pages[i];
1721 bool submitted = false;
1722
1723 if (unlikely(f2fs_cp_error(sbi))) {
1724 f2fs_put_page(last_page, 0);
1725 pagevec_release(&pvec);
1726 ret = -EIO;
1727 goto out;
1728 }
1729
1730 if (!IS_DNODE(page) || !is_cold_node(page))
1731 continue;
1732 if (ino_of_node(page) != ino)
1733 continue;
1734
1735 lock_page(page);
1736
1737 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1738continue_unlock:
1739 unlock_page(page);
1740 continue;
1741 }
1742 if (ino_of_node(page) != ino)
1743 goto continue_unlock;
1744
1745 if (!PageDirty(page) && page != last_page) {
1746 /* someone wrote it for us */
1747 goto continue_unlock;
1748 }
1749
1750 f2fs_wait_on_page_writeback(page, NODE, true, true);
1751
1752 set_fsync_mark(page, 0);
1753 set_dentry_mark(page, 0);
1754
1755 if (!atomic || page == last_page) {
1756 set_fsync_mark(page, 1);
1757 if (IS_INODE(page)) {
1758 if (is_inode_flag_set(inode,
1759 FI_DIRTY_INODE))
1760 f2fs_update_inode(inode, page);
1761 set_dentry_mark(page,
1762 f2fs_need_dentry_mark(sbi, ino));
1763 }
1764 /* may be written by other thread */
1765 if (!PageDirty(page))
1766 set_page_dirty(page);
1767 }
1768
1769 if (!clear_page_dirty_for_io(page))
1770 goto continue_unlock;
1771
1772 ret = __write_node_page(page, atomic &&
1773 page == last_page,
1774 &submitted, wbc, true,
1775 FS_NODE_IO, seq_id);
1776 if (ret) {
1777 unlock_page(page);
1778 f2fs_put_page(last_page, 0);
1779 break;
1780 } else if (submitted) {
1781 nwritten++;
1782 }
1783
1784 if (page == last_page) {
1785 f2fs_put_page(page, 0);
1786 marked = true;
1787 break;
1788 }
1789 }
1790 pagevec_release(&pvec);
1791 cond_resched();
1792
1793 if (ret || marked)
1794 break;
1795 }
1796 if (!ret && atomic && !marked) {
1797 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1798 ino, last_page->index);
1799 lock_page(last_page);
1800 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1801 set_page_dirty(last_page);
1802 unlock_page(last_page);
1803 goto retry;
1804 }
1805out:
1806 if (nwritten)
1807 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1808 return ret ? -EIO : 0;
1809}
1810
1811static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1812{
1813 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1814 bool clean;
1815
1816 if (inode->i_ino != ino)
1817 return 0;
1818
1819 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1820 return 0;
1821
1822 spin_lock(&sbi->inode_lock[DIRTY_META]);
1823 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1824 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1825
1826 if (clean)
1827 return 0;
1828
1829 inode = igrab(inode);
1830 if (!inode)
1831 return 0;
1832 return 1;
1833}
1834
1835static bool flush_dirty_inode(struct page *page)
1836{
1837 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1838 struct inode *inode;
1839 nid_t ino = ino_of_node(page);
1840
1841 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1842 if (!inode)
1843 return false;
1844
1845 f2fs_update_inode(inode, page);
1846 unlock_page(page);
1847
1848 iput(inode);
1849 return true;
1850}
1851
1852void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1853{
1854 pgoff_t index = 0;
1855 struct pagevec pvec;
1856 int nr_pages;
1857
1858 pagevec_init(&pvec);
1859
1860 while ((nr_pages = pagevec_lookup_tag(&pvec,
1861 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1862 int i;
1863
1864 for (i = 0; i < nr_pages; i++) {
1865 struct page *page = pvec.pages[i];
1866
1867 if (!IS_DNODE(page))
1868 continue;
1869
1870 lock_page(page);
1871
1872 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1873continue_unlock:
1874 unlock_page(page);
1875 continue;
1876 }
1877
1878 if (!PageDirty(page)) {
1879 /* someone wrote it for us */
1880 goto continue_unlock;
1881 }
1882
1883 /* flush inline_data, if it's async context. */
1884 if (page_private_inline(page)) {
1885 clear_page_private_inline(page);
1886 unlock_page(page);
1887 flush_inline_data(sbi, ino_of_node(page));
1888 continue;
1889 }
1890 unlock_page(page);
1891 }
1892 pagevec_release(&pvec);
1893 cond_resched();
1894 }
1895}
1896
1897int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1898 struct writeback_control *wbc,
1899 bool do_balance, enum iostat_type io_type)
1900{
1901 pgoff_t index;
1902 struct pagevec pvec;
1903 int step = 0;
1904 int nwritten = 0;
1905 int ret = 0;
1906 int nr_pages, done = 0;
1907
1908 pagevec_init(&pvec);
1909
1910next_step:
1911 index = 0;
1912
1913 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1914 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1915 int i;
1916
1917 for (i = 0; i < nr_pages; i++) {
1918 struct page *page = pvec.pages[i];
1919 bool submitted = false;
1920 bool may_dirty = true;
1921
1922 /* give a priority to WB_SYNC threads */
1923 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1924 wbc->sync_mode == WB_SYNC_NONE) {
1925 done = 1;
1926 break;
1927 }
1928
1929 /*
1930 * flushing sequence with step:
1931 * 0. indirect nodes
1932 * 1. dentry dnodes
1933 * 2. file dnodes
1934 */
1935 if (step == 0 && IS_DNODE(page))
1936 continue;
1937 if (step == 1 && (!IS_DNODE(page) ||
1938 is_cold_node(page)))
1939 continue;
1940 if (step == 2 && (!IS_DNODE(page) ||
1941 !is_cold_node(page)))
1942 continue;
1943lock_node:
1944 if (wbc->sync_mode == WB_SYNC_ALL)
1945 lock_page(page);
1946 else if (!trylock_page(page))
1947 continue;
1948
