blob: 281f08eaba5b9bf83370ec3c2a558ba4eaa7209e [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11#include <linux/syscalls.h>
12#include <linux/export.h>
13#include <linux/capability.h>
14#include <linux/mnt_namespace.h>
15#include <linux/user_namespace.h>
16#include <linux/namei.h>
17#include <linux/security.h>
18#include <linux/cred.h>
19#include <linux/idr.h>
20#include <linux/init.h> /* init_rootfs */
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/file.h>
24#include <linux/uaccess.h>
25#include <linux/proc_ns.h>
26#include <linux/magic.h>
27#include <linux/memblock.h>
28#include <linux/task_work.h>
29#include <linux/sched/task.h>
30#include <uapi/linux/mount.h>
31#include <linux/fs_context.h>
32#include <linux/shmem_fs.h>
33
34#include "pnode.h"
35#include "internal.h"
36
37/* Maximum number of mounts in a mount namespace */
38unsigned int sysctl_mount_max __read_mostly = 100000;
39
40static unsigned int m_hash_mask __read_mostly;
41static unsigned int m_hash_shift __read_mostly;
42static unsigned int mp_hash_mask __read_mostly;
43static unsigned int mp_hash_shift __read_mostly;
44
45static __initdata unsigned long mhash_entries;
46static int __init set_mhash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mhash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mhash_entries=", set_mhash_entries);
54
55static __initdata unsigned long mphash_entries;
56static int __init set_mphash_entries(char *str)
57{
58 if (!str)
59 return 0;
60 mphash_entries = simple_strtoul(str, &str, 0);
61 return 1;
62}
63__setup("mphash_entries=", set_mphash_entries);
64
65static u64 event;
66static DEFINE_IDA(mnt_id_ida);
67static DEFINE_IDA(mnt_group_ida);
68
69static struct hlist_head *mount_hashtable __read_mostly;
70static struct hlist_head *mountpoint_hashtable __read_mostly;
71static struct kmem_cache *mnt_cache __read_mostly;
72static DECLARE_RWSEM(namespace_sem);
73static HLIST_HEAD(unmounted); /* protected by namespace_sem */
74static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
75
76/* /sys/fs */
77struct kobject *fs_kobj;
78EXPORT_SYMBOL_GPL(fs_kobj);
79
80/*
81 * vfsmount lock may be taken for read to prevent changes to the
82 * vfsmount hash, ie. during mountpoint lookups or walking back
83 * up the tree.
84 *
85 * It should be taken for write in all cases where the vfsmount
86 * tree or hash is modified or when a vfsmount structure is modified.
87 */
88__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
89
90static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
91{
92 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
93 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
94 tmp = tmp + (tmp >> m_hash_shift);
95 return &mount_hashtable[tmp & m_hash_mask];
96}
97
98static inline struct hlist_head *mp_hash(struct dentry *dentry)
99{
100 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
101 tmp = tmp + (tmp >> mp_hash_shift);
102 return &mountpoint_hashtable[tmp & mp_hash_mask];
103}
104
105static int mnt_alloc_id(struct mount *mnt)
106{
107 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
108
109 if (res < 0)
110 return res;
111 mnt->mnt_id = res;
112 return 0;
113}
114
115static void mnt_free_id(struct mount *mnt)
116{
117 ida_free(&mnt_id_ida, mnt->mnt_id);
118}
119
120/*
121 * Allocate a new peer group ID
122 */
123static int mnt_alloc_group_id(struct mount *mnt)
124{
125 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
126
127 if (res < 0)
128 return res;
129 mnt->mnt_group_id = res;
130 return 0;
131}
132
133/*
134 * Release a peer group ID
135 */
136void mnt_release_group_id(struct mount *mnt)
137{
138 ida_free(&mnt_group_ida, mnt->mnt_group_id);
139 mnt->mnt_group_id = 0;
140}
141
142/*
143 * vfsmount lock must be held for read
144 */
145static inline void mnt_add_count(struct mount *mnt, int n)
146{
147#ifdef CONFIG_SMP
148 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
149#else
150 preempt_disable();
151 mnt->mnt_count += n;
152 preempt_enable();
153#endif
154}
155
156/*
157 * vfsmount lock must be held for write
158 */
159int mnt_get_count(struct mount *mnt)
160{
161#ifdef CONFIG_SMP
162 int count = 0;
163 int cpu;
164
165 for_each_possible_cpu(cpu) {
166 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
167 }
168
169 return count;
170#else
171 return mnt->mnt_count;
172#endif
173}
174
175static struct mount *alloc_vfsmnt(const char *name)
176{
177 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
178 if (mnt) {
179 int err;
180
181 err = mnt_alloc_id(mnt);
182 if (err)
183 goto out_free_cache;
184
185 if (name) {
186 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
187 if (!mnt->mnt_devname)
188 goto out_free_id;
189 }
190
191#ifdef CONFIG_SMP
192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
193 if (!mnt->mnt_pcp)
194 goto out_free_devname;
195
196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
197#else
198 mnt->mnt_count = 1;
199 mnt->mnt_writers = 0;
200#endif
201
202 INIT_HLIST_NODE(&mnt->mnt_hash);
203 INIT_LIST_HEAD(&mnt->mnt_child);
204 INIT_LIST_HEAD(&mnt->mnt_mounts);
205 INIT_LIST_HEAD(&mnt->mnt_list);
206 INIT_LIST_HEAD(&mnt->mnt_expire);
207 INIT_LIST_HEAD(&mnt->mnt_share);
208 INIT_LIST_HEAD(&mnt->mnt_slave_list);
209 INIT_LIST_HEAD(&mnt->mnt_slave);
210 INIT_HLIST_NODE(&mnt->mnt_mp_list);
211 INIT_LIST_HEAD(&mnt->mnt_umounting);
212 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
213 }
214 return mnt;
215
216#ifdef CONFIG_SMP
217out_free_devname:
218 kfree_const(mnt->mnt_devname);
219#endif
220out_free_id:
221 mnt_free_id(mnt);
222out_free_cache:
223 kmem_cache_free(mnt_cache, mnt);
224 return NULL;
225}
226
227/*
228 * Most r/o checks on a fs are for operations that take
229 * discrete amounts of time, like a write() or unlink().
230 * We must keep track of when those operations start
231 * (for permission checks) and when they end, so that
232 * we can determine when writes are able to occur to
233 * a filesystem.
234 */
235/*
236 * __mnt_is_readonly: check whether a mount is read-only
237 * @mnt: the mount to check for its write status
238 *
239 * This shouldn't be used directly ouside of the VFS.
240 * It does not guarantee that the filesystem will stay
241 * r/w, just that it is right *now*. This can not and
242 * should not be used in place of IS_RDONLY(inode).
243 * mnt_want/drop_write() will _keep_ the filesystem
244 * r/w.
245 */
246bool __mnt_is_readonly(struct vfsmount *mnt)
247{
248 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
249}
250EXPORT_SYMBOL_GPL(__mnt_is_readonly);
251
252static inline void mnt_inc_writers(struct mount *mnt)
253{
254#ifdef CONFIG_SMP
255 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
256#else
257 mnt->mnt_writers++;
258#endif
259}
260
261static inline void mnt_dec_writers(struct mount *mnt)
262{
263#ifdef CONFIG_SMP
264 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
265#else
266 mnt->mnt_writers--;
267#endif
268}
269
270static unsigned int mnt_get_writers(struct mount *mnt)
271{
272#ifdef CONFIG_SMP
273 unsigned int count = 0;
274 int cpu;
275
276 for_each_possible_cpu(cpu) {
277 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
278 }
279
280 return count;
281#else
282 return mnt->mnt_writers;
283#endif
284}
285
286static int mnt_is_readonly(struct vfsmount *mnt)
287{
288 if (mnt->mnt_sb->s_readonly_remount)
289 return 1;
290 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
291 smp_rmb();
292 return __mnt_is_readonly(mnt);
293}
294
295/*
296 * Most r/o & frozen checks on a fs are for operations that take discrete
297 * amounts of time, like a write() or unlink(). We must keep track of when
298 * those operations start (for permission checks) and when they end, so that we
299 * can determine when writes are able to occur to a filesystem.
300 */
301/**
302 * __mnt_want_write - get write access to a mount without freeze protection
303 * @m: the mount on which to take a write
304 *
305 * This tells the low-level filesystem that a write is about to be performed to
306 * it, and makes sure that writes are allowed (mnt it read-write) before
307 * returning success. This operation does not protect against filesystem being
308 * frozen. When the write operation is finished, __mnt_drop_write() must be
309 * called. This is effectively a refcount.
310 */
311int __mnt_want_write(struct vfsmount *m)
312{
313 struct mount *mnt = real_mount(m);
314 int ret = 0;
315
316 preempt_disable();
317 mnt_inc_writers(mnt);
318 /*
319 * The store to mnt_inc_writers must be visible before we pass
320 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
321 * incremented count after it has set MNT_WRITE_HOLD.
322 */
323 smp_mb();
324 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
325 cpu_relax();
326 /*
327 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
328 * be set to match its requirements. So we must not load that until
329 * MNT_WRITE_HOLD is cleared.
330 */
331 smp_rmb();
332 if (mnt_is_readonly(m)) {
333 mnt_dec_writers(mnt);
334 ret = -EROFS;
335 }
336 preempt_enable();
337
338 return ret;
339}
340
341/**
342 * mnt_want_write - get write access to a mount
343 * @m: the mount on which to take a write
344 *
345 * This tells the low-level filesystem that a write is about to be performed to
346 * it, and makes sure that writes are allowed (mount is read-write, filesystem
347 * is not frozen) before returning success. When the write operation is
348 * finished, mnt_drop_write() must be called. This is effectively a refcount.
349 */
350int mnt_want_write(struct vfsmount *m)
351{
352 int ret;
353
354 sb_start_write(m->mnt_sb);
355 ret = __mnt_want_write(m);
356 if (ret)
357 sb_end_write(m->mnt_sb);
358 return ret;
359}
360EXPORT_SYMBOL_GPL(mnt_want_write);
361
362/**
363 * mnt_clone_write - get write access to a mount
364 * @mnt: the mount on which to take a write
365 *
366 * This is effectively like mnt_want_write, except
367 * it must only be used to take an extra write reference
368 * on a mountpoint that we already know has a write reference
369 * on it. This allows some optimisation.
370 *
371 * After finished, mnt_drop_write must be called as usual to
372 * drop the reference.
373 */
374int mnt_clone_write(struct vfsmount *mnt)
375{
376 /* superblock may be r/o */
377 if (__mnt_is_readonly(mnt))
378 return -EROFS;
379 preempt_disable();
380 mnt_inc_writers(real_mount(mnt));
381 preempt_enable();
382 return 0;
383}
384EXPORT_SYMBOL_GPL(mnt_clone_write);
385
386/**
387 * __mnt_want_write_file - get write access to a file's mount
388 * @file: the file who's mount on which to take a write
389 *
390 * This is like __mnt_want_write, but it takes a file and can
391 * do some optimisations if the file is open for write already
392 */
393int __mnt_want_write_file(struct file *file)
394{
395 if (!(file->f_mode & FMODE_WRITER))
396 return __mnt_want_write(file->f_path.mnt);
397 else
398 return mnt_clone_write(file->f_path.mnt);
399}
400
401/**
402 * mnt_want_write_file - get write access to a file's mount
403 * @file: the file who's mount on which to take a write
404 *
405 * This is like mnt_want_write, but it takes a file and can
406 * do some optimisations if the file is open for write already
407 */
408int mnt_want_write_file(struct file *file)
409{
410 int ret;
411
412 sb_start_write(file_inode(file)->i_sb);
413 ret = __mnt_want_write_file(file);
414 if (ret)
415 sb_end_write(file_inode(file)->i_sb);
416 return ret;
417}
418EXPORT_SYMBOL_GPL(mnt_want_write_file);
419
420/**
421 * __mnt_drop_write - give up write access to a mount
422 * @mnt: the mount on which to give up write access
423 *
424 * Tells the low-level filesystem that we are done
425 * performing writes to it. Must be matched with
426 * __mnt_want_write() call above.
427 */
428void __mnt_drop_write(struct vfsmount *mnt)
429{
430 preempt_disable();
431 mnt_dec_writers(real_mount(mnt));
432 preempt_enable();
433}
434
435/**
436 * mnt_drop_write - give up write access to a mount
437 * @mnt: the mount on which to give up write access
438 *
439 * Tells the low-level filesystem that we are done performing writes to it and
440 * also allows filesystem to be frozen again. Must be matched with
441 * mnt_want_write() call above.
442 */
443void mnt_drop_write(struct vfsmount *mnt)
444{
445 __mnt_drop_write(mnt);
446 sb_end_write(mnt->mnt_sb);
447}
448EXPORT_SYMBOL_GPL(mnt_drop_write);
449
450void __mnt_drop_write_file(struct file *file)
451{
452 __mnt_drop_write(file->f_path.mnt);
453}
454
455void mnt_drop_write_file(struct file *file)
456{
457 __mnt_drop_write_file(file);
458 sb_end_write(file_inode(file)->i_sb);
459}
460EXPORT_SYMBOL(mnt_drop_write_file);
461
462static int mnt_make_readonly(struct mount *mnt)
463{
464 int ret = 0;
465
466 lock_mount_hash();
467 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
468 /*
469 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
470 * should be visible before we do.
471 */
472 smp_mb();
473
474 /*
475 * With writers on hold, if this value is zero, then there are
476 * definitely no active writers (although held writers may subsequently
477 * increment the count, they'll have to wait, and decrement it after
478 * seeing MNT_READONLY).
479 *
480 * It is OK to have counter incremented on one CPU and decremented on
481 * another: the sum will add up correctly. The danger would be when we
482 * sum up each counter, if we read a counter before it is incremented,
483 * but then read another CPU's count which it has been subsequently
484 * decremented from -- we would see more decrements than we should.
485 * MNT_WRITE_HOLD protects against this scenario, because
486 * mnt_want_write first increments count, then smp_mb, then spins on
487 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
488 * we're counting up here.
489 */
490 if (mnt_get_writers(mnt) > 0)
491 ret = -EBUSY;
492 else
493 mnt->mnt.mnt_flags |= MNT_READONLY;
494 /*
495 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
496 * that become unheld will see MNT_READONLY.
