blob: 812945c8e3840595689c3783d0bf6872a12ae3b1 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) International Business Machines Corp., 2000-2004
4 * Portions Copyright (C) Tino Reichardt, 2012
5 */
6
7#include <linux/fs.h>
8#include <linux/slab.h>
9#include "jfs_incore.h"
10#include "jfs_superblock.h"
11#include "jfs_dmap.h"
12#include "jfs_imap.h"
13#include "jfs_lock.h"
14#include "jfs_metapage.h"
15#include "jfs_debug.h"
16#include "jfs_discard.h"
17
18/*
19 * SERIALIZATION of the Block Allocation Map.
20 *
21 * the working state of the block allocation map is accessed in
22 * two directions:
23 *
24 * 1) allocation and free requests that start at the dmap
25 * level and move up through the dmap control pages (i.e.
26 * the vast majority of requests).
27 *
28 * 2) allocation requests that start at dmap control page
29 * level and work down towards the dmaps.
30 *
31 * the serialization scheme used here is as follows.
32 *
33 * requests which start at the bottom are serialized against each
34 * other through buffers and each requests holds onto its buffers
35 * as it works it way up from a single dmap to the required level
36 * of dmap control page.
37 * requests that start at the top are serialized against each other
38 * and request that start from the bottom by the multiple read/single
39 * write inode lock of the bmap inode. requests starting at the top
40 * take this lock in write mode while request starting at the bottom
41 * take the lock in read mode. a single top-down request may proceed
42 * exclusively while multiple bottoms-up requests may proceed
43 * simultaneously (under the protection of busy buffers).
44 *
45 * in addition to information found in dmaps and dmap control pages,
46 * the working state of the block allocation map also includes read/
47 * write information maintained in the bmap descriptor (i.e. total
48 * free block count, allocation group level free block counts).
49 * a single exclusive lock (BMAP_LOCK) is used to guard this information
50 * in the face of multiple-bottoms up requests.
51 * (lock ordering: IREAD_LOCK, BMAP_LOCK);
52 *
53 * accesses to the persistent state of the block allocation map (limited
54 * to the persistent bitmaps in dmaps) is guarded by (busy) buffers.
55 */
56
57#define BMAP_LOCK_INIT(bmp) mutex_init(&bmp->db_bmaplock)
58#define BMAP_LOCK(bmp) mutex_lock(&bmp->db_bmaplock)
59#define BMAP_UNLOCK(bmp) mutex_unlock(&bmp->db_bmaplock)
60
61/*
62 * forward references
63 */
64static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
65 int nblocks);
66static void dbSplit(dmtree_t *tp, int leafno, int splitsz, int newval, bool is_ctl);
67static int dbBackSplit(dmtree_t *tp, int leafno, bool is_ctl);
68static int dbJoin(dmtree_t *tp, int leafno, int newval, bool is_ctl);
69static void dbAdjTree(dmtree_t *tp, int leafno, int newval, bool is_ctl);
70static int dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc,
71 int level);
72static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results);
73static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
74 int nblocks);
75static int dbAllocNear(struct bmap * bmp, struct dmap * dp, s64 blkno,
76 int nblocks,
77 int l2nb, s64 * results);
78static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
79 int nblocks);
80static int dbAllocDmapLev(struct bmap * bmp, struct dmap * dp, int nblocks,
81 int l2nb,
82 s64 * results);
83static int dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb,
84 s64 * results);
85static int dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno,
86 s64 * results);
87static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks);
88static int dbFindBits(u32 word, int l2nb);
89static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno);
90static int dbFindLeaf(dmtree_t *tp, int l2nb, int *leafidx, bool is_ctl);
91static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
92 int nblocks);
93static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
94 int nblocks);
95static int dbMaxBud(u8 * cp);
96static int blkstol2(s64 nb);
97
98static int cntlz(u32 value);
99static int cnttz(u32 word);
100
101static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
102 int nblocks);
103static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks);
104static int dbInitDmapTree(struct dmap * dp);
105static int dbInitTree(struct dmaptree * dtp);
106static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i);
107static int dbGetL2AGSize(s64 nblocks);
108
109/*
110 * buddy table
111 *
112 * table used for determining buddy sizes within characters of
113 * dmap bitmap words. the characters themselves serve as indexes
114 * into the table, with the table elements yielding the maximum
115 * binary buddy of free bits within the character.
116 */
117static const s8 budtab[256] = {
118 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
119 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
120 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
121 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
122 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
123 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
124 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
125 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
126 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
127 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
128 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
129 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
130 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
131 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
132 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
133 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
134};
135
136/*
137 * NAME: dbMount()
138 *
139 * FUNCTION: initializate the block allocation map.
140 *
141 * memory is allocated for the in-core bmap descriptor and
142 * the in-core descriptor is initialized from disk.
143 *
144 * PARAMETERS:
145 * ipbmap - pointer to in-core inode for the block map.
146 *
147 * RETURN VALUES:
148 * 0 - success
149 * -ENOMEM - insufficient memory
150 * -EIO - i/o error
151 * -EINVAL - wrong bmap data
152 */
153int dbMount(struct inode *ipbmap)
154{
155 struct bmap *bmp;
156 struct dbmap_disk *dbmp_le;
157 struct metapage *mp;
158 int i, err;
159
160 /*
161 * allocate/initialize the in-memory bmap descriptor
162 */
163 /* allocate memory for the in-memory bmap descriptor */
164 bmp = kmalloc(sizeof(struct bmap), GFP_KERNEL);
165 if (bmp == NULL)
166 return -ENOMEM;
167
168 /* read the on-disk bmap descriptor. */
169 mp = read_metapage(ipbmap,
170 BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
171 PSIZE, 0);
172 if (mp == NULL) {
173 err = -EIO;
174 goto err_kfree_bmp;
175 }
176
177 /* copy the on-disk bmap descriptor to its in-memory version. */
178 dbmp_le = (struct dbmap_disk *) mp->data;
179 bmp->db_mapsize = le64_to_cpu(dbmp_le->dn_mapsize);
180 bmp->db_nfree = le64_to_cpu(dbmp_le->dn_nfree);
181
182 bmp->db_l2nbperpage = le32_to_cpu(dbmp_le->dn_l2nbperpage);
183 if (bmp->db_l2nbperpage > L2PSIZE - L2MINBLOCKSIZE ||
184 bmp->db_l2nbperpage < 0) {
185 err = -EINVAL;
186 goto err_release_metapage;
187 }
188
189 bmp->db_numag = le32_to_cpu(dbmp_le->dn_numag);
190 if (!bmp->db_numag || bmp->db_numag > MAXAG) {
191 err = -EINVAL;
192 goto err_release_metapage;
193 }
194
195 bmp->db_maxlevel = le32_to_cpu(dbmp_le->dn_maxlevel);
196 bmp->db_maxag = le32_to_cpu(dbmp_le->dn_maxag);
197 bmp->db_agpref = le32_to_cpu(dbmp_le->dn_agpref);
198 if (bmp->db_maxag >= MAXAG || bmp->db_maxag < 0 ||
199 bmp->db_agpref >= MAXAG || bmp->db_agpref < 0) {
200 err = -EINVAL;
201 goto err_release_metapage;
202 }
203
204 bmp->db_aglevel = le32_to_cpu(dbmp_le->dn_aglevel);
205 bmp->db_agheight = le32_to_cpu(dbmp_le->dn_agheight);
206 bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
207 bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
208 bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
209 if (bmp->db_agl2size > L2MAXL2SIZE - L2MAXAG ||
210 bmp->db_agl2size < 0) {
211 err = -EINVAL;
212 goto err_release_metapage;
213 }
214
215 if (((bmp->db_mapsize - 1) >> bmp->db_agl2size) > MAXAG) {
216 err = -EINVAL;
217 goto err_release_metapage;
218 }
219
220 for (i = 0; i < MAXAG; i++)
221 bmp->db_agfree[i] = le64_to_cpu(dbmp_le->dn_agfree[i]);
222 bmp->db_agsize = le64_to_cpu(dbmp_le->dn_agsize);
223 bmp->db_maxfreebud = dbmp_le->dn_maxfreebud;
224
225 /* release the buffer. */
226 release_metapage(mp);
227
228 /* bind the bmap inode and the bmap descriptor to each other. */
229 bmp->db_ipbmap = ipbmap;
230 JFS_SBI(ipbmap->i_sb)->bmap = bmp;
231
232 memset(bmp->db_active, 0, sizeof(bmp->db_active));
233
234 /*
235 * allocate/initialize the bmap lock
236 */
237 BMAP_LOCK_INIT(bmp);
238
239 return (0);
240
241err_release_metapage:
242 release_metapage(mp);
243err_kfree_bmp:
244 kfree(bmp);
245 return err;
246}
247
248
249/*
250 * NAME: dbUnmount()
251 *
252 * FUNCTION: terminate the block allocation map in preparation for
253 * file system unmount.
254 *
255 * the in-core bmap descriptor is written to disk and
256 * the memory for this descriptor is freed.
257 *
258 * PARAMETERS:
259 * ipbmap - pointer to in-core inode for the block map.
260 *
261 * RETURN VALUES:
262 * 0 - success
263 * -EIO - i/o error
264 */
265int dbUnmount(struct inode *ipbmap, int mounterror)
266{
267 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
268
269 if (!(mounterror || isReadOnly(ipbmap)))
270 dbSync(ipbmap);
271
272 /*
273 * Invalidate the page cache buffers
274 */
275 truncate_inode_pages(ipbmap->i_mapping, 0);
276
277 /* free the memory for the in-memory bmap. */
278 kfree(bmp);
279 JFS_SBI(ipbmap->i_sb)->bmap = NULL;
280
281 return (0);
282}
283
284/*
285 * dbSync()
286 */
287int dbSync(struct inode *ipbmap)
288{
289 struct dbmap_disk *dbmp_le;
290 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
291 struct metapage *mp;
292 int i;
293
294 /*
295 * write bmap global control page
296 */
297 /* get the buffer for the on-disk bmap descriptor. */
298 mp = read_metapage(ipbmap,
299 BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
300 PSIZE, 0);
301 if (mp == NULL) {
302 jfs_err("dbSync: read_metapage failed!");
303 return -EIO;
304 }
305 /* copy the in-memory version of the bmap to the on-disk version */
306 dbmp_le = (struct dbmap_disk *) mp->data;
307 dbmp_le->dn_mapsize = cpu_to_le64(bmp->db_mapsize);
308 dbmp_le->dn_nfree = cpu_to_le64(bmp->db_nfree);
309 dbmp_le->dn_l2nbperpage = cpu_to_le32(bmp->db_l2nbperpage);
310 dbmp_le->dn_numag = cpu_to_le32(bmp->db_numag);
311 dbmp_le->dn_maxlevel = cpu_to_le32(bmp->db_maxlevel);
312 dbmp_le->dn_maxag = cpu_to_le32(bmp->db_maxag);
313 dbmp_le->dn_agpref = cpu_to_le32(bmp->db_agpref);
314 dbmp_le->dn_aglevel = cpu_to_le32(bmp->db_aglevel);
315 dbmp_le->dn_agheight = cpu_to_le32(bmp->db_agheight);
316 dbmp_le->dn_agwidth = cpu_to_le32(bmp->db_agwidth);
317 dbmp_le->dn_agstart = cpu_to_le32(bmp->db_agstart);
318 dbmp_le->dn_agl2size = cpu_to_le32(bmp->db_agl2size);
319 for (i = 0; i < MAXAG; i++)
320 dbmp_le->dn_agfree[i] = cpu_to_le64(bmp->db_agfree[i]);
321 dbmp_le->dn_agsize = cpu_to_le64(bmp->db_agsize);
322 dbmp_le->dn_maxfreebud = bmp->db_maxfreebud;
323
324 /* write the buffer */
325 write_metapage(mp);
326
327 /*
328 * write out dirty pages of bmap
329 */
330 filemap_write_and_wait(ipbmap->i_mapping);
331
332 diWriteSpecial(ipbmap, 0);
333
334 return (0);
335}
336
337/*
338 * NAME: dbFree()
339 *
340 * FUNCTION: free the specified block range from the working block
341 * allocation map.
342 *
343 * the blocks will be free from the working map one dmap
344 * at a time.
345 *
346 * PARAMETERS:
347 * ip - pointer to in-core inode;
348 * blkno - starting block number to be freed.
349 * nblocks - number of blocks to be freed.
350 *
351 * RETURN VALUES:
352 * 0 - success
353 * -EIO - i/o error
354 */
355int dbFree(struct inode *ip, s64 blkno, s64 nblocks)
356{
357 struct metapage *mp;
358 struct dmap *dp;
359 int nb, rc;
360 s64 lblkno, rem;
361 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
362 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
363 struct super_block *sb = ipbmap->i_sb;
364
365 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
366
367 /* block to be freed better be within the mapsize. */
368 if (unlikely((blkno == 0) || (blkno + nblocks > bmp->db_mapsize))) {
369 IREAD_UNLOCK(ipbmap);
370 printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
371 (unsigned long long) blkno,
372 (unsigned long long) nblocks);
373 jfs_error(ip->i_sb, "block to be freed is outside the map\n");
374 return -EIO;
375 }
376
377 /**
378 * TRIM the blocks, when mounted with discard option
379 */
380 if (JFS_SBI(sb)->flag & JFS_DISCARD)
381 if (JFS_SBI(sb)->minblks_trim <= nblocks)
382 jfs_issue_discard(ipbmap, blkno, nblocks);
383
384 /*
385 * free the blocks a dmap at a time.
386 */
387 mp = NULL;
388 for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
389 /* release previous dmap if any */
390 if (mp) {
391 write_metapage(mp);
392 }
393
394 /* get the buffer for the current dmap. */
395 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
396 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
397 if (mp == NULL) {
398 IREAD_UNLOCK(ipbmap);
399 return -EIO;
400 }
401 dp = (struct dmap *) mp->data;
402
403 /* determine the number of blocks to be freed from
404 * this dmap.
405 */
406 nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
407
408 /* free the blocks. */
409 if ((rc = dbFreeDmap(bmp, dp, blkno, nb))) {
410 jfs_error(ip->i_sb, "error in block map\n");
411 release_metapage(mp);
412 IREAD_UNLOCK(ipbmap);
413 return (rc);
414 }
415 }
416
417 /* write the last buffer. */
418 if (mp)
419 write_metapage(mp);
420
421 IREAD_UNLOCK(ipbmap);
422
423 return (0);
424}
425
426
427/*
428 * NAME: dbUpdatePMap()
429 *
430 * FUNCTION: update the allocation state (free or allocate) of the
431 * specified block range in the persistent block allocation map.
432 *
433 * the blocks will be updated in the persistent map one
434 * dmap at a time.
435 *
436 * PARAMETERS:
437 * ipbmap - pointer to in-core inode for the block map.
438 * free - 'true' if block range is to be freed from the persistent
439 * map; 'false' if it is to be allocated.
440 * blkno - starting block number of the range.
441 * nblocks - number of contiguous blocks in the range.
442 * tblk - transaction block;
443 *
444 * RETURN VALUES:
445 * 0 - success
446 * -EIO - i/o error
447 */
448int
449dbUpdatePMap(struct inode *ipbmap,
450 int free, s64 blkno, s64 nblocks, struct tblock * tblk)
451{
452 int nblks, dbitno, wbitno, rbits;
453 int word, nbits, nwords;
454 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
455 s64 lblkno, rem, lastlblkno;
456 u32 mask;
457 struct dmap *dp;
458 struct metapage *mp;
459 struct jfs_log *log;
460 int lsn, difft, diffp;
461 unsigned long flags;
462
463 /* the blocks better be within the mapsize. */
464 if (blkno + nblocks > bmp->db_mapsize) {
465 printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
466 (unsigned long long) blkno,
467 (unsigned long long) nblocks);
468 jfs_error(ipbmap->i_sb, "blocks are outside the map\n");
469 return -EIO;
470 }
471
472 /* compute delta of transaction lsn from log syncpt */
473 lsn = tblk->lsn;
474 log = (struct jfs_log *) JFS_SBI(tblk->sb)->log;
475 logdiff(difft, lsn, log);
476
477 /*
478 * update the block state a dmap at a time.
479 */
480 mp = NULL;
481 lastlblkno = 0;
482 for (rem = nblocks; rem > 0; rem -= nblks, blkno += nblks) {
483 /* get the buffer for the current dmap. */
484 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
485 if (lblkno != lastlblkno) {
486 if (mp) {
487 write_metapage(mp);
488 }
489
490 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE,
491 0);
492 if (mp == NULL)
493 return -EIO;
494 metapage_wait_for_io(mp);
495 }
496 dp = (struct dmap *) mp->data;
497
498 /* determine the bit number and word within the dmap of
499 * the starting block. also determine how many blocks
500 * are to be updated within this dmap.
501 */
502 dbitno = blkno & (BPERDMAP - 1);
503 word = dbitno >> L2DBWORD;
504 nblks = min(rem, (s64)BPERDMAP - dbitno);
505
506 /* update the bits of the dmap words. the first and last
507 * words may only have a subset of their bits updated. if
508 * this is the case, we'll work against that word (i.e.
509 * partial first and/or last) only in a single pass. a
510 * single pass will also be used to update all words that
511 * are to have all their bits updated.
512 */
513 for (rbits = nblks; rbits > 0;
514 rbits -= nbits, dbitno += nbits) {
515 /* determine the bit number within the word and
516 * the number of bits within the word.
