blob: 8ad504b53dfbb5c539a7288d4219df1aeb30f972 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2#include <linux/pagewalk.h>
3#include <linux/vmacache.h>
4#include <linux/hugetlb.h>
5#include <linux/huge_mm.h>
6#include <linux/mount.h>
7#include <linux/seq_file.h>
8#include <linux/highmem.h>
9#include <linux/ptrace.h>
10#include <linux/slab.h>
11#include <linux/pagemap.h>
12#include <linux/mempolicy.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
15#include <linux/sched/mm.h>
16#include <linux/swapops.h>
17#include <linux/mmu_notifier.h>
18#include <linux/page_idle.h>
19#include <linux/shmem_fs.h>
20#include <linux/uaccess.h>
21#include <linux/pkeys.h>
22
23#include <asm/elf.h>
24#include <asm/tlb.h>
25#include <asm/tlbflush.h>
26#include "internal.h"
27
28#define SEQ_PUT_DEC(str, val) \
29 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30void task_mem(struct seq_file *m, struct mm_struct *mm)
31{
32 unsigned long text, lib, swap, anon, file, shmem;
33 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34
35 anon = get_mm_counter(mm, MM_ANONPAGES);
36 file = get_mm_counter(mm, MM_FILEPAGES);
37 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38
39 /*
40 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 * hiwater_rss only when about to *lower* total_vm or rss. Any
42 * collector of these hiwater stats must therefore get total_vm
43 * and rss too, which will usually be the higher. Barriers? not
44 * worth the effort, such snapshots can always be inconsistent.
45 */
46 hiwater_vm = total_vm = mm->total_vm;
47 if (hiwater_vm < mm->hiwater_vm)
48 hiwater_vm = mm->hiwater_vm;
49 hiwater_rss = total_rss = anon + file + shmem;
50 if (hiwater_rss < mm->hiwater_rss)
51 hiwater_rss = mm->hiwater_rss;
52
53 /* split executable areas between text and lib */
54 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 text = min(text, mm->exec_vm << PAGE_SHIFT);
56 lib = (mm->exec_vm << PAGE_SHIFT) - text;
57
58 swap = get_mm_counter(mm, MM_SWAPENTS);
59 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 seq_put_decimal_ull_width(m,
71 " kB\nVmExe:\t", text >> 10, 8);
72 seq_put_decimal_ull_width(m,
73 " kB\nVmLib:\t", lib >> 10, 8);
74 seq_put_decimal_ull_width(m,
75 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 seq_puts(m, " kB\n");
78 hugetlb_report_usage(m, mm);
79}
80#undef SEQ_PUT_DEC
81
82unsigned long task_vsize(struct mm_struct *mm)
83{
84 return PAGE_SIZE * mm->total_vm;
85}
86
87unsigned long task_statm(struct mm_struct *mm,
88 unsigned long *shared, unsigned long *text,
89 unsigned long *data, unsigned long *resident)
90{
91 *shared = get_mm_counter(mm, MM_FILEPAGES) +
92 get_mm_counter(mm, MM_SHMEMPAGES);
93 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 >> PAGE_SHIFT;
95 *data = mm->data_vm + mm->stack_vm;
96 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 return mm->total_vm;
98}
99
100#ifdef CONFIG_NUMA
101/*
102 * Save get_task_policy() for show_numa_map().