497 */
498 smp_wmb();
499 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
500 unlock_mount_hash();
501 return ret;
502}
503
504static int __mnt_unmake_readonly(struct mount *mnt)
505{
506 lock_mount_hash();
507 mnt->mnt.mnt_flags &= ~MNT_READONLY;
508 unlock_mount_hash();
509 return 0;
510}
511
512int sb_prepare_remount_readonly(struct super_block *sb)
513{
514 struct mount *mnt;
515 int err = 0;
516
517 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
518 if (atomic_long_read(&sb->s_remove_count))
519 return -EBUSY;
520
521 lock_mount_hash();
522 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
523 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
524 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
525 smp_mb();
526 if (mnt_get_writers(mnt) > 0) {
527 err = -EBUSY;
528 break;
529 }
530 }
531 }
532 if (!err && atomic_long_read(&sb->s_remove_count))
533 err = -EBUSY;
534
535 if (!err) {
536 sb->s_readonly_remount = 1;
537 smp_wmb();
538 }
539 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
540 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
541 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
542 }
543 unlock_mount_hash();
544
545 return err;
546}
547
548static void free_vfsmnt(struct mount *mnt)
549{
550 kfree_const(mnt->mnt_devname);
551#ifdef CONFIG_SMP
552 free_percpu(mnt->mnt_pcp);
553#endif
554 kmem_cache_free(mnt_cache, mnt);
555}
556
557static void delayed_free_vfsmnt(struct rcu_head *head)
558{
559 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
560}
561
562/* call under rcu_read_lock */
563int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
564{
565 struct mount *mnt;
566 if (read_seqretry(&mount_lock, seq))
567 return 1;
568 if (bastard == NULL)
569 return 0;
570 mnt = real_mount(bastard);
571 mnt_add_count(mnt, 1);
572 smp_mb(); // see mntput_no_expire()
573 if (likely(!read_seqretry(&mount_lock, seq)))
574 return 0;
575 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
576 mnt_add_count(mnt, -1);
577 return 1;
578 }
579 lock_mount_hash();
580 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
581 mnt_add_count(mnt, -1);
582 unlock_mount_hash();
583 return 1;
584 }
585 unlock_mount_hash();
586 /* caller will mntput() */
587 return -1;
588}
589
590/* call under rcu_read_lock */
591bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
592{
593 int res = __legitimize_mnt(bastard, seq);
594 if (likely(!res))
595 return true;
596 if (unlikely(res < 0)) {
597 rcu_read_unlock();
598 mntput(bastard);
599 rcu_read_lock();
600 }
601 return false;
602}
603
604/*
605 * find the first mount at @dentry on vfsmount @mnt.
606 * call under rcu_read_lock()
607 */
608struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
609{
610 struct hlist_head *head = m_hash(mnt, dentry);
611 struct mount *p;
612
613 hlist_for_each_entry_rcu(p, head, mnt_hash)
614 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
615 return p;
616 return NULL;
617}
618
619/*
620 * lookup_mnt - Return the first child mount mounted at path
621 *
622 * "First" means first mounted chronologically. If you create the
623 * following mounts:
624 *
625 * mount /dev/sda1 /mnt
626 * mount /dev/sda2 /mnt
627 * mount /dev/sda3 /mnt
628 *
629 * Then lookup_mnt() on the base /mnt dentry in the root mount will
630 * return successively the root dentry and vfsmount of /dev/sda1, then
631 * /dev/sda2, then /dev/sda3, then NULL.
632 *
633 * lookup_mnt takes a reference to the found vfsmount.
634 */
635struct vfsmount *lookup_mnt(const struct path *path)
636{
637 struct mount *child_mnt;
638 struct vfsmount *m;
639 unsigned seq;
640
641 rcu_read_lock();
642 do {
643 seq = read_seqbegin(&mount_lock);
644 child_mnt = __lookup_mnt(path->mnt, path->dentry);
645 m = child_mnt ? &child_mnt->mnt : NULL;
646 } while (!legitimize_mnt(m, seq));
647 rcu_read_unlock();
648 return m;
649}
650
651/*
652 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
653 * current mount namespace.
654 *
655 * The common case is dentries are not mountpoints at all and that
656 * test is handled inline. For the slow case when we are actually
657 * dealing with a mountpoint of some kind, walk through all of the
658 * mounts in the current mount namespace and test to see if the dentry
659 * is a mountpoint.
660 *
661 * The mount_hashtable is not usable in the context because we
662 * need to identify all mounts that may be in the current mount
663 * namespace not just a mount that happens to have some specified
664 * parent mount.
665 */
666bool __is_local_mountpoint(struct dentry *dentry)
667{
668 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
669 struct mount *mnt;
670 bool is_covered = false;
671
672 if (!d_mountpoint(dentry))
673 goto out;
674
675 down_read(&namespace_sem);
676 list_for_each_entry(mnt, &ns->list, mnt_list) {
677 is_covered = (mnt->mnt_mountpoint == dentry);
678 if (is_covered)
679 break;
680 }
681 up_read(&namespace_sem);
682out:
683 return is_covered;
684}
685
686static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
687{
688 struct hlist_head *chain = mp_hash(dentry);
689 struct mountpoint *mp;
690
691 hlist_for_each_entry(mp, chain, m_hash) {
692 if (mp->m_dentry == dentry) {
693 mp->m_count++;
694 return mp;
695 }
696 }
697 return NULL;
698}
699
700static struct mountpoint *get_mountpoint(struct dentry *dentry)
701{
702 struct mountpoint *mp, *new = NULL;
703 int ret;
704
705 if (d_mountpoint(dentry)) {
706 /* might be worth a WARN_ON() */
707 if (d_unlinked(dentry))
708 return ERR_PTR(-ENOENT);
709mountpoint:
710 read_seqlock_excl(&mount_lock);
711 mp = lookup_mountpoint(dentry);
712 read_sequnlock_excl(&mount_lock);
713 if (mp)
714 goto done;
715 }
716
717 if (!new)
718 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
719 if (!new)
720 return ERR_PTR(-ENOMEM);
721
722
723 /* Exactly one processes may set d_mounted */
724 ret = d_set_mounted(dentry);
725
726 /* Someone else set d_mounted? */
727 if (ret == -EBUSY)
728 goto mountpoint;
729
730 /* The dentry is not available as a mountpoint? */
731 mp = ERR_PTR(ret);
732 if (ret)
733 goto done;
734
735 /* Add the new mountpoint to the hash table */
736 read_seqlock_excl(&mount_lock);
737 new->m_dentry = dget(dentry);
738 new->m_count = 1;
739 hlist_add_head(&new->m_hash, mp_hash(dentry));
740 INIT_HLIST_HEAD(&new->m_list);
741 read_sequnlock_excl(&mount_lock);
742
743 mp = new;
744 new = NULL;
745done:
746 kfree(new);
747 return mp;
748}
749
750/*
751 * vfsmount lock must be held. Additionally, the caller is responsible
752 * for serializing calls for given disposal list.
753 */
754static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
755{
756 if (!--mp->m_count) {
757 struct dentry *dentry = mp->m_dentry;
758 BUG_ON(!hlist_empty(&mp->m_list));
759 spin_lock(&dentry->d_lock);
760 dentry->d_flags &= ~DCACHE_MOUNTED;
761 spin_unlock(&dentry->d_lock);
762 dput_to_list(dentry, list);
763 hlist_del(&mp->m_hash);
764 kfree(mp);
765 }
766}
767
768/* called with namespace_lock and vfsmount lock */
769static void put_mountpoint(struct mountpoint *mp)
770{
771 __put_mountpoint(mp, &ex_mountpoints);
772}
773
774static inline int check_mnt(struct mount *mnt)
775{
776 return mnt->mnt_ns == current->nsproxy->mnt_ns;
777}
778
779/*
780 * vfsmount lock must be held for write
781 */
782static void touch_mnt_namespace(struct mnt_namespace *ns)
783{
784 if (ns) {
785 ns->event = ++event;
786 wake_up_interruptible(&ns->poll);
787 }
788}
789
790/*
791 * vfsmount lock must be held for write
792 */
793static void __touch_mnt_namespace(struct mnt_namespace *ns)
794{
795 if (ns && ns->event != event) {
796 ns->event = event;
797 wake_up_interruptible(&ns->poll);
798 }
799}
800
801/*
802 * vfsmount lock must be held for write
803 */
804static struct mountpoint *unhash_mnt(struct mount *mnt)
805{
806 struct mountpoint *mp;
807 mnt->mnt_parent = mnt;
808 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
809 list_del_init(&mnt->mnt_child);
810 hlist_del_init_rcu(&mnt->mnt_hash);
811 hlist_del_init(&mnt->mnt_mp_list);
812 mp = mnt->mnt_mp;
813 mnt->mnt_mp = NULL;
814 return mp;
815}
816
817/*
818 * vfsmount lock must be held for write
819 */
820static void umount_mnt(struct mount *mnt)
821{
822 put_mountpoint(unhash_mnt(mnt));
823}
824
825/*
826 * vfsmount lock must be held for write
827 */
828void mnt_set_mountpoint(struct mount *mnt,
829 struct mountpoint *mp,
830 struct mount *child_mnt)
831{
832 mp->m_count++;
833 mnt_add_count(mnt, 1); /* essentially, that's mntget */
834 child_mnt->mnt_mountpoint = mp->m_dentry;
835 child_mnt->mnt_parent = mnt;
836 child_mnt->mnt_mp = mp;
837 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
838}
839
840static void __attach_mnt(struct mount *mnt, struct mount *parent)
841{
842 hlist_add_head_rcu(&mnt->mnt_hash,
843 m_hash(&parent->mnt, mnt->mnt_mountpoint));
844 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
845}
846
847/*
848 * vfsmount lock must be held for write
849 */
850static void attach_mnt(struct mount *mnt,
851 struct mount *parent,
852 struct mountpoint *mp)
853{
854 mnt_set_mountpoint(parent, mp, mnt);
855 __attach_mnt(mnt, parent);
856}
857
858void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
859{
860 struct mountpoint *old_mp = mnt->mnt_mp;
861 struct mount *old_parent = mnt->mnt_parent;
862
863 list_del_init(&mnt->mnt_child);
864 hlist_del_init(&mnt->mnt_mp_list);
865 hlist_del_init_rcu(&mnt->mnt_hash);
866
867 attach_mnt(mnt, parent, mp);
868
869 put_mountpoint(old_mp);
870 mnt_add_count(old_parent, -1);
871}
872
873/*
874 * vfsmount lock must be held for write
875 */
876static void commit_tree(struct mount *mnt)
877{
878 struct mount *parent = mnt->mnt_parent;
879 struct mount *m;
880 LIST_HEAD(head);
881 struct mnt_namespace *n = parent->mnt_ns;
882
883 BUG_ON(parent == mnt);
884
885 list_add_tail(&head, &mnt->mnt_list);
886 list_for_each_entry(m, &head, mnt_list)
887 m->mnt_ns = n;
888
889 list_splice(&head, n->list.prev);
890
891 n->mounts += n->pending_mounts;
892 n->pending_mounts = 0;
893
894 __attach_mnt(mnt, parent);
895 touch_mnt_namespace(n);
896}
897
898static struct mount *next_mnt(struct mount *p, struct mount *root)
899{
900 struct list_head *next = p->mnt_mounts.next;
901 if (next == &p->mnt_mounts) {
902 while (1) {
903 if (p == root)
904 return NULL;
905 next = p->mnt_child.next;
906 if (next != &p->mnt_parent->mnt_mounts)
907 break;
908 p = p->mnt_parent;
909 }
910 }
911 return list_entry(next, struct mount, mnt_child);
912}
913
914static struct mount *skip_mnt_tree(struct mount *p)
915{
916 struct list_head *prev = p->mnt_mounts.prev;
917 while (prev != &p->mnt_mounts) {
918 p = list_entry(prev, struct mount, mnt_child);
919 prev = p->mnt_mounts.prev;
920 }
921 return p;
922}
923
924/**
925 * vfs_create_mount - Create a mount for a configured superblock
926 * @fc: The configuration context with the superblock attached
927 *
928 * Create a mount to an already configured superblock. If necessary, the
929 * caller should invoke vfs_get_tree() before calling this.
930 *
931 * Note that this does not attach the mount to anything.
932 */
933struct vfsmount *vfs_create_mount(struct fs_context *fc)
934{
935 struct mount *mnt;
936
937 if (!fc->root)
938 return ERR_PTR(-EINVAL);
939
940 mnt = alloc_vfsmnt(fc->source ?: "none");
941 if (!mnt)
942 return ERR_PTR(-ENOMEM);
943
944 if (fc->sb_flags & SB_KERNMOUNT)
945 mnt->mnt.mnt_flags = MNT_INTERNAL;
946
947 atomic_inc(&fc->root->d_sb->s_active);
948 mnt->mnt.mnt_sb = fc->root->d_sb;
949 mnt->mnt.mnt_root = dget(fc->root);
950 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
951 mnt->mnt_parent = mnt;
952
953 lock_mount_hash();
954 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
955 unlock_mount_hash();
956 return &mnt->mnt;
957}
958EXPORT_SYMBOL(vfs_create_mount);
959
960struct vfsmount *fc_mount(struct fs_context *fc)
961{
962 int err = vfs_get_tree(fc);
963 if (!err) {
964 up_write(&fc->root->d_sb->s_umount);
965 return vfs_create_mount(fc);
966 }
967 return ERR_PTR(err);
968}
969EXPORT_SYMBOL(fc_mount);
970
971struct vfsmount *vfs_kern_mount(struct file_system_type *type,
972 int flags, const char *name,
973 void *data)
974{
975 struct fs_context *fc;
976 struct vfsmount *mnt;
977 int ret = 0;
978
979 if (!type)
980 return ERR_PTR(-EINVAL);
981
982 fc = fs_context_for_mount(type, flags);
983 if (IS_ERR(fc))
984 return ERR_CAST(fc);
985
986 if (name)
987 ret = vfs_parse_fs_string(fc, "source",
988 name, strlen(name));
989 if (!ret)
990 ret = parse_monolithic_mount_data(fc, data);
991 if (!ret)
992 mnt = fc_mount(fc);
993 else
994 mnt = ERR_PTR(ret);
995
996 put_fs_context(fc);
997 return mnt;
998}
999EXPORT_SYMBOL_GPL(vfs_kern_mount);
1000
1001struct vfsmount *
1002vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1003 const char *name, void *data)
1004{
1005 /* Until it is worked out how to pass the user namespace
1006 * through from the parent mount to the submount don't support
1007 * unprivileged mounts with submounts.