1949 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1950continue_unlock:
1951 unlock_page(page);
1952 continue;
1953 }
1954
1955 if (!PageDirty(page)) {
1956 /* someone wrote it for us */
1957 goto continue_unlock;
1958 }
1959
1960 /* flush inline_data/inode, if it's async context. */
1961 if (!do_balance)
1962 goto write_node;
1963
1964 /* flush inline_data */
1965 if (page_private_inline(page)) {
1966 clear_page_private_inline(page);
1967 unlock_page(page);
1968 flush_inline_data(sbi, ino_of_node(page));
1969 goto lock_node;
1970 }
1971
1972 /* flush dirty inode */
1973 if (IS_INODE(page) && may_dirty) {
1974 may_dirty = false;
1975 if (flush_dirty_inode(page))
1976 goto lock_node;
1977 }
1978write_node:
1979 f2fs_wait_on_page_writeback(page, NODE, true, true);
1980
1981 if (!clear_page_dirty_for_io(page))
1982 goto continue_unlock;
1983
1984 set_fsync_mark(page, 0);
1985 set_dentry_mark(page, 0);
1986
1987 ret = __write_node_page(page, false, &submitted,
1988 wbc, do_balance, io_type, NULL);
1989 if (ret)
1990 unlock_page(page);
1991 else if (submitted)
1992 nwritten++;
1993
1994 if (--wbc->nr_to_write == 0)
1995 break;
1996 }
1997 pagevec_release(&pvec);
1998 cond_resched();
1999
2000 if (wbc->nr_to_write == 0) {
2001 step = 2;
2002 break;
2003 }
2004 }
2005
2006 if (step < 2) {
2007 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2008 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2009 goto out;
2010 step++;
2011 goto next_step;
2012 }
2013out:
2014 if (nwritten)
2015 f2fs_submit_merged_write(sbi, NODE);
2016
2017 if (unlikely(f2fs_cp_error(sbi)))
2018 return -EIO;
2019 return ret;
2020}
2021
2022int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2023 unsigned int seq_id)
2024{
2025 struct fsync_node_entry *fn;
2026 struct page *page;
2027 struct list_head *head = &sbi->fsync_node_list;
2028 unsigned long flags;
2029 unsigned int cur_seq_id = 0;
2030 int ret2, ret = 0;
2031
2032 while (seq_id && cur_seq_id < seq_id) {
2033 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2034 if (list_empty(head)) {
2035 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2036 break;
2037 }
2038 fn = list_first_entry(head, struct fsync_node_entry, list);
2039 if (fn->seq_id > seq_id) {
2040 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2041 break;
2042 }
2043 cur_seq_id = fn->seq_id;
2044 page = fn->page;
2045 get_page(page);
2046 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2047
2048 f2fs_wait_on_page_writeback(page, NODE, true, false);
2049 if (TestClearPageError(page))
2050 ret = -EIO;
2051
2052 put_page(page);
2053
2054 if (ret)
2055 break;
2056 }
2057
2058 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2059 if (!ret)
2060 ret = ret2;
2061
2062 return ret;
2063}
2064
2065static int f2fs_write_node_pages(struct address_space *mapping,
2066 struct writeback_control *wbc)
2067{
2068 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2069 struct blk_plug plug;
2070 long diff;
2071
2072 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2073 goto skip_write;
2074
2075 /* balancing f2fs's metadata in background */
2076 f2fs_balance_fs_bg(sbi, true);
2077
2078 /* collect a number of dirty node pages and write together */
2079 if (wbc->sync_mode != WB_SYNC_ALL &&
2080 get_pages(sbi, F2FS_DIRTY_NODES) <
2081 nr_pages_to_skip(sbi, NODE))
2082 goto skip_write;
2083
2084 if (wbc->sync_mode == WB_SYNC_ALL)
2085 atomic_inc(&sbi->wb_sync_req[NODE]);
2086 else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2087 /* to avoid potential deadlock */
2088 if (current->plug)
2089 blk_finish_plug(current->plug);
2090 goto skip_write;
2091 }
2092
2093 trace_f2fs_writepages(mapping->host, wbc, NODE);
2094
2095 diff = nr_pages_to_write(sbi, NODE, wbc);
2096 blk_start_plug(&plug);
2097 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2098 blk_finish_plug(&plug);
2099 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2100
2101 if (wbc->sync_mode == WB_SYNC_ALL)
2102 atomic_dec(&sbi->wb_sync_req[NODE]);
2103 return 0;
2104
2105skip_write:
2106 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2107 trace_f2fs_writepages(mapping->host, wbc, NODE);
2108 return 0;
2109}
2110
2111static int f2fs_set_node_page_dirty(struct page *page)
2112{
2113 trace_f2fs_set_page_dirty(page, NODE);
2114
2115 if (!PageUptodate(page))
2116 SetPageUptodate(page);
2117#ifdef CONFIG_F2FS_CHECK_FS
2118 if (IS_INODE(page))
2119 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2120#endif
2121 if (!PageDirty(page)) {
2122 __set_page_dirty_nobuffers(page);
2123 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2124 set_page_private_reference(page);
2125 return 1;
2126 }
2127 return 0;
2128}
2129
2130/*
2131 * Structure of the f2fs node operations
2132 */
2133const struct address_space_operations f2fs_node_aops = {
2134 .writepage = f2fs_write_node_page,
2135 .writepages = f2fs_write_node_pages,
2136 .set_page_dirty = f2fs_set_node_page_dirty,
2137 .invalidatepage = f2fs_invalidate_page,
2138 .releasepage = f2fs_release_page,
2139#ifdef CONFIG_MIGRATION
2140 .migratepage = f2fs_migrate_page,
2141#endif
2142};
2143
2144static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2145 nid_t n)
2146{
2147 return radix_tree_lookup(&nm_i->free_nid_root, n);
2148}
2149
2150static int __insert_free_nid(struct f2fs_sb_info *sbi,
2151 struct free_nid *i)
2152{
2153 struct f2fs_nm_info *nm_i = NM_I(sbi);
