b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * hugetlbpage-backed filesystem. Based on ramfs. |
| 3 | * |
| 4 | * Nadia Yvette Chambers, 2002 |
| 5 | * |
| 6 | * Copyright (C) 2002 Linus Torvalds. |
| 7 | * License: GPL |
| 8 | */ |
| 9 | |
| 10 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 11 | |
| 12 | #include <linux/thread_info.h> |
| 13 | #include <asm/current.h> |
| 14 | #include <linux/sched/signal.h> /* remove ASAP */ |
| 15 | #include <linux/falloc.h> |
| 16 | #include <linux/fs.h> |
| 17 | #include <linux/mount.h> |
| 18 | #include <linux/file.h> |
| 19 | #include <linux/kernel.h> |
| 20 | #include <linux/writeback.h> |
| 21 | #include <linux/pagemap.h> |
| 22 | #include <linux/highmem.h> |
| 23 | #include <linux/init.h> |
| 24 | #include <linux/string.h> |
| 25 | #include <linux/capability.h> |
| 26 | #include <linux/ctype.h> |
| 27 | #include <linux/backing-dev.h> |
| 28 | #include <linux/hugetlb.h> |
| 29 | #include <linux/pagevec.h> |
| 30 | #include <linux/fs_parser.h> |
| 31 | #include <linux/mman.h> |
| 32 | #include <linux/slab.h> |
| 33 | #include <linux/dnotify.h> |
| 34 | #include <linux/statfs.h> |
| 35 | #include <linux/security.h> |
| 36 | #include <linux/magic.h> |
| 37 | #include <linux/migrate.h> |
| 38 | #include <linux/uio.h> |
| 39 | |
| 40 | #include <linux/uaccess.h> |
| 41 | #include <linux/sched/mm.h> |
| 42 | |
| 43 | static const struct super_operations hugetlbfs_ops; |
| 44 | static const struct address_space_operations hugetlbfs_aops; |
| 45 | const struct file_operations hugetlbfs_file_operations; |
| 46 | static const struct inode_operations hugetlbfs_dir_inode_operations; |
| 47 | static const struct inode_operations hugetlbfs_inode_operations; |
| 48 | |
| 49 | enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; |
| 50 | |
| 51 | struct hugetlbfs_fs_context { |
| 52 | struct hstate *hstate; |
| 53 | unsigned long long max_size_opt; |
| 54 | unsigned long long min_size_opt; |
| 55 | long max_hpages; |
| 56 | long nr_inodes; |
| 57 | long min_hpages; |
| 58 | enum hugetlbfs_size_type max_val_type; |
| 59 | enum hugetlbfs_size_type min_val_type; |
| 60 | kuid_t uid; |
| 61 | kgid_t gid; |
| 62 | umode_t mode; |
| 63 | }; |
| 64 | |
| 65 | int sysctl_hugetlb_shm_group; |
| 66 | |
| 67 | enum hugetlb_param { |
| 68 | Opt_gid, |
| 69 | Opt_min_size, |
| 70 | Opt_mode, |
| 71 | Opt_nr_inodes, |
| 72 | Opt_pagesize, |
| 73 | Opt_size, |
| 74 | Opt_uid, |
| 75 | }; |
| 76 | |
| 77 | static const struct fs_parameter_spec hugetlb_param_specs[] = { |
| 78 | fsparam_u32 ("gid", Opt_gid), |
| 79 | fsparam_string("min_size", Opt_min_size), |
| 80 | fsparam_u32oct("mode", Opt_mode), |
| 81 | fsparam_string("nr_inodes", Opt_nr_inodes), |
| 82 | fsparam_string("pagesize", Opt_pagesize), |
| 83 | fsparam_string("size", Opt_size), |
| 84 | fsparam_u32 ("uid", Opt_uid), |
| 85 | {} |
| 86 | }; |
| 87 | |
| 88 | static const struct fs_parameter_description hugetlb_fs_parameters = { |
| 89 | .name = "hugetlbfs", |
| 90 | .specs = hugetlb_param_specs, |
| 91 | }; |
| 92 | |
| 93 | #ifdef CONFIG_NUMA |
| 94 | static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, |
| 95 | struct inode *inode, pgoff_t index) |
| 96 | { |
| 97 | vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, |
| 98 | index); |
| 99 | } |
| 100 | |
| 101 | static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) |
| 102 | { |
| 103 | mpol_cond_put(vma->vm_policy); |
| 104 | } |
| 105 | #else |
| 106 | static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, |
| 107 | struct inode *inode, pgoff_t index) |
| 108 | { |
| 109 | } |
| 110 | |
| 111 | static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) |
| 112 | { |
| 113 | } |
| 114 | #endif |
| 115 | |
| 116 | static void huge_pagevec_release(struct pagevec *pvec) |
| 117 | { |
| 118 | int i; |
| 119 | |
| 120 | for (i = 0; i < pagevec_count(pvec); ++i) |
| 121 | put_page(pvec->pages[i]); |
| 122 | |
| 123 | pagevec_reinit(pvec); |
| 124 | } |
| 125 | |
| 126 | /* |
| 127 | * Mask used when checking the page offset value passed in via system |
| 128 | * calls. This value will be converted to a loff_t which is signed. |
| 129 | * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the |
| 130 | * value. The extra bit (- 1 in the shift value) is to take the sign |
| 131 | * bit into account. |
| 132 | */ |
| 133 | #define PGOFF_LOFFT_MAX \ |
| 134 | (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) |
| 135 | |
| 136 | static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) |
| 137 | { |
| 138 | struct inode *inode = file_inode(file); |
| 139 | struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); |
| 140 | loff_t len, vma_len; |
| 141 | int ret; |
| 142 | struct hstate *h = hstate_file(file); |
| 143 | |
| 144 | /* |
| 145 | * vma address alignment (but not the pgoff alignment) has |
| 146 | * already been checked by prepare_hugepage_range. If you add |
| 147 | * any error returns here, do so after setting VM_HUGETLB, so |
| 148 | * is_vm_hugetlb_page tests below unmap_region go the right |
| 149 | * way when do_mmap_pgoff unwinds (may be important on powerpc |
| 150 | * and ia64). |
| 151 | */ |
| 152 | vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; |
| 153 | vma->vm_ops = &hugetlb_vm_ops; |
| 154 | |
| 155 | ret = seal_check_future_write(info->seals, vma); |
| 156 | if (ret) |
| 157 | return ret; |
| 158 | |
| 159 | /* |
| 160 | * page based offset in vm_pgoff could be sufficiently large to |
| 161 | * overflow a loff_t when converted to byte offset. This can |
| 162 | * only happen on architectures where sizeof(loff_t) == |
| 163 | * sizeof(unsigned long). So, only check in those instances. |
| 164 | */ |
| 165 | if (sizeof(unsigned long) == sizeof(loff_t)) { |
| 166 | if (vma->vm_pgoff & PGOFF_LOFFT_MAX) |
| 167 | return -EINVAL; |
| 168 | } |
| 169 | |
| 170 | /* must be huge page aligned */ |
| 171 | if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) |
| 172 | return -EINVAL; |
| 173 | |
| 174 | vma_len = (loff_t)(vma->vm_end - vma->vm_start); |
| 175 | len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); |
| 176 | /* check for overflow */ |
| 177 | if (len < vma_len) |
| 178 | return -EINVAL; |
| 179 | |
| 180 | inode_lock(inode); |
| 181 | file_accessed(file); |
| 182 | |
| 183 | ret = -ENOMEM; |
| 184 | if (hugetlb_reserve_pages(inode, |
| 185 | vma->vm_pgoff >> huge_page_order(h), |
| 186 | len >> huge_page_shift(h), vma, |
| 187 | vma->vm_flags)) |
| 188 | goto out; |
| 189 | |
| 190 | ret = 0; |
| 191 | if (vma->vm_flags & VM_WRITE && inode->i_size < len) |
| 192 | i_size_write(inode, len); |
| 193 | out: |
| 194 | inode_unlock(inode); |
| 195 | |
| 196 | return ret; |
| 197 | } |
| 198 | |
| 199 | /* |
| 200 | * Called under down_write(mmap_sem). |
| 201 | */ |
| 202 | |
