blob: 74e7aec54aa589f53fb9e00123d268bc4bea8175 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001/*
2 FUSE: Filesystem in Userspace
3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu>
4
5 This program can be distributed under the terms of the GNU GPL.
6 See the file COPYING.
7*/
8
9#include "fuse_i.h"
10
11#include <linux/pagemap.h>
12#include <linux/slab.h>
13#include <linux/kernel.h>
14#include <linux/sched.h>
15#include <linux/sched/signal.h>
16#include <linux/module.h>
17#include <linux/compat.h>
18#include <linux/swap.h>
19#include <linux/falloc.h>
20#include <linux/uio.h>
21#include <linux/fs.h>
22
23static struct page **fuse_pages_alloc(unsigned int npages, gfp_t flags,
24 struct fuse_page_desc **desc)
25{
26 struct page **pages;
27
28 pages = kzalloc(npages * (sizeof(struct page *) +
29 sizeof(struct fuse_page_desc)), flags);
30 *desc = (void *) (pages + npages);
31
32 return pages;
33}
34
35static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
36 int opcode, struct fuse_open_out *outargp)
37{
38 struct fuse_open_in inarg;
39 FUSE_ARGS(args);
40
41 memset(&inarg, 0, sizeof(inarg));
42 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
43 if (!fc->atomic_o_trunc)
44 inarg.flags &= ~O_TRUNC;
45 args.opcode = opcode;
46 args.nodeid = nodeid;
47 args.in_numargs = 1;
48 args.in_args[0].size = sizeof(inarg);
49 args.in_args[0].value = &inarg;
50 args.out_numargs = 1;
51 args.out_args[0].size = sizeof(*outargp);
52 args.out_args[0].value = outargp;
53
54 return fuse_simple_request(fc, &args);
55}
56
57struct fuse_release_args {
58 struct fuse_args args;
59 struct fuse_release_in inarg;
60 struct inode *inode;
61};
62
63struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
64{
65 struct fuse_file *ff;
66
67 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
68 if (unlikely(!ff))
69 return NULL;
70
71 ff->fc = fc;
72 ff->release_args = kzalloc(sizeof(*ff->release_args),
73 GFP_KERNEL_ACCOUNT);
74 if (!ff->release_args) {
75 kfree(ff);
76 return NULL;
77 }
78
79 INIT_LIST_HEAD(&ff->write_entry);
80 mutex_init(&ff->readdir.lock);
81 refcount_set(&ff->count, 1);
82 RB_CLEAR_NODE(&ff->polled_node);
83 init_waitqueue_head(&ff->poll_wait);
84
85 ff->kh = atomic64_inc_return(&fc->khctr);
86
87 return ff;
88}
89
90void fuse_file_free(struct fuse_file *ff)
91{
92 kfree(ff->release_args);
93 mutex_destroy(&ff->readdir.lock);
94 kfree(ff);
95}
96
97static struct fuse_file *fuse_file_get(struct fuse_file *ff)
98{
99 refcount_inc(&ff->count);
100 return ff;
101}
102
103static void fuse_release_end(struct fuse_conn *fc, struct fuse_args *args,
104 int error)
105{
106 struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
107
108 iput(ra->inode);
109 kfree(ra);
110}
111
112static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
113{
114 if (refcount_dec_and_test(&ff->count)) {
115 struct fuse_args *args = &ff->release_args->args;
116
117 if (isdir ? ff->fc->no_opendir : ff->fc->no_open) {
118 /* Do nothing when client does not implement 'open' */
119 fuse_release_end(ff->fc, args, 0);
120 } else if (sync) {
121 fuse_simple_request(ff->fc, args);
122 fuse_release_end(ff->fc, args, 0);
123 } else {
124 args->end = fuse_release_end;
125 if (fuse_simple_background(ff->fc, args,
126 GFP_KERNEL | __GFP_NOFAIL))
127 fuse_release_end(ff->fc, args, -ENOTCONN);
128 }
129 kfree(ff);
130 }
131}
132
133int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
134 bool isdir)
135{
136 struct fuse_file *ff;
137 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
138
139 ff = fuse_file_alloc(fc);
140 if (!ff)
141 return -ENOMEM;
142
143 ff->fh = 0;
144 /* Default for no-open */
145 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
146 if (isdir ? !fc->no_opendir : !fc->no_open) {
147 struct fuse_open_out outarg;
148 int err;
149
150 err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
151 if (!err) {
152 ff->fh = outarg.fh;
153 ff->open_flags = outarg.open_flags;
154 fuse_passthrough_setup(fc, ff, &outarg);
155 } else if (err != -ENOSYS) {
156 fuse_file_free(ff);
157 return err;
158 } else {
159 if (isdir)
160 fc->no_opendir = 1;
161 else
162 fc->no_open = 1;
163 }
164 }
165
166 if (isdir)
167 ff->open_flags &= ~FOPEN_DIRECT_IO;
168
169 ff->nodeid = nodeid;
170 file->private_data = ff;
171
172 return 0;
173}
174EXPORT_SYMBOL_GPL(fuse_do_open);
175
176static void fuse_link_write_file(struct file *file)
177{
178 struct inode *inode = file_inode(file);
179 struct fuse_inode *fi = get_fuse_inode(inode);
180 struct fuse_file *ff = file->private_data;
181 /*
182 * file may be written through mmap, so chain it onto the
183 * inodes's write_file list
184 */
185 spin_lock(&fi->lock);
186 if (list_empty(&ff->write_entry))
187 list_add(&ff->write_entry, &fi->write_files);
188 spin_unlock(&fi->lock);
189}
190
191void fuse_finish_open(struct inode *inode, struct file *file)
192{
193 struct fuse_file *ff = file->private_data;
194 struct fuse_conn *fc = get_fuse_conn(inode);
195
196 if (ff->open_flags & FOPEN_STREAM)
197 stream_open(inode, file);
198 else if (ff->open_flags & FOPEN_NONSEEKABLE)
199 nonseekable_open(inode, file);
200
201 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
202 struct fuse_inode *fi = get_fuse_inode(inode);
203
204 spin_lock(&fi->lock);
205 fi->attr_version = atomic64_inc_return(&fc->attr_version);
206 i_size_write(inode, 0);
207 spin_unlock(&fi->lock);
208 truncate_pagecache(inode, 0);
209 fuse_invalidate_attr(inode);
210 if (fc->writeback_cache)
211 file_update_time(file);
212 } else if (!(ff->open_flags & FOPEN_KEEP_CACHE)) {
213 invalidate_inode_pages2(inode->i_mapping);
214 }
215
216 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
217 fuse_link_write_file(file);
218}
219
220int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
221{
222 struct fuse_conn *fc = get_fuse_conn(inode);
223 int err;
224 bool is_wb_truncate = (file->f_flags & O_TRUNC) &&
225 fc->atomic_o_trunc &&
226 fc->writeback_cache;
227
228 if (fuse_is_bad(inode))
229 return -EIO;
230
231 err = generic_file_open(inode, file);
232 if (err)
233 return err;
234
235 if (is_wb_truncate) {
236 inode_lock(inode);
237 fuse_set_nowrite(inode);
238 }
239
240 err = fuse_do_open(fc, get_node_id(inode), file, isdir);
241
242 if (!err)
243 fuse_finish_open(inode, file);
244
245 if (is_wb_truncate) {
246 fuse_release_nowrite(inode);
247 inode_unlock(inode);
248 }
249
250 return err;
251}
252
253static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
254 int flags, int opcode)
255{
256 struct fuse_conn *fc = ff->fc;
257 struct fuse_release_args *ra = ff->release_args;
258
259 /* Inode is NULL on error path of fuse_create_open() */
260 if (likely(fi)) {
261 spin_lock(&fi->lock);
262 list_del(&ff->write_entry);
263 spin_unlock(&fi->lock);
264 }
265 spin_lock(&fc->lock);
266 if (!RB_EMPTY_NODE(&ff->polled_node))
267 rb_erase(&ff->polled_node, &fc->polled_files);
268 spin_unlock(&fc->lock);
269
270 wake_up_interruptible_all(&ff->poll_wait);
271
272 ra->inarg.fh = ff->fh;
273 ra->inarg.flags = flags;
274 ra->args.in_numargs = 1;
275 ra->args.in_args[0].size = sizeof(struct fuse_release_in);
276 ra->args.in_args[0].value = &ra->inarg;
277 ra->args.opcode = opcode;
278 ra->args.nodeid = ff->nodeid;
279 ra->args.force = true;
280 ra->args.nocreds = true;
281}
282
283void fuse_release_common(struct file *file, bool isdir)
284{
285 struct fuse_inode *fi = get_fuse_inode(file_inode(file));
286 struct fuse_file *ff = file->private_data;
287 struct fuse_release_args *ra = ff->release_args;
288 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
289
290 fuse_passthrough_release(&ff->passthrough);
291
292 fuse_prepare_release(fi, ff, file->f_flags, opcode);
293
294 if (ff->flock) {
295 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
296 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fc,
297 (fl_owner_t) file);
298 }
299 /* Hold inode until release is finished */
300 ra->inode = igrab(file_inode(file));
301
302 /*
303 * Normally this will send the RELEASE request, however if
304 * some asynchronous READ or WRITE requests are outstanding,
305 * the sending will be delayed.
306 *
307 * Make the release synchronous if this is a fuseblk mount,
308 * synchronous RELEASE is allowed (and desirable) in this case
309 * because the server can be trusted not to screw up.
310 */
311 fuse_file_put(ff, ff->fc->destroy, isdir);
312}
313
314static int fuse_open(struct inode *inode, struct file *file)
315{
316 return fuse_open_common(inode, file, false);
317}
318
319static int fuse_release(struct inode *inode, struct file *file)
320{
321 struct fuse_conn *fc = get_fuse_conn(inode);
322
323 /* see fuse_vma_close() for !writeback_cache case */
324 if (fc->writeback_cache)
325 write_inode_now(inode, 1);
326
327 fuse_release_common(file, false);
328
329 /* return value is ignored by VFS */
330 return 0;
331}
332
333void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags)
334{
335 WARN_ON(refcount_read(&ff->count) > 1);
336 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
337 /*
338 * iput(NULL) is a no-op and since the refcount is 1 and everything's
339 * synchronous, we are fine with not doing igrab() here"
340 */
341 fuse_file_put(ff, true, false);
342}
343EXPORT_SYMBOL_GPL(fuse_sync_release);
344
345/*
346 * Scramble the ID space with XTEA, so that the value of the files_struct
347 * pointer is not exposed to userspace.
348 */
349u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
350{
351 u32 *k = fc->scramble_key;
352 u64 v = (unsigned long) id;
353 u32 v0 = v;
354 u32 v1 = v >> 32;
355 u32 sum = 0;
356 int i;
357
358 for (i = 0; i < 32; i++) {
359 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
360 sum += 0x9E3779B9;
361 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
362 }
363
364 return (u64) v0 + ((u64) v1 << 32);
365}
366
367struct fuse_writepage_args {
368 struct fuse_io_args ia;
369 struct list_head writepages_entry;
370 struct list_head queue_entry;
371 struct fuse_writepage_args *next;
372 struct inode *inode;
373};
374
375static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
376 pgoff_t idx_from, pgoff_t idx_to)
377{
378 struct fuse_writepage_args *wpa;
379
380 list_for_each_entry(wpa, &fi->writepages, writepages_entry) {
381 pgoff_t curr_index;
382
383 WARN_ON(get_fuse_inode(wpa->inode) != fi);
384 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
385 if (idx_from < curr_index + wpa->ia.ap.num_pages &&
386 curr_index <= idx_to) {
387 return wpa;
388 }
389 }
390 return NULL;
391}
392
393/*
394 * Check if any page in a range is under writeback
395 *
396 * This is currently done by walking the list of writepage requests
397 * for the inode, which can be pretty inefficient.
398 */
399static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
400 pgoff_t idx_to)
401{
402 struct fuse_inode *fi = get_fuse_inode(inode);
403 bool found;
404
405 spin_lock(&fi->lock);
406 found = fuse_find_writeback(fi, idx_from, idx_to);
407 spin_unlock(&fi->lock);
408
409 return found;
410}
411
412static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
413{
414 return fuse_range_is_writeback(inode, index, index);
415}
416
417/*
418 * Wait for page writeback to be completed.
419 *
420 * Since fuse doesn't rely on the VM writeback tracking, this has to
421 * use some other means.
422 */
423static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
424{
425 struct fuse_inode *fi = get_fuse_inode(inode);
426
427 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
428}
429
430/*
431 * Wait for all pending writepages on the inode to finish.
432 *
433 * This is currently done by blocking further writes with FUSE_NOWRITE
434 * and waiting for all sent writes to complete.
435 *
436 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
437 * could conflict with truncation.