2154 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2155
2156 if (err)
2157 return err;
2158
2159 nm_i->nid_cnt[FREE_NID]++;
2160 list_add_tail(&i->list, &nm_i->free_nid_list);
2161 return 0;
2162}
2163
2164static void __remove_free_nid(struct f2fs_sb_info *sbi,
2165 struct free_nid *i, enum nid_state state)
2166{
2167 struct f2fs_nm_info *nm_i = NM_I(sbi);
2168
2169 f2fs_bug_on(sbi, state != i->state);
2170 nm_i->nid_cnt[state]--;
2171 if (state == FREE_NID)
2172 list_del(&i->list);
2173 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2174}
2175
2176static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2177 enum nid_state org_state, enum nid_state dst_state)
2178{
2179 struct f2fs_nm_info *nm_i = NM_I(sbi);
2180
2181 f2fs_bug_on(sbi, org_state != i->state);
2182 i->state = dst_state;
2183 nm_i->nid_cnt[org_state]--;
2184 nm_i->nid_cnt[dst_state]++;
2185
2186 switch (dst_state) {
2187 case PREALLOC_NID:
2188 list_del(&i->list);
2189 break;
2190 case FREE_NID:
2191 list_add_tail(&i->list, &nm_i->free_nid_list);
2192 break;
2193 default:
2194 BUG_ON(1);
2195 }
2196}
2197
2198static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2199 bool set, bool build)
2200{
2201 struct f2fs_nm_info *nm_i = NM_I(sbi);
2202 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2203 unsigned int nid_ofs = nid - START_NID(nid);
2204
2205 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2206 return;
2207
2208 if (set) {
2209 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2210 return;
2211 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2212 nm_i->free_nid_count[nat_ofs]++;
2213 } else {
2214 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2215 return;
2216 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2217 if (!build)
2218 nm_i->free_nid_count[nat_ofs]--;
2219 }
2220}
2221
2222/* return if the nid is recognized as free */
2223static bool add_free_nid(struct f2fs_sb_info *sbi,
2224 nid_t nid, bool build, bool update)
2225{
2226 struct f2fs_nm_info *nm_i = NM_I(sbi);
2227 struct free_nid *i, *e;
2228 struct nat_entry *ne;
2229 int err = -EINVAL;
2230 bool ret = false;
2231
2232 /* 0 nid should not be used */
2233 if (unlikely(nid == 0))
2234 return false;
2235
2236 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2237 return false;
2238
2239 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2240 i->nid = nid;
2241 i->state = FREE_NID;
2242
2243 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2244
2245 spin_lock(&nm_i->nid_list_lock);
2246
2247 if (build) {
2248 /*
2249 * Thread A Thread B
2250 * - f2fs_create
2251 * - f2fs_new_inode
2252 * - f2fs_alloc_nid
2253 * - __insert_nid_to_list(PREALLOC_NID)
2254 * - f2fs_balance_fs_bg
2255 * - f2fs_build_free_nids
2256 * - __f2fs_build_free_nids
2257 * - scan_nat_page
2258 * - add_free_nid
2259 * - __lookup_nat_cache
2260 * - f2fs_add_link
2261 * - f2fs_init_inode_metadata
2262 * - f2fs_new_inode_page
2263 * - f2fs_new_node_page
2264 * - set_node_addr
2265 * - f2fs_alloc_nid_done
2266 * - __remove_nid_from_list(PREALLOC_NID)
2267 * - __insert_nid_to_list(FREE_NID)
2268 */
2269 ne = __lookup_nat_cache(nm_i, nid);
2270 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2271 nat_get_blkaddr(ne) != NULL_ADDR))
2272 goto err_out;
2273
2274 e = __lookup_free_nid_list(nm_i, nid);
2275 if (e) {
2276 if (e->state == FREE_NID)
2277 ret = true;
2278 goto err_out;
2279 }
2280 }
2281 ret = true;
2282 err = __insert_free_nid(sbi, i);
2283err_out:
2284 if (update) {
2285 update_free_nid_bitmap(sbi, nid, ret, build);
2286 if (!build)
2287 nm_i->available_nids++;
2288 }
2289 spin_unlock(&nm_i->nid_list_lock);
2290 radix_tree_preload_end();
2291
2292 if (err)
2293 kmem_cache_free(free_nid_slab, i);
2294 return ret;
2295}
2296
2297static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2298{
2299 struct f2fs_nm_info *nm_i = NM_I(sbi);
2300 struct free_nid *i;
2301 bool need_free = false;
2302
2303 spin_lock(&nm_i->nid_list_lock);
2304 i = __lookup_free_nid_list(nm_i, nid);
2305 if (i && i->state == FREE_NID) {
2306 __remove_free_nid(sbi, i, FREE_NID);
2307 need_free = true;
2308 }
2309 spin_unlock(&nm_i->nid_list_lock);
2310
2311 if (need_free)
2312 kmem_cache_free(free_nid_slab, i);
2313}
2314
2315static int scan_nat_page(struct f2fs_sb_info *sbi,
2316 struct page *nat_page, nid_t start_nid)
2317{
2318 struct f2fs_nm_info *nm_i = NM_I(sbi);
2319 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2320 block_t blk_addr;
2321 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2322 int i;
2323
2324 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2325
2326 i = start_nid % NAT_ENTRY_PER_BLOCK;
2327
2328 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2329 if (unlikely(start_nid >= nm_i->max_nid))
2330 break;
2331
2332 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2333
2334 if (blk_addr == NEW_ADDR)
2335 return -EINVAL;
2336
2337 if (blk_addr == NULL_ADDR) {
2338 add_free_nid(sbi, start_nid, true, true);
2339 } else {
2340 spin_lock(&NM_I(sbi)->nid_list_lock);
2341 update_free_nid_bitmap(sbi, start_nid, false, true);
2342 spin_unlock(&NM_I(sbi)->nid_list_lock);
2343 }
2344 }
2345
2346 return 0;
2347}
2348
2349static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2350{
2351 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2352 struct f2fs_journal *journal = curseg->journal;
2353 int i;
2354