| 203 | #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA |
| 204 | static unsigned long |
| 205 | hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, |
| 206 | unsigned long len, unsigned long pgoff, unsigned long flags) |
| 207 | { |
| 208 | struct hstate *h = hstate_file(file); |
| 209 | struct vm_unmapped_area_info info; |
| 210 | |
| 211 | info.flags = 0; |
| 212 | info.length = len; |
| 213 | info.low_limit = current->mm->mmap_base; |
| 214 | info.high_limit = arch_get_mmap_end(addr); |
| 215 | info.align_mask = PAGE_MASK & ~huge_page_mask(h); |
| 216 | info.align_offset = 0; |
| 217 | return vm_unmapped_area(&info); |
| 218 | } |
| 219 | |
| 220 | static unsigned long |
| 221 | hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr, |
| 222 | unsigned long len, unsigned long pgoff, unsigned long flags) |
| 223 | { |
| 224 | struct hstate *h = hstate_file(file); |
| 225 | struct vm_unmapped_area_info info; |
| 226 | |
| 227 | info.flags = VM_UNMAPPED_AREA_TOPDOWN; |
| 228 | info.length = len; |
| 229 | info.low_limit = max(PAGE_SIZE, mmap_min_addr); |
| 230 | info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base); |
| 231 | info.align_mask = PAGE_MASK & ~huge_page_mask(h); |
| 232 | info.align_offset = 0; |
| 233 | addr = vm_unmapped_area(&info); |
| 234 | |
| 235 | /* |
| 236 | * A failed mmap() very likely causes application failure, |
| 237 | * so fall back to the bottom-up function here. This scenario |
| 238 | * can happen with large stack limits and large mmap() |
| 239 | * allocations. |
| 240 | */ |
| 241 | if (unlikely(offset_in_page(addr))) { |
| 242 | VM_BUG_ON(addr != -ENOMEM); |
| 243 | info.flags = 0; |
| 244 | info.low_limit = current->mm->mmap_base; |
| 245 | info.high_limit = arch_get_mmap_end(addr); |
| 246 | addr = vm_unmapped_area(&info); |
| 247 | } |
| 248 | |
| 249 | return addr; |
| 250 | } |
| 251 | |
| 252 | static unsigned long |
| 253 | hugetlb_get_unmapped_area(struct file *file, unsigned long addr, |
| 254 | unsigned long len, unsigned long pgoff, unsigned long flags) |
| 255 | { |
| 256 | struct mm_struct *mm = current->mm; |
| 257 | struct vm_area_struct *vma; |
| 258 | struct hstate *h = hstate_file(file); |
| 259 | const unsigned long mmap_end = arch_get_mmap_end(addr); |
| 260 | |
| 261 | if (len & ~huge_page_mask(h)) |
| 262 | return -EINVAL; |
| 263 | if (len > TASK_SIZE) |
| 264 | return -ENOMEM; |
| 265 | |
| 266 | if (flags & MAP_FIXED) { |
| 267 | if (prepare_hugepage_range(file, addr, len)) |
| 268 | return -EINVAL; |
| 269 | return addr; |
| 270 | } |
| 271 | |
| 272 | if (addr) { |
| 273 | addr = ALIGN(addr, huge_page_size(h)); |
| 274 | vma = find_vma(mm, addr); |
| 275 | if (mmap_end - len >= addr && |
| 276 | (!vma || addr + len <= vm_start_gap(vma))) |
| 277 | return addr; |
| 278 | } |
| 279 | |
| 280 | /* |
| 281 | * Use mm->get_unmapped_area value as a hint to use topdown routine. |
| 282 | * If architectures have special needs, they should define their own |
| 283 | * version of hugetlb_get_unmapped_area. |
| 284 | */ |
| 285 | if (mm->get_unmapped_area == arch_get_unmapped_area_topdown) |
| 286 | return hugetlb_get_unmapped_area_topdown(file, addr, len, |
| 287 | pgoff, flags); |
| 288 | return hugetlb_get_unmapped_area_bottomup(file, addr, len, |
| 289 | pgoff, flags); |
| 290 | } |
| 291 | #endif |
| 292 | |
| 293 | static size_t |
| 294 | hugetlbfs_read_actor(struct page *page, unsigned long offset, |
| 295 | struct iov_iter *to, unsigned long size) |
| 296 | { |
| 297 | size_t copied = 0; |
| 298 | int i, chunksize; |
| 299 | |
| 300 | /* Find which 4k chunk and offset with in that chunk */ |
| 301 | i = offset >> PAGE_SHIFT; |
| 302 | offset = offset & ~PAGE_MASK; |
| 303 | |
| 304 | while (size) { |
| 305 | size_t n; |
| 306 | chunksize = PAGE_SIZE; |
| 307 | if (offset) |
| 308 | chunksize -= offset; |
| 309 | if (chunksize > size) |
| 310 | chunksize = size; |
| 311 | n = copy_page_to_iter(&page[i], offset, chunksize, to); |
| 312 | copied += n; |
| 313 | if (n != chunksize) |
| 314 | return copied; |
| 315 | offset = 0; |
| 316 | size -= chunksize; |
| 317 | i++; |
| 318 | } |
| 319 | return copied; |
| 320 | } |
| 321 | |
| 322 | /* |
| 323 | * Support for read() - Find the page attached to f_mapping and copy out the |
| 324 | * data. Its *very* similar to do_generic_mapping_read(), we can't use that |
| 325 | * since it has PAGE_SIZE assumptions. |
| 326 | */ |
| 327 | static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) |
| 328 | { |
| 329 | struct file *file = iocb->ki_filp; |
| 330 | struct hstate *h = hstate_file(file); |
| 331 | struct address_space *mapping = file->f_mapping; |
| 332 | struct inode *inode = mapping->host; |
| 333 | unsigned long index = iocb->ki_pos >> huge_page_shift(h); |
| 334 | unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); |
| 335 | unsigned long end_index; |
| 336 | loff_t isize; |
| 337 | ssize_t retval = 0; |
| 338 | |
| 339 | while (iov_iter_count(to)) { |
| 340 | struct page *page; |
| 341 | size_t nr, copied; |
| 342 | |
| 343 | /* nr is the maximum number of bytes to copy from this page */ |
| 344 | nr = huge_page_size(h); |
| 345 | isize = i_size_read(inode); |
| 346 | if (!isize) |
| 347 | break; |
| 348 | end_index = (isize - 1) >> huge_page_shift(h); |
| 349 | if (index > end_index) |
| 350 | break; |
| 351 | if (index == end_index) { |
| 352 | nr = ((isize - 1) & ~huge_page_mask(h)) + 1; |
| 353 | if (nr <= offset) |
| 354 | break; |
| 355 | } |
| 356 | nr = nr - offset; |
| 357 | |
| 358 | /* Find the page */ |
| 359 | page = find_lock_page(mapping, index); |
| 360 | if (unlikely(page == NULL)) { |
| 361 | /* |
| 362 | * We have a HOLE, zero out the user-buffer for the |
| 363 | * length of the hole or request. |
| 364 | */ |
| 365 | copied = iov_iter_zero(nr, to); |
| 366 | } else { |
| 367 | unlock_page(page); |
| 368 | |
| 369 | /* |
| 370 | * We have the page, copy it to user space buffer. |
| 371 | */ |
| 372 | copied = hugetlbfs_read_actor(page, offset, to, nr); |
| 373 | put_page(page); |
| 374 | } |
| 375 | offset += copied; |
| 376 | retval += copied; |
| 377 | if (copied != nr && iov_iter_count(to)) { |
| 378 | if (!retval) |
| 379 | retval = -EFAULT; |
| 380 | break; |
| 381 | } |
| 382 | index += offset >> huge_page_shift(h); |
| 383 | offset &= ~huge_page_mask(h); |
| 384 | } |
| 385 | iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; |
| 386 | return retval; |
| 387 | } |
| 388 | |
| 389 | static int hugetlbfs_write_begin(struct file *file, |
| 390 | struct address_space *mapping, |
| 391 | loff_t pos, unsigned len, unsigned flags, |
| 392 | struct page **pagep, void **fsdata) |
| 393 | { |
| 394 | return -EINVAL; |
| 395 | } |
| 396 | |
| 397 | static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, |
| 398 | loff_t pos, unsigned len, unsigned copied, |