438 */
439static void fuse_sync_writes(struct inode *inode)
440{
441 fuse_set_nowrite(inode);
442 fuse_release_nowrite(inode);
443}
444
445static int fuse_flush(struct file *file, fl_owner_t id)
446{
447 struct inode *inode = file_inode(file);
448 struct fuse_conn *fc = get_fuse_conn(inode);
449 struct fuse_file *ff = file->private_data;
450 struct fuse_flush_in inarg;
451 FUSE_ARGS(args);
452 int err;
453
454 if (fuse_is_bad(inode))
455 return -EIO;
456
457 if (fc->no_flush)
458 return 0;
459
460 err = write_inode_now(inode, 1);
461 if (err)
462 return err;
463
464 inode_lock(inode);
465 fuse_sync_writes(inode);
466 inode_unlock(inode);
467
468 err = filemap_check_errors(file->f_mapping);
469 if (err)
470 return err;
471
472 memset(&inarg, 0, sizeof(inarg));
473 inarg.fh = ff->fh;
474 inarg.lock_owner = fuse_lock_owner_id(fc, id);
475 args.opcode = FUSE_FLUSH;
476 args.nodeid = get_node_id(inode);
477 args.in_numargs = 1;
478 args.in_args[0].size = sizeof(inarg);
479 args.in_args[0].value = &inarg;
480 args.force = true;
481
482 err = fuse_simple_request(fc, &args);
483 if (err == -ENOSYS) {
484 fc->no_flush = 1;
485 err = 0;
486 }
487 return err;
488}
489
490int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
491 int datasync, int opcode)
492{
493 struct inode *inode = file->f_mapping->host;
494 struct fuse_conn *fc = get_fuse_conn(inode);
495 struct fuse_file *ff = file->private_data;
496 FUSE_ARGS(args);
497 struct fuse_fsync_in inarg;
498
499 memset(&inarg, 0, sizeof(inarg));
500 inarg.fh = ff->fh;
501 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
502 args.opcode = opcode;
503 args.nodeid = get_node_id(inode);
504 args.in_numargs = 1;
505 args.in_args[0].size = sizeof(inarg);
506 args.in_args[0].value = &inarg;
507 return fuse_simple_request(fc, &args);
508}
509
510static int fuse_fsync(struct file *file, loff_t start, loff_t end,
511 int datasync)
512{
513 struct inode *inode = file->f_mapping->host;
514 struct fuse_conn *fc = get_fuse_conn(inode);
515 int err;
516
517 if (fuse_is_bad(inode))
518 return -EIO;
519
520 inode_lock(inode);
521
522 /*
523 * Start writeback against all dirty pages of the inode, then
524 * wait for all outstanding writes, before sending the FSYNC
525 * request.
526 */
527 err = file_write_and_wait_range(file, start, end);
528 if (err)
529 goto out;
530
531 fuse_sync_writes(inode);
532
533 /*
534 * Due to implementation of fuse writeback
535 * file_write_and_wait_range() does not catch errors.
536 * We have to do this directly after fuse_sync_writes()
537 */
538 err = file_check_and_advance_wb_err(file);
539 if (err)
540 goto out;
541
542 err = sync_inode_metadata(inode, 1);
543 if (err)
544 goto out;
545
546 if (fc->no_fsync)
547 goto out;
548
549 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
550 if (err == -ENOSYS) {
551 fc->no_fsync = 1;
552 err = 0;
553 }
554out:
555 inode_unlock(inode);
556
557 return err;
558}
559
560void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
561 size_t count, int opcode)
562{
563 struct fuse_file *ff = file->private_data;
564 struct fuse_args *args = &ia->ap.args;
565
566 ia->read.in.fh = ff->fh;
567 ia->read.in.offset = pos;
568 ia->read.in.size = count;
569 ia->read.in.flags = file->f_flags;
570 args->opcode = opcode;
571 args->nodeid = ff->nodeid;
572 args->in_numargs = 1;
573 args->in_args[0].size = sizeof(ia->read.in);
574 args->in_args[0].value = &ia->read.in;
575 args->out_argvar = true;
576 args->out_numargs = 1;
577 args->out_args[0].size = count;
578}
579
580static void fuse_release_user_pages(struct fuse_args_pages *ap,
581 bool should_dirty)
582{
583 unsigned int i;
584
585 for (i = 0; i < ap->num_pages; i++) {
586 if (should_dirty)
587 set_page_dirty_lock(ap->pages[i]);
588 put_page(ap->pages[i]);
589 }
590}
591
592static void fuse_io_release(struct kref *kref)
593{
594 kfree(container_of(kref, struct fuse_io_priv, refcnt));
595}
596
597static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
598{
599 if (io->err)
600 return io->err;
601
602 if (io->bytes >= 0 && io->write)
603 return -EIO;
604
605 return io->bytes < 0 ? io->size : io->bytes;
606}
607
608/**
609 * In case of short read, the caller sets 'pos' to the position of
610 * actual end of fuse request in IO request. Otherwise, if bytes_requested
611 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
612 *
613 * An example:
614 * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
615 * both submitted asynchronously. The first of them was ACKed by userspace as
616 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
617 * second request was ACKed as short, e.g. only 1K was read, resulting in
618 * pos == 33K.
619 *
620 * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
621 * will be equal to the length of the longest contiguous fragment of
622 * transferred data starting from the beginning of IO request.
623 */
624static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
625{
626 int left;
627
628 spin_lock(&io->lock);
629 if (err)
630 io->err = io->err ? : err;
631 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
632 io->bytes = pos;
633
634 left = --io->reqs;
635 if (!left && io->blocking)
636 complete(io->done);
637 spin_unlock(&io->lock);
638
639 if (!left && !io->blocking) {
640 ssize_t res = fuse_get_res_by_io(io);
641
642 if (res >= 0) {
643 struct inode *inode = file_inode(io->iocb->ki_filp);
644 struct fuse_conn *fc = get_fuse_conn(inode);
645 struct fuse_inode *fi = get_fuse_inode(inode);
646
647 spin_lock(&fi->lock);
648 fi->attr_version = atomic64_inc_return(&fc->attr_version);
649 spin_unlock(&fi->lock);
650 }
651
652 io->iocb->ki_complete(io->iocb, res, 0);
653 }
654
655 kref_put(&io->refcnt, fuse_io_release);
656}
657
658static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
659 unsigned int npages)
660{
661 struct fuse_io_args *ia;
662
663 ia = kzalloc(sizeof(*ia), GFP_KERNEL);
664 if (ia) {
665 ia->io = io;
666 ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
667 &ia->ap.descs);
668 if (!ia->ap.pages) {
669 kfree(ia);
670 ia = NULL;
671 }
672 }
673 return ia;
674}
675
676static void fuse_io_free(struct fuse_io_args *ia)
677{
678 kfree(ia->ap.pages);
679 kfree(ia);
680}
681
682static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_args *args,
683 int err)
684{
685 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
686 struct fuse_io_priv *io = ia->io;
687 ssize_t pos = -1;
688
689 fuse_release_user_pages(&ia->ap, io->should_dirty);
690
691 if (err) {
692 /* Nothing */
693 } else if (io->write) {
694 if (ia->write.out.size > ia->write.in.size) {
695 err = -EIO;
696 } else if (ia->write.in.size != ia->write.out.size) {
697 pos = ia->write.in.offset - io->offset +
698 ia->write.out.size;
699 }
700 } else {
701 u32 outsize = args->out_args[0].size;
702
703 if (ia->read.in.size != outsize)
704 pos = ia->read.in.offset - io->offset + outsize;
705 }
706
707 fuse_aio_complete(io, err, pos);
708 fuse_io_free(ia);
709}
710
711static ssize_t fuse_async_req_send(struct fuse_conn *fc,
712 struct fuse_io_args *ia, size_t num_bytes)
713{
714 ssize_t err;
715 struct fuse_io_priv *io = ia->io;
716
717 spin_lock(&io->lock);
718 kref_get(&io->refcnt);
719 io->size += num_bytes;
720 io->reqs++;
721 spin_unlock(&io->lock);
722
723 ia->ap.args.end = fuse_aio_complete_req;
724 ia->ap.args.may_block = io->should_dirty;
725 err = fuse_simple_background(fc, &ia->ap.args, GFP_KERNEL);
726 if (err)
727 fuse_aio_complete_req(fc, &ia->ap.args, err);
728
729 return num_bytes;
730}
731
732static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
733 fl_owner_t owner)
734{
735 struct file *file = ia->io->iocb->ki_filp;
736 struct fuse_file *ff = file->private_data;
737 struct fuse_conn *fc = ff->fc;
738
739 fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
740 if (owner != NULL) {
741 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
742 ia->read.in.lock_owner = fuse_lock_owner_id(fc, owner);
743 }
744
745 if (ia->io->async)
746 return fuse_async_req_send(fc, ia, count);
747
748 return fuse_simple_request(fc, &ia->ap.args);
749}
750
751static void fuse_read_update_size(struct inode *inode, loff_t size,
752 u64 attr_ver)
753{
754 struct fuse_conn *fc = get_fuse_conn(inode);
755 struct fuse_inode *fi = get_fuse_inode(inode);
756
757 spin_lock(&fi->lock);
758 if (attr_ver == fi->attr_version && size < inode->i_size &&
759 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
760 fi->attr_version = atomic64_inc_return(&fc->attr_version);
761 i_size_write(inode, size);
762 }
763 spin_unlock(&fi->lock);
764}
765
766static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
767 struct fuse_args_pages *ap)
768{
769 struct fuse_conn *fc = get_fuse_conn(inode);
770
771 if (fc->writeback_cache) {
772 /*
773 * A hole in a file. Some data after the hole are in page cache,
774 * but have not reached the client fs yet. So, the hole is not
775 * present there.
776 */
777 int i;
778 int start_idx = num_read >> PAGE_SHIFT;
779 size_t off = num_read & (PAGE_SIZE - 1);
780
781 for (i = start_idx; i < ap->num_pages; i++) {
782 zero_user_segment(ap->pages[i], off, PAGE_SIZE);
783 off = 0;
784 }
785 } else {
786 loff_t pos = page_offset(ap->pages[0]) + num_read;
787 fuse_read_update_size(inode, pos, attr_ver);
788 }
789}
790
791static int fuse_do_readpage(struct file *file, struct page *page)
792{
793 struct inode *inode = page->mapping->host;
794 struct fuse_conn *fc = get_fuse_conn(inode);
795 loff_t pos = page_offset(page);
796 struct fuse_page_desc desc = { .length = PAGE_SIZE };
797 struct fuse_io_args ia = {
798 .ap.args.page_zeroing = true,
799 .ap.args.out_pages = true,
800 .ap.num_pages = 1,
801 .ap.pages = &page,
802 .ap.descs = &desc,
803 };
804 ssize_t res;
805 u64 attr_ver;
806
807 /*
808 * Page writeback can extend beyond the lifetime of the
809 * page-cache page, so make sure we read a properly synced
810 * page.
811 */
812 fuse_wait_on_page_writeback(inode, page->index);
813
814 attr_ver = fuse_get_attr_version(fc);
815
816 /* Don't overflow end offset */
817 if (pos + (desc.length - 1) == LLONG_MAX)
818 desc.length--;
819
820 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
821 res = fuse_simple_request(fc, &ia.ap.args);
822 if (res < 0)
823 return res;
824 /*
825 * Short read means EOF. If file size is larger, truncate it
826 */
827 if (res < desc.length)
828 fuse_short_read(inode, attr_ver, res, &ia.ap);
829
830 SetPageUptodate(page);
831
832 return 0;
833}
834
835static int fuse_readpage(struct file *file, struct page *page)
836{
837 struct inode *inode = page->mapping->host;
838 int err;
839
840 err = -EIO;
841 if (fuse_is_bad(inode))
842 goto out;
843
844 err = fuse_do_readpage(file, page);
845 fuse_invalidate_atime(inode);
846 out:
847 unlock_page(page);
848 return err;
849}
850
851static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_args *args,
852 int err)
853{
854 int i;
855 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
856 struct fuse_args_pages *ap = &ia->ap;
857 size_t count = ia->read.in.size;
858 size_t num_read = args->out_args[0].size;
859 struct address_space *mapping = NULL;
860
861 for (i = 0; mapping == NULL && i < ap->num_pages; i++)
862 mapping = ap->pages[i]->mapping;
863
864 if (mapping) {
865 struct inode *inode = mapping->host;
866
867 /*
868 * Short read means EOF. If file size is larger, truncate it
869 */
870 if (!err && num_read < count)
871 fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
872
873 fuse_invalidate_atime(inode);
874 }
875
876 for (i = 0; i < ap->num_pages; i++) {
877 struct page *page = ap->pages[i];
878
879 if (!err)
880 SetPageUptodate(page);
881 else
882 SetPageError(page);
883 unlock_page(page);
884 put_page(page);
885 }
886 if (ia->ff)
887 fuse_file_put(ia->ff, false, false);
888
889 fuse_io_free(ia);
890}
891
892static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
893{
894 struct fuse_file *ff = file->private_data;
895 struct fuse_conn *fc = ff->fc;
896 struct fuse_args_pages *ap = &ia->ap;
897 loff_t pos = page_offset(ap->pages[0]);
898 size_t count = ap->num_pages << PAGE_SHIFT;
899 ssize_t res;
900 int err;
901
902 ap->args.out_pages = true;
903 ap->args.page_zeroing = true;
904 ap->args.page_replace = true;
905
906 /* Don't overflow end offset */
907 if (pos + (count - 1) == LLONG_MAX) {
908 count--;
909 ap->descs[ap->num_pages - 1].length--;
910 }
911 WARN_ON((loff_t) (pos + count) < 0);
912
913 fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
914 ia->read.attr_ver = fuse_get_attr_version(fc);
915 if (fc->async_read) {
916 ia->ff = fuse_file_get(ff);
917 ap->args.end = fuse_readpages_end;
918 err = fuse_simple_background(fc, &ap->args, GFP_KERNEL);
919 if (!err)
920 return;
921 } else {
922 res = fuse_simple_request(fc, &ap->args);
923 err = res < 0 ? res : 0;
924 }
925 fuse_readpages_end(fc, &ap->args, err);
926}
927
928struct fuse_fill_data {
929 struct fuse_io_args *ia;
930 struct file *file;
931 struct inode *inode;
932 unsigned int nr_pages;
933 unsigned int max_pages;
934};
935
936static int fuse_readpages_fill(void *_data, struct page *page)
937{
938 struct fuse_fill_data *data = _data;
939 struct fuse_io_args *ia = data->ia;
940 struct fuse_args_pages *ap = &ia->ap;
941 struct inode *inode = data->inode;
942 struct fuse_conn *fc = get_fuse_conn(inode);
943
944 fuse_wait_on_page_writeback(inode, page->index);
945
946 if (ap->num_pages &&
947 (ap->num_pages == fc->max_pages ||
948 (ap->num_pages + 1) * PAGE_SIZE > fc->max_read ||
949 ap->pages[ap->num_pages - 1]->index + 1 != page->index)) {
950 data->max_pages = min_t(unsigned int, data->nr_pages,
951 fc->max_pages);
952 fuse_send_readpages(ia, data->file);
953 data->ia = ia = fuse_io_alloc(NULL, data->max_pages);
954 if (!ia) {
955 unlock_page(page);
956 return -ENOMEM;
957 }
958 ap = &ia->ap;
959 }
960
961 if (WARN_ON(ap->num_pages >= data->max_pages)) {
962 unlock_page(page);
963 fuse_io_free(ia);
964 return -EIO;
965 }
966
967 get_page(page);
968 ap->pages[ap->num_pages] = page;
969 ap->descs[ap->num_pages].length = PAGE_SIZE;
970 ap->num_pages++;
971 data->nr_pages--;
972 return 0;
973}
974
975static int fuse_readpages(struct file *file, struct address_space *mapping,
976 struct list_head *pages, unsigned nr_pages)
977{
978 struct inode *inode = mapping->host;
979 struct fuse_conn *fc = get_fuse_conn(inode);
980 struct fuse_fill_data data;
981 int err;
982
983 err = -EIO;
984 if (fuse_is_bad(inode))
985 goto out;
986
987 data.file = file;
988 data.inode = inode;
989 data.nr_pages = nr_pages;
990 data.max_pages = min_t(unsigned int, nr_pages, fc->max_pages);
991;
992 data.ia = fuse_io_alloc(NULL, data.max_pages);
993 err = -ENOMEM;
994 if (!data.ia)
995 goto out;
996
997 err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data);
998 if (!err) {
999 if (data.ia->ap.num_pages)
1000 fuse_send_readpages(data.ia, file);
1001 else
1002 fuse_io_free(data.ia);
1003 }
1004out:
1005 return err;
1006}
1007
1008static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
1009{
1010 struct inode *inode = iocb->ki_filp->f_mapping->host;
1011 struct fuse_conn *fc = get_fuse_conn(inode);
1012
1013 /*
1014 * In auto invalidate mode, always update attributes on read.
