blob: 28ceee102d0b34394a568f2101ec666ccbe0816b [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/nfs/dir.c
4 *
5 * Copyright (C) 1992 Rick Sladkey
6 *
7 * nfs directory handling functions
8 *
9 * 10 Apr 1996 Added silly rename for unlink --okir
10 * 28 Sep 1996 Improved directory cache --okir
11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
12 * Re-implemented silly rename for unlink, newly implemented
13 * silly rename for nfs_rename() following the suggestions
14 * of Olaf Kirch (okir) found in this file.
15 * Following Linus comments on my original hack, this version
16 * depends only on the dcache stuff and doesn't touch the inode
17 * layer (iput() and friends).
18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
19 */
20
21#include <linux/module.h>
22#include <linux/time.h>
23#include <linux/errno.h>
24#include <linux/stat.h>
25#include <linux/fcntl.h>
26#include <linux/string.h>
27#include <linux/kernel.h>
28#include <linux/slab.h>
29#include <linux/mm.h>
30#include <linux/sunrpc/clnt.h>
31#include <linux/nfs_fs.h>
32#include <linux/nfs_mount.h>
33#include <linux/pagemap.h>
34#include <linux/pagevec.h>
35#include <linux/namei.h>
36#include <linux/mount.h>
37#include <linux/swap.h>
38#include <linux/sched.h>
39#include <linux/kmemleak.h>
40#include <linux/xattr.h>
41
42#include "delegation.h"
43#include "iostat.h"
44#include "internal.h"
45#include "fscache.h"
46
47#include "nfstrace.h"
48
49/* #define NFS_DEBUG_VERBOSE 1 */
50
51static int nfs_opendir(struct inode *, struct file *);
52static int nfs_closedir(struct inode *, struct file *);
53static int nfs_readdir(struct file *, struct dir_context *);
54static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56static void nfs_readdir_clear_array(struct page*);
57
58const struct file_operations nfs_dir_operations = {
59 .llseek = nfs_llseek_dir,
60 .read = generic_read_dir,
61 .iterate = nfs_readdir,
62 .open = nfs_opendir,
63 .release = nfs_closedir,
64 .fsync = nfs_fsync_dir,
65};
66
67const struct address_space_operations nfs_dir_aops = {
68 .freepage = nfs_readdir_clear_array,
69};
70
71static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
72{
73 struct nfs_inode *nfsi = NFS_I(dir);
74 struct nfs_open_dir_context *ctx;
75 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 if (ctx != NULL) {
77 ctx->duped = 0;
78 ctx->attr_gencount = nfsi->attr_gencount;
79 ctx->dir_cookie = 0;
80 ctx->dup_cookie = 0;
81 ctx->cred = get_cred(cred);
82 spin_lock(&dir->i_lock);
83 if (list_empty(&nfsi->open_files) &&
84 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
85 nfsi->cache_validity |= NFS_INO_INVALID_DATA |
86 NFS_INO_REVAL_FORCED;
87 list_add(&ctx->list, &nfsi->open_files);
88 spin_unlock(&dir->i_lock);
89 return ctx;
90 }
91 return ERR_PTR(-ENOMEM);
92}
93
94static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
95{
96 spin_lock(&dir->i_lock);
97 list_del(&ctx->list);
98 spin_unlock(&dir->i_lock);
99 put_cred(ctx->cred);
100 kfree(ctx);
101}
102
103/*
104 * Open file
105 */
106static int
107nfs_opendir(struct inode *inode, struct file *filp)
108{
109 int res = 0;
110 struct nfs_open_dir_context *ctx;
111
112 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
113
114 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
115
116 ctx = alloc_nfs_open_dir_context(inode, current_cred());
117 if (IS_ERR(ctx)) {
118 res = PTR_ERR(ctx);
119 goto out;
120 }
121 filp->private_data = ctx;
122out:
123 return res;
124}
125
126static int
127nfs_closedir(struct inode *inode, struct file *filp)
128{
129 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
130 return 0;
131}
132
133struct nfs_cache_array_entry {
134 u64 cookie;
135 u64 ino;
136 struct qstr string;
137 unsigned char d_type;
138};
139
140struct nfs_cache_array {
141 int size;
142 int eof_index;
143 u64 last_cookie;
144 struct nfs_cache_array_entry array[0];
145};
146
147typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool);
148typedef struct {
149 struct file *file;
150 struct page *page;
151 struct dir_context *ctx;
152 unsigned long page_index;
153 u64 *dir_cookie;
154 u64 last_cookie;
155 loff_t current_index;
156 decode_dirent_t decode;
157
158 unsigned long timestamp;
159 unsigned long gencount;
160 unsigned int cache_entry_index;
161 bool plus;
162 bool eof;
163} nfs_readdir_descriptor_t;
164
165static
166void nfs_readdir_init_array(struct page *page)
167{
168 struct nfs_cache_array *array;
169
170 array = kmap_atomic(page);
171 memset(array, 0, sizeof(struct nfs_cache_array));
172 array->eof_index = -1;
173 kunmap_atomic(array);
174}
175
176/*
177 * we are freeing strings created by nfs_add_to_readdir_array()
178 */
179static
180void nfs_readdir_clear_array(struct page *page)
181{
182 struct nfs_cache_array *array;
183 int i;
184
185 array = kmap_atomic(page);
186 for (i = 0; i < array->size; i++)
187 kfree(array->array[i].string.name);
188 array->size = 0;
189 kunmap_atomic(array);
190}
191
192/*
193 * the caller is responsible for freeing qstr.name
194 * when called by nfs_readdir_add_to_array, the strings will be freed in
195 * nfs_clear_readdir_array()
196 */
197static
198int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
199{
200 string->len = len;
201 string->name = kmemdup(name, len, GFP_KERNEL);
202 if (string->name == NULL)
203 return -ENOMEM;
204 /*
205 * Avoid a kmemleak false positive. The pointer to the name is stored
206 * in a page cache page which kmemleak does not scan.
207 */
208 kmemleak_not_leak(string->name);
209 string->hash = full_name_hash(NULL, name, len);
210 return 0;
211}
212
213static
214int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
215{
216 struct nfs_cache_array *array = kmap(page);
217 struct nfs_cache_array_entry *cache_entry;
218 int ret;
219
220 cache_entry = &array->array[array->size];
221
222 /* Check that this entry lies within the page bounds */
223 ret = -ENOSPC;
224 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
225 goto out;
226
227 cache_entry->cookie = entry->prev_cookie;
228 cache_entry->ino = entry->ino;
229 cache_entry->d_type = entry->d_type;
230 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
231 if (ret)
232 goto out;
233 array->last_cookie = entry->cookie;
234 array->size++;
235 if (entry->eof != 0)
236 array->eof_index = array->size;
237out:
238 kunmap(page);
239 return ret;
240}
241
242static
243int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
244{
245 loff_t diff = desc->ctx->pos - desc->current_index;
246 unsigned int index;
247
248 if (diff < 0)
249 goto out_eof;
250 if (diff >= array->size) {
251 if (array->eof_index >= 0)
252 goto out_eof;
253 return -EAGAIN;
254 }
255
256 index = (unsigned int)diff;
257 *desc->dir_cookie = array->array[index].cookie;
258 desc->cache_entry_index = index;
259 return 0;
260out_eof:
261 desc->eof = true;
262 return -EBADCOOKIE;
263}
264
265static bool
266nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
267{
268 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
269 return false;
270 smp_rmb();
271 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
272}
273
274static
275int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
276{
277 int i;
278 loff_t new_pos;
279 int status = -EAGAIN;
280
281 for (i = 0; i < array->size; i++) {
282 if (array->array[i].cookie == *desc->dir_cookie) {
283 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
284 struct nfs_open_dir_context *ctx = desc->file->private_data;
285
286 new_pos = desc->current_index + i;
287 if (ctx->attr_gencount != nfsi->attr_gencount ||
288 !nfs_readdir_inode_mapping_valid(nfsi)) {
289 ctx->duped = 0;
290 ctx->attr_gencount = nfsi->attr_gencount;
291 } else if (new_pos < desc->ctx->pos) {
292 if (ctx->duped > 0
293 && ctx->dup_cookie == *desc->dir_cookie) {
294 if (printk_ratelimit()) {
295 pr_notice("NFS: directory %pD2 contains a readdir loop."