1008 */
1009 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1010 return ERR_PTR(-EPERM);
1011
1012 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1013}
1014EXPORT_SYMBOL_GPL(vfs_submount);
1015
1016static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1017 int flag)
1018{
1019 struct super_block *sb = old->mnt.mnt_sb;
1020 struct mount *mnt;
1021 int err;
1022
1023 mnt = alloc_vfsmnt(old->mnt_devname);
1024 if (!mnt)
1025 return ERR_PTR(-ENOMEM);
1026
1027 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1028 mnt->mnt_group_id = 0; /* not a peer of original */
1029 else
1030 mnt->mnt_group_id = old->mnt_group_id;
1031
1032 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1033 err = mnt_alloc_group_id(mnt);
1034 if (err)
1035 goto out_free;
1036 }
1037
1038 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1039 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1040
1041 atomic_inc(&sb->s_active);
1042 mnt->mnt.mnt_sb = sb;
1043 mnt->mnt.mnt_root = dget(root);
1044 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1045 mnt->mnt_parent = mnt;
1046 lock_mount_hash();
1047 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1048 unlock_mount_hash();
1049
1050 if ((flag & CL_SLAVE) ||
1051 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1052 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1053 mnt->mnt_master = old;
1054 CLEAR_MNT_SHARED(mnt);
1055 } else if (!(flag & CL_PRIVATE)) {
1056 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1057 list_add(&mnt->mnt_share, &old->mnt_share);
1058 if (IS_MNT_SLAVE(old))
1059 list_add(&mnt->mnt_slave, &old->mnt_slave);
1060 mnt->mnt_master = old->mnt_master;
1061 } else {
1062 CLEAR_MNT_SHARED(mnt);
1063 }
1064 if (flag & CL_MAKE_SHARED)
1065 set_mnt_shared(mnt);
1066
1067 /* stick the duplicate mount on the same expiry list
1068 * as the original if that was on one */
1069 if (flag & CL_EXPIRE) {
1070 if (!list_empty(&old->mnt_expire))
1071 list_add(&mnt->mnt_expire, &old->mnt_expire);
1072 }
1073
1074 return mnt;
1075
1076 out_free:
1077 mnt_free_id(mnt);
1078 free_vfsmnt(mnt);
1079 return ERR_PTR(err);
1080}
1081
1082static void cleanup_mnt(struct mount *mnt)
1083{
1084 struct hlist_node *p;
1085 struct mount *m;
1086 /*
1087 * The warning here probably indicates that somebody messed
1088 * up a mnt_want/drop_write() pair. If this happens, the
1089 * filesystem was probably unable to make r/w->r/o transitions.
1090 * The locking used to deal with mnt_count decrement provides barriers,
1091 * so mnt_get_writers() below is safe.
1092 */
1093 WARN_ON(mnt_get_writers(mnt));
1094 if (unlikely(mnt->mnt_pins.first))
1095 mnt_pin_kill(mnt);
1096 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1097 hlist_del(&m->mnt_umount);
1098 mntput(&m->mnt);
1099 }
1100 fsnotify_vfsmount_delete(&mnt->mnt);
1101 dput(mnt->mnt.mnt_root);
1102 deactivate_super(mnt->mnt.mnt_sb);
1103 mnt_free_id(mnt);
1104 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1105}
1106
1107static void __cleanup_mnt(struct rcu_head *head)
1108{
1109 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1110}
1111
1112static LLIST_HEAD(delayed_mntput_list);
1113static void delayed_mntput(struct work_struct *unused)
1114{
1115 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1116 struct mount *m, *t;
1117
1118 llist_for_each_entry_safe(m, t, node, mnt_llist)
1119 cleanup_mnt(m);
1120}
1121static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1122
1123static void mntput_no_expire(struct mount *mnt)
1124{
1125 LIST_HEAD(list);
1126 int count;
1127
1128 rcu_read_lock();
1129 if (likely(READ_ONCE(mnt->mnt_ns))) {
1130 /*
1131 * Since we don't do lock_mount_hash() here,
1132 * ->mnt_ns can change under us. However, if it's
1133 * non-NULL, then there's a reference that won't
1134 * be dropped until after an RCU delay done after
1135 * turning ->mnt_ns NULL. So if we observe it
1136 * non-NULL under rcu_read_lock(), the reference
1137 * we are dropping is not the final one.
1138 */
1139 mnt_add_count(mnt, -1);
1140 rcu_read_unlock();
1141 return;
1142 }
1143 lock_mount_hash();
1144 /*
1145 * make sure that if __legitimize_mnt() has not seen us grab
1146 * mount_lock, we'll see their refcount increment here.
1147 */
1148 smp_mb();
1149 mnt_add_count(mnt, -1);
1150 count = mnt_get_count(mnt);
1151 if (count != 0) {
1152 WARN_ON(count < 0);
1153 rcu_read_unlock();
1154 unlock_mount_hash();
1155 return;
1156 }
1157 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1158 rcu_read_unlock();
1159 unlock_mount_hash();
1160 return;
1161 }
1162 mnt->mnt.mnt_flags |= MNT_DOOMED;
1163 rcu_read_unlock();
1164
1165 list_del(&mnt->mnt_instance);
1166
1167 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1168 struct mount *p, *tmp;
1169 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1170 __put_mountpoint(unhash_mnt(p), &list);
1171 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1172 }
1173 }
1174 unlock_mount_hash();
1175 shrink_dentry_list(&list);
1176
1177 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1178 struct task_struct *task = current;
1179 if (likely(!(task->flags & PF_KTHREAD))) {
1180 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1181 if (!task_work_add(task, &mnt->mnt_rcu, true))
1182 return;
1183 }
1184 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1185 schedule_delayed_work(&delayed_mntput_work, 1);
1186 return;
1187 }
1188 cleanup_mnt(mnt);
1189}
1190
1191void mntput(struct vfsmount *mnt)
1192{
1193 if (mnt) {
1194 struct mount *m = real_mount(mnt);
1195 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1196 if (unlikely(m->mnt_expiry_mark))
1197 m->mnt_expiry_mark = 0;
1198 mntput_no_expire(m);
1199 }
1200}
1201EXPORT_SYMBOL(mntput);
1202
1203struct vfsmount *mntget(struct vfsmount *mnt)
1204{
1205 if (mnt)
1206 mnt_add_count(real_mount(mnt), 1);
1207 return mnt;
1208}
1209EXPORT_SYMBOL(mntget);
1210
1211/* path_is_mountpoint() - Check if path is a mount in the current
1212 * namespace.
1213 *
1214 * d_mountpoint() can only be used reliably to establish if a dentry is
1215 * not mounted in any namespace and that common case is handled inline.
1216 * d_mountpoint() isn't aware of the possibility there may be multiple
1217 * mounts using a given dentry in a different namespace. This function
1218 * checks if the passed in path is a mountpoint rather than the dentry
1219 * alone.
1220 */
1221bool path_is_mountpoint(const struct path *path)
1222{
1223 unsigned seq;
1224 bool res;
1225
1226 if (!d_mountpoint(path->dentry))
1227 return false;
1228
1229 rcu_read_lock();
1230 do {
1231 seq = read_seqbegin(&mount_lock);
1232 res = __path_is_mountpoint(path);
1233 } while (read_seqretry(&mount_lock, seq));
1234 rcu_read_unlock();
1235
1236 return res;
1237}
1238EXPORT_SYMBOL(path_is_mountpoint);
1239
1240struct vfsmount *mnt_clone_internal(const struct path *path)
1241{
1242 struct mount *p;
1243 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1244 if (IS_ERR(p))
1245 return ERR_CAST(p);
1246 p->mnt.mnt_flags |= MNT_INTERNAL;
1247 return &p->mnt;
1248}
1249
1250#ifdef CONFIG_PROC_FS
1251/* iterator; we want it to have access to namespace_sem, thus here... */
1252static void *m_start(struct seq_file *m, loff_t *pos)
1253{
1254 struct proc_mounts *p = m->private;
1255
1256 down_read(&namespace_sem);
1257 if (p->cached_event == p->ns->event) {
1258 void *v = p->cached_mount;
1259 if (*pos == p->cached_index)
1260 return v;
1261 if (*pos == p->cached_index + 1) {
1262 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1263 return p->cached_mount = v;
1264 }
1265 }
1266
1267 p->cached_event = p->ns->event;
1268 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1269 p->cached_index = *pos;
1270 return p->cached_mount;
1271}
1272
1273static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1274{
1275 struct proc_mounts *p = m->private;
1276
1277 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1278 p->cached_index = *pos;
1279 return p->cached_mount;
1280}
1281
1282static void m_stop(struct seq_file *m, void *v)
1283{
1284 up_read(&namespace_sem);
1285}
1286
1287static int m_show(struct seq_file *m, void *v)
1288{
1289 struct proc_mounts *p = m->private;
1290 struct mount *r = list_entry(v, struct mount, mnt_list);
1291 return p->show(m, &r->mnt);
1292}
1293
1294const struct seq_operations mounts_op = {
1295 .start = m_start,
1296 .next = m_next,
1297 .stop = m_stop,
1298 .show = m_show,
1299};
1300#endif /* CONFIG_PROC_FS */
1301
1302/**
1303 * may_umount_tree - check if a mount tree is busy
1304 * @mnt: root of mount tree
1305 *
1306 * This is called to check if a tree of mounts has any
1307 * open files, pwds, chroots or sub mounts that are
1308 * busy.
1309 */
1310int may_umount_tree(struct vfsmount *m)
1311{
1312 struct mount *mnt = real_mount(m);
1313 int actual_refs = 0;
1314 int minimum_refs = 0;
1315 struct mount *p;
1316 BUG_ON(!m);
1317
1318 /* write lock needed for mnt_get_count */
1319 lock_mount_hash();
1320 for (p = mnt; p; p = next_mnt(p, mnt)) {
1321 actual_refs += mnt_get_count(p);
1322 minimum_refs += 2;
1323 }
1324 unlock_mount_hash();
1325
1326 if (actual_refs > minimum_refs)
1327 return 0;
1328
1329 return 1;
1330}
1331
1332EXPORT_SYMBOL(may_umount_tree);
1333
1334/**
1335 * may_umount - check if a mount point is busy
1336 * @mnt: root of mount
1337 *
1338 * This is called to check if a mount point has any
1339 * open files, pwds, chroots or sub mounts. If the
1340 * mount has sub mounts this will return busy
1341 * regardless of whether the sub mounts are busy.
1342 *
1343 * Doesn't take quota and stuff into account. IOW, in some cases it will
1344 * give false negatives. The main reason why it's here is that we need
1345 * a non-destructive way to look for easily umountable filesystems.
1346 */
1347int may_umount(struct vfsmount *mnt)
1348{
1349 int ret = 1;
1350 down_read(&namespace_sem);
1351 lock_mount_hash();
1352 if (propagate_mount_busy(real_mount(mnt), 2))
1353 ret = 0;
1354 unlock_mount_hash();
1355 up_read(&namespace_sem);
1356 return ret;
1357}
1358
1359EXPORT_SYMBOL(may_umount);
1360
1361static void namespace_unlock(void)
1362{
1363 struct hlist_head head;
1364 struct hlist_node *p;
1365 struct mount *m;
1366 LIST_HEAD(list);
1367
1368 hlist_move_list(&unmounted, &head);
1369 list_splice_init(&ex_mountpoints, &list);
1370
1371 up_write(&namespace_sem);
1372
1373 shrink_dentry_list(&list);
1374
1375 if (likely(hlist_empty(&head)))
1376 return;
1377
1378 synchronize_rcu_expedited();
1379
1380 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1381 hlist_del(&m->mnt_umount);
1382 mntput(&m->mnt);
1383 }
1384}
1385
1386static inline void namespace_lock(void)
1387{
1388 down_write(&namespace_sem);
1389}
1390
1391enum umount_tree_flags {
1392 UMOUNT_SYNC = 1,
1393 UMOUNT_PROPAGATE = 2,
1394 UMOUNT_CONNECTED = 4,
1395};
1396
1397static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1398{
1399 /* Leaving mounts connected is only valid for lazy umounts */
1400 if (how & UMOUNT_SYNC)
1401 return true;
1402
1403 /* A mount without a parent has nothing to be connected to */
1404 if (!mnt_has_parent(mnt))
1405 return true;
1406
1407 /* Because the reference counting rules change when mounts are
1408 * unmounted and connected, umounted mounts may not be
1409 * connected to mounted mounts.
1410 */
1411 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1412 return true;
1413
1414 /* Has it been requested that the mount remain connected? */
1415 if (how & UMOUNT_CONNECTED)
1416 return false;
1417
1418 /* Is the mount locked such that it needs to remain connected? */
1419 if (IS_MNT_LOCKED(mnt))
1420 return false;
1421
1422 /* By default disconnect the mount */
1423 return true;
1424}
1425
1426/*
1427 * mount_lock must be held
1428 * namespace_sem must be held for write
1429 */
1430static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1431{
1432 LIST_HEAD(tmp_list);
1433 struct mount *p;
1434
1435 if (how & UMOUNT_PROPAGATE)
1436 propagate_mount_unlock(mnt);
1437
1438 /* Gather the mounts to umount */
1439 for (p = mnt; p; p = next_mnt(p, mnt)) {
1440 p->mnt.mnt_flags |= MNT_UMOUNT;
1441 list_move(&p->mnt_list, &tmp_list);
1442 }
1443
1444 /* Hide the mounts from mnt_mounts */
1445 list_for_each_entry(p, &tmp_list, mnt_list) {
1446 list_del_init(&p->mnt_child);
1447 }
1448
1449 /* Add propogated mounts to the tmp_list */
1450 if (how & UMOUNT_PROPAGATE)
1451 propagate_umount(&tmp_list);
1452
1453 while (!list_empty(&tmp_list)) {
1454 struct mnt_namespace *ns;
1455 bool disconnect;
1456 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1457 list_del_init(&p->mnt_expire);
1458 list_del_init(&p->mnt_list);
1459 ns = p->mnt_ns;
1460 if (ns) {
1461 ns->mounts--;
1462 __touch_mnt_namespace(ns);
1463 }
1464 p->mnt_ns = NULL;
1465 if (how & UMOUNT_SYNC)
1466 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1467
1468 disconnect = disconnect_mount(p, how);
1469 if (mnt_has_parent(p)) {
1470 mnt_add_count(p->mnt_parent, -1);
1471 if (!disconnect) {
1472 /* Don't forget about p */
1473 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1474 } else {
1475 umount_mnt(p);
1476 }
1477 }
1478 change_mnt_propagation(p, MS_PRIVATE);
1479 if (disconnect)
1480 hlist_add_head(&p->mnt_umount, &unmounted);
1481 }
1482}
1483
1484static void shrink_submounts(struct mount *mnt);
1485
1486static int do_umount_root(struct super_block *sb)
1487{
1488 int ret = 0;
1489
1490 down_write(&sb->s_umount);
1491 if (!sb_rdonly(sb)) {
1492 struct fs_context *fc;
1493
1494 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1495 SB_RDONLY);
1496 if (IS_ERR(fc)) {
1497 ret = PTR_ERR(fc);
1498 } else {
1499 ret = parse_monolithic_mount_data(fc, NULL);
1500 if (!ret)
1501 ret = reconfigure_super(fc);
1502 put_fs_context(fc);
1503 }
1504 }
1505 up_write(&sb->s_umount);
1506 return ret;
1507}
1508
1509static int do_umount(struct mount *mnt, int flags)
1510{
1511 struct super_block *sb = mnt->mnt.mnt_sb;
1512 int retval;
1513
1514 retval = security_sb_umount(&mnt->mnt, flags);
1515 if (retval)
1516 return retval;
1517
1518 /*
1519 * Allow userspace to request a mountpoint be expired rather than
1520 * unmounting unconditionally. Unmount only happens if:
1521 * (1) the mark is already set (the mark is cleared by mntput())
1522 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1523 */
1524 if (flags & MNT_EXPIRE) {
1525 if (&mnt->mnt == current->fs->root.mnt ||
1526 flags & (MNT_FORCE | MNT_DETACH))
1527 return -EINVAL;
1528
1529 /*
1530 * probably don't strictly need the lock here if we examined
1531 * all race cases, but it's a slowpath.