1015 * Otherwise, only update if we attempt to read past EOF (to ensure
1016 * i_size is up to date).
1017 */
1018 if (fc->auto_inval_data ||
1019 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
1020 int err;
1021 err = fuse_update_attributes(inode, iocb->ki_filp);
1022 if (err)
1023 return err;
1024 }
1025
1026 return generic_file_read_iter(iocb, to);
1027}
1028
1029static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1030 loff_t pos, size_t count)
1031{
1032 struct fuse_args *args = &ia->ap.args;
1033
1034 ia->write.in.fh = ff->fh;
1035 ia->write.in.offset = pos;
1036 ia->write.in.size = count;
1037 args->opcode = FUSE_WRITE;
1038 args->nodeid = ff->nodeid;
1039 args->in_numargs = 2;
1040 if (ff->fc->minor < 9)
1041 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1042 else
1043 args->in_args[0].size = sizeof(ia->write.in);
1044 args->in_args[0].value = &ia->write.in;
1045 args->in_args[1].size = count;
1046 args->out_numargs = 1;
1047 args->out_args[0].size = sizeof(ia->write.out);
1048 args->out_args[0].value = &ia->write.out;
1049}
1050
1051static unsigned int fuse_write_flags(struct kiocb *iocb)
1052{
1053 unsigned int flags = iocb->ki_filp->f_flags;
1054
1055 if (iocb->ki_flags & IOCB_DSYNC)
1056 flags |= O_DSYNC;
1057 if (iocb->ki_flags & IOCB_SYNC)
1058 flags |= O_SYNC;
1059
1060 return flags;
1061}
1062
1063static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1064 size_t count, fl_owner_t owner)
1065{
1066 struct kiocb *iocb = ia->io->iocb;
1067 struct file *file = iocb->ki_filp;
1068 struct fuse_file *ff = file->private_data;
1069 struct fuse_conn *fc = ff->fc;
1070 struct fuse_write_in *inarg = &ia->write.in;
1071 ssize_t err;
1072
1073 fuse_write_args_fill(ia, ff, pos, count);
1074 inarg->flags = fuse_write_flags(iocb);
1075 if (owner != NULL) {
1076 inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1077 inarg->lock_owner = fuse_lock_owner_id(fc, owner);
1078 }
1079
1080 if (ia->io->async)
1081 return fuse_async_req_send(fc, ia, count);
1082
1083 err = fuse_simple_request(fc, &ia->ap.args);
1084 if (!err && ia->write.out.size > count)
1085 err = -EIO;
1086
1087 return err ?: ia->write.out.size;
1088}
1089
1090bool fuse_write_update_size(struct inode *inode, loff_t pos)
1091{
1092 struct fuse_conn *fc = get_fuse_conn(inode);
1093 struct fuse_inode *fi = get_fuse_inode(inode);
1094 bool ret = false;
1095
1096 spin_lock(&fi->lock);
1097 fi->attr_version = atomic64_inc_return(&fc->attr_version);
1098 if (pos > inode->i_size) {
1099 i_size_write(inode, pos);
1100 ret = true;
1101 }
1102 spin_unlock(&fi->lock);
1103
1104 return ret;
1105}
1106
1107static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1108 struct kiocb *iocb, struct inode *inode,
1109 loff_t pos, size_t count)
1110{
1111 struct fuse_args_pages *ap = &ia->ap;
1112 struct file *file = iocb->ki_filp;
1113 struct fuse_file *ff = file->private_data;
1114 struct fuse_conn *fc = ff->fc;
1115 unsigned int offset, i;
1116 bool short_write;
1117 int err;
1118
1119 for (i = 0; i < ap->num_pages; i++)
1120 fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1121
1122 fuse_write_args_fill(ia, ff, pos, count);
1123 ia->write.in.flags = fuse_write_flags(iocb);
1124
1125 err = fuse_simple_request(fc, &ap->args);
1126 if (!err && ia->write.out.size > count)
1127 err = -EIO;
1128
1129 short_write = ia->write.out.size < count;
1130 offset = ap->descs[0].offset;
1131 count = ia->write.out.size;
1132 for (i = 0; i < ap->num_pages; i++) {
1133 struct page *page = ap->pages[i];
1134
1135 if (err) {
1136 ClearPageUptodate(page);
1137 } else {
1138 if (count >= PAGE_SIZE - offset)
1139 count -= PAGE_SIZE - offset;
1140 else {
1141 if (short_write)
1142 ClearPageUptodate(page);
1143 count = 0;
1144 }
1145 offset = 0;
1146 }
1147 if (ia->write.page_locked && (i == ap->num_pages - 1))
1148 unlock_page(page);
1149 put_page(page);
1150 }
1151
1152 return err;
1153}
1154
1155static ssize_t fuse_fill_write_pages(struct fuse_io_args *ia,
1156 struct address_space *mapping,
1157 struct iov_iter *ii, loff_t pos,
1158 unsigned int max_pages)
1159{
1160 struct fuse_args_pages *ap = &ia->ap;
1161 struct fuse_conn *fc = get_fuse_conn(mapping->host);
1162 unsigned offset = pos & (PAGE_SIZE - 1);
1163 size_t count = 0;
1164 int err;
1165
1166 ap->args.in_pages = true;
1167 ap->descs[0].offset = offset;
1168
1169 do {
1170 size_t tmp;
1171 struct page *page;
1172 pgoff_t index = pos >> PAGE_SHIFT;
1173 size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1174 iov_iter_count(ii));
1175
1176 bytes = min_t(size_t, bytes, fc->max_write - count);
1177
1178 again:
1179 err = -EFAULT;
1180 if (iov_iter_fault_in_readable(ii, bytes))
1181 break;
1182
1183 err = -ENOMEM;
1184 page = grab_cache_page_write_begin(mapping, index, 0);
1185 if (!page)
1186 break;
1187
1188 if (mapping_writably_mapped(mapping))
1189 flush_dcache_page(page);
1190
1191 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1192 flush_dcache_page(page);
1193
1194 iov_iter_advance(ii, tmp);
1195 if (!tmp) {
1196 unlock_page(page);
1197 put_page(page);
1198 bytes = min(bytes, iov_iter_single_seg_count(ii));
1199 goto again;
1200 }
1201
1202 err = 0;
1203 ap->pages[ap->num_pages] = page;
1204 ap->descs[ap->num_pages].length = tmp;
1205 ap->num_pages++;
1206
1207 count += tmp;
1208 pos += tmp;
1209 offset += tmp;
1210 if (offset == PAGE_SIZE)
1211 offset = 0;
1212
1213 /* If we copied full page, mark it uptodate */
1214 if (tmp == PAGE_SIZE)
1215 SetPageUptodate(page);
1216
1217 if (PageUptodate(page)) {
1218 unlock_page(page);
1219 } else {
1220 ia->write.page_locked = true;
1221 break;
1222 }
1223 if (!fc->big_writes)
1224 break;
1225 } while (iov_iter_count(ii) && count < fc->max_write &&
1226 ap->num_pages < max_pages && offset == 0);
1227
1228 return count > 0 ? count : err;
1229}
1230
1231static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1232 unsigned int max_pages)
1233{
1234 return min_t(unsigned int,
1235 ((pos + len - 1) >> PAGE_SHIFT) -
1236 (pos >> PAGE_SHIFT) + 1,
1237 max_pages);
1238}
1239
1240static ssize_t fuse_perform_write(struct kiocb *iocb,
1241 struct address_space *mapping,
1242 struct iov_iter *ii, loff_t pos)
1243{
1244 struct inode *inode = mapping->host;
1245 struct fuse_conn *fc = get_fuse_conn(inode);
1246 struct fuse_inode *fi = get_fuse_inode(inode);
1247 int err = 0;
1248 ssize_t res = 0;
1249
1250 if (inode->i_size < pos + iov_iter_count(ii))
1251 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1252
1253 do {
1254 ssize_t count;
1255 struct fuse_io_args ia = {};
1256 struct fuse_args_pages *ap = &ia.ap;
1257 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1258 fc->max_pages);
1259
1260 ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1261 if (!ap->pages) {
1262 err = -ENOMEM;
1263 break;
1264 }
1265
1266 count = fuse_fill_write_pages(&ia, mapping, ii, pos, nr_pages);
1267 if (count <= 0) {
1268 err = count;
1269 } else {
1270 err = fuse_send_write_pages(&ia, iocb, inode,
1271 pos, count);
1272 if (!err) {
1273 size_t num_written = ia.write.out.size;
1274
1275 res += num_written;
1276 pos += num_written;
1277
1278 /* break out of the loop on short write */
1279 if (num_written != count)
1280 err = -EIO;
1281 }
1282 }
1283 kfree(ap->pages);
1284 } while (!err && iov_iter_count(ii));
1285
1286 if (res > 0)
1287 fuse_write_update_size(inode, pos);
1288
1289 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1290 fuse_invalidate_attr(inode);
1291
1292 return res > 0 ? res : err;
1293}
1294
1295static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1296{
1297 struct file *file = iocb->ki_filp;
1298 struct address_space *mapping = file->f_mapping;
1299 ssize_t written = 0;
1300 ssize_t written_buffered = 0;
1301 struct inode *inode = mapping->host;
1302 ssize_t err;
1303 loff_t endbyte = 0;
1304
1305 if (get_fuse_conn(inode)->writeback_cache) {
1306 /* Update size (EOF optimization) and mode (SUID clearing) */
1307 err = fuse_update_attributes(mapping->host, file);
1308 if (err)
1309 return err;
1310
1311 return generic_file_write_iter(iocb, from);
1312 }
1313
1314 inode_lock(inode);
1315
1316 /* We can write back this queue in page reclaim */
1317 current->backing_dev_info = inode_to_bdi(inode);
1318
1319 err = generic_write_checks(iocb, from);
1320 if (err <= 0)
1321 goto out;
1322
1323 err = file_remove_privs(file);
1324 if (err)
1325 goto out;
1326
1327 err = file_update_time(file);
1328 if (err)
1329 goto out;
1330
1331 if (iocb->ki_flags & IOCB_DIRECT) {
1332 loff_t pos = iocb->ki_pos;
1333 written = generic_file_direct_write(iocb, from);
1334 if (written < 0 || !iov_iter_count(from))
1335 goto out;
1336
1337 pos += written;
1338
1339 written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1340 if (written_buffered < 0) {
1341 err = written_buffered;
1342 goto out;
1343 }
1344 endbyte = pos + written_buffered - 1;
1345
1346 err = filemap_write_and_wait_range(file->f_mapping, pos,
1347 endbyte);
1348 if (err)
1349 goto out;
1350
1351 invalidate_mapping_pages(file->f_mapping,
1352 pos >> PAGE_SHIFT,
1353 endbyte >> PAGE_SHIFT);
1354
1355 written += written_buffered;
1356 iocb->ki_pos = pos + written_buffered;
1357 } else {
1358 written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1359 if (written >= 0)
1360 iocb->ki_pos += written;
1361 }
1362out:
1363 current->backing_dev_info = NULL;
1364 inode_unlock(inode);
1365 if (written > 0)
1366 written = generic_write_sync(iocb, written);
1367
1368 return written ? written : err;
1369}
1370
1371static inline void fuse_page_descs_length_init(struct fuse_page_desc *descs,
1372 unsigned int index,
1373 unsigned int nr_pages)
1374{
1375 int i;
1376
1377 for (i = index; i < index + nr_pages; i++)
1378 descs[i].length = PAGE_SIZE - descs[i].offset;
1379}
1380
1381static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1382{
1383 return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1384}
1385
1386static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1387 size_t max_size)
1388{
1389 return min(iov_iter_single_seg_count(ii), max_size);
1390}
1391
1392static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1393 size_t *nbytesp, int write,
1394 unsigned int max_pages)
1395{
1396 size_t nbytes = 0; /* # bytes already packed in req */
1397 ssize_t ret = 0;
1398
1399 /* Special case for kernel I/O: can copy directly into the buffer */