296 "Please contact your server vendor. "
297 "The file: %.*s has duplicate cookie %llu\n",
298 desc->file, array->array[i].string.len,
299 array->array[i].string.name, *desc->dir_cookie);
300 }
301 status = -ELOOP;
302 goto out;
303 }
304 ctx->dup_cookie = *desc->dir_cookie;
305 ctx->duped = -1;
306 }
307 desc->ctx->pos = new_pos;
308 desc->cache_entry_index = i;
309 return 0;
310 }
311 }
312 if (array->eof_index >= 0) {
313 status = -EBADCOOKIE;
314 if (*desc->dir_cookie == array->last_cookie)
315 desc->eof = true;
316 }
317out:
318 return status;
319}
320
321static
322int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
323{
324 struct nfs_cache_array *array;
325 int status;
326
327 array = kmap(desc->page);
328
329 if (*desc->dir_cookie == 0)
330 status = nfs_readdir_search_for_pos(array, desc);
331 else
332 status = nfs_readdir_search_for_cookie(array, desc);
333
334 if (status == -EAGAIN) {
335 desc->last_cookie = array->last_cookie;
336 desc->current_index += array->size;
337 desc->page_index++;
338 }
339 kunmap(desc->page);
340 return status;
341}
342
343/* Fill a page with xdr information before transferring to the cache page */
344static
345int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
346 struct nfs_entry *entry, struct file *file, struct inode *inode)
347{
348 struct nfs_open_dir_context *ctx = file->private_data;
349 const struct cred *cred = ctx->cred;
350 unsigned long timestamp, gencount;
351 int error;
352
353 again:
354 timestamp = jiffies;
355 gencount = nfs_inc_attr_generation_counter();
356 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
357 NFS_SERVER(inode)->dtsize, desc->plus);
358 if (error < 0) {
359 /* We requested READDIRPLUS, but the server doesn't grok it */
360 if (error == -ENOTSUPP && desc->plus) {
361 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
362 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
363 desc->plus = false;
364 goto again;
365 }
366 goto error;
367 }
368 desc->timestamp = timestamp;
369 desc->gencount = gencount;
370error:
371 return error;
372}
373
374static int xdr_decode(nfs_readdir_descriptor_t *desc,
375 struct nfs_entry *entry, struct xdr_stream *xdr)
376{
377 int error;
378
379 error = desc->decode(xdr, entry, desc->plus);
380 if (error)
381 return error;
382 entry->fattr->time_start = desc->timestamp;
383 entry->fattr->gencount = desc->gencount;
384 return 0;
385}
386
387/* Match file and dirent using either filehandle or fileid
388 * Note: caller is responsible for checking the fsid
389 */
390static
391int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
392{
393 struct inode *inode;
394 struct nfs_inode *nfsi;
395
396 if (d_really_is_negative(dentry))
397 return 0;
398
399 inode = d_inode(dentry);
400 if (is_bad_inode(inode) || NFS_STALE(inode))
401 return 0;
402
403 nfsi = NFS_I(inode);
404 if (entry->fattr->fileid != nfsi->fileid)
405 return 0;
406 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
407 return 0;
408 return 1;
409}
410
411static
412bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
413{
414 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
415 return false;
416 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
417 return true;
418 if (ctx->pos == 0)
419 return true;
420 return false;
421}
422
423/*
424 * This function is called by the lookup and getattr code to request the
425 * use of readdirplus to accelerate any future lookups in the same
426 * directory.
427 */
428void nfs_advise_use_readdirplus(struct inode *dir)
429{
430 struct nfs_inode *nfsi = NFS_I(dir);
431
432 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
433 !list_empty(&nfsi->open_files))
434 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
435}
436
437/*
438 * This function is mainly for use by nfs_getattr().
439 *
440 * If this is an 'ls -l', we want to force use of readdirplus.
441 * Do this by checking if there is an active file descriptor
442 * and calling nfs_advise_use_readdirplus, then forcing a
443 * cache flush.
444 */
445void nfs_force_use_readdirplus(struct inode *dir)
446{
447 struct nfs_inode *nfsi = NFS_I(dir);
448
449 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
450 !list_empty(&nfsi->open_files)) {
451 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
452 invalidate_mapping_pages(dir->i_mapping, 0, -1);
453 }
454}
455
456static
457void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
458{
459 struct qstr filename = QSTR_INIT(entry->name, entry->len);
460 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
461 struct dentry *dentry;
462 struct dentry *alias;
463 struct inode *dir = d_inode(parent);
464 struct inode *inode;
465 int status;
466
467 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
468 return;
469 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
470 return;
471 if (filename.len == 0)
472 return;
473 /* Validate that the name doesn't contain any illegal '\0' */
474 if (strnlen(filename.name, filename.len) != filename.len)
475 return;
476 /* ...or '/' */
477 if (strnchr(filename.name, filename.len, '/'))
478 return;
479 if (filename.name[0] == '.') {
480 if (filename.len == 1)
481 return;
482 if (filename.len == 2 && filename.name[1] == '.')
483 return;
484 }
485 filename.hash = full_name_hash(parent, filename.name, filename.len);
486
487 dentry = d_lookup(parent, &filename);
488again:
489 if (!dentry) {
490 dentry = d_alloc_parallel(parent, &filename, &wq);
491 if (IS_ERR(dentry))
492 return;
493 }
494 if (!d_in_lookup(dentry)) {
495 /* Is there a mountpoint here? If so, just exit */
496 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
497 &entry->fattr->fsid))
498 goto out;
499 if (nfs_same_file(dentry, entry)) {
500 if (!entry->fh->size)
501 goto out;
502 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
503 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
504 if (!status)
505 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
506 goto out;
507 } else {
508 d_invalidate(dentry);
509 dput(dentry);
510 dentry = NULL;
511 goto again;
512 }
513 }
514 if (!entry->fh->size) {
515 d_lookup_done(dentry);
516 goto out;
517 }
518
519 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
520 alias = d_splice_alias(inode, dentry);
521 d_lookup_done(dentry);
522 if (alias) {
523 if (IS_ERR(alias))
524 goto out;
525 dput(dentry);
526 dentry = alias;
527 }
528 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
529out:
530 dput(dentry);
531}
532
533/* Perform conversion from xdr to cache array */
534static
535int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
536 struct page **xdr_pages, struct page *page, unsigned int buflen)
537{
538 struct xdr_stream stream;
539 struct xdr_buf buf;
540 struct page *scratch;
541 struct nfs_cache_array *array;
542 unsigned int count = 0;
543 int status;
544
545 scratch = alloc_page(GFP_KERNEL);
546 if (scratch == NULL)
547 return -ENOMEM;
548
549 if (buflen == 0)
550 goto out_nopages;
551
552 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
553 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
554
555 do {
556 if (entry->label)
557 entry->label->len = NFS4_MAXLABELLEN;
558
559 status = xdr_decode(desc, entry, &stream);
560 if (status != 0) {
561 if (status == -EAGAIN)
562 status = 0;
563 break;
564 }
565
566 count++;
567
568 if (desc->plus)
569 nfs_prime_dcache(file_dentry(desc->file), entry);
570
571 status = nfs_readdir_add_to_array(entry, page);
572 if (status != 0)
573 break;
574 } while (!entry->eof);
575
576out_nopages:
577 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
578 array = kmap(page);
579 array->eof_index = array->size;
580 status = 0;
581 kunmap(page);
582 }
583
584 put_page(scratch);
585 return status;
586}
587
588static
589void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
590{
591 unsigned int i;
592 for (i = 0; i < npages; i++)
593 put_page(pages[i]);
594}
595
596/*
597 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
598 * to nfs_readdir_free_pages()
599 */
600static
601int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
602{
603 unsigned int i;
604
605 for (i = 0; i < npages; i++) {
606 struct page *page = alloc_page(GFP_KERNEL);
607 if (page == NULL)
608 goto out_freepages;
609 pages[i] = page;
610 }
611 return 0;
612
613out_freepages:
614 nfs_readdir_free_pages(pages, i);
615 return -ENOMEM;
616}
617
618static
619int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
620{
621 struct page *pages[NFS_MAX_READDIR_PAGES];
622 struct nfs_entry entry;
623 struct file *file = desc->file;
624 struct nfs_cache_array *array;
625 int status = -ENOMEM;
626 unsigned int array_size = ARRAY_SIZE(pages);
627
628 nfs_readdir_init_array(page);
629
630 entry.prev_cookie = 0;
631 entry.cookie = desc->last_cookie;
632 entry.eof = 0;
633 entry.fh = nfs_alloc_fhandle();
634 entry.fattr = nfs_alloc_fattr();
635 entry.server = NFS_SERVER(inode);
636 if (entry.fh == NULL || entry.fattr == NULL)
637 goto out;
638
639 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
640 if (IS_ERR(entry.label)) {
641 status = PTR_ERR(entry.label);
642 goto out;
643 }
644
645 array = kmap(page);
646
647 status = nfs_readdir_alloc_pages(pages, array_size);
648 if (status < 0)
649 goto out_release_array;
650 do {
651 unsigned int pglen;
652 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
653
654 if (status < 0)
655 break;
656 pglen = status;
657 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
658 if (status < 0) {
659 if (status == -ENOSPC)
660 status = 0;
661 break;
662 }
663 } while (array->eof_index < 0);
664
665 nfs_readdir_free_pages(pages, array_size);
666out_release_array:
667 kunmap(page);
668 nfs4_label_free(entry.label);
669out:
670 nfs_free_fattr(entry.fattr);
671 nfs_free_fhandle(entry.fh);
672 return status;
673}
674
675/*
676 * Now we cache directories properly, by converting xdr information
677 * to an array that can be used for lookups later. This results in
678 * fewer cache pages, since we can store more information on each page.
679 * We only need to convert from xdr once so future lookups are much simpler
680 */
681static
682int nfs_readdir_filler(void *data, struct page* page)
683{
684 nfs_readdir_descriptor_t *desc = data;
685 struct inode *inode = file_inode(desc->file);
686 int ret;
687
688 ret = nfs_readdir_xdr_to_array(desc, page, inode);
689 if (ret < 0)
690 goto error;
691 SetPageUptodate(page);
692
693 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
694 /* Should never happen */
695 nfs_zap_mapping(inode, inode->i_mapping);
696 }
697 unlock_page(page);
698 return 0;
699 error:
700 nfs_readdir_clear_array(page);
701 unlock_page(page);
702 return ret;
703}
704
705static
706void cache_page_release(nfs_readdir_descriptor_t *desc)
707{
708 put_page(desc->page);
709 desc->page = NULL;
710}
711
712static
713struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
714{
715 return read_cache_page(desc->file->f_mapping, desc->page_index,
716 nfs_readdir_filler, desc);
717}
718
719/*
720 * Returns 0 if desc->dir_cookie was found on page desc->page_index
721 * and locks the page to prevent removal from the page cache.
