blob: 3d1b3165963182a8796feb768161fbff3bfeb631 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6#include <linux/export.h>
7#include <linux/fs.h>
8#include <linux/mm.h>
9#include <linux/backing-dev.h>
10#include <linux/hash.h>
11#include <linux/swap.h>
12#include <linux/security.h>
13#include <linux/cdev.h>
14#include <linux/memblock.h>
15#include <linux/fscrypt.h>
16#include <linux/fsnotify.h>
17#include <linux/mount.h>
18#include <linux/posix_acl.h>
19#include <linux/prefetch.h>
20#include <linux/buffer_head.h> /* for inode_has_buffers */
21#include <linux/ratelimit.h>
22#include <linux/list_lru.h>
23#include <linux/iversion.h>
24#include <trace/events/writeback.h>
25#include "internal.h"
26
27/*
28 * Inode locking rules:
29 *
30 * inode->i_lock protects:
31 * inode->i_state, inode->i_hash, __iget()
32 * Inode LRU list locks protect:
33 * inode->i_sb->s_inode_lru, inode->i_lru
34 * inode->i_sb->s_inode_list_lock protects:
35 * inode->i_sb->s_inodes, inode->i_sb_list
36 * bdi->wb.list_lock protects:
37 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
38 * inode_hash_lock protects:
39 * inode_hashtable, inode->i_hash
40 *
41 * Lock ordering:
42 *
43 * inode->i_sb->s_inode_list_lock
44 * inode->i_lock
45 * Inode LRU list locks
46 *
47 * bdi->wb.list_lock
48 * inode->i_lock
49 *
50 * inode_hash_lock
51 * inode->i_sb->s_inode_list_lock
52 * inode->i_lock
53 *
54 * iunique_lock
55 * inode_hash_lock
56 */
57
58static unsigned int i_hash_mask __read_mostly;
59static unsigned int i_hash_shift __read_mostly;
60static struct hlist_head *inode_hashtable __read_mostly;
61static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
62
63/*
64 * Empty aops. Can be used for the cases where the user does not
65 * define any of the address_space operations.
66 */
67const struct address_space_operations empty_aops = {
68};
69EXPORT_SYMBOL(empty_aops);
70
71/*
72 * Statistics gathering..
73 */
74struct inodes_stat_t inodes_stat;
75
76static DEFINE_PER_CPU(unsigned long, nr_inodes);
77static DEFINE_PER_CPU(unsigned long, nr_unused);
78
79static struct kmem_cache *inode_cachep __read_mostly;
80
81static long get_nr_inodes(void)
82{
83 int i;
84 long sum = 0;
85 for_each_possible_cpu(i)
86 sum += per_cpu(nr_inodes, i);
87 return sum < 0 ? 0 : sum;
88}
89
90static inline long get_nr_inodes_unused(void)
91{
92 int i;
93 long sum = 0;
94 for_each_possible_cpu(i)
95 sum += per_cpu(nr_unused, i);
96 return sum < 0 ? 0 : sum;
97}
98
99long get_nr_dirty_inodes(void)
100{
101 /* not actually dirty inodes, but a wild approximation */
102 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
103 return nr_dirty > 0 ? nr_dirty : 0;
104}
105
106/*
107 * Handle nr_inode sysctl
108 */
109#ifdef CONFIG_SYSCTL
110int proc_nr_inodes(struct ctl_table *table, int write,
111 void __user *buffer, size_t *lenp, loff_t *ppos)
112{
113 inodes_stat.nr_inodes = get_nr_inodes();
114 inodes_stat.nr_unused = get_nr_inodes_unused();
115 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
116}
117#endif
118
119static int no_open(struct inode *inode, struct file *file)
120{
121 return -ENXIO;
122}
123
124/**
125 * inode_init_always - perform inode structure initialisation
126 * @sb: superblock inode belongs to
127 * @inode: inode to initialise
128 *
129 * These are initializations that need to be done on every inode
130 * allocation as the fields are not initialised by slab allocation.
131 */
132int inode_init_always(struct super_block *sb, struct inode *inode)
133{
134 static const struct inode_operations empty_iops;
135 static const struct file_operations no_open_fops = {.open = no_open};
136 struct address_space *const mapping = &inode->i_data;
137
138 inode->i_sb = sb;
139 inode->i_blkbits = sb->s_blocksize_bits;
140 inode->i_flags = 0;
141 atomic64_set(&inode->i_sequence, 0);
142 atomic_set(&inode->i_count, 1);
143 inode->i_op = &empty_iops;
144 inode->i_fop = &no_open_fops;
145 inode->__i_nlink = 1;
146 inode->i_opflags = 0;
147 if (sb->s_xattr)
148 inode->i_opflags |= IOP_XATTR;
149 i_uid_write(inode, 0);
150 i_gid_write(inode, 0);
151 atomic_set(&inode->i_writecount, 0);
152 inode->i_size = 0;
153 inode->i_write_hint = WRITE_LIFE_NOT_SET;
154 inode->i_blocks = 0;
155 inode->i_bytes = 0;
156 inode->i_generation = 0;
157 inode->i_pipe = NULL;
158 inode->i_bdev = NULL;
159 inode->i_cdev = NULL;
160 inode->i_link = NULL;
161 inode->i_dir_seq = 0;
162 inode->i_rdev = 0;
163 inode->dirtied_when = 0;
164
165#ifdef CONFIG_CGROUP_WRITEBACK
166 inode->i_wb_frn_winner = 0;
167 inode->i_wb_frn_avg_time = 0;
168 inode->i_wb_frn_history = 0;
169#endif
170
171 spin_lock_init(&inode->i_lock);
172 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
173
174 init_rwsem(&inode->i_rwsem);
175 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
176
177 atomic_set(&inode->i_dio_count, 0);
178
179 mapping->a_ops = &empty_aops;
180 mapping->host = inode;
181 mapping->flags = 0;
182 mapping->wb_err = 0;
183 atomic_set(&mapping->i_mmap_writable, 0);
184#ifdef CONFIG_READ_ONLY_THP_FOR_FS
185 atomic_set(&mapping->nr_thps, 0);
186#endif
187 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
188 mapping->private_data = NULL;
189 mapping->writeback_index = 0;
190 inode->i_private = NULL;
191 inode->i_mapping = mapping;
192 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
193#ifdef CONFIG_FS_POSIX_ACL
194 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
195#endif
196
197#ifdef CONFIG_FSNOTIFY
198 inode->i_fsnotify_mask = 0;
199#endif
200 inode->i_flctx = NULL;
201
202 if (unlikely(security_inode_alloc(inode)))
203 return -ENOMEM;
204 this_cpu_inc(nr_inodes);
205
206 return 0;
207}
208EXPORT_SYMBOL(inode_init_always);
209
210void free_inode_nonrcu(struct inode *inode)
211{
212 kmem_cache_free(inode_cachep, inode);
213}
214EXPORT_SYMBOL(free_inode_nonrcu);
215
216static void i_callback(struct rcu_head *head)
217{
218 struct inode *inode = container_of(head, struct inode, i_rcu);
219 if (inode->free_inode)
220 inode->free_inode(inode);
221 else
222 free_inode_nonrcu(inode);
223}
224
225static struct inode *alloc_inode(struct super_block *sb)
226{
227 const struct super_operations *ops = sb->s_op;
228 struct inode *inode;
229
230 if (ops->alloc_inode)
231 inode = ops->alloc_inode(sb);
232 else
233 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
234
235 if (!inode)
236 return NULL;
237
238 if (unlikely(inode_init_always(sb, inode))) {
239 if (ops->destroy_inode) {
240 ops->destroy_inode(inode);
241 if (!ops->free_inode)
242 return NULL;
243 }
244 inode->free_inode = ops->free_inode;
245 i_callback(&inode->i_rcu);
246 return NULL;
247 }
248
249 return inode;
250}
251
252void __destroy_inode(struct inode *inode)
253{
254 BUG_ON(inode_has_buffers(inode));
255 inode_detach_wb(inode);
256 security_inode_free(inode);
257 fsnotify_inode_delete(inode);
258 locks_free_lock_context(inode);
259 if (!inode->i_nlink) {
260 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
261 atomic_long_dec(&inode->i_sb->s_remove_count);
262 }
263
264#ifdef CONFIG_FS_POSIX_ACL
265 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
266 posix_acl_release(inode->i_acl);
267 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
268 posix_acl_release(inode->i_default_acl);
269#endif
270 this_cpu_dec(nr_inodes);
271}
272EXPORT_SYMBOL(__destroy_inode);
273
274static void destroy_inode(struct inode *inode)
275{
276 const struct super_operations *ops = inode->i_sb->s_op;
277
278 BUG_ON(!list_empty(&inode->i_lru));
279 __destroy_inode(inode);
280 if (ops->destroy_inode) {
281 ops->destroy_inode(inode);
282 if (!ops->free_inode)
283 return;
284 }
285 inode->free_inode = ops->free_inode;
286 call_rcu(&inode->i_rcu, i_callback);
287}
288
289/**
290 * drop_nlink - directly drop an inode's link count
291 * @inode: inode
292 *
293 * This is a low-level filesystem helper to replace any
294 * direct filesystem manipulation of i_nlink. In cases
295 * where we are attempting to track writes to the
296 * filesystem, a decrement to zero means an imminent
297 * write when the file is truncated and actually unlinked
298 * on the filesystem.