517 */
518 wbitno = dbitno & (DBWORD - 1);
519 nbits = min(rbits, DBWORD - wbitno);
520
521 /* check if only part of the word is to be updated. */
522 if (nbits < DBWORD) {
523 /* update (free or allocate) the bits
524 * in this word.
525 */
526 mask =
527 (ONES << (DBWORD - nbits) >> wbitno);
528 if (free)
529 dp->pmap[word] &=
530 cpu_to_le32(~mask);
531 else
532 dp->pmap[word] |=
533 cpu_to_le32(mask);
534
535 word += 1;
536 } else {
537 /* one or more words are to have all
538 * their bits updated. determine how
539 * many words and how many bits.
540 */
541 nwords = rbits >> L2DBWORD;
542 nbits = nwords << L2DBWORD;
543
544 /* update (free or allocate) the bits
545 * in these words.
546 */
547 if (free)
548 memset(&dp->pmap[word], 0,
549 nwords * 4);
550 else
551 memset(&dp->pmap[word], (int) ONES,
552 nwords * 4);
553
554 word += nwords;
555 }
556 }
557
558 /*
559 * update dmap lsn
560 */
561 if (lblkno == lastlblkno)
562 continue;
563
564 lastlblkno = lblkno;
565
566 LOGSYNC_LOCK(log, flags);
567 if (mp->lsn != 0) {
568 /* inherit older/smaller lsn */
569 logdiff(diffp, mp->lsn, log);
570 if (difft < diffp) {
571 mp->lsn = lsn;
572
573 /* move bp after tblock in logsync list */
574 list_move(&mp->synclist, &tblk->synclist);
575 }
576
577 /* inherit younger/larger clsn */
578 logdiff(difft, tblk->clsn, log);
579 logdiff(diffp, mp->clsn, log);
580 if (difft > diffp)
581 mp->clsn = tblk->clsn;
582 } else {
583 mp->log = log;
584 mp->lsn = lsn;
585
586 /* insert bp after tblock in logsync list */
587 log->count++;
588 list_add(&mp->synclist, &tblk->synclist);
589
590 mp->clsn = tblk->clsn;
591 }
592 LOGSYNC_UNLOCK(log, flags);
593 }
594
595 /* write the last buffer. */
596 if (mp) {
597 write_metapage(mp);
598 }
599
600 return (0);
601}
602
603
604/*
605 * NAME: dbNextAG()
606 *
607 * FUNCTION: find the preferred allocation group for new allocations.
608 *
609 * Within the allocation groups, we maintain a preferred
610 * allocation group which consists of a group with at least
611 * average free space. It is the preferred group that we target
612 * new inode allocation towards. The tie-in between inode
613 * allocation and block allocation occurs as we allocate the
614 * first (data) block of an inode and specify the inode (block)
615 * as the allocation hint for this block.
616 *
617 * We try to avoid having more than one open file growing in
618 * an allocation group, as this will lead to fragmentation.
619 * This differs from the old OS/2 method of trying to keep
620 * empty ags around for large allocations.
621 *
622 * PARAMETERS:
623 * ipbmap - pointer to in-core inode for the block map.
624 *
625 * RETURN VALUES:
626 * the preferred allocation group number.
627 */
628int dbNextAG(struct inode *ipbmap)
629{
630 s64 avgfree;
631 int agpref;
632 s64 hwm = 0;
633 int i;
634 int next_best = -1;
635 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
636
637 BMAP_LOCK(bmp);
638
639 /* determine the average number of free blocks within the ags. */
640 avgfree = (u32)bmp->db_nfree / bmp->db_numag;
641
642 /*
643 * if the current preferred ag does not have an active allocator
644 * and has at least average freespace, return it
645 */
646 agpref = bmp->db_agpref;
647 if ((atomic_read(&bmp->db_active[agpref]) == 0) &&
648 (bmp->db_agfree[agpref] >= avgfree))
649 goto unlock;
650
651 /* From the last preferred ag, find the next one with at least
652 * average free space.
653 */
654 for (i = 0 ; i < bmp->db_numag; i++, agpref++) {
655 if (agpref >= bmp->db_numag)
656 agpref = 0;
657
658 if (atomic_read(&bmp->db_active[agpref]))
659 /* open file is currently growing in this ag */
660 continue;
661 if (bmp->db_agfree[agpref] >= avgfree) {
662 /* Return this one */
663 bmp->db_agpref = agpref;
664 goto unlock;
665 } else if (bmp->db_agfree[agpref] > hwm) {
666 /* Less than avg. freespace, but best so far */
667 hwm = bmp->db_agfree[agpref];
668 next_best = agpref;
669 }
670 }
671
672 /*
673 * If no inactive ag was found with average freespace, use the
674 * next best
675 */
676 if (next_best != -1)
677 bmp->db_agpref = next_best;
678 /* else leave db_agpref unchanged */
679unlock:
680 BMAP_UNLOCK(bmp);
681
682 /* return the preferred group.
683 */
684 return (bmp->db_agpref);
685}
686
687/*
688 * NAME: dbAlloc()
689 *
690 * FUNCTION: attempt to allocate a specified number of contiguous free
691 * blocks from the working allocation block map.
692 *
693 * the block allocation policy uses hints and a multi-step
694 * approach.
695 *
696 * for allocation requests smaller than the number of blocks
697 * per dmap, we first try to allocate the new blocks
698 * immediately following the hint. if these blocks are not
699 * available, we try to allocate blocks near the hint. if
700 * no blocks near the hint are available, we next try to
701 * allocate within the same dmap as contains the hint.
702 *
703 * if no blocks are available in the dmap or the allocation
704 * request is larger than the dmap size, we try to allocate
705 * within the same allocation group as contains the hint. if
706 * this does not succeed, we finally try to allocate anywhere
707 * within the aggregate.
708 *
709 * we also try to allocate anywhere within the aggregate for
710 * for allocation requests larger than the allocation group
711 * size or requests that specify no hint value.
712 *
713 * PARAMETERS:
714 * ip - pointer to in-core inode;
715 * hint - allocation hint.
716 * nblocks - number of contiguous blocks in the range.
717 * results - on successful return, set to the starting block number
718 * of the newly allocated contiguous range.
719 *
720 * RETURN VALUES:
721 * 0 - success
722 * -ENOSPC - insufficient disk resources
723 * -EIO - i/o error
724 */
725int dbAlloc(struct inode *ip, s64 hint, s64 nblocks, s64 * results)
726{
727 int rc, agno;
728 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
729 struct bmap *bmp;
730 struct metapage *mp;
731 s64 lblkno, blkno;
732 struct dmap *dp;
733 int l2nb;
734 s64 mapSize;
735 int writers;
736
737 /* assert that nblocks is valid */
738 assert(nblocks > 0);
739
740 /* get the log2 number of blocks to be allocated.
741 * if the number of blocks is not a log2 multiple,
742 * it will be rounded up to the next log2 multiple.
743 */
744 l2nb = BLKSTOL2(nblocks);
745
746 bmp = JFS_SBI(ip->i_sb)->bmap;
747
748 mapSize = bmp->db_mapsize;
749
750 /* the hint should be within the map */
751 if (hint >= mapSize) {
752 jfs_error(ip->i_sb, "the hint is outside the map\n");
753 return -EIO;
754 }
755
756 /* if the number of blocks to be allocated is greater than the
757 * allocation group size, try to allocate anywhere.
758 */
759 if (l2nb > bmp->db_agl2size) {
760 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
761
762 rc = dbAllocAny(bmp, nblocks, l2nb, results);
763
764 goto write_unlock;
765 }
766
767 /*
768 * If no hint, let dbNextAG recommend an allocation group
769 */
770 if (hint == 0)
771 goto pref_ag;
772
773 /* we would like to allocate close to the hint. adjust the
774 * hint to the block following the hint since the allocators
775 * will start looking for free space starting at this point.
776 */
777 blkno = hint + 1;
778
779 if (blkno >= bmp->db_mapsize)
780 goto pref_ag;
781
782 agno = blkno >> bmp->db_agl2size;
783
784 /* check if blkno crosses over into a new allocation group.
785 * if so, check if we should allow allocations within this
786 * allocation group.
787 */
788 if ((blkno & (bmp->db_agsize - 1)) == 0)
789 /* check if the AG is currently being written to.
790 * if so, call dbNextAG() to find a non-busy
791 * AG with sufficient free space.
792 */
793 if (atomic_read(&bmp->db_active[agno]))
794 goto pref_ag;
795
796 /* check if the allocation request size can be satisfied from a
797 * single dmap. if so, try to allocate from the dmap containing
798 * the hint using a tiered strategy.
799 */
800 if (nblocks <= BPERDMAP) {
801 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
802
803 /* get the buffer for the dmap containing the hint.
804 */
805 rc = -EIO;
806 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
807 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
808 if (mp == NULL)
809 goto read_unlock;
810
811 dp = (struct dmap *) mp->data;
812
813 /* first, try to satisfy the allocation request with the
814 * blocks beginning at the hint.
815 */
816 if ((rc = dbAllocNext(bmp, dp, blkno, (int) nblocks))
817 != -ENOSPC) {
818 if (rc == 0) {
819 *results = blkno;
820 mark_metapage_dirty(mp);
821 }
822
823 release_metapage(mp);
824 goto read_unlock;
825 }
826
827 writers = atomic_read(&bmp->db_active[agno]);
828 if ((writers > 1) ||
829 ((writers == 1) && (JFS_IP(ip)->active_ag != agno))) {
830 /*
831 * Someone else is writing in this allocation
832 * group. To avoid fragmenting, try another ag
833 */
834 release_metapage(mp);
835 IREAD_UNLOCK(ipbmap);
836 goto pref_ag;
837 }
838
839 /* next, try to satisfy the allocation request with blocks
840 * near the hint.
841 */
842 if ((rc =
843 dbAllocNear(bmp, dp, blkno, (int) nblocks, l2nb, results))
844 != -ENOSPC) {
845 if (rc == 0)
846 mark_metapage_dirty(mp);
847
848 release_metapage(mp);
849 goto read_unlock;
850 }
851
852 /* try to satisfy the allocation request with blocks within
853 * the same dmap as the hint.
854 */
855 if ((rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results))
856 != -ENOSPC) {
857 if (rc == 0)
858 mark_metapage_dirty(mp);
859
860 release_metapage(mp);
861 goto read_unlock;
862 }
863
864 release_metapage(mp);
865 IREAD_UNLOCK(ipbmap);
866 }
867
868 /* try to satisfy the allocation request with blocks within
869 * the same allocation group as the hint.
870 */
871 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
872 if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) != -ENOSPC)
873 goto write_unlock;
874
875 IWRITE_UNLOCK(ipbmap);
876
877
878 pref_ag:
879 /*
880 * Let dbNextAG recommend a preferred allocation group
881 */
882 agno = dbNextAG(ipbmap);
883 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
884
885 /* Try to allocate within this allocation group. if that fails, try to
886 * allocate anywhere in the map.
887 */
888 if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) == -ENOSPC)
889 rc = dbAllocAny(bmp, nblocks, l2nb, results);
890
891 write_unlock:
892 IWRITE_UNLOCK(ipbmap);
893
894 return (rc);
895
896 read_unlock:
897 IREAD_UNLOCK(ipbmap);
898
899 return (rc);
900}
901
902#ifdef _NOTYET
903/*
904 * NAME: dbAllocExact()
905 *
906 * FUNCTION: try to allocate the requested extent;
907 *
908 * PARAMETERS:
909 * ip - pointer to in-core inode;
910 * blkno - extent address;
911 * nblocks - extent length;
912 *
913 * RETURN VALUES:
914 * 0 - success
915 * -ENOSPC - insufficient disk resources
916 * -EIO - i/o error
917 */
918int dbAllocExact(struct inode *ip, s64 blkno, int nblocks)
919{
920 int rc;
921 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
922 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
923 struct dmap *dp;
924 s64 lblkno;
925 struct metapage *mp;
926
927 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
928
929 /*
930 * validate extent request:
931 *
932 * note: defragfs policy:
933 * max 64 blocks will be moved.
934 * allocation request size must be satisfied from a single dmap.
935 */
936 if (nblocks <= 0 || nblocks > BPERDMAP || blkno >= bmp->db_mapsize) {
937 IREAD_UNLOCK(ipbmap);
938 return -EINVAL;
939 }
940
941 if (nblocks > ((s64) 1 << bmp->db_maxfreebud)) {
942 /* the free space is no longer available */
943 IREAD_UNLOCK(ipbmap);
944 return -ENOSPC;
945 }
946
947 /* read in the dmap covering the extent */
948 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
949 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
950 if (mp == NULL) {
951 IREAD_UNLOCK(ipbmap);
952 return -EIO;
953 }
954 dp = (struct dmap *) mp->data;
955
956 /* try to allocate the requested extent */
957 rc = dbAllocNext(bmp, dp, blkno, nblocks);
958
959 IREAD_UNLOCK(ipbmap);
960
961 if (rc == 0)
962 mark_metapage_dirty(mp);
963
964 release_metapage(mp);
965
966 return (rc);
967}
968#endif /* _NOTYET */
969
970/*
971 * NAME: dbReAlloc()
972 *
973 * FUNCTION: attempt to extend a current allocation by a specified
974 * number of blocks.
975 *
976 * this routine attempts to satisfy the allocation request
977 * by first trying to extend the existing allocation in
978 * place by allocating the additional blocks as the blocks
979 * immediately following the current allocation. if these
980 * blocks are not available, this routine will attempt to
981 * allocate a new set of contiguous blocks large enough
982 * to cover the existing allocation plus the additional
983 * number of blocks required.
984 *
985 * PARAMETERS:
986 * ip - pointer to in-core inode requiring allocation.
987 * blkno - starting block of the current allocation.
988 * nblocks - number of contiguous blocks within the current
989 * allocation.
990 * addnblocks - number of blocks to add to the allocation.
991 * results - on successful return, set to the starting block number
992 * of the existing allocation if the existing allocation
993 * was extended in place or to a newly allocated contiguous
994 * range if the existing allocation could not be extended
995 * in place.
996 *
997 * RETURN VALUES:
998 * 0 - success
999 * -ENOSPC - insufficient disk resources
1000 * -EIO - i/o error
1001 */
1002int
1003dbReAlloc(struct inode *ip,
1004 s64 blkno, s64 nblocks, s64 addnblocks, s64 * results)
1005{
1006 int rc;
1007
1008 /* try to extend the allocation in place.
1009 */
1010 if ((rc = dbExtend(ip, blkno, nblocks, addnblocks)) == 0) {
1011 *results = blkno;
1012 return (0);
1013 } else {
1014 if (rc != -ENOSPC)
1015 return (rc);
1016 }
1017
1018 /* could not extend the allocation in place, so allocate a
1019 * new set of blocks for the entire request (i.e. try to get
1020 * a range of contiguous blocks large enough to cover the
1021 * existing allocation plus the additional blocks.)
1022 */
1023 return (dbAlloc
1024 (ip, blkno + nblocks - 1, addnblocks + nblocks, results));
1025}
1026
1027
1028/*
1029 * NAME: dbExtend()
1030 *
1031 * FUNCTION: attempt to extend a current allocation by a specified
1032 * number of blocks.
1033 *
1034 * this routine attempts to satisfy the allocation request
1035 * by first trying to extend the existing allocation in
1036 * place by allocating the additional blocks as the blocks
1037 * immediately following the current allocation.
1038 *
1039 * PARAMETERS:
1040 * ip - pointer to in-core inode requiring allocation.
1041 * blkno - starting block of the current allocation.
1042 * nblocks - number of contiguous blocks within the current
1043 * allocation.
1044 * addnblocks - number of blocks to add to the allocation.
1045 *
1046 * RETURN VALUES:
1047 * 0 - success
1048 * -ENOSPC - insufficient disk resources
1049 * -EIO - i/o error
1050 */
1051static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks)
1052{
1053 struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
1054 s64 lblkno, lastblkno, extblkno;
1055 uint rel_block;
1056 struct metapage *mp;
1057 struct dmap *dp;
1058 int rc;
1059 struct inode *ipbmap = sbi->ipbmap;
1060 struct bmap *bmp;
1061
1062 /*
1063 * We don't want a non-aligned extent to cross a page boundary
1064 */
1065 if (((rel_block = blkno & (sbi->nbperpage - 1))) &&
1066 (rel_block + nblocks + addnblocks > sbi->nbperpage))
1067 return -ENOSPC;
1068
1069 /* get the last block of the current allocation */
1070 lastblkno = blkno + nblocks - 1;
1071
1072 /* determine the block number of the block following
1073 * the existing allocation.
1074 */
1075 extblkno = lastblkno + 1;
1076
1077 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
1078
1079 /* better be within the file system */
1080 bmp = sbi->bmap;
1081 if (lastblkno < 0 || lastblkno >= bmp->db_mapsize) {
1082 IREAD_UNLOCK(ipbmap);
1083 jfs_error(ip->i_sb, "the block is outside the filesystem\n");
1084 return -EIO;
1085 }
1086
1087 /* we'll attempt to extend the current allocation in place by
1088 * allocating the additional blocks as the blocks immediately
1089 * following the current allocation. we only try to extend the
1090 * current allocation in place if the number of additional blocks
1091 * can fit into a dmap, the last block of the current allocation
1092 * is not the last block of the file system, and the start of the
1093 * inplace extension is not on an allocation group boundary.