| 399 | struct page *page, void *fsdata) |
| 400 | { |
| 401 | BUG(); |
| 402 | return -EINVAL; |
| 403 | } |
| 404 | |
| 405 | static void remove_huge_page(struct page *page) |
| 406 | { |
| 407 | ClearPageDirty(page); |
| 408 | ClearPageUptodate(page); |
| 409 | delete_from_page_cache(page); |
| 410 | } |
| 411 | |
| 412 | static void |
| 413 | hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end) |
| 414 | { |
| 415 | struct vm_area_struct *vma; |
| 416 | |
| 417 | /* |
| 418 | * end == 0 indicates that the entire range after |
| 419 | * start should be unmapped. |
| 420 | */ |
| 421 | vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) { |
| 422 | unsigned long v_offset; |
| 423 | unsigned long v_end; |
| 424 | |
| 425 | /* |
| 426 | * Can the expression below overflow on 32-bit arches? |
| 427 | * No, because the interval tree returns us only those vmas |
| 428 | * which overlap the truncated area starting at pgoff, |
| 429 | * and no vma on a 32-bit arch can span beyond the 4GB. |
| 430 | */ |
| 431 | if (vma->vm_pgoff < start) |
| 432 | v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; |
| 433 | else |
| 434 | v_offset = 0; |
| 435 | |
| 436 | if (!end) |
| 437 | v_end = vma->vm_end; |
| 438 | else { |
| 439 | v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) |
| 440 | + vma->vm_start; |
| 441 | if (v_end > vma->vm_end) |
| 442 | v_end = vma->vm_end; |
| 443 | } |
| 444 | |
| 445 | unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, |
| 446 | NULL); |
| 447 | } |
| 448 | } |
| 449 | |
| 450 | /* |
| 451 | * remove_inode_hugepages handles two distinct cases: truncation and hole |
| 452 | * punch. There are subtle differences in operation for each case. |
| 453 | * |
| 454 | * truncation is indicated by end of range being LLONG_MAX |
| 455 | * In this case, we first scan the range and release found pages. |
| 456 | * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv |
| 457 | * maps and global counts. Page faults can not race with truncation |
| 458 | * in this routine. hugetlb_no_page() prevents page faults in the |
| 459 | * truncated range. It checks i_size before allocation, and again after |
| 460 | * with the page table lock for the page held. The same lock must be |
| 461 | * acquired to unmap a page. |
| 462 | * hole punch is indicated if end is not LLONG_MAX |
| 463 | * In the hole punch case we scan the range and release found pages. |
| 464 | * Only when releasing a page is the associated region/reserv map |
| 465 | * deleted. The region/reserv map for ranges without associated |
| 466 | * pages are not modified. Page faults can race with hole punch. |
| 467 | * This is indicated if we find a mapped page. |
| 468 | * Note: If the passed end of range value is beyond the end of file, but |
| 469 | * not LLONG_MAX this routine still performs a hole punch operation. |
| 470 | */ |
| 471 | static void remove_inode_hugepages(struct inode *inode, loff_t lstart, |
| 472 | loff_t lend) |
| 473 | { |
| 474 | struct hstate *h = hstate_inode(inode); |
| 475 | struct address_space *mapping = &inode->i_data; |
| 476 | const pgoff_t start = lstart >> huge_page_shift(h); |
| 477 | const pgoff_t end = lend >> huge_page_shift(h); |
| 478 | struct vm_area_struct pseudo_vma; |
| 479 | struct pagevec pvec; |
| 480 | pgoff_t next, index; |
| 481 | int i, freed = 0; |
| 482 | bool truncate_op = (lend == LLONG_MAX); |
| 483 | |
| 484 | vma_init(&pseudo_vma, current->mm); |
| 485 | pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); |
| 486 | pagevec_init(&pvec); |
| 487 | next = start; |
| 488 | while (next < end) { |
| 489 | /* |
| 490 | * When no more pages are found, we are done. |
| 491 | */ |
| 492 | if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1)) |
| 493 | break; |
| 494 | |
| 495 | for (i = 0; i < pagevec_count(&pvec); ++i) { |
| 496 | struct page *page = pvec.pages[i]; |
| 497 | u32 hash; |
| 498 | |
| 499 | index = page->index; |
| 500 | hash = hugetlb_fault_mutex_hash(h, mapping, index); |
| 501 | mutex_lock(&hugetlb_fault_mutex_table[hash]); |
| 502 | |
| 503 | /* |
| 504 | * If page is mapped, it was faulted in after being |
| 505 | * unmapped in caller. Unmap (again) now after taking |
| 506 | * the fault mutex. The mutex will prevent faults |
| 507 | * until we finish removing the page. |
| 508 | * |
| 509 | * This race can only happen in the hole punch case. |
| 510 | * Getting here in a truncate operation is a bug. |
| 511 | */ |
| 512 | if (unlikely(page_mapped(page))) { |
| 513 | BUG_ON(truncate_op); |
| 514 | |
| 515 | i_mmap_lock_write(mapping); |
| 516 | hugetlb_vmdelete_list(&mapping->i_mmap, |
| 517 | index * pages_per_huge_page(h), |
| 518 | (index + 1) * pages_per_huge_page(h)); |
| 519 | i_mmap_unlock_write(mapping); |
| 520 | } |
| 521 | |
| 522 | lock_page(page); |
| 523 | /* |
| 524 | * We must free the huge page and remove from page |
| 525 | * cache (remove_huge_page) BEFORE removing the |
| 526 | * region/reserve map (hugetlb_unreserve_pages). In |
| 527 | * rare out of memory conditions, removal of the |
| 528 | * region/reserve map could fail. Correspondingly, |
| 529 | * the subpool and global reserve usage count can need |
| 530 | * to be adjusted. |
| 531 | */ |
| 532 | VM_BUG_ON(PagePrivate(page)); |
| 533 | remove_huge_page(page); |
| 534 | freed++; |
| 535 | if (!truncate_op) { |
| 536 | if (unlikely(hugetlb_unreserve_pages(inode, |
| 537 | index, index + 1, 1))) |
| 538 | hugetlb_fix_reserve_counts(inode); |
| 539 | } |
| 540 | |
| 541 | unlock_page(page); |
| 542 | mutex_unlock(&hugetlb_fault_mutex_table[hash]); |
| 543 | } |
| 544 | huge_pagevec_release(&pvec); |
| 545 | cond_resched(); |
| 546 | } |
| 547 | |
| 548 | if (truncate_op) |
| 549 | (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); |
| 550 | } |
| 551 | |
| 552 | static void hugetlbfs_evict_inode(struct inode *inode) |
| 553 | { |
| 554 | struct resv_map *resv_map; |
| 555 | |
| 556 | remove_inode_hugepages(inode, 0, LLONG_MAX); |
| 557 | |
| 558 | /* |
| 559 | * Get the resv_map from the address space embedded in the inode. |
| 560 | * This is the address space which points to any resv_map allocated |
| 561 | * at inode creation time. If this is a device special inode, |
| 562 | * i_mapping may not point to the original address space. |
| 563 | */ |
| 564 | resv_map = (struct resv_map *)(&inode->i_data)->private_data; |
| 565 | /* Only regular and link inodes have associated reserve maps */ |
| 566 | if (resv_map) |
| 567 | resv_map_release(&resv_map->refs); |
| 568 | clear_inode(inode); |
| 569 | } |
| 570 | |
| 571 | static int hugetlb_vmtruncate(struct inode *inode, loff_t offset) |
| 572 | { |
| 573 | pgoff_t pgoff; |
| 574 | struct address_space *mapping = inode->i_mapping; |
| 575 | struct hstate *h = hstate_inode(inode); |
| 576 | |