722 */
723static
724int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc)
725{
726 int res;
727
728 desc->page = get_cache_page(desc);
729 if (IS_ERR(desc->page))
730 return PTR_ERR(desc->page);
731 res = lock_page_killable(desc->page);
732 if (res != 0)
733 goto error;
734 res = -EAGAIN;
735 if (desc->page->mapping != NULL) {
736 res = nfs_readdir_search_array(desc);
737 if (res == 0)
738 return 0;
739 }
740 unlock_page(desc->page);
741error:
742 cache_page_release(desc);
743 return res;
744}
745
746/* Search for desc->dir_cookie from the beginning of the page cache */
747static inline
748int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
749{
750 int res;
751
752 if (desc->page_index == 0) {
753 desc->current_index = 0;
754 desc->last_cookie = 0;
755 }
756 do {
757 res = find_and_lock_cache_page(desc);
758 } while (res == -EAGAIN);
759 return res;
760}
761
762/*
763 * Once we've found the start of the dirent within a page: fill 'er up...
764 */
765static
766int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
767{
768 struct file *file = desc->file;
769 int i = 0;
770 int res = 0;
771 struct nfs_cache_array *array = NULL;
772 struct nfs_open_dir_context *ctx = file->private_data;
773
774 array = kmap(desc->page);
775 for (i = desc->cache_entry_index; i < array->size; i++) {
776 struct nfs_cache_array_entry *ent;
777
778 ent = &array->array[i];
779 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
780 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
781 desc->eof = true;
782 break;
783 }
784 desc->ctx->pos++;
785 if (i < (array->size-1))
786 *desc->dir_cookie = array->array[i+1].cookie;
787 else
788 *desc->dir_cookie = array->last_cookie;
789 if (ctx->duped != 0)
790 ctx->duped = 1;
791 }
792 if (array->eof_index >= 0)
793 desc->eof = true;
794
795 kunmap(desc->page);
796 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
797 (unsigned long long)*desc->dir_cookie, res);
798 return res;
799}
800
801/*
802 * If we cannot find a cookie in our cache, we suspect that this is
803 * because it points to a deleted file, so we ask the server to return
804 * whatever it thinks is the next entry. We then feed this to filldir.
805 * If all goes well, we should then be able to find our way round the
806 * cache on the next call to readdir_search_pagecache();
807 *
808 * NOTE: we cannot add the anonymous page to the pagecache because
809 * the data it contains might not be page aligned. Besides,
810 * we should already have a complete representation of the
811 * directory in the page cache by the time we get here.
812 */
813static inline
814int uncached_readdir(nfs_readdir_descriptor_t *desc)
815{
816 struct page *page = NULL;
817 int status;
818 struct inode *inode = file_inode(desc->file);
819 struct nfs_open_dir_context *ctx = desc->file->private_data;
820
821 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
822 (unsigned long long)*desc->dir_cookie);
823
824 page = alloc_page(GFP_HIGHUSER);
825 if (!page) {
826 status = -ENOMEM;
827 goto out;
828 }
829
830 desc->page_index = 0;
831 desc->last_cookie = *desc->dir_cookie;
832 desc->page = page;
833 ctx->duped = 0;
834
835 status = nfs_readdir_xdr_to_array(desc, page, inode);
836 if (status < 0)
837 goto out_release;
838
839 status = nfs_do_filldir(desc);
840
841 out_release:
842 nfs_readdir_clear_array(desc->page);
843 cache_page_release(desc);
844 out:
845 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
846 __func__, status);
847 return status;
848}
849
850/* The file offset position represents the dirent entry number. A
851 last cookie cache takes care of the common case of reading the
852 whole directory.
853 */
854static int nfs_readdir(struct file *file, struct dir_context *ctx)
855{
856 struct dentry *dentry = file_dentry(file);
857 struct inode *inode = d_inode(dentry);
858 nfs_readdir_descriptor_t my_desc,
859 *desc = &my_desc;
860 struct nfs_open_dir_context *dir_ctx = file->private_data;
861 int res = 0;
862
863 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
864 file, (long long)ctx->pos);
865 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
866
867 /*
868 * ctx->pos points to the dirent entry number.
869 * *desc->dir_cookie has the cookie for the next entry. We have
870 * to either find the entry with the appropriate number or
871 * revalidate the cookie.
872 */
873 memset(desc, 0, sizeof(*desc));
874
875 desc->file = file;
876 desc->ctx = ctx;
877 desc->dir_cookie = &dir_ctx->dir_cookie;
878 desc->decode = NFS_PROTO(inode)->decode_dirent;
879 desc->plus = nfs_use_readdirplus(inode, ctx);
880
881 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
882 res = nfs_revalidate_mapping(inode, file->f_mapping);
883 if (res < 0)
884 goto out;
885
886 do {
887 res = readdir_search_pagecache(desc);
888
889 if (res == -EBADCOOKIE) {
890 res = 0;
891 /* This means either end of directory */
892 if (*desc->dir_cookie && !desc->eof) {
893 /* Or that the server has 'lost' a cookie */
894 res = uncached_readdir(desc);
895 if (res == 0)
896 continue;
897 }
898 break;
899 }
900 if (res == -ETOOSMALL && desc->plus) {
901 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
902 nfs_zap_caches(inode);
903 desc->page_index = 0;
904 desc->plus = false;
905 desc->eof = false;
906 continue;
907 }
908 if (res < 0)
909 break;
910
911 res = nfs_do_filldir(desc);
912 unlock_page(desc->page);
913 cache_page_release(desc);
914 if (res < 0)
915 break;
916 } while (!desc->eof);
917out:
918 if (res > 0)
919 res = 0;
920 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
921 return res;
922}
923
924static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
925{
926 struct inode *inode = file_inode(filp);
927 struct nfs_open_dir_context *dir_ctx = filp->private_data;
928
929 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
930 filp, offset, whence);
931
932 switch (whence) {
933 default:
934 return -EINVAL;
935 case SEEK_SET:
936 if (offset < 0)
937 return -EINVAL;
938 inode_lock(inode);
939 break;
940 case SEEK_CUR:
941 if (offset == 0)
942 return filp->f_pos;
943 inode_lock(inode);
944 offset += filp->f_pos;
945 if (offset < 0) {
946 inode_unlock(inode);
947 return -EINVAL;
948 }
949 }
950 if (offset != filp->f_pos) {
951 filp->f_pos = offset;
952 dir_ctx->dir_cookie = 0;
953 dir_ctx->duped = 0;
954 }
955 inode_unlock(inode);
956 return offset;
957}
958
959/*
960 * All directory operations under NFS are synchronous, so fsync()
961 * is a dummy operation.
962 */
963static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
964 int datasync)
965{
966 struct inode *inode = file_inode(filp);
967
968 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
969
970 inode_lock(inode);
971 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
972 inode_unlock(inode);
973 return 0;
974}
975
976/**
977 * nfs_force_lookup_revalidate - Mark the directory as having changed
978 * @dir: pointer to directory inode
979 *
980 * This forces the revalidation code in nfs_lookup_revalidate() to do a
981 * full lookup on all child dentries of 'dir' whenever a change occurs
982 * on the server that might have invalidated our dcache.
983 *
984 * The caller should be holding dir->i_lock
985 */
986void nfs_force_lookup_revalidate(struct inode *dir)
987{
988 NFS_I(dir)->cache_change_attribute++;
989}
990EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
991
992/*
993 * A check for whether or not the parent directory has changed.
994 * In the case it has, we assume that the dentries are untrustworthy
995 * and may need to be looked up again.
996 * If rcu_walk prevents us from performing a full check, return 0.
997 */
998static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
999 int rcu_walk)
1000{
1001 if (IS_ROOT(dentry))
1002 return 1;
1003 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1004 return 0;
1005 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1006 return 0;
1007 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1008 if (nfs_mapping_need_revalidate_inode(dir)) {
1009 if (rcu_walk)
1010 return 0;
1011 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1012 return 0;
1013 }
1014 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1015 return 0;
1016 return 1;
1017}
1018
1019/*
1020 * Use intent information to check whether or not we're going to do
1021 * an O_EXCL create using this path component.
1022 */
1023static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1024{
1025 if (NFS_PROTO(dir)->version == 2)
1026 return 0;
1027 return flags & LOOKUP_EXCL;
1028}
1029
1030/*
1031 * Inode and filehandle revalidation for lookups.
1032 *
1033 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1034 * or if the intent information indicates that we're about to open this
1035 * particular file and the "nocto" mount flag is not set.