1094 */
1095 if (addnblocks > BPERDMAP || extblkno >= bmp->db_mapsize ||
1096 (extblkno & (bmp->db_agsize - 1)) == 0) {
1097 IREAD_UNLOCK(ipbmap);
1098 return -ENOSPC;
1099 }
1100
1101 /* get the buffer for the dmap containing the first block
1102 * of the extension.
1103 */
1104 lblkno = BLKTODMAP(extblkno, bmp->db_l2nbperpage);
1105 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
1106 if (mp == NULL) {
1107 IREAD_UNLOCK(ipbmap);
1108 return -EIO;
1109 }
1110
1111 dp = (struct dmap *) mp->data;
1112
1113 /* try to allocate the blocks immediately following the
1114 * current allocation.
1115 */
1116 rc = dbAllocNext(bmp, dp, extblkno, (int) addnblocks);
1117
1118 IREAD_UNLOCK(ipbmap);
1119
1120 /* were we successful ? */
1121 if (rc == 0)
1122 write_metapage(mp);
1123 else
1124 /* we were not successful */
1125 release_metapage(mp);
1126
1127 return (rc);
1128}
1129
1130
1131/*
1132 * NAME: dbAllocNext()
1133 *
1134 * FUNCTION: attempt to allocate the blocks of the specified block
1135 * range within a dmap.
1136 *
1137 * PARAMETERS:
1138 * bmp - pointer to bmap descriptor
1139 * dp - pointer to dmap.
1140 * blkno - starting block number of the range.
1141 * nblocks - number of contiguous free blocks of the range.
1142 *
1143 * RETURN VALUES:
1144 * 0 - success
1145 * -ENOSPC - insufficient disk resources
1146 * -EIO - i/o error
1147 *
1148 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1149 */
1150static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
1151 int nblocks)
1152{
1153 int dbitno, word, rembits, nb, nwords, wbitno, nw;
1154 int l2size;
1155 s8 *leaf;
1156 u32 mask;
1157
1158 if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1159 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1160 return -EIO;
1161 }
1162
1163 /* pick up a pointer to the leaves of the dmap tree.
1164 */
1165 leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1166
1167 /* determine the bit number and word within the dmap of the
1168 * starting block.
1169 */
1170 dbitno = blkno & (BPERDMAP - 1);
1171 word = dbitno >> L2DBWORD;
1172
1173 /* check if the specified block range is contained within
1174 * this dmap.
1175 */
1176 if (dbitno + nblocks > BPERDMAP)
1177 return -ENOSPC;
1178
1179 /* check if the starting leaf indicates that anything
1180 * is free.
1181 */
1182 if (leaf[word] == NOFREE)
1183 return -ENOSPC;
1184
1185 /* check the dmaps words corresponding to block range to see
1186 * if the block range is free. not all bits of the first and
1187 * last words may be contained within the block range. if this
1188 * is the case, we'll work against those words (i.e. partial first
1189 * and/or last) on an individual basis (a single pass) and examine
1190 * the actual bits to determine if they are free. a single pass
1191 * will be used for all dmap words fully contained within the
1192 * specified range. within this pass, the leaves of the dmap
1193 * tree will be examined to determine if the blocks are free. a
1194 * single leaf may describe the free space of multiple dmap
1195 * words, so we may visit only a subset of the actual leaves
1196 * corresponding to the dmap words of the block range.
1197 */
1198 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
1199 /* determine the bit number within the word and
1200 * the number of bits within the word.
1201 */
1202 wbitno = dbitno & (DBWORD - 1);
1203 nb = min(rembits, DBWORD - wbitno);
1204
1205 /* check if only part of the word is to be examined.
1206 */
1207 if (nb < DBWORD) {
1208 /* check if the bits are free.
1209 */
1210 mask = (ONES << (DBWORD - nb) >> wbitno);
1211 if ((mask & ~le32_to_cpu(dp->wmap[word])) != mask)
1212 return -ENOSPC;
1213
1214 word += 1;
1215 } else {
1216 /* one or more dmap words are fully contained
1217 * within the block range. determine how many
1218 * words and how many bits.
1219 */
1220 nwords = rembits >> L2DBWORD;
1221 nb = nwords << L2DBWORD;
1222
1223 /* now examine the appropriate leaves to determine
1224 * if the blocks are free.
1225 */
1226 while (nwords > 0) {
1227 /* does the leaf describe any free space ?
1228 */
1229 if (leaf[word] < BUDMIN)
1230 return -ENOSPC;
1231
1232 /* determine the l2 number of bits provided
1233 * by this leaf.
1234 */
1235 l2size =
1236 min_t(int, leaf[word], NLSTOL2BSZ(nwords));
1237
1238 /* determine how many words were handled.
1239 */
1240 nw = BUDSIZE(l2size, BUDMIN);
1241
1242 nwords -= nw;
1243 word += nw;
1244 }
1245 }
1246 }
1247
1248 /* allocate the blocks.
1249 */
1250 return (dbAllocDmap(bmp, dp, blkno, nblocks));
1251}
1252
1253
1254/*
1255 * NAME: dbAllocNear()
1256 *
1257 * FUNCTION: attempt to allocate a number of contiguous free blocks near
1258 * a specified block (hint) within a dmap.
1259 *
1260 * starting with the dmap leaf that covers the hint, we'll
1261 * check the next four contiguous leaves for sufficient free
1262 * space. if sufficient free space is found, we'll allocate
1263 * the desired free space.
1264 *
1265 * PARAMETERS:
1266 * bmp - pointer to bmap descriptor
1267 * dp - pointer to dmap.
1268 * blkno - block number to allocate near.
1269 * nblocks - actual number of contiguous free blocks desired.
1270 * l2nb - log2 number of contiguous free blocks desired.
1271 * results - on successful return, set to the starting block number
1272 * of the newly allocated range.
1273 *
1274 * RETURN VALUES:
1275 * 0 - success
1276 * -ENOSPC - insufficient disk resources
1277 * -EIO - i/o error
1278 *
1279 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1280 */
1281static int
1282dbAllocNear(struct bmap * bmp,
1283 struct dmap * dp, s64 blkno, int nblocks, int l2nb, s64 * results)
1284{
1285 int word, lword, rc;
1286 s8 *leaf;
1287
1288 if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1289 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1290 return -EIO;
1291 }
1292
1293 leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1294
1295 /* determine the word within the dmap that holds the hint
1296 * (i.e. blkno). also, determine the last word in the dmap
1297 * that we'll include in our examination.
1298 */
1299 word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
1300 lword = min(word + 4, LPERDMAP);
1301
1302 /* examine the leaves for sufficient free space.
1303 */
1304 for (; word < lword; word++) {
1305 /* does the leaf describe sufficient free space ?
1306 */
1307 if (leaf[word] < l2nb)
1308 continue;
1309
1310 /* determine the block number within the file system
1311 * of the first block described by this dmap word.
1312 */
1313 blkno = le64_to_cpu(dp->start) + (word << L2DBWORD);
1314
1315 /* if not all bits of the dmap word are free, get the
1316 * starting bit number within the dmap word of the required
1317 * string of free bits and adjust the block number with the
1318 * value.
1319 */
1320 if (leaf[word] < BUDMIN)
1321 blkno +=
1322 dbFindBits(le32_to_cpu(dp->wmap[word]), l2nb);
1323
1324 /* allocate the blocks.
1325 */
1326 if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1327 *results = blkno;
1328
1329 return (rc);
1330 }
1331
1332 return -ENOSPC;
1333}
1334
1335
1336/*
1337 * NAME: dbAllocAG()
1338 *
1339 * FUNCTION: attempt to allocate the specified number of contiguous
1340 * free blocks within the specified allocation group.
1341 *
1342 * unless the allocation group size is equal to the number
1343 * of blocks per dmap, the dmap control pages will be used to
1344 * find the required free space, if available. we start the
1345 * search at the highest dmap control page level which
1346 * distinctly describes the allocation group's free space
1347 * (i.e. the highest level at which the allocation group's
1348 * free space is not mixed in with that of any other group).
1349 * in addition, we start the search within this level at a
1350 * height of the dmapctl dmtree at which the nodes distinctly
1351 * describe the allocation group's free space. at this height,
1352 * the allocation group's free space may be represented by 1
1353 * or two sub-trees, depending on the allocation group size.
1354 * we search the top nodes of these subtrees left to right for
1355 * sufficient free space. if sufficient free space is found,
1356 * the subtree is searched to find the leftmost leaf that
1357 * has free space. once we have made it to the leaf, we
1358 * move the search to the next lower level dmap control page
1359 * corresponding to this leaf. we continue down the dmap control
1360 * pages until we find the dmap that contains or starts the
1361 * sufficient free space and we allocate at this dmap.
1362 *
1363 * if the allocation group size is equal to the dmap size,
1364 * we'll start at the dmap corresponding to the allocation
1365 * group and attempt the allocation at this level.
1366 *
1367 * the dmap control page search is also not performed if the
1368 * allocation group is completely free and we go to the first
1369 * dmap of the allocation group to do the allocation. this is
1370 * done because the allocation group may be part (not the first
1371 * part) of a larger binary buddy system, causing the dmap
1372 * control pages to indicate no free space (NOFREE) within
1373 * the allocation group.
1374 *
1375 * PARAMETERS:
1376 * bmp - pointer to bmap descriptor
1377 * agno - allocation group number.
1378 * nblocks - actual number of contiguous free blocks desired.
1379 * l2nb - log2 number of contiguous free blocks desired.
1380 * results - on successful return, set to the starting block number
1381 * of the newly allocated range.
1382 *
1383 * RETURN VALUES:
1384 * 0 - success
1385 * -ENOSPC - insufficient disk resources
1386 * -EIO - i/o error
1387 *
1388 * note: IWRITE_LOCK(ipmap) held on entry/exit;
1389 */
1390static int
1391dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, s64 * results)
1392{
1393 struct metapage *mp;
1394 struct dmapctl *dcp;
1395 int rc, ti, i, k, m, n, agperlev;
1396 s64 blkno, lblkno;
1397 int budmin;
1398
1399 /* allocation request should not be for more than the
1400 * allocation group size.
1401 */
1402 if (l2nb > bmp->db_agl2size) {
1403 jfs_error(bmp->db_ipbmap->i_sb,
1404 "allocation request is larger than the allocation group size\n");
1405 return -EIO;
1406 }
1407
1408 /* determine the starting block number of the allocation
1409 * group.
1410 */
1411 blkno = (s64) agno << bmp->db_agl2size;
1412
1413 /* check if the allocation group size is the minimum allocation
1414 * group size or if the allocation group is completely free. if
1415 * the allocation group size is the minimum size of BPERDMAP (i.e.
1416 * 1 dmap), there is no need to search the dmap control page (below)
1417 * that fully describes the allocation group since the allocation
1418 * group is already fully described by a dmap. in this case, we
1419 * just call dbAllocCtl() to search the dmap tree and allocate the
1420 * required space if available.
1421 *
1422 * if the allocation group is completely free, dbAllocCtl() is
1423 * also called to allocate the required space. this is done for
1424 * two reasons. first, it makes no sense searching the dmap control
1425 * pages for free space when we know that free space exists. second,
1426 * the dmap control pages may indicate that the allocation group
1427 * has no free space if the allocation group is part (not the first
1428 * part) of a larger binary buddy system.
1429 */
1430 if (bmp->db_agsize == BPERDMAP
1431 || bmp->db_agfree[agno] == bmp->db_agsize) {
1432 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1433 if ((rc == -ENOSPC) &&
1434 (bmp->db_agfree[agno] == bmp->db_agsize)) {
1435 printk(KERN_ERR "blkno = %Lx, blocks = %Lx\n",
1436 (unsigned long long) blkno,
1437 (unsigned long long) nblocks);
1438 jfs_error(bmp->db_ipbmap->i_sb,
1439 "dbAllocCtl failed in free AG\n");
1440 }
1441 return (rc);
1442 }
1443
1444 /* the buffer for the dmap control page that fully describes the
1445 * allocation group.
1446 */
1447 lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, bmp->db_aglevel);
1448 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1449 if (mp == NULL)
1450 return -EIO;
1451 dcp = (struct dmapctl *) mp->data;
1452 budmin = dcp->budmin;
1453
1454 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1455 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
1456 release_metapage(mp);
1457 return -EIO;
1458 }
1459
1460 /* search the subtree(s) of the dmap control page that describes
1461 * the allocation group, looking for sufficient free space. to begin,
1462 * determine how many allocation groups are represented in a dmap
1463 * control page at the control page level (i.e. L0, L1, L2) that
1464 * fully describes an allocation group. next, determine the starting
1465 * tree index of this allocation group within the control page.
1466 */
1467 agperlev =
1468 (1 << (L2LPERCTL - (bmp->db_agheight << 1))) / bmp->db_agwidth;
1469 ti = bmp->db_agstart + bmp->db_agwidth * (agno & (agperlev - 1));
1470
1471 /* dmap control page trees fan-out by 4 and a single allocation
1472 * group may be described by 1 or 2 subtrees within the ag level
1473 * dmap control page, depending upon the ag size. examine the ag's
1474 * subtrees for sufficient free space, starting with the leftmost
1475 * subtree.
1476 */
1477 for (i = 0; i < bmp->db_agwidth; i++, ti++) {
1478 /* is there sufficient free space ?
1479 */
1480 if (l2nb > dcp->stree[ti])
1481 continue;
1482
1483 /* sufficient free space found in a subtree. now search down
1484 * the subtree to find the leftmost leaf that describes this
1485 * free space.
1486 */
1487 for (k = bmp->db_agheight; k > 0; k--) {
1488 for (n = 0, m = (ti << 2) + 1; n < 4; n++) {
1489 if (l2nb <= dcp->stree[m + n]) {
1490 ti = m + n;
1491 break;
1492 }
1493 }
1494 if (n == 4) {
1495 jfs_error(bmp->db_ipbmap->i_sb,
1496 "failed descending stree\n");
1497 release_metapage(mp);
1498 return -EIO;
1499 }
1500 }
1501
1502 /* determine the block number within the file system
1503 * that corresponds to this leaf.
1504 */
1505 if (bmp->db_aglevel == 2)
1506 blkno = 0;
1507 else if (bmp->db_aglevel == 1)
1508 blkno &= ~(MAXL1SIZE - 1);
1509 else /* bmp->db_aglevel == 0 */
1510 blkno &= ~(MAXL0SIZE - 1);
1511
1512 blkno +=
1513 ((s64) (ti - le32_to_cpu(dcp->leafidx))) << budmin;
1514
1515 /* release the buffer in preparation for going down
1516 * the next level of dmap control pages.
1517 */
1518 release_metapage(mp);
1519
1520 /* check if we need to continue to search down the lower
1521 * level dmap control pages. we need to if the number of
1522 * blocks required is less than maximum number of blocks
1523 * described at the next lower level.
1524 */
1525 if (l2nb < budmin) {
1526
1527 /* search the lower level dmap control pages to get
1528 * the starting block number of the dmap that
1529 * contains or starts off the free space.
1530 */
1531 if ((rc =
1532 dbFindCtl(bmp, l2nb, bmp->db_aglevel - 1,
1533 &blkno))) {
1534 if (rc == -ENOSPC) {
1535 jfs_error(bmp->db_ipbmap->i_sb,
1536 "control page inconsistent\n");
1537 return -EIO;
1538 }
1539 return (rc);
1540 }
1541 }
1542
1543 /* allocate the blocks.
1544 */
1545 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1546 if (rc == -ENOSPC) {
1547 jfs_error(bmp->db_ipbmap->i_sb,
1548 "unable to allocate blocks\n");
1549 rc = -EIO;
1550 }
1551 return (rc);
1552 }
1553
1554 /* no space in the allocation group. release the buffer and
1555 * return -ENOSPC.
1556 */
1557 release_metapage(mp);
1558
1559 return -ENOSPC;
1560}
1561
1562
1563/*
1564 * NAME: dbAllocAny()
1565 *
1566 * FUNCTION: attempt to allocate the specified number of contiguous
1567 * free blocks anywhere in the file system.
1568 *
1569 * dbAllocAny() attempts to find the sufficient free space by
1570 * searching down the dmap control pages, starting with the
1571 * highest level (i.e. L0, L1, L2) control page. if free space
1572 * large enough to satisfy the desired free space is found, the
1573 * desired free space is allocated.
1574 *
1575 * PARAMETERS:
1576 * bmp - pointer to bmap descriptor
1577 * nblocks - actual number of contiguous free blocks desired.
1578 * l2nb - log2 number of contiguous free blocks desired.
1579 * results - on successful return, set to the starting block number
1580 * of the newly allocated range.
1581 *
1582 * RETURN VALUES:
1583 * 0 - success
1584 * -ENOSPC - insufficient disk resources
1585 * -EIO - i/o error
1586 *
1587 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1588 */
1589static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results)
1590{
1591 int rc;
1592 s64 blkno = 0;
1593
1594 /* starting with the top level dmap control page, search
1595 * down the dmap control levels for sufficient free space.
1596 * if free space is found, dbFindCtl() returns the starting
1597 * block number of the dmap that contains or starts off the
1598 * range of free space.
1599 */
1600 if ((rc = dbFindCtl(bmp, l2nb, bmp->db_maxlevel, &blkno)))
1601 return (rc);
1602
1603 /* allocate the blocks.