1400 if (iov_iter_is_kvec(ii)) {
1401 unsigned long user_addr = fuse_get_user_addr(ii);
1402 size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1403
1404 if (write)
1405 ap->args.in_args[1].value = (void *) user_addr;
1406 else
1407 ap->args.out_args[0].value = (void *) user_addr;
1408
1409 iov_iter_advance(ii, frag_size);
1410 *nbytesp = frag_size;
1411 return 0;
1412 }
1413
1414 while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1415 unsigned npages;
1416 size_t start;
1417 ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages],
1418 *nbytesp - nbytes,
1419 max_pages - ap->num_pages,
1420 &start);
1421 if (ret < 0)
1422 break;
1423
1424 iov_iter_advance(ii, ret);
1425 nbytes += ret;
1426
1427 ret += start;
1428 npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1429
1430 ap->descs[ap->num_pages].offset = start;
1431 fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1432
1433 ap->num_pages += npages;
1434 ap->descs[ap->num_pages - 1].length -=
1435 (PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1436 }
1437
1438 ap->args.user_pages = true;
1439 if (write)
1440 ap->args.in_pages = 1;
1441 else
1442 ap->args.out_pages = 1;
1443
1444 *nbytesp = nbytes;
1445
1446 return ret < 0 ? ret : 0;
1447}
1448
1449ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1450 loff_t *ppos, int flags)
1451{
1452 int write = flags & FUSE_DIO_WRITE;
1453 int cuse = flags & FUSE_DIO_CUSE;
1454 struct file *file = io->iocb->ki_filp;
1455 struct inode *inode = file->f_mapping->host;
1456 struct fuse_file *ff = file->private_data;
1457 struct fuse_conn *fc = ff->fc;
1458 size_t nmax = write ? fc->max_write : fc->max_read;
1459 loff_t pos = *ppos;
1460 size_t count = iov_iter_count(iter);
1461 pgoff_t idx_from = pos >> PAGE_SHIFT;
1462 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1463 ssize_t res = 0;
1464 int err = 0;
1465 struct fuse_io_args *ia;
1466 unsigned int max_pages;
1467
1468 max_pages = iov_iter_npages(iter, fc->max_pages);
1469 ia = fuse_io_alloc(io, max_pages);
1470 if (!ia)
1471 return -ENOMEM;
1472
1473 ia->io = io;
1474 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1475 if (!write)
1476 inode_lock(inode);
1477 fuse_sync_writes(inode);
1478 if (!write)
1479 inode_unlock(inode);
1480 }
1481
1482 io->should_dirty = !write && iter_is_iovec(iter);
1483 while (count) {
1484 ssize_t nres;
1485 fl_owner_t owner = current->files;
1486 size_t nbytes = min(count, nmax);
1487
1488 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1489 max_pages);
1490 if (err && !nbytes)
1491 break;
1492
1493 if (write) {
1494 if (!capable(CAP_FSETID))
1495 ia->write.in.write_flags |= FUSE_WRITE_KILL_PRIV;
1496
1497 nres = fuse_send_write(ia, pos, nbytes, owner);
1498 } else {
1499 nres = fuse_send_read(ia, pos, nbytes, owner);
1500 }
1501
1502 if (!io->async || nres < 0) {
1503 fuse_release_user_pages(&ia->ap, io->should_dirty);
1504 fuse_io_free(ia);
1505 }
1506 ia = NULL;
1507 if (nres < 0) {
1508 iov_iter_revert(iter, nbytes);
1509 err = nres;
1510 break;
1511 }
1512 WARN_ON(nres > nbytes);
1513
1514 count -= nres;
1515 res += nres;
1516 pos += nres;
1517 if (nres != nbytes) {
1518 iov_iter_revert(iter, nbytes - nres);
1519 break;
1520 }
1521 if (count) {
1522 max_pages = iov_iter_npages(iter, fc->max_pages);
1523 ia = fuse_io_alloc(io, max_pages);
1524 if (!ia)
1525 break;
1526 }
1527 }
1528 if (ia)
1529 fuse_io_free(ia);
1530 if (res > 0)
1531 *ppos = pos;
1532
1533 return res > 0 ? res : err;
1534}
1535EXPORT_SYMBOL_GPL(fuse_direct_io);
1536
1537static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1538 struct iov_iter *iter,
1539 loff_t *ppos)
1540{
1541 ssize_t res;
1542 struct inode *inode = file_inode(io->iocb->ki_filp);
1543
1544 res = fuse_direct_io(io, iter, ppos, 0);
1545
1546 fuse_invalidate_atime(inode);
1547
1548 return res;
1549}
1550
1551static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1552
1553static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1554{
1555 ssize_t res;
1556
1557 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1558 res = fuse_direct_IO(iocb, to);
1559 } else {
1560 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1561
1562 res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1563 }
1564
1565 return res;
1566}
1567
1568static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1569{
1570 struct inode *inode = file_inode(iocb->ki_filp);
1571 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1572 ssize_t res;
1573
1574 /* Don't allow parallel writes to the same file */
1575 inode_lock(inode);
1576 res = generic_write_checks(iocb, from);
1577 if (res > 0) {
1578 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1579 res = fuse_direct_IO(iocb, from);
1580 } else {
1581 res = fuse_direct_io(&io, from, &iocb->ki_pos,
1582 FUSE_DIO_WRITE);
1583 }
1584 }
1585 fuse_invalidate_attr(inode);
1586 if (res > 0)
1587 fuse_write_update_size(inode, iocb->ki_pos);
1588 inode_unlock(inode);
1589
1590 return res;
1591}
1592
1593static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1594{
1595 struct file *file = iocb->ki_filp;
1596 struct fuse_file *ff = file->private_data;
1597
1598 if (fuse_is_bad(file_inode(file)))
1599 return -EIO;
1600
1601 if (ff->passthrough.filp)
1602 return fuse_passthrough_read_iter(iocb, to);
1603 else if (!(ff->open_flags & FOPEN_DIRECT_IO))
1604 return fuse_cache_read_iter(iocb, to);
1605 else
1606 return fuse_direct_read_iter(iocb, to);
1607}
1608
1609static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1610{
1611 struct file *file = iocb->ki_filp;
1612 struct fuse_file *ff = file->private_data;
1613
1614 if (fuse_is_bad(file_inode(file)))
1615 return -EIO;
1616
1617 if (ff->passthrough.filp)
1618 return fuse_passthrough_write_iter(iocb, from);
1619 else if (!(ff->open_flags & FOPEN_DIRECT_IO))
1620 return fuse_cache_write_iter(iocb, from);
1621 else
1622 return fuse_direct_write_iter(iocb, from);
1623}
1624
1625static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1626{
1627 struct fuse_args_pages *ap = &wpa->ia.ap;
1628 int i;
1629
1630 for (i = 0; i < ap->num_pages; i++)
1631 __free_page(ap->pages[i]);
1632
1633 if (wpa->ia.ff)
1634 fuse_file_put(wpa->ia.ff, false, false);
1635
1636 kfree(ap->pages);
1637 kfree(wpa);
1638}
1639
1640static void fuse_writepage_finish(struct fuse_conn *fc,
1641 struct fuse_writepage_args *wpa)
1642{
1643 struct fuse_args_pages *ap = &wpa->ia.ap;
1644 struct inode *inode = wpa->inode;
1645 struct fuse_inode *fi = get_fuse_inode(inode);
1646 struct backing_dev_info *bdi = inode_to_bdi(inode);
1647 int i;
1648
1649 list_del(&wpa->writepages_entry);
1650 for (i = 0; i < ap->num_pages; i++) {
1651 dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1652 dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1653 wb_writeout_inc(&bdi->wb);
1654 }
1655 wake_up(&fi->page_waitq);
1656}
1657
1658/* Called under fi->lock, may release and reacquire it */
1659static void fuse_send_writepage(struct fuse_conn *fc,
1660 struct fuse_writepage_args *wpa, loff_t size)
1661__releases(fi->lock)
1662__acquires(fi->lock)
1663{
1664 struct fuse_writepage_args *aux, *next;
1665 struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1666 struct fuse_write_in *inarg = &wpa->ia.write.in;
1667 struct fuse_args *args = &wpa->ia.ap.args;
1668 __u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1669 int err;
1670
1671 fi->writectr++;
1672 if (inarg->offset + data_size <= size) {
1673 inarg->size = data_size;
1674 } else if (inarg->offset < size) {
1675 inarg->size = size - inarg->offset;
1676 } else {
1677 /* Got truncated off completely */
1678 goto out_free;
1679 }
1680
1681 args->in_args[1].size = inarg->size;
1682 args->force = true;
1683 args->nocreds = true;
1684
1685 err = fuse_simple_background(fc, args, GFP_ATOMIC);
1686 if (err == -ENOMEM) {
1687 spin_unlock(&fi->lock);
1688 err = fuse_simple_background(fc, args, GFP_NOFS | __GFP_NOFAIL);
1689 spin_lock(&fi->lock);
1690 }
1691
1692 /* Fails on broken connection only */
1693 if (unlikely(err))
1694 goto out_free;
1695
1696 return;
1697
1698 out_free:
1699 fi->writectr--;
1700 fuse_writepage_finish(fc, wpa);
1701 spin_unlock(&fi->lock);
1702
1703 /* After rb_erase() aux request list is private */
1704 for (aux = wpa->next; aux; aux = next) {
1705 struct backing_dev_info *bdi = inode_to_bdi(aux->inode);
1706
1707 next = aux->next;
1708 aux->next = NULL;
1709
1710 dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1711 dec_node_page_state(aux->ia.ap.pages[0], NR_WRITEBACK_TEMP);
1712 wb_writeout_inc(&bdi->wb);
1713 fuse_writepage_free(aux);
1714 }
1715
1716 fuse_writepage_free(wpa);
1717 spin_lock(&fi->lock);
1718}
1719
1720/*
1721 * If fi->writectr is positive (no truncate or fsync going on) send
1722 * all queued writepage requests.
1723 *
1724 * Called with fi->lock
1725 */
1726void fuse_flush_writepages(struct inode *inode)
1727__releases(fi->lock)
1728__acquires(fi->lock)
1729{
1730 struct fuse_conn *fc = get_fuse_conn(inode);
1731 struct fuse_inode *fi = get_fuse_inode(inode);
1732 loff_t crop = i_size_read(inode);
1733 struct fuse_writepage_args *wpa;
1734
1735 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1736 wpa = list_entry(fi->queued_writes.next,
1737 struct fuse_writepage_args, queue_entry);
1738 list_del_init(&wpa->queue_entry);
1739 fuse_send_writepage(fc, wpa, crop);
1740 }
1741}
1742
1743static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_args *args,
1744 int error)
1745{
1746 struct fuse_writepage_args *wpa =
1747 container_of(args, typeof(*wpa), ia.ap.args);
1748 struct inode *inode = wpa->inode;
1749 struct fuse_inode *fi = get_fuse_inode(inode);
1750
1751 mapping_set_error(inode->i_mapping, error);
1752 spin_lock(&fi->lock);
1753 while (wpa->next) {
1754 struct fuse_conn *fc = get_fuse_conn(inode);
1755 struct fuse_write_in *inarg = &wpa->ia.write.in;
1756 struct fuse_writepage_args *next = wpa->next;
1757
1758 wpa->next = next->next;
1759 next->next = NULL;
1760 next->ia.ff = fuse_file_get(wpa->ia.ff);
1761 list_add(&next->writepages_entry, &fi->writepages);
1762
1763 /*
1764 * Skip fuse_flush_writepages() to make it easy to crop requests
1765 * based on primary request size.
1766 *
1767 * 1st case (trivial): there are no concurrent activities using
1768 * fuse_set/release_nowrite. Then we're on safe side because
1769 * fuse_flush_writepages() would call fuse_send_writepage()
1770 * anyway.