299 */
300void drop_nlink(struct inode *inode)
301{
302 WARN_ON(inode->i_nlink == 0);
303 inode->__i_nlink--;
304 if (!inode->i_nlink)
305 atomic_long_inc(&inode->i_sb->s_remove_count);
306}
307EXPORT_SYMBOL(drop_nlink);
308
309/**
310 * clear_nlink - directly zero an inode's link count
311 * @inode: inode
312 *
313 * This is a low-level filesystem helper to replace any
314 * direct filesystem manipulation of i_nlink. See
315 * drop_nlink() for why we care about i_nlink hitting zero.
316 */
317void clear_nlink(struct inode *inode)
318{
319 if (inode->i_nlink) {
320 inode->__i_nlink = 0;
321 atomic_long_inc(&inode->i_sb->s_remove_count);
322 }
323}
324EXPORT_SYMBOL(clear_nlink);
325
326/**
327 * set_nlink - directly set an inode's link count
328 * @inode: inode
329 * @nlink: new nlink (should be non-zero)
330 *
331 * This is a low-level filesystem helper to replace any
332 * direct filesystem manipulation of i_nlink.
333 */
334void set_nlink(struct inode *inode, unsigned int nlink)
335{
336 if (!nlink) {
337 clear_nlink(inode);
338 } else {
339 /* Yes, some filesystems do change nlink from zero to one */
340 if (inode->i_nlink == 0)
341 atomic_long_dec(&inode->i_sb->s_remove_count);
342
343 inode->__i_nlink = nlink;
344 }
345}
346EXPORT_SYMBOL(set_nlink);
347
348/**
349 * inc_nlink - directly increment an inode's link count
350 * @inode: inode
351 *
352 * This is a low-level filesystem helper to replace any
353 * direct filesystem manipulation of i_nlink. Currently,
354 * it is only here for parity with dec_nlink().
355 */
356void inc_nlink(struct inode *inode)
357{
358 if (unlikely(inode->i_nlink == 0)) {
359 WARN_ON(!(inode->i_state & I_LINKABLE));
360 atomic_long_dec(&inode->i_sb->s_remove_count);
361 }
362
363 inode->__i_nlink++;
364}
365EXPORT_SYMBOL(inc_nlink);
366
367static void __address_space_init_once(struct address_space *mapping)
368{
369 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
370 init_rwsem(&mapping->i_mmap_rwsem);
371 INIT_LIST_HEAD(&mapping->private_list);
372 spin_lock_init(&mapping->private_lock);
373 mapping->i_mmap = RB_ROOT_CACHED;
374}
375
376void address_space_init_once(struct address_space *mapping)
377{
378 memset(mapping, 0, sizeof(*mapping));
379 __address_space_init_once(mapping);
380}
381EXPORT_SYMBOL(address_space_init_once);
382
383/*
384 * These are initializations that only need to be done
385 * once, because the fields are idempotent across use
386 * of the inode, so let the slab aware of that.
387 */
388void inode_init_once(struct inode *inode)
389{
390 memset(inode, 0, sizeof(*inode));
391 INIT_HLIST_NODE(&inode->i_hash);
392 INIT_LIST_HEAD(&inode->i_devices);
393 INIT_LIST_HEAD(&inode->i_io_list);
394 INIT_LIST_HEAD(&inode->i_wb_list);
395 INIT_LIST_HEAD(&inode->i_lru);
396 __address_space_init_once(&inode->i_data);
397 i_size_ordered_init(inode);
398}
399EXPORT_SYMBOL(inode_init_once);
400
401static void init_once(void *foo)
402{
403 struct inode *inode = (struct inode *) foo;
404
405 inode_init_once(inode);
406}
407
408/*
409 * inode->i_lock must be held
410 */
411void __iget(struct inode *inode)
412{
413 atomic_inc(&inode->i_count);
414}
415
416/*
417 * get additional reference to inode; caller must already hold one.
418 */
419void ihold(struct inode *inode)
420{
421 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
422}
423EXPORT_SYMBOL(ihold);
424
425static void inode_lru_list_add(struct inode *inode)
426{
427 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
428 this_cpu_inc(nr_unused);
429 else
430 inode->i_state |= I_REFERENCED;
431}
432
433/*
434 * Add inode to LRU if needed (inode is unused and clean).
435 *
436 * Needs inode->i_lock held.
437 */
438void inode_add_lru(struct inode *inode)
439{
440 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
441 I_FREEING | I_WILL_FREE)) &&
442 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
443 inode_lru_list_add(inode);
444}
445
446
447static void inode_lru_list_del(struct inode *inode)
448{
449
450 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
451 this_cpu_dec(nr_unused);
452}
453
454static void inode_pin_lru_isolating(struct inode *inode)
455{
456 lockdep_assert_held(&inode->i_lock);
457 WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE));
458 inode->i_state |= I_LRU_ISOLATING;
459}
460
461static void inode_unpin_lru_isolating(struct inode *inode)
462{
463 spin_lock(&inode->i_lock);
464 WARN_ON(!(inode->i_state & I_LRU_ISOLATING));
465 inode->i_state &= ~I_LRU_ISOLATING;
466 smp_mb();
467 wake_up_bit(&inode->i_state, __I_LRU_ISOLATING);
468 spin_unlock(&inode->i_lock);
469}
470
471static void inode_wait_for_lru_isolating(struct inode *inode)
472{
473 spin_lock(&inode->i_lock);
474 if (inode->i_state & I_LRU_ISOLATING) {
475 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_LRU_ISOLATING);
476 wait_queue_head_t *wqh;
477
478 wqh = bit_waitqueue(&inode->i_state, __I_LRU_ISOLATING);
479 spin_unlock(&inode->i_lock);
480 __wait_on_bit(wqh, &wq, bit_wait, TASK_UNINTERRUPTIBLE);
481 spin_lock(&inode->i_lock);
482 WARN_ON(inode->i_state & I_LRU_ISOLATING);
483 }
484 spin_unlock(&inode->i_lock);
485}
486
487/**
488 * inode_sb_list_add - add inode to the superblock list of inodes
489 * @inode: inode to add
490 */
491void inode_sb_list_add(struct inode *inode)
492{
493 spin_lock(&inode->i_sb->s_inode_list_lock);
494 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
495 spin_unlock(&inode->i_sb->s_inode_list_lock);
496}
497EXPORT_SYMBOL_GPL(inode_sb_list_add);
498
499static inline void inode_sb_list_del(struct inode *inode)
500{
501 if (!list_empty(&inode->i_sb_list)) {
502 spin_lock(&inode->i_sb->s_inode_list_lock);
503 list_del_init(&inode->i_sb_list);
504 spin_unlock(&inode->i_sb->s_inode_list_lock);
505 }
506}
507
508static unsigned long hash(struct super_block *sb, unsigned long hashval)
509{
510 unsigned long tmp;
511
512 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
513 L1_CACHE_BYTES;
514 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
515 return tmp & i_hash_mask;
516}
517
518/**
519 * __insert_inode_hash - hash an inode
520 * @inode: unhashed inode
521 * @hashval: unsigned long value used to locate this object in the
522 * inode_hashtable.
523 *
524 * Add an inode to the inode hash for this superblock.
525 */
526void __insert_inode_hash(struct inode *inode, unsigned long hashval)
527{
528 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
529
530 spin_lock(&inode_hash_lock);
531 spin_lock(&inode->i_lock);
532 hlist_add_head(&inode->i_hash, b);
533 spin_unlock(&inode->i_lock);
534 spin_unlock(&inode_hash_lock);
535}
536EXPORT_SYMBOL(__insert_inode_hash);
537
538/**
539 * __remove_inode_hash - remove an inode from the hash
540 * @inode: inode to unhash
541 *
542 * Remove an inode from the superblock.
543 */
544void __remove_inode_hash(struct inode *inode)
545{
546 spin_lock(&inode_hash_lock);
547 spin_lock(&inode->i_lock);
548 hlist_del_init(&inode->i_hash);
549 spin_unlock(&inode->i_lock);
550 spin_unlock(&inode_hash_lock);
551}
552EXPORT_SYMBOL(__remove_inode_hash);
553
554void clear_inode(struct inode *inode)
555{
556 /*
557 * We have to cycle the i_pages lock here because reclaim can be in the
558 * process of removing the last page (in __delete_from_page_cache())
559 * and we must not free the mapping under it.
560 */
561 xa_lock_irq(&inode->i_data.i_pages);
562 BUG_ON(inode->i_data.nrpages);
563 BUG_ON(inode->i_data.nrexceptional);
564 xa_unlock_irq(&inode->i_data.i_pages);
565 BUG_ON(!list_empty(&inode->i_data.private_list));
566 BUG_ON(!(inode->i_state & I_FREEING));
567 BUG_ON(inode->i_state & I_CLEAR);
568 BUG_ON(!list_empty(&inode->i_wb_list));
569 /* don't need i_lock here, no concurrent mods to i_state */
570 inode->i_state = I_FREEING | I_CLEAR;
571}
572EXPORT_SYMBOL(clear_inode);
573
574/*
575 * Free the inode passed in, removing it from the lists it is still connected
576 * to. We remove any pages still attached to the inode and wait for any IO that
577 * is still in progress before finally destroying the inode.
578 *
579 * An inode must already be marked I_FREEING so that we avoid the inode being
580 * moved back onto lists if we race with other code that manipulates the lists
581 * (e.g. writeback_single_inode). The caller is responsible for setting this.
582 *
583 * An inode must already be removed from the LRU list before being evicted from
584 * the cache. This should occur atomically with setting the I_FREEING state
585 * flag, so no inodes here should ever be on the LRU when being evicted.