1036 *
1037 */
1038static
1039int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1040{
1041 struct nfs_server *server = NFS_SERVER(inode);
1042 int ret;
1043
1044 if (IS_AUTOMOUNT(inode))
1045 return 0;
1046
1047 if (flags & LOOKUP_OPEN) {
1048 switch (inode->i_mode & S_IFMT) {
1049 case S_IFREG:
1050 /* A NFSv4 OPEN will revalidate later */
1051 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1052 goto out;
1053 /* Fallthrough */
1054 case S_IFDIR:
1055 if (server->flags & NFS_MOUNT_NOCTO)
1056 break;
1057 /* NFS close-to-open cache consistency validation */
1058 goto out_force;
1059 }
1060 }
1061
1062 /* VFS wants an on-the-wire revalidation */
1063 if (flags & LOOKUP_REVAL)
1064 goto out_force;
1065out:
1066 return (inode->i_nlink == 0) ? -ESTALE : 0;
1067out_force:
1068 if (flags & LOOKUP_RCU)
1069 return -ECHILD;
1070 ret = __nfs_revalidate_inode(server, inode);
1071 if (ret != 0)
1072 return ret;
1073 goto out;
1074}
1075
1076static void nfs_mark_dir_for_revalidate(struct inode *inode)
1077{
1078 struct nfs_inode *nfsi = NFS_I(inode);
1079
1080 spin_lock(&inode->i_lock);
1081 nfsi->cache_validity |= NFS_INO_REVAL_PAGECACHE;
1082 spin_unlock(&inode->i_lock);
1083}
1084
1085/*
1086 * We judge how long we want to trust negative
1087 * dentries by looking at the parent inode mtime.
1088 *
1089 * If parent mtime has changed, we revalidate, else we wait for a
1090 * period corresponding to the parent's attribute cache timeout value.
1091 *
1092 * If LOOKUP_RCU prevents us from performing a full check, return 1
1093 * suggesting a reval is needed.
1094 *
1095 * Note that when creating a new file, or looking up a rename target,
1096 * then it shouldn't be necessary to revalidate a negative dentry.
1097 */
1098static inline
1099int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1100 unsigned int flags)
1101{
1102 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1103 return 0;
1104 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1105 return 1;
1106 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1107}
1108
1109static int
1110nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1111 struct inode *inode, int error)
1112{
1113 switch (error) {
1114 case 1:
1115 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1116 __func__, dentry);
1117 return 1;
1118 case 0:
1119 /*
1120 * We can't d_drop the root of a disconnected tree:
1121 * its d_hash is on the s_anon list and d_drop() would hide
1122 * it from shrink_dcache_for_unmount(), leading to busy
1123 * inodes on unmount and further oopses.
1124 */
1125 if (inode && IS_ROOT(dentry))
1126 return 1;
1127 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1128 __func__, dentry);
1129 return 0;
1130 }
1131 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1132 __func__, dentry, error);
1133 return error;
1134}
1135
1136static int
1137nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1138 unsigned int flags)
1139{
1140 int ret = 1;
1141 if (nfs_neg_need_reval(dir, dentry, flags)) {
1142 if (flags & LOOKUP_RCU)
1143 return -ECHILD;
1144 ret = 0;
1145 }
1146 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1147}
1148
1149static int
1150nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1151 struct inode *inode)
1152{
1153 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1154 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1155}
1156
1157static int
1158nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1159 struct inode *inode)
1160{
1161 struct nfs_fh *fhandle;
1162 struct nfs_fattr *fattr;
1163 struct nfs4_label *label;
1164 int ret;
1165
1166 ret = -ENOMEM;
1167 fhandle = nfs_alloc_fhandle();
1168 fattr = nfs_alloc_fattr();
1169 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1170 if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1171 goto out;
1172
1173 ret = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1174 if (ret < 0) {
1175 if (ret == -ESTALE || ret == -ENOENT)
1176 ret = 0;
1177 goto out;
1178 }
1179 ret = 0;
1180 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1181 goto out;
1182 if (nfs_refresh_inode(inode, fattr) < 0)
1183 goto out;
1184
1185 nfs_setsecurity(inode, fattr, label);
1186 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1187
1188 /* set a readdirplus hint that we had a cache miss */
1189 nfs_force_use_readdirplus(dir);
1190 ret = 1;
1191out:
1192 nfs_free_fattr(fattr);
1193 nfs_free_fhandle(fhandle);
1194 nfs4_label_free(label);
1195
1196 /*
1197 * If the lookup failed despite the dentry change attribute being
1198 * a match, then we should revalidate the directory cache.
1199 */
1200 if (!ret && nfs_verify_change_attribute(dir, dentry->d_time))
1201 nfs_mark_dir_for_revalidate(dir);
1202 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1203}
1204
1205/*
1206 * This is called every time the dcache has a lookup hit,
1207 * and we should check whether we can really trust that
1208 * lookup.
1209 *
1210 * NOTE! The hit can be a negative hit too, don't assume
1211 * we have an inode!
1212 *
1213 * If the parent directory is seen to have changed, we throw out the
1214 * cached dentry and do a new lookup.
1215 */
1216static int
1217nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1218 unsigned int flags)
1219{
1220 struct inode *inode;
1221 int error;
1222
1223 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1224 inode = d_inode(dentry);
1225
1226 if (!inode)
1227 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1228
1229 if (is_bad_inode(inode)) {
1230 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1231 __func__, dentry);
1232 goto out_bad;
1233 }
1234
1235 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1236 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1237
1238 /* Force a full look up iff the parent directory has changed */
1239 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1240 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1241 error = nfs_lookup_verify_inode(inode, flags);
1242 if (error) {
1243 if (error == -ESTALE)
1244 nfs_mark_dir_for_revalidate(dir);
1245 goto out_bad;
1246 }
1247 nfs_advise_use_readdirplus(dir);
1248 goto out_valid;
1249 }
1250
1251 if (flags & LOOKUP_RCU)
1252 return -ECHILD;
1253
1254 if (NFS_STALE(inode))
1255 goto out_bad;
1256
1257 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1258 error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1259 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1260 return error;
1261out_valid:
1262 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1263out_bad:
1264 if (flags & LOOKUP_RCU)
1265 return -ECHILD;
1266 return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1267}
1268
1269static int
1270__nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1271 int (*reval)(struct inode *, struct dentry *, unsigned int))
1272{
1273 struct dentry *parent;
1274 struct inode *dir;
1275 int ret;
1276
1277 if (flags & LOOKUP_RCU) {
1278 parent = READ_ONCE(dentry->d_parent);
1279 dir = d_inode_rcu(parent);
1280 if (!dir)
1281 return -ECHILD;
1282 ret = reval(dir, dentry, flags);
1283 if (parent != READ_ONCE(dentry->d_parent))
1284 return -ECHILD;
1285 } else {
1286 parent = dget_parent(dentry);
1287 ret = reval(d_inode(parent), dentry, flags);
1288 dput(parent);
1289 }
1290 return ret;
1291}
1292
1293static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1294{
1295 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1296}
1297
1298/*
1299 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1300 * when we don't really care about the dentry name. This is called when a
1301 * pathwalk ends on a dentry that was not found via a normal lookup in the
1302 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1303 *
1304 * In this situation, we just want to verify that the inode itself is OK
1305 * since the dentry might have changed on the server.
1306 */
1307static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1308{
1309 struct inode *inode = d_inode(dentry);
1310 int error = 0;
1311
1312 /*
1313 * I believe we can only get a negative dentry here in the case of a
1314 * procfs-style symlink. Just assume it's correct for now, but we may
1315 * eventually need to do something more here.
1316 */
1317 if (!inode) {
1318 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1319 __func__, dentry);
1320 return 1;
1321 }
1322
1323 if (is_bad_inode(inode)) {
1324 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1325 __func__, dentry);
1326 return 0;
1327 }
1328
1329 error = nfs_lookup_verify_inode(inode, flags);
1330 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1331 __func__, inode->i_ino, error ? "invalid" : "valid");
1332 return !error;
1333}
1334
1335/*
1336 * This is called from dput() when d_count is going to 0.
1337 */
1338static int nfs_dentry_delete(const struct dentry *dentry)
1339{
1340 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1341 dentry, dentry->d_flags);
1342
1343 /* Unhash any dentry with a stale inode */
1344 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1345 return 1;
1346
1347 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1348 /* Unhash it, so that ->d_iput() would be called */
1349 return 1;
1350 }
1351 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1352 /* Unhash it, so that ancestors of killed async unlink
1353 * files will be cleaned up during umount */
1354 return 1;
1355 }
1356 return 0;
1357
1358}
1359
1360/* Ensure that we revalidate inode->i_nlink */
1361static void nfs_drop_nlink(struct inode *inode)
1362{
1363 spin_lock(&inode->i_lock);
1364 /* drop the inode if we're reasonably sure this is the last link */
1365 if (inode->i_nlink > 0)
1366 drop_nlink(inode);
1367 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1368 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1369 | NFS_INO_INVALID_CTIME
1370 | NFS_INO_INVALID_OTHER
1371 | NFS_INO_REVAL_FORCED;
1372 spin_unlock(&inode->i_lock);
1373}
1374
1375/*
1376 * Called when the dentry loses inode.
1377 * We use it to clean up silly-renamed files.
1378 */
1379static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1380{
1381 if (S_ISDIR(inode->i_mode))
1382 /* drop any readdir cache as it could easily be old */
1383 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1384
1385 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1386 nfs_complete_unlink(dentry, inode);
1387 nfs_drop_nlink(inode);
1388 }
1389 iput(inode);
1390}
1391
1392static void nfs_d_release(struct dentry *dentry)
1393{
1394 /* free cached devname value, if it survived that far */
1395 if (unlikely(dentry->d_fsdata)) {
1396 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1397 WARN_ON(1);
1398 else
1399 kfree(dentry->d_fsdata);
1400 }
1401}
1402
1403const struct dentry_operations nfs_dentry_operations = {
1404 .d_revalidate = nfs_lookup_revalidate,
1405 .d_weak_revalidate = nfs_weak_revalidate,
1406 .d_delete = nfs_dentry_delete,
1407 .d_iput = nfs_dentry_iput,
1408 .d_automount = nfs_d_automount,
1409 .d_release = nfs_d_release,
1410};
1411EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1412
1413struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1414{
1415 struct dentry *res;
1416 struct inode *inode = NULL;
1417 struct nfs_fh *fhandle = NULL;
1418 struct nfs_fattr *fattr = NULL;
1419 struct nfs4_label *label = NULL;
1420 int error;
1421
1422 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1423 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1424
1425 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1426 return ERR_PTR(-ENAMETOOLONG);
1427
1428 /*
1429 * If we're doing an exclusive create, optimize away the lookup
1430 * but don't hash the dentry.