1771 *
1772 * 2nd case: someone called fuse_set_nowrite and it is waiting
1773 * now for completion of all in-flight requests. This happens
1774 * rarely and no more than once per page, so this should be
1775 * okay.
1776 *
1777 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1778 * of fuse_set_nowrite..fuse_release_nowrite section. The fact
1779 * that fuse_set_nowrite returned implies that all in-flight
1780 * requests were completed along with all of their secondary
1781 * requests. Further primary requests are blocked by negative
1782 * writectr. Hence there cannot be any in-flight requests and
1783 * no invocations of fuse_writepage_end() while we're in
1784 * fuse_set_nowrite..fuse_release_nowrite section.
1785 */
1786 fuse_send_writepage(fc, next, inarg->offset + inarg->size);
1787 }
1788 fi->writectr--;
1789 fuse_writepage_finish(fc, wpa);
1790 spin_unlock(&fi->lock);
1791 fuse_writepage_free(wpa);
1792}
1793
1794static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1795 struct fuse_inode *fi)
1796{
1797 struct fuse_file *ff = NULL;
1798
1799 spin_lock(&fi->lock);
1800 if (!list_empty(&fi->write_files)) {
1801 ff = list_entry(fi->write_files.next, struct fuse_file,
1802 write_entry);
1803 fuse_file_get(ff);
1804 }
1805 spin_unlock(&fi->lock);
1806
1807 return ff;
1808}
1809
1810static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1811 struct fuse_inode *fi)
1812{
1813 struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1814 WARN_ON(!ff);
1815 return ff;
1816}
1817
1818int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1819{
1820 struct fuse_conn *fc = get_fuse_conn(inode);
1821 struct fuse_inode *fi = get_fuse_inode(inode);
1822 struct fuse_file *ff;
1823 int err;
1824
1825 ff = __fuse_write_file_get(fc, fi);
1826 err = fuse_flush_times(inode, ff);
1827 if (ff)
1828 fuse_file_put(ff, false, false);
1829
1830 return err;
1831}
1832
1833static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
1834{
1835 struct fuse_writepage_args *wpa;
1836 struct fuse_args_pages *ap;
1837
1838 wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
1839 if (wpa) {
1840 ap = &wpa->ia.ap;
1841 ap->num_pages = 0;
1842 ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
1843 if (!ap->pages) {
1844 kfree(wpa);
1845 wpa = NULL;
1846 }
1847 }
1848 return wpa;
1849
1850}
1851
1852static int fuse_writepage_locked(struct page *page)
1853{
1854 struct address_space *mapping = page->mapping;
1855 struct inode *inode = mapping->host;
1856 struct fuse_conn *fc = get_fuse_conn(inode);
1857 struct fuse_inode *fi = get_fuse_inode(inode);
1858 struct fuse_writepage_args *wpa;
1859 struct fuse_args_pages *ap;
1860 struct page *tmp_page;
1861 int error = -ENOMEM;
1862
1863 set_page_writeback(page);
1864
1865 wpa = fuse_writepage_args_alloc();
1866 if (!wpa)
1867 goto err;
1868 ap = &wpa->ia.ap;
1869
1870 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1871 if (!tmp_page)
1872 goto err_free;
1873
1874 error = -EIO;
1875 wpa->ia.ff = fuse_write_file_get(fc, fi);
1876 if (!wpa->ia.ff)
1877 goto err_nofile;
1878
1879 fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0);
1880
1881 copy_highpage(tmp_page, page);
1882 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
1883 wpa->next = NULL;
1884 ap->args.in_pages = true;
1885 ap->num_pages = 1;
1886 ap->pages[0] = tmp_page;
1887 ap->descs[0].offset = 0;
1888 ap->descs[0].length = PAGE_SIZE;
1889 ap->args.end = fuse_writepage_end;
1890 wpa->inode = inode;
1891
1892 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1893 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1894
1895 spin_lock(&fi->lock);
1896 list_add(&wpa->writepages_entry, &fi->writepages);
1897 list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1898 fuse_flush_writepages(inode);
1899 spin_unlock(&fi->lock);
1900
1901 end_page_writeback(page);
1902
1903 return 0;
1904
1905err_nofile:
1906 __free_page(tmp_page);
1907err_free:
1908 kfree(wpa);
1909err:
1910 mapping_set_error(page->mapping, error);
1911 end_page_writeback(page);
1912 return error;
1913}
1914
1915static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1916{
1917 int err;
1918
1919 if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1920 /*
1921 * ->writepages() should be called for sync() and friends. We
1922 * should only get here on direct reclaim and then we are
1923 * allowed to skip a page which is already in flight
1924 */
1925 WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1926
1927 redirty_page_for_writepage(wbc, page);
1928 unlock_page(page);
1929 return 0;
1930 }
1931
1932 err = fuse_writepage_locked(page);
1933 unlock_page(page);
1934
1935 return err;
1936}
1937
1938struct fuse_fill_wb_data {
1939 struct fuse_writepage_args *wpa;
1940 struct fuse_file *ff;
1941 struct inode *inode;
1942 struct page **orig_pages;
1943 unsigned int max_pages;
1944};
1945
1946static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
1947{
1948 struct fuse_args_pages *ap = &data->wpa->ia.ap;
1949 struct fuse_conn *fc = get_fuse_conn(data->inode);
1950 struct page **pages;
1951 struct fuse_page_desc *descs;
1952 unsigned int npages = min_t(unsigned int,
1953 max_t(unsigned int, data->max_pages * 2,
1954 FUSE_DEFAULT_MAX_PAGES_PER_REQ),
1955 fc->max_pages);
1956 WARN_ON(npages <= data->max_pages);
1957
1958 pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
1959 if (!pages)
1960 return false;
1961
1962 memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
1963 memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
1964 kfree(ap->pages);
1965 ap->pages = pages;
1966 ap->descs = descs;
1967 data->max_pages = npages;
1968
1969 return true;
1970}
1971
1972static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1973{
1974 struct fuse_writepage_args *wpa = data->wpa;
1975 struct inode *inode = data->inode;
1976 struct fuse_inode *fi = get_fuse_inode(inode);
1977 int num_pages = wpa->ia.ap.num_pages;
1978 int i;
1979
1980 wpa->ia.ff = fuse_file_get(data->ff);
1981 spin_lock(&fi->lock);
1982 list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1983 fuse_flush_writepages(inode);
1984 spin_unlock(&fi->lock);
1985
1986 for (i = 0; i < num_pages; i++)
1987 end_page_writeback(data->orig_pages[i]);
1988}
1989
1990/*
1991 * First recheck under fi->lock if the offending offset is still under
1992 * writeback. If yes, then iterate auxiliary write requests, to see if there's
1993 * one already added for a page at this offset. If there's none, then insert
1994 * this new request onto the auxiliary list, otherwise reuse the existing one by
1995 * copying the new page contents over to the old temporary page.
1996 */
1997static bool fuse_writepage_in_flight(struct fuse_writepage_args *new_wpa,
1998 struct page *page)
1999{
2000 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
2001 struct fuse_writepage_args *tmp;
2002 struct fuse_writepage_args *old_wpa;
2003 struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
2004
2005 WARN_ON(new_ap->num_pages != 0);
2006
2007 spin_lock(&fi->lock);
2008 list_del(&new_wpa->writepages_entry);
2009 old_wpa = fuse_find_writeback(fi, page->index, page->index);
2010 if (!old_wpa) {
2011 list_add(&new_wpa->writepages_entry, &fi->writepages);
2012 spin_unlock(&fi->lock);
2013 return false;
2014 }
2015
2016 new_ap->num_pages = 1;
2017 for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
2018 pgoff_t curr_index;
2019
2020 WARN_ON(tmp->inode != new_wpa->inode);
2021 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
2022 if (curr_index == page->index) {
2023 WARN_ON(tmp->ia.ap.num_pages != 1);
2024 swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
2025 break;
2026 }
2027 }
2028
2029 if (!tmp) {
2030 new_wpa->next = old_wpa->next;
2031 old_wpa->next = new_wpa;
2032 }
2033
2034 spin_unlock(&fi->lock);
2035
2036 if (tmp) {
2037 struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
2038
2039 dec_wb_stat(&bdi->wb, WB_WRITEBACK);
2040 dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
2041 wb_writeout_inc(&bdi->wb);
2042 fuse_writepage_free(new_wpa);
2043 }
2044
2045 return true;
2046}
2047
2048static int fuse_writepages_fill(struct page *page,
2049 struct writeback_control *wbc, void *_data)
2050{
2051 struct fuse_fill_wb_data *data = _data;
2052 struct fuse_writepage_args *wpa = data->wpa;
2053 struct fuse_args_pages *ap = &wpa->ia.ap;
2054 struct inode *inode = data->inode;
2055 struct fuse_inode *fi = get_fuse_inode(inode);
2056 struct fuse_conn *fc = get_fuse_conn(inode);
2057 struct page *tmp_page;
2058 bool is_writeback;
2059 int err;
2060
2061 if (!data->ff) {
2062 err = -EIO;
2063 data->ff = fuse_write_file_get(fc, fi);
2064 if (!data->ff)
2065 goto out_unlock;
2066 }
2067
2068 /*
2069 * Being under writeback is unlikely but possible. For example direct
2070 * read to an mmaped fuse file will set the page dirty twice; once when
2071 * the pages are faulted with get_user_pages(), and then after the read
2072 * completed.
2073 */
2074 is_writeback = fuse_page_is_writeback(inode, page->index);
2075
2076 if (wpa && ap->num_pages &&
2077 (is_writeback || ap->num_pages == fc->max_pages ||
2078 (ap->num_pages + 1) * PAGE_SIZE > fc->max_write ||
2079 data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)) {
2080 fuse_writepages_send(data);
2081 data->wpa = NULL;
2082 } else if (wpa && ap->num_pages == data->max_pages) {
2083 if (!fuse_pages_realloc(data)) {
2084 fuse_writepages_send(data);
2085 data->wpa = NULL;
2086 }
2087 }
2088
2089 err = -ENOMEM;
2090 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2091 if (!tmp_page)
2092 goto out_unlock;
2093
2094 /*
2095 * The page must not be redirtied until the writeout is completed
2096 * (i.e. userspace has sent a reply to the write request). Otherwise
2097 * there could be more than one temporary page instance for each real
2098 * page.
2099 *
2100 * This is ensured by holding the page lock in page_mkwrite() while
2101 * checking fuse_page_is_writeback(). We already hold the page lock
2102 * since clear_page_dirty_for_io() and keep it held until we add the
2103 * request to the fi->writepages list and increment ap->num_pages.
2104 * After this fuse_page_is_writeback() will indicate that the page is
2105 * under writeback, so we can release the page lock.
2106 */
2107 if (data->wpa == NULL) {
2108 err = -ENOMEM;
2109 wpa = fuse_writepage_args_alloc();
2110 if (!wpa) {
2111 __free_page(tmp_page);
2112 goto out_unlock;
2113 }
2114 data->max_pages = 1;
2115
2116 ap = &wpa->ia.ap;
2117 fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0);
2118 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2119 wpa->next = NULL;
2120 ap->args.in_pages = true;
2121 ap->args.end = fuse_writepage_end;
2122 ap->num_pages = 0;
2123 wpa->inode = inode;
2124
2125 spin_lock(&fi->lock);
2126 list_add(&wpa->writepages_entry, &fi->writepages);
2127 spin_unlock(&fi->lock);
2128
2129 data->wpa = wpa;
2130 }
2131 set_page_writeback(page);
2132
2133 copy_highpage(tmp_page, page);
2134 ap->pages[ap->num_pages] = tmp_page;
2135 ap->descs[ap->num_pages].offset = 0;
2136 ap->descs[ap->num_pages].length = PAGE_SIZE;
2137
2138 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2139 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2140
2141 err = 0;
2142 if (is_writeback && fuse_writepage_in_flight(wpa, page)) {
2143 end_page_writeback(page);
2144 data->wpa = NULL;
2145 goto out_unlock;
2146 }
2147 data->orig_pages[ap->num_pages] = page;
2148
2149 /*
2150 * Protected by fi->lock against concurrent access by
2151 * fuse_page_is_writeback().
2152 */
2153 spin_lock(&fi->lock);
2154 ap->num_pages++;
2155 spin_unlock(&fi->lock);
2156
2157out_unlock:
2158 unlock_page(page);
2159
2160 return err;
2161}
2162
2163static int fuse_writepages(struct address_space *mapping,
2164 struct writeback_control *wbc)
2165{
2166 struct inode *inode = mapping->host;
2167 struct fuse_conn *fc = get_fuse_conn(inode);
2168 struct fuse_fill_wb_data data;
2169 int err;
2170
2171 err = -EIO;
2172 if (fuse_is_bad(inode))
2173 goto out;
2174
2175 data.inode = inode;
2176 data.wpa = NULL;
2177 data.ff = NULL;
2178
2179 err = -ENOMEM;
2180 data.orig_pages = kcalloc(fc->max_pages,
2181 sizeof(struct page *),
2182 GFP_NOFS);
2183 if (!data.orig_pages)
2184 goto out;
2185
2186 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2187 if (data.wpa) {
2188 WARN_ON(!data.wpa->ia.ap.num_pages);
2189 fuse_writepages_send(&data);
2190 }
2191 if (data.ff)
2192 fuse_file_put(data.ff, false, false);
2193
2194 kfree(data.orig_pages);
2195out:
2196 return err;
2197}
2198
2199/*
2200 * It's worthy to make sure that space is reserved on disk for the write,
2201 * but how to implement it without killing performance need more thinking.