1604 */
1605 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1606 if (rc == -ENOSPC) {
1607 jfs_error(bmp->db_ipbmap->i_sb, "unable to allocate blocks\n");
1608 return -EIO;
1609 }
1610 return (rc);
1611}
1612
1613
1614/*
1615 * NAME: dbDiscardAG()
1616 *
1617 * FUNCTION: attempt to discard (TRIM) all free blocks of specific AG
1618 *
1619 * algorithm:
1620 * 1) allocate blocks, as large as possible and save them
1621 * while holding IWRITE_LOCK on ipbmap
1622 * 2) trim all these saved block/length values
1623 * 3) mark the blocks free again
1624 *
1625 * benefit:
1626 * - we work only on one ag at some time, minimizing how long we
1627 * need to lock ipbmap
1628 * - reading / writing the fs is possible most time, even on
1629 * trimming
1630 *
1631 * downside:
1632 * - we write two times to the dmapctl and dmap pages
1633 * - but for me, this seems the best way, better ideas?
1634 * /TR 2012
1635 *
1636 * PARAMETERS:
1637 * ip - pointer to in-core inode
1638 * agno - ag to trim
1639 * minlen - minimum value of contiguous blocks
1640 *
1641 * RETURN VALUES:
1642 * s64 - actual number of blocks trimmed
1643 */
1644s64 dbDiscardAG(struct inode *ip, int agno, s64 minlen)
1645{
1646 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
1647 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
1648 s64 nblocks, blkno;
1649 u64 trimmed = 0;
1650 int rc, l2nb;
1651 struct super_block *sb = ipbmap->i_sb;
1652
1653 struct range2trim {
1654 u64 blkno;
1655 u64 nblocks;
1656 } *totrim, *tt;
1657
1658 /* max blkno / nblocks pairs to trim */
1659 int count = 0, range_cnt;
1660 u64 max_ranges;
1661
1662 /* prevent others from writing new stuff here, while trimming */
1663 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
1664
1665 nblocks = bmp->db_agfree[agno];
1666 max_ranges = nblocks;
1667 do_div(max_ranges, minlen);
1668 range_cnt = min_t(u64, max_ranges + 1, 32 * 1024);
1669 totrim = kmalloc_array(range_cnt, sizeof(struct range2trim), GFP_NOFS);
1670 if (totrim == NULL) {
1671 jfs_error(bmp->db_ipbmap->i_sb, "no memory for trim array\n");
1672 IWRITE_UNLOCK(ipbmap);
1673 return 0;
1674 }
1675
1676 tt = totrim;
1677 while (nblocks >= minlen) {
1678 l2nb = BLKSTOL2(nblocks);
1679
1680 /* 0 = okay, -EIO = fatal, -ENOSPC -> try smaller block */
1681 rc = dbAllocAG(bmp, agno, nblocks, l2nb, &blkno);
1682 if (rc == 0) {
1683 tt->blkno = blkno;
1684 tt->nblocks = nblocks;
1685 tt++; count++;
1686
1687 /* the whole ag is free, trim now */
1688 if (bmp->db_agfree[agno] == 0)
1689 break;
1690
1691 /* give a hint for the next while */
1692 nblocks = bmp->db_agfree[agno];
1693 continue;
1694 } else if (rc == -ENOSPC) {
1695 /* search for next smaller log2 block */
1696 l2nb = BLKSTOL2(nblocks) - 1;
1697 nblocks = 1LL << l2nb;
1698 } else {
1699 /* Trim any already allocated blocks */
1700 jfs_error(bmp->db_ipbmap->i_sb, "-EIO\n");
1701 break;
1702 }
1703
1704 /* check, if our trim array is full */
1705 if (unlikely(count >= range_cnt - 1))
1706 break;
1707 }
1708 IWRITE_UNLOCK(ipbmap);
1709
1710 tt->nblocks = 0; /* mark the current end */
1711 for (tt = totrim; tt->nblocks != 0; tt++) {
1712 /* when mounted with online discard, dbFree() will
1713 * call jfs_issue_discard() itself */
1714 if (!(JFS_SBI(sb)->flag & JFS_DISCARD))
1715 jfs_issue_discard(ip, tt->blkno, tt->nblocks);
1716 dbFree(ip, tt->blkno, tt->nblocks);
1717 trimmed += tt->nblocks;
1718 }
1719 kfree(totrim);
1720
1721 return trimmed;
1722}
1723
1724/*
1725 * NAME: dbFindCtl()
1726 *
1727 * FUNCTION: starting at a specified dmap control page level and block
1728 * number, search down the dmap control levels for a range of
1729 * contiguous free blocks large enough to satisfy an allocation
1730 * request for the specified number of free blocks.
1731 *
1732 * if sufficient contiguous free blocks are found, this routine
1733 * returns the starting block number within a dmap page that
1734 * contains or starts a range of contiqious free blocks that
1735 * is sufficient in size.
1736 *
1737 * PARAMETERS:
1738 * bmp - pointer to bmap descriptor
1739 * level - starting dmap control page level.
1740 * l2nb - log2 number of contiguous free blocks desired.
1741 * *blkno - on entry, starting block number for conducting the search.
1742 * on successful return, the first block within a dmap page
1743 * that contains or starts a range of contiguous free blocks.
1744 *
1745 * RETURN VALUES:
1746 * 0 - success
1747 * -ENOSPC - insufficient disk resources
1748 * -EIO - i/o error
1749 *
1750 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1751 */
1752static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno)
1753{
1754 int rc, leafidx, lev;
1755 s64 b, lblkno;
1756 struct dmapctl *dcp;
1757 int budmin;
1758 struct metapage *mp;
1759
1760 /* starting at the specified dmap control page level and block
1761 * number, search down the dmap control levels for the starting
1762 * block number of a dmap page that contains or starts off
1763 * sufficient free blocks.
1764 */
1765 for (lev = level, b = *blkno; lev >= 0; lev--) {
1766 /* get the buffer of the dmap control page for the block
1767 * number and level (i.e. L0, L1, L2).
1768 */
1769 lblkno = BLKTOCTL(b, bmp->db_l2nbperpage, lev);
1770 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1771 if (mp == NULL)
1772 return -EIO;
1773 dcp = (struct dmapctl *) mp->data;
1774 budmin = dcp->budmin;
1775
1776 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1777 jfs_error(bmp->db_ipbmap->i_sb,
1778 "Corrupt dmapctl page\n");
1779 release_metapage(mp);
1780 return -EIO;
1781 }
1782
1783 /* search the tree within the dmap control page for
1784 * sufficient free space. if sufficient free space is found,
1785 * dbFindLeaf() returns the index of the leaf at which
1786 * free space was found.
1787 */
1788 rc = dbFindLeaf((dmtree_t *) dcp, l2nb, &leafidx, true);
1789
1790 /* release the buffer.
1791 */
1792 release_metapage(mp);
1793
1794 /* space found ?
1795 */
1796 if (rc) {
1797 if (lev != level) {
1798 jfs_error(bmp->db_ipbmap->i_sb,
1799 "dmap inconsistent\n");
1800 return -EIO;
1801 }
1802 return -ENOSPC;
1803 }
1804
1805 /* adjust the block number to reflect the location within
1806 * the dmap control page (i.e. the leaf) at which free
1807 * space was found.
1808 */
1809 b += (((s64) leafidx) << budmin);
1810
1811 /* we stop the search at this dmap control page level if
1812 * the number of blocks required is greater than or equal
1813 * to the maximum number of blocks described at the next
1814 * (lower) level.
1815 */
1816 if (l2nb >= budmin)
1817 break;
1818 }
1819
1820 *blkno = b;
1821 return (0);
1822}
1823
1824
1825/*
1826 * NAME: dbAllocCtl()
1827 *
1828 * FUNCTION: attempt to allocate a specified number of contiguous
1829 * blocks starting within a specific dmap.
1830 *
1831 * this routine is called by higher level routines that search
1832 * the dmap control pages above the actual dmaps for contiguous
1833 * free space. the result of successful searches by these
1834 * routines are the starting block numbers within dmaps, with
1835 * the dmaps themselves containing the desired contiguous free
1836 * space or starting a contiguous free space of desired size
1837 * that is made up of the blocks of one or more dmaps. these
1838 * calls should not fail due to insufficent resources.
1839 *
1840 * this routine is called in some cases where it is not known
1841 * whether it will fail due to insufficient resources. more
1842 * specifically, this occurs when allocating from an allocation
1843 * group whose size is equal to the number of blocks per dmap.
1844 * in this case, the dmap control pages are not examined prior
1845 * to calling this routine (to save pathlength) and the call
1846 * might fail.
1847 *
1848 * for a request size that fits within a dmap, this routine relies
1849 * upon the dmap's dmtree to find the requested contiguous free
1850 * space. for request sizes that are larger than a dmap, the
1851 * requested free space will start at the first block of the
1852 * first dmap (i.e. blkno).
1853 *
1854 * PARAMETERS:
1855 * bmp - pointer to bmap descriptor
1856 * nblocks - actual number of contiguous free blocks to allocate.
1857 * l2nb - log2 number of contiguous free blocks to allocate.
1858 * blkno - starting block number of the dmap to start the allocation
1859 * from.
1860 * results - on successful return, set to the starting block number
1861 * of the newly allocated range.
1862 *
1863 * RETURN VALUES:
1864 * 0 - success
1865 * -ENOSPC - insufficient disk resources
1866 * -EIO - i/o error
1867 *
1868 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1869 */
1870static int
1871dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, s64 * results)
1872{
1873 int rc, nb;
1874 s64 b, lblkno, n;
1875 struct metapage *mp;
1876 struct dmap *dp;
1877
1878 /* check if the allocation request is confined to a single dmap.
1879 */
1880 if (l2nb <= L2BPERDMAP) {
1881 /* get the buffer for the dmap.
1882 */
1883 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
1884 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1885 if (mp == NULL)
1886 return -EIO;
1887 dp = (struct dmap *) mp->data;
1888
1889 if (dp->tree.budmin < 0)
1890 return -EIO;
1891
1892 /* try to allocate the blocks.
1893 */
1894 rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results);
1895 if (rc == 0)
1896 mark_metapage_dirty(mp);
1897
1898 release_metapage(mp);
1899
1900 return (rc);
1901 }
1902
1903 /* allocation request involving multiple dmaps. it must start on
1904 * a dmap boundary.
1905 */
1906 assert((blkno & (BPERDMAP - 1)) == 0);
1907
1908 /* allocate the blocks dmap by dmap.
1909 */
1910 for (n = nblocks, b = blkno; n > 0; n -= nb, b += nb) {
1911 /* get the buffer for the dmap.
1912 */
1913 lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1914 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1915 if (mp == NULL) {
1916 rc = -EIO;
1917 goto backout;
1918 }
1919 dp = (struct dmap *) mp->data;
1920
1921 /* the dmap better be all free.
1922 */
1923 if (dp->tree.stree[ROOT] != L2BPERDMAP) {
1924 release_metapage(mp);
1925 jfs_error(bmp->db_ipbmap->i_sb,
1926 "the dmap is not all free\n");
1927 rc = -EIO;
1928 goto backout;
1929 }
1930
1931 /* determine how many blocks to allocate from this dmap.
1932 */
1933 nb = min_t(s64, n, BPERDMAP);
1934
1935 /* allocate the blocks from the dmap.
1936 */
1937 if ((rc = dbAllocDmap(bmp, dp, b, nb))) {
1938 release_metapage(mp);
1939 goto backout;
1940 }
1941
1942 /* write the buffer.
1943 */
1944 write_metapage(mp);
1945 }
1946
1947 /* set the results (starting block number) and return.
1948 */
1949 *results = blkno;
1950 return (0);
1951
1952 /* something failed in handling an allocation request involving
1953 * multiple dmaps. we'll try to clean up by backing out any
1954 * allocation that has already happened for this request. if
1955 * we fail in backing out the allocation, we'll mark the file
1956 * system to indicate that blocks have been leaked.
1957 */
1958 backout:
1959
1960 /* try to backout the allocations dmap by dmap.
1961 */
1962 for (n = nblocks - n, b = blkno; n > 0;
1963 n -= BPERDMAP, b += BPERDMAP) {
1964 /* get the buffer for this dmap.
1965 */
1966 lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1967 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1968 if (mp == NULL) {
1969 /* could not back out. mark the file system
1970 * to indicate that we have leaked blocks.
1971 */
1972 jfs_error(bmp->db_ipbmap->i_sb,
1973 "I/O Error: Block Leakage\n");
1974 continue;
1975 }
1976 dp = (struct dmap *) mp->data;
1977
1978 /* free the blocks is this dmap.
1979 */
1980 if (dbFreeDmap(bmp, dp, b, BPERDMAP)) {
1981 /* could not back out. mark the file system
1982 * to indicate that we have leaked blocks.
1983 */
1984 release_metapage(mp);
1985 jfs_error(bmp->db_ipbmap->i_sb, "Block Leakage\n");
1986 continue;
1987 }
1988
1989 /* write the buffer.
1990 */
1991 write_metapage(mp);
1992 }
1993
1994 return (rc);
1995}
1996
1997
1998/*
1999 * NAME: dbAllocDmapLev()
2000 *
2001 * FUNCTION: attempt to allocate a specified number of contiguous blocks
2002 * from a specified dmap.
2003 *
2004 * this routine checks if the contiguous blocks are available.
2005 * if so, nblocks of blocks are allocated; otherwise, ENOSPC is
2006 * returned.
2007 *
2008 * PARAMETERS:
2009 * mp - pointer to bmap descriptor
2010 * dp - pointer to dmap to attempt to allocate blocks from.
2011 * l2nb - log2 number of contiguous block desired.
2012 * nblocks - actual number of contiguous block desired.
2013 * results - on successful return, set to the starting block number
2014 * of the newly allocated range.
2015 *
2016 * RETURN VALUES:
2017 * 0 - success
2018 * -ENOSPC - insufficient disk resources
2019 * -EIO - i/o error
2020 *
2021 * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or
2022 * IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit;
2023 */
2024static int
2025dbAllocDmapLev(struct bmap * bmp,
2026 struct dmap * dp, int nblocks, int l2nb, s64 * results)
2027{
2028 s64 blkno;
2029 int leafidx, rc;
2030
2031 /* can't be more than a dmaps worth of blocks */
2032 assert(l2nb <= L2BPERDMAP);
2033
2034 /* search the tree within the dmap page for sufficient
2035 * free space. if sufficient free space is found, dbFindLeaf()
2036 * returns the index of the leaf at which free space was found.
2037 */
2038 if (dbFindLeaf((dmtree_t *) &dp->tree, l2nb, &leafidx, false))
2039 return -ENOSPC;
2040
2041 if (leafidx < 0)
2042 return -EIO;
2043
2044 /* determine the block number within the file system corresponding
2045 * to the leaf at which free space was found.
2046 */
2047 blkno = le64_to_cpu(dp->start) + (leafidx << L2DBWORD);
2048
2049 /* if not all bits of the dmap word are free, get the starting
2050 * bit number within the dmap word of the required string of free
2051 * bits and adjust the block number with this value.
2052 */
2053 if (dp->tree.stree[leafidx + LEAFIND] < BUDMIN)
2054 blkno += dbFindBits(le32_to_cpu(dp->wmap[leafidx]), l2nb);
2055
2056 /* allocate the blocks */
2057 if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
2058 *results = blkno;
2059
2060 return (rc);
2061}
2062
2063
2064/*
2065 * NAME: dbAllocDmap()
2066 *
2067 * FUNCTION: adjust the disk allocation map to reflect the allocation
2068 * of a specified block range within a dmap.
2069 *
2070 * this routine allocates the specified blocks from the dmap
2071 * through a call to dbAllocBits(). if the allocation of the
2072 * block range causes the maximum string of free blocks within
2073 * the dmap to change (i.e. the value of the root of the dmap's
2074 * dmtree), this routine will cause this change to be reflected
2075 * up through the appropriate levels of the dmap control pages
2076 * by a call to dbAdjCtl() for the L0 dmap control page that
2077 * covers this dmap.
2078 *
2079 * PARAMETERS:
2080 * bmp - pointer to bmap descriptor
2081 * dp - pointer to dmap to allocate the block range from.
2082 * blkno - starting block number of the block to be allocated.
2083 * nblocks - number of blocks to be allocated.
2084 *
2085 * RETURN VALUES:
2086 * 0 - success
2087 * -EIO - i/o error
2088 *
2089 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2090 */
2091static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2092 int nblocks)
2093{
2094 s8 oldroot;
2095 int rc;
2096
2097 /* save the current value of the root (i.e. maximum free string)
2098 * of the dmap tree.
2099 */
2100 oldroot = dp->tree.stree[ROOT];
2101
2102 /* allocate the specified (blocks) bits */
2103 dbAllocBits(bmp, dp, blkno, nblocks);
2104
2105 /* if the root has not changed, done. */
2106 if (dp->tree.stree[ROOT] == oldroot)
2107 return (0);
2108
2109 /* root changed. bubble the change up to the dmap control pages.
2110 * if the adjustment of the upper level control pages fails,
2111 * backout the bit allocation (thus making everything consistent).
2112 */
2113 if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 1, 0)))
2114 dbFreeBits(bmp, dp, blkno, nblocks);
2115
2116 return (rc);
2117}
2118
2119
2120/*
2121 * NAME: dbFreeDmap()
2122 *
2123 * FUNCTION: adjust the disk allocation map to reflect the allocation
2124 * of a specified block range within a dmap.