1431 */
1432 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1433 return NULL;
1434
1435 res = ERR_PTR(-ENOMEM);
1436 fhandle = nfs_alloc_fhandle();
1437 fattr = nfs_alloc_fattr();
1438 if (fhandle == NULL || fattr == NULL)
1439 goto out;
1440
1441 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1442 if (IS_ERR(label))
1443 goto out;
1444
1445 trace_nfs_lookup_enter(dir, dentry, flags);
1446 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1447 if (error == -ENOENT)
1448 goto no_entry;
1449 if (error < 0) {
1450 res = ERR_PTR(error);
1451 goto out_label;
1452 }
1453 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1454 res = ERR_CAST(inode);
1455 if (IS_ERR(res))
1456 goto out_label;
1457
1458 /* Notify readdir to use READDIRPLUS */
1459 nfs_force_use_readdirplus(dir);
1460
1461no_entry:
1462 res = d_splice_alias(inode, dentry);
1463 if (res != NULL) {
1464 if (IS_ERR(res))
1465 goto out_label;
1466 dentry = res;
1467 }
1468 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1469out_label:
1470 trace_nfs_lookup_exit(dir, dentry, flags, error);
1471 nfs4_label_free(label);
1472out:
1473 nfs_free_fattr(fattr);
1474 nfs_free_fhandle(fhandle);
1475 return res;
1476}
1477EXPORT_SYMBOL_GPL(nfs_lookup);
1478
1479#if IS_ENABLED(CONFIG_NFS_V4)
1480static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1481
1482const struct dentry_operations nfs4_dentry_operations = {
1483 .d_revalidate = nfs4_lookup_revalidate,
1484 .d_weak_revalidate = nfs_weak_revalidate,
1485 .d_delete = nfs_dentry_delete,
1486 .d_iput = nfs_dentry_iput,
1487 .d_automount = nfs_d_automount,
1488 .d_release = nfs_d_release,
1489};
1490EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1491
1492static fmode_t flags_to_mode(int flags)
1493{
1494 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1495 if ((flags & O_ACCMODE) != O_WRONLY)
1496 res |= FMODE_READ;
1497 if ((flags & O_ACCMODE) != O_RDONLY)
1498 res |= FMODE_WRITE;
1499 return res;
1500}
1501
1502static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1503{
1504 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1505}
1506
1507static int do_open(struct inode *inode, struct file *filp)
1508{
1509 nfs_fscache_open_file(inode, filp);
1510 return 0;
1511}
1512
1513static int nfs_finish_open(struct nfs_open_context *ctx,
1514 struct dentry *dentry,
1515 struct file *file, unsigned open_flags)
1516{
1517 int err;
1518
1519 err = finish_open(file, dentry, do_open);
1520 if (err)
1521 goto out;
1522 if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1523 nfs_file_set_open_context(file, ctx);
1524 else
1525 err = -EOPENSTALE;
1526out:
1527 return err;
1528}
1529
1530int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1531 struct file *file, unsigned open_flags,
1532 umode_t mode)
1533{
1534 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1535 struct nfs_open_context *ctx;
1536 struct dentry *res;
1537 struct iattr attr = { .ia_valid = ATTR_OPEN };
1538 struct inode *inode;
1539 unsigned int lookup_flags = 0;
1540 bool switched = false;
1541 int created = 0;
1542 int err;
1543
1544 /* Expect a negative dentry */
1545 BUG_ON(d_inode(dentry));
1546
1547 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1548 dir->i_sb->s_id, dir->i_ino, dentry);
1549
1550 err = nfs_check_flags(open_flags);
1551 if (err)
1552 return err;
1553
1554 /* NFS only supports OPEN on regular files */
1555 if ((open_flags & O_DIRECTORY)) {
1556 if (!d_in_lookup(dentry)) {
1557 /*
1558 * Hashed negative dentry with O_DIRECTORY: dentry was
1559 * revalidated and is fine, no need to perform lookup
1560 * again
1561 */
1562 return -ENOENT;
1563 }
1564 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1565 goto no_open;
1566 }
1567
1568 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1569 return -ENAMETOOLONG;
1570
1571 if (open_flags & O_CREAT) {
1572 struct nfs_server *server = NFS_SERVER(dir);
1573
1574 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1575 mode &= ~current_umask();
1576
1577 attr.ia_valid |= ATTR_MODE;
1578 attr.ia_mode = mode;
1579 }
1580 if (open_flags & O_TRUNC) {
1581 attr.ia_valid |= ATTR_SIZE;
1582 attr.ia_size = 0;
1583 }
1584
1585 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1586 d_drop(dentry);
1587 switched = true;
1588 dentry = d_alloc_parallel(dentry->d_parent,
1589 &dentry->d_name, &wq);
1590 if (IS_ERR(dentry))
1591 return PTR_ERR(dentry);
1592 if (unlikely(!d_in_lookup(dentry)))
1593 return finish_no_open(file, dentry);
1594 }
1595
1596 ctx = create_nfs_open_context(dentry, open_flags, file);
1597 err = PTR_ERR(ctx);
1598 if (IS_ERR(ctx))
1599 goto out;
1600
1601 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1602 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1603 if (created)
1604 file->f_mode |= FMODE_CREATED;
1605 if (IS_ERR(inode)) {
1606 err = PTR_ERR(inode);
1607 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1608 put_nfs_open_context(ctx);
1609 d_drop(dentry);
1610 switch (err) {
1611 case -ENOENT:
1612 d_splice_alias(NULL, dentry);
1613 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1614 break;
1615 case -EISDIR:
1616 case -ENOTDIR:
1617 goto no_open;
1618 case -ELOOP:
1619 if (!(open_flags & O_NOFOLLOW))
1620 goto no_open;
1621 break;
1622 /* case -EINVAL: */
1623 default:
1624 break;
1625 }
1626 goto out;
1627 }
1628
1629 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1630 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1631 put_nfs_open_context(ctx);
1632out:
1633 if (unlikely(switched)) {
1634 d_lookup_done(dentry);
1635 dput(dentry);
1636 }
1637 return err;
1638
1639no_open:
1640 res = nfs_lookup(dir, dentry, lookup_flags);
1641 if (!res) {
1642 inode = d_inode(dentry);
1643 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
1644 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
1645 res = ERR_PTR(-ENOTDIR);
1646 else if (inode && S_ISREG(inode->i_mode))
1647 res = ERR_PTR(-EOPENSTALE);
1648 } else if (!IS_ERR(res)) {
1649 inode = d_inode(res);
1650 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
1651 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
1652 dput(res);
1653 res = ERR_PTR(-ENOTDIR);
1654 } else if (inode && S_ISREG(inode->i_mode)) {
1655 dput(res);
1656 res = ERR_PTR(-EOPENSTALE);
1657 }
1658 }
1659 if (switched) {
1660 d_lookup_done(dentry);
1661 if (!res)
1662 res = dentry;
1663 else
1664 dput(dentry);
1665 }
1666 if (IS_ERR(res))
1667 return PTR_ERR(res);
1668 return finish_no_open(file, res);
1669}
1670EXPORT_SYMBOL_GPL(nfs_atomic_open);
1671
1672static int
1673nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1674 unsigned int flags)
1675{
1676 struct inode *inode;
1677
1678 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1679 goto full_reval;
1680 if (d_mountpoint(dentry))
1681 goto full_reval;
1682
1683 inode = d_inode(dentry);
1684
1685 /* We can't create new files in nfs_open_revalidate(), so we
1686 * optimize away revalidation of negative dentries.
1687 */
1688 if (inode == NULL)
1689 goto full_reval;
1690
1691 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1692 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1693
1694 /* NFS only supports OPEN on regular files */
1695 if (!S_ISREG(inode->i_mode))
1696 goto full_reval;
1697
1698 /* We cannot do exclusive creation on a positive dentry */
1699 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1700 goto reval_dentry;
1701
1702 /* Check if the directory changed */
1703 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1704 goto reval_dentry;
1705
1706 /* Let f_op->open() actually open (and revalidate) the file */
1707 return 1;
1708reval_dentry:
1709 if (flags & LOOKUP_RCU)
1710 return -ECHILD;
1711 return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1712
1713full_reval:
1714 return nfs_do_lookup_revalidate(dir, dentry, flags);
1715}
1716
1717static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1718{
1719 return __nfs_lookup_revalidate(dentry, flags,
1720 nfs4_do_lookup_revalidate);
1721}
1722
1723#endif /* CONFIG_NFSV4 */
1724
1725struct dentry *
1726nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
1727 struct nfs_fattr *fattr,
1728 struct nfs4_label *label)
1729{
1730 struct dentry *parent = dget_parent(dentry);
1731 struct inode *dir = d_inode(parent);
1732 struct inode *inode;
1733 struct dentry *d;
1734 int error;
1735
1736 d_drop(dentry);
1737
1738 if (fhandle->size == 0) {
1739 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1740 if (error)
1741 goto out_error;
1742 }
1743 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1744 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1745 struct nfs_server *server = NFS_SB(dentry->d_sb);
1746 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1747 fattr, NULL, NULL);
1748 if (error < 0)
1749 goto out_error;
1750 }
1751 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1752 d = d_splice_alias(inode, dentry);
1753out:
1754 dput(parent);
1755 return d;
1756out_error:
1757 d = ERR_PTR(error);
1758 goto out;
1759}
1760EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
1761
1762/*
1763 * Code common to create, mkdir, and mknod.