2202 */
2203static int fuse_write_begin(struct file *file, struct address_space *mapping,
2204 loff_t pos, unsigned len, unsigned flags,
2205 struct page **pagep, void **fsdata)
2206{
2207 pgoff_t index = pos >> PAGE_SHIFT;
2208 struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2209 struct page *page;
2210 loff_t fsize;
2211 int err = -ENOMEM;
2212
2213 WARN_ON(!fc->writeback_cache);
2214
2215 page = grab_cache_page_write_begin(mapping, index, flags);
2216 if (!page)
2217 goto error;
2218
2219 fuse_wait_on_page_writeback(mapping->host, page->index);
2220
2221 if (PageUptodate(page) || len == PAGE_SIZE)
2222 goto success;
2223 /*
2224 * Check if the start this page comes after the end of file, in which
2225 * case the readpage can be optimized away.
2226 */
2227 fsize = i_size_read(mapping->host);
2228 if (fsize <= (pos & PAGE_MASK)) {
2229 size_t off = pos & ~PAGE_MASK;
2230 if (off)
2231 zero_user_segment(page, 0, off);
2232 goto success;
2233 }
2234 err = fuse_do_readpage(file, page);
2235 if (err)
2236 goto cleanup;
2237success:
2238 *pagep = page;
2239 return 0;
2240
2241cleanup:
2242 unlock_page(page);
2243 put_page(page);
2244error:
2245 return err;
2246}
2247
2248static int fuse_write_end(struct file *file, struct address_space *mapping,
2249 loff_t pos, unsigned len, unsigned copied,
2250 struct page *page, void *fsdata)
2251{
2252 struct inode *inode = page->mapping->host;
2253
2254 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */
2255 if (!copied)
2256 goto unlock;
2257
2258 if (!PageUptodate(page)) {
2259 /* Zero any unwritten bytes at the end of the page */
2260 size_t endoff = (pos + copied) & ~PAGE_MASK;
2261 if (endoff)
2262 zero_user_segment(page, endoff, PAGE_SIZE);
2263 SetPageUptodate(page);
2264 }
2265
2266 fuse_write_update_size(inode, pos + copied);
2267 set_page_dirty(page);
2268
2269unlock:
2270 unlock_page(page);
2271 put_page(page);
2272
2273 return copied;
2274}
2275
2276static int fuse_launder_page(struct page *page)
2277{
2278 int err = 0;
2279 if (clear_page_dirty_for_io(page)) {
2280 struct inode *inode = page->mapping->host;
2281 err = fuse_writepage_locked(page);
2282 if (!err)
2283 fuse_wait_on_page_writeback(inode, page->index);
2284 }
2285 return err;
2286}
2287
2288/*
2289 * Write back dirty pages now, because there may not be any suitable
2290 * open files later
2291 */
2292static void fuse_vma_close(struct vm_area_struct *vma)
2293{
2294 filemap_write_and_wait(vma->vm_file->f_mapping);
2295}
2296
2297/*
2298 * Wait for writeback against this page to complete before allowing it
2299 * to be marked dirty again, and hence written back again, possibly
2300 * before the previous writepage completed.
2301 *
2302 * Block here, instead of in ->writepage(), so that the userspace fs
2303 * can only block processes actually operating on the filesystem.
2304 *
2305 * Otherwise unprivileged userspace fs would be able to block
2306 * unrelated:
2307 *
2308 * - page migration
2309 * - sync(2)
2310 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2311 */
2312static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2313{
2314 struct page *page = vmf->page;
2315 struct inode *inode = file_inode(vmf->vma->vm_file);
2316
2317 file_update_time(vmf->vma->vm_file);
2318 lock_page(page);
2319 if (page->mapping != inode->i_mapping) {
2320 unlock_page(page);
2321 return VM_FAULT_NOPAGE;
2322 }
2323
2324 fuse_wait_on_page_writeback(inode, page->index);
2325 return VM_FAULT_LOCKED;
2326}
2327
2328static const struct vm_operations_struct fuse_file_vm_ops = {
2329 .close = fuse_vma_close,
2330 .fault = filemap_fault,
2331 .map_pages = filemap_map_pages,
2332 .page_mkwrite = fuse_page_mkwrite,
2333};
2334
2335static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2336{
2337 struct fuse_file *ff = file->private_data;
2338
2339 if (ff->passthrough.filp)
2340 return fuse_passthrough_mmap(file, vma);
2341
2342 if (ff->open_flags & FOPEN_DIRECT_IO) {
2343 /* Can't provide the coherency needed for MAP_SHARED */
2344 if (vma->vm_flags & VM_MAYSHARE)
2345 return -ENODEV;
2346
2347 invalidate_inode_pages2(file->f_mapping);
2348
2349 return generic_file_mmap(file, vma);
2350 }
2351
2352 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2353 fuse_link_write_file(file);
2354
2355 file_accessed(file);
2356 vma->vm_ops = &fuse_file_vm_ops;
2357 return 0;
2358}
2359
2360static int convert_fuse_file_lock(struct fuse_conn *fc,
2361 const struct fuse_file_lock *ffl,
2362 struct file_lock *fl)
2363{
2364 switch (ffl->type) {
2365 case F_UNLCK:
2366 break;
2367
2368 case F_RDLCK:
2369 case F_WRLCK:
2370 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2371 ffl->end < ffl->start)
2372 return -EIO;
2373
2374 fl->fl_start = ffl->start;
2375 fl->fl_end = ffl->end;
2376
2377 /*
2378 * Convert pid into init's pid namespace. The locks API will
2379 * translate it into the caller's pid namespace.
2380 */
2381 rcu_read_lock();
2382 fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2383 rcu_read_unlock();
2384 break;
2385
2386 default:
2387 return -EIO;
2388 }
2389 fl->fl_type = ffl->type;
2390 return 0;
2391}
2392
2393static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2394 const struct file_lock *fl, int opcode, pid_t pid,
2395 int flock, struct fuse_lk_in *inarg)
2396{
2397 struct inode *inode = file_inode(file);
2398 struct fuse_conn *fc = get_fuse_conn(inode);
2399 struct fuse_file *ff = file->private_data;
2400
2401 memset(inarg, 0, sizeof(*inarg));
2402 inarg->fh = ff->fh;
2403 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2404 inarg->lk.start = fl->fl_start;
2405 inarg->lk.end = fl->fl_end;
2406 inarg->lk.type = fl->fl_type;
2407 inarg->lk.pid = pid;
2408 if (flock)
2409 inarg->lk_flags |= FUSE_LK_FLOCK;
2410 args->opcode = opcode;
2411 args->nodeid = get_node_id(inode);
2412 args->in_numargs = 1;
2413 args->in_args[0].size = sizeof(*inarg);
2414 args->in_args[0].value = inarg;
2415}
2416
2417static int fuse_getlk(struct file *file, struct file_lock *fl)
2418{
2419 struct inode *inode = file_inode(file);
2420 struct fuse_conn *fc = get_fuse_conn(inode);
2421 FUSE_ARGS(args);
2422 struct fuse_lk_in inarg;
2423 struct fuse_lk_out outarg;
2424 int err;
2425
2426 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2427 args.out_numargs = 1;
2428 args.out_args[0].size = sizeof(outarg);
2429 args.out_args[0].value = &outarg;
2430 err = fuse_simple_request(fc, &args);
2431 if (!err)
2432 err = convert_fuse_file_lock(fc, &outarg.lk, fl);
2433
2434 return err;
2435}
2436
2437static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2438{
2439 struct inode *inode = file_inode(file);
2440 struct fuse_conn *fc = get_fuse_conn(inode);
2441 FUSE_ARGS(args);
2442 struct fuse_lk_in inarg;
2443 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2444 struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2445 pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns);
2446 int err;
2447
2448 if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2449 /* NLM needs asynchronous locks, which we don't support yet */
2450 return -ENOLCK;
2451 }
2452
2453 /* Unlock on close is handled by the flush method */
2454 if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2455 return 0;
2456
2457 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2458 err = fuse_simple_request(fc, &args);
2459
2460 /* locking is restartable */
2461 if (err == -EINTR)
2462 err = -ERESTARTSYS;
2463
2464 return err;
2465}
2466
2467static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2468{
2469 struct inode *inode = file_inode(file);
2470 struct fuse_conn *fc = get_fuse_conn(inode);
2471 int err;
2472
2473 if (cmd == F_CANCELLK) {
2474 err = 0;
2475 } else if (cmd == F_GETLK) {
2476 if (fc->no_lock) {
2477 posix_test_lock(file, fl);
2478 err = 0;
2479 } else
2480 err = fuse_getlk(file, fl);
2481 } else {
2482 if (fc->no_lock)
2483 err = posix_lock_file(file, fl, NULL);
2484 else
2485 err = fuse_setlk(file, fl, 0);
2486 }
2487 return err;
2488}
2489
2490static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2491{
2492 struct inode *inode = file_inode(file);
2493 struct fuse_conn *fc = get_fuse_conn(inode);
2494 int err;
2495
2496 if (fc->no_flock) {
2497 err = locks_lock_file_wait(file, fl);
2498 } else {
2499 struct fuse_file *ff = file->private_data;
2500
2501 /* emulate flock with POSIX locks */
2502 ff->flock = true;
2503 err = fuse_setlk(file, fl, 1);
2504 }
2505
2506 return err;
2507}
2508
2509static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2510{
2511 struct inode *inode = mapping->host;
2512 struct fuse_conn *fc = get_fuse_conn(inode);
2513 FUSE_ARGS(args);
2514 struct fuse_bmap_in inarg;
2515 struct fuse_bmap_out outarg;
2516 int err;
2517
2518 if (!inode->i_sb->s_bdev || fc->no_bmap)
2519 return 0;
2520
2521 memset(&inarg, 0, sizeof(inarg));
2522 inarg.block = block;
2523 inarg.blocksize = inode->i_sb->s_blocksize;
2524 args.opcode = FUSE_BMAP;
2525 args.nodeid = get_node_id(inode);
2526 args.in_numargs = 1;
2527 args.in_args[0].size = sizeof(inarg);
2528 args.in_args[0].value = &inarg;
2529 args.out_numargs = 1;
2530 args.out_args[0].size = sizeof(outarg);
2531 args.out_args[0].value = &outarg;
2532 err = fuse_simple_request(fc, &args);
2533 if (err == -ENOSYS)
2534 fc->no_bmap = 1;
2535
2536 return err ? 0 : outarg.block;
2537}
2538
2539static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2540{
2541 struct inode *inode = file->f_mapping->host;
2542 struct fuse_conn *fc = get_fuse_conn(inode);
2543 struct fuse_file *ff = file->private_data;
2544 FUSE_ARGS(args);
2545 struct fuse_lseek_in inarg = {
2546 .fh = ff->fh,
2547 .offset = offset,
2548 .whence = whence
2549 };
2550 struct fuse_lseek_out outarg;
2551 int err;
2552
2553 if (fc->no_lseek)
2554 goto fallback;
2555
2556 args.opcode = FUSE_LSEEK;
2557 args.nodeid = ff->nodeid;
2558 args.in_numargs = 1;
2559 args.in_args[0].size = sizeof(inarg);
2560 args.in_args[0].value = &inarg;
2561 args.out_numargs = 1;
2562 args.out_args[0].size = sizeof(outarg);
2563 args.out_args[0].value = &outarg;
2564 err = fuse_simple_request(fc, &args);
2565 if (err) {
2566 if (err == -ENOSYS) {
2567 fc->no_lseek = 1;
2568 goto fallback;
2569 }
2570 return err;
2571 }
2572
2573 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2574
2575fallback:
2576 err = fuse_update_attributes(inode, file);
2577 if (!err)
2578 return generic_file_llseek(file, offset, whence);
2579 else
2580 return err;
2581}
2582
2583static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2584{
2585 loff_t retval;
2586 struct inode *inode = file_inode(file);
2587
2588 switch (whence) {
2589 case SEEK_SET:
2590 case SEEK_CUR:
2591 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2592 retval = generic_file_llseek(file, offset, whence);
2593 break;
2594 case SEEK_END:
2595 inode_lock(inode);
2596 retval = fuse_update_attributes(inode, file);
2597 if (!retval)
2598 retval = generic_file_llseek(file, offset, whence);
2599 inode_unlock(inode);
2600 break;
2601 case SEEK_HOLE:
2602 case SEEK_DATA:
2603 inode_lock(inode);
2604 retval = fuse_lseek(file, offset, whence);
2605 inode_unlock(inode);
2606 break;
2607 default:
2608 retval = -EINVAL;
2609 }
2610
2611 return retval;
2612}
2613
2614/*
2615 * CUSE servers compiled on 32bit broke on 64bit kernels because the
2616 * ABI was defined to be 'struct iovec' which is different on 32bit
2617 * and 64bit. Fortunately we can determine which structure the server
2618 * used from the size of the reply.