2125 *
2126 * this routine frees the specified blocks from the dmap through
2127 * a call to dbFreeBits(). if the deallocation of the block range
2128 * causes the maximum string of free blocks within the dmap to
2129 * change (i.e. the value of the root of the dmap's dmtree), this
2130 * routine will cause this change to be reflected up through the
2131 * appropriate levels of the dmap control pages by a call to
2132 * dbAdjCtl() for the L0 dmap control page that covers this dmap.
2133 *
2134 * PARAMETERS:
2135 * bmp - pointer to bmap descriptor
2136 * dp - pointer to dmap to free the block range from.
2137 * blkno - starting block number of the block to be freed.
2138 * nblocks - number of blocks to be freed.
2139 *
2140 * RETURN VALUES:
2141 * 0 - success
2142 * -EIO - i/o error
2143 *
2144 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2145 */
2146static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2147 int nblocks)
2148{
2149 s8 oldroot;
2150 int rc = 0, word;
2151
2152 /* save the current value of the root (i.e. maximum free string)
2153 * of the dmap tree.
2154 */
2155 oldroot = dp->tree.stree[ROOT];
2156
2157 /* free the specified (blocks) bits */
2158 rc = dbFreeBits(bmp, dp, blkno, nblocks);
2159
2160 /* if error or the root has not changed, done. */
2161 if (rc || (dp->tree.stree[ROOT] == oldroot))
2162 return (rc);
2163
2164 /* root changed. bubble the change up to the dmap control pages.
2165 * if the adjustment of the upper level control pages fails,
2166 * backout the deallocation.
2167 */
2168 if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 0, 0))) {
2169 word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
2170
2171 /* as part of backing out the deallocation, we will have
2172 * to back split the dmap tree if the deallocation caused
2173 * the freed blocks to become part of a larger binary buddy
2174 * system.
2175 */
2176 if (dp->tree.stree[word] == NOFREE)
2177 dbBackSplit((dmtree_t *)&dp->tree, word, false);
2178
2179 dbAllocBits(bmp, dp, blkno, nblocks);
2180 }
2181
2182 return (rc);
2183}
2184
2185
2186/*
2187 * NAME: dbAllocBits()
2188 *
2189 * FUNCTION: allocate a specified block range from a dmap.
2190 *
2191 * this routine updates the dmap to reflect the working
2192 * state allocation of the specified block range. it directly
2193 * updates the bits of the working map and causes the adjustment
2194 * of the binary buddy system described by the dmap's dmtree
2195 * leaves to reflect the bits allocated. it also causes the
2196 * dmap's dmtree, as a whole, to reflect the allocated range.
2197 *
2198 * PARAMETERS:
2199 * bmp - pointer to bmap descriptor
2200 * dp - pointer to dmap to allocate bits from.
2201 * blkno - starting block number of the bits to be allocated.
2202 * nblocks - number of bits to be allocated.
2203 *
2204 * RETURN VALUES: none
2205 *
2206 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2207 */
2208static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2209 int nblocks)
2210{
2211 int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2212 dmtree_t *tp = (dmtree_t *) & dp->tree;
2213 int size;
2214 s8 *leaf;
2215
2216 /* pick up a pointer to the leaves of the dmap tree */
2217 leaf = dp->tree.stree + LEAFIND;
2218
2219 /* determine the bit number and word within the dmap of the
2220 * starting block.
2221 */
2222 dbitno = blkno & (BPERDMAP - 1);
2223 word = dbitno >> L2DBWORD;
2224
2225 /* block range better be within the dmap */
2226 assert(dbitno + nblocks <= BPERDMAP);
2227
2228 /* allocate the bits of the dmap's words corresponding to the block
2229 * range. not all bits of the first and last words may be contained
2230 * within the block range. if this is the case, we'll work against
2231 * those words (i.e. partial first and/or last) on an individual basis
2232 * (a single pass), allocating the bits of interest by hand and
2233 * updating the leaf corresponding to the dmap word. a single pass
2234 * will be used for all dmap words fully contained within the
2235 * specified range. within this pass, the bits of all fully contained
2236 * dmap words will be marked as free in a single shot and the leaves
2237 * will be updated. a single leaf may describe the free space of
2238 * multiple dmap words, so we may update only a subset of the actual
2239 * leaves corresponding to the dmap words of the block range.
2240 */
2241 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2242 /* determine the bit number within the word and
2243 * the number of bits within the word.
2244 */
2245 wbitno = dbitno & (DBWORD - 1);
2246 nb = min(rembits, DBWORD - wbitno);
2247
2248 /* check if only part of a word is to be allocated.
2249 */
2250 if (nb < DBWORD) {
2251 /* allocate (set to 1) the appropriate bits within
2252 * this dmap word.
2253 */
2254 dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
2255 >> wbitno);
2256
2257 /* update the leaf for this dmap word. in addition
2258 * to setting the leaf value to the binary buddy max
2259 * of the updated dmap word, dbSplit() will split
2260 * the binary system of the leaves if need be.
2261 */
2262 dbSplit(tp, word, BUDMIN,
2263 dbMaxBud((u8 *)&dp->wmap[word]), false);
2264
2265 word += 1;
2266 } else {
2267 /* one or more dmap words are fully contained
2268 * within the block range. determine how many
2269 * words and allocate (set to 1) the bits of these
2270 * words.
2271 */
2272 nwords = rembits >> L2DBWORD;
2273 memset(&dp->wmap[word], (int) ONES, nwords * 4);
2274
2275 /* determine how many bits.
2276 */
2277 nb = nwords << L2DBWORD;
2278
2279 /* now update the appropriate leaves to reflect
2280 * the allocated words.
2281 */
2282 for (; nwords > 0; nwords -= nw) {
2283 if (leaf[word] < BUDMIN) {
2284 jfs_error(bmp->db_ipbmap->i_sb,
2285 "leaf page corrupt\n");
2286 break;
2287 }
2288
2289 /* determine what the leaf value should be
2290 * updated to as the minimum of the l2 number
2291 * of bits being allocated and the l2 number
2292 * of bits currently described by this leaf.
2293 */
2294 size = min_t(int, leaf[word],
2295 NLSTOL2BSZ(nwords));
2296
2297 /* update the leaf to reflect the allocation.
2298 * in addition to setting the leaf value to
2299 * NOFREE, dbSplit() will split the binary
2300 * system of the leaves to reflect the current
2301 * allocation (size).
2302 */
2303 dbSplit(tp, word, size, NOFREE, false);
2304
2305 /* get the number of dmap words handled */
2306 nw = BUDSIZE(size, BUDMIN);
2307 word += nw;
2308 }
2309 }
2310 }
2311
2312 /* update the free count for this dmap */
2313 le32_add_cpu(&dp->nfree, -nblocks);
2314
2315 BMAP_LOCK(bmp);
2316
2317 /* if this allocation group is completely free,
2318 * update the maximum allocation group number if this allocation
2319 * group is the new max.
2320 */
2321 agno = blkno >> bmp->db_agl2size;
2322 if (agno > bmp->db_maxag)
2323 bmp->db_maxag = agno;
2324
2325 /* update the free count for the allocation group and map */
2326 bmp->db_agfree[agno] -= nblocks;
2327 bmp->db_nfree -= nblocks;
2328
2329 BMAP_UNLOCK(bmp);
2330}
2331
2332
2333/*
2334 * NAME: dbFreeBits()
2335 *
2336 * FUNCTION: free a specified block range from a dmap.
2337 *
2338 * this routine updates the dmap to reflect the working
2339 * state allocation of the specified block range. it directly
2340 * updates the bits of the working map and causes the adjustment
2341 * of the binary buddy system described by the dmap's dmtree
2342 * leaves to reflect the bits freed. it also causes the dmap's
2343 * dmtree, as a whole, to reflect the deallocated range.
2344 *
2345 * PARAMETERS:
2346 * bmp - pointer to bmap descriptor
2347 * dp - pointer to dmap to free bits from.
2348 * blkno - starting block number of the bits to be freed.
2349 * nblocks - number of bits to be freed.
2350 *
2351 * RETURN VALUES: 0 for success
2352 *
2353 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2354 */
2355static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2356 int nblocks)
2357{
2358 int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2359 dmtree_t *tp = (dmtree_t *) & dp->tree;
2360 int rc = 0;
2361 int size;
2362
2363 /* determine the bit number and word within the dmap of the
2364 * starting block.
2365 */
2366 dbitno = blkno & (BPERDMAP - 1);
2367 word = dbitno >> L2DBWORD;
2368
2369 /* block range better be within the dmap.
2370 */
2371 assert(dbitno + nblocks <= BPERDMAP);
2372
2373 /* free the bits of the dmaps words corresponding to the block range.
2374 * not all bits of the first and last words may be contained within
2375 * the block range. if this is the case, we'll work against those
2376 * words (i.e. partial first and/or last) on an individual basis
2377 * (a single pass), freeing the bits of interest by hand and updating
2378 * the leaf corresponding to the dmap word. a single pass will be used
2379 * for all dmap words fully contained within the specified range.
2380 * within this pass, the bits of all fully contained dmap words will
2381 * be marked as free in a single shot and the leaves will be updated. a
2382 * single leaf may describe the free space of multiple dmap words,
2383 * so we may update only a subset of the actual leaves corresponding
2384 * to the dmap words of the block range.
2385 *
2386 * dbJoin() is used to update leaf values and will join the binary
2387 * buddy system of the leaves if the new leaf values indicate this
2388 * should be done.
2389 */
2390 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2391 /* determine the bit number within the word and
2392 * the number of bits within the word.
2393 */
2394 wbitno = dbitno & (DBWORD - 1);
2395 nb = min(rembits, DBWORD - wbitno);
2396
2397 /* check if only part of a word is to be freed.
2398 */
2399 if (nb < DBWORD) {
2400 /* free (zero) the appropriate bits within this
2401 * dmap word.
2402 */
2403 dp->wmap[word] &=
2404 cpu_to_le32(~(ONES << (DBWORD - nb)
2405 >> wbitno));
2406
2407 /* update the leaf for this dmap word.
2408 */
2409 rc = dbJoin(tp, word,
2410 dbMaxBud((u8 *)&dp->wmap[word]), false);
2411 if (rc)
2412 return rc;
2413
2414 word += 1;
2415 } else {
2416 /* one or more dmap words are fully contained
2417 * within the block range. determine how many
2418 * words and free (zero) the bits of these words.
2419 */
2420 nwords = rembits >> L2DBWORD;
2421 memset(&dp->wmap[word], 0, nwords * 4);
2422
2423 /* determine how many bits.
2424 */
2425 nb = nwords << L2DBWORD;
2426
2427 /* now update the appropriate leaves to reflect
2428 * the freed words.
2429 */
2430 for (; nwords > 0; nwords -= nw) {
2431 /* determine what the leaf value should be
2432 * updated to as the minimum of the l2 number
2433 * of bits being freed and the l2 (max) number
2434 * of bits that can be described by this leaf.
2435 */
2436 size =
2437 min(LITOL2BSZ
2438 (word, L2LPERDMAP, BUDMIN),
2439 NLSTOL2BSZ(nwords));
2440
2441 /* update the leaf.
2442 */
2443 rc = dbJoin(tp, word, size, false);
2444 if (rc)
2445 return rc;
2446
2447 /* get the number of dmap words handled.
2448 */
2449 nw = BUDSIZE(size, BUDMIN);
2450 word += nw;
2451 }
2452 }
2453 }
2454
2455 /* update the free count for this dmap.
2456 */
2457 le32_add_cpu(&dp->nfree, nblocks);
2458
2459 BMAP_LOCK(bmp);
2460
2461 /* update the free count for the allocation group and
2462 * map.
2463 */
2464 agno = blkno >> bmp->db_agl2size;
2465 bmp->db_nfree += nblocks;
2466 bmp->db_agfree[agno] += nblocks;
2467
2468 /* check if this allocation group is not completely free and
2469 * if it is currently the maximum (rightmost) allocation group.
2470 * if so, establish the new maximum allocation group number by
2471 * searching left for the first allocation group with allocation.
2472 */
2473 if ((bmp->db_agfree[agno] == bmp->db_agsize && agno == bmp->db_maxag) ||
2474 (agno == bmp->db_numag - 1 &&
2475 bmp->db_agfree[agno] == (bmp-> db_mapsize & (BPERDMAP - 1)))) {
2476 while (bmp->db_maxag > 0) {
2477 bmp->db_maxag -= 1;
2478 if (bmp->db_agfree[bmp->db_maxag] !=
2479 bmp->db_agsize)
2480 break;
2481 }
2482
2483 /* re-establish the allocation group preference if the
2484 * current preference is right of the maximum allocation
2485 * group.
2486 */
2487 if (bmp->db_agpref > bmp->db_maxag)
2488 bmp->db_agpref = bmp->db_maxag;
2489 }
2490
2491 BMAP_UNLOCK(bmp);
2492
2493 return 0;
2494}
2495
2496
2497/*
2498 * NAME: dbAdjCtl()
2499 *
2500 * FUNCTION: adjust a dmap control page at a specified level to reflect
2501 * the change in a lower level dmap or dmap control page's
2502 * maximum string of free blocks (i.e. a change in the root
2503 * of the lower level object's dmtree) due to the allocation
2504 * or deallocation of a range of blocks with a single dmap.
2505 *
2506 * on entry, this routine is provided with the new value of
2507 * the lower level dmap or dmap control page root and the
2508 * starting block number of the block range whose allocation
2509 * or deallocation resulted in the root change. this range
2510 * is respresented by a single leaf of the current dmapctl
2511 * and the leaf will be updated with this value, possibly
2512 * causing a binary buddy system within the leaves to be
2513 * split or joined. the update may also cause the dmapctl's
2514 * dmtree to be updated.
2515 *
2516 * if the adjustment of the dmap control page, itself, causes its
2517 * root to change, this change will be bubbled up to the next dmap
2518 * control level by a recursive call to this routine, specifying
2519 * the new root value and the next dmap control page level to
2520 * be adjusted.
2521 * PARAMETERS:
2522 * bmp - pointer to bmap descriptor
2523 * blkno - the first block of a block range within a dmap. it is
2524 * the allocation or deallocation of this block range that
2525 * requires the dmap control page to be adjusted.
2526 * newval - the new value of the lower level dmap or dmap control
2527 * page root.
2528 * alloc - 'true' if adjustment is due to an allocation.
2529 * level - current level of dmap control page (i.e. L0, L1, L2) to
2530 * be adjusted.
2531 *
2532 * RETURN VALUES:
2533 * 0 - success
2534 * -EIO - i/o error
2535 *
2536 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2537 */
2538static int
2539dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, int level)
2540{
2541 struct metapage *mp;
2542 s8 oldroot;
2543 int oldval;
2544 s64 lblkno;
2545 struct dmapctl *dcp;
2546 int rc, leafno, ti;
2547
2548 /* get the buffer for the dmap control page for the specified
2549 * block number and control page level.
2550 */
2551 lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, level);
2552 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
2553 if (mp == NULL)
2554 return -EIO;
2555 dcp = (struct dmapctl *) mp->data;
2556
2557 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
2558 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
2559 release_metapage(mp);
2560 return -EIO;
2561 }
2562
2563 /* determine the leaf number corresponding to the block and
2564 * the index within the dmap control tree.
2565 */
2566 leafno = BLKTOCTLLEAF(blkno, dcp->budmin);
2567 ti = leafno + le32_to_cpu(dcp->leafidx);
2568
2569 /* save the current leaf value and the current root level (i.e.
2570 * maximum l2 free string described by this dmapctl).
2571 */
2572 oldval = dcp->stree[ti];
2573 oldroot = dcp->stree[ROOT];
2574
2575 /* check if this is a control page update for an allocation.
2576 * if so, update the leaf to reflect the new leaf value using
2577 * dbSplit(); otherwise (deallocation), use dbJoin() to update
2578 * the leaf with the new value. in addition to updating the
2579 * leaf, dbSplit() will also split the binary buddy system of
2580 * the leaves, if required, and bubble new values within the
2581 * dmapctl tree, if required. similarly, dbJoin() will join
2582 * the binary buddy system of leaves and bubble new values up
2583 * the dmapctl tree as required by the new leaf value.
2584 */
2585 if (alloc) {
2586 /* check if we are in the middle of a binary buddy
2587 * system. this happens when we are performing the
2588 * first allocation out of an allocation group that
2589 * is part (not the first part) of a larger binary
2590 * buddy system. if we are in the middle, back split
2591 * the system prior to calling dbSplit() which assumes
2592 * that it is at the front of a binary buddy system.
2593 */
2594 if (oldval == NOFREE) {
2595 rc = dbBackSplit((dmtree_t *)dcp, leafno, true);
2596 if (rc)
2597 return rc;
2598 oldval = dcp->stree[ti];
2599 }
2600 dbSplit((dmtree_t *) dcp, leafno, dcp->budmin, newval, true);
2601 } else {
2602 rc = dbJoin((dmtree_t *) dcp, leafno, newval, true);
2603 if (rc)
2604 return rc;
2605 }
2606
2607 /* check if the root of the current dmap control page changed due
2608 * to the update and if the current dmap control page is not at
2609 * the current top level (i.e. L0, L1, L2) of the map. if so (i.e.
2610 * root changed and this is not the top level), call this routine
2611 * again (recursion) for the next higher level of the mapping to
2612 * reflect the change in root for the current dmap control page.