586 */
587static void evict(struct inode *inode)
588{
589 const struct super_operations *op = inode->i_sb->s_op;
590
591 BUG_ON(!(inode->i_state & I_FREEING));
592 BUG_ON(!list_empty(&inode->i_lru));
593
594 if (!list_empty(&inode->i_io_list))
595 inode_io_list_del(inode);
596
597 inode_sb_list_del(inode);
598
599 inode_wait_for_lru_isolating(inode);
600
601 /*
602 * Wait for flusher thread to be done with the inode so that filesystem
603 * does not start destroying it while writeback is still running. Since
604 * the inode has I_FREEING set, flusher thread won't start new work on
605 * the inode. We just have to wait for running writeback to finish.
606 */
607 inode_wait_for_writeback(inode);
608
609 if (op->evict_inode) {
610 op->evict_inode(inode);
611 } else {
612 truncate_inode_pages_final(&inode->i_data);
613 clear_inode(inode);
614 }
615 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
616 bd_forget(inode);
617 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
618 cd_forget(inode);
619
620 remove_inode_hash(inode);
621
622 spin_lock(&inode->i_lock);
623 wake_up_bit(&inode->i_state, __I_NEW);
624 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
625 spin_unlock(&inode->i_lock);
626
627 destroy_inode(inode);
628}
629
630/*
631 * dispose_list - dispose of the contents of a local list
632 * @head: the head of the list to free
633 *
634 * Dispose-list gets a local list with local inodes in it, so it doesn't
635 * need to worry about list corruption and SMP locks.
636 */
637static void dispose_list(struct list_head *head)
638{
639 while (!list_empty(head)) {
640 struct inode *inode;
641
642 inode = list_first_entry(head, struct inode, i_lru);
643 list_del_init(&inode->i_lru);
644
645 evict(inode);
646 cond_resched();
647 }
648}
649
650/**
651 * evict_inodes - evict all evictable inodes for a superblock
652 * @sb: superblock to operate on
653 *
654 * Make sure that no inodes with zero refcount are retained. This is
655 * called by superblock shutdown after having SB_ACTIVE flag removed,
656 * so any inode reaching zero refcount during or after that call will
657 * be immediately evicted.
658 */
659void evict_inodes(struct super_block *sb)
660{
661 struct inode *inode, *next;
662 LIST_HEAD(dispose);
663
664again:
665 spin_lock(&sb->s_inode_list_lock);
666 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
667 if (atomic_read(&inode->i_count))
668 continue;
669
670 spin_lock(&inode->i_lock);
671 if (atomic_read(&inode->i_count)) {
672 spin_unlock(&inode->i_lock);
673 continue;
674 }
675 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
676 spin_unlock(&inode->i_lock);
677 continue;
678 }
679
680 inode->i_state |= I_FREEING;
681 inode_lru_list_del(inode);
682 spin_unlock(&inode->i_lock);
683 list_add(&inode->i_lru, &dispose);
684
685 /*
686 * We can have a ton of inodes to evict at unmount time given
687 * enough memory, check to see if we need to go to sleep for a
688 * bit so we don't livelock.
689 */
690 if (need_resched()) {
691 spin_unlock(&sb->s_inode_list_lock);
692 cond_resched();
693 dispose_list(&dispose);
694 goto again;
695 }
696 }
697 spin_unlock(&sb->s_inode_list_lock);
698
699 dispose_list(&dispose);
700}
701EXPORT_SYMBOL_GPL(evict_inodes);
702
703/**
704 * invalidate_inodes - attempt to free all inodes on a superblock
705 * @sb: superblock to operate on
706 * @kill_dirty: flag to guide handling of dirty inodes
707 *
708 * Attempts to free all inodes for a given superblock. If there were any
709 * busy inodes return a non-zero value, else zero.
710 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
711 * them as busy.
712 */
713int invalidate_inodes(struct super_block *sb, bool kill_dirty)
714{
715 int busy = 0;
716 struct inode *inode, *next;
717 LIST_HEAD(dispose);
718
719again:
720 spin_lock(&sb->s_inode_list_lock);
721 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
722 spin_lock(&inode->i_lock);
723 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
724 spin_unlock(&inode->i_lock);
725 continue;
726 }
727 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
728 spin_unlock(&inode->i_lock);
729 busy = 1;
730 continue;
731 }
732 if (atomic_read(&inode->i_count)) {
733 spin_unlock(&inode->i_lock);
734 busy = 1;
735 continue;
736 }
737
738 inode->i_state |= I_FREEING;
739 inode_lru_list_del(inode);
740 spin_unlock(&inode->i_lock);
741 list_add(&inode->i_lru, &dispose);
742 if (need_resched()) {
743 spin_unlock(&sb->s_inode_list_lock);
744 cond_resched();
745 dispose_list(&dispose);
746 goto again;
747 }
748 }
749 spin_unlock(&sb->s_inode_list_lock);
750
751 dispose_list(&dispose);
752
753 return busy;
754}
755
756/*
757 * Isolate the inode from the LRU in preparation for freeing it.
758 *
759 * Any inodes which are pinned purely because of attached pagecache have their
760 * pagecache removed. If the inode has metadata buffers attached to
761 * mapping->private_list then try to remove them.
762 *
763 * If the inode has the I_REFERENCED flag set, then it means that it has been
764 * used recently - the flag is set in iput_final(). When we encounter such an
765 * inode, clear the flag and move it to the back of the LRU so it gets another
766 * pass through the LRU before it gets reclaimed. This is necessary because of
767 * the fact we are doing lazy LRU updates to minimise lock contention so the
768 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
769 * with this flag set because they are the inodes that are out of order.
770 */
771static enum lru_status inode_lru_isolate(struct list_head *item,
772 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
773{
774 struct list_head *freeable = arg;
775 struct inode *inode = container_of(item, struct inode, i_lru);
776
777 /*
778 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
779 * If we fail to get the lock, just skip it.
780 */
781 if (!spin_trylock(&inode->i_lock))
782 return LRU_SKIP;
783
784 /*
785 * Referenced or dirty inodes are still in use. Give them another pass
786 * through the LRU as we canot reclaim them now.
787 */
788 if (atomic_read(&inode->i_count) ||
789 (inode->i_state & ~I_REFERENCED)) {
790 list_lru_isolate(lru, &inode->i_lru);
791 spin_unlock(&inode->i_lock);
792 this_cpu_dec(nr_unused);
793 return LRU_REMOVED;
794 }
795
796 /* recently referenced inodes get one more pass */
797 if (inode->i_state & I_REFERENCED) {
798 inode->i_state &= ~I_REFERENCED;
799 spin_unlock(&inode->i_lock);
800 return LRU_ROTATE;
801 }
802
803 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
804 inode_pin_lru_isolating(inode);
805 spin_unlock(&inode->i_lock);
806 spin_unlock(lru_lock);
807 if (remove_inode_buffers(inode)) {
808 unsigned long reap;
809 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
810 if (current_is_kswapd())
811 __count_vm_events(KSWAPD_INODESTEAL, reap);
812 else
813 __count_vm_events(PGINODESTEAL, reap);
814 if (current->reclaim_state)
815 current->reclaim_state->reclaimed_slab += reap;
816 }
817 inode_unpin_lru_isolating(inode);
818 spin_lock(lru_lock);
819 return LRU_RETRY;
820 }
821
822 WARN_ON(inode->i_state & I_NEW);
823 inode->i_state |= I_FREEING;
824 list_lru_isolate_move(lru, &inode->i_lru, freeable);
825 spin_unlock(&inode->i_lock);
826
827 this_cpu_dec(nr_unused);
828 return LRU_REMOVED;
829}
830
831/*
832 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
833 * This is called from the superblock shrinker function with a number of inodes
834 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
835 * then are freed outside inode_lock by dispose_list().
836 */
837long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
838{
839 LIST_HEAD(freeable);
840 long freed;
841
842 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
843 inode_lru_isolate, &freeable);
844 dispose_list(&freeable);
845 return freed;
846}
847
848static void __wait_on_freeing_inode(struct inode *inode);
849/*
850 * Called with the inode lock held.
851 */
852static struct inode *find_inode(struct super_block *sb,
853 struct hlist_head *head,
854 int (*test)(struct inode *, void *),
855 void *data)
856{
857 struct inode *inode = NULL;
858
859repeat:
860 hlist_for_each_entry(inode, head, i_hash) {
861 if (inode->i_sb != sb)
862 continue;
863 if (!test(inode, data))
864 continue;
865 spin_lock(&inode->i_lock);
866 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
867 __wait_on_freeing_inode(inode);
868 goto repeat;
869 }
870 if (unlikely(inode->i_state & I_CREATING)) {
871 spin_unlock(&inode->i_lock);
872 return ERR_PTR(-ESTALE);
873 }
874 __iget(inode);
875 spin_unlock(&inode->i_lock);
876 return inode;
877 }
878 return NULL;
879}
880
881/*
882 * find_inode_fast is the fast path version of find_inode, see the comment at
883 * iget_locked for details.
884 */
885static struct inode *find_inode_fast(struct super_block *sb,
886 struct hlist_head *head, unsigned long ino)
887{
888 struct inode *inode = NULL;
889
890repeat:
891 hlist_for_each_entry(inode, head, i_hash) {
892 if (inode->i_ino != ino)
893 continue;
894 if (inode->i_sb != sb)
895 continue;
896 spin_lock(&inode->i_lock);
897 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
898 __wait_on_freeing_inode(inode);
899 goto repeat;
900 }
901 if (unlikely(inode->i_state & I_CREATING)) {
902 spin_unlock(&inode->i_lock);
903 return ERR_PTR(-ESTALE);
904 }
905 __iget(inode);
906 spin_unlock(&inode->i_lock);
907 return inode;
908 }
909 return NULL;
910}
911
912/*
913 * Each cpu owns a range of LAST_INO_BATCH numbers.
914 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
915 * to renew the exhausted range.