1532 */
1533 lock_mount_hash();
1534 if (mnt_get_count(mnt) != 2) {
1535 unlock_mount_hash();
1536 return -EBUSY;
1537 }
1538 unlock_mount_hash();
1539
1540 if (!xchg(&mnt->mnt_expiry_mark, 1))
1541 return -EAGAIN;
1542 }
1543
1544 /*
1545 * If we may have to abort operations to get out of this
1546 * mount, and they will themselves hold resources we must
1547 * allow the fs to do things. In the Unix tradition of
1548 * 'Gee thats tricky lets do it in userspace' the umount_begin
1549 * might fail to complete on the first run through as other tasks
1550 * must return, and the like. Thats for the mount program to worry
1551 * about for the moment.
1552 */
1553
1554 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1555 sb->s_op->umount_begin(sb);
1556 }
1557
1558 /*
1559 * No sense to grab the lock for this test, but test itself looks
1560 * somewhat bogus. Suggestions for better replacement?
1561 * Ho-hum... In principle, we might treat that as umount + switch
1562 * to rootfs. GC would eventually take care of the old vfsmount.
1563 * Actually it makes sense, especially if rootfs would contain a
1564 * /reboot - static binary that would close all descriptors and
1565 * call reboot(9). Then init(8) could umount root and exec /reboot.
1566 */
1567 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1568 /*
1569 * Special case for "unmounting" root ...
1570 * we just try to remount it readonly.
1571 */
1572 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1573 return -EPERM;
1574 return do_umount_root(sb);
1575 }
1576
1577 namespace_lock();
1578 lock_mount_hash();
1579
1580 /* Recheck MNT_LOCKED with the locks held */
1581 retval = -EINVAL;
1582 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1583 goto out;
1584
1585 event++;
1586 if (flags & MNT_DETACH) {
1587 if (!list_empty(&mnt->mnt_list))
1588 umount_tree(mnt, UMOUNT_PROPAGATE);
1589 retval = 0;
1590 } else {
1591 shrink_submounts(mnt);
1592 retval = -EBUSY;
1593 if (!propagate_mount_busy(mnt, 2)) {
1594 if (!list_empty(&mnt->mnt_list))
1595 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1596 retval = 0;
1597 }
1598 }
1599out:
1600 unlock_mount_hash();
1601 namespace_unlock();
1602 return retval;
1603}
1604
1605/*
1606 * __detach_mounts - lazily unmount all mounts on the specified dentry
1607 *
1608 * During unlink, rmdir, and d_drop it is possible to loose the path
1609 * to an existing mountpoint, and wind up leaking the mount.
1610 * detach_mounts allows lazily unmounting those mounts instead of
1611 * leaking them.
1612 *
1613 * The caller may hold dentry->d_inode->i_mutex.
1614 */
1615void __detach_mounts(struct dentry *dentry)
1616{
1617 struct mountpoint *mp;
1618 struct mount *mnt;
1619
1620 namespace_lock();
1621 lock_mount_hash();
1622 mp = lookup_mountpoint(dentry);
1623 if (!mp)
1624 goto out_unlock;
1625
1626 event++;
1627 while (!hlist_empty(&mp->m_list)) {
1628 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1629 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1630 umount_mnt(mnt);
1631 hlist_add_head(&mnt->mnt_umount, &unmounted);
1632 }
1633 else umount_tree(mnt, UMOUNT_CONNECTED);
1634 }
1635 put_mountpoint(mp);
1636out_unlock:
1637 unlock_mount_hash();
1638 namespace_unlock();
1639}
1640
1641/*
1642 * Is the caller allowed to modify his namespace?
1643 */
1644static inline bool may_mount(void)
1645{
1646 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1647}
1648
1649#ifdef CONFIG_MANDATORY_FILE_LOCKING
1650static bool may_mandlock(void)
1651{
1652 pr_warn_once("======================================================\n"
1653 "WARNING: the mand mount option is being deprecated and\n"
1654 " will be removed in v5.15!\n"
1655 "======================================================\n");
1656 return capable(CAP_SYS_ADMIN);
1657}
1658#else
1659static inline bool may_mandlock(void)
1660{
1661 pr_warn("VFS: \"mand\" mount option not supported");
1662 return false;
1663}
1664#endif
1665
1666/*
1667 * Now umount can handle mount points as well as block devices.
1668 * This is important for filesystems which use unnamed block devices.
1669 *
1670 * We now support a flag for forced unmount like the other 'big iron'
1671 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1672 */
1673
1674int ksys_umount(char __user *name, int flags)
1675{
1676 struct path path;
1677 struct mount *mnt;
1678 int retval;
1679 int lookup_flags = 0;
1680
1681 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1682 return -EINVAL;
1683
1684 if (!may_mount())
1685 return -EPERM;
1686
1687 if (!(flags & UMOUNT_NOFOLLOW))
1688 lookup_flags |= LOOKUP_FOLLOW;
1689
1690 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1691 if (retval)
1692 goto out;
1693 mnt = real_mount(path.mnt);
1694 retval = -EINVAL;
1695 if (path.dentry != path.mnt->mnt_root)
1696 goto dput_and_out;
1697 if (!check_mnt(mnt))
1698 goto dput_and_out;
1699 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1700 goto dput_and_out;
1701 retval = -EPERM;
1702 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1703 goto dput_and_out;
1704
1705 retval = do_umount(mnt, flags);
1706dput_and_out:
1707 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1708 dput(path.dentry);
1709 mntput_no_expire(mnt);
1710out:
1711 return retval;
1712}
1713
1714SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1715{
1716 return ksys_umount(name, flags);
1717}
1718
1719#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1720
1721/*
1722 * The 2.0 compatible umount. No flags.
1723 */
1724SYSCALL_DEFINE1(oldumount, char __user *, name)
1725{
1726 return ksys_umount(name, 0);
1727}
1728
1729#endif
1730
1731static bool is_mnt_ns_file(struct dentry *dentry)
1732{
1733 /* Is this a proxy for a mount namespace? */
1734 return dentry->d_op == &ns_dentry_operations &&
1735 dentry->d_fsdata == &mntns_operations;
1736}
1737
1738struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1739{
1740 return container_of(ns, struct mnt_namespace, ns);
1741}
1742
1743static bool mnt_ns_loop(struct dentry *dentry)
1744{
1745 /* Could bind mounting the mount namespace inode cause a
1746 * mount namespace loop?
1747 */
1748 struct mnt_namespace *mnt_ns;
1749 if (!is_mnt_ns_file(dentry))
1750 return false;
1751
1752 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1753 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1754}
1755
1756struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1757 int flag)
1758{
1759 struct mount *res, *p, *q, *r, *parent;
1760
1761 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1762 return ERR_PTR(-EINVAL);
1763
1764 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1765 return ERR_PTR(-EINVAL);
1766
1767 res = q = clone_mnt(mnt, dentry, flag);
1768 if (IS_ERR(q))
1769 return q;
1770
1771 q->mnt_mountpoint = mnt->mnt_mountpoint;
1772
1773 p = mnt;
1774 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1775 struct mount *s;
1776 if (!is_subdir(r->mnt_mountpoint, dentry))
1777 continue;
1778
1779 for (s = r; s; s = next_mnt(s, r)) {
1780 if (!(flag & CL_COPY_UNBINDABLE) &&
1781 IS_MNT_UNBINDABLE(s)) {
1782 if (s->mnt.mnt_flags & MNT_LOCKED) {
1783 /* Both unbindable and locked. */
1784 q = ERR_PTR(-EPERM);
1785 goto out;
1786 } else {
1787 s = skip_mnt_tree(s);
1788 continue;
1789 }
1790 }
1791 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1792 is_mnt_ns_file(s->mnt.mnt_root)) {
1793 s = skip_mnt_tree(s);
1794 continue;
1795 }
1796 while (p != s->mnt_parent) {
1797 p = p->mnt_parent;
1798 q = q->mnt_parent;
1799 }
1800 p = s;
1801 parent = q;
1802 q = clone_mnt(p, p->mnt.mnt_root, flag);
1803 if (IS_ERR(q))
1804 goto out;
1805 lock_mount_hash();
1806 list_add_tail(&q->mnt_list, &res->mnt_list);
1807 attach_mnt(q, parent, p->mnt_mp);
1808 unlock_mount_hash();
1809 }
1810 }
1811 return res;
1812out:
1813 if (res) {
1814 lock_mount_hash();
1815 umount_tree(res, UMOUNT_SYNC);
1816 unlock_mount_hash();
1817 }
1818 return q;
1819}
1820
1821/* Caller should check returned pointer for errors */
1822
1823struct vfsmount *collect_mounts(const struct path *path)
1824{
1825 struct mount *tree;
1826 namespace_lock();
1827 if (!check_mnt(real_mount(path->mnt)))
1828 tree = ERR_PTR(-EINVAL);
1829 else
1830 tree = copy_tree(real_mount(path->mnt), path->dentry,
1831 CL_COPY_ALL | CL_PRIVATE);
1832 namespace_unlock();
1833 if (IS_ERR(tree))
1834 return ERR_CAST(tree);
1835 return &tree->mnt;
1836}
1837
1838static void free_mnt_ns(struct mnt_namespace *);
1839static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1840
1841void dissolve_on_fput(struct vfsmount *mnt)
1842{
1843 struct mnt_namespace *ns;
1844 namespace_lock();
1845 lock_mount_hash();
1846 ns = real_mount(mnt)->mnt_ns;
1847 if (ns) {
1848 if (is_anon_ns(ns))
1849 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1850 else
1851 ns = NULL;
1852 }
1853 unlock_mount_hash();
1854 namespace_unlock();
1855 if (ns)
1856 free_mnt_ns(ns);
1857}
1858
1859void drop_collected_mounts(struct vfsmount *mnt)
1860{
1861 namespace_lock();
1862 lock_mount_hash();
1863 umount_tree(real_mount(mnt), 0);
1864 unlock_mount_hash();
1865 namespace_unlock();
1866}
1867
1868static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1869{
1870 struct mount *child;
1871
1872 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1873 if (!is_subdir(child->mnt_mountpoint, dentry))
1874 continue;
1875
1876 if (child->mnt.mnt_flags & MNT_LOCKED)
1877 return true;
1878 }
1879 return false;
1880}
1881
1882/**
1883 * clone_private_mount - create a private clone of a path
1884 *
1885 * This creates a new vfsmount, which will be the clone of @path. The new will
1886 * not be attached anywhere in the namespace and will be private (i.e. changes
1887 * to the originating mount won't be propagated into this).
1888 *
1889 * Release with mntput().
1890 */
1891struct vfsmount *clone_private_mount(const struct path *path)
1892{
1893 struct mount *old_mnt = real_mount(path->mnt);
1894 struct mount *new_mnt;
1895
1896 down_read(&namespace_sem);
1897 if (IS_MNT_UNBINDABLE(old_mnt))
1898 goto invalid;
1899
1900 if (!check_mnt(old_mnt))
1901 goto invalid;
1902
1903 if (has_locked_children(old_mnt, path->dentry))
1904 goto invalid;
1905
1906 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1907 up_read(&namespace_sem);
1908
1909 if (IS_ERR(new_mnt))
1910 return ERR_CAST(new_mnt);
1911
1912 return &new_mnt->mnt;
1913
1914invalid:
1915 up_read(&namespace_sem);
1916 return ERR_PTR(-EINVAL);
1917}
1918EXPORT_SYMBOL_GPL(clone_private_mount);
1919
1920int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1921 struct vfsmount *root)
1922{
1923 struct mount *mnt;
1924 int res = f(root, arg);
1925 if (res)
1926 return res;
1927 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1928 res = f(&mnt->mnt, arg);
1929 if (res)
1930 return res;
1931 }
1932 return 0;
1933}
1934
1935static void lock_mnt_tree(struct mount *mnt)
1936{
1937 struct mount *p;
1938
1939 for (p = mnt; p; p = next_mnt(p, mnt)) {
1940 int flags = p->mnt.mnt_flags;
1941 /* Don't allow unprivileged users to change mount flags */
1942 flags |= MNT_LOCK_ATIME;
1943
1944 if (flags & MNT_READONLY)
1945 flags |= MNT_LOCK_READONLY;
1946
1947 if (flags & MNT_NODEV)
1948 flags |= MNT_LOCK_NODEV;
1949
1950 if (flags & MNT_NOSUID)
1951 flags |= MNT_LOCK_NOSUID;
1952
1953 if (flags & MNT_NOEXEC)
1954 flags |= MNT_LOCK_NOEXEC;
1955 /* Don't allow unprivileged users to reveal what is under a mount */
1956 if (list_empty(&p->mnt_expire))
1957 flags |= MNT_LOCKED;
1958 p->mnt.mnt_flags = flags;
1959 }
1960}
1961
1962static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1963{
1964 struct mount *p;
1965
1966 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1967 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1968 mnt_release_group_id(p);
1969 }
1970}
1971
1972static int invent_group_ids(struct mount *mnt, bool recurse)
1973{
1974 struct mount *p;
1975
1976 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1977 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1978 int err = mnt_alloc_group_id(p);
1979 if (err) {
1980 cleanup_group_ids(mnt, p);
1981 return err;
1982 }
1983 }
1984 }
1985
1986 return 0;
1987}
1988
1989int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1990{
1991 unsigned int max = READ_ONCE(sysctl_mount_max);
1992 unsigned int mounts = 0, old, pending, sum;
1993 struct mount *p;
1994
1995 for (p = mnt; p; p = next_mnt(p, mnt))
1996 mounts++;
1997
1998 old = ns->mounts;
1999 pending = ns->pending_mounts;
2000 sum = old + pending;
2001 if ((old > sum) ||
2002 (pending > sum) ||
2003 (max < sum) ||
2004 (mounts > (max - sum)))
2005 return -ENOSPC;
2006
2007 ns->pending_mounts = pending + mounts;
2008 return 0;
2009}
2010
2011/*
2012 * @source_mnt : mount tree to be attached
2013 * @nd : place the mount tree @source_mnt is attached
2014 * @parent_nd : if non-null, detach the source_mnt from its parent and
2015 * store the parent mount and mountpoint dentry.
2016 * (done when source_mnt is moved)
2017 *
2018 * NOTE: in the table below explains the semantics when a source mount
2019 * of a given type is attached to a destination mount of a given type.
2020 * ---------------------------------------------------------------------------
2021 * | BIND MOUNT OPERATION |
2022 * |**************************************************************************
2023 * | source-->| shared | private | slave | unbindable |
2024 * | dest | | | | |
2025 * | | | | | | |
2026 * | v | | | | |
2027 * |**************************************************************************
2028 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2029 * | | | | | |
2030 * |non-shared| shared (+) | private | slave (*) | invalid |
2031 * ***************************************************************************
2032 * A bind operation clones the source mount and mounts the clone on the
2033 * destination mount.
2034 *
2035 * (++) the cloned mount is propagated to all the mounts in the propagation
2036 * tree of the destination mount and the cloned mount is added to
2037 * the peer group of the source mount.