1764 */
1765int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1766 struct nfs_fattr *fattr,
1767 struct nfs4_label *label)
1768{
1769 struct dentry *d;
1770
1771 d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
1772 if (IS_ERR(d))
1773 return PTR_ERR(d);
1774
1775 /* Callers don't care */
1776 dput(d);
1777 return 0;
1778}
1779EXPORT_SYMBOL_GPL(nfs_instantiate);
1780
1781/*
1782 * Following a failed create operation, we drop the dentry rather
1783 * than retain a negative dentry. This avoids a problem in the event
1784 * that the operation succeeded on the server, but an error in the
1785 * reply path made it appear to have failed.
1786 */
1787int nfs_create(struct inode *dir, struct dentry *dentry,
1788 umode_t mode, bool excl)
1789{
1790 struct iattr attr;
1791 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1792 int error;
1793
1794 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1795 dir->i_sb->s_id, dir->i_ino, dentry);
1796
1797 attr.ia_mode = mode;
1798 attr.ia_valid = ATTR_MODE;
1799
1800 trace_nfs_create_enter(dir, dentry, open_flags);
1801 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1802 trace_nfs_create_exit(dir, dentry, open_flags, error);
1803 if (error != 0)
1804 goto out_err;
1805 return 0;
1806out_err:
1807 d_drop(dentry);
1808 return error;
1809}
1810EXPORT_SYMBOL_GPL(nfs_create);
1811
1812/*
1813 * See comments for nfs_proc_create regarding failed operations.
1814 */
1815int
1816nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1817{
1818 struct iattr attr;
1819 int status;
1820
1821 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1822 dir->i_sb->s_id, dir->i_ino, dentry);
1823
1824 attr.ia_mode = mode;
1825 attr.ia_valid = ATTR_MODE;
1826
1827 trace_nfs_mknod_enter(dir, dentry);
1828 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1829 trace_nfs_mknod_exit(dir, dentry, status);
1830 if (status != 0)
1831 goto out_err;
1832 return 0;
1833out_err:
1834 d_drop(dentry);
1835 return status;
1836}
1837EXPORT_SYMBOL_GPL(nfs_mknod);
1838
1839/*
1840 * See comments for nfs_proc_create regarding failed operations.
1841 */
1842int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1843{
1844 struct iattr attr;
1845 int error;
1846
1847 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1848 dir->i_sb->s_id, dir->i_ino, dentry);
1849
1850 attr.ia_valid = ATTR_MODE;
1851 attr.ia_mode = mode | S_IFDIR;
1852
1853 trace_nfs_mkdir_enter(dir, dentry);
1854 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1855 trace_nfs_mkdir_exit(dir, dentry, error);
1856 if (error != 0)
1857 goto out_err;
1858 return 0;
1859out_err:
1860 d_drop(dentry);
1861 return error;
1862}
1863EXPORT_SYMBOL_GPL(nfs_mkdir);
1864
1865static void nfs_dentry_handle_enoent(struct dentry *dentry)
1866{
1867 if (simple_positive(dentry))
1868 d_delete(dentry);
1869}
1870
1871int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1872{
1873 int error;
1874
1875 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1876 dir->i_sb->s_id, dir->i_ino, dentry);
1877
1878 trace_nfs_rmdir_enter(dir, dentry);
1879 if (d_really_is_positive(dentry)) {
1880 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1881 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1882 /* Ensure the VFS deletes this inode */
1883 switch (error) {
1884 case 0:
1885 clear_nlink(d_inode(dentry));
1886 break;
1887 case -ENOENT:
1888 nfs_dentry_handle_enoent(dentry);
1889 }
1890 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1891 } else
1892 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1893 trace_nfs_rmdir_exit(dir, dentry, error);
1894
1895 return error;
1896}
1897EXPORT_SYMBOL_GPL(nfs_rmdir);
1898
1899/*
1900 * Remove a file after making sure there are no pending writes,
1901 * and after checking that the file has only one user.
1902 *
1903 * We invalidate the attribute cache and free the inode prior to the operation
1904 * to avoid possible races if the server reuses the inode.
1905 */
1906static int nfs_safe_remove(struct dentry *dentry)
1907{
1908 struct inode *dir = d_inode(dentry->d_parent);
1909 struct inode *inode = d_inode(dentry);
1910 int error = -EBUSY;
1911
1912 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1913
1914 /* If the dentry was sillyrenamed, we simply call d_delete() */
1915 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1916 error = 0;
1917 goto out;
1918 }
1919
1920 trace_nfs_remove_enter(dir, dentry);
1921 if (inode != NULL) {
1922 error = NFS_PROTO(dir)->remove(dir, dentry);
1923 if (error == 0)
1924 nfs_drop_nlink(inode);
1925 } else
1926 error = NFS_PROTO(dir)->remove(dir, dentry);
1927 if (error == -ENOENT)
1928 nfs_dentry_handle_enoent(dentry);
1929 trace_nfs_remove_exit(dir, dentry, error);
1930out:
1931 return error;
1932}
1933
1934/* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1935 * belongs to an active ".nfs..." file and we return -EBUSY.
1936 *
1937 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1938 */
1939int nfs_unlink(struct inode *dir, struct dentry *dentry)
1940{
1941 int error;
1942 int need_rehash = 0;
1943
1944 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1945 dir->i_ino, dentry);
1946
1947 trace_nfs_unlink_enter(dir, dentry);
1948 spin_lock(&dentry->d_lock);
1949 if (d_count(dentry) > 1) {
1950 spin_unlock(&dentry->d_lock);
1951 /* Start asynchronous writeout of the inode */
1952 write_inode_now(d_inode(dentry), 0);
1953 error = nfs_sillyrename(dir, dentry);
1954 goto out;
1955 }
1956 if (!d_unhashed(dentry)) {
1957 __d_drop(dentry);
1958 need_rehash = 1;
1959 }
1960 spin_unlock(&dentry->d_lock);
1961 error = nfs_safe_remove(dentry);
1962 if (!error || error == -ENOENT) {
1963 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1964 } else if (need_rehash)
1965 d_rehash(dentry);
1966out:
1967 trace_nfs_unlink_exit(dir, dentry, error);
1968 return error;
1969}
1970EXPORT_SYMBOL_GPL(nfs_unlink);
1971
1972/*
1973 * To create a symbolic link, most file systems instantiate a new inode,
1974 * add a page to it containing the path, then write it out to the disk
1975 * using prepare_write/commit_write.
1976 *
1977 * Unfortunately the NFS client can't create the in-core inode first
1978 * because it needs a file handle to create an in-core inode (see
1979 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1980 * symlink request has completed on the server.
1981 *
1982 * So instead we allocate a raw page, copy the symname into it, then do
1983 * the SYMLINK request with the page as the buffer. If it succeeds, we
1984 * now have a new file handle and can instantiate an in-core NFS inode
1985 * and move the raw page into its mapping.
1986 */
1987int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1988{
1989 struct page *page;
1990 char *kaddr;
1991 struct iattr attr;
1992 unsigned int pathlen = strlen(symname);
1993 int error;
1994
1995 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1996 dir->i_ino, dentry, symname);
1997
1998 if (pathlen > PAGE_SIZE)
1999 return -ENAMETOOLONG;
2000
2001 attr.ia_mode = S_IFLNK | S_IRWXUGO;
2002 attr.ia_valid = ATTR_MODE;
2003
2004 page = alloc_page(GFP_USER);
2005 if (!page)
2006 return -ENOMEM;
2007
2008 kaddr = page_address(page);
2009 memcpy(kaddr, symname, pathlen);
2010 if (pathlen < PAGE_SIZE)
2011 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2012
2013 trace_nfs_symlink_enter(dir, dentry);
2014 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2015 trace_nfs_symlink_exit(dir, dentry, error);
2016 if (error != 0) {
2017 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2018 dir->i_sb->s_id, dir->i_ino,
2019 dentry, symname, error);
2020 d_drop(dentry);
2021 __free_page(page);
2022 return error;
2023 }
2024
2025 /*
2026 * No big deal if we can't add this page to the page cache here.
2027 * READLINK will get the missing page from the server if needed.
2028 */
2029 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2030 GFP_KERNEL)) {
2031 SetPageUptodate(page);
2032 unlock_page(page);
2033 /*
2034 * add_to_page_cache_lru() grabs an extra page refcount.
2035 * Drop it here to avoid leaking this page later.