916 *
917 * This does not significantly increase overflow rate because every CPU can
918 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
919 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
920 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
921 * overflow rate by 2x, which does not seem too significant.
922 *
923 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
924 * error if st_ino won't fit in target struct field. Use 32bit counter
925 * here to attempt to avoid that.
926 */
927#define LAST_INO_BATCH 1024
928static DEFINE_PER_CPU(unsigned int, last_ino);
929
930unsigned int get_next_ino(void)
931{
932 unsigned int *p = &get_cpu_var(last_ino);
933 unsigned int res = *p;
934
935#ifdef CONFIG_SMP
936 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
937 static atomic_t shared_last_ino;
938 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
939
940 res = next - LAST_INO_BATCH;
941 }
942#endif
943
944 res++;
945 /* get_next_ino should not provide a 0 inode number */
946 if (unlikely(!res))
947 res++;
948 *p = res;
949 put_cpu_var(last_ino);
950 return res;
951}
952EXPORT_SYMBOL(get_next_ino);
953
954/**
955 * new_inode_pseudo - obtain an inode
956 * @sb: superblock
957 *
958 * Allocates a new inode for given superblock.
959 * Inode wont be chained in superblock s_inodes list
960 * This means :
961 * - fs can't be unmount
962 * - quotas, fsnotify, writeback can't work
963 */
964struct inode *new_inode_pseudo(struct super_block *sb)
965{
966 struct inode *inode = alloc_inode(sb);
967
968 if (inode) {
969 spin_lock(&inode->i_lock);
970 inode->i_state = 0;
971 spin_unlock(&inode->i_lock);
972 INIT_LIST_HEAD(&inode->i_sb_list);
973 }
974 return inode;
975}
976
977/**
978 * new_inode - obtain an inode
979 * @sb: superblock
980 *
981 * Allocates a new inode for given superblock. The default gfp_mask
982 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
983 * If HIGHMEM pages are unsuitable or it is known that pages allocated
984 * for the page cache are not reclaimable or migratable,
985 * mapping_set_gfp_mask() must be called with suitable flags on the
986 * newly created inode's mapping
987 *
988 */
989struct inode *new_inode(struct super_block *sb)
990{
991 struct inode *inode;
992
993 spin_lock_prefetch(&sb->s_inode_list_lock);
994
995 inode = new_inode_pseudo(sb);
996 if (inode)
997 inode_sb_list_add(inode);
998 return inode;
999}
1000EXPORT_SYMBOL(new_inode);
1001
1002#ifdef CONFIG_DEBUG_LOCK_ALLOC
1003void lockdep_annotate_inode_mutex_key(struct inode *inode)
1004{
1005 if (S_ISDIR(inode->i_mode)) {
1006 struct file_system_type *type = inode->i_sb->s_type;
1007
1008 /* Set new key only if filesystem hasn't already changed it */
1009 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1010 /*
1011 * ensure nobody is actually holding i_mutex
1012 */
1013 // mutex_destroy(&inode->i_mutex);
1014 init_rwsem(&inode->i_rwsem);
1015 lockdep_set_class(&inode->i_rwsem,
1016 &type->i_mutex_dir_key);
1017 }
1018 }
1019}
1020EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1021#endif
1022
1023/**
1024 * unlock_new_inode - clear the I_NEW state and wake up any waiters
1025 * @inode: new inode to unlock
1026 *
1027 * Called when the inode is fully initialised to clear the new state of the
1028 * inode and wake up anyone waiting for the inode to finish initialisation.
1029 */
1030void unlock_new_inode(struct inode *inode)
1031{
1032 lockdep_annotate_inode_mutex_key(inode);
1033 spin_lock(&inode->i_lock);
1034 WARN_ON(!(inode->i_state & I_NEW));
1035 inode->i_state &= ~I_NEW & ~I_CREATING;
1036 smp_mb();
1037 wake_up_bit(&inode->i_state, __I_NEW);
1038 spin_unlock(&inode->i_lock);
1039}
1040EXPORT_SYMBOL(unlock_new_inode);
1041
1042void discard_new_inode(struct inode *inode)
1043{
1044 lockdep_annotate_inode_mutex_key(inode);
1045 spin_lock(&inode->i_lock);
1046 WARN_ON(!(inode->i_state & I_NEW));
1047 inode->i_state &= ~I_NEW;
1048 smp_mb();
1049 wake_up_bit(&inode->i_state, __I_NEW);
1050 spin_unlock(&inode->i_lock);
1051 iput(inode);
1052}
1053EXPORT_SYMBOL(discard_new_inode);
1054
1055/**
1056 * lock_two_inodes - lock two inodes (may be regular files but also dirs)
1057 *
1058 * Lock any non-NULL argument. The caller must make sure that if he is passing
1059 * in two directories, one is not ancestor of the other. Zero, one or two
1060 * objects may be locked by this function.
1061 *
1062 * @inode1: first inode to lock
1063 * @inode2: second inode to lock
1064 * @subclass1: inode lock subclass for the first lock obtained
1065 * @subclass2: inode lock subclass for the second lock obtained
1066 */
1067void lock_two_inodes(struct inode *inode1, struct inode *inode2,
1068 unsigned subclass1, unsigned subclass2)
1069{
1070 if (!inode1 || !inode2) {
1071 /*
1072 * Make sure @subclass1 will be used for the acquired lock.
1073 * This is not strictly necessary (no current caller cares) but
1074 * let's keep things consistent.
1075 */
1076 if (!inode1)
1077 swap(inode1, inode2);
1078 goto lock;
1079 }
1080
1081 /*
1082 * If one object is directory and the other is not, we must make sure
1083 * to lock directory first as the other object may be its child.
1084 */
1085 if (S_ISDIR(inode2->i_mode) == S_ISDIR(inode1->i_mode)) {
1086 if (inode1 > inode2)
1087 swap(inode1, inode2);
1088 } else if (!S_ISDIR(inode1->i_mode))
1089 swap(inode1, inode2);
1090lock:
1091 if (inode1)
1092 inode_lock_nested(inode1, subclass1);
1093 if (inode2 && inode2 != inode1)
1094 inode_lock_nested(inode2, subclass2);
1095}
1096
1097/**
1098 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1099 *
1100 * Lock any non-NULL argument that is not a directory.
1101 * Zero, one or two objects may be locked by this function.
1102 *
1103 * @inode1: first inode to lock
1104 * @inode2: second inode to lock
1105 */
1106void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1107{
1108 if (inode1 > inode2)
1109 swap(inode1, inode2);
1110
1111 if (inode1 && !S_ISDIR(inode1->i_mode))
1112 inode_lock(inode1);
1113 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1114 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1115}
1116EXPORT_SYMBOL(lock_two_nondirectories);
1117
1118/**
1119 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1120 * @inode1: first inode to unlock
1121 * @inode2: second inode to unlock
1122 */
1123void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1124{
1125 if (inode1 && !S_ISDIR(inode1->i_mode))
1126 inode_unlock(inode1);
1127 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1128 inode_unlock(inode2);
1129}
1130EXPORT_SYMBOL(unlock_two_nondirectories);
1131
1132/**
1133 * inode_insert5 - obtain an inode from a mounted file system
1134 * @inode: pre-allocated inode to use for insert to cache
1135 * @hashval: hash value (usually inode number) to get
1136 * @test: callback used for comparisons between inodes
1137 * @set: callback used to initialize a new struct inode
1138 * @data: opaque data pointer to pass to @test and @set
1139 *
1140 * Search for the inode specified by @hashval and @data in the inode cache,
1141 * and if present it is return it with an increased reference count. This is
1142 * a variant of iget5_locked() for callers that don't want to fail on memory
1143 * allocation of inode.
1144 *
1145 * If the inode is not in cache, insert the pre-allocated inode to cache and
1146 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1147 * to fill it in before unlocking it via unlock_new_inode().
1148 *
1149 * Note both @test and @set are called with the inode_hash_lock held, so can't
1150 * sleep.
1151 */
1152struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1153 int (*test)(struct inode *, void *),
1154 int (*set)(struct inode *, void *), void *data)
1155{
1156 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1157 struct inode *old;
1158 bool creating = inode->i_state & I_CREATING;
1159
1160again:
1161 spin_lock(&inode_hash_lock);
1162 old = find_inode(inode->i_sb, head, test, data);
1163 if (unlikely(old)) {
1164 /*
1165 * Uhhuh, somebody else created the same inode under us.
1166 * Use the old inode instead of the preallocated one.
1167 */
1168 spin_unlock(&inode_hash_lock);
1169 if (IS_ERR(old))
1170 return NULL;
1171 wait_on_inode(old);
1172 if (unlikely(inode_unhashed(old))) {
1173 iput(old);
1174 goto again;
1175 }
1176 return old;
1177 }
1178
1179 if (set && unlikely(set(inode, data))) {
1180 inode = NULL;
1181 goto unlock;
1182 }
1183
1184 /*
1185 * Return the locked inode with I_NEW set, the
1186 * caller is responsible for filling in the contents
1187 */
1188 spin_lock(&inode->i_lock);
1189 inode->i_state |= I_NEW;
1190 hlist_add_head(&inode->i_hash, head);
1191 spin_unlock(&inode->i_lock);
1192 if (!creating)
1193 inode_sb_list_add(inode);
1194unlock:
1195 spin_unlock(&inode_hash_lock);
1196
1197 return inode;
1198}
1199EXPORT_SYMBOL(inode_insert5);
1200
1201/**
1202 * iget5_locked - obtain an inode from a mounted file system
1203 * @sb: super block of file system
1204 * @hashval: hash value (usually inode number) to get
1205 * @test: callback used for comparisons between inodes
1206 * @set: callback used to initialize a new struct inode
1207 * @data: opaque data pointer to pass to @test and @set
1208 *
1209 * Search for the inode specified by @hashval and @data in the inode cache,
1210 * and if present it is return it with an increased reference count. This is
1211 * a generalized version of iget_locked() for file systems where the inode
1212 * number is not sufficient for unique identification of an inode.