| 577 | BUG_ON(offset & ~huge_page_mask(h)); |
| 578 | pgoff = offset >> PAGE_SHIFT; |
| 579 | |
| 580 | i_size_write(inode, offset); |
| 581 | i_mmap_lock_write(mapping); |
| 582 | if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) |
| 583 | hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); |
| 584 | i_mmap_unlock_write(mapping); |
| 585 | remove_inode_hugepages(inode, offset, LLONG_MAX); |
| 586 | return 0; |
| 587 | } |
| 588 | |
| 589 | static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) |
| 590 | { |
| 591 | struct hstate *h = hstate_inode(inode); |
| 592 | loff_t hpage_size = huge_page_size(h); |
| 593 | loff_t hole_start, hole_end; |
| 594 | |
| 595 | /* |
| 596 | * For hole punch round up the beginning offset of the hole and |
| 597 | * round down the end. |
| 598 | */ |
| 599 | hole_start = round_up(offset, hpage_size); |
| 600 | hole_end = round_down(offset + len, hpage_size); |
| 601 | |
| 602 | if (hole_end > hole_start) { |
| 603 | struct address_space *mapping = inode->i_mapping; |
| 604 | struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); |
| 605 | |
| 606 | inode_lock(inode); |
| 607 | |
| 608 | /* protected by i_mutex */ |
| 609 | if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { |
| 610 | inode_unlock(inode); |
| 611 | return -EPERM; |
| 612 | } |
| 613 | |
| 614 | i_mmap_lock_write(mapping); |
| 615 | if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) |
| 616 | hugetlb_vmdelete_list(&mapping->i_mmap, |
| 617 | hole_start >> PAGE_SHIFT, |
| 618 | hole_end >> PAGE_SHIFT); |
| 619 | i_mmap_unlock_write(mapping); |
| 620 | remove_inode_hugepages(inode, hole_start, hole_end); |
| 621 | inode_unlock(inode); |
| 622 | } |
| 623 | |
| 624 | return 0; |
| 625 | } |
| 626 | |
| 627 | static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, |
| 628 | loff_t len) |
| 629 | { |
| 630 | struct inode *inode = file_inode(file); |
| 631 | struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); |
| 632 | struct address_space *mapping = inode->i_mapping; |
| 633 | struct hstate *h = hstate_inode(inode); |
| 634 | struct vm_area_struct pseudo_vma; |
| 635 | struct mm_struct *mm = current->mm; |
| 636 | loff_t hpage_size = huge_page_size(h); |
| 637 | unsigned long hpage_shift = huge_page_shift(h); |
| 638 | pgoff_t start, index, end; |
| 639 | int error; |
| 640 | u32 hash; |
| 641 | |
| 642 | if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) |
| 643 | return -EOPNOTSUPP; |
| 644 | |
| 645 | if (mode & FALLOC_FL_PUNCH_HOLE) |
| 646 | return hugetlbfs_punch_hole(inode, offset, len); |
| 647 | |
| 648 | /* |
| 649 | * Default preallocate case. |
| 650 | * For this range, start is rounded down and end is rounded up |
| 651 | * as well as being converted to page offsets. |
| 652 | */ |
| 653 | start = offset >> hpage_shift; |
| 654 | end = (offset + len + hpage_size - 1) >> hpage_shift; |
| 655 | |
| 656 | inode_lock(inode); |
| 657 | |
| 658 | /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ |
| 659 | error = inode_newsize_ok(inode, offset + len); |
| 660 | if (error) |
| 661 | goto out; |
| 662 | |
| 663 | if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { |
| 664 | error = -EPERM; |
| 665 | goto out; |
| 666 | } |
| 667 | |
| 668 | /* |
| 669 | * Initialize a pseudo vma as this is required by the huge page |
| 670 | * allocation routines. If NUMA is configured, use page index |
| 671 | * as input to create an allocation policy. |
| 672 | */ |
| 673 | vma_init(&pseudo_vma, mm); |
| 674 | pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); |
| 675 | pseudo_vma.vm_file = file; |
| 676 | |
| 677 | for (index = start; index < end; index++) { |
| 678 | /* |
| 679 | * This is supposed to be the vaddr where the page is being |
| 680 | * faulted in, but we have no vaddr here. |
| 681 | */ |
| 682 | struct page *page; |
| 683 | unsigned long addr; |
| 684 | int avoid_reserve = 0; |
| 685 | |
| 686 | cond_resched(); |
| 687 | |
| 688 | /* |
| 689 | * fallocate(2) manpage permits EINTR; we may have been |
| 690 | * interrupted because we are using up too much memory. |
| 691 | */ |
| 692 | if (signal_pending(current)) { |
| 693 | error = -EINTR; |
| 694 | break; |
| 695 | } |
| 696 | |
| 697 | /* Set numa allocation policy based on index */ |
| 698 | hugetlb_set_vma_policy(&pseudo_vma, inode, index); |
| 699 | |
| 700 | /* addr is the offset within the file (zero based) */ |
| 701 | addr = index * hpage_size; |
| 702 | |
| 703 | /* mutex taken here, fault path and hole punch */ |
| 704 | hash = hugetlb_fault_mutex_hash(h, mapping, index); |
| 705 | mutex_lock(&hugetlb_fault_mutex_table[hash]); |
| 706 | |
| 707 | /* See if already present in mapping to avoid alloc/free */ |
| 708 | page = find_get_page(mapping, index); |
| 709 | if (page) { |
| 710 | put_page(page); |
| 711 | mutex_unlock(&hugetlb_fault_mutex_table[hash]); |
| 712 | hugetlb_drop_vma_policy(&pseudo_vma); |
| 713 | continue; |
| 714 | } |
| 715 | |
| 716 | /* Allocate page and add to page cache */ |
| 717 | page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve); |
| 718 | hugetlb_drop_vma_policy(&pseudo_vma); |
| 719 | if (IS_ERR(page)) { |
| 720 | mutex_unlock(&hugetlb_fault_mutex_table[hash]); |
| 721 | error = PTR_ERR(page); |
| 722 | goto out; |
| 723 | } |
| 724 | clear_huge_page(page, addr, pages_per_huge_page(h)); |
| 725 | __SetPageUptodate(page); |
| 726 | error = huge_add_to_page_cache(page, mapping, index); |
| 727 | if (unlikely(error)) { |
| 728 | put_page(page); |
| 729 | mutex_unlock(&hugetlb_fault_mutex_table[hash]); |
| 730 | goto out; |
| 731 | } |
| 732 | |
| 733 | mutex_unlock(&hugetlb_fault_mutex_table[hash]); |
| 734 | |
| 735 | set_page_huge_active(page); |
| 736 | /* |
| 737 | * unlock_page because locked by add_to_page_cache() |
| 738 | * put_page() due to reference from alloc_huge_page() |
| 739 | */ |
| 740 | unlock_page(page); |
| 741 | put_page(page); |
| 742 | } |
| 743 | |
| 744 | if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) |
| 745 | i_size_write(inode, offset + len); |
| 746 | inode->i_ctime = current_time(inode); |
| 747 | out: |
| 748 | inode_unlock(inode); |
| 749 | return error; |
| 750 | } |
| 751 | |
| 752 | static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr) |
| 753 | { |
| 754 | struct inode *inode = d_inode(dentry); |
| 755 | struct hstate *h = hstate_inode(inode); |
| 756 | int error; |
| 757 | unsigned int ia_valid = attr->ia_valid; |
| 758 | struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); |
| 759 | |
| 760 | BUG_ON(!inode); |
| 761 | |
| 762 | error = setattr_prepare(dentry, attr); |
| 763 | if (error) |
| 764 | return error; |
| 765 | |
| 766 | if (ia_valid & ATTR_SIZE) { |
| 767 | loff_t oldsize = inode->i_size; |
| 768 | loff_t newsize = attr->ia_size; |
| 769 | |
| 770 | if (newsize & ~huge_page_mask(h)) |