2355 down_read(&curseg->journal_rwsem);
2356 for (i = 0; i < nats_in_cursum(journal); i++) {
2357 block_t addr;
2358 nid_t nid;
2359
2360 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2361 nid = le32_to_cpu(nid_in_journal(journal, i));
2362 if (addr == NULL_ADDR)
2363 add_free_nid(sbi, nid, true, false);
2364 else
2365 remove_free_nid(sbi, nid);
2366 }
2367 up_read(&curseg->journal_rwsem);
2368}
2369
2370static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2371{
2372 struct f2fs_nm_info *nm_i = NM_I(sbi);
2373 unsigned int i, idx;
2374 nid_t nid;
2375
2376 down_read(&nm_i->nat_tree_lock);
2377
2378 for (i = 0; i < nm_i->nat_blocks; i++) {
2379 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2380 continue;
2381 if (!nm_i->free_nid_count[i])
2382 continue;
2383 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2384 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2385 NAT_ENTRY_PER_BLOCK, idx);
2386 if (idx >= NAT_ENTRY_PER_BLOCK)
2387 break;
2388
2389 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2390 add_free_nid(sbi, nid, true, false);
2391
2392 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2393 goto out;
2394 }
2395 }
2396out:
2397 scan_curseg_cache(sbi);
2398
2399 up_read(&nm_i->nat_tree_lock);
2400}
2401
2402static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2403 bool sync, bool mount)
2404{
2405 struct f2fs_nm_info *nm_i = NM_I(sbi);
2406 int i = 0, ret;
2407 nid_t nid = nm_i->next_scan_nid;
2408
2409 if (unlikely(nid >= nm_i->max_nid))
2410 nid = 0;
2411
2412 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2413 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2414
2415 /* Enough entries */
2416 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2417 return 0;
2418
2419 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2420 return 0;
2421
2422 if (!mount) {
2423 /* try to find free nids in free_nid_bitmap */
2424 scan_free_nid_bits(sbi);
2425
2426 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2427 return 0;
2428 }
2429
2430 /* readahead nat pages to be scanned */
2431 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2432 META_NAT, true);
2433
2434 down_read(&nm_i->nat_tree_lock);
2435
2436 while (1) {
2437 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2438 nm_i->nat_block_bitmap)) {
2439 struct page *page = get_current_nat_page(sbi, nid);
2440
2441 if (IS_ERR(page)) {
2442 ret = PTR_ERR(page);
2443 } else {
2444 ret = scan_nat_page(sbi, page, nid);
2445 f2fs_put_page(page, 1);
2446 }
2447
2448 if (ret) {
2449 up_read(&nm_i->nat_tree_lock);
2450 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2451 return ret;
2452 }
2453 }
2454
2455 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2456 if (unlikely(nid >= nm_i->max_nid))
2457 nid = 0;
2458
2459 if (++i >= FREE_NID_PAGES)
2460 break;
2461 }
2462
2463 /* go to the next free nat pages to find free nids abundantly */
2464 nm_i->next_scan_nid = nid;
2465
2466 /* find free nids from current sum_pages */
2467 scan_curseg_cache(sbi);
2468
2469 up_read(&nm_i->nat_tree_lock);
2470
2471 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2472 nm_i->ra_nid_pages, META_NAT, false);
2473
2474 return 0;
2475}
2476
2477int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2478{
2479 int ret;
2480
2481 mutex_lock(&NM_I(sbi)->build_lock);
2482 ret = __f2fs_build_free_nids(sbi, sync, mount);
2483 mutex_unlock(&NM_I(sbi)->build_lock);
2484
2485 return ret;
2486}
2487
2488/*
2489 * If this function returns success, caller can obtain a new nid
2490 * from second parameter of this function.
2491 * The returned nid could be used ino as well as nid when inode is created.
2492 */
2493bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2494{
2495 struct f2fs_nm_info *nm_i = NM_I(sbi);
2496 struct free_nid *i = NULL;
2497retry:
2498 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2499 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2500 return false;
2501 }
2502
2503 spin_lock(&nm_i->nid_list_lock);
2504
2505 if (unlikely(nm_i->available_nids == 0)) {
2506 spin_unlock(&nm_i->nid_list_lock);
2507 return false;
2508 }
2509
2510 /* We should not use stale free nids created by f2fs_build_free_nids */
2511 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2512 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2513 i = list_first_entry(&nm_i->free_nid_list,
2514 struct free_nid, list);
2515 *nid = i->nid;
2516
2517 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2518 nm_i->available_nids--;
2519
2520 update_free_nid_bitmap(sbi, *nid, false, false);
2521
2522 spin_unlock(&nm_i->nid_list_lock);
2523 return true;
2524 }
2525 spin_unlock(&nm_i->nid_list_lock);
2526
2527 /* Let's scan nat pages and its caches to get free nids */
2528 if (!f2fs_build_free_nids(sbi, true, false))
2529 goto retry;
2530 return false;
2531}
2532
2533/*
2534 * f2fs_alloc_nid() should be called prior to this function.
2535 */
2536void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2537{
2538 struct f2fs_nm_info *nm_i = NM_I(sbi);
2539 struct free_nid *i;
2540
2541 spin_lock(&nm_i->nid_list_lock);
2542 i = __lookup_free_nid_list(nm_i, nid);
2543 f2fs_bug_on(sbi, !i);
2544 __remove_free_nid(sbi, i, PREALLOC_NID);
2545 spin_unlock(&nm_i->nid_list_lock);
2546
2547 kmem_cache_free(free_nid_slab, i);
2548}
2549
2550/*
2551 * f2fs_alloc_nid() should be called prior to this function.