1213 *
1214 * If the inode is not in cache, allocate a new inode and return it locked,
1215 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1216 * before unlocking it via unlock_new_inode().
1217 *
1218 * Note both @test and @set are called with the inode_hash_lock held, so can't
1219 * sleep.
1220 */
1221struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1222 int (*test)(struct inode *, void *),
1223 int (*set)(struct inode *, void *), void *data)
1224{
1225 struct inode *inode = ilookup5(sb, hashval, test, data);
1226
1227 if (!inode) {
1228 struct inode *new = alloc_inode(sb);
1229
1230 if (new) {
1231 new->i_state = 0;
1232 inode = inode_insert5(new, hashval, test, set, data);
1233 if (unlikely(inode != new))
1234 destroy_inode(new);
1235 }
1236 }
1237 return inode;
1238}
1239EXPORT_SYMBOL(iget5_locked);
1240
1241/**
1242 * iget_locked - obtain an inode from a mounted file system
1243 * @sb: super block of file system
1244 * @ino: inode number to get
1245 *
1246 * Search for the inode specified by @ino in the inode cache and if present
1247 * return it with an increased reference count. This is for file systems
1248 * where the inode number is sufficient for unique identification of an inode.
1249 *
1250 * If the inode is not in cache, allocate a new inode and return it locked,
1251 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1252 * before unlocking it via unlock_new_inode().
1253 */
1254struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1255{
1256 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1257 struct inode *inode;
1258again:
1259 spin_lock(&inode_hash_lock);
1260 inode = find_inode_fast(sb, head, ino);
1261 spin_unlock(&inode_hash_lock);
1262 if (inode) {
1263 if (IS_ERR(inode))
1264 return NULL;
1265 wait_on_inode(inode);
1266 if (unlikely(inode_unhashed(inode))) {
1267 iput(inode);
1268 goto again;
1269 }
1270 return inode;
1271 }
1272
1273 inode = alloc_inode(sb);
1274 if (inode) {
1275 struct inode *old;
1276
1277 spin_lock(&inode_hash_lock);
1278 /* We released the lock, so.. */
1279 old = find_inode_fast(sb, head, ino);
1280 if (!old) {
1281 inode->i_ino = ino;
1282 spin_lock(&inode->i_lock);
1283 inode->i_state = I_NEW;
1284 hlist_add_head(&inode->i_hash, head);
1285 spin_unlock(&inode->i_lock);
1286 inode_sb_list_add(inode);
1287 spin_unlock(&inode_hash_lock);
1288
1289 /* Return the locked inode with I_NEW set, the
1290 * caller is responsible for filling in the contents
1291 */
1292 return inode;
1293 }
1294
1295 /*
1296 * Uhhuh, somebody else created the same inode under
1297 * us. Use the old inode instead of the one we just
1298 * allocated.
1299 */
1300 spin_unlock(&inode_hash_lock);
1301 destroy_inode(inode);
1302 if (IS_ERR(old))
1303 return NULL;
1304 inode = old;
1305 wait_on_inode(inode);
1306 if (unlikely(inode_unhashed(inode))) {
1307 iput(inode);
1308 goto again;
1309 }
1310 }
1311 return inode;
1312}
1313EXPORT_SYMBOL(iget_locked);
1314
1315/*
1316 * search the inode cache for a matching inode number.
1317 * If we find one, then the inode number we are trying to
1318 * allocate is not unique and so we should not use it.
1319 *
1320 * Returns 1 if the inode number is unique, 0 if it is not.
1321 */
1322static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1323{
1324 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1325 struct inode *inode;
1326
1327 spin_lock(&inode_hash_lock);
1328 hlist_for_each_entry(inode, b, i_hash) {
1329 if (inode->i_ino == ino && inode->i_sb == sb) {
1330 spin_unlock(&inode_hash_lock);
1331 return 0;
1332 }
1333 }
1334 spin_unlock(&inode_hash_lock);
1335
1336 return 1;
1337}
1338
1339/**
1340 * iunique - get a unique inode number
1341 * @sb: superblock
1342 * @max_reserved: highest reserved inode number
1343 *
1344 * Obtain an inode number that is unique on the system for a given
1345 * superblock. This is used by file systems that have no natural
1346 * permanent inode numbering system. An inode number is returned that
1347 * is higher than the reserved limit but unique.
1348 *
1349 * BUGS:
1350 * With a large number of inodes live on the file system this function
1351 * currently becomes quite slow.
1352 */
1353ino_t iunique(struct super_block *sb, ino_t max_reserved)
1354{
1355 /*
1356 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1357 * error if st_ino won't fit in target struct field. Use 32bit counter
1358 * here to attempt to avoid that.
1359 */
1360 static DEFINE_SPINLOCK(iunique_lock);
1361 static unsigned int counter;
1362 ino_t res;
1363
1364 spin_lock(&iunique_lock);
1365 do {
1366 if (counter <= max_reserved)
1367 counter = max_reserved + 1;
1368 res = counter++;
1369 } while (!test_inode_iunique(sb, res));
1370 spin_unlock(&iunique_lock);
1371
1372 return res;
1373}
1374EXPORT_SYMBOL(iunique);
1375
1376struct inode *igrab(struct inode *inode)
1377{
1378 spin_lock(&inode->i_lock);
1379 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1380 __iget(inode);
1381 spin_unlock(&inode->i_lock);
1382 } else {
1383 spin_unlock(&inode->i_lock);
1384 /*
1385 * Handle the case where s_op->clear_inode is not been
1386 * called yet, and somebody is calling igrab
1387 * while the inode is getting freed.
1388 */
1389 inode = NULL;
1390 }
1391 return inode;
1392}
1393EXPORT_SYMBOL(igrab);
1394
1395/**
1396 * ilookup5_nowait - search for an inode in the inode cache
1397 * @sb: super block of file system to search
1398 * @hashval: hash value (usually inode number) to search for
1399 * @test: callback used for comparisons between inodes
1400 * @data: opaque data pointer to pass to @test
1401 *
1402 * Search for the inode specified by @hashval and @data in the inode cache.
1403 * If the inode is in the cache, the inode is returned with an incremented
1404 * reference count.
1405 *
1406 * Note: I_NEW is not waited upon so you have to be very careful what you do
1407 * with the returned inode. You probably should be using ilookup5() instead.
1408 *
1409 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1410 */
1411struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1412 int (*test)(struct inode *, void *), void *data)
1413{
1414 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1415 struct inode *inode;
1416
1417 spin_lock(&inode_hash_lock);
1418 inode = find_inode(sb, head, test, data);
1419 spin_unlock(&inode_hash_lock);
1420
1421 return IS_ERR(inode) ? NULL : inode;
1422}
1423EXPORT_SYMBOL(ilookup5_nowait);
1424
1425/**
1426 * ilookup5 - search for an inode in the inode cache
1427 * @sb: super block of file system to search
1428 * @hashval: hash value (usually inode number) to search for
1429 * @test: callback used for comparisons between inodes
1430 * @data: opaque data pointer to pass to @test
1431 *
1432 * Search for the inode specified by @hashval and @data in the inode cache,
1433 * and if the inode is in the cache, return the inode with an incremented
1434 * reference count. Waits on I_NEW before returning the inode.
1435 * returned with an incremented reference count.
1436 *
1437 * This is a generalized version of ilookup() for file systems where the
1438 * inode number is not sufficient for unique identification of an inode.
1439 *
1440 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1441 */
1442struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1443 int (*test)(struct inode *, void *), void *data)
1444{
1445 struct inode *inode;
1446again:
1447 inode = ilookup5_nowait(sb, hashval, test, data);
1448 if (inode) {
1449 wait_on_inode(inode);
1450 if (unlikely(inode_unhashed(inode))) {
1451 iput(inode);
1452 goto again;
1453 }
1454 }
1455 return inode;
1456}
1457EXPORT_SYMBOL(ilookup5);
1458
1459/**
1460 * ilookup - search for an inode in the inode cache
1461 * @sb: super block of file system to search
1462 * @ino: inode number to search for
1463 *
1464 * Search for the inode @ino in the inode cache, and if the inode is in the
1465 * cache, the inode is returned with an incremented reference count.
1466 */
1467struct inode *ilookup(struct super_block *sb, unsigned long ino)
1468{
1469 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1470 struct inode *inode;
1471again:
1472 spin_lock(&inode_hash_lock);
1473 inode = find_inode_fast(sb, head, ino);
1474 spin_unlock(&inode_hash_lock);
1475
1476 if (inode) {
1477 if (IS_ERR(inode))
1478 return NULL;
1479 wait_on_inode(inode);
1480 if (unlikely(inode_unhashed(inode))) {
1481 iput(inode);
1482 goto again;
1483 }
1484 }
1485 return inode;
1486}
1487EXPORT_SYMBOL(ilookup);
1488
1489/**
1490 * find_inode_nowait - find an inode in the inode cache
1491 * @sb: super block of file system to search
1492 * @hashval: hash value (usually inode number) to search for
1493 * @match: callback used for comparisons between inodes
1494 * @data: opaque data pointer to pass to @match
1495 *
1496 * Search for the inode specified by @hashval and @data in the inode
1497 * cache, where the helper function @match will return 0 if the inode
1498 * does not match, 1 if the inode does match, and -1 if the search
1499 * should be stopped. The @match function must be responsible for
1500 * taking the i_lock spin_lock and checking i_state for an inode being
1501 * freed or being initialized, and incrementing the reference count
1502 * before returning 1. It also must not sleep, since it is called with
1503 * the inode_hash_lock spinlock held.