103 */
104static void hold_task_mempolicy(struct proc_maps_private *priv)
105{
106 struct task_struct *task = priv->task;
107
108 task_lock(task);
109 priv->task_mempolicy = get_task_policy(task);
110 mpol_get(priv->task_mempolicy);
111 task_unlock(task);
112}
113static void release_task_mempolicy(struct proc_maps_private *priv)
114{
115 mpol_put(priv->task_mempolicy);
116}
117#else
118static void hold_task_mempolicy(struct proc_maps_private *priv)
119{
120}
121static void release_task_mempolicy(struct proc_maps_private *priv)
122{
123}
124#endif
125
126static void seq_print_vma_name(struct seq_file *m, struct vm_area_struct *vma)
127{
128 const char __user *name = vma_get_anon_name(vma);
129 struct mm_struct *mm = vma->vm_mm;
130
131 unsigned long page_start_vaddr;
132 unsigned long page_offset;
133 unsigned long num_pages;
134 unsigned long max_len = NAME_MAX;
135 int i;
136
137 page_start_vaddr = (unsigned long)name & PAGE_MASK;
138 page_offset = (unsigned long)name - page_start_vaddr;
139 num_pages = DIV_ROUND_UP(page_offset + max_len, PAGE_SIZE);
140
141 seq_puts(m, "[anon:");
142
143 for (i = 0; i < num_pages; i++) {
144 int len;
145 int write_len;
146 const char *kaddr;
147 long pages_pinned;
148 struct page *page;
149
150 pages_pinned = get_user_pages_remote(current, mm,
151 page_start_vaddr, 1, 0, &page, NULL, NULL);
152 if (pages_pinned < 1) {
153 seq_puts(m, "<fault>]");
154 return;
155 }
156
157 kaddr = (const char *)kmap(page);
158 len = min(max_len, PAGE_SIZE - page_offset);
159 write_len = strnlen(kaddr + page_offset, len);
160 seq_write(m, kaddr + page_offset, write_len);
161 kunmap(page);
162 put_page(page);
163
164 /* if strnlen hit a null terminator then we're done */
165 if (write_len != len)
166 break;
167
168 max_len -= len;
169 page_offset = 0;
170 page_start_vaddr += PAGE_SIZE;
171 }
172
173 seq_putc(m, ']');
174}
175
176static void vma_stop(struct proc_maps_private *priv)
177{
178 struct mm_struct *mm = priv->mm;
179
180 release_task_mempolicy(priv);
181 up_read(&mm->mmap_sem);
182 mmput(mm);
183}
184
185static struct vm_area_struct *
186m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
187{
188 if (vma == priv->tail_vma)
189 return NULL;
190 return vma->vm_next ?: priv->tail_vma;
191}
192
193static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
194{
195 if (m->count < m->size) /* vma is copied successfully */
196 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
197}
198
199static void *m_start(struct seq_file *m, loff_t *ppos)
200{
201 struct proc_maps_private *priv = m->private;
202 unsigned long last_addr = m->version;
203 struct mm_struct *mm;
204 struct vm_area_struct *vma;
205 unsigned int pos = *ppos;
206
207 /* See m_cache_vma(). Zero at the start or after lseek. */
208 if (last_addr == -1UL)
209 return NULL;
210
211 priv->task = get_proc_task(priv->inode);
212 if (!priv->task)
213 return ERR_PTR(-ESRCH);
214
215 mm = priv->mm;
216 if (!mm || !mmget_not_zero(mm))
217 return NULL;
218
219 if (down_read_killable(&mm->mmap_sem)) {
220 mmput(mm);
221 return ERR_PTR(-EINTR);
222 }
223
224 hold_task_mempolicy(priv);
225 priv->tail_vma = get_gate_vma(mm);
226
227 if (last_addr) {
228 vma = find_vma(mm, last_addr - 1);
229 if (vma && vma->vm_start <= last_addr)
230 vma = m_next_vma(priv, vma);
231 if (vma)
232 return vma;
233 }
234
235 m->version = 0;
236 if (pos < mm->map_count) {
237 for (vma = mm->mmap; pos; pos--) {
238 m->version = vma->vm_start;
239 vma = vma->vm_next;
240 }
241 return vma;
242 }
243
244 /* we do not bother to update m->version in this case */
245 if (pos == mm->map_count && priv->tail_vma)
246 return priv->tail_vma;
247
248 vma_stop(priv);
249 return NULL;
250}
251
252static void *m_next(struct seq_file *m, void *v, loff_t *pos)
253{
254 struct proc_maps_private *priv = m->private;
255 struct vm_area_struct *next;
256
257 (*pos)++;
258 next = m_next_vma(priv, v);
259 if (!next)
260 vma_stop(priv);
261 return next;
262}
263
264static void m_stop(struct seq_file *m, void *v)
265{
266 struct proc_maps_private *priv = m->private;
267
268 if (!IS_ERR_OR_NULL(v))
269 vma_stop(priv);
270 if (priv->task) {
271 put_task_struct(priv->task);
272 priv->task = NULL;
273 }
274}
275
276static int proc_maps_open(struct inode *inode, struct file *file,
277 const struct seq_operations *ops, int psize)
278{
279 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
280
281 if (!priv)
282 return -ENOMEM;
283
284 priv->inode = inode;
285 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
286 if (IS_ERR(priv->mm)) {
287 int err = PTR_ERR(priv->mm);
288
289 seq_release_private(inode, file);
290 return err;
291 }
292
293 return 0;
294}
295
296static int proc_map_release(struct inode *inode, struct file *file)
297{
298 struct seq_file *seq = file->private_data;
299 struct proc_maps_private *priv = seq->private;
300
301 if (priv->mm)
302 mmdrop(priv->mm);
303
304 return seq_release_private(inode, file);
305}
306
307static int do_maps_open(struct inode *inode, struct file *file,
308 const struct seq_operations *ops)
309{
310 return proc_maps_open(inode, file, ops,
311 sizeof(struct proc_maps_private));
312}
313
314/*
315 * Indicate if the VMA is a stack for the given task; for
316 * /proc/PID/maps that is the stack of the main task.