2619 */
2620static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2621 size_t transferred, unsigned count,
2622 bool is_compat)
2623{
2624#ifdef CONFIG_COMPAT
2625 if (count * sizeof(struct compat_iovec) == transferred) {
2626 struct compat_iovec *ciov = src;
2627 unsigned i;
2628
2629 /*
2630 * With this interface a 32bit server cannot support
2631 * non-compat (i.e. ones coming from 64bit apps) ioctl
2632 * requests
2633 */
2634 if (!is_compat)
2635 return -EINVAL;
2636
2637 for (i = 0; i < count; i++) {
2638 dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2639 dst[i].iov_len = ciov[i].iov_len;
2640 }
2641 return 0;
2642 }
2643#endif
2644
2645 if (count * sizeof(struct iovec) != transferred)
2646 return -EIO;
2647
2648 memcpy(dst, src, transferred);
2649 return 0;
2650}
2651
2652/* Make sure iov_length() won't overflow */
2653static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov,
2654 size_t count)
2655{
2656 size_t n;
2657 u32 max = fc->max_pages << PAGE_SHIFT;
2658
2659 for (n = 0; n < count; n++, iov++) {
2660 if (iov->iov_len > (size_t) max)
2661 return -ENOMEM;
2662 max -= iov->iov_len;
2663 }
2664 return 0;
2665}
2666
2667static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2668 void *src, size_t transferred, unsigned count,
2669 bool is_compat)
2670{
2671 unsigned i;
2672 struct fuse_ioctl_iovec *fiov = src;
2673
2674 if (fc->minor < 16) {
2675 return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2676 count, is_compat);
2677 }
2678
2679 if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2680 return -EIO;
2681
2682 for (i = 0; i < count; i++) {
2683 /* Did the server supply an inappropriate value? */
2684 if (fiov[i].base != (unsigned long) fiov[i].base ||
2685 fiov[i].len != (unsigned long) fiov[i].len)
2686 return -EIO;
2687
2688 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2689 dst[i].iov_len = (size_t) fiov[i].len;
2690
2691#ifdef CONFIG_COMPAT
2692 if (is_compat &&
2693 (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2694 (compat_size_t) dst[i].iov_len != fiov[i].len))
2695 return -EIO;
2696#endif
2697 }
2698
2699 return 0;
2700}
2701
2702
2703/*
2704 * For ioctls, there is no generic way to determine how much memory
2705 * needs to be read and/or written. Furthermore, ioctls are allowed
2706 * to dereference the passed pointer, so the parameter requires deep
2707 * copying but FUSE has no idea whatsoever about what to copy in or
2708 * out.
2709 *
2710 * This is solved by allowing FUSE server to retry ioctl with
2711 * necessary in/out iovecs. Let's assume the ioctl implementation
2712 * needs to read in the following structure.
2713 *
2714 * struct a {
2715 * char *buf;
2716 * size_t buflen;
2717 * }
2718 *
2719 * On the first callout to FUSE server, inarg->in_size and
2720 * inarg->out_size will be NULL; then, the server completes the ioctl
2721 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2722 * the actual iov array to
2723 *
2724 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } }
2725 *
2726 * which tells FUSE to copy in the requested area and retry the ioctl.
2727 * On the second round, the server has access to the structure and
2728 * from that it can tell what to look for next, so on the invocation,
2729 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2730 *
2731 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) },
2732 * { .iov_base = a.buf, .iov_len = a.buflen } }
2733 *
2734 * FUSE will copy both struct a and the pointed buffer from the
2735 * process doing the ioctl and retry ioctl with both struct a and the
2736 * buffer.
2737 *
2738 * This time, FUSE server has everything it needs and completes ioctl
2739 * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2740 *
2741 * Copying data out works the same way.
2742 *
2743 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2744 * automatically initializes in and out iovs by decoding @cmd with
2745 * _IOC_* macros and the server is not allowed to request RETRY. This
2746 * limits ioctl data transfers to well-formed ioctls and is the forced
2747 * behavior for all FUSE servers.
2748 */
2749long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2750 unsigned int flags)
2751{
2752 struct fuse_file *ff = file->private_data;
2753 struct fuse_conn *fc = ff->fc;
2754 struct fuse_ioctl_in inarg = {
2755 .fh = ff->fh,
2756 .cmd = cmd,
2757 .arg = arg,
2758 .flags = flags
2759 };
2760 struct fuse_ioctl_out outarg;
2761 struct iovec *iov_page = NULL;
2762 struct iovec *in_iov = NULL, *out_iov = NULL;
2763 unsigned int in_iovs = 0, out_iovs = 0, max_pages;
2764 size_t in_size, out_size, c;
2765 ssize_t transferred;
2766 int err, i;
2767 struct iov_iter ii;
2768 struct fuse_args_pages ap = {};
2769
2770#if BITS_PER_LONG == 32
2771 inarg.flags |= FUSE_IOCTL_32BIT;
2772#else
2773 if (flags & FUSE_IOCTL_COMPAT) {
2774 inarg.flags |= FUSE_IOCTL_32BIT;
2775#ifdef CONFIG_X86_X32
2776 if (in_x32_syscall())
2777 inarg.flags |= FUSE_IOCTL_COMPAT_X32;
2778#endif
2779 }
2780#endif
2781
2782 /* assume all the iovs returned by client always fits in a page */
2783 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2784
2785 err = -ENOMEM;
2786 ap.pages = fuse_pages_alloc(fc->max_pages, GFP_KERNEL, &ap.descs);
2787 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2788 if (!ap.pages || !iov_page)
2789 goto out;
2790
2791 fuse_page_descs_length_init(ap.descs, 0, fc->max_pages);
2792
2793 /*
2794 * If restricted, initialize IO parameters as encoded in @cmd.
2795 * RETRY from server is not allowed.
2796 */
2797 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2798 struct iovec *iov = iov_page;
2799
2800 iov->iov_base = (void __user *)arg;
2801
2802 switch (cmd) {
2803 case FS_IOC_GETFLAGS:
2804 case FS_IOC_SETFLAGS:
2805 iov->iov_len = sizeof(int);
2806 break;
2807 default:
2808 iov->iov_len = _IOC_SIZE(cmd);
2809 break;
2810 }
2811
2812 if (_IOC_DIR(cmd) & _IOC_WRITE) {
2813 in_iov = iov;
2814 in_iovs = 1;
2815 }
2816
2817 if (_IOC_DIR(cmd) & _IOC_READ) {
2818 out_iov = iov;
2819 out_iovs = 1;
2820 }
2821 }
2822
2823 retry:
2824 inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2825 inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2826
2827 /*
2828 * Out data can be used either for actual out data or iovs,
2829 * make sure there always is at least one page.
2830 */
2831 out_size = max_t(size_t, out_size, PAGE_SIZE);
2832 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2833
2834 /* make sure there are enough buffer pages and init request with them */
2835 err = -ENOMEM;
2836 if (max_pages > fc->max_pages)
2837 goto out;
2838 while (ap.num_pages < max_pages) {
2839 ap.pages[ap.num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2840 if (!ap.pages[ap.num_pages])
2841 goto out;
2842 ap.num_pages++;
2843 }
2844
2845
2846 /* okay, let's send it to the client */
2847 ap.args.opcode = FUSE_IOCTL;
2848 ap.args.nodeid = ff->nodeid;
2849 ap.args.in_numargs = 1;
2850 ap.args.in_args[0].size = sizeof(inarg);
2851 ap.args.in_args[0].value = &inarg;
2852 if (in_size) {
2853 ap.args.in_numargs++;
2854 ap.args.in_args[1].size = in_size;
2855 ap.args.in_pages = true;
2856
2857 err = -EFAULT;
2858 iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size);
2859 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2860 c = copy_page_from_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2861 if (c != PAGE_SIZE && iov_iter_count(&ii))
2862 goto out;
2863 }
2864 }
2865
2866 ap.args.out_numargs = 2;
2867 ap.args.out_args[0].size = sizeof(outarg);
2868 ap.args.out_args[0].value = &outarg;
2869 ap.args.out_args[1].size = out_size;
2870 ap.args.out_pages = true;
2871 ap.args.out_argvar = true;
2872
2873 transferred = fuse_simple_request(fc, &ap.args);
2874 err = transferred;
2875 if (transferred < 0)
2876 goto out;
2877
2878 /* did it ask for retry? */
2879 if (outarg.flags & FUSE_IOCTL_RETRY) {
2880 void *vaddr;
2881
2882 /* no retry if in restricted mode */
2883 err = -EIO;
2884 if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2885 goto out;
2886
2887 in_iovs = outarg.in_iovs;
2888 out_iovs = outarg.out_iovs;
2889
2890 /*
2891 * Make sure things are in boundary, separate checks
2892 * are to protect against overflow.
2893 */
2894 err = -ENOMEM;
2895 if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2896 out_iovs > FUSE_IOCTL_MAX_IOV ||
2897 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2898 goto out;
2899
2900 vaddr = kmap_atomic(ap.pages[0]);
2901 err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
2902 transferred, in_iovs + out_iovs,
2903 (flags & FUSE_IOCTL_COMPAT) != 0);
2904 kunmap_atomic(vaddr);
2905 if (err)
2906 goto out;
2907
2908 in_iov = iov_page;
2909 out_iov = in_iov + in_iovs;
2910
2911 err = fuse_verify_ioctl_iov(fc, in_iov, in_iovs);
2912 if (err)
2913 goto out;
2914
2915 err = fuse_verify_ioctl_iov(fc, out_iov, out_iovs);
2916 if (err)
2917 goto out;
2918
2919 goto retry;
2920 }
2921
2922 err = -EIO;
2923 if (transferred > inarg.out_size)
2924 goto out;
2925
2926 err = -EFAULT;
2927 iov_iter_init(&ii, READ, out_iov, out_iovs, transferred);
2928 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2929 c = copy_page_to_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2930 if (c != PAGE_SIZE && iov_iter_count(&ii))
2931 goto out;
2932 }
2933 err = 0;
2934 out:
2935 free_page((unsigned long) iov_page);
2936 while (ap.num_pages)
2937 __free_page(ap.pages[--ap.num_pages]);
2938 kfree(ap.pages);
2939
2940 return err ? err : outarg.result;
2941}
2942EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2943
2944long fuse_ioctl_common(struct file *file, unsigned int cmd,
2945 unsigned long arg, unsigned int flags)
2946{
2947 struct inode *inode = file_inode(file);
2948 struct fuse_conn *fc = get_fuse_conn(inode);
2949
2950 if (!fuse_allow_current_process(fc))
2951 return -EACCES;
2952
2953 if (fuse_is_bad(inode))
2954 return -EIO;
2955
2956 return fuse_do_ioctl(file, cmd, arg, flags);
2957}
2958
2959static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2960 unsigned long arg)
2961{
2962 return fuse_ioctl_common(file, cmd, arg, 0);
2963}
2964
2965static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2966 unsigned long arg)
2967{
2968 return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2969}
2970
2971/*
2972 * All files which have been polled are linked to RB tree
2973 * fuse_conn->polled_files which is indexed by kh. Walk the tree and
2974 * find the matching one.
2975 */
2976static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2977 struct rb_node **parent_out)
2978{
2979 struct rb_node **link = &fc->polled_files.rb_node;
2980 struct rb_node *last = NULL;
2981
2982 while (*link) {
2983 struct fuse_file *ff;
2984
2985 last = *link;
2986 ff = rb_entry(last, struct fuse_file, polled_node);
2987
2988 if (kh < ff->kh)
2989 link = &last->rb_left;
2990 else if (kh > ff->kh)
2991 link = &last->rb_right;
2992 else
2993 return link;
2994 }
2995
2996 if (parent_out)
2997 *parent_out = last;
2998 return link;
2999}
3000
3001/*
3002 * The file is about to be polled. Make sure it's on the polled_files
3003 * RB tree. Note that files once added to the polled_files tree are
3004 * not removed before the file is released. This is because a file
3005 * polled once is likely to be polled again.
3006 */
3007static void fuse_register_polled_file(struct fuse_conn *fc,
3008 struct fuse_file *ff)
3009{
3010 spin_lock(&fc->lock);
3011 if (RB_EMPTY_NODE(&ff->polled_node)) {
3012 struct rb_node **link, *parent;
3013
3014 link = fuse_find_polled_node(fc, ff->kh, &parent);
3015 BUG_ON(*link);
3016 rb_link_node(&ff->polled_node, parent, link);
3017 rb_insert_color(&ff->polled_node, &fc->polled_files);
3018 }
3019 spin_unlock(&fc->lock);
3020}
3021
3022__poll_t fuse_file_poll(struct file *file, poll_table *wait)
3023{
3024 struct fuse_file *ff = file->private_data;
3025 struct fuse_conn *fc = ff->fc;
3026 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
3027 struct fuse_poll_out outarg;
3028 FUSE_ARGS(args);
3029 int err;
3030
3031 if (fc->no_poll)
3032 return DEFAULT_POLLMASK;
3033
3034 poll_wait(file, &ff->poll_wait, wait);
3035 inarg.events = mangle_poll(poll_requested_events(wait));
3036
3037 /*
3038 * Ask for notification iff there's someone waiting for it.
3039 * The client may ignore the flag and always notify.
3040 */
3041 if (waitqueue_active(&ff->poll_wait)) {
3042 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
3043 fuse_register_polled_file(fc, ff);
3044 }
3045
3046 args.opcode = FUSE_POLL;
3047 args.nodeid = ff->nodeid;
3048 args.in_numargs = 1;
3049 args.in_args[0].size = sizeof(inarg);
3050 args.in_args[0].value = &inarg;
3051 args.out_numargs = 1;
3052 args.out_args[0].size = sizeof(outarg);
3053 args.out_args[0].value = &outarg;
3054 err = fuse_simple_request(fc, &args);
3055
3056 if (!err)
3057 return demangle_poll(outarg.revents);
3058 if (err == -ENOSYS) {
3059 fc->no_poll = 1;
3060 return DEFAULT_POLLMASK;
3061 }
3062 return EPOLLERR;
3063}
3064EXPORT_SYMBOL_GPL(fuse_file_poll);
3065
3066/*
3067 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
3068 * wakes up the poll waiters.