1504 *
1505 * This is a even more generalized version of ilookup5() when the
1506 * function must never block --- find_inode() can block in
1507 * __wait_on_freeing_inode() --- or when the caller can not increment
1508 * the reference count because the resulting iput() might cause an
1509 * inode eviction. The tradeoff is that the @match funtion must be
1510 * very carefully implemented.
1511 */
1512struct inode *find_inode_nowait(struct super_block *sb,
1513 unsigned long hashval,
1514 int (*match)(struct inode *, unsigned long,
1515 void *),
1516 void *data)
1517{
1518 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1519 struct inode *inode, *ret_inode = NULL;
1520 int mval;
1521
1522 spin_lock(&inode_hash_lock);
1523 hlist_for_each_entry(inode, head, i_hash) {
1524 if (inode->i_sb != sb)
1525 continue;
1526 mval = match(inode, hashval, data);
1527 if (mval == 0)
1528 continue;
1529 if (mval == 1)
1530 ret_inode = inode;
1531 goto out;
1532 }
1533out:
1534 spin_unlock(&inode_hash_lock);
1535 return ret_inode;
1536}
1537EXPORT_SYMBOL(find_inode_nowait);
1538
1539int insert_inode_locked(struct inode *inode)
1540{
1541 struct super_block *sb = inode->i_sb;
1542 ino_t ino = inode->i_ino;
1543 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1544
1545 while (1) {
1546 struct inode *old = NULL;
1547 spin_lock(&inode_hash_lock);
1548 hlist_for_each_entry(old, head, i_hash) {
1549 if (old->i_ino != ino)
1550 continue;
1551 if (old->i_sb != sb)
1552 continue;
1553 spin_lock(&old->i_lock);
1554 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1555 spin_unlock(&old->i_lock);
1556 continue;
1557 }
1558 break;
1559 }
1560 if (likely(!old)) {
1561 spin_lock(&inode->i_lock);
1562 inode->i_state |= I_NEW | I_CREATING;
1563 hlist_add_head(&inode->i_hash, head);
1564 spin_unlock(&inode->i_lock);
1565 spin_unlock(&inode_hash_lock);
1566 return 0;
1567 }
1568 if (unlikely(old->i_state & I_CREATING)) {
1569 spin_unlock(&old->i_lock);
1570 spin_unlock(&inode_hash_lock);
1571 return -EBUSY;
1572 }
1573 __iget(old);
1574 spin_unlock(&old->i_lock);
1575 spin_unlock(&inode_hash_lock);
1576 wait_on_inode(old);
1577 if (unlikely(!inode_unhashed(old))) {
1578 iput(old);
1579 return -EBUSY;
1580 }
1581 iput(old);
1582 }
1583}
1584EXPORT_SYMBOL(insert_inode_locked);
1585
1586int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1587 int (*test)(struct inode *, void *), void *data)
1588{
1589 struct inode *old;
1590
1591 inode->i_state |= I_CREATING;
1592 old = inode_insert5(inode, hashval, test, NULL, data);
1593
1594 if (old != inode) {
1595 iput(old);
1596 return -EBUSY;
1597 }
1598 return 0;
1599}
1600EXPORT_SYMBOL(insert_inode_locked4);
1601
1602
1603int generic_delete_inode(struct inode *inode)
1604{
1605 return 1;
1606}
1607EXPORT_SYMBOL(generic_delete_inode);
1608
1609/*
1610 * Called when we're dropping the last reference
1611 * to an inode.
1612 *
1613 * Call the FS "drop_inode()" function, defaulting to
1614 * the legacy UNIX filesystem behaviour. If it tells
1615 * us to evict inode, do so. Otherwise, retain inode
1616 * in cache if fs is alive, sync and evict if fs is
1617 * shutting down.
1618 */
1619static void iput_final(struct inode *inode)
1620{
1621 struct super_block *sb = inode->i_sb;
1622 const struct super_operations *op = inode->i_sb->s_op;
1623 int drop;
1624
1625 WARN_ON(inode->i_state & I_NEW);
1626
1627 if (op->drop_inode)
1628 drop = op->drop_inode(inode);
1629 else
1630 drop = generic_drop_inode(inode);
1631
1632 if (!drop && (sb->s_flags & SB_ACTIVE)) {
1633 inode_add_lru(inode);
1634 spin_unlock(&inode->i_lock);
1635 return;
1636 }
1637
1638 if (!drop) {
1639 inode->i_state |= I_WILL_FREE;
1640 spin_unlock(&inode->i_lock);
1641 write_inode_now(inode, 1);
1642 spin_lock(&inode->i_lock);
1643 WARN_ON(inode->i_state & I_NEW);
1644 inode->i_state &= ~I_WILL_FREE;
1645 }
1646
1647 inode->i_state |= I_FREEING;
1648 if (!list_empty(&inode->i_lru))
1649 inode_lru_list_del(inode);
1650 spin_unlock(&inode->i_lock);
1651
1652 evict(inode);
1653}
1654
1655/**
1656 * iput - put an inode
1657 * @inode: inode to put
1658 *
1659 * Puts an inode, dropping its usage count. If the inode use count hits
1660 * zero, the inode is then freed and may also be destroyed.
1661 *
1662 * Consequently, iput() can sleep.
1663 */
1664void iput(struct inode *inode)
1665{
1666 if (!inode)
1667 return;
1668 BUG_ON(inode->i_state & I_CLEAR);
1669retry:
1670 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1671 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1672 atomic_inc(&inode->i_count);
1673 spin_unlock(&inode->i_lock);
1674 trace_writeback_lazytime_iput(inode);
1675 mark_inode_dirty_sync(inode);
1676 goto retry;
1677 }
1678 iput_final(inode);
1679 }
1680}
1681EXPORT_SYMBOL(iput);
1682
1683#ifdef CONFIG_BLOCK
1684/**
1685 * bmap - find a block number in a file
1686 * @inode: inode owning the block number being requested
1687 * @block: pointer containing the block to find
1688 *
1689 * Replaces the value in *block with the block number on the device holding
1690 * corresponding to the requested block number in the file.
1691 * That is, asked for block 4 of inode 1 the function will replace the
1692 * 4 in *block, with disk block relative to the disk start that holds that
1693 * block of the file.
1694 *
1695 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1696 * hole, returns 0 and *block is also set to 0.
1697 */
1698int bmap(struct inode *inode, sector_t *block)
1699{
1700 if (!inode->i_mapping->a_ops->bmap)
1701 return -EINVAL;
1702
1703 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1704 return 0;
1705}
1706EXPORT_SYMBOL(bmap);
1707#endif
1708
1709/*
1710 * With relative atime, only update atime if the previous atime is
1711 * earlier than either the ctime or mtime or if at least a day has
1712 * passed since the last atime update.
1713 */
1714static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1715 struct timespec64 now)
1716{
1717
1718 if (!(mnt->mnt_flags & MNT_RELATIME))
1719 return 1;
1720 /*
1721 * Is mtime younger than atime? If yes, update atime:
1722 */
1723 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1724 return 1;
1725 /*
1726 * Is ctime younger than atime? If yes, update atime:
1727 */
1728 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1729 return 1;
1730
1731 /*
1732 * Is the previous atime value older than a day? If yes,
1733 * update atime:
1734 */
1735 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1736 return 1;
1737 /*
1738 * Good, we can skip the atime update:
1739 */
1740 return 0;
1741}
1742
1743int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1744{
1745 int iflags = I_DIRTY_TIME;
1746 bool dirty = false;
1747
1748 if (flags & S_ATIME)
1749 inode->i_atime = *time;
1750 if (flags & S_VERSION)
1751 dirty = inode_maybe_inc_iversion(inode, false);
1752 if (flags & S_CTIME)
1753 inode->i_ctime = *time;
1754 if (flags & S_MTIME)
1755 inode->i_mtime = *time;
1756 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1757 !(inode->i_sb->s_flags & SB_LAZYTIME))
1758 dirty = true;
1759
1760 if (dirty)
1761 iflags |= I_DIRTY_SYNC;
1762 __mark_inode_dirty(inode, iflags);
1763 return 0;
1764}
1765EXPORT_SYMBOL(generic_update_time);
1766
1767/*
1768 * This does the actual work of updating an inodes time or version. Must have
1769 * had called mnt_want_write() before calling this.
1770 */
1771static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1772{
1773 int (*update_time)(struct inode *, struct timespec64 *, int);
1774
1775 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1776 generic_update_time;
1777
1778 return update_time(inode, time, flags);
1779}
1780
1781/**
1782 * touch_atime - update the access time
1783 * @path: the &struct path to update
1784 * @inode: inode to update
1785 *
1786 * Update the accessed time on an inode and mark it for writeback.
1787 * This function automatically handles read only file systems and media,
1788 * as well as the "noatime" flag and inode specific "noatime" markers.
1789 */
1790bool atime_needs_update(const struct path *path, struct inode *inode)
1791{
1792 struct vfsmount *mnt = path->mnt;
1793 struct timespec64 now;
1794
1795 if (inode->i_flags & S_NOATIME)
1796 return false;
1797
1798 /* Atime updates will likely cause i_uid and i_gid to be written
1799 * back improprely if their true value is unknown to the vfs.