2552 */
2553void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2554{
2555 struct f2fs_nm_info *nm_i = NM_I(sbi);
2556 struct free_nid *i;
2557 bool need_free = false;
2558
2559 if (!nid)
2560 return;
2561
2562 spin_lock(&nm_i->nid_list_lock);
2563 i = __lookup_free_nid_list(nm_i, nid);
2564 f2fs_bug_on(sbi, !i);
2565
2566 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2567 __remove_free_nid(sbi, i, PREALLOC_NID);
2568 need_free = true;
2569 } else {
2570 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2571 }
2572
2573 nm_i->available_nids++;
2574
2575 update_free_nid_bitmap(sbi, nid, true, false);
2576
2577 spin_unlock(&nm_i->nid_list_lock);
2578
2579 if (need_free)
2580 kmem_cache_free(free_nid_slab, i);
2581}
2582
2583int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2584{
2585 struct f2fs_nm_info *nm_i = NM_I(sbi);
2586 int nr = nr_shrink;
2587
2588 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2589 return 0;
2590
2591 if (!mutex_trylock(&nm_i->build_lock))
2592 return 0;
2593
2594 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2595 struct free_nid *i, *next;
2596 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2597
2598 spin_lock(&nm_i->nid_list_lock);
2599 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2600 if (!nr_shrink || !batch ||
2601 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2602 break;
2603 __remove_free_nid(sbi, i, FREE_NID);
2604 kmem_cache_free(free_nid_slab, i);
2605 nr_shrink--;
2606 batch--;
2607 }
2608 spin_unlock(&nm_i->nid_list_lock);
2609 }
2610
2611 mutex_unlock(&nm_i->build_lock);
2612
2613 return nr - nr_shrink;
2614}
2615
2616int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2617{
2618 void *src_addr, *dst_addr;
2619 size_t inline_size;
2620 struct page *ipage;
2621 struct f2fs_inode *ri;
2622
2623 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2624 if (IS_ERR(ipage))
2625 return PTR_ERR(ipage);
2626
2627 ri = F2FS_INODE(page);
2628 if (ri->i_inline & F2FS_INLINE_XATTR) {
2629 if (!f2fs_has_inline_xattr(inode)) {
2630 set_inode_flag(inode, FI_INLINE_XATTR);
2631 stat_inc_inline_xattr(inode);
2632 }
2633 } else {
2634 if (f2fs_has_inline_xattr(inode)) {
2635 stat_dec_inline_xattr(inode);
2636 clear_inode_flag(inode, FI_INLINE_XATTR);
2637 }
2638 goto update_inode;
2639 }
2640
2641 dst_addr = inline_xattr_addr(inode, ipage);
2642 src_addr = inline_xattr_addr(inode, page);
2643 inline_size = inline_xattr_size(inode);
2644
2645 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2646 memcpy(dst_addr, src_addr, inline_size);
2647update_inode:
2648 f2fs_update_inode(inode, ipage);
2649 f2fs_put_page(ipage, 1);
2650 return 0;
2651}
2652
2653int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2654{
2655 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2656 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2657 nid_t new_xnid;
2658 struct dnode_of_data dn;
2659 struct node_info ni;
2660 struct page *xpage;
2661 int err;
2662
2663 if (!prev_xnid)
2664 goto recover_xnid;
2665
2666 /* 1: invalidate the previous xattr nid */
2667 err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2668 if (err)
2669 return err;
2670
2671 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2672 dec_valid_node_count(sbi, inode, false);
2673 set_node_addr(sbi, &ni, NULL_ADDR, false);
2674
2675recover_xnid:
2676 /* 2: update xattr nid in inode */
2677 if (!f2fs_alloc_nid(sbi, &new_xnid))
2678 return -ENOSPC;
2679
2680 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2681 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2682 if (IS_ERR(xpage)) {
2683 f2fs_alloc_nid_failed(sbi, new_xnid);
2684 return PTR_ERR(xpage);
2685 }
2686
2687 f2fs_alloc_nid_done(sbi, new_xnid);
2688 f2fs_update_inode_page(inode);
2689
2690 /* 3: update and set xattr node page dirty */
2691 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2692
2693 set_page_dirty(xpage);
2694 f2fs_put_page(xpage, 1);
2695
2696 return 0;
2697}
2698
2699int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2700{
2701 struct f2fs_inode *src, *dst;
2702 nid_t ino = ino_of_node(page);
2703 struct node_info old_ni, new_ni;
2704 struct page *ipage;
2705 int err;
2706
2707 err = f2fs_get_node_info(sbi, ino, &old_ni);
2708 if (err)
2709 return err;
2710
2711 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2712 return -EINVAL;
2713retry:
2714 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2715 if (!ipage) {
2716 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2717 goto retry;
2718 }
2719
2720 /* Should not use this inode from free nid list */
2721 remove_free_nid(sbi, ino);
2722
2723 if (!PageUptodate(ipage))
2724 SetPageUptodate(ipage);
2725 fill_node_footer(ipage, ino, ino, 0, true);
2726 set_cold_node(ipage, false);
2727
2728 src = F2FS_INODE(page);
2729 dst = F2FS_INODE(ipage);
2730
2731 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2732 dst->i_size = 0;
2733 dst->i_blocks = cpu_to_le64(1);
2734 dst->i_links = cpu_to_le32(1);
2735 dst->i_xattr_nid = 0;
2736 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2737 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2738 dst->i_extra_isize = src->i_extra_isize;
2739
2740 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2741 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2742 i_inline_xattr_size))
2743 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2744
2745 if (f2fs_sb_has_project_quota(sbi) &&
2746 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2747 i_projid))
2748 dst->i_projid = src->i_projid;
2749
2750 if (f2fs_sb_has_inode_crtime(sbi) &&
2751 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2752 i_crtime_nsec)) {
2753 dst->i_crtime = src->i_crtime;
2754 dst->i_crtime_nsec = src->i_crtime_nsec;
2755 }
2756 }
2757
2758 new_ni = old_ni;
2759 new_ni.ino = ino;
2760
2761 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2762 WARN_ON(1);
2763 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2764 inc_valid_inode_count(sbi);
2765 set_page_dirty(ipage);
2766 f2fs_put_page(ipage, 1);
2767 return 0;
2768}
2769