| 771 | return -EINVAL; |
| 772 | /* protected by i_mutex */ |
| 773 | if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || |
| 774 | (newsize > oldsize && (info->seals & F_SEAL_GROW))) |
| 775 | return -EPERM; |
| 776 | error = hugetlb_vmtruncate(inode, newsize); |
| 777 | if (error) |
| 778 | return error; |
| 779 | } |
| 780 | |
| 781 | setattr_copy(inode, attr); |
| 782 | mark_inode_dirty(inode); |
| 783 | return 0; |
| 784 | } |
| 785 | |
| 786 | static struct inode *hugetlbfs_get_root(struct super_block *sb, |
| 787 | struct hugetlbfs_fs_context *ctx) |
| 788 | { |
| 789 | struct inode *inode; |
| 790 | |
| 791 | inode = new_inode(sb); |
| 792 | if (inode) { |
| 793 | inode->i_ino = get_next_ino(); |
| 794 | inode->i_mode = S_IFDIR | ctx->mode; |
| 795 | inode->i_uid = ctx->uid; |
| 796 | inode->i_gid = ctx->gid; |
| 797 | inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); |
| 798 | inode->i_op = &hugetlbfs_dir_inode_operations; |
| 799 | inode->i_fop = &simple_dir_operations; |
| 800 | /* directory inodes start off with i_nlink == 2 (for "." entry) */ |
| 801 | inc_nlink(inode); |
| 802 | lockdep_annotate_inode_mutex_key(inode); |
| 803 | } |
| 804 | return inode; |
| 805 | } |
| 806 | |
| 807 | /* |
| 808 | * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never |
| 809 | * be taken from reclaim -- unlike regular filesystems. This needs an |
| 810 | * annotation because huge_pmd_share() does an allocation under hugetlb's |
| 811 | * i_mmap_rwsem. |
| 812 | */ |
| 813 | static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; |
| 814 | |
| 815 | static struct inode *hugetlbfs_get_inode(struct super_block *sb, |
| 816 | struct inode *dir, |
| 817 | umode_t mode, dev_t dev) |
| 818 | { |
| 819 | struct inode *inode; |
| 820 | struct resv_map *resv_map = NULL; |
| 821 | |
| 822 | /* |
| 823 | * Reserve maps are only needed for inodes that can have associated |
| 824 | * page allocations. |
| 825 | */ |
| 826 | if (S_ISREG(mode) || S_ISLNK(mode)) { |
| 827 | resv_map = resv_map_alloc(); |
| 828 | if (!resv_map) |
| 829 | return NULL; |
| 830 | } |
| 831 | |
| 832 | inode = new_inode(sb); |
| 833 | if (inode) { |
| 834 | struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); |
| 835 | |
| 836 | inode->i_ino = get_next_ino(); |
| 837 | inode_init_owner(inode, dir, mode); |
| 838 | lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, |
| 839 | &hugetlbfs_i_mmap_rwsem_key); |
| 840 | inode->i_mapping->a_ops = &hugetlbfs_aops; |
| 841 | inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); |
| 842 | inode->i_mapping->private_data = resv_map; |
| 843 | info->seals = F_SEAL_SEAL; |
| 844 | switch (mode & S_IFMT) { |
| 845 | default: |
| 846 | init_special_inode(inode, mode, dev); |
| 847 | break; |
| 848 | case S_IFREG: |
| 849 | inode->i_op = &hugetlbfs_inode_operations; |
| 850 | inode->i_fop = &hugetlbfs_file_operations; |
| 851 | break; |
| 852 | case S_IFDIR: |
| 853 | inode->i_op = &hugetlbfs_dir_inode_operations; |
| 854 | inode->i_fop = &simple_dir_operations; |
| 855 | |
| 856 | /* directory inodes start off with i_nlink == 2 (for "." entry) */ |
| 857 | inc_nlink(inode); |
| 858 | break; |
| 859 | case S_IFLNK: |
| 860 | inode->i_op = &page_symlink_inode_operations; |
| 861 | inode_nohighmem(inode); |
| 862 | break; |
| 863 | } |
| 864 | lockdep_annotate_inode_mutex_key(inode); |
| 865 | } else { |
| 866 | if (resv_map) |
| 867 | kref_put(&resv_map->refs, resv_map_release); |
| 868 | } |
| 869 | |
| 870 | return inode; |
| 871 | } |
| 872 | |
| 873 | /* |
| 874 | * File creation. Allocate an inode, and we're done.. |
| 875 | */ |
| 876 | static int hugetlbfs_mknod(struct inode *dir, |
| 877 | struct dentry *dentry, umode_t mode, dev_t dev) |
| 878 | { |
| 879 | struct inode *inode; |
| 880 | int error = -ENOSPC; |
| 881 | |
| 882 | inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); |
| 883 | if (inode) { |
| 884 | dir->i_ctime = dir->i_mtime = current_time(dir); |
| 885 | d_instantiate(dentry, inode); |
| 886 | dget(dentry); /* Extra count - pin the dentry in core */ |
| 887 | error = 0; |
| 888 | } |
| 889 | return error; |
| 890 | } |
| 891 | |
| 892 | static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) |
| 893 | { |
| 894 | int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0); |
| 895 | if (!retval) |
| 896 | inc_nlink(dir); |
| 897 | return retval; |
| 898 | } |
| 899 | |
| 900 | static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) |
| 901 | { |
| 902 | return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0); |
| 903 | } |
| 904 | |
| 905 | static int hugetlbfs_symlink(struct inode *dir, |
| 906 | struct dentry *dentry, const char *symname) |
| 907 | { |
| 908 | struct inode *inode; |
| 909 | int error = -ENOSPC; |
| 910 | |
| 911 | inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); |
| 912 | if (inode) { |
| 913 | int l = strlen(symname)+1; |
| 914 | error = page_symlink(inode, symname, l); |
| 915 | if (!error) { |
| 916 | d_instantiate(dentry, inode); |
| 917 | dget(dentry); |
| 918 | } else |
| 919 | iput(inode); |
| 920 | } |
| 921 | dir->i_ctime = dir->i_mtime = current_time(dir); |
| 922 | |
| 923 | return error; |
| 924 | } |
| 925 | |
| 926 | /* |
| 927 | * mark the head page dirty |
| 928 | */ |
| 929 | static int hugetlbfs_set_page_dirty(struct page *page) |
| 930 | { |
| 931 | struct page *head = compound_head(page); |
| 932 | |
| 933 | SetPageDirty(head); |
| 934 | return 0; |
| 935 | } |
| 936 | |
| 937 | static int hugetlbfs_migrate_page(struct address_space *mapping, |
| 938 | struct page *newpage, struct page *page, |
| 939 | enum migrate_mode mode) |
| 940 | { |
| 941 | int rc; |
| 942 | |
| 943 | rc = migrate_huge_page_move_mapping(mapping, newpage, page); |
| 944 | if (rc != MIGRATEPAGE_SUCCESS) |
| 945 | return rc; |
| 946 | |
| 947 | /* |
| 948 | * page_private is subpool pointer in hugetlb pages. Transfer to |
| 949 | * new page. PagePrivate is not associated with page_private for |
| 950 | * hugetlb pages and can not be set here as only page_huge_active |
| 951 | * pages can be migrated. |
| 952 | */ |
| 953 | if (page_private(page)) { |
| 954 | set_page_private(newpage, page_private(page)); |
| 955 | set_page_private(page, 0); |
| 956 | } |
| 957 | |
| 958 | if (mode != MIGRATE_SYNC_NO_COPY) |
| 959 | migrate_page_copy(newpage, page); |
| 960 | else |
| 961 | migrate_page_states(newpage, page); |
| 962 | |
| 963 | return MIGRATEPAGE_SUCCESS; |
| 964 | } |
| 965 | |
| 966 | static int hugetlbfs_error_remove_page(struct address_space *mapping, |
| 967 | struct page *page) |
| 968 | { |
| 969 | struct inode *inode = mapping->host; |
| 970 | pgoff_t index = page->index; |
| 971 | |
| 972 | remove_huge_page(page); |
| 973 | if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) |
| 974 | hugetlb_fix_reserve_counts(inode); |