2036 */
2037 put_page(page);
2038 } else
2039 __free_page(page);
2040
2041 return 0;
2042}
2043EXPORT_SYMBOL_GPL(nfs_symlink);
2044
2045int
2046nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2047{
2048 struct inode *inode = d_inode(old_dentry);
2049 int error;
2050
2051 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2052 old_dentry, dentry);
2053
2054 trace_nfs_link_enter(inode, dir, dentry);
2055 d_drop(dentry);
2056 if (S_ISREG(inode->i_mode))
2057 nfs_sync_inode(inode);
2058 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2059 if (error == 0) {
2060 ihold(inode);
2061 d_add(dentry, inode);
2062 }
2063 trace_nfs_link_exit(inode, dir, dentry, error);
2064 return error;
2065}
2066EXPORT_SYMBOL_GPL(nfs_link);
2067
2068/*
2069 * RENAME
2070 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2071 * different file handle for the same inode after a rename (e.g. when
2072 * moving to a different directory). A fail-safe method to do so would
2073 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2074 * rename the old file using the sillyrename stuff. This way, the original
2075 * file in old_dir will go away when the last process iput()s the inode.
2076 *
2077 * FIXED.
2078 *
2079 * It actually works quite well. One needs to have the possibility for
2080 * at least one ".nfs..." file in each directory the file ever gets
2081 * moved or linked to which happens automagically with the new
2082 * implementation that only depends on the dcache stuff instead of
2083 * using the inode layer
2084 *
2085 * Unfortunately, things are a little more complicated than indicated
2086 * above. For a cross-directory move, we want to make sure we can get
2087 * rid of the old inode after the operation. This means there must be
2088 * no pending writes (if it's a file), and the use count must be 1.
2089 * If these conditions are met, we can drop the dentries before doing
2090 * the rename.
2091 */
2092int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2093 struct inode *new_dir, struct dentry *new_dentry,
2094 unsigned int flags)
2095{
2096 struct inode *old_inode = d_inode(old_dentry);
2097 struct inode *new_inode = d_inode(new_dentry);
2098 struct dentry *dentry = NULL, *rehash = NULL;
2099 struct rpc_task *task;
2100 int error = -EBUSY;
2101
2102 if (flags)
2103 return -EINVAL;
2104
2105 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2106 old_dentry, new_dentry,
2107 d_count(new_dentry));
2108
2109 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2110 /*
2111 * For non-directories, check whether the target is busy and if so,
2112 * make a copy of the dentry and then do a silly-rename. If the
2113 * silly-rename succeeds, the copied dentry is hashed and becomes
2114 * the new target.
2115 */
2116 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2117 /*
2118 * To prevent any new references to the target during the
2119 * rename, we unhash the dentry in advance.
2120 */
2121 if (!d_unhashed(new_dentry)) {
2122 d_drop(new_dentry);
2123 rehash = new_dentry;
2124 }
2125
2126 if (d_count(new_dentry) > 2) {
2127 int err;
2128
2129 /* copy the target dentry's name */
2130 dentry = d_alloc(new_dentry->d_parent,
2131 &new_dentry->d_name);
2132 if (!dentry)
2133 goto out;
2134
2135 /* silly-rename the existing target ... */
2136 err = nfs_sillyrename(new_dir, new_dentry);
2137 if (err)
2138 goto out;
2139
2140 new_dentry = dentry;
2141 rehash = NULL;
2142 new_inode = NULL;
2143 }
2144 }
2145
2146 if (S_ISREG(old_inode->i_mode))
2147 nfs_sync_inode(old_inode);
2148 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2149 if (IS_ERR(task)) {
2150 error = PTR_ERR(task);
2151 goto out;
2152 }
2153
2154 error = rpc_wait_for_completion_task(task);
2155 if (error != 0) {
2156 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2157 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2158 smp_wmb();
2159 } else
2160 error = task->tk_status;
2161 rpc_put_task(task);
2162 /* Ensure the inode attributes are revalidated */
2163 if (error == 0) {
2164 spin_lock(&old_inode->i_lock);
2165 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2166 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2167 | NFS_INO_INVALID_CTIME
2168 | NFS_INO_REVAL_FORCED;
2169 spin_unlock(&old_inode->i_lock);
2170 }
2171out:
2172 if (rehash)
2173 d_rehash(rehash);
2174 trace_nfs_rename_exit(old_dir, old_dentry,
2175 new_dir, new_dentry, error);
2176 if (!error) {
2177 if (new_inode != NULL)
2178 nfs_drop_nlink(new_inode);
2179 /*
2180 * The d_move() should be here instead of in an async RPC completion
2181 * handler because we need the proper locks to move the dentry. If
2182 * we're interrupted by a signal, the async RPC completion handler
2183 * should mark the directories for revalidation.
2184 */
2185 d_move(old_dentry, new_dentry);
2186 nfs_set_verifier(old_dentry,
2187 nfs_save_change_attribute(new_dir));
2188 } else if (error == -ENOENT)
2189 nfs_dentry_handle_enoent(old_dentry);
2190
2191 /* new dentry created? */
2192 if (dentry)
2193 dput(dentry);
2194 return error;
2195}
2196EXPORT_SYMBOL_GPL(nfs_rename);
2197
2198static DEFINE_SPINLOCK(nfs_access_lru_lock);
2199static LIST_HEAD(nfs_access_lru_list);
2200static atomic_long_t nfs_access_nr_entries;
2201
2202static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2203module_param(nfs_access_max_cachesize, ulong, 0644);
2204MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2205
2206static void nfs_access_free_entry(struct nfs_access_entry *entry)
2207{
2208 put_cred(entry->cred);
2209 kfree_rcu(entry, rcu_head);
2210 smp_mb__before_atomic();
2211 atomic_long_dec(&nfs_access_nr_entries);
2212 smp_mb__after_atomic();
2213}
2214
2215static void nfs_access_free_list(struct list_head *head)
2216{
2217 struct nfs_access_entry *cache;
2218
2219 while (!list_empty(head)) {
2220 cache = list_entry(head->next, struct nfs_access_entry, lru);
2221 list_del(&cache->lru);
2222 nfs_access_free_entry(cache);
2223 }
2224}
2225
2226static unsigned long
2227nfs_do_access_cache_scan(unsigned int nr_to_scan)
2228{
2229 LIST_HEAD(head);
2230 struct nfs_inode *nfsi, *next;
2231 struct nfs_access_entry *cache;
2232 long freed = 0;
2233
2234 spin_lock(&nfs_access_lru_lock);
2235 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2236 struct inode *inode;
2237
2238 if (nr_to_scan-- == 0)
2239 break;
2240 inode = &nfsi->vfs_inode;
2241 spin_lock(&inode->i_lock);
2242 if (list_empty(&nfsi->access_cache_entry_lru))
2243 goto remove_lru_entry;
2244 cache = list_entry(nfsi->access_cache_entry_lru.next,
2245 struct nfs_access_entry, lru);
2246 list_move(&cache->lru, &head);
2247 rb_erase(&cache->rb_node, &nfsi->access_cache);
2248 freed++;
2249 if (!list_empty(&nfsi->access_cache_entry_lru))
2250 list_move_tail(&nfsi->access_cache_inode_lru,
2251 &nfs_access_lru_list);
2252 else {
2253remove_lru_entry:
2254 list_del_init(&nfsi->access_cache_inode_lru);
2255 smp_mb__before_atomic();
2256 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2257 smp_mb__after_atomic();
2258 }
2259 spin_unlock(&inode->i_lock);
2260 }
2261 spin_unlock(&nfs_access_lru_lock);
2262 nfs_access_free_list(&head);
2263 return freed;
2264}
2265
2266unsigned long
2267nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2268{
2269 int nr_to_scan = sc->nr_to_scan;
2270 gfp_t gfp_mask = sc->gfp_mask;
2271
2272 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2273 return SHRINK_STOP;
2274 return nfs_do_access_cache_scan(nr_to_scan);
2275}
2276
2277
2278unsigned long
2279nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2280{
2281 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2282}
2283
2284static void
2285nfs_access_cache_enforce_limit(void)
2286{
2287 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2288 unsigned long diff;
2289 unsigned int nr_to_scan;
2290
2291 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2292 return;
2293 nr_to_scan = 100;
2294 diff = nr_entries - nfs_access_max_cachesize;
2295 if (diff < nr_to_scan)
2296 nr_to_scan = diff;
2297 nfs_do_access_cache_scan(nr_to_scan);
2298}
2299
2300static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2301{
2302 struct rb_root *root_node = &nfsi->access_cache;
2303 struct rb_node *n;
2304 struct nfs_access_entry *entry;
2305
2306 /* Unhook entries from the cache */
2307 while ((n = rb_first(root_node)) != NULL) {
2308 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2309 rb_erase(n, root_node);
2310 list_move(&entry->lru, head);
2311 }
2312 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2313}
2314
2315void nfs_access_zap_cache(struct inode *inode)
2316{
2317 LIST_HEAD(head);
2318
2319 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2320 return;
2321 /* Remove from global LRU init */
2322 spin_lock(&nfs_access_lru_lock);
2323 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2324 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2325
2326 spin_lock(&inode->i_lock);
2327 __nfs_access_zap_cache(NFS_I(inode), &head);
2328 spin_unlock(&inode->i_lock);
2329 spin_unlock(&nfs_access_lru_lock);
2330 nfs_access_free_list(&head);
2331}
2332EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2333
2334static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2335{
2336 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2337
2338 while (n != NULL) {
2339 struct nfs_access_entry *entry =
2340 rb_entry(n, struct nfs_access_entry, rb_node);
2341 int cmp = cred_fscmp(cred, entry->cred);
2342
2343 if (cmp < 0)
2344 n = n->rb_left;
2345 else if (cmp > 0)
2346 n = n->rb_right;
2347 else
2348 return entry;
2349 }
2350 return NULL;
2351}
2352
2353static int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2354{
2355 struct nfs_inode *nfsi = NFS_I(inode);
2356 struct nfs_access_entry *cache;
2357 bool retry = true;
2358 int err;
2359
2360 spin_lock(&inode->i_lock);
2361 for(;;) {
2362 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2363 goto out_zap;
2364 cache = nfs_access_search_rbtree(inode, cred);
2365 err = -ENOENT;
2366 if (cache == NULL)
2367 goto out;
2368 /* Found an entry, is our attribute cache valid? */
2369 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2370 break;
2371 err = -ECHILD;
2372 if (!may_block)
2373 goto out;
2374 if (!retry)
2375 goto out_zap;
2376 spin_unlock(&inode->i_lock);
2377 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2378 if (err)
2379 return err;
2380 spin_lock(&inode->i_lock);
2381 retry = false;
2382 }
2383 res->cred = cache->cred;
2384 res->mask = cache->mask;
2385 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2386 err = 0;
2387out:
2388 spin_unlock(&inode->i_lock);
2389 return err;
2390out_zap:
2391 spin_unlock(&inode->i_lock);
2392 nfs_access_zap_cache(inode);
2393 return -ENOENT;
2394}
2395
2396static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2397{
2398 /* Only check the most recently returned cache entry,
2399 * but do it without locking.