2038 * (+) the cloned mount is created under the destination mount and is marked
2039 * as shared. The cloned mount is added to the peer group of the source
2040 * mount.
2041 * (+++) the mount is propagated to all the mounts in the propagation tree
2042 * of the destination mount and the cloned mount is made slave
2043 * of the same master as that of the source mount. The cloned mount
2044 * is marked as 'shared and slave'.
2045 * (*) the cloned mount is made a slave of the same master as that of the
2046 * source mount.
2047 *
2048 * ---------------------------------------------------------------------------
2049 * | MOVE MOUNT OPERATION |
2050 * |**************************************************************************
2051 * | source-->| shared | private | slave | unbindable |
2052 * | dest | | | | |
2053 * | | | | | | |
2054 * | v | | | | |
2055 * |**************************************************************************
2056 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2057 * | | | | | |
2058 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2059 * ***************************************************************************
2060 *
2061 * (+) the mount is moved to the destination. And is then propagated to
2062 * all the mounts in the propagation tree of the destination mount.
2063 * (+*) the mount is moved to the destination.
2064 * (+++) the mount is moved to the destination and is then propagated to
2065 * all the mounts belonging to the destination mount's propagation tree.
2066 * the mount is marked as 'shared and slave'.
2067 * (*) the mount continues to be a slave at the new location.
2068 *
2069 * if the source mount is a tree, the operations explained above is
2070 * applied to each mount in the tree.
2071 * Must be called without spinlocks held, since this function can sleep
2072 * in allocations.
2073 */
2074static int attach_recursive_mnt(struct mount *source_mnt,
2075 struct mount *dest_mnt,
2076 struct mountpoint *dest_mp,
2077 bool moving)
2078{
2079 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2080 HLIST_HEAD(tree_list);
2081 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2082 struct mountpoint *smp;
2083 struct mount *child, *p;
2084 struct hlist_node *n;
2085 int err;
2086
2087 /* Preallocate a mountpoint in case the new mounts need
2088 * to be tucked under other mounts.
2089 */
2090 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2091 if (IS_ERR(smp))
2092 return PTR_ERR(smp);
2093
2094 /* Is there space to add these mounts to the mount namespace? */
2095 if (!moving) {
2096 err = count_mounts(ns, source_mnt);
2097 if (err)
2098 goto out;
2099 }
2100
2101 if (IS_MNT_SHARED(dest_mnt)) {
2102 err = invent_group_ids(source_mnt, true);
2103 if (err)
2104 goto out;
2105 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2106 lock_mount_hash();
2107 if (err)
2108 goto out_cleanup_ids;
2109 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2110 set_mnt_shared(p);
2111 } else {
2112 lock_mount_hash();
2113 }
2114 if (moving) {
2115 unhash_mnt(source_mnt);
2116 attach_mnt(source_mnt, dest_mnt, dest_mp);
2117 touch_mnt_namespace(source_mnt->mnt_ns);
2118 } else {
2119 if (source_mnt->mnt_ns) {
2120 /* move from anon - the caller will destroy */
2121 list_del_init(&source_mnt->mnt_ns->list);
2122 }
2123 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2124 commit_tree(source_mnt);
2125 }
2126
2127 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2128 struct mount *q;
2129 hlist_del_init(&child->mnt_hash);
2130 q = __lookup_mnt(&child->mnt_parent->mnt,
2131 child->mnt_mountpoint);
2132 if (q)
2133 mnt_change_mountpoint(child, smp, q);
2134 /* Notice when we are propagating across user namespaces */
2135 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2136 lock_mnt_tree(child);
2137 child->mnt.mnt_flags &= ~MNT_LOCKED;
2138 commit_tree(child);
2139 }
2140 put_mountpoint(smp);
2141 unlock_mount_hash();
2142
2143 return 0;
2144
2145 out_cleanup_ids:
2146 while (!hlist_empty(&tree_list)) {
2147 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2148 child->mnt_parent->mnt_ns->pending_mounts = 0;
2149 umount_tree(child, UMOUNT_SYNC);
2150 }
2151 unlock_mount_hash();
2152 cleanup_group_ids(source_mnt, NULL);
2153 out:
2154 ns->pending_mounts = 0;
2155
2156 read_seqlock_excl(&mount_lock);
2157 put_mountpoint(smp);
2158 read_sequnlock_excl(&mount_lock);
2159
2160 return err;
2161}
2162
2163static struct mountpoint *lock_mount(struct path *path)
2164{
2165 struct vfsmount *mnt;
2166 struct dentry *dentry = path->dentry;
2167retry:
2168 inode_lock(dentry->d_inode);
2169 if (unlikely(cant_mount(dentry))) {
2170 inode_unlock(dentry->d_inode);
2171 return ERR_PTR(-ENOENT);
2172 }
2173 namespace_lock();
2174 mnt = lookup_mnt(path);
2175 if (likely(!mnt)) {
2176 struct mountpoint *mp = get_mountpoint(dentry);
2177 if (IS_ERR(mp)) {
2178 namespace_unlock();
2179 inode_unlock(dentry->d_inode);
2180 return mp;
2181 }
2182 return mp;
2183 }
2184 namespace_unlock();
2185 inode_unlock(path->dentry->d_inode);
2186 path_put(path);
2187 path->mnt = mnt;
2188 dentry = path->dentry = dget(mnt->mnt_root);
2189 goto retry;
2190}
2191
2192static void unlock_mount(struct mountpoint *where)
2193{
2194 struct dentry *dentry = where->m_dentry;
2195
2196 read_seqlock_excl(&mount_lock);
2197 put_mountpoint(where);
2198 read_sequnlock_excl(&mount_lock);
2199
2200 namespace_unlock();
2201 inode_unlock(dentry->d_inode);
2202}
2203
2204static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2205{
2206 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2207 return -EINVAL;
2208
2209 if (d_is_dir(mp->m_dentry) !=
2210 d_is_dir(mnt->mnt.mnt_root))
2211 return -ENOTDIR;
2212
2213 return attach_recursive_mnt(mnt, p, mp, false);
2214}
2215
2216/*
2217 * Sanity check the flags to change_mnt_propagation.
2218 */
2219
2220static int flags_to_propagation_type(int ms_flags)
2221{
2222 int type = ms_flags & ~(MS_REC | MS_SILENT);
2223
2224 /* Fail if any non-propagation flags are set */
2225 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2226 return 0;
2227 /* Only one propagation flag should be set */
2228 if (!is_power_of_2(type))
2229 return 0;
2230 return type;
2231}
2232
2233/*
2234 * recursively change the type of the mountpoint.
2235 */
2236static int do_change_type(struct path *path, int ms_flags)
2237{
2238 struct mount *m;
2239 struct mount *mnt = real_mount(path->mnt);
2240 int recurse = ms_flags & MS_REC;
2241 int type;
2242 int err = 0;
2243
2244 if (path->dentry != path->mnt->mnt_root)
2245 return -EINVAL;
2246
2247 type = flags_to_propagation_type(ms_flags);
2248 if (!type)
2249 return -EINVAL;
2250
2251 namespace_lock();
2252 if (type == MS_SHARED) {
2253 err = invent_group_ids(mnt, recurse);
2254 if (err)
2255 goto out_unlock;
2256 }
2257
2258 lock_mount_hash();
2259 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2260 change_mnt_propagation(m, type);
2261 unlock_mount_hash();
2262
2263 out_unlock:
2264 namespace_unlock();
2265 return err;
2266}
2267
2268static struct mount *__do_loopback(struct path *old_path, int recurse)
2269{
2270 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2271
2272 if (IS_MNT_UNBINDABLE(old))
2273 return mnt;
2274
2275 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2276 return mnt;
2277
2278 if (!recurse && has_locked_children(old, old_path->dentry))
2279 return mnt;
2280
2281 if (recurse)
2282 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2283 else
2284 mnt = clone_mnt(old, old_path->dentry, 0);
2285
2286 if (!IS_ERR(mnt))
2287 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2288
2289 return mnt;
2290}
2291
2292/*
2293 * do loopback mount.
2294 */
2295static int do_loopback(struct path *path, const char *old_name,
2296 int recurse)
2297{
2298 struct path old_path;
2299 struct mount *mnt = NULL, *parent;
2300 struct mountpoint *mp;
2301 int err;
2302 if (!old_name || !*old_name)
2303 return -EINVAL;
2304 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2305 if (err)
2306 return err;
2307
2308 err = -EINVAL;
2309 if (mnt_ns_loop(old_path.dentry))
2310 goto out;
2311
2312 mp = lock_mount(path);
2313 if (IS_ERR(mp)) {
2314 err = PTR_ERR(mp);
2315 goto out;
2316 }
2317
2318 parent = real_mount(path->mnt);
2319 if (!check_mnt(parent))
2320 goto out2;
2321
2322 mnt = __do_loopback(&old_path, recurse);
2323 if (IS_ERR(mnt)) {
2324 err = PTR_ERR(mnt);
2325 goto out2;
2326 }
2327
2328 err = graft_tree(mnt, parent, mp);
2329 if (err) {
2330 lock_mount_hash();
2331 umount_tree(mnt, UMOUNT_SYNC);
2332 unlock_mount_hash();
2333 }
2334out2:
2335 unlock_mount(mp);
2336out:
2337 path_put(&old_path);
2338 return err;
2339}
2340
2341static struct file *open_detached_copy(struct path *path, bool recursive)
2342{
2343 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2344 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2345 struct mount *mnt, *p;
2346 struct file *file;
2347
2348 if (IS_ERR(ns))
2349 return ERR_CAST(ns);
2350
2351 namespace_lock();
2352 mnt = __do_loopback(path, recursive);
2353 if (IS_ERR(mnt)) {
2354 namespace_unlock();
2355 free_mnt_ns(ns);
2356 return ERR_CAST(mnt);
2357 }
2358
2359 lock_mount_hash();
2360 for (p = mnt; p; p = next_mnt(p, mnt)) {
2361 p->mnt_ns = ns;
2362 ns->mounts++;
2363 }
2364 ns->root = mnt;
2365 list_add_tail(&ns->list, &mnt->mnt_list);
2366 mntget(&mnt->mnt);
2367 unlock_mount_hash();
2368 namespace_unlock();
2369
2370 mntput(path->mnt);
2371 path->mnt = &mnt->mnt;
2372 file = dentry_open(path, O_PATH, current_cred());
2373 if (IS_ERR(file))
2374 dissolve_on_fput(path->mnt);
2375 else
2376 file->f_mode |= FMODE_NEED_UNMOUNT;
2377 return file;
2378}
2379
2380SYSCALL_DEFINE3(open_tree, int, dfd, const char *, filename, unsigned, flags)
2381{
2382 struct file *file;
2383 struct path path;
2384 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2385 bool detached = flags & OPEN_TREE_CLONE;
2386 int error;
2387 int fd;
2388
2389 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2390
2391 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2392 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2393 OPEN_TREE_CLOEXEC))
2394 return -EINVAL;
2395
2396 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2397 return -EINVAL;
2398
2399 if (flags & AT_NO_AUTOMOUNT)
2400 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2401 if (flags & AT_SYMLINK_NOFOLLOW)
2402 lookup_flags &= ~LOOKUP_FOLLOW;
2403 if (flags & AT_EMPTY_PATH)
2404 lookup_flags |= LOOKUP_EMPTY;
2405
2406 if (detached && !may_mount())
2407 return -EPERM;
2408
2409 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2410 if (fd < 0)
2411 return fd;
2412
2413 error = user_path_at(dfd, filename, lookup_flags, &path);
2414 if (unlikely(error)) {
2415 file = ERR_PTR(error);
2416 } else {
2417 if (detached)
2418 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2419 else
2420 file = dentry_open(&path, O_PATH, current_cred());
2421 path_put(&path);
2422 }
2423 if (IS_ERR(file)) {
2424 put_unused_fd(fd);
2425 return PTR_ERR(file);
2426 }
2427 fd_install(fd, file);
2428 return fd;
2429}
2430
2431/*
2432 * Don't allow locked mount flags to be cleared.
2433 *
2434 * No locks need to be held here while testing the various MNT_LOCK
2435 * flags because those flags can never be cleared once they are set.
2436 */
2437static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2438{
2439 unsigned int fl = mnt->mnt.mnt_flags;
2440
2441 if ((fl & MNT_LOCK_READONLY) &&
2442 !(mnt_flags & MNT_READONLY))
2443 return false;
2444
2445 if ((fl & MNT_LOCK_NODEV) &&
2446 !(mnt_flags & MNT_NODEV))
2447 return false;
2448
2449 if ((fl & MNT_LOCK_NOSUID) &&
2450 !(mnt_flags & MNT_NOSUID))
2451 return false;
2452
2453 if ((fl & MNT_LOCK_NOEXEC) &&
2454 !(mnt_flags & MNT_NOEXEC))
2455 return false;
2456
2457 if ((fl & MNT_LOCK_ATIME) &&
2458 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2459 return false;
2460
2461 return true;
2462}
2463
2464static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2465{
2466 bool readonly_request = (mnt_flags & MNT_READONLY);
2467
2468 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2469 return 0;
2470
2471 if (readonly_request)
2472 return mnt_make_readonly(mnt);
2473
2474 return __mnt_unmake_readonly(mnt);
2475}
2476
2477/*
2478 * Update the user-settable attributes on a mount. The caller must hold
2479 * sb->s_umount for writing.
2480 */
2481static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2482{
2483 lock_mount_hash();
2484 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2485 mnt->mnt.mnt_flags = mnt_flags;
2486 touch_mnt_namespace(mnt->mnt_ns);
2487 unlock_mount_hash();
2488}
2489
2490static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2491{
2492 struct super_block *sb = mnt->mnt_sb;
2493
2494 if (!__mnt_is_readonly(mnt) &&
2495 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2496 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2497 char *buf, *mntpath;
2498
2499 buf = (char *)__get_free_page(GFP_KERNEL);
2500 if (buf)
2501 mntpath = d_path(mountpoint, buf, PAGE_SIZE);
2502 else
2503 mntpath = ERR_PTR(-ENOMEM);
2504 if (IS_ERR(mntpath))
2505 mntpath = "(unknown)";
2506
2507 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
2508 sb->s_type->name,
2509 is_mounted(mnt) ? "remounted" : "mounted",
2510 mntpath, &sb->s_time_max,
2511 (unsigned long long)sb->s_time_max);
2512
2513 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2514 if (buf)
2515 free_page((unsigned long)buf);
2516 }
2517}
2518
2519/*
2520 * Handle reconfiguration of the mountpoint only without alteration of the
2521 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2522 * to mount(2).