| 975 | |
| 976 | return 0; |
| 977 | } |
| 978 | |
| 979 | /* |
| 980 | * Display the mount options in /proc/mounts. |
| 981 | */ |
| 982 | static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) |
| 983 | { |
| 984 | struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); |
| 985 | struct hugepage_subpool *spool = sbinfo->spool; |
| 986 | unsigned long hpage_size = huge_page_size(sbinfo->hstate); |
| 987 | unsigned hpage_shift = huge_page_shift(sbinfo->hstate); |
| 988 | char mod; |
| 989 | |
| 990 | if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) |
| 991 | seq_printf(m, ",uid=%u", |
| 992 | from_kuid_munged(&init_user_ns, sbinfo->uid)); |
| 993 | if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) |
| 994 | seq_printf(m, ",gid=%u", |
| 995 | from_kgid_munged(&init_user_ns, sbinfo->gid)); |
| 996 | if (sbinfo->mode != 0755) |
| 997 | seq_printf(m, ",mode=%o", sbinfo->mode); |
| 998 | if (sbinfo->max_inodes != -1) |
| 999 | seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); |
| 1000 | |
| 1001 | hpage_size /= 1024; |
| 1002 | mod = 'K'; |
| 1003 | if (hpage_size >= 1024) { |
| 1004 | hpage_size /= 1024; |
| 1005 | mod = 'M'; |
| 1006 | } |
| 1007 | seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); |
| 1008 | if (spool) { |
| 1009 | if (spool->max_hpages != -1) |
| 1010 | seq_printf(m, ",size=%llu", |
| 1011 | (unsigned long long)spool->max_hpages << hpage_shift); |
| 1012 | if (spool->min_hpages != -1) |
| 1013 | seq_printf(m, ",min_size=%llu", |
| 1014 | (unsigned long long)spool->min_hpages << hpage_shift); |
| 1015 | } |
| 1016 | return 0; |
| 1017 | } |
| 1018 | |
| 1019 | static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) |
| 1020 | { |
| 1021 | struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); |
| 1022 | struct hstate *h = hstate_inode(d_inode(dentry)); |
| 1023 | |
| 1024 | buf->f_type = HUGETLBFS_MAGIC; |
| 1025 | buf->f_bsize = huge_page_size(h); |
| 1026 | if (sbinfo) { |
| 1027 | spin_lock(&sbinfo->stat_lock); |
| 1028 | /* If no limits set, just report 0 for max/free/used |
| 1029 | * blocks, like simple_statfs() */ |
| 1030 | if (sbinfo->spool) { |
| 1031 | long free_pages; |
| 1032 | |
| 1033 | spin_lock(&sbinfo->spool->lock); |
| 1034 | buf->f_blocks = sbinfo->spool->max_hpages; |
| 1035 | free_pages = sbinfo->spool->max_hpages |
| 1036 | - sbinfo->spool->used_hpages; |
| 1037 | buf->f_bavail = buf->f_bfree = free_pages; |
| 1038 | spin_unlock(&sbinfo->spool->lock); |
| 1039 | buf->f_files = sbinfo->max_inodes; |
| 1040 | buf->f_ffree = sbinfo->free_inodes; |
| 1041 | } |
| 1042 | spin_unlock(&sbinfo->stat_lock); |
| 1043 | } |
| 1044 | buf->f_namelen = NAME_MAX; |
| 1045 | return 0; |
| 1046 | } |
| 1047 | |
| 1048 | static void hugetlbfs_put_super(struct super_block *sb) |
| 1049 | { |
| 1050 | struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); |
| 1051 | |
| 1052 | if (sbi) { |
| 1053 | sb->s_fs_info = NULL; |
| 1054 | |
| 1055 | if (sbi->spool) |
| 1056 | hugepage_put_subpool(sbi->spool); |
| 1057 | |
| 1058 | kfree(sbi); |
| 1059 | } |
| 1060 | } |
| 1061 | |
| 1062 | static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) |
| 1063 | { |
| 1064 | if (sbinfo->free_inodes >= 0) { |
| 1065 | spin_lock(&sbinfo->stat_lock); |
| 1066 | if (unlikely(!sbinfo->free_inodes)) { |
| 1067 | spin_unlock(&sbinfo->stat_lock); |
| 1068 | return 0; |
| 1069 | } |
| 1070 | sbinfo->free_inodes--; |
| 1071 | spin_unlock(&sbinfo->stat_lock); |
| 1072 | } |
| 1073 | |
| 1074 | return 1; |
| 1075 | } |
| 1076 | |
| 1077 | static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) |
| 1078 | { |
| 1079 | if (sbinfo->free_inodes >= 0) { |
| 1080 | spin_lock(&sbinfo->stat_lock); |
| 1081 | sbinfo->free_inodes++; |
| 1082 | spin_unlock(&sbinfo->stat_lock); |
| 1083 | } |
| 1084 | } |
| 1085 | |
| 1086 | |
| 1087 | static struct kmem_cache *hugetlbfs_inode_cachep; |
| 1088 | |
| 1089 | static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) |
| 1090 | { |
| 1091 | struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); |
| 1092 | struct hugetlbfs_inode_info *p; |
| 1093 | |
| 1094 | if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) |
| 1095 | return NULL; |
| 1096 | p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL); |
| 1097 | if (unlikely(!p)) { |
| 1098 | hugetlbfs_inc_free_inodes(sbinfo); |
| 1099 | return NULL; |
| 1100 | } |
| 1101 | |
| 1102 | /* |
| 1103 | * Any time after allocation, hugetlbfs_destroy_inode can be called |
| 1104 | * for the inode. mpol_free_shared_policy is unconditionally called |
| 1105 | * as part of hugetlbfs_destroy_inode. So, initialize policy here |
| 1106 | * in case of a quick call to destroy. |
| 1107 | * |
| 1108 | * Note that the policy is initialized even if we are creating a |
| 1109 | * private inode. This simplifies hugetlbfs_destroy_inode. |
| 1110 | */ |
| 1111 | mpol_shared_policy_init(&p->policy, NULL); |
| 1112 | |
| 1113 | return &p->vfs_inode; |
| 1114 | } |
| 1115 | |
| 1116 | static void hugetlbfs_free_inode(struct inode *inode) |
| 1117 | { |
| 1118 | kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); |
| 1119 | } |
| 1120 | |
| 1121 | static void hugetlbfs_destroy_inode(struct inode *inode) |
| 1122 | { |
| 1123 | hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); |
| 1124 | mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); |
| 1125 | } |
| 1126 | |
| 1127 | static const struct address_space_operations hugetlbfs_aops = { |
| 1128 | .write_begin = hugetlbfs_write_begin, |
| 1129 | .write_end = hugetlbfs_write_end, |
| 1130 | .set_page_dirty = hugetlbfs_set_page_dirty, |
| 1131 | .migratepage = hugetlbfs_migrate_page, |
| 1132 | .error_remove_page = hugetlbfs_error_remove_page, |
| 1133 | }; |
| 1134 | |
| 1135 | |
| 1136 | static void init_once(void *foo) |
| 1137 | { |
| 1138 | struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; |
| 1139 | |
| 1140 | inode_init_once(&ei->vfs_inode); |
| 1141 | } |
| 1142 | |
| 1143 | const struct file_operations hugetlbfs_file_operations = { |
| 1144 | .read_iter = hugetlbfs_read_iter, |
| 1145 | .mmap = hugetlbfs_file_mmap, |
| 1146 | .fsync = noop_fsync, |
| 1147 | .get_unmapped_area = hugetlb_get_unmapped_area, |
| 1148 | .llseek = default_llseek, |
| 1149 | .fallocate = hugetlbfs_fallocate, |
| 1150 | }; |
| 1151 | |
| 1152 | static const struct inode_operations hugetlbfs_dir_inode_operations = { |
| 1153 | .create = hugetlbfs_create, |
| 1154 | .lookup = simple_lookup, |
| 1155 | .link = simple_link, |
| 1156 | .unlink = simple_unlink, |
| 1157 | .symlink = hugetlbfs_symlink, |
| 1158 | .mkdir = hugetlbfs_mkdir, |
| 1159 | .rmdir = simple_rmdir, |
| 1160 | .mknod = hugetlbfs_mknod, |
| 1161 | .rename = simple_rename, |
| 1162 | .setattr = hugetlbfs_setattr, |
| 1163 | }; |
| 1164 | |