2613 */
2614 if (dcp->stree[ROOT] != oldroot) {
2615 /* are we below the top level of the map. if so,
2616 * bubble the root up to the next higher level.
2617 */
2618 if (level < bmp->db_maxlevel) {
2619 /* bubble up the new root of this dmap control page to
2620 * the next level.
2621 */
2622 if ((rc =
2623 dbAdjCtl(bmp, blkno, dcp->stree[ROOT], alloc,
2624 level + 1))) {
2625 /* something went wrong in bubbling up the new
2626 * root value, so backout the changes to the
2627 * current dmap control page.
2628 */
2629 if (alloc) {
2630 dbJoin((dmtree_t *) dcp, leafno,
2631 oldval, true);
2632 } else {
2633 /* the dbJoin() above might have
2634 * caused a larger binary buddy system
2635 * to form and we may now be in the
2636 * middle of it. if this is the case,
2637 * back split the buddies.
2638 */
2639 if (dcp->stree[ti] == NOFREE)
2640 dbBackSplit((dmtree_t *)
2641 dcp, leafno, true);
2642 dbSplit((dmtree_t *) dcp, leafno,
2643 dcp->budmin, oldval, true);
2644 }
2645
2646 /* release the buffer and return the error.
2647 */
2648 release_metapage(mp);
2649 return (rc);
2650 }
2651 } else {
2652 /* we're at the top level of the map. update
2653 * the bmap control page to reflect the size
2654 * of the maximum free buddy system.
2655 */
2656 assert(level == bmp->db_maxlevel);
2657 if (bmp->db_maxfreebud != oldroot) {
2658 jfs_error(bmp->db_ipbmap->i_sb,
2659 "the maximum free buddy is not the old root\n");
2660 }
2661 bmp->db_maxfreebud = dcp->stree[ROOT];
2662 }
2663 }
2664
2665 /* write the buffer.
2666 */
2667 write_metapage(mp);
2668
2669 return (0);
2670}
2671
2672
2673/*
2674 * NAME: dbSplit()
2675 *
2676 * FUNCTION: update the leaf of a dmtree with a new value, splitting
2677 * the leaf from the binary buddy system of the dmtree's
2678 * leaves, as required.
2679 *
2680 * PARAMETERS:
2681 * tp - pointer to the tree containing the leaf.
2682 * leafno - the number of the leaf to be updated.
2683 * splitsz - the size the binary buddy system starting at the leaf
2684 * must be split to, specified as the log2 number of blocks.
2685 * newval - the new value for the leaf.
2686 *
2687 * RETURN VALUES: none
2688 *
2689 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2690 */
2691static void dbSplit(dmtree_t *tp, int leafno, int splitsz, int newval, bool is_ctl)
2692{
2693 int budsz;
2694 int cursz;
2695 s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2696
2697 /* check if the leaf needs to be split.
2698 */
2699 if (leaf[leafno] > tp->dmt_budmin) {
2700 /* the split occurs by cutting the buddy system in half
2701 * at the specified leaf until we reach the specified
2702 * size. pick up the starting split size (current size
2703 * - 1 in l2) and the corresponding buddy size.
2704 */
2705 cursz = leaf[leafno] - 1;
2706 budsz = BUDSIZE(cursz, tp->dmt_budmin);
2707
2708 /* split until we reach the specified size.
2709 */
2710 while (cursz >= splitsz) {
2711 /* update the buddy's leaf with its new value.
2712 */
2713 dbAdjTree(tp, leafno ^ budsz, cursz, is_ctl);
2714
2715 /* on to the next size and buddy.
2716 */
2717 cursz -= 1;
2718 budsz >>= 1;
2719 }
2720 }
2721
2722 /* adjust the dmap tree to reflect the specified leaf's new
2723 * value.
2724 */
2725 dbAdjTree(tp, leafno, newval, is_ctl);
2726}
2727
2728
2729/*
2730 * NAME: dbBackSplit()
2731 *
2732 * FUNCTION: back split the binary buddy system of dmtree leaves
2733 * that hold a specified leaf until the specified leaf
2734 * starts its own binary buddy system.
2735 *
2736 * the allocators typically perform allocations at the start
2737 * of binary buddy systems and dbSplit() is used to accomplish
2738 * any required splits. in some cases, however, allocation
2739 * may occur in the middle of a binary system and requires a
2740 * back split, with the split proceeding out from the middle of
2741 * the system (less efficient) rather than the start of the
2742 * system (more efficient). the cases in which a back split
2743 * is required are rare and are limited to the first allocation
2744 * within an allocation group which is a part (not first part)
2745 * of a larger binary buddy system and a few exception cases
2746 * in which a previous join operation must be backed out.
2747 *
2748 * PARAMETERS:
2749 * tp - pointer to the tree containing the leaf.
2750 * leafno - the number of the leaf to be updated.
2751 *
2752 * RETURN VALUES: none
2753 *
2754 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2755 */
2756static int dbBackSplit(dmtree_t *tp, int leafno, bool is_ctl)
2757{
2758 int budsz, bud, w, bsz, size;
2759 int cursz;
2760 s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2761
2762 /* leaf should be part (not first part) of a binary
2763 * buddy system.
2764 */
2765 assert(leaf[leafno] == NOFREE);
2766
2767 /* the back split is accomplished by iteratively finding the leaf
2768 * that starts the buddy system that contains the specified leaf and
2769 * splitting that system in two. this iteration continues until
2770 * the specified leaf becomes the start of a buddy system.
2771 *
2772 * determine maximum possible l2 size for the specified leaf.
2773 */
2774 size =
2775 LITOL2BSZ(leafno, le32_to_cpu(tp->dmt_l2nleafs),
2776 tp->dmt_budmin);
2777
2778 /* determine the number of leaves covered by this size. this
2779 * is the buddy size that we will start with as we search for
2780 * the buddy system that contains the specified leaf.
2781 */
2782 budsz = BUDSIZE(size, tp->dmt_budmin);
2783
2784 /* back split.
2785 */
2786 while (leaf[leafno] == NOFREE) {
2787 /* find the leftmost buddy leaf.
2788 */
2789 for (w = leafno, bsz = budsz;; bsz <<= 1,
2790 w = (w < bud) ? w : bud) {
2791 if (bsz >= le32_to_cpu(tp->dmt_nleafs)) {
2792 jfs_err("JFS: block map error in dbBackSplit");
2793 return -EIO;
2794 }
2795
2796 /* determine the buddy.
2797 */
2798 bud = w ^ bsz;
2799
2800 /* check if this buddy is the start of the system.
2801 */
2802 if (leaf[bud] != NOFREE) {
2803 /* split the leaf at the start of the
2804 * system in two.
2805 */
2806 cursz = leaf[bud] - 1;
2807 dbSplit(tp, bud, cursz, cursz, is_ctl);
2808 break;
2809 }
2810 }
2811 }
2812
2813 if (leaf[leafno] != size) {
2814 jfs_err("JFS: wrong leaf value in dbBackSplit");
2815 return -EIO;
2816 }
2817 return 0;
2818}
2819
2820
2821/*
2822 * NAME: dbJoin()
2823 *
2824 * FUNCTION: update the leaf of a dmtree with a new value, joining
2825 * the leaf with other leaves of the dmtree into a multi-leaf
2826 * binary buddy system, as required.
2827 *
2828 * PARAMETERS:
2829 * tp - pointer to the tree containing the leaf.
2830 * leafno - the number of the leaf to be updated.
2831 * newval - the new value for the leaf.
2832 *
2833 * RETURN VALUES: none
2834 */
2835static int dbJoin(dmtree_t *tp, int leafno, int newval, bool is_ctl)
2836{
2837 int budsz, buddy;
2838 s8 *leaf;
2839
2840 /* can the new leaf value require a join with other leaves ?
2841 */
2842 if (newval >= tp->dmt_budmin) {
2843 /* pickup a pointer to the leaves of the tree.
2844 */
2845 leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2846
2847 /* try to join the specified leaf into a large binary
2848 * buddy system. the join proceeds by attempting to join
2849 * the specified leafno with its buddy (leaf) at new value.
2850 * if the join occurs, we attempt to join the left leaf
2851 * of the joined buddies with its buddy at new value + 1.
2852 * we continue to join until we find a buddy that cannot be
2853 * joined (does not have a value equal to the size of the
2854 * last join) or until all leaves have been joined into a
2855 * single system.
2856 *
2857 * get the buddy size (number of words covered) of
2858 * the new value.
2859 */
2860 budsz = BUDSIZE(newval, tp->dmt_budmin);
2861
2862 /* try to join.
2863 */
2864 while (budsz < le32_to_cpu(tp->dmt_nleafs)) {
2865 /* get the buddy leaf.
2866 */
2867 buddy = leafno ^ budsz;
2868
2869 /* if the leaf's new value is greater than its
2870 * buddy's value, we join no more.
2871 */
2872 if (newval > leaf[buddy])
2873 break;
2874
2875 /* It shouldn't be less */
2876 if (newval < leaf[buddy])
2877 return -EIO;
2878
2879 /* check which (leafno or buddy) is the left buddy.
2880 * the left buddy gets to claim the blocks resulting
2881 * from the join while the right gets to claim none.
2882 * the left buddy is also eligible to participate in
2883 * a join at the next higher level while the right
2884 * is not.
2885 *
2886 */
2887 if (leafno < buddy) {
2888 /* leafno is the left buddy.
2889 */
2890 dbAdjTree(tp, buddy, NOFREE, is_ctl);
2891 } else {
2892 /* buddy is the left buddy and becomes
2893 * leafno.
2894 */
2895 dbAdjTree(tp, leafno, NOFREE, is_ctl);
2896 leafno = buddy;
2897 }
2898
2899 /* on to try the next join.
2900 */
2901 newval += 1;
2902 budsz <<= 1;
2903 }
2904 }
2905
2906 /* update the leaf value.
2907 */
2908 dbAdjTree(tp, leafno, newval, is_ctl);
2909
2910 return 0;
2911}
2912
2913
2914/*
2915 * NAME: dbAdjTree()
2916 *
2917 * FUNCTION: update a leaf of a dmtree with a new value, adjusting
2918 * the dmtree, as required, to reflect the new leaf value.
2919 * the combination of any buddies must already be done before
2920 * this is called.
2921 *
2922 * PARAMETERS:
2923 * tp - pointer to the tree to be adjusted.
2924 * leafno - the number of the leaf to be updated.
2925 * newval - the new value for the leaf.
2926 *
2927 * RETURN VALUES: none
2928 */
2929static void dbAdjTree(dmtree_t *tp, int leafno, int newval, bool is_ctl)
2930{
2931 int lp, pp, k;
2932 int max, size;
2933
2934 size = is_ctl ? CTLTREESIZE : TREESIZE;
2935
2936 /* pick up the index of the leaf for this leafno.
2937 */
2938 lp = leafno + le32_to_cpu(tp->dmt_leafidx);
2939
2940 if (WARN_ON_ONCE(lp >= size || lp < 0))
2941 return;
2942
2943 /* is the current value the same as the old value ? if so,
2944 * there is nothing to do.
2945 */
2946 if (tp->dmt_stree[lp] == newval)
2947 return;
2948
2949 /* set the new value.
2950 */
2951 tp->dmt_stree[lp] = newval;
2952
2953 /* bubble the new value up the tree as required.
2954 */
2955 for (k = 0; k < le32_to_cpu(tp->dmt_height); k++) {
2956 if (lp == 0)
2957 break;
2958
2959 /* get the index of the first leaf of the 4 leaf
2960 * group containing the specified leaf (leafno).
2961 */
2962 lp = ((lp - 1) & ~0x03) + 1;
2963
2964 /* get the index of the parent of this 4 leaf group.
2965 */
2966 pp = (lp - 1) >> 2;
2967
2968 /* determine the maximum of the 4 leaves.
2969 */
2970 max = TREEMAX(&tp->dmt_stree[lp]);
2971
2972 /* if the maximum of the 4 is the same as the
2973 * parent's value, we're done.
2974 */
2975 if (tp->dmt_stree[pp] == max)
2976 break;
2977
2978 /* parent gets new value.
2979 */
2980 tp->dmt_stree[pp] = max;
2981
2982 /* parent becomes leaf for next go-round.
2983 */
2984 lp = pp;
2985 }
2986}
2987
2988
2989/*
2990 * NAME: dbFindLeaf()
2991 *
2992 * FUNCTION: search a dmtree_t for sufficient free blocks, returning
2993 * the index of a leaf describing the free blocks if
2994 * sufficient free blocks are found.
2995 *
2996 * the search starts at the top of the dmtree_t tree and
2997 * proceeds down the tree to the leftmost leaf with sufficient
2998 * free space.
2999 *
3000 * PARAMETERS:
3001 * tp - pointer to the tree to be searched.
3002 * l2nb - log2 number of free blocks to search for.
3003 * leafidx - return pointer to be set to the index of the leaf
3004 * describing at least l2nb free blocks if sufficient
3005 * free blocks are found.
3006 * is_ctl - determines if the tree is of type ctl
3007 *
3008 * RETURN VALUES:
3009 * 0 - success
3010 * -ENOSPC - insufficient free blocks.
3011 */
3012static int dbFindLeaf(dmtree_t *tp, int l2nb, int *leafidx, bool is_ctl)
3013{
3014 int ti, n = 0, k, x = 0;
3015 int max_size, max_idx;
3016
3017 max_size = is_ctl ? CTLTREESIZE : TREESIZE;
3018 max_idx = is_ctl ? LPERCTL : LPERDMAP;
3019
3020 /* first check the root of the tree to see if there is
3021 * sufficient free space.
3022 */
3023 if (l2nb > tp->dmt_stree[ROOT])
3024 return -ENOSPC;
3025
3026 /* sufficient free space available. now search down the tree
3027 * starting at the next level for the leftmost leaf that
3028 * describes sufficient free space.
3029 */
3030 for (k = le32_to_cpu(tp->dmt_height), ti = 1;
3031 k > 0; k--, ti = ((ti + n) << 2) + 1) {
3032 /* search the four nodes at this level, starting from
3033 * the left.
3034 */
3035 for (x = ti, n = 0; n < 4; n++) {
3036 /* sufficient free space found. move to the next
3037 * level (or quit if this is the last level).
3038 */
3039 if (x + n > max_size)
3040 return -ENOSPC;
3041 if (l2nb <= tp->dmt_stree[x + n])
3042 break;
3043 }
3044
3045 /* better have found something since the higher
3046 * levels of the tree said it was here.
3047 */
3048 assert(n < 4);
3049 }
3050 if (le32_to_cpu(tp->dmt_leafidx) >= max_idx)
3051 return -ENOSPC;
3052
3053 /* set the return to the leftmost leaf describing sufficient
3054 * free space.
3055 */
3056 *leafidx = x + n - le32_to_cpu(tp->dmt_leafidx);
3057
3058 return (0);
3059}
3060
3061
3062/*
3063 * NAME: dbFindBits()
3064 *
3065 * FUNCTION: find a specified number of binary buddy free bits within a
3066 * dmap bitmap word value.
3067 *
3068 * this routine searches the bitmap value for (1 << l2nb) free
3069 * bits at (1 << l2nb) alignments within the value.
3070 *
3071 * PARAMETERS:
3072 * word - dmap bitmap word value.
3073 * l2nb - number of free bits specified as a log2 number.
3074 *
3075 * RETURN VALUES:
3076 * starting bit number of free bits.
3077 */
3078static int dbFindBits(u32 word, int l2nb)
3079{
3080 int bitno, nb;
3081 u32 mask;
3082
3083 /* get the number of bits.
3084 */
3085 nb = 1 << l2nb;
3086 assert(nb <= DBWORD);
3087
3088 /* complement the word so we can use a mask (i.e. 0s represent
3089 * free bits) and compute the mask.
3090 */
3091 word = ~word;
3092 mask = ONES << (DBWORD - nb);
3093
3094 /* scan the word for nb free bits at nb alignments.
3095 */
3096 for (bitno = 0; mask != 0; bitno += nb, mask = (mask >> nb)) {
3097 if ((mask & word) == mask)
3098 break;
3099 }
3100
3101 ASSERT(bitno < 32);
3102
3103 /* return the bit number.
3104 */
3105 return (bitno);
3106}
3107
3108
3109/*
3110 * NAME: dbMaxBud(u8 *cp)
3111 *
3112 * FUNCTION: determine the largest binary buddy string of free
3113 * bits within 32-bits of the map.
3114 *
3115 * PARAMETERS:
3116 * cp - pointer to the 32-bit value.
3117 *
3118 * RETURN VALUES:
3119 * largest binary buddy of free bits within a dmap word.
3120 */
3121static int dbMaxBud(u8 * cp)
3122{
3123 signed char tmp1, tmp2;
3124
3125 /* check if the wmap word is all free. if so, the
3126 * free buddy size is BUDMIN.
3127 */
3128 if (*((uint *) cp) == 0)
3129 return (BUDMIN);
3130
3131 /* check if the wmap word is half free. if so, the
3132 * free buddy size is BUDMIN-1.
3133 */
3134 if (*((u16 *) cp) == 0 || *((u16 *) cp + 1) == 0)
3135 return (BUDMIN - 1);
3136
3137 /* not all free or half free. determine the free buddy
3138 * size thru table lookup using quarters of the wmap word.