1800 */
1801 if (HAS_UNMAPPED_ID(inode))
1802 return false;
1803
1804 if (IS_NOATIME(inode))
1805 return false;
1806 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1807 return false;
1808
1809 if (mnt->mnt_flags & MNT_NOATIME)
1810 return false;
1811 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1812 return false;
1813
1814 now = current_time(inode);
1815
1816 if (!relatime_need_update(mnt, inode, now))
1817 return false;
1818
1819 if (timespec64_equal(&inode->i_atime, &now))
1820 return false;
1821
1822 return true;
1823}
1824
1825void touch_atime(const struct path *path)
1826{
1827 struct vfsmount *mnt = path->mnt;
1828 struct inode *inode = d_inode(path->dentry);
1829 struct timespec64 now;
1830
1831 if (!atime_needs_update(path, inode))
1832 return;
1833
1834 if (!sb_start_write_trylock(inode->i_sb))
1835 return;
1836
1837 if (__mnt_want_write(mnt) != 0)
1838 goto skip_update;
1839 /*
1840 * File systems can error out when updating inodes if they need to
1841 * allocate new space to modify an inode (such is the case for
1842 * Btrfs), but since we touch atime while walking down the path we
1843 * really don't care if we failed to update the atime of the file,
1844 * so just ignore the return value.
1845 * We may also fail on filesystems that have the ability to make parts
1846 * of the fs read only, e.g. subvolumes in Btrfs.
1847 */
1848 now = current_time(inode);
1849 update_time(inode, &now, S_ATIME);
1850 __mnt_drop_write(mnt);
1851skip_update:
1852 sb_end_write(inode->i_sb);
1853}
1854EXPORT_SYMBOL(touch_atime);
1855
1856/*
1857 * The logic we want is
1858 *
1859 * if suid or (sgid and xgrp)
1860 * remove privs
1861 */
1862int should_remove_suid(struct dentry *dentry)
1863{
1864 umode_t mode = d_inode(dentry)->i_mode;
1865 int kill = 0;
1866
1867 /* suid always must be killed */
1868 if (unlikely(mode & S_ISUID))
1869 kill = ATTR_KILL_SUID;
1870
1871 /*
1872 * sgid without any exec bits is just a mandatory locking mark; leave
1873 * it alone. If some exec bits are set, it's a real sgid; kill it.
1874 */
1875 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1876 kill |= ATTR_KILL_SGID;
1877
1878 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1879 return kill;
1880
1881 return 0;
1882}
1883EXPORT_SYMBOL(should_remove_suid);
1884
1885/*
1886 * Return mask of changes for notify_change() that need to be done as a
1887 * response to write or truncate. Return 0 if nothing has to be changed.
1888 * Negative value on error (change should be denied).
1889 */
1890int dentry_needs_remove_privs(struct dentry *dentry)
1891{
1892 struct inode *inode = d_inode(dentry);
1893 int mask = 0;
1894 int ret;
1895
1896 if (IS_NOSEC(inode))
1897 return 0;
1898
1899 mask = should_remove_suid(dentry);
1900 ret = security_inode_need_killpriv(dentry);
1901 if (ret < 0)
1902 return ret;
1903 if (ret)
1904 mask |= ATTR_KILL_PRIV;
1905 return mask;
1906}
1907
1908static int __remove_privs(struct dentry *dentry, int kill)
1909{
1910 struct iattr newattrs;
1911
1912 newattrs.ia_valid = ATTR_FORCE | kill;
1913 /*
1914 * Note we call this on write, so notify_change will not
1915 * encounter any conflicting delegations:
1916 */
1917 return notify_change(dentry, &newattrs, NULL);
1918}
1919
1920/*
1921 * Remove special file priviledges (suid, capabilities) when file is written
1922 * to or truncated.
1923 */
1924int file_remove_privs(struct file *file)
1925{
1926 struct dentry *dentry = file_dentry(file);
1927 struct inode *inode = file_inode(file);
1928 int kill;
1929 int error = 0;
1930
1931 /*
1932 * Fast path for nothing security related.
1933 * As well for non-regular files, e.g. blkdev inodes.
1934 * For example, blkdev_write_iter() might get here
1935 * trying to remove privs which it is not allowed to.
1936 */
1937 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1938 return 0;
1939
1940 kill = dentry_needs_remove_privs(dentry);
1941 if (kill < 0)
1942 return kill;
1943 if (kill)
1944 error = __remove_privs(dentry, kill);
1945 if (!error)
1946 inode_has_no_xattr(inode);
1947
1948 return error;
1949}
1950EXPORT_SYMBOL(file_remove_privs);
1951
1952/**
1953 * file_update_time - update mtime and ctime time
1954 * @file: file accessed
1955 *
1956 * Update the mtime and ctime members of an inode and mark the inode
1957 * for writeback. Note that this function is meant exclusively for
1958 * usage in the file write path of filesystems, and filesystems may
1959 * choose to explicitly ignore update via this function with the
1960 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1961 * timestamps are handled by the server. This can return an error for
1962 * file systems who need to allocate space in order to update an inode.
1963 */
1964
1965int file_update_time(struct file *file)
1966{
1967 struct inode *inode = file_inode(file);
1968 struct timespec64 now;
1969 int sync_it = 0;
1970 int ret;
1971
1972 /* First try to exhaust all avenues to not sync */
1973 if (IS_NOCMTIME(inode))
1974 return 0;
1975
1976 now = current_time(inode);
1977 if (!timespec64_equal(&inode->i_mtime, &now))
1978 sync_it = S_MTIME;
1979
1980 if (!timespec64_equal(&inode->i_ctime, &now))
1981 sync_it |= S_CTIME;
1982
1983 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1984 sync_it |= S_VERSION;
1985
1986 if (!sync_it)
1987 return 0;
1988
1989 /* Finally allowed to write? Takes lock. */
1990 if (__mnt_want_write_file(file))
1991 return 0;
1992
1993 ret = update_time(inode, &now, sync_it);
1994 __mnt_drop_write_file(file);
1995
1996 return ret;
1997}
1998EXPORT_SYMBOL(file_update_time);
1999
2000/* Caller must hold the file's inode lock */
2001int file_modified(struct file *file)
2002{
2003 int err;
2004
2005 /*
2006 * Clear the security bits if the process is not being run by root.
2007 * This keeps people from modifying setuid and setgid binaries.
2008 */
2009 err = file_remove_privs(file);
2010 if (err)
2011 return err;
2012
2013 if (unlikely(file->f_mode & FMODE_NOCMTIME))
2014 return 0;
2015
2016 return file_update_time(file);
2017}
2018EXPORT_SYMBOL(file_modified);
2019
2020int inode_needs_sync(struct inode *inode)
2021{
2022 if (IS_SYNC(inode))
2023 return 1;
2024 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2025 return 1;
2026 return 0;
2027}
2028EXPORT_SYMBOL(inode_needs_sync);
2029
2030/*
2031 * If we try to find an inode in the inode hash while it is being
2032 * deleted, we have to wait until the filesystem completes its
2033 * deletion before reporting that it isn't found. This function waits
2034 * until the deletion _might_ have completed. Callers are responsible
2035 * to recheck inode state.
2036 *
2037 * It doesn't matter if I_NEW is not set initially, a call to
2038 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2039 * will DTRT.
2040 */
2041static void __wait_on_freeing_inode(struct inode *inode)
2042{
2043 wait_queue_head_t *wq;
2044 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2045 wq = bit_waitqueue(&inode->i_state, __I_NEW);
2046 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2047 spin_unlock(&inode->i_lock);
2048 spin_unlock(&inode_hash_lock);
2049 schedule();
2050 finish_wait(wq, &wait.wq_entry);
2051 spin_lock(&inode_hash_lock);
2052}
2053
2054static __initdata unsigned long ihash_entries;
2055static int __init set_ihash_entries(char *str)
2056{
2057 if (!str)
2058 return 0;
2059 ihash_entries = simple_strtoul(str, &str, 0);
2060 return 1;
2061}
2062__setup("ihash_entries=", set_ihash_entries);
2063
2064/*
2065 * Initialize the waitqueues and inode hash table.
2066 */
2067void __init inode_init_early(void)
2068{
2069 /* If hashes are distributed across NUMA nodes, defer
2070 * hash allocation until vmalloc space is available.
2071 */
2072 if (hashdist)
2073 return;
2074
2075 inode_hashtable =
2076 alloc_large_system_hash("Inode-cache",
2077 sizeof(struct hlist_head),
2078 ihash_entries,
2079 14,
2080 HASH_EARLY | HASH_ZERO,
2081 &i_hash_shift,
2082 &i_hash_mask,
2083 0,
2084 0);
2085}
2086
2087void __init inode_init(void)
2088{
2089 /* inode slab cache */
2090 inode_cachep = kmem_cache_create("inode_cache",
2091 sizeof(struct inode),
2092 0,
2093 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2094 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2095 init_once);
2096
2097 /* Hash may have been set up in inode_init_early */
2098 if (!hashdist)
2099 return;
2100
2101 inode_hashtable =
2102 alloc_large_system_hash("Inode-cache",
2103 sizeof(struct hlist_head),
2104 ihash_entries,
2105 14,
2106 HASH_ZERO,
2107 &i_hash_shift,
2108 &i_hash_mask,
2109 0,
2110 0);
2111}
2112
2113void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2114{
2115 inode->i_mode = mode;
2116 if (S_ISCHR(mode)) {
2117 inode->i_fop = &def_chr_fops;
2118 inode->i_rdev = rdev;
2119 } else if (S_ISBLK(mode)) {
2120 inode->i_fop = &def_blk_fops;
2121 inode->i_rdev = rdev;
2122 } else if (S_ISFIFO(mode))
2123 inode->i_fop = &pipefifo_fops;
2124 else if (S_ISSOCK(mode))
2125 ; /* leave it no_open_fops */
2126 else
2127 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2128 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2129 inode->i_ino);
2130}
2131EXPORT_SYMBOL(init_special_inode);
2132
2133/**
2134 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2135 * @inode: New inode
2136 * @dir: Directory inode
2137 * @mode: mode of the new inode
2138 */
2139void inode_init_owner(struct inode *inode, const struct inode *dir,
2140 umode_t mode)
2141{
2142 inode->i_uid = current_fsuid();
2143 if (dir && dir->i_mode & S_ISGID) {
2144 inode->i_gid = dir->i_gid;
2145
2146 /* Directories are special, and always inherit S_ISGID */
2147 if (S_ISDIR(mode))
2148 mode |= S_ISGID;
2149 } else
2150 inode->i_gid = current_fsgid();
2151 inode->i_mode = mode;
2152}
2153EXPORT_SYMBOL(inode_init_owner);
2154
2155/**
2156 * inode_owner_or_capable - check current task permissions to inode
2157 * @inode: inode being checked
2158 *
2159 * Return true if current either has CAP_FOWNER in a namespace with the
2160 * inode owner uid mapped, or owns the file.