| 1165 | static const struct inode_operations hugetlbfs_inode_operations = { |
| 1166 | .setattr = hugetlbfs_setattr, |
| 1167 | }; |
| 1168 | |
| 1169 | static const struct super_operations hugetlbfs_ops = { |
| 1170 | .alloc_inode = hugetlbfs_alloc_inode, |
| 1171 | .free_inode = hugetlbfs_free_inode, |
| 1172 | .destroy_inode = hugetlbfs_destroy_inode, |
| 1173 | .evict_inode = hugetlbfs_evict_inode, |
| 1174 | .statfs = hugetlbfs_statfs, |
| 1175 | .put_super = hugetlbfs_put_super, |
| 1176 | .show_options = hugetlbfs_show_options, |
| 1177 | }; |
| 1178 | |
| 1179 | /* |
| 1180 | * Convert size option passed from command line to number of huge pages |
| 1181 | * in the pool specified by hstate. Size option could be in bytes |
| 1182 | * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). |
| 1183 | */ |
| 1184 | static long |
| 1185 | hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, |
| 1186 | enum hugetlbfs_size_type val_type) |
| 1187 | { |
| 1188 | if (val_type == NO_SIZE) |
| 1189 | return -1; |
| 1190 | |
| 1191 | if (val_type == SIZE_PERCENT) { |
| 1192 | size_opt <<= huge_page_shift(h); |
| 1193 | size_opt *= h->max_huge_pages; |
| 1194 | do_div(size_opt, 100); |
| 1195 | } |
| 1196 | |
| 1197 | size_opt >>= huge_page_shift(h); |
| 1198 | return size_opt; |
| 1199 | } |
| 1200 | |
| 1201 | /* |
| 1202 | * Parse one mount parameter. |
| 1203 | */ |
| 1204 | static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) |
| 1205 | { |
| 1206 | struct hugetlbfs_fs_context *ctx = fc->fs_private; |
| 1207 | struct fs_parse_result result; |
| 1208 | struct hstate *h; |
| 1209 | char *rest; |
| 1210 | unsigned long ps; |
| 1211 | int opt; |
| 1212 | |
| 1213 | opt = fs_parse(fc, &hugetlb_fs_parameters, param, &result); |
| 1214 | if (opt < 0) |
| 1215 | return opt; |
| 1216 | |
| 1217 | switch (opt) { |
| 1218 | case Opt_uid: |
| 1219 | ctx->uid = make_kuid(current_user_ns(), result.uint_32); |
| 1220 | if (!uid_valid(ctx->uid)) |
| 1221 | goto bad_val; |
| 1222 | return 0; |
| 1223 | |
| 1224 | case Opt_gid: |
| 1225 | ctx->gid = make_kgid(current_user_ns(), result.uint_32); |
| 1226 | if (!gid_valid(ctx->gid)) |
| 1227 | goto bad_val; |
| 1228 | return 0; |
| 1229 | |
| 1230 | case Opt_mode: |
| 1231 | ctx->mode = result.uint_32 & 01777U; |
| 1232 | return 0; |
| 1233 | |
| 1234 | case Opt_size: |
| 1235 | /* memparse() will accept a K/M/G without a digit */ |
| 1236 | if (!param->string || !isdigit(param->string[0])) |
| 1237 | goto bad_val; |
| 1238 | ctx->max_size_opt = memparse(param->string, &rest); |
| 1239 | ctx->max_val_type = SIZE_STD; |
| 1240 | if (*rest == '%') |
| 1241 | ctx->max_val_type = SIZE_PERCENT; |
| 1242 | return 0; |
| 1243 | |
| 1244 | case Opt_nr_inodes: |
| 1245 | /* memparse() will accept a K/M/G without a digit */ |
| 1246 | if (!param->string || !isdigit(param->string[0])) |
| 1247 | goto bad_val; |
| 1248 | ctx->nr_inodes = memparse(param->string, &rest); |
| 1249 | return 0; |
| 1250 | |
| 1251 | case Opt_pagesize: |
| 1252 | ps = memparse(param->string, &rest); |
| 1253 | h = size_to_hstate(ps); |
| 1254 | if (!h) { |
| 1255 | pr_err("Unsupported page size %lu MB\n", ps >> 20); |
| 1256 | return -EINVAL; |
| 1257 | } |
| 1258 | ctx->hstate = h; |
| 1259 | return 0; |
| 1260 | |
| 1261 | case Opt_min_size: |
| 1262 | /* memparse() will accept a K/M/G without a digit */ |
| 1263 | if (!param->string || !isdigit(param->string[0])) |
| 1264 | goto bad_val; |
| 1265 | ctx->min_size_opt = memparse(param->string, &rest); |
| 1266 | ctx->min_val_type = SIZE_STD; |
| 1267 | if (*rest == '%') |
| 1268 | ctx->min_val_type = SIZE_PERCENT; |
| 1269 | return 0; |
| 1270 | |
| 1271 | default: |
| 1272 | return -EINVAL; |
| 1273 | } |
| 1274 | |
| 1275 | bad_val: |
| 1276 | return invalf(fc, "hugetlbfs: Bad value '%s' for mount option '%s'\n", |
| 1277 | param->string, param->key); |
| 1278 | } |
| 1279 | |
| 1280 | /* |
| 1281 | * Validate the parsed options. |
| 1282 | */ |
| 1283 | static int hugetlbfs_validate(struct fs_context *fc) |
| 1284 | { |
| 1285 | struct hugetlbfs_fs_context *ctx = fc->fs_private; |
| 1286 | |
| 1287 | /* |
| 1288 | * Use huge page pool size (in hstate) to convert the size |
| 1289 | * options to number of huge pages. If NO_SIZE, -1 is returned. |
| 1290 | */ |
| 1291 | ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, |
| 1292 | ctx->max_size_opt, |
| 1293 | ctx->max_val_type); |
| 1294 | ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, |
| 1295 | ctx->min_size_opt, |
| 1296 | ctx->min_val_type); |
| 1297 | |
| 1298 | /* |
| 1299 | * If max_size was specified, then min_size must be smaller |
| 1300 | */ |
| 1301 | if (ctx->max_val_type > NO_SIZE && |
| 1302 | ctx->min_hpages > ctx->max_hpages) { |
| 1303 | pr_err("Minimum size can not be greater than maximum size\n"); |
| 1304 | return -EINVAL; |
| 1305 | } |
| 1306 | |
| 1307 | return 0; |
| 1308 | } |
| 1309 | |
| 1310 | static int |
| 1311 | hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) |
| 1312 | { |
| 1313 | struct hugetlbfs_fs_context *ctx = fc->fs_private; |
| 1314 | struct hugetlbfs_sb_info *sbinfo; |
| 1315 | |
| 1316 | sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); |
| 1317 | if (!sbinfo) |
| 1318 | return -ENOMEM; |
| 1319 | sb->s_fs_info = sbinfo; |
| 1320 | spin_lock_init(&sbinfo->stat_lock); |
| 1321 | sbinfo->hstate = ctx->hstate; |
| 1322 | sbinfo->max_inodes = ctx->nr_inodes; |
| 1323 | sbinfo->free_inodes = ctx->nr_inodes; |
| 1324 | sbinfo->spool = NULL; |
| 1325 | sbinfo->uid = ctx->uid; |
| 1326 | sbinfo->gid = ctx->gid; |
| 1327 | sbinfo->mode = ctx->mode; |
| 1328 | |
| 1329 | /* |
| 1330 | * Allocate and initialize subpool if maximum or minimum size is |
| 1331 | * specified. Any needed reservations (for minimim size) are taken |
| 1332 | * taken when the subpool is created. |
| 1333 | */ |
| 1334 | if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { |
| 1335 | sbinfo->spool = hugepage_new_subpool(ctx->hstate, |
| 1336 | ctx->max_hpages, |
| 1337 | ctx->min_hpages); |
| 1338 | if (!sbinfo->spool) |
| 1339 | goto out_free; |
| 1340 | } |
| 1341 | sb->s_maxbytes = MAX_LFS_FILESIZE; |
| 1342 | sb->s_blocksize = huge_page_size(ctx->hstate); |
| 1343 | sb->s_blocksize_bits = huge_page_shift(ctx->hstate); |
| 1344 | sb->s_magic = HUGETLBFS_MAGIC; |
| 1345 | sb->s_op = &hugetlbfs_ops; |
| 1346 | sb->s_time_gran = 1; |
| 1347 | |
| 1348 | /* |
| 1349 | * Due to the special and limited functionality of hugetlbfs, it does |
| 1350 | * not work well as a stacking filesystem. |
| 1351 | */ |
| 1352 | sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; |
| 1353 | sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); |
| 1354 | if (!sb->s_root) |
| 1355 | goto out_free; |
| 1356 | return 0; |
| 1357 | out_free: |
| 1358 | kfree(sbinfo->spool); |