2770int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2771 unsigned int segno, struct f2fs_summary_block *sum)
2772{
2773 struct f2fs_node *rn;
2774 struct f2fs_summary *sum_entry;
2775 block_t addr;
2776 int i, idx, last_offset, nrpages;
2777
2778 /* scan the node segment */
2779 last_offset = sbi->blocks_per_seg;
2780 addr = START_BLOCK(sbi, segno);
2781 sum_entry = &sum->entries[0];
2782
2783 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2784 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2785
2786 /* readahead node pages */
2787 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2788
2789 for (idx = addr; idx < addr + nrpages; idx++) {
2790 struct page *page = f2fs_get_tmp_page(sbi, idx);
2791
2792 if (IS_ERR(page))
2793 return PTR_ERR(page);
2794
2795 rn = F2FS_NODE(page);
2796 sum_entry->nid = rn->footer.nid;
2797 sum_entry->version = 0;
2798 sum_entry->ofs_in_node = 0;
2799 sum_entry++;
2800 f2fs_put_page(page, 1);
2801 }
2802
2803 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2804 addr + nrpages);
2805 }
2806 return 0;
2807}
2808
2809static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2810{
2811 struct f2fs_nm_info *nm_i = NM_I(sbi);
2812 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2813 struct f2fs_journal *journal = curseg->journal;
2814 int i;
2815
2816 down_write(&curseg->journal_rwsem);
2817 for (i = 0; i < nats_in_cursum(journal); i++) {
2818 struct nat_entry *ne;
2819 struct f2fs_nat_entry raw_ne;
2820 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2821
2822 if (f2fs_check_nid_range(sbi, nid))
2823 continue;
2824
2825 raw_ne = nat_in_journal(journal, i);
2826
2827 ne = __lookup_nat_cache(nm_i, nid);
2828 if (!ne) {
2829 ne = __alloc_nat_entry(nid, true);
2830 __init_nat_entry(nm_i, ne, &raw_ne, true);
2831 }
2832
2833 /*
2834 * if a free nat in journal has not been used after last
2835 * checkpoint, we should remove it from available nids,
2836 * since later we will add it again.
2837 */
2838 if (!get_nat_flag(ne, IS_DIRTY) &&
2839 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2840 spin_lock(&nm_i->nid_list_lock);
2841 nm_i->available_nids--;
2842 spin_unlock(&nm_i->nid_list_lock);
2843 }
2844
2845 __set_nat_cache_dirty(nm_i, ne);
2846 }
2847 update_nats_in_cursum(journal, -i);
2848 up_write(&curseg->journal_rwsem);
2849}
2850
2851static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2852 struct list_head *head, int max)
2853{
2854 struct nat_entry_set *cur;
2855
2856 if (nes->entry_cnt >= max)
2857 goto add_out;
2858
2859 list_for_each_entry(cur, head, set_list) {
2860 if (cur->entry_cnt >= nes->entry_cnt) {
2861 list_add(&nes->set_list, cur->set_list.prev);
2862 return;
2863 }
2864 }
2865add_out:
2866 list_add_tail(&nes->set_list, head);
2867}
2868
2869static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2870 struct page *page)
2871{
2872 struct f2fs_nm_info *nm_i = NM_I(sbi);
2873 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2874 struct f2fs_nat_block *nat_blk = page_address(page);
2875 int valid = 0;
2876 int i = 0;
2877
2878 if (!enabled_nat_bits(sbi, NULL))
2879 return;
2880
2881 if (nat_index == 0) {
2882 valid = 1;
2883 i = 1;
2884 }
2885 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2886 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2887 valid++;
2888 }
2889 if (valid == 0) {
2890 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2891 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2892 return;
2893 }
2894
2895 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2896 if (valid == NAT_ENTRY_PER_BLOCK)
2897 __set_bit_le(nat_index, nm_i->full_nat_bits);
2898 else
2899 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2900}
2901
2902static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2903 struct nat_entry_set *set, struct cp_control *cpc)
2904{
2905 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2906 struct f2fs_journal *journal = curseg->journal;
2907 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2908 bool to_journal = true;
2909 struct f2fs_nat_block *nat_blk;
2910 struct nat_entry *ne, *cur;
2911 struct page *page = NULL;
2912
2913 /*
2914 * there are two steps to flush nat entries:
2915 * #1, flush nat entries to journal in current hot data summary block.
2916 * #2, flush nat entries to nat page.
2917 */
2918 if (enabled_nat_bits(sbi, cpc) ||
2919 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2920 to_journal = false;
2921
2922 if (to_journal) {
2923 down_write(&curseg->journal_rwsem);
2924 } else {
2925 page = get_next_nat_page(sbi, start_nid);
2926 if (IS_ERR(page))
2927 return PTR_ERR(page);
2928
2929 nat_blk = page_address(page);
2930 f2fs_bug_on(sbi, !nat_blk);
2931 }
2932
2933 /* flush dirty nats in nat entry set */
2934 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2935 struct f2fs_nat_entry *raw_ne;
2936 nid_t nid = nat_get_nid(ne);
2937 int offset;
2938
2939 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2940
2941 if (to_journal) {
2942 offset = f2fs_lookup_journal_in_cursum(journal,
2943 NAT_JOURNAL, nid, 1);
2944 f2fs_bug_on(sbi, offset < 0);
2945 raw_ne = &nat_in_journal(journal, offset);
2946 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2947 } else {
2948 raw_ne = &nat_blk->entries[nid - start_nid];
2949 }
2950 raw_nat_from_node_info(raw_ne, &ne->ni);
2951 nat_reset_flag(ne);
2952 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2953 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2954 add_free_nid(sbi, nid, false, true);
2955 } else {
2956 spin_lock(&NM_I(sbi)->nid_list_lock);
2957 update_free_nid_bitmap(sbi, nid, false, false);
2958 spin_unlock(&NM_I(sbi)->nid_list_lock);
2959 }
2960 }
2961
2962 if (to_journal) {
2963 up_write(&curseg->journal_rwsem);
2964 } else {
2965 __update_nat_bits(sbi, start_nid, page);
2966 f2fs_put_page(page, 1);
2967 }
2968
2969 /* Allow dirty nats by node block allocation in write_begin */
2970 if (!set->entry_cnt) {
2971 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2972 kmem_cache_free(nat_entry_set_slab, set);
2973 }
2974 return 0;
2975}
2976
2977/*
2978 * This function is called during the checkpointing process.