3139 */
3140 tmp1 = max(budtab[cp[2]], budtab[cp[3]]);
3141 tmp2 = max(budtab[cp[0]], budtab[cp[1]]);
3142 return (max(tmp1, tmp2));
3143}
3144
3145
3146/*
3147 * NAME: cnttz(uint word)
3148 *
3149 * FUNCTION: determine the number of trailing zeros within a 32-bit
3150 * value.
3151 *
3152 * PARAMETERS:
3153 * value - 32-bit value to be examined.
3154 *
3155 * RETURN VALUES:
3156 * count of trailing zeros
3157 */
3158static int cnttz(u32 word)
3159{
3160 int n;
3161
3162 for (n = 0; n < 32; n++, word >>= 1) {
3163 if (word & 0x01)
3164 break;
3165 }
3166
3167 return (n);
3168}
3169
3170
3171/*
3172 * NAME: cntlz(u32 value)
3173 *
3174 * FUNCTION: determine the number of leading zeros within a 32-bit
3175 * value.
3176 *
3177 * PARAMETERS:
3178 * value - 32-bit value to be examined.
3179 *
3180 * RETURN VALUES:
3181 * count of leading zeros
3182 */
3183static int cntlz(u32 value)
3184{
3185 int n;
3186
3187 for (n = 0; n < 32; n++, value <<= 1) {
3188 if (value & HIGHORDER)
3189 break;
3190 }
3191 return (n);
3192}
3193
3194
3195/*
3196 * NAME: blkstol2(s64 nb)
3197 *
3198 * FUNCTION: convert a block count to its log2 value. if the block
3199 * count is not a l2 multiple, it is rounded up to the next
3200 * larger l2 multiple.
3201 *
3202 * PARAMETERS:
3203 * nb - number of blocks
3204 *
3205 * RETURN VALUES:
3206 * log2 number of blocks
3207 */
3208static int blkstol2(s64 nb)
3209{
3210 int l2nb;
3211 s64 mask; /* meant to be signed */
3212
3213 mask = (s64) 1 << (64 - 1);
3214
3215 /* count the leading bits.
3216 */
3217 for (l2nb = 0; l2nb < 64; l2nb++, mask >>= 1) {
3218 /* leading bit found.
3219 */
3220 if (nb & mask) {
3221 /* determine the l2 value.
3222 */
3223 l2nb = (64 - 1) - l2nb;
3224
3225 /* check if we need to round up.
3226 */
3227 if (~mask & nb)
3228 l2nb++;
3229
3230 return (l2nb);
3231 }
3232 }
3233 assert(0);
3234 return 0; /* fix compiler warning */
3235}
3236
3237
3238/*
3239 * NAME: dbAllocBottomUp()
3240 *
3241 * FUNCTION: alloc the specified block range from the working block
3242 * allocation map.
3243 *
3244 * the blocks will be alloc from the working map one dmap
3245 * at a time.
3246 *
3247 * PARAMETERS:
3248 * ip - pointer to in-core inode;
3249 * blkno - starting block number to be freed.
3250 * nblocks - number of blocks to be freed.
3251 *
3252 * RETURN VALUES:
3253 * 0 - success
3254 * -EIO - i/o error
3255 */
3256int dbAllocBottomUp(struct inode *ip, s64 blkno, s64 nblocks)
3257{
3258 struct metapage *mp;
3259 struct dmap *dp;
3260 int nb, rc;
3261 s64 lblkno, rem;
3262 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
3263 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
3264
3265 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
3266
3267 /* block to be allocated better be within the mapsize. */
3268 ASSERT(nblocks <= bmp->db_mapsize - blkno);
3269
3270 /*
3271 * allocate the blocks a dmap at a time.
3272 */
3273 mp = NULL;
3274 for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
3275 /* release previous dmap if any */
3276 if (mp) {
3277 write_metapage(mp);
3278 }
3279
3280 /* get the buffer for the current dmap. */
3281 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
3282 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
3283 if (mp == NULL) {
3284 IREAD_UNLOCK(ipbmap);
3285 return -EIO;
3286 }
3287 dp = (struct dmap *) mp->data;
3288
3289 /* determine the number of blocks to be allocated from
3290 * this dmap.
3291 */
3292 nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
3293
3294 /* allocate the blocks. */
3295 if ((rc = dbAllocDmapBU(bmp, dp, blkno, nb))) {
3296 release_metapage(mp);
3297 IREAD_UNLOCK(ipbmap);
3298 return (rc);
3299 }
3300 }
3301
3302 /* write the last buffer. */
3303 write_metapage(mp);
3304
3305 IREAD_UNLOCK(ipbmap);
3306
3307 return (0);
3308}
3309
3310
3311static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
3312 int nblocks)
3313{
3314 int rc;
3315 int dbitno, word, rembits, nb, nwords, wbitno, agno;
3316 s8 oldroot;
3317 struct dmaptree *tp = (struct dmaptree *) & dp->tree;
3318
3319 /* save the current value of the root (i.e. maximum free string)
3320 * of the dmap tree.
3321 */
3322 oldroot = tp->stree[ROOT];
3323
3324 /* determine the bit number and word within the dmap of the
3325 * starting block.
3326 */
3327 dbitno = blkno & (BPERDMAP - 1);
3328 word = dbitno >> L2DBWORD;
3329
3330 /* block range better be within the dmap */
3331 assert(dbitno + nblocks <= BPERDMAP);
3332
3333 /* allocate the bits of the dmap's words corresponding to the block
3334 * range. not all bits of the first and last words may be contained
3335 * within the block range. if this is the case, we'll work against
3336 * those words (i.e. partial first and/or last) on an individual basis
3337 * (a single pass), allocating the bits of interest by hand and
3338 * updating the leaf corresponding to the dmap word. a single pass
3339 * will be used for all dmap words fully contained within the
3340 * specified range. within this pass, the bits of all fully contained
3341 * dmap words will be marked as free in a single shot and the leaves
3342 * will be updated. a single leaf may describe the free space of
3343 * multiple dmap words, so we may update only a subset of the actual
3344 * leaves corresponding to the dmap words of the block range.
3345 */
3346 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
3347 /* determine the bit number within the word and
3348 * the number of bits within the word.
3349 */
3350 wbitno = dbitno & (DBWORD - 1);
3351 nb = min(rembits, DBWORD - wbitno);
3352
3353 /* check if only part of a word is to be allocated.
3354 */
3355 if (nb < DBWORD) {
3356 /* allocate (set to 1) the appropriate bits within
3357 * this dmap word.
3358 */
3359 dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
3360 >> wbitno);
3361
3362 word++;
3363 } else {
3364 /* one or more dmap words are fully contained
3365 * within the block range. determine how many
3366 * words and allocate (set to 1) the bits of these
3367 * words.
3368 */
3369 nwords = rembits >> L2DBWORD;
3370 memset(&dp->wmap[word], (int) ONES, nwords * 4);
3371
3372 /* determine how many bits */
3373 nb = nwords << L2DBWORD;
3374 word += nwords;
3375 }
3376 }
3377
3378 /* update the free count for this dmap */
3379 le32_add_cpu(&dp->nfree, -nblocks);
3380
3381 /* reconstruct summary tree */
3382 dbInitDmapTree(dp);
3383
3384 BMAP_LOCK(bmp);
3385
3386 /* if this allocation group is completely free,
3387 * update the highest active allocation group number
3388 * if this allocation group is the new max.
3389 */
3390 agno = blkno >> bmp->db_agl2size;
3391 if (agno > bmp->db_maxag)
3392 bmp->db_maxag = agno;
3393
3394 /* update the free count for the allocation group and map */
3395 bmp->db_agfree[agno] -= nblocks;
3396 bmp->db_nfree -= nblocks;
3397
3398 BMAP_UNLOCK(bmp);
3399
3400 /* if the root has not changed, done. */
3401 if (tp->stree[ROOT] == oldroot)
3402 return (0);
3403
3404 /* root changed. bubble the change up to the dmap control pages.
3405 * if the adjustment of the upper level control pages fails,
3406 * backout the bit allocation (thus making everything consistent).
3407 */
3408 if ((rc = dbAdjCtl(bmp, blkno, tp->stree[ROOT], 1, 0)))
3409 dbFreeBits(bmp, dp, blkno, nblocks);
3410
3411 return (rc);
3412}
3413
3414
3415/*
3416 * NAME: dbExtendFS()
3417 *
3418 * FUNCTION: extend bmap from blkno for nblocks;
3419 * dbExtendFS() updates bmap ready for dbAllocBottomUp();
3420 *
3421 * L2
3422 * |
3423 * L1---------------------------------L1
3424 * | |
3425 * L0---------L0---------L0 L0---------L0---------L0
3426 * | | | | | |
3427 * d0,...,dn d0,...,dn d0,...,dn d0,...,dn d0,...,dn d0,.,dm;
3428 * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm
3429 *
3430 * <---old---><----------------------------extend----------------------->
3431 */
3432int dbExtendFS(struct inode *ipbmap, s64 blkno, s64 nblocks)
3433{
3434 struct jfs_sb_info *sbi = JFS_SBI(ipbmap->i_sb);
3435 int nbperpage = sbi->nbperpage;
3436 int i, i0 = true, j, j0 = true, k, n;
3437 s64 newsize;
3438 s64 p;
3439 struct metapage *mp, *l2mp, *l1mp = NULL, *l0mp = NULL;
3440 struct dmapctl *l2dcp, *l1dcp, *l0dcp;
3441 struct dmap *dp;
3442 s8 *l0leaf, *l1leaf, *l2leaf;
3443 struct bmap *bmp = sbi->bmap;
3444 int agno, l2agsize, oldl2agsize;
3445 s64 ag_rem;
3446
3447 newsize = blkno + nblocks;
3448
3449 jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld",
3450 (long long) blkno, (long long) nblocks, (long long) newsize);
3451
3452 /*
3453 * initialize bmap control page.
3454 *
3455 * all the data in bmap control page should exclude
3456 * the mkfs hidden dmap page.
3457 */
3458
3459 /* update mapsize */
3460 bmp->db_mapsize = newsize;
3461 bmp->db_maxlevel = BMAPSZTOLEV(bmp->db_mapsize);
3462
3463 /* compute new AG size */
3464 l2agsize = dbGetL2AGSize(newsize);
3465 oldl2agsize = bmp->db_agl2size;
3466
3467 bmp->db_agl2size = l2agsize;
3468 bmp->db_agsize = 1 << l2agsize;
3469
3470 /* compute new number of AG */
3471 agno = bmp->db_numag;
3472 bmp->db_numag = newsize >> l2agsize;
3473 bmp->db_numag += ((u32) newsize % (u32) bmp->db_agsize) ? 1 : 0;
3474
3475 /*
3476 * reconfigure db_agfree[]
3477 * from old AG configuration to new AG configuration;
3478 *
3479 * coalesce contiguous k (newAGSize/oldAGSize) AGs;
3480 * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn;
3481 * note: new AG size = old AG size * (2**x).
3482 */
3483 if (l2agsize == oldl2agsize)
3484 goto extend;
3485 k = 1 << (l2agsize - oldl2agsize);
3486 ag_rem = bmp->db_agfree[0]; /* save agfree[0] */
3487 for (i = 0, n = 0; i < agno; n++) {
3488 bmp->db_agfree[n] = 0; /* init collection point */
3489
3490 /* coalesce contiguous k AGs; */
3491 for (j = 0; j < k && i < agno; j++, i++) {
3492 /* merge AGi to AGn */
3493 bmp->db_agfree[n] += bmp->db_agfree[i];
3494 }
3495 }
3496 bmp->db_agfree[0] += ag_rem; /* restore agfree[0] */
3497
3498 for (; n < MAXAG; n++)
3499 bmp->db_agfree[n] = 0;
3500
3501 /*
3502 * update highest active ag number
3503 */
3504
3505 bmp->db_maxag = bmp->db_maxag / k;
3506
3507 /*
3508 * extend bmap
3509 *
3510 * update bit maps and corresponding level control pages;
3511 * global control page db_nfree, db_agfree[agno], db_maxfreebud;
3512 */
3513 extend:
3514 /* get L2 page */
3515 p = BMAPBLKNO + nbperpage; /* L2 page */
3516 l2mp = read_metapage(ipbmap, p, PSIZE, 0);
3517 if (!l2mp) {
3518 jfs_error(ipbmap->i_sb, "L2 page could not be read\n");
3519 return -EIO;
3520 }
3521 l2dcp = (struct dmapctl *) l2mp->data;
3522
3523 /* compute start L1 */
3524 k = blkno >> L2MAXL1SIZE;
3525 l2leaf = l2dcp->stree + CTLLEAFIND + k;
3526 p = BLKTOL1(blkno, sbi->l2nbperpage); /* L1 page */
3527
3528 /*
3529 * extend each L1 in L2
3530 */
3531 for (; k < LPERCTL; k++, p += nbperpage) {
3532 /* get L1 page */
3533 if (j0) {
3534 /* read in L1 page: (blkno & (MAXL1SIZE - 1)) */
3535 l1mp = read_metapage(ipbmap, p, PSIZE, 0);
3536 if (l1mp == NULL)
3537 goto errout;
3538 l1dcp = (struct dmapctl *) l1mp->data;
3539
3540 /* compute start L0 */
3541 j = (blkno & (MAXL1SIZE - 1)) >> L2MAXL0SIZE;
3542 l1leaf = l1dcp->stree + CTLLEAFIND + j;
3543 p = BLKTOL0(blkno, sbi->l2nbperpage);
3544 j0 = false;
3545 } else {
3546 /* assign/init L1 page */
3547 l1mp = get_metapage(ipbmap, p, PSIZE, 0);
3548 if (l1mp == NULL)
3549 goto errout;
3550
3551 l1dcp = (struct dmapctl *) l1mp->data;
3552
3553 /* compute start L0 */
3554 j = 0;
3555 l1leaf = l1dcp->stree + CTLLEAFIND;
3556 p += nbperpage; /* 1st L0 of L1.k */
3557 }
3558
3559 /*
3560 * extend each L0 in L1
3561 */
3562 for (; j < LPERCTL; j++) {
3563 /* get L0 page */
3564 if (i0) {
3565 /* read in L0 page: (blkno & (MAXL0SIZE - 1)) */
3566
3567 l0mp = read_metapage(ipbmap, p, PSIZE, 0);
3568 if (l0mp == NULL)
3569 goto errout;
3570 l0dcp = (struct dmapctl *) l0mp->data;
3571
3572 /* compute start dmap */
3573 i = (blkno & (MAXL0SIZE - 1)) >>
3574 L2BPERDMAP;
3575 l0leaf = l0dcp->stree + CTLLEAFIND + i;
3576 p = BLKTODMAP(blkno,
3577 sbi->l2nbperpage);
3578 i0 = false;
3579 } else {
3580 /* assign/init L0 page */
3581 l0mp = get_metapage(ipbmap, p, PSIZE, 0);
3582 if (l0mp == NULL)
3583 goto errout;
3584
3585 l0dcp = (struct dmapctl *) l0mp->data;
3586
3587 /* compute start dmap */
3588 i = 0;
3589 l0leaf = l0dcp->stree + CTLLEAFIND;
3590 p += nbperpage; /* 1st dmap of L0.j */
3591 }
3592
3593 /*
3594 * extend each dmap in L0
3595 */
3596 for (; i < LPERCTL; i++) {
3597 /*
3598 * reconstruct the dmap page, and
3599 * initialize corresponding parent L0 leaf
3600 */
3601 if ((n = blkno & (BPERDMAP - 1))) {
3602 /* read in dmap page: */
3603 mp = read_metapage(ipbmap, p,
3604 PSIZE, 0);
3605 if (mp == NULL)
3606 goto errout;
3607 n = min(nblocks, (s64)BPERDMAP - n);
3608 } else {
3609 /* assign/init dmap page */
3610 mp = read_metapage(ipbmap, p,
3611 PSIZE, 0);
3612 if (mp == NULL)
3613 goto errout;
3614
3615 n = min_t(s64, nblocks, BPERDMAP);
3616 }
3617
3618 dp = (struct dmap *) mp->data;
3619 *l0leaf = dbInitDmap(dp, blkno, n);
3620
3621 bmp->db_nfree += n;
3622 agno = le64_to_cpu(dp->start) >> l2agsize;
3623 bmp->db_agfree[agno] += n;
3624
3625 write_metapage(mp);
3626
3627 l0leaf++;
3628 p += nbperpage;
3629
3630 blkno += n;
3631 nblocks -= n;
3632 if (nblocks == 0)
3633 break;
3634 } /* for each dmap in a L0 */
3635
3636 /*
3637 * build current L0 page from its leaves, and
3638 * initialize corresponding parent L1 leaf
3639 */
3640 *l1leaf = dbInitDmapCtl(l0dcp, 0, ++i);
3641 write_metapage(l0mp);
3642 l0mp = NULL;
3643
3644 if (nblocks)
3645 l1leaf++; /* continue for next L0 */
3646 else {
3647 /* more than 1 L0 ? */
3648 if (j > 0)
3649 break; /* build L1 page */
3650 else {
3651 /* summarize in global bmap page */
3652 bmp->db_maxfreebud = *l1leaf;
3653 release_metapage(l1mp);
3654 release_metapage(l2mp);
3655 goto finalize;
3656 }
3657 }
3658 } /* for each L0 in a L1 */
3659
3660 /*
3661 * build current L1 page from its leaves, and
3662 * initialize corresponding parent L2 leaf
3663 */
3664 *l2leaf = dbInitDmapCtl(l1dcp, 1, ++j);
3665 write_metapage(l1mp);
3666 l1mp = NULL;
3667
3668 if (nblocks)
3669 l2leaf++; /* continue for next L1 */
3670 else {
3671 /* more than 1 L1 ? */
3672 if (k > 0)
3673 break; /* build L2 page */
3674 else {
3675 /* summarize in global bmap page */
3676 bmp->db_maxfreebud = *l2leaf;
3677 release_metapage(l2mp);
3678 goto finalize;
3679 }
3680 }
3681 } /* for each L1 in a L2 */
3682
3683 jfs_error(ipbmap->i_sb, "function has not returned as expected\n");
3684errout:
3685 if (l0mp)
3686 release_metapage(l0mp);
3687 if (l1mp)
3688 release_metapage(l1mp);
3689 release_metapage(l2mp);
3690 return -EIO;
3691
3692 /*
3693 * finalize bmap control page
3694 */
3695finalize:
3696
3697 return 0;
3698}
3699
3700
3701/*
3702 * dbFinalizeBmap()
3703 */
3704void dbFinalizeBmap(struct inode *ipbmap)
3705{
3706 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
3707 int actags, inactags, l2nl;
3708 s64 ag_rem, actfree, inactfree, avgfree;
3709 int i, n;
3710
3711 /*
3712 * finalize bmap control page
3713 */
3714//finalize:
3715 /*
3716 * compute db_agpref: preferred ag to allocate from
3717 * (the leftmost ag with average free space in it);
3718 */
3719//agpref:
3720 /* get the number of active ags and inacitve ags */
3721 actags = bmp->db_maxag + 1;
3722 inactags = bmp->db_numag - actags;
3723 ag_rem = bmp->db_mapsize & (bmp->db_agsize - 1); /* ??? */
3724
3725 /* determine how many blocks are in the inactive allocation
3726 * groups. in doing this, we must account for the fact that
3727 * the rightmost group might be a partial group (i.e. file
3728 * system size is not a multiple of the group size).