2523 */
2524static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2525{
2526 struct super_block *sb = path->mnt->mnt_sb;
2527 struct mount *mnt = real_mount(path->mnt);
2528 int ret;
2529
2530 if (!check_mnt(mnt))
2531 return -EINVAL;
2532
2533 if (path->dentry != mnt->mnt.mnt_root)
2534 return -EINVAL;
2535
2536 if (!can_change_locked_flags(mnt, mnt_flags))
2537 return -EPERM;
2538
2539 down_write(&sb->s_umount);
2540 ret = change_mount_ro_state(mnt, mnt_flags);
2541 if (ret == 0)
2542 set_mount_attributes(mnt, mnt_flags);
2543 up_write(&sb->s_umount);
2544
2545 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2546
2547 return ret;
2548}
2549
2550/*
2551 * change filesystem flags. dir should be a physical root of filesystem.
2552 * If you've mounted a non-root directory somewhere and want to do remount
2553 * on it - tough luck.
2554 */
2555static int do_remount(struct path *path, int ms_flags, int sb_flags,
2556 int mnt_flags, void *data)
2557{
2558 int err;
2559 struct super_block *sb = path->mnt->mnt_sb;
2560 struct mount *mnt = real_mount(path->mnt);
2561 struct fs_context *fc;
2562
2563 if (!check_mnt(mnt))
2564 return -EINVAL;
2565
2566 if (path->dentry != path->mnt->mnt_root)
2567 return -EINVAL;
2568
2569 if (!can_change_locked_flags(mnt, mnt_flags))
2570 return -EPERM;
2571
2572 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2573 if (IS_ERR(fc))
2574 return PTR_ERR(fc);
2575
2576 err = parse_monolithic_mount_data(fc, data);
2577 if (!err) {
2578 down_write(&sb->s_umount);
2579 err = -EPERM;
2580 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2581 err = reconfigure_super(fc);
2582 if (!err)
2583 set_mount_attributes(mnt, mnt_flags);
2584 }
2585 up_write(&sb->s_umount);
2586 }
2587
2588 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2589
2590 put_fs_context(fc);
2591 return err;
2592}
2593
2594static inline int tree_contains_unbindable(struct mount *mnt)
2595{
2596 struct mount *p;
2597 for (p = mnt; p; p = next_mnt(p, mnt)) {
2598 if (IS_MNT_UNBINDABLE(p))
2599 return 1;
2600 }
2601 return 0;
2602}
2603
2604/*
2605 * Check that there aren't references to earlier/same mount namespaces in the
2606 * specified subtree. Such references can act as pins for mount namespaces
2607 * that aren't checked by the mount-cycle checking code, thereby allowing
2608 * cycles to be made.
2609 */
2610static bool check_for_nsfs_mounts(struct mount *subtree)
2611{
2612 struct mount *p;
2613 bool ret = false;
2614
2615 lock_mount_hash();
2616 for (p = subtree; p; p = next_mnt(p, subtree))
2617 if (mnt_ns_loop(p->mnt.mnt_root))
2618 goto out;
2619
2620 ret = true;
2621out:
2622 unlock_mount_hash();
2623 return ret;
2624}
2625
2626static int do_move_mount(struct path *old_path, struct path *new_path)
2627{
2628 struct mnt_namespace *ns;
2629 struct mount *p;
2630 struct mount *old;
2631 struct mount *parent;
2632 struct mountpoint *mp, *old_mp;
2633 int err;
2634 bool attached;
2635
2636 mp = lock_mount(new_path);
2637 if (IS_ERR(mp))
2638 return PTR_ERR(mp);
2639
2640 old = real_mount(old_path->mnt);
2641 p = real_mount(new_path->mnt);
2642 parent = old->mnt_parent;
2643 attached = mnt_has_parent(old);
2644 old_mp = old->mnt_mp;
2645 ns = old->mnt_ns;
2646
2647 err = -EINVAL;
2648 /* The mountpoint must be in our namespace. */
2649 if (!check_mnt(p))
2650 goto out;
2651
2652 /* The thing moved must be mounted... */
2653 if (!is_mounted(&old->mnt))
2654 goto out;
2655
2656 /* ... and either ours or the root of anon namespace */
2657 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2658 goto out;
2659
2660 if (old->mnt.mnt_flags & MNT_LOCKED)
2661 goto out;
2662
2663 if (old_path->dentry != old_path->mnt->mnt_root)
2664 goto out;
2665
2666 if (d_is_dir(new_path->dentry) !=
2667 d_is_dir(old_path->dentry))
2668 goto out;
2669 /*
2670 * Don't move a mount residing in a shared parent.
2671 */
2672 if (attached && IS_MNT_SHARED(parent))
2673 goto out;
2674 /*
2675 * Don't move a mount tree containing unbindable mounts to a destination
2676 * mount which is shared.
2677 */
2678 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2679 goto out;
2680 err = -ELOOP;
2681 if (!check_for_nsfs_mounts(old))
2682 goto out;
2683 for (; mnt_has_parent(p); p = p->mnt_parent)
2684 if (p == old)
2685 goto out;
2686
2687 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2688 attached);
2689 if (err)
2690 goto out;
2691
2692 /* if the mount is moved, it should no longer be expire
2693 * automatically */
2694 list_del_init(&old->mnt_expire);
2695 if (attached)
2696 put_mountpoint(old_mp);
2697out:
2698 unlock_mount(mp);
2699 if (!err) {
2700 if (attached)
2701 mntput_no_expire(parent);
2702 else
2703 free_mnt_ns(ns);
2704 }
2705 return err;
2706}
2707
2708static int do_move_mount_old(struct path *path, const char *old_name)
2709{
2710 struct path old_path;
2711 int err;
2712
2713 if (!old_name || !*old_name)
2714 return -EINVAL;
2715
2716 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2717 if (err)
2718 return err;
2719
2720 err = do_move_mount(&old_path, path);
2721 path_put(&old_path);
2722 return err;
2723}
2724
2725/*
2726 * add a mount into a namespace's mount tree
2727 */
2728static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2729{
2730 struct mountpoint *mp;
2731 struct mount *parent;
2732 int err;
2733
2734 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2735
2736 mp = lock_mount(path);
2737 if (IS_ERR(mp))
2738 return PTR_ERR(mp);
2739
2740 parent = real_mount(path->mnt);
2741 err = -EINVAL;
2742 if (unlikely(!check_mnt(parent))) {
2743 /* that's acceptable only for automounts done in private ns */
2744 if (!(mnt_flags & MNT_SHRINKABLE))
2745 goto unlock;
2746 /* ... and for those we'd better have mountpoint still alive */
2747 if (!parent->mnt_ns)
2748 goto unlock;
2749 }
2750
2751 /* Refuse the same filesystem on the same mount point */
2752 err = -EBUSY;
2753 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2754 path->mnt->mnt_root == path->dentry)
2755 goto unlock;
2756
2757 err = -EINVAL;
2758 if (d_is_symlink(newmnt->mnt.mnt_root))
2759 goto unlock;
2760
2761 newmnt->mnt.mnt_flags = mnt_flags;
2762 err = graft_tree(newmnt, parent, mp);
2763
2764unlock:
2765 unlock_mount(mp);
2766 return err;
2767}
2768
2769static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2770
2771/*
2772 * Create a new mount using a superblock configuration and request it
2773 * be added to the namespace tree.
2774 */
2775static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2776 unsigned int mnt_flags)
2777{
2778 struct vfsmount *mnt;
2779 struct super_block *sb = fc->root->d_sb;
2780 int error;
2781
2782 error = security_sb_kern_mount(sb);
2783 if (!error && mount_too_revealing(sb, &mnt_flags))
2784 error = -EPERM;
2785
2786 if (unlikely(error)) {
2787 fc_drop_locked(fc);
2788 return error;
2789 }
2790
2791 up_write(&sb->s_umount);
2792
2793 mnt = vfs_create_mount(fc);
2794 if (IS_ERR(mnt))
2795 return PTR_ERR(mnt);
2796
2797 mnt_warn_timestamp_expiry(mountpoint, mnt);
2798
2799 error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags);
2800 if (error < 0)
2801 mntput(mnt);
2802 return error;
2803}
2804
2805/*
2806 * create a new mount for userspace and request it to be added into the
2807 * namespace's tree
2808 */
2809static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2810 int mnt_flags, const char *name, void *data)
2811{
2812 struct file_system_type *type;
2813 struct fs_context *fc;
2814 const char *subtype = NULL;
2815 int err = 0;
2816
2817 if (!fstype)
2818 return -EINVAL;
2819
2820 type = get_fs_type(fstype);
2821 if (!type)
2822 return -ENODEV;
2823
2824 if (type->fs_flags & FS_HAS_SUBTYPE) {
2825 subtype = strchr(fstype, '.');
2826 if (subtype) {
2827 subtype++;
2828 if (!*subtype) {
2829 put_filesystem(type);
2830 return -EINVAL;
2831 }
2832 }
2833 }
2834
2835 fc = fs_context_for_mount(type, sb_flags);
2836 put_filesystem(type);
2837 if (IS_ERR(fc))
2838 return PTR_ERR(fc);
2839
2840 if (subtype)
2841 err = vfs_parse_fs_string(fc, "subtype",
2842 subtype, strlen(subtype));
2843 if (!err && name)
2844 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2845 if (!err)
2846 err = parse_monolithic_mount_data(fc, data);
2847 if (!err && !mount_capable(fc))
2848 err = -EPERM;
2849 if (!err)
2850 err = vfs_get_tree(fc);
2851 if (!err)
2852 err = do_new_mount_fc(fc, path, mnt_flags);
2853
2854 put_fs_context(fc);
2855 return err;
2856}
2857
2858int finish_automount(struct vfsmount *m, struct path *path)
2859{
2860 struct mount *mnt = real_mount(m);
2861 int err;
2862 /* The new mount record should have at least 2 refs to prevent it being
2863 * expired before we get a chance to add it
2864 */
2865 BUG_ON(mnt_get_count(mnt) < 2);
2866
2867 if (m->mnt_sb == path->mnt->mnt_sb &&
2868 m->mnt_root == path->dentry) {
2869 err = -ELOOP;
2870 goto fail;
2871 }
2872
2873 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2874 if (!err)
2875 return 0;
2876fail:
2877 /* remove m from any expiration list it may be on */
2878 if (!list_empty(&mnt->mnt_expire)) {
2879 namespace_lock();
2880 list_del_init(&mnt->mnt_expire);
2881 namespace_unlock();
2882 }
2883 mntput(m);
2884 mntput(m);
2885 return err;
2886}
2887
2888/**
2889 * mnt_set_expiry - Put a mount on an expiration list
2890 * @mnt: The mount to list.
2891 * @expiry_list: The list to add the mount to.
2892 */
2893void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2894{
2895 namespace_lock();
2896
2897 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2898
2899 namespace_unlock();
2900}
2901EXPORT_SYMBOL(mnt_set_expiry);
2902
2903/*
2904 * process a list of expirable mountpoints with the intent of discarding any
2905 * mountpoints that aren't in use and haven't been touched since last we came
2906 * here
2907 */
2908void mark_mounts_for_expiry(struct list_head *mounts)
2909{
2910 struct mount *mnt, *next;
2911 LIST_HEAD(graveyard);
2912
2913 if (list_empty(mounts))
2914 return;
2915
2916 namespace_lock();
2917 lock_mount_hash();
2918
2919 /* extract from the expiration list every vfsmount that matches the
2920 * following criteria:
2921 * - only referenced by its parent vfsmount
2922 * - still marked for expiry (marked on the last call here; marks are
2923 * cleared by mntput())
2924 */
2925 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2926 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2927 propagate_mount_busy(mnt, 1))
2928 continue;
2929 list_move(&mnt->mnt_expire, &graveyard);
2930 }
2931 while (!list_empty(&graveyard)) {
2932 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2933 touch_mnt_namespace(mnt->mnt_ns);
2934 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2935 }
2936 unlock_mount_hash();
2937 namespace_unlock();
2938}
2939
2940EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2941
2942/*
2943 * Ripoff of 'select_parent()'
2944 *
2945 * search the list of submounts for a given mountpoint, and move any
2946 * shrinkable submounts to the 'graveyard' list.
2947 */
2948static int select_submounts(struct mount *parent, struct list_head *graveyard)
2949{
2950 struct mount *this_parent = parent;
2951 struct list_head *next;
2952 int found = 0;
2953
2954repeat:
2955 next = this_parent->mnt_mounts.next;
2956resume:
2957 while (next != &this_parent->mnt_mounts) {
2958 struct list_head *tmp = next;
2959 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2960
2961 next = tmp->next;
2962 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2963 continue;
2964 /*
2965 * Descend a level if the d_mounts list is non-empty.
2966 */
2967 if (!list_empty(&mnt->mnt_mounts)) {
2968 this_parent = mnt;
2969 goto repeat;
2970 }
2971
2972 if (!propagate_mount_busy(mnt, 1)) {
2973 list_move_tail(&mnt->mnt_expire, graveyard);
2974 found++;
2975 }
2976 }
2977 /*
2978 * All done at this level ... ascend and resume the search
2979 */
2980 if (this_parent != parent) {
2981 next = this_parent->mnt_child.next;
2982 this_parent = this_parent->mnt_parent;
2983 goto resume;
2984 }
2985 return found;
2986}
2987
2988/*
2989 * process a list of expirable mountpoints with the intent of discarding any
2990 * submounts of a specific parent mountpoint
2991 *
2992 * mount_lock must be held for write
2993 */
2994static void shrink_submounts(struct mount *mnt)
2995{
2996 LIST_HEAD(graveyard);
2997 struct mount *m;
2998
2999 /* extract submounts of 'mountpoint' from the expiration list */
3000 while (select_submounts(mnt, &graveyard)) {
3001 while (!list_empty(&graveyard)) {
3002 m = list_first_entry(&graveyard, struct mount,
3003 mnt_expire);
3004 touch_mnt_namespace(m->mnt_ns);
3005 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3006 }
3007 }
3008}
3009
3010/*
3011 * Some copy_from_user() implementations do not return the exact number of
3012 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
3013 * Note that this function differs from copy_from_user() in that it will oops
3014 * on bad values of `to', rather than returning a short copy.
3015 */
3016static long exact_copy_from_user(void *to, const void __user * from,
3017 unsigned long n)
3018{
3019 char *t = to;
3020 const char __user *f = from;
3021 char c;
3022
3023 if (!access_ok(from, n))
3024 return n;
3025
3026 while (n) {
3027 if (__get_user(c, f)) {
3028 memset(t, 0, n);
3029 break;
3030 }
3031 *t++ = c;
3032 f++;
3033 n--;
3034 }
3035 return n;
3036}
3037
3038void *copy_mount_options(const void __user * data)
3039{
3040 int i;
3041 unsigned long size;
3042 char *copy;
3043
3044 if (!data)
3045 return NULL;
3046
3047 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3048 if (!copy)
3049 return ERR_PTR(-ENOMEM);
3050
3051 /* We only care that *some* data at the address the user
3052 * gave us is valid. Just in case, we'll zero
3053 * the remainder of the page.