2979 */
2980int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2981{
2982 struct f2fs_nm_info *nm_i = NM_I(sbi);
2983 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2984 struct f2fs_journal *journal = curseg->journal;
2985 struct nat_entry_set *setvec[SETVEC_SIZE];
2986 struct nat_entry_set *set, *tmp;
2987 unsigned int found;
2988 nid_t set_idx = 0;
2989 LIST_HEAD(sets);
2990 int err = 0;
2991
2992 /*
2993 * during unmount, let's flush nat_bits before checking
2994 * nat_cnt[DIRTY_NAT].
2995 */
2996 if (enabled_nat_bits(sbi, cpc)) {
2997 down_write(&nm_i->nat_tree_lock);
2998 remove_nats_in_journal(sbi);
2999 up_write(&nm_i->nat_tree_lock);
3000 }
3001
3002 if (!nm_i->nat_cnt[DIRTY_NAT])
3003 return 0;
3004
3005 down_write(&nm_i->nat_tree_lock);
3006
3007 /*
3008 * if there are no enough space in journal to store dirty nat
3009 * entries, remove all entries from journal and merge them
3010 * into nat entry set.
3011 */
3012 if (enabled_nat_bits(sbi, cpc) ||
3013 !__has_cursum_space(journal,
3014 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3015 remove_nats_in_journal(sbi);
3016
3017 while ((found = __gang_lookup_nat_set(nm_i,
3018 set_idx, SETVEC_SIZE, setvec))) {
3019 unsigned idx;
3020
3021 set_idx = setvec[found - 1]->set + 1;
3022 for (idx = 0; idx < found; idx++)
3023 __adjust_nat_entry_set(setvec[idx], &sets,
3024 MAX_NAT_JENTRIES(journal));
3025 }
3026
3027 /* flush dirty nats in nat entry set */
3028 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3029 err = __flush_nat_entry_set(sbi, set, cpc);
3030 if (err)
3031 break;
3032 }
3033
3034 up_write(&nm_i->nat_tree_lock);
3035 /* Allow dirty nats by node block allocation in write_begin */
3036
3037 return err;
3038}
3039
3040static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3041{
3042 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3043 struct f2fs_nm_info *nm_i = NM_I(sbi);
3044 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3045 unsigned int i;
3046 __u64 cp_ver = cur_cp_version(ckpt);
3047 block_t nat_bits_addr;
3048
3049 if (!enabled_nat_bits(sbi, NULL))
3050 return 0;
3051
3052 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3053 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3054 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3055 if (!nm_i->nat_bits)
3056 return -ENOMEM;
3057
3058 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3059 nm_i->nat_bits_blocks;
3060 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3061 struct page *page;
3062
3063 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3064 if (IS_ERR(page))
3065 return PTR_ERR(page);
3066
3067 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3068 page_address(page), F2FS_BLKSIZE);
3069 f2fs_put_page(page, 1);
3070 }
3071
3072 cp_ver |= (cur_cp_crc(ckpt) << 32);
3073 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3074 disable_nat_bits(sbi, true);
3075 return 0;
3076 }
3077
3078 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3079 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3080
3081 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3082 return 0;
3083}
3084
3085static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3086{
3087 struct f2fs_nm_info *nm_i = NM_I(sbi);
3088 unsigned int i = 0;
3089 nid_t nid, last_nid;
3090
3091 if (!enabled_nat_bits(sbi, NULL))
3092 return;
3093
3094 for (i = 0; i < nm_i->nat_blocks; i++) {
3095 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3096 if (i >= nm_i->nat_blocks)
3097 break;
3098
3099 __set_bit_le(i, nm_i->nat_block_bitmap);
3100
3101 nid = i * NAT_ENTRY_PER_BLOCK;
3102 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3103
3104 spin_lock(&NM_I(sbi)->nid_list_lock);
3105 for (; nid < last_nid; nid++)
3106 update_free_nid_bitmap(sbi, nid, true, true);
3107 spin_unlock(&NM_I(sbi)->nid_list_lock);
3108 }
3109
3110 for (i = 0; i < nm_i->nat_blocks; i++) {
3111 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3112 if (i >= nm_i->nat_blocks)
3113 break;
3114
3115 __set_bit_le(i, nm_i->nat_block_bitmap);
3116 }
3117}
3118
3119static int init_node_manager(struct f2fs_sb_info *sbi)
3120{
3121 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3122 struct f2fs_nm_info *nm_i = NM_I(sbi);
3123 unsigned char *version_bitmap;
3124 unsigned int nat_segs;
3125 int err;
3126
3127 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3128
3129 /* segment_count_nat includes pair segment so divide to 2. */
3130 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3131 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3132 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3133
3134 /* not used nids: 0, node, meta, (and root counted as valid node) */
3135 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3136 F2FS_RESERVED_NODE_NUM;
3137 nm_i->nid_cnt[FREE_NID] = 0;
3138 nm_i->nid_cnt[PREALLOC_NID] = 0;
3139 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3140 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3141 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3142
3143 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3144 INIT_LIST_HEAD(&nm_i->free_nid_list);
3145 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3146 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3147 INIT_LIST_HEAD(&nm_i->nat_entries);
3148 spin_lock_init(&nm_i->nat_list_lock);
3149
3150 mutex_init(&nm_i->build_lock);
3151 spin_lock_init(&nm_i->nid_list_lock);
3152 init_rwsem(&nm_i->nat_tree_lock);