2161 */
2162bool inode_owner_or_capable(const struct inode *inode)
2163{
2164 struct user_namespace *ns;
2165
2166 if (uid_eq(current_fsuid(), inode->i_uid))
2167 return true;
2168
2169 ns = current_user_ns();
2170 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2171 return true;
2172 return false;
2173}
2174EXPORT_SYMBOL(inode_owner_or_capable);
2175
2176/*
2177 * Direct i/o helper functions
2178 */
2179static void __inode_dio_wait(struct inode *inode)
2180{
2181 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2182 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2183
2184 do {
2185 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2186 if (atomic_read(&inode->i_dio_count))
2187 schedule();
2188 } while (atomic_read(&inode->i_dio_count));
2189 finish_wait(wq, &q.wq_entry);
2190}
2191
2192/**
2193 * inode_dio_wait - wait for outstanding DIO requests to finish
2194 * @inode: inode to wait for
2195 *
2196 * Waits for all pending direct I/O requests to finish so that we can
2197 * proceed with a truncate or equivalent operation.
2198 *
2199 * Must be called under a lock that serializes taking new references
2200 * to i_dio_count, usually by inode->i_mutex.
2201 */
2202void inode_dio_wait(struct inode *inode)
2203{
2204 if (atomic_read(&inode->i_dio_count))
2205 __inode_dio_wait(inode);
2206}
2207EXPORT_SYMBOL(inode_dio_wait);
2208
2209/*
2210 * inode_set_flags - atomically set some inode flags
2211 *
2212 * Note: the caller should be holding i_mutex, or else be sure that
2213 * they have exclusive access to the inode structure (i.e., while the
2214 * inode is being instantiated). The reason for the cmpxchg() loop
2215 * --- which wouldn't be necessary if all code paths which modify
2216 * i_flags actually followed this rule, is that there is at least one
2217 * code path which doesn't today so we use cmpxchg() out of an abundance
2218 * of caution.
2219 *
2220 * In the long run, i_mutex is overkill, and we should probably look
2221 * at using the i_lock spinlock to protect i_flags, and then make sure
2222 * it is so documented in include/linux/fs.h and that all code follows
2223 * the locking convention!!
2224 */
2225void inode_set_flags(struct inode *inode, unsigned int flags,
2226 unsigned int mask)
2227{
2228 WARN_ON_ONCE(flags & ~mask);
2229 set_mask_bits(&inode->i_flags, mask, flags);
2230}
2231EXPORT_SYMBOL(inode_set_flags);
2232
2233void inode_nohighmem(struct inode *inode)
2234{
2235 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2236}
2237EXPORT_SYMBOL(inode_nohighmem);
2238
2239/**
2240 * timespec64_trunc - Truncate timespec64 to a granularity
2241 * @t: Timespec64
2242 * @gran: Granularity in ns.
2243 *
2244 * Truncate a timespec64 to a granularity. Always rounds down. gran must
2245 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2246 */
2247struct timespec64 timespec64_trunc(struct timespec64 t, unsigned gran)
2248{
2249 /* Avoid division in the common cases 1 ns and 1 s. */
2250 if (gran == 1) {
2251 /* nothing */
2252 } else if (gran == NSEC_PER_SEC) {
2253 t.tv_nsec = 0;
2254 } else if (gran > 1 && gran < NSEC_PER_SEC) {
2255 t.tv_nsec -= t.tv_nsec % gran;
2256 } else {
2257 WARN(1, "illegal file time granularity: %u", gran);
2258 }
2259 return t;
2260}
2261EXPORT_SYMBOL(timespec64_trunc);
2262
2263/**
2264 * timestamp_truncate - Truncate timespec to a granularity
2265 * @t: Timespec
2266 * @inode: inode being updated
2267 *
2268 * Truncate a timespec to the granularity supported by the fs
2269 * containing the inode. Always rounds down. gran must
2270 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2271 */
2272struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2273{
2274 struct super_block *sb = inode->i_sb;
2275 unsigned int gran = sb->s_time_gran;
2276
2277 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2278 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2279 t.tv_nsec = 0;
2280
2281 /* Avoid division in the common cases 1 ns and 1 s. */
2282 if (gran == 1)
2283 ; /* nothing */
2284 else if (gran == NSEC_PER_SEC)
2285 t.tv_nsec = 0;
2286 else if (gran > 1 && gran < NSEC_PER_SEC)
2287 t.tv_nsec -= t.tv_nsec % gran;
2288 else
2289 WARN(1, "invalid file time granularity: %u", gran);
2290 return t;
2291}
2292EXPORT_SYMBOL(timestamp_truncate);
2293
2294/**
2295 * current_time - Return FS time
2296 * @inode: inode.
2297 *
2298 * Return the current time truncated to the time granularity supported by
2299 * the fs.
2300 *
2301 * Note that inode and inode->sb cannot be NULL.
2302 * Otherwise, the function warns and returns time without truncation.
2303 */
2304struct timespec64 current_time(struct inode *inode)
2305{
2306 struct timespec64 now;
2307
2308 ktime_get_coarse_real_ts64(&now);
2309
2310 if (unlikely(!inode->i_sb)) {
2311 WARN(1, "current_time() called with uninitialized super_block in the inode");
2312 return now;
2313 }
2314
2315 return timestamp_truncate(now, inode);
2316}
2317EXPORT_SYMBOL(current_time);
2318
2319/*
2320 * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2321 * configurations.
2322 *
2323 * Note: the caller should be holding i_mutex, or else be sure that they have
2324 * exclusive access to the inode structure.
2325 */
2326int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2327 unsigned int flags)
2328{
2329 /*
2330 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2331 * the relevant capability.
2332 *
2333 * This test looks nicer. Thanks to Pauline Middelink
2334 */
2335 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2336 !capable(CAP_LINUX_IMMUTABLE))
2337 return -EPERM;
2338
2339 return fscrypt_prepare_setflags(inode, oldflags, flags);
2340}
2341EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2342
2343/*
2344 * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2345 * configurations.
2346 *
2347 * Note: the caller should be holding i_mutex, or else be sure that they have
2348 * exclusive access to the inode structure.
2349 */
2350int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2351 struct fsxattr *fa)
2352{
2353 /*
2354 * Can't modify an immutable/append-only file unless we have
2355 * appropriate permission.
2356 */
2357 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2358 (FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2359 !capable(CAP_LINUX_IMMUTABLE))
2360 return -EPERM;
2361
2362 /*
2363 * Project Quota ID state is only allowed to change from within the init
2364 * namespace. Enforce that restriction only if we are trying to change
2365 * the quota ID state. Everything else is allowed in user namespaces.
2366 */
2367 if (current_user_ns() != &init_user_ns) {
2368 if (old_fa->fsx_projid != fa->fsx_projid)
2369 return -EINVAL;
2370 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2371 FS_XFLAG_PROJINHERIT)
2372 return -EINVAL;
2373 }
2374
2375 /* Check extent size hints. */
2376 if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2377 return -EINVAL;
2378
2379 if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2380 !S_ISDIR(inode->i_mode))
2381 return -EINVAL;
2382
2383 if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2384 !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2385 return -EINVAL;
2386
2387 /*
2388 * It is only valid to set the DAX flag on regular files and
2389 * directories on filesystems.
2390 */
2391 if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2392 !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2393 return -EINVAL;
2394
2395 /* Extent size hints of zero turn off the flags. */
2396 if (fa->fsx_extsize == 0)
2397 fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2398 if (fa->fsx_cowextsize == 0)
2399 fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2400
2401 return 0;
2402}
2403EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);
2404
2405/**
2406 * mode_strip_sgid - handle the sgid bit for non-directories
2407 * @dir: parent directory inode
2408 * @mode: mode of the file to be created in @dir
2409 *
2410 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2411 * raised and @dir has the S_ISGID bit raised ensure that the caller is
2412 * either in the group of the parent directory or they have CAP_FSETID
2413 * in their user namespace and are privileged over the parent directory.
2414 * In all other cases, strip the S_ISGID bit from @mode.
2415 *
2416 * Return: the new mode to use for the file
2417 */
2418umode_t mode_strip_sgid(const struct inode *dir, umode_t mode)
2419{
2420 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2421 return mode;
2422 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2423 return mode;
2424 if (in_group_p(dir->i_gid))
2425 return mode;
2426 if (capable_wrt_inode_uidgid(dir, CAP_FSETID))
2427 return mode;
2428
2429 return mode & ~S_ISGID;
2430}
2431EXPORT_SYMBOL(mode_strip_sgid);