3054 */
3055 /* copy_from_user cannot cross TASK_SIZE ! */
3056 size = TASK_SIZE - (unsigned long)untagged_addr(data);
3057 if (size > PAGE_SIZE)
3058 size = PAGE_SIZE;
3059
3060 i = size - exact_copy_from_user(copy, data, size);
3061 if (!i) {
3062 kfree(copy);
3063 return ERR_PTR(-EFAULT);
3064 }
3065 if (i != PAGE_SIZE)
3066 memset(copy + i, 0, PAGE_SIZE - i);
3067 return copy;
3068}
3069
3070char *copy_mount_string(const void __user *data)
3071{
3072 return data ? strndup_user(data, PATH_MAX) : NULL;
3073}
3074
3075/*
3076 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3077 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3078 *
3079 * data is a (void *) that can point to any structure up to
3080 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3081 * information (or be NULL).
3082 *
3083 * Pre-0.97 versions of mount() didn't have a flags word.
3084 * When the flags word was introduced its top half was required
3085 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3086 * Therefore, if this magic number is present, it carries no information
3087 * and must be discarded.
3088 */
3089long do_mount(const char *dev_name, const char __user *dir_name,
3090 const char *type_page, unsigned long flags, void *data_page)
3091{
3092 struct path path;
3093 unsigned int mnt_flags = 0, sb_flags;
3094 int retval = 0;
3095
3096 /* Discard magic */
3097 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3098 flags &= ~MS_MGC_MSK;
3099
3100 /* Basic sanity checks */
3101 if (data_page)
3102 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3103
3104 if (flags & MS_NOUSER)
3105 return -EINVAL;
3106
3107 /* ... and get the mountpoint */
3108 retval = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3109 if (retval)
3110 return retval;
3111
3112 retval = security_sb_mount(dev_name, &path,
3113 type_page, flags, data_page);
3114 if (!retval && !may_mount())
3115 retval = -EPERM;
3116 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
3117 retval = -EPERM;
3118 if (retval)
3119 goto dput_out;
3120
3121 /* Default to relatime unless overriden */
3122 if (!(flags & MS_NOATIME))
3123 mnt_flags |= MNT_RELATIME;
3124
3125 /* Separate the per-mountpoint flags */
3126 if (flags & MS_NOSUID)
3127 mnt_flags |= MNT_NOSUID;
3128 if (flags & MS_NODEV)
3129 mnt_flags |= MNT_NODEV;
3130 if (flags & MS_NOEXEC)
3131 mnt_flags |= MNT_NOEXEC;
3132 if (flags & MS_NOATIME)
3133 mnt_flags |= MNT_NOATIME;
3134 if (flags & MS_NODIRATIME)
3135 mnt_flags |= MNT_NODIRATIME;
3136 if (flags & MS_STRICTATIME)
3137 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3138 if (flags & MS_RDONLY)
3139 mnt_flags |= MNT_READONLY;
3140
3141 /* The default atime for remount is preservation */
3142 if ((flags & MS_REMOUNT) &&
3143 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3144 MS_STRICTATIME)) == 0)) {
3145 mnt_flags &= ~MNT_ATIME_MASK;
3146 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
3147 }
3148
3149 sb_flags = flags & (SB_RDONLY |
3150 SB_SYNCHRONOUS |
3151 SB_MANDLOCK |
3152 SB_DIRSYNC |
3153 SB_SILENT |
3154 SB_POSIXACL |
3155 SB_LAZYTIME |
3156 SB_I_VERSION);
3157
3158 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3159 retval = do_reconfigure_mnt(&path, mnt_flags);
3160 else if (flags & MS_REMOUNT)
3161 retval = do_remount(&path, flags, sb_flags, mnt_flags,
3162 data_page);
3163 else if (flags & MS_BIND)
3164 retval = do_loopback(&path, dev_name, flags & MS_REC);
3165 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3166 retval = do_change_type(&path, flags);
3167 else if (flags & MS_MOVE)
3168 retval = do_move_mount_old(&path, dev_name);
3169 else
3170 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
3171 dev_name, data_page);
3172dput_out:
3173 path_put(&path);
3174 return retval;
3175}
3176
3177static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3178{
3179 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3180}
3181
3182static void dec_mnt_namespaces(struct ucounts *ucounts)
3183{
3184 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3185}
3186
3187static void free_mnt_ns(struct mnt_namespace *ns)
3188{
3189 if (!is_anon_ns(ns))
3190 ns_free_inum(&ns->ns);
3191 dec_mnt_namespaces(ns->ucounts);
3192 put_user_ns(ns->user_ns);
3193 kfree(ns);
3194}
3195
3196/*
3197 * Assign a sequence number so we can detect when we attempt to bind
3198 * mount a reference to an older mount namespace into the current
3199 * mount namespace, preventing reference counting loops. A 64bit
3200 * number incrementing at 10Ghz will take 12,427 years to wrap which
3201 * is effectively never, so we can ignore the possibility.
3202 */
3203static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3204
3205static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3206{
3207 struct mnt_namespace *new_ns;
3208 struct ucounts *ucounts;
3209 int ret;
3210
3211 ucounts = inc_mnt_namespaces(user_ns);
3212 if (!ucounts)
3213 return ERR_PTR(-ENOSPC);
3214
3215 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3216 if (!new_ns) {
3217 dec_mnt_namespaces(ucounts);
3218 return ERR_PTR(-ENOMEM);
3219 }
3220 if (!anon) {
3221 ret = ns_alloc_inum(&new_ns->ns);
3222 if (ret) {
3223 kfree(new_ns);
3224 dec_mnt_namespaces(ucounts);
3225 return ERR_PTR(ret);
3226 }
3227 }
3228 new_ns->ns.ops = &mntns_operations;
3229 if (!anon)
3230 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3231 atomic_set(&new_ns->count, 1);
3232 INIT_LIST_HEAD(&new_ns->list);
3233 init_waitqueue_head(&new_ns->poll);
3234 new_ns->user_ns = get_user_ns(user_ns);
3235 new_ns->ucounts = ucounts;
3236 return new_ns;
3237}
3238
3239__latent_entropy
3240struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3241 struct user_namespace *user_ns, struct fs_struct *new_fs)
3242{
3243 struct mnt_namespace *new_ns;
3244 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3245 struct mount *p, *q;
3246 struct mount *old;
3247 struct mount *new;
3248 int copy_flags;
3249
3250 BUG_ON(!ns);
3251
3252 if (likely(!(flags & CLONE_NEWNS))) {
3253 get_mnt_ns(ns);
3254 return ns;
3255 }
3256
3257 old = ns->root;
3258
3259 new_ns = alloc_mnt_ns(user_ns, false);
3260 if (IS_ERR(new_ns))
3261 return new_ns;
3262
3263 namespace_lock();
3264 /* First pass: copy the tree topology */
3265 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3266 if (user_ns != ns->user_ns)
3267 copy_flags |= CL_SHARED_TO_SLAVE;
3268 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3269 if (IS_ERR(new)) {
3270 namespace_unlock();
3271 free_mnt_ns(new_ns);
3272 return ERR_CAST(new);
3273 }
3274 if (user_ns != ns->user_ns) {
3275 lock_mount_hash();
3276 lock_mnt_tree(new);
3277 unlock_mount_hash();
3278 }
3279 new_ns->root = new;
3280 list_add_tail(&new_ns->list, &new->mnt_list);
3281
3282 /*
3283 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3284 * as belonging to new namespace. We have already acquired a private
3285 * fs_struct, so tsk->fs->lock is not needed.
3286 */
3287 p = old;
3288 q = new;
3289 while (p) {
3290 q->mnt_ns = new_ns;
3291 new_ns->mounts++;
3292 if (new_fs) {
3293 if (&p->mnt == new_fs->root.mnt) {
3294 new_fs->root.mnt = mntget(&q->mnt);
3295 rootmnt = &p->mnt;
3296 }
3297 if (&p->mnt == new_fs->pwd.mnt) {
3298 new_fs->pwd.mnt = mntget(&q->mnt);
3299 pwdmnt = &p->mnt;
3300 }
3301 }
3302 p = next_mnt(p, old);
3303 q = next_mnt(q, new);
3304 if (!q)
3305 break;
3306 while (p->mnt.mnt_root != q->mnt.mnt_root)
3307 p = next_mnt(p, old);
3308 }
3309 namespace_unlock();
3310
3311 if (rootmnt)
3312 mntput(rootmnt);
3313 if (pwdmnt)
3314 mntput(pwdmnt);
3315
3316 return new_ns;
3317}
3318
3319struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3320{
3321 struct mount *mnt = real_mount(m);
3322 struct mnt_namespace *ns;
3323 struct super_block *s;
3324 struct path path;
3325 int err;
3326
3327 ns = alloc_mnt_ns(&init_user_ns, true);
3328 if (IS_ERR(ns)) {
3329 mntput(m);
3330 return ERR_CAST(ns);
3331 }
3332 mnt->mnt_ns = ns;
3333 ns->root = mnt;
3334 ns->mounts++;
3335 list_add(&mnt->mnt_list, &ns->list);
3336
3337 err = vfs_path_lookup(m->mnt_root, m,
3338 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3339
3340 put_mnt_ns(ns);
3341
3342 if (err)
3343 return ERR_PTR(err);
3344
3345 /* trade a vfsmount reference for active sb one */
3346 s = path.mnt->mnt_sb;
3347 atomic_inc(&s->s_active);
3348 mntput(path.mnt);
3349 /* lock the sucker */
3350 down_write(&s->s_umount);
3351 /* ... and return the root of (sub)tree on it */
3352 return path.dentry;
3353}
3354EXPORT_SYMBOL(mount_subtree);
3355
3356int ksys_mount(const char __user *dev_name, const char __user *dir_name,
3357 const char __user *type, unsigned long flags, void __user *data)
3358{
3359 int ret;
3360 char *kernel_type;
3361 char *kernel_dev;
3362 void *options;
3363
3364 kernel_type = copy_mount_string(type);
3365 ret = PTR_ERR(kernel_type);
3366 if (IS_ERR(kernel_type))
3367 goto out_type;
3368
3369 kernel_dev = copy_mount_string(dev_name);
3370 ret = PTR_ERR(kernel_dev);
3371 if (IS_ERR(kernel_dev))
3372 goto out_dev;
3373
3374 options = copy_mount_options(data);
3375 ret = PTR_ERR(options);
3376 if (IS_ERR(options))
3377 goto out_data;
3378
3379 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3380
3381 kfree(options);
3382out_data:
3383 kfree(kernel_dev);
3384out_dev:
3385 kfree(kernel_type);
3386out_type:
3387 return ret;
3388}
3389
3390SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3391 char __user *, type, unsigned long, flags, void __user *, data)
3392{
3393 return ksys_mount(dev_name, dir_name, type, flags, data);
3394}
3395
3396/*
3397 * Create a kernel mount representation for a new, prepared superblock
3398 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3399 */
3400SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3401 unsigned int, attr_flags)
3402{
3403 struct mnt_namespace *ns;
3404 struct fs_context *fc;
3405 struct file *file;
3406 struct path newmount;
3407 struct mount *mnt;
3408 struct fd f;
3409 unsigned int mnt_flags = 0;
3410 long ret;
3411
3412 if (!may_mount())
3413 return -EPERM;
3414
3415 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3416 return -EINVAL;
3417
3418 if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3419 MOUNT_ATTR_NOSUID |
3420 MOUNT_ATTR_NODEV |
3421 MOUNT_ATTR_NOEXEC |
3422 MOUNT_ATTR__ATIME |
3423 MOUNT_ATTR_NODIRATIME))
3424 return -EINVAL;
3425
3426 if (attr_flags & MOUNT_ATTR_RDONLY)
3427 mnt_flags |= MNT_READONLY;
3428 if (attr_flags & MOUNT_ATTR_NOSUID)
3429 mnt_flags |= MNT_NOSUID;
3430 if (attr_flags & MOUNT_ATTR_NODEV)
3431 mnt_flags |= MNT_NODEV;
3432 if (attr_flags & MOUNT_ATTR_NOEXEC)
3433 mnt_flags |= MNT_NOEXEC;
3434 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3435 mnt_flags |= MNT_NODIRATIME;
3436
3437 switch (attr_flags & MOUNT_ATTR__ATIME) {
3438 case MOUNT_ATTR_STRICTATIME:
3439 break;
3440 case MOUNT_ATTR_NOATIME:
3441 mnt_flags |= MNT_NOATIME;
3442 break;
3443 case MOUNT_ATTR_RELATIME:
3444 mnt_flags |= MNT_RELATIME;
3445 break;
3446 default:
3447 return -EINVAL;
3448 }
3449
3450 f = fdget(fs_fd);
3451 if (!f.file)
3452 return -EBADF;
3453
3454 ret = -EINVAL;
3455 if (f.file->f_op != &fscontext_fops)
3456 goto err_fsfd;
3457
3458 fc = f.file->private_data;
3459
3460 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3461 if (ret < 0)
3462 goto err_fsfd;
3463
3464 /* There must be a valid superblock or we can't mount it */
3465 ret = -EINVAL;
3466 if (!fc->root)
3467 goto err_unlock;
3468
3469 ret = -EPERM;
3470 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3471 pr_warn("VFS: Mount too revealing\n");
3472 goto err_unlock;
3473 }
3474
3475 ret = -EBUSY;
3476 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3477 goto err_unlock;
3478
3479 ret = -EPERM;
3480 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3481 goto err_unlock;
3482
3483 newmount.mnt = vfs_create_mount(fc);
3484 if (IS_ERR(newmount.mnt)) {
3485 ret = PTR_ERR(newmount.mnt);
3486 goto err_unlock;
3487 }
3488 newmount.dentry = dget(fc->root);
3489 newmount.mnt->mnt_flags = mnt_flags;
3490
3491 /* We've done the mount bit - now move the file context into more or
3492 * less the same state as if we'd done an fspick(). We don't want to
3493 * do any memory allocation or anything like that at this point as we
3494 * don't want to have to handle any errors incurred.
3495 */
3496 vfs_clean_context(fc);
3497
3498 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3499 if (IS_ERR(ns)) {
3500 ret = PTR_ERR(ns);
3501 goto err_path;
3502 }
3503 mnt = real_mount(newmount.mnt);
3504 mnt->mnt_ns = ns;
3505 ns->root = mnt;
3506 ns->mounts = 1;
3507 list_add(&mnt->mnt_list, &ns->list);
3508 mntget(newmount.mnt);
3509
3510 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3511 * it, not just simply put it.
3512 */
3513 file = dentry_open(&newmount, O_PATH, fc->cred);
3514 if (IS_ERR(file)) {
3515 dissolve_on_fput(newmount.mnt);
3516 ret = PTR_ERR(file);
3517 goto err_path;
3518 }
3519 file->f_mode |= FMODE_NEED_UNMOUNT;
3520
3521 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3522 if (ret >= 0)
3523 fd_install(ret, file);
3524 else
3525 fput(file);
3526
3527err_path:
3528 path_put(&newmount);
3529err_unlock:
3530 mutex_unlock(&fc->uapi_mutex);
3531err_fsfd:
3532 fdput(f);
3533 return ret;
3534}
3535
3536/*
3537 * Move a mount from one place to another. In combination with
3538 * fsopen()/fsmount() this is used to install a new mount and in combination
3539 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3540 * a mount subtree.