| 1359 | kfree(sbinfo); |
| 1360 | return -ENOMEM; |
| 1361 | } |
| 1362 | |
| 1363 | static int hugetlbfs_get_tree(struct fs_context *fc) |
| 1364 | { |
| 1365 | int err = hugetlbfs_validate(fc); |
| 1366 | if (err) |
| 1367 | return err; |
| 1368 | return get_tree_nodev(fc, hugetlbfs_fill_super); |
| 1369 | } |
| 1370 | |
| 1371 | static void hugetlbfs_fs_context_free(struct fs_context *fc) |
| 1372 | { |
| 1373 | kfree(fc->fs_private); |
| 1374 | } |
| 1375 | |
| 1376 | static const struct fs_context_operations hugetlbfs_fs_context_ops = { |
| 1377 | .free = hugetlbfs_fs_context_free, |
| 1378 | .parse_param = hugetlbfs_parse_param, |
| 1379 | .get_tree = hugetlbfs_get_tree, |
| 1380 | }; |
| 1381 | |
| 1382 | static int hugetlbfs_init_fs_context(struct fs_context *fc) |
| 1383 | { |
| 1384 | struct hugetlbfs_fs_context *ctx; |
| 1385 | |
| 1386 | ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); |
| 1387 | if (!ctx) |
| 1388 | return -ENOMEM; |
| 1389 | |
| 1390 | ctx->max_hpages = -1; /* No limit on size by default */ |
| 1391 | ctx->nr_inodes = -1; /* No limit on number of inodes by default */ |
| 1392 | ctx->uid = current_fsuid(); |
| 1393 | ctx->gid = current_fsgid(); |
| 1394 | ctx->mode = 0755; |
| 1395 | ctx->hstate = &default_hstate; |
| 1396 | ctx->min_hpages = -1; /* No default minimum size */ |
| 1397 | ctx->max_val_type = NO_SIZE; |
| 1398 | ctx->min_val_type = NO_SIZE; |
| 1399 | fc->fs_private = ctx; |
| 1400 | fc->ops = &hugetlbfs_fs_context_ops; |
| 1401 | return 0; |
| 1402 | } |
| 1403 | |
| 1404 | static struct file_system_type hugetlbfs_fs_type = { |
| 1405 | .name = "hugetlbfs", |
| 1406 | .init_fs_context = hugetlbfs_init_fs_context, |
| 1407 | .parameters = &hugetlb_fs_parameters, |
| 1408 | .kill_sb = kill_litter_super, |
| 1409 | }; |
| 1410 | |
| 1411 | static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; |
| 1412 | |
| 1413 | static int can_do_hugetlb_shm(void) |
| 1414 | { |
| 1415 | kgid_t shm_group; |
| 1416 | shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); |
| 1417 | return capable(CAP_IPC_LOCK) || in_group_p(shm_group); |
| 1418 | } |
| 1419 | |
| 1420 | static int get_hstate_idx(int page_size_log) |
| 1421 | { |
| 1422 | struct hstate *h = hstate_sizelog(page_size_log); |
| 1423 | |
| 1424 | if (!h) |
| 1425 | return -1; |
| 1426 | return h - hstates; |
| 1427 | } |
| 1428 | |
| 1429 | /* |
| 1430 | * Note that size should be aligned to proper hugepage size in caller side, |
| 1431 | * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. |
| 1432 | */ |
| 1433 | struct file *hugetlb_file_setup(const char *name, size_t size, |
| 1434 | vm_flags_t acctflag, struct user_struct **user, |
| 1435 | int creat_flags, int page_size_log) |
| 1436 | { |
| 1437 | struct inode *inode; |
| 1438 | struct vfsmount *mnt; |
| 1439 | int hstate_idx; |
| 1440 | struct file *file; |
| 1441 | |
| 1442 | hstate_idx = get_hstate_idx(page_size_log); |
| 1443 | if (hstate_idx < 0) |
| 1444 | return ERR_PTR(-ENODEV); |
| 1445 | |
| 1446 | *user = NULL; |
| 1447 | mnt = hugetlbfs_vfsmount[hstate_idx]; |
| 1448 | if (!mnt) |
| 1449 | return ERR_PTR(-ENOENT); |
| 1450 | |
| 1451 | if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { |
| 1452 | *user = current_user(); |
| 1453 | if (user_shm_lock(size, *user)) { |
| 1454 | task_lock(current); |
| 1455 | pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n", |
| 1456 | current->comm, current->pid); |
| 1457 | task_unlock(current); |
| 1458 | } else { |
| 1459 | *user = NULL; |
| 1460 | return ERR_PTR(-EPERM); |
| 1461 | } |
| 1462 | } |
| 1463 | |
| 1464 | file = ERR_PTR(-ENOSPC); |
| 1465 | inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); |
| 1466 | if (!inode) |
| 1467 | goto out; |
| 1468 | if (creat_flags == HUGETLB_SHMFS_INODE) |
| 1469 | inode->i_flags |= S_PRIVATE; |
| 1470 | |
| 1471 | inode->i_size = size; |
| 1472 | clear_nlink(inode); |
| 1473 | |
| 1474 | if (hugetlb_reserve_pages(inode, 0, |
| 1475 | size >> huge_page_shift(hstate_inode(inode)), NULL, |
| 1476 | acctflag)) |
| 1477 | file = ERR_PTR(-ENOMEM); |
| 1478 | else |
| 1479 | file = alloc_file_pseudo(inode, mnt, name, O_RDWR, |
| 1480 | &hugetlbfs_file_operations); |
| 1481 | if (!IS_ERR(file)) |
| 1482 | return file; |
| 1483 | |
| 1484 | iput(inode); |
| 1485 | out: |
| 1486 | if (*user) { |
| 1487 | user_shm_unlock(size, *user); |
| 1488 | *user = NULL; |
| 1489 | } |
| 1490 | return file; |
| 1491 | } |
| 1492 | |
| 1493 | static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) |
| 1494 | { |
| 1495 | struct fs_context *fc; |
| 1496 | struct vfsmount *mnt; |
| 1497 | |
| 1498 | fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); |
| 1499 | if (IS_ERR(fc)) { |
| 1500 | mnt = ERR_CAST(fc); |
| 1501 | } else { |
| 1502 | struct hugetlbfs_fs_context *ctx = fc->fs_private; |
| 1503 | ctx->hstate = h; |
| 1504 | mnt = fc_mount(fc); |
| 1505 | put_fs_context(fc); |
| 1506 | } |
| 1507 | if (IS_ERR(mnt)) |
| 1508 | pr_err("Cannot mount internal hugetlbfs for page size %uK", |
| 1509 | 1U << (h->order + PAGE_SHIFT - 10)); |
| 1510 | return mnt; |
| 1511 | } |
| 1512 | |
| 1513 | static int __init init_hugetlbfs_fs(void) |
| 1514 | { |
| 1515 | struct vfsmount *mnt; |
| 1516 | struct hstate *h; |
| 1517 | int error; |
| 1518 | int i; |
| 1519 | |
| 1520 | if (!hugepages_supported()) { |
| 1521 | pr_info("disabling because there are no supported hugepage sizes\n"); |
| 1522 | return -ENOTSUPP; |
| 1523 | } |
| 1524 | |
| 1525 | error = -ENOMEM; |
| 1526 | hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", |
| 1527 | sizeof(struct hugetlbfs_inode_info), |
| 1528 | 0, SLAB_ACCOUNT, init_once); |
| 1529 | if (hugetlbfs_inode_cachep == NULL) |
| 1530 | goto out; |
| 1531 | |
| 1532 | error = register_filesystem(&hugetlbfs_fs_type); |
| 1533 | if (error) |
| 1534 | goto out_free; |
| 1535 | |
| 1536 | /* default hstate mount is required */ |
| 1537 | mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]); |
| 1538 | if (IS_ERR(mnt)) { |
| 1539 | error = PTR_ERR(mnt); |
| 1540 | goto out_unreg; |
| 1541 | } |
| 1542 | hugetlbfs_vfsmount[default_hstate_idx] = mnt; |
| 1543 | |
| 1544 | /* other hstates are optional */ |
| 1545 | i = 0; |
| 1546 | for_each_hstate(h) { |
| 1547 | if (i == default_hstate_idx) { |
| 1548 | i++; |
| 1549 | continue; |
| 1550 | } |
| 1551 | |
| 1552 | mnt = mount_one_hugetlbfs(h); |
| 1553 | if (IS_ERR(mnt)) |
| 1554 | hugetlbfs_vfsmount[i] = NULL; |
| 1555 | else |
| 1556 | hugetlbfs_vfsmount[i] = mnt; |
| 1557 | i++; |
| 1558 | } |
| 1559 | |
| 1560 | return 0; |
| 1561 | |
| 1562 | out_unreg: |
| 1563 | (void)unregister_filesystem(&hugetlbfs_fs_type); |
| 1564 | out_free: |
| 1565 | kmem_cache_destroy(hugetlbfs_inode_cachep); |
| 1566 | out: |
| 1567 | return error; |
| 1568 | } |
| 1569 | fs_initcall(init_hugetlbfs_fs) |