3069 */
3070int fuse_notify_poll_wakeup(struct fuse_conn *fc,
3071 struct fuse_notify_poll_wakeup_out *outarg)
3072{
3073 u64 kh = outarg->kh;
3074 struct rb_node **link;
3075
3076 spin_lock(&fc->lock);
3077
3078 link = fuse_find_polled_node(fc, kh, NULL);
3079 if (*link) {
3080 struct fuse_file *ff;
3081
3082 ff = rb_entry(*link, struct fuse_file, polled_node);
3083 wake_up_interruptible_sync(&ff->poll_wait);
3084 }
3085
3086 spin_unlock(&fc->lock);
3087 return 0;
3088}
3089
3090static void fuse_do_truncate(struct file *file)
3091{
3092 struct inode *inode = file->f_mapping->host;
3093 struct iattr attr;
3094
3095 attr.ia_valid = ATTR_SIZE;
3096 attr.ia_size = i_size_read(inode);
3097
3098 attr.ia_file = file;
3099 attr.ia_valid |= ATTR_FILE;
3100
3101 fuse_do_setattr(file_dentry(file), &attr, file);
3102}
3103
3104static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
3105{
3106 return round_up(off, fc->max_pages << PAGE_SHIFT);
3107}
3108
3109static ssize_t
3110fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3111{
3112 DECLARE_COMPLETION_ONSTACK(wait);
3113 ssize_t ret = 0;
3114 struct file *file = iocb->ki_filp;
3115 struct fuse_file *ff = file->private_data;
3116 loff_t pos = 0;
3117 struct inode *inode;
3118 loff_t i_size;
3119 size_t count = iov_iter_count(iter), shortened = 0;
3120 loff_t offset = iocb->ki_pos;
3121 struct fuse_io_priv *io;
3122
3123 pos = offset;
3124 inode = file->f_mapping->host;
3125 i_size = i_size_read(inode);
3126
3127 if ((iov_iter_rw(iter) == READ) && (offset >= i_size))
3128 return 0;
3129
3130 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
3131 if (!io)
3132 return -ENOMEM;
3133 spin_lock_init(&io->lock);
3134 kref_init(&io->refcnt);
3135 io->reqs = 1;
3136 io->bytes = -1;
3137 io->size = 0;
3138 io->offset = offset;
3139 io->write = (iov_iter_rw(iter) == WRITE);
3140 io->err = 0;
3141 /*
3142 * By default, we want to optimize all I/Os with async request
3143 * submission to the client filesystem if supported.
3144 */
3145 io->async = ff->fc->async_dio;
3146 io->iocb = iocb;
3147 io->blocking = is_sync_kiocb(iocb);
3148
3149 /* optimization for short read */
3150 if (io->async && !io->write && offset + count > i_size) {
3151 iov_iter_truncate(iter, fuse_round_up(ff->fc, i_size - offset));
3152 shortened = count - iov_iter_count(iter);
3153 count -= shortened;
3154 }
3155
3156 /*
3157 * We cannot asynchronously extend the size of a file.
3158 * In such case the aio will behave exactly like sync io.
3159 */
3160 if ((offset + count > i_size) && io->write)
3161 io->blocking = true;
3162
3163 if (io->async && io->blocking) {
3164 /*
3165 * Additional reference to keep io around after
3166 * calling fuse_aio_complete()
3167 */
3168 kref_get(&io->refcnt);
3169 io->done = &wait;
3170 }
3171
3172 if (iov_iter_rw(iter) == WRITE) {
3173 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
3174 fuse_invalidate_attr(inode);
3175 } else {
3176 ret = __fuse_direct_read(io, iter, &pos);
3177 }
3178 iov_iter_reexpand(iter, iov_iter_count(iter) + shortened);
3179
3180 if (io->async) {
3181 bool blocking = io->blocking;
3182
3183 fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
3184
3185 /* we have a non-extending, async request, so return */
3186 if (!blocking)
3187 return -EIOCBQUEUED;
3188
3189 wait_for_completion(&wait);
3190 ret = fuse_get_res_by_io(io);
3191 }
3192
3193 kref_put(&io->refcnt, fuse_io_release);
3194
3195 if (iov_iter_rw(iter) == WRITE) {
3196 if (ret > 0)
3197 fuse_write_update_size(inode, pos);
3198 else if (ret < 0 && offset + count > i_size)
3199 fuse_do_truncate(file);
3200 }
3201
3202 return ret;
3203}
3204
3205static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
3206{
3207 int err = filemap_write_and_wait_range(inode->i_mapping, start, LLONG_MAX);
3208
3209 if (!err)
3210 fuse_sync_writes(inode);
3211
3212 return err;
3213}
3214
3215static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3216 loff_t length)
3217{
3218 struct fuse_file *ff = file->private_data;
3219 struct inode *inode = file_inode(file);
3220 struct fuse_inode *fi = get_fuse_inode(inode);
3221 struct fuse_conn *fc = ff->fc;
3222 FUSE_ARGS(args);
3223 struct fuse_fallocate_in inarg = {
3224 .fh = ff->fh,
3225 .offset = offset,
3226 .length = length,
3227 .mode = mode
3228 };
3229 int err;
3230 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3231 return -EOPNOTSUPP;
3232
3233 if (fc->no_fallocate)
3234 return -EOPNOTSUPP;
3235
3236 inode_lock(inode);
3237 if (mode & FALLOC_FL_PUNCH_HOLE) {
3238 loff_t endbyte = offset + length - 1;
3239
3240 err = fuse_writeback_range(inode, offset, endbyte);
3241 if (err)
3242 goto out;
3243 }
3244
3245 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3246 offset + length > i_size_read(inode)) {
3247 err = inode_newsize_ok(inode, offset + length);
3248 if (err)
3249 goto out;
3250 }
3251
3252 err = file_modified(file);
3253 if (err)
3254 goto out;
3255
3256 if (!(mode & FALLOC_FL_KEEP_SIZE))
3257 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3258
3259 args.opcode = FUSE_FALLOCATE;
3260 args.nodeid = ff->nodeid;
3261 args.in_numargs = 1;
3262 args.in_args[0].size = sizeof(inarg);
3263 args.in_args[0].value = &inarg;
3264 err = fuse_simple_request(fc, &args);
3265 if (err == -ENOSYS) {
3266 fc->no_fallocate = 1;
3267 err = -EOPNOTSUPP;
3268 }
3269 if (err)
3270 goto out;
3271
3272 /* we could have extended the file */
3273 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3274 bool changed = fuse_write_update_size(inode, offset + length);
3275
3276 if (changed && fc->writeback_cache)
3277 file_update_time(file);
3278 }
3279
3280 if (mode & FALLOC_FL_PUNCH_HOLE)
3281 truncate_pagecache_range(inode, offset, offset + length - 1);
3282
3283 fuse_invalidate_attr(inode);
3284
3285out:
3286 if (!(mode & FALLOC_FL_KEEP_SIZE))
3287 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3288
3289 inode_unlock(inode);
3290
3291 return err;
3292}
3293
3294static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3295 struct file *file_out, loff_t pos_out,
3296 size_t len, unsigned int flags)
3297{
3298 struct fuse_file *ff_in = file_in->private_data;
3299 struct fuse_file *ff_out = file_out->private_data;
3300 struct inode *inode_in = file_inode(file_in);
3301 struct inode *inode_out = file_inode(file_out);
3302 struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3303 struct fuse_conn *fc = ff_in->fc;
3304 FUSE_ARGS(args);
3305 struct fuse_copy_file_range_in inarg = {
3306 .fh_in = ff_in->fh,
3307 .off_in = pos_in,
3308 .nodeid_out = ff_out->nodeid,
3309 .fh_out = ff_out->fh,
3310 .off_out = pos_out,
3311 .len = len,
3312 .flags = flags
3313 };
3314 struct fuse_write_out outarg;
3315 ssize_t err;
3316 /* mark unstable when write-back is not used, and file_out gets
3317 * extended */
3318 bool is_unstable = (!fc->writeback_cache) &&
3319 ((pos_out + len) > inode_out->i_size);
3320
3321 if (fc->no_copy_file_range)
3322 return -EOPNOTSUPP;
3323
3324 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3325 return -EXDEV;
3326
3327 inode_lock(inode_in);
3328 err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1);
3329 inode_unlock(inode_in);
3330 if (err)
3331 return err;
3332
3333 inode_lock(inode_out);
3334
3335 err = file_modified(file_out);
3336 if (err)
3337 goto out;
3338
3339 /*
3340 * Write out dirty pages in the destination file before sending the COPY
3341 * request to userspace. After the request is completed, truncate off
3342 * pages (including partial ones) from the cache that have been copied,
3343 * since these contain stale data at that point.
3344 *
3345 * This should be mostly correct, but if the COPY writes to partial
3346 * pages (at the start or end) and the parts not covered by the COPY are
3347 * written through a memory map after calling fuse_writeback_range(),
3348 * then these partial page modifications will be lost on truncation.
3349 *
3350 * It is unlikely that someone would rely on such mixed style
3351 * modifications. Yet this does give less guarantees than if the
3352 * copying was performed with write(2).
3353 *
3354 * To fix this a i_mmap_sem style lock could be used to prevent new
3355 * faults while the copy is ongoing.
3356 */
3357 err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1);
3358 if (err)
3359 goto out;
3360
3361 if (is_unstable)
3362 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3363
3364 args.opcode = FUSE_COPY_FILE_RANGE;
3365 args.nodeid = ff_in->nodeid;
3366 args.in_numargs = 1;
3367 args.in_args[0].size = sizeof(inarg);
3368 args.in_args[0].value = &inarg;
3369 args.out_numargs = 1;
3370 args.out_args[0].size = sizeof(outarg);
3371 args.out_args[0].value = &outarg;
3372 err = fuse_simple_request(fc, &args);
3373 if (err == -ENOSYS) {
3374 fc->no_copy_file_range = 1;
3375 err = -EOPNOTSUPP;
3376 }
3377 if (err)
3378 goto out;
3379
3380 truncate_inode_pages_range(inode_out->i_mapping,
3381 ALIGN_DOWN(pos_out, PAGE_SIZE),
3382 ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1);
3383
3384 if (fc->writeback_cache) {
3385 fuse_write_update_size(inode_out, pos_out + outarg.size);
3386 file_update_time(file_out);
3387 }
3388
3389 fuse_invalidate_attr(inode_out);
3390
3391 err = outarg.size;
3392out:
3393 if (is_unstable)
3394 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3395
3396 inode_unlock(inode_out);
3397 file_accessed(file_in);
3398
3399 return err;
3400}
3401
3402static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3403 struct file *dst_file, loff_t dst_off,
3404 size_t len, unsigned int flags)
3405{
3406 ssize_t ret;
3407
3408 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3409 len, flags);
3410
3411 if (ret == -EOPNOTSUPP || ret == -EXDEV)
3412 ret = generic_copy_file_range(src_file, src_off, dst_file,
3413 dst_off, len, flags);
3414 return ret;
3415}
3416
3417static const struct file_operations fuse_file_operations = {
3418 .llseek = fuse_file_llseek,
3419 .read_iter = fuse_file_read_iter,
3420 .write_iter = fuse_file_write_iter,
3421 .mmap = fuse_file_mmap,
3422 .open = fuse_open,
3423 .flush = fuse_flush,
3424 .release = fuse_release,
3425 .fsync = fuse_fsync,
3426 .lock = fuse_file_lock,
3427 .flock = fuse_file_flock,
3428 .splice_read = generic_file_splice_read,
3429 .splice_write = iter_file_splice_write,
3430 .unlocked_ioctl = fuse_file_ioctl,
3431 .compat_ioctl = fuse_file_compat_ioctl,
3432 .poll = fuse_file_poll,
3433 .fallocate = fuse_file_fallocate,
3434 .copy_file_range = fuse_copy_file_range,
3435};
3436
3437static const struct address_space_operations fuse_file_aops = {
3438 .readpage = fuse_readpage,
3439 .writepage = fuse_writepage,
3440 .writepages = fuse_writepages,
3441 .launder_page = fuse_launder_page,
3442 .readpages = fuse_readpages,
3443 .set_page_dirty = __set_page_dirty_nobuffers,
3444 .bmap = fuse_bmap,
3445 .direct_IO = fuse_direct_IO,
3446 .write_begin = fuse_write_begin,
3447 .write_end = fuse_write_end,
3448};
3449
3450void fuse_init_file_inode(struct inode *inode)
3451{
3452 struct fuse_inode *fi = get_fuse_inode(inode);
3453
3454 inode->i_fop = &fuse_file_operations;
3455 inode->i_data.a_ops = &fuse_file_aops;
3456
3457 INIT_LIST_HEAD(&fi->write_files);
3458 INIT_LIST_HEAD(&fi->queued_writes);
3459 fi->writectr = 0;
3460 init_waitqueue_head(&fi->page_waitq);
3461 INIT_LIST_HEAD(&fi->writepages);
3462}