3153
3154 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3155 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3156 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3157 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3158 GFP_KERNEL);
3159 if (!nm_i->nat_bitmap)
3160 return -ENOMEM;
3161
3162 err = __get_nat_bitmaps(sbi);
3163 if (err)
3164 return err;
3165
3166#ifdef CONFIG_F2FS_CHECK_FS
3167 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3168 GFP_KERNEL);
3169 if (!nm_i->nat_bitmap_mir)
3170 return -ENOMEM;
3171#endif
3172
3173 return 0;
3174}
3175
3176static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3177{
3178 struct f2fs_nm_info *nm_i = NM_I(sbi);
3179 int i;
3180
3181 nm_i->free_nid_bitmap =
3182 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3183 nm_i->nat_blocks),
3184 GFP_KERNEL);
3185 if (!nm_i->free_nid_bitmap)
3186 return -ENOMEM;
3187
3188 for (i = 0; i < nm_i->nat_blocks; i++) {
3189 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3190 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3191 if (!nm_i->free_nid_bitmap[i])
3192 return -ENOMEM;
3193 }
3194
3195 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3196 GFP_KERNEL);
3197 if (!nm_i->nat_block_bitmap)
3198 return -ENOMEM;
3199
3200 nm_i->free_nid_count =
3201 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3202 nm_i->nat_blocks),
3203 GFP_KERNEL);
3204 if (!nm_i->free_nid_count)
3205 return -ENOMEM;
3206 return 0;
3207}
3208
3209int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3210{
3211 int err;
3212
3213 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3214 GFP_KERNEL);
3215 if (!sbi->nm_info)
3216 return -ENOMEM;
3217
3218 err = init_node_manager(sbi);
3219 if (err)
3220 return err;
3221
3222 err = init_free_nid_cache(sbi);
3223 if (err)
3224 return err;
3225
3226 /* load free nid status from nat_bits table */
3227 load_free_nid_bitmap(sbi);
3228
3229 return f2fs_build_free_nids(sbi, true, true);
3230}
3231
3232void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3233{
3234 struct f2fs_nm_info *nm_i = NM_I(sbi);
3235 struct free_nid *i, *next_i;
3236 struct nat_entry *natvec[NATVEC_SIZE];
3237 struct nat_entry_set *setvec[SETVEC_SIZE];
3238 nid_t nid = 0;
3239 unsigned int found;
3240
3241 if (!nm_i)
3242 return;
3243
3244 /* destroy free nid list */
3245 spin_lock(&nm_i->nid_list_lock);
3246 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3247 __remove_free_nid(sbi, i, FREE_NID);
3248 spin_unlock(&nm_i->nid_list_lock);
3249 kmem_cache_free(free_nid_slab, i);
3250 spin_lock(&nm_i->nid_list_lock);
3251 }
3252 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3253 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3254 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3255 spin_unlock(&nm_i->nid_list_lock);
3256
3257 /* destroy nat cache */
3258 down_write(&nm_i->nat_tree_lock);
3259 while ((found = __gang_lookup_nat_cache(nm_i,
3260 nid, NATVEC_SIZE, natvec))) {
3261 unsigned idx;
3262
3263 nid = nat_get_nid(natvec[found - 1]) + 1;
3264 for (idx = 0; idx < found; idx++) {
3265 spin_lock(&nm_i->nat_list_lock);
3266 list_del(&natvec[idx]->list);
3267 spin_unlock(&nm_i->nat_list_lock);
3268
3269 __del_from_nat_cache(nm_i, natvec[idx]);
3270 }
3271 }
3272 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3273
3274 /* destroy nat set cache */
3275 nid = 0;
3276 while ((found = __gang_lookup_nat_set(nm_i,
3277 nid, SETVEC_SIZE, setvec))) {
3278 unsigned idx;
3279
3280 nid = setvec[found - 1]->set + 1;
3281 for (idx = 0; idx < found; idx++) {
3282 /* entry_cnt is not zero, when cp_error was occurred */
3283 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3284 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3285 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3286 }
3287 }
3288 up_write(&nm_i->nat_tree_lock);
3289
3290 kvfree(nm_i->nat_block_bitmap);
3291 if (nm_i->free_nid_bitmap) {
3292 int i;
3293
3294 for (i = 0; i < nm_i->nat_blocks; i++)
3295 kvfree(nm_i->free_nid_bitmap[i]);
3296 kvfree(nm_i->free_nid_bitmap);
3297 }
3298 kvfree(nm_i->free_nid_count);
3299
3300 kvfree(nm_i->nat_bitmap);
3301 kvfree(nm_i->nat_bits);
3302#ifdef CONFIG_F2FS_CHECK_FS
3303 kvfree(nm_i->nat_bitmap_mir);
3304#endif
3305 sbi->nm_info = NULL;
3306 kfree(nm_i);
3307}
3308
3309int __init f2fs_create_node_manager_caches(void)
3310{
3311 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3312 sizeof(struct nat_entry));
3313 if (!nat_entry_slab)
3314 goto fail;
3315
3316 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3317 sizeof(struct free_nid));
3318 if (!free_nid_slab)
3319 goto destroy_nat_entry;
3320
3321 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3322 sizeof(struct nat_entry_set));
3323 if (!nat_entry_set_slab)
3324 goto destroy_free_nid;
3325
3326 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3327 sizeof(struct fsync_node_entry));
3328 if (!fsync_node_entry_slab)
3329 goto destroy_nat_entry_set;
3330 return 0;
3331
3332destroy_nat_entry_set:
3333 kmem_cache_destroy(nat_entry_set_slab);
3334destroy_free_nid:
3335 kmem_cache_destroy(free_nid_slab);
3336destroy_nat_entry:
3337 kmem_cache_destroy(nat_entry_slab);
3338fail:
3339 return -ENOMEM;
3340}
3341
3342void f2fs_destroy_node_manager_caches(void)
3343{
3344 kmem_cache_destroy(fsync_node_entry_slab);
3345 kmem_cache_destroy(nat_entry_set_slab);
3346 kmem_cache_destroy(free_nid_slab);
3347 kmem_cache_destroy(nat_entry_slab);
3348}