2400 */
2401 struct nfs_inode *nfsi = NFS_I(inode);
2402 struct nfs_access_entry *cache;
2403 int err = -ECHILD;
2404 struct list_head *lh;
2405
2406 rcu_read_lock();
2407 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2408 goto out;
2409 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2410 cache = list_entry(lh, struct nfs_access_entry, lru);
2411 if (lh == &nfsi->access_cache_entry_lru ||
2412 cred != cache->cred)
2413 cache = NULL;
2414 if (cache == NULL)
2415 goto out;
2416 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2417 goto out;
2418 res->cred = cache->cred;
2419 res->mask = cache->mask;
2420 err = 0;
2421out:
2422 rcu_read_unlock();
2423 return err;
2424}
2425
2426static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2427{
2428 struct nfs_inode *nfsi = NFS_I(inode);
2429 struct rb_root *root_node = &nfsi->access_cache;
2430 struct rb_node **p = &root_node->rb_node;
2431 struct rb_node *parent = NULL;
2432 struct nfs_access_entry *entry;
2433 int cmp;
2434
2435 spin_lock(&inode->i_lock);
2436 while (*p != NULL) {
2437 parent = *p;
2438 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2439 cmp = cred_fscmp(set->cred, entry->cred);
2440
2441 if (cmp < 0)
2442 p = &parent->rb_left;
2443 else if (cmp > 0)
2444 p = &parent->rb_right;
2445 else
2446 goto found;
2447 }
2448 rb_link_node(&set->rb_node, parent, p);
2449 rb_insert_color(&set->rb_node, root_node);
2450 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2451 spin_unlock(&inode->i_lock);
2452 return;
2453found:
2454 rb_replace_node(parent, &set->rb_node, root_node);
2455 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2456 list_del(&entry->lru);
2457 spin_unlock(&inode->i_lock);
2458 nfs_access_free_entry(entry);
2459}
2460
2461void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2462{
2463 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2464 if (cache == NULL)
2465 return;
2466 RB_CLEAR_NODE(&cache->rb_node);
2467 cache->cred = get_cred(set->cred);
2468 cache->mask = set->mask;
2469
2470 /* The above field assignments must be visible
2471 * before this item appears on the lru. We cannot easily
2472 * use rcu_assign_pointer, so just force the memory barrier.
2473 */
2474 smp_wmb();
2475 nfs_access_add_rbtree(inode, cache);
2476
2477 /* Update accounting */
2478 smp_mb__before_atomic();
2479 atomic_long_inc(&nfs_access_nr_entries);
2480 smp_mb__after_atomic();
2481
2482 /* Add inode to global LRU list */
2483 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2484 spin_lock(&nfs_access_lru_lock);
2485 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2486 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2487 &nfs_access_lru_list);
2488 spin_unlock(&nfs_access_lru_lock);
2489 }
2490 nfs_access_cache_enforce_limit();
2491}
2492EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2493
2494#define NFS_MAY_READ (NFS_ACCESS_READ)
2495#define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2496 NFS_ACCESS_EXTEND | \
2497 NFS_ACCESS_DELETE)
2498#define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2499 NFS_ACCESS_EXTEND)
2500#define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2501#define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2502#define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2503static int
2504nfs_access_calc_mask(u32 access_result, umode_t umode)
2505{
2506 int mask = 0;
2507
2508 if (access_result & NFS_MAY_READ)
2509 mask |= MAY_READ;
2510 if (S_ISDIR(umode)) {
2511 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2512 mask |= MAY_WRITE;
2513 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2514 mask |= MAY_EXEC;
2515 } else if (S_ISREG(umode)) {
2516 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2517 mask |= MAY_WRITE;
2518 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2519 mask |= MAY_EXEC;
2520 } else if (access_result & NFS_MAY_WRITE)
2521 mask |= MAY_WRITE;
2522 return mask;
2523}
2524
2525void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2526{
2527 entry->mask = access_result;
2528}
2529EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2530
2531static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2532{
2533 struct nfs_access_entry cache;
2534 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2535 int cache_mask;
2536 int status;
2537
2538 trace_nfs_access_enter(inode);
2539
2540 status = nfs_access_get_cached_rcu(inode, cred, &cache);
2541 if (status != 0)
2542 status = nfs_access_get_cached(inode, cred, &cache, may_block);
2543 if (status == 0)
2544 goto out_cached;
2545
2546 status = -ECHILD;
2547 if (!may_block)
2548 goto out;
2549
2550 /*
2551 * Determine which access bits we want to ask for...
2552 */
2553 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2554 if (S_ISDIR(inode->i_mode))
2555 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2556 else
2557 cache.mask |= NFS_ACCESS_EXECUTE;
2558 cache.cred = cred;
2559 status = NFS_PROTO(inode)->access(inode, &cache);
2560 if (status != 0) {
2561 if (status == -ESTALE) {
2562 nfs_zap_caches(inode);
2563 if (!S_ISDIR(inode->i_mode))
2564 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2565 }
2566 goto out;
2567 }
2568 nfs_access_add_cache(inode, &cache);
2569out_cached:
2570 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2571 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2572 status = -EACCES;
2573out:
2574 trace_nfs_access_exit(inode, status);
2575 return status;
2576}
2577
2578static int nfs_open_permission_mask(int openflags)
2579{
2580 int mask = 0;
2581
2582 if (openflags & __FMODE_EXEC) {
2583 /* ONLY check exec rights */
2584 mask = MAY_EXEC;
2585 } else {
2586 if ((openflags & O_ACCMODE) != O_WRONLY)
2587 mask |= MAY_READ;
2588 if ((openflags & O_ACCMODE) != O_RDONLY)
2589 mask |= MAY_WRITE;
2590 }
2591
2592 return mask;
2593}
2594
2595int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2596{
2597 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2598}
2599EXPORT_SYMBOL_GPL(nfs_may_open);
2600
2601static int nfs_execute_ok(struct inode *inode, int mask)
2602{
2603 struct nfs_server *server = NFS_SERVER(inode);
2604 int ret = 0;
2605
2606 if (S_ISDIR(inode->i_mode))
2607 return 0;
2608 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2609 if (mask & MAY_NOT_BLOCK)
2610 return -ECHILD;
2611 ret = __nfs_revalidate_inode(server, inode);
2612 }
2613 if (ret == 0 && !execute_ok(inode))
2614 ret = -EACCES;
2615 return ret;
2616}
2617
2618int nfs_permission(struct inode *inode, int mask)
2619{
2620 const struct cred *cred = current_cred();
2621 int res = 0;
2622
2623 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2624
2625 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2626 goto out;
2627 /* Is this sys_access() ? */
2628 if (mask & (MAY_ACCESS | MAY_CHDIR))
2629 goto force_lookup;
2630
2631 switch (inode->i_mode & S_IFMT) {
2632 case S_IFLNK:
2633 goto out;
2634 case S_IFREG:
2635 if ((mask & MAY_OPEN) &&
2636 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2637 return 0;
2638 break;
2639 case S_IFDIR:
2640 /*
2641 * Optimize away all write operations, since the server
2642 * will check permissions when we perform the op.
2643 */
2644 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2645 goto out;
2646 }
2647
2648force_lookup:
2649 if (!NFS_PROTO(inode)->access)
2650 goto out_notsup;
2651
2652 /* Always try fast lookups first */
2653 rcu_read_lock();
2654 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2655 rcu_read_unlock();
2656 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2657 /* Fast lookup failed, try the slow way */
2658 res = nfs_do_access(inode, cred, mask);
2659 }
2660out:
2661 if (!res && (mask & MAY_EXEC))
2662 res = nfs_execute_ok(inode, mask);
2663
2664 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2665 inode->i_sb->s_id, inode->i_ino, mask, res);
2666 return res;
2667out_notsup:
2668 if (mask & MAY_NOT_BLOCK)
2669 return -ECHILD;
2670
2671 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2672 if (res == 0)
2673 res = generic_permission(inode, mask);
2674 goto out;
2675}
2676EXPORT_SYMBOL_GPL(nfs_permission);
2677
2678/*
2679 * Local variables:
2680 * version-control: t
2681 * kept-new-versions: 5
2682 * End:
2683 */