3729 */
3730 inactfree = (inactags && ag_rem) ?
3731 ((inactags - 1) << bmp->db_agl2size) + ag_rem
3732 : inactags << bmp->db_agl2size;
3733
3734 /* determine how many free blocks are in the active
3735 * allocation groups plus the average number of free blocks
3736 * within the active ags.
3737 */
3738 actfree = bmp->db_nfree - inactfree;
3739 avgfree = (u32) actfree / (u32) actags;
3740
3741 /* if the preferred allocation group has not average free space.
3742 * re-establish the preferred group as the leftmost
3743 * group with average free space.
3744 */
3745 if (bmp->db_agfree[bmp->db_agpref] < avgfree) {
3746 for (bmp->db_agpref = 0; bmp->db_agpref < actags;
3747 bmp->db_agpref++) {
3748 if (bmp->db_agfree[bmp->db_agpref] >= avgfree)
3749 break;
3750 }
3751 if (bmp->db_agpref >= bmp->db_numag) {
3752 jfs_error(ipbmap->i_sb,
3753 "cannot find ag with average freespace\n");
3754 }
3755 }
3756
3757 /*
3758 * compute db_aglevel, db_agheight, db_width, db_agstart:
3759 * an ag is covered in aglevel dmapctl summary tree,
3760 * at agheight level height (from leaf) with agwidth number of nodes
3761 * each, which starts at agstart index node of the smmary tree node
3762 * array;
3763 */
3764 bmp->db_aglevel = BMAPSZTOLEV(bmp->db_agsize);
3765 l2nl =
3766 bmp->db_agl2size - (L2BPERDMAP + bmp->db_aglevel * L2LPERCTL);
3767 bmp->db_agheight = l2nl >> 1;
3768 bmp->db_agwidth = 1 << (l2nl - (bmp->db_agheight << 1));
3769 for (i = 5 - bmp->db_agheight, bmp->db_agstart = 0, n = 1; i > 0;
3770 i--) {
3771 bmp->db_agstart += n;
3772 n <<= 2;
3773 }
3774
3775}
3776
3777
3778/*
3779 * NAME: dbInitDmap()/ujfs_idmap_page()
3780 *
3781 * FUNCTION: initialize working/persistent bitmap of the dmap page
3782 * for the specified number of blocks:
3783 *
3784 * at entry, the bitmaps had been initialized as free (ZEROS);
3785 * The number of blocks will only account for the actually
3786 * existing blocks. Blocks which don't actually exist in
3787 * the aggregate will be marked as allocated (ONES);
3788 *
3789 * PARAMETERS:
3790 * dp - pointer to page of map
3791 * nblocks - number of blocks this page
3792 *
3793 * RETURNS: NONE
3794 */
3795static int dbInitDmap(struct dmap * dp, s64 Blkno, int nblocks)
3796{
3797 int blkno, w, b, r, nw, nb, i;
3798
3799 /* starting block number within the dmap */
3800 blkno = Blkno & (BPERDMAP - 1);
3801
3802 if (blkno == 0) {
3803 dp->nblocks = dp->nfree = cpu_to_le32(nblocks);
3804 dp->start = cpu_to_le64(Blkno);
3805
3806 if (nblocks == BPERDMAP) {
3807 memset(&dp->wmap[0], 0, LPERDMAP * 4);
3808 memset(&dp->pmap[0], 0, LPERDMAP * 4);
3809 goto initTree;
3810 }
3811 } else {
3812 le32_add_cpu(&dp->nblocks, nblocks);
3813 le32_add_cpu(&dp->nfree, nblocks);
3814 }
3815
3816 /* word number containing start block number */
3817 w = blkno >> L2DBWORD;
3818
3819 /*
3820 * free the bits corresponding to the block range (ZEROS):
3821 * note: not all bits of the first and last words may be contained
3822 * within the block range.
3823 */
3824 for (r = nblocks; r > 0; r -= nb, blkno += nb) {
3825 /* number of bits preceding range to be freed in the word */
3826 b = blkno & (DBWORD - 1);
3827 /* number of bits to free in the word */
3828 nb = min(r, DBWORD - b);
3829
3830 /* is partial word to be freed ? */
3831 if (nb < DBWORD) {
3832 /* free (set to 0) from the bitmap word */
3833 dp->wmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3834 >> b));
3835 dp->pmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3836 >> b));
3837
3838 /* skip the word freed */
3839 w++;
3840 } else {
3841 /* free (set to 0) contiguous bitmap words */
3842 nw = r >> L2DBWORD;
3843 memset(&dp->wmap[w], 0, nw * 4);
3844 memset(&dp->pmap[w], 0, nw * 4);
3845
3846 /* skip the words freed */
3847 nb = nw << L2DBWORD;
3848 w += nw;
3849 }
3850 }
3851
3852 /*
3853 * mark bits following the range to be freed (non-existing
3854 * blocks) as allocated (ONES)
3855 */
3856
3857 if (blkno == BPERDMAP)
3858 goto initTree;
3859
3860 /* the first word beyond the end of existing blocks */
3861 w = blkno >> L2DBWORD;
3862
3863 /* does nblocks fall on a 32-bit boundary ? */
3864 b = blkno & (DBWORD - 1);
3865 if (b) {
3866 /* mark a partial word allocated */
3867 dp->wmap[w] = dp->pmap[w] = cpu_to_le32(ONES >> b);
3868 w++;
3869 }
3870
3871 /* set the rest of the words in the page to allocated (ONES) */
3872 for (i = w; i < LPERDMAP; i++)
3873 dp->pmap[i] = dp->wmap[i] = cpu_to_le32(ONES);
3874
3875 /*
3876 * init tree
3877 */
3878 initTree:
3879 return (dbInitDmapTree(dp));
3880}
3881
3882
3883/*
3884 * NAME: dbInitDmapTree()/ujfs_complete_dmap()
3885 *
3886 * FUNCTION: initialize summary tree of the specified dmap:
3887 *
3888 * at entry, bitmap of the dmap has been initialized;
3889 *
3890 * PARAMETERS:
3891 * dp - dmap to complete
3892 * blkno - starting block number for this dmap
3893 * treemax - will be filled in with max free for this dmap
3894 *
3895 * RETURNS: max free string at the root of the tree
3896 */
3897static int dbInitDmapTree(struct dmap * dp)
3898{
3899 struct dmaptree *tp;
3900 s8 *cp;
3901 int i;
3902
3903 /* init fixed info of tree */
3904 tp = &dp->tree;
3905 tp->nleafs = cpu_to_le32(LPERDMAP);
3906 tp->l2nleafs = cpu_to_le32(L2LPERDMAP);
3907 tp->leafidx = cpu_to_le32(LEAFIND);
3908 tp->height = cpu_to_le32(4);
3909 tp->budmin = BUDMIN;
3910
3911 /* init each leaf from corresponding wmap word:
3912 * note: leaf is set to NOFREE(-1) if all blocks of corresponding
3913 * bitmap word are allocated.
3914 */
3915 cp = tp->stree + le32_to_cpu(tp->leafidx);
3916 for (i = 0; i < LPERDMAP; i++)
3917 *cp++ = dbMaxBud((u8 *) & dp->wmap[i]);
3918
3919 /* build the dmap's binary buddy summary tree */
3920 return (dbInitTree(tp));
3921}
3922
3923
3924/*
3925 * NAME: dbInitTree()/ujfs_adjtree()
3926 *
3927 * FUNCTION: initialize binary buddy summary tree of a dmap or dmapctl.
3928 *
3929 * at entry, the leaves of the tree has been initialized
3930 * from corresponding bitmap word or root of summary tree
3931 * of the child control page;
3932 * configure binary buddy system at the leaf level, then
3933 * bubble up the values of the leaf nodes up the tree.
3934 *
3935 * PARAMETERS:
3936 * cp - Pointer to the root of the tree
3937 * l2leaves- Number of leaf nodes as a power of 2
3938 * l2min - Number of blocks that can be covered by a leaf
3939 * as a power of 2
3940 *
3941 * RETURNS: max free string at the root of the tree
3942 */
3943static int dbInitTree(struct dmaptree * dtp)
3944{
3945 int l2max, l2free, bsize, nextb, i;
3946 int child, parent, nparent;
3947 s8 *tp, *cp, *cp1;
3948
3949 tp = dtp->stree;
3950
3951 /* Determine the maximum free string possible for the leaves */
3952 l2max = le32_to_cpu(dtp->l2nleafs) + dtp->budmin;
3953
3954 /*
3955 * configure the leaf levevl into binary buddy system
3956 *
3957 * Try to combine buddies starting with a buddy size of 1
3958 * (i.e. two leaves). At a buddy size of 1 two buddy leaves
3959 * can be combined if both buddies have a maximum free of l2min;
3960 * the combination will result in the left-most buddy leaf having
3961 * a maximum free of l2min+1.
3962 * After processing all buddies for a given size, process buddies
3963 * at the next higher buddy size (i.e. current size * 2) and
3964 * the next maximum free (current free + 1).
3965 * This continues until the maximum possible buddy combination
3966 * yields maximum free.
3967 */
3968 for (l2free = dtp->budmin, bsize = 1; l2free < l2max;
3969 l2free++, bsize = nextb) {
3970 /* get next buddy size == current buddy pair size */
3971 nextb = bsize << 1;
3972
3973 /* scan each adjacent buddy pair at current buddy size */
3974 for (i = 0, cp = tp + le32_to_cpu(dtp->leafidx);
3975 i < le32_to_cpu(dtp->nleafs);
3976 i += nextb, cp += nextb) {
3977 /* coalesce if both adjacent buddies are max free */
3978 if (*cp == l2free && *(cp + bsize) == l2free) {
3979 *cp = l2free + 1; /* left take right */
3980 *(cp + bsize) = -1; /* right give left */
3981 }
3982 }
3983 }
3984
3985 /*
3986 * bubble summary information of leaves up the tree.
3987 *
3988 * Starting at the leaf node level, the four nodes described by
3989 * the higher level parent node are compared for a maximum free and
3990 * this maximum becomes the value of the parent node.
3991 * when all lower level nodes are processed in this fashion then
3992 * move up to the next level (parent becomes a lower level node) and
3993 * continue the process for that level.
3994 */
3995 for (child = le32_to_cpu(dtp->leafidx),
3996 nparent = le32_to_cpu(dtp->nleafs) >> 2;
3997 nparent > 0; nparent >>= 2, child = parent) {
3998 /* get index of 1st node of parent level */
3999 parent = (child - 1) >> 2;
4000
4001 /* set the value of the parent node as the maximum
4002 * of the four nodes of the current level.
4003 */
4004 for (i = 0, cp = tp + child, cp1 = tp + parent;
4005 i < nparent; i++, cp += 4, cp1++)
4006 *cp1 = TREEMAX(cp);
4007 }
4008
4009 return (*tp);
4010}
4011
4012
4013/*
4014 * dbInitDmapCtl()
4015 *
4016 * function: initialize dmapctl page
4017 */
4018static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i)
4019{ /* start leaf index not covered by range */
4020 s8 *cp;
4021
4022 dcp->nleafs = cpu_to_le32(LPERCTL);
4023 dcp->l2nleafs = cpu_to_le32(L2LPERCTL);
4024 dcp->leafidx = cpu_to_le32(CTLLEAFIND);
4025 dcp->height = cpu_to_le32(5);
4026 dcp->budmin = L2BPERDMAP + L2LPERCTL * level;
4027
4028 /*
4029 * initialize the leaves of current level that were not covered
4030 * by the specified input block range (i.e. the leaves have no
4031 * low level dmapctl or dmap).
4032 */
4033 cp = &dcp->stree[CTLLEAFIND + i];
4034 for (; i < LPERCTL; i++)
4035 *cp++ = NOFREE;
4036
4037 /* build the dmap's binary buddy summary tree */
4038 return (dbInitTree((struct dmaptree *) dcp));
4039}
4040
4041
4042/*
4043 * NAME: dbGetL2AGSize()/ujfs_getagl2size()
4044 *
4045 * FUNCTION: Determine log2(allocation group size) from aggregate size
4046 *
4047 * PARAMETERS:
4048 * nblocks - Number of blocks in aggregate
4049 *
4050 * RETURNS: log2(allocation group size) in aggregate blocks
4051 */
4052static int dbGetL2AGSize(s64 nblocks)
4053{
4054 s64 sz;
4055 s64 m;
4056 int l2sz;
4057
4058 if (nblocks < BPERDMAP * MAXAG)
4059 return (L2BPERDMAP);
4060
4061 /* round up aggregate size to power of 2 */
4062 m = ((u64) 1 << (64 - 1));
4063 for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
4064 if (m & nblocks)
4065 break;
4066 }
4067
4068 sz = (s64) 1 << l2sz;
4069 if (sz < nblocks)
4070 l2sz += 1;
4071
4072 /* agsize = roundupSize/max_number_of_ag */
4073 return (l2sz - L2MAXAG);
4074}
4075
4076
4077/*
4078 * NAME: dbMapFileSizeToMapSize()
4079 *
4080 * FUNCTION: compute number of blocks the block allocation map file
4081 * can cover from the map file size;
4082 *
4083 * RETURNS: Number of blocks which can be covered by this block map file;
4084 */
4085
4086/*
4087 * maximum number of map pages at each level including control pages
4088 */
4089#define MAXL0PAGES (1 + LPERCTL)
4090#define MAXL1PAGES (1 + LPERCTL * MAXL0PAGES)
4091#define MAXL2PAGES (1 + LPERCTL * MAXL1PAGES)
4092
4093/*
4094 * convert number of map pages to the zero origin top dmapctl level
4095 */
4096#define BMAPPGTOLEV(npages) \
4097 (((npages) <= 3 + MAXL0PAGES) ? 0 : \
4098 ((npages) <= 2 + MAXL1PAGES) ? 1 : 2)
4099
4100s64 dbMapFileSizeToMapSize(struct inode * ipbmap)
4101{
4102 struct super_block *sb = ipbmap->i_sb;
4103 s64 nblocks;
4104 s64 npages, ndmaps;
4105 int level, i;
4106 int complete, factor;
4107
4108 nblocks = ipbmap->i_size >> JFS_SBI(sb)->l2bsize;
4109 npages = nblocks >> JFS_SBI(sb)->l2nbperpage;
4110 level = BMAPPGTOLEV(npages);
4111
4112 /* At each level, accumulate the number of dmap pages covered by
4113 * the number of full child levels below it;
4114 * repeat for the last incomplete child level.
4115 */
4116 ndmaps = 0;
4117 npages--; /* skip the first global control page */
4118 /* skip higher level control pages above top level covered by map */
4119 npages -= (2 - level);
4120 npages--; /* skip top level's control page */
4121 for (i = level; i >= 0; i--) {
4122 factor =
4123 (i == 2) ? MAXL1PAGES : ((i == 1) ? MAXL0PAGES : 1);
4124 complete = (u32) npages / factor;
4125 ndmaps += complete * ((i == 2) ? LPERCTL * LPERCTL :
4126 ((i == 1) ? LPERCTL : 1));
4127
4128 /* pages in last/incomplete child */
4129 npages = (u32) npages % factor;
4130 /* skip incomplete child's level control page */
4131 npages--;
4132 }
4133
4134 /* convert the number of dmaps into the number of blocks
4135 * which can be covered by the dmaps;
4136 */
4137 nblocks = ndmaps << L2BPERDMAP;
4138
4139 return (nblocks);
4140}