3541 *
3542 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3543 */
3544SYSCALL_DEFINE5(move_mount,
3545 int, from_dfd, const char *, from_pathname,
3546 int, to_dfd, const char *, to_pathname,
3547 unsigned int, flags)
3548{
3549 struct path from_path, to_path;
3550 unsigned int lflags;
3551 int ret = 0;
3552
3553 if (!may_mount())
3554 return -EPERM;
3555
3556 if (flags & ~MOVE_MOUNT__MASK)
3557 return -EINVAL;
3558
3559 /* If someone gives a pathname, they aren't permitted to move
3560 * from an fd that requires unmount as we can't get at the flag
3561 * to clear it afterwards.
3562 */
3563 lflags = 0;
3564 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3565 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3566 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3567
3568 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3569 if (ret < 0)
3570 return ret;
3571
3572 lflags = 0;
3573 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3574 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3575 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3576
3577 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3578 if (ret < 0)
3579 goto out_from;
3580
3581 ret = security_move_mount(&from_path, &to_path);
3582 if (ret < 0)
3583 goto out_to;
3584
3585 ret = do_move_mount(&from_path, &to_path);
3586
3587out_to:
3588 path_put(&to_path);
3589out_from:
3590 path_put(&from_path);
3591 return ret;
3592}
3593
3594/*
3595 * Return true if path is reachable from root
3596 *
3597 * namespace_sem or mount_lock is held
3598 */
3599bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3600 const struct path *root)
3601{
3602 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3603 dentry = mnt->mnt_mountpoint;
3604 mnt = mnt->mnt_parent;
3605 }
3606 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3607}
3608
3609bool path_is_under(const struct path *path1, const struct path *path2)
3610{
3611 bool res;
3612 read_seqlock_excl(&mount_lock);
3613 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3614 read_sequnlock_excl(&mount_lock);
3615 return res;
3616}
3617EXPORT_SYMBOL(path_is_under);
3618
3619/*
3620 * pivot_root Semantics:
3621 * Moves the root file system of the current process to the directory put_old,
3622 * makes new_root as the new root file system of the current process, and sets
3623 * root/cwd of all processes which had them on the current root to new_root.
3624 *
3625 * Restrictions:
3626 * The new_root and put_old must be directories, and must not be on the
3627 * same file system as the current process root. The put_old must be
3628 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3629 * pointed to by put_old must yield the same directory as new_root. No other
3630 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3631 *
3632 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3633 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3634 * in this situation.
3635 *
3636 * Notes:
3637 * - we don't move root/cwd if they are not at the root (reason: if something
3638 * cared enough to change them, it's probably wrong to force them elsewhere)
3639 * - it's okay to pick a root that isn't the root of a file system, e.g.
3640 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3641 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3642 * first.
3643 */
3644SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3645 const char __user *, put_old)
3646{
3647 struct path new, old, root;
3648 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3649 struct mountpoint *old_mp, *root_mp;
3650 int error;
3651
3652 if (!may_mount())
3653 return -EPERM;
3654
3655 error = user_path_at(AT_FDCWD, new_root,
3656 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3657 if (error)
3658 goto out0;
3659
3660 error = user_path_at(AT_FDCWD, put_old,
3661 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3662 if (error)
3663 goto out1;
3664
3665 error = security_sb_pivotroot(&old, &new);
3666 if (error)
3667 goto out2;
3668
3669 get_fs_root(current->fs, &root);
3670 old_mp = lock_mount(&old);
3671 error = PTR_ERR(old_mp);
3672 if (IS_ERR(old_mp))
3673 goto out3;
3674
3675 error = -EINVAL;
3676 new_mnt = real_mount(new.mnt);
3677 root_mnt = real_mount(root.mnt);
3678 old_mnt = real_mount(old.mnt);
3679 ex_parent = new_mnt->mnt_parent;
3680 root_parent = root_mnt->mnt_parent;
3681 if (IS_MNT_SHARED(old_mnt) ||
3682 IS_MNT_SHARED(ex_parent) ||
3683 IS_MNT_SHARED(root_parent))
3684 goto out4;
3685 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3686 goto out4;
3687 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3688 goto out4;
3689 error = -ENOENT;
3690 if (d_unlinked(new.dentry))
3691 goto out4;
3692 error = -EBUSY;
3693 if (new_mnt == root_mnt || old_mnt == root_mnt)
3694 goto out4; /* loop, on the same file system */
3695 error = -EINVAL;
3696 if (root.mnt->mnt_root != root.dentry)
3697 goto out4; /* not a mountpoint */
3698 if (!mnt_has_parent(root_mnt))
3699 goto out4; /* not attached */
3700 if (new.mnt->mnt_root != new.dentry)
3701 goto out4; /* not a mountpoint */
3702 if (!mnt_has_parent(new_mnt))
3703 goto out4; /* not attached */
3704 /* make sure we can reach put_old from new_root */
3705 if (!is_path_reachable(old_mnt, old.dentry, &new))
3706 goto out4;
3707 /* make certain new is below the root */
3708 if (!is_path_reachable(new_mnt, new.dentry, &root))
3709 goto out4;
3710 lock_mount_hash();
3711 umount_mnt(new_mnt);
3712 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
3713 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3714 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3715 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3716 }
3717 /* mount old root on put_old */
3718 attach_mnt(root_mnt, old_mnt, old_mp);
3719 /* mount new_root on / */
3720 attach_mnt(new_mnt, root_parent, root_mp);
3721 mnt_add_count(root_parent, -1);
3722 touch_mnt_namespace(current->nsproxy->mnt_ns);
3723 /* A moved mount should not expire automatically */
3724 list_del_init(&new_mnt->mnt_expire);
3725 put_mountpoint(root_mp);
3726 unlock_mount_hash();
3727 chroot_fs_refs(&root, &new);
3728 error = 0;
3729out4:
3730 unlock_mount(old_mp);
3731 if (!error)
3732 mntput_no_expire(ex_parent);
3733out3:
3734 path_put(&root);
3735out2:
3736 path_put(&old);
3737out1:
3738 path_put(&new);
3739out0:
3740 return error;
3741}
3742
3743static void __init init_mount_tree(void)
3744{
3745 struct vfsmount *mnt;
3746 struct mount *m;
3747 struct mnt_namespace *ns;
3748 struct path root;
3749
3750 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
3751 if (IS_ERR(mnt))
3752 panic("Can't create rootfs");
3753
3754 ns = alloc_mnt_ns(&init_user_ns, false);
3755 if (IS_ERR(ns))
3756 panic("Can't allocate initial namespace");
3757 m = real_mount(mnt);
3758 m->mnt_ns = ns;
3759 ns->root = m;
3760 ns->mounts = 1;
3761 list_add(&m->mnt_list, &ns->list);
3762 init_task.nsproxy->mnt_ns = ns;
3763 get_mnt_ns(ns);
3764
3765 root.mnt = mnt;
3766 root.dentry = mnt->mnt_root;
3767 mnt->mnt_flags |= MNT_LOCKED;
3768
3769 set_fs_pwd(current->fs, &root);
3770 set_fs_root(current->fs, &root);
3771}
3772
3773void __init mnt_init(void)
3774{
3775 int err;
3776
3777 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3778 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3779
3780 mount_hashtable = alloc_large_system_hash("Mount-cache",
3781 sizeof(struct hlist_head),
3782 mhash_entries, 19,
3783 HASH_ZERO,
3784 &m_hash_shift, &m_hash_mask, 0, 0);
3785 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3786 sizeof(struct hlist_head),
3787 mphash_entries, 19,
3788 HASH_ZERO,
3789 &mp_hash_shift, &mp_hash_mask, 0, 0);
3790
3791 if (!mount_hashtable || !mountpoint_hashtable)
3792 panic("Failed to allocate mount hash table\n");
3793
3794 kernfs_init();
3795
3796 err = sysfs_init();
3797 if (err)
3798 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3799 __func__, err);
3800 fs_kobj = kobject_create_and_add("fs", NULL);
3801 if (!fs_kobj)
3802 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3803 shmem_init();
3804 init_rootfs();
3805 init_mount_tree();
3806}
3807
3808void put_mnt_ns(struct mnt_namespace *ns)
3809{
3810 if (!atomic_dec_and_test(&ns->count))
3811 return;
3812 drop_collected_mounts(&ns->root->mnt);
3813 free_mnt_ns(ns);
3814}
3815
3816struct vfsmount *kern_mount(struct file_system_type *type)
3817{
3818 struct vfsmount *mnt;
3819 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
3820 if (!IS_ERR(mnt)) {
3821 /*
3822 * it is a longterm mount, don't release mnt until
3823 * we unmount before file sys is unregistered
3824 */
3825 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3826 }
3827 return mnt;
3828}
3829EXPORT_SYMBOL_GPL(kern_mount);
3830
3831void kern_unmount(struct vfsmount *mnt)
3832{
3833 /* release long term mount so mount point can be released */
3834 if (!IS_ERR_OR_NULL(mnt)) {
3835 real_mount(mnt)->mnt_ns = NULL;
3836 synchronize_rcu(); /* yecchhh... */
3837 mntput(mnt);
3838 }
3839}
3840EXPORT_SYMBOL(kern_unmount);
3841
3842bool our_mnt(struct vfsmount *mnt)
3843{
3844 return check_mnt(real_mount(mnt));
3845}
3846
3847bool current_chrooted(void)
3848{
3849 /* Does the current process have a non-standard root */
3850 struct path ns_root;
3851 struct path fs_root;
3852 bool chrooted;
3853
3854 /* Find the namespace root */
3855 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3856 ns_root.dentry = ns_root.mnt->mnt_root;
3857 path_get(&ns_root);
3858 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3859 ;
3860
3861 get_fs_root(current->fs, &fs_root);
3862
3863 chrooted = !path_equal(&fs_root, &ns_root);
3864
3865 path_put(&fs_root);
3866 path_put(&ns_root);
3867
3868 return chrooted;
3869}
3870
3871static bool mnt_already_visible(struct mnt_namespace *ns,
3872 const struct super_block *sb,
3873 int *new_mnt_flags)
3874{
3875 int new_flags = *new_mnt_flags;
3876 struct mount *mnt;
3877 bool visible = false;
3878
3879 down_read(&namespace_sem);
3880 list_for_each_entry(mnt, &ns->list, mnt_list) {
3881 struct mount *child;
3882 int mnt_flags;
3883
3884 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
3885 continue;
3886
3887 /* This mount is not fully visible if it's root directory
3888 * is not the root directory of the filesystem.
3889 */
3890 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3891 continue;
3892
3893 /* A local view of the mount flags */
3894 mnt_flags = mnt->mnt.mnt_flags;
3895
3896 /* Don't miss readonly hidden in the superblock flags */
3897 if (sb_rdonly(mnt->mnt.mnt_sb))
3898 mnt_flags |= MNT_LOCK_READONLY;
3899
3900 /* Verify the mount flags are equal to or more permissive
3901 * than the proposed new mount.
3902 */
3903 if ((mnt_flags & MNT_LOCK_READONLY) &&
3904 !(new_flags & MNT_READONLY))
3905 continue;
3906 if ((mnt_flags & MNT_LOCK_ATIME) &&
3907 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3908 continue;
3909
3910 /* This mount is not fully visible if there are any
3911 * locked child mounts that cover anything except for
3912 * empty directories.
3913 */
3914 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3915 struct inode *inode = child->mnt_mountpoint->d_inode;
3916 /* Only worry about locked mounts */
3917 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3918 continue;
3919 /* Is the directory permanetly empty? */
3920 if (!is_empty_dir_inode(inode))
3921 goto next;
3922 }
3923 /* Preserve the locked attributes */
3924 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3925 MNT_LOCK_ATIME);
3926 visible = true;
3927 goto found;
3928 next: ;
3929 }
3930found:
3931 up_read(&namespace_sem);
3932 return visible;
3933}
3934
3935static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
3936{
3937 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3938 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3939 unsigned long s_iflags;
3940
3941 if (ns->user_ns == &init_user_ns)
3942 return false;
3943
3944 /* Can this filesystem be too revealing? */
3945 s_iflags = sb->s_iflags;
3946 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3947 return false;
3948
3949 if ((s_iflags & required_iflags) != required_iflags) {
3950 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3951 required_iflags);
3952 return true;
3953 }
3954
3955 return !mnt_already_visible(ns, sb, new_mnt_flags);
3956}
3957
3958bool mnt_may_suid(struct vfsmount *mnt)
3959{
3960 /*
3961 * Foreign mounts (accessed via fchdir or through /proc
3962 * symlinks) are always treated as if they are nosuid. This
3963 * prevents namespaces from trusting potentially unsafe
3964 * suid/sgid bits, file caps, or security labels that originate
3965 * in other namespaces.
3966 */
3967 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3968 current_in_userns(mnt->mnt_sb->s_user_ns);
3969}
3970
3971static struct ns_common *mntns_get(struct task_struct *task)
3972{
3973 struct ns_common *ns = NULL;
3974 struct nsproxy *nsproxy;
3975
3976 task_lock(task);
3977 nsproxy = task->nsproxy;
3978 if (nsproxy) {
3979 ns = &nsproxy->mnt_ns->ns;
3980 get_mnt_ns(to_mnt_ns(ns));
3981 }
3982 task_unlock(task);
3983
3984 return ns;
3985}
3986
3987static void mntns_put(struct ns_common *ns)
3988{
3989 put_mnt_ns(to_mnt_ns(ns));
3990}
3991
3992static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3993{
3994 struct fs_struct *fs = current->fs;
3995 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3996 struct path root;
3997 int err;
3998
3999 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4000 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
4001 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
4002 return -EPERM;
4003
4004 if (is_anon_ns(mnt_ns))
4005 return -EINVAL;
4006
4007 if (fs->users != 1)
4008 return -EINVAL;
4009
4010 get_mnt_ns(mnt_ns);
4011 old_mnt_ns = nsproxy->mnt_ns;
4012 nsproxy->mnt_ns = mnt_ns;
4013
4014 /* Find the root */
4015 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4016 "/", LOOKUP_DOWN, &root);
4017 if (err) {
4018 /* revert to old namespace */
4019 nsproxy->mnt_ns = old_mnt_ns;
4020 put_mnt_ns(mnt_ns);
4021 return err;
4022 }
4023
4024 put_mnt_ns(old_mnt_ns);
4025
4026 /* Update the pwd and root */
4027 set_fs_pwd(fs, &root);
4028 set_fs_root(fs, &root);
4029
4030 path_put(&root);
4031 return 0;
4032}
4033
4034static struct user_namespace *mntns_owner(struct ns_common *ns)
4035{
4036 return to_mnt_ns(ns)->user_ns;
4037}
4038
4039const struct proc_ns_operations mntns_operations = {
4040 .name = "mnt",
4041 .type = CLONE_NEWNS,
4042 .get = mntns_get,
4043 .put = mntns_put,
4044 .install = mntns_install,
4045 .owner = mntns_owner,
4046};