317 */
318static int is_stack(struct vm_area_struct *vma)
319{
320 /*
321 * We make no effort to guess what a given thread considers to be
322 * its "stack". It's not even well-defined for programs written
323 * languages like Go.
324 */
325 return vma->vm_start <= vma->vm_mm->start_stack &&
326 vma->vm_end >= vma->vm_mm->start_stack;
327}
328
329static void show_vma_header_prefix(struct seq_file *m,
330 unsigned long start, unsigned long end,
331 vm_flags_t flags, unsigned long long pgoff,
332 dev_t dev, unsigned long ino)
333{
334 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
335 seq_put_hex_ll(m, NULL, start, 8);
336 seq_put_hex_ll(m, "-", end, 8);
337 seq_putc(m, ' ');
338 seq_putc(m, flags & VM_READ ? 'r' : '-');
339 seq_putc(m, flags & VM_WRITE ? 'w' : '-');
340 seq_putc(m, flags & VM_EXEC ? 'x' : '-');
341 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
342 seq_put_hex_ll(m, " ", pgoff, 8);
343 seq_put_hex_ll(m, " ", MAJOR(dev), 2);
344 seq_put_hex_ll(m, ":", MINOR(dev), 2);
345 seq_put_decimal_ull(m, " ", ino);
346 seq_putc(m, ' ');
347}
348
349static void
350show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
351{
352 struct mm_struct *mm = vma->vm_mm;
353 struct file *file = vma->vm_file;
354 vm_flags_t flags = vma->vm_flags;
355 unsigned long ino = 0;
356 unsigned long long pgoff = 0;
357 unsigned long start, end;
358 dev_t dev = 0;
359 const char *name = NULL;
360
361 if (file) {
362 struct inode *inode = file_inode(vma->vm_file);
363 dev = inode->i_sb->s_dev;
364 ino = inode->i_ino;
365 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
366 }
367
368 start = vma->vm_start;
369 end = vma->vm_end;
370 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
371
372 /*
373 * Print the dentry name for named mappings, and a
374 * special [heap] marker for the heap:
375 */
376 if (file) {
377 seq_pad(m, ' ');
378 seq_file_path(m, file, "\n");
379 goto done;
380 }
381
382 if (vma->vm_ops && vma->vm_ops->name) {
383 name = vma->vm_ops->name(vma);
384 if (name)
385 goto done;
386 }
387
388 name = arch_vma_name(vma);
389 if (!name) {
390 if (!mm) {
391 name = "[vdso]";
392 goto done;
393 }
394
395 if (vma->vm_start <= mm->brk &&
396 vma->vm_end >= mm->start_brk) {
397 name = "[heap]";
398 goto done;
399 }
400
401 if (is_stack(vma)) {
402 name = "[stack]";
403 goto done;
404 }
405
406 if (vma_get_anon_name(vma)) {
407 seq_pad(m, ' ');
408 seq_print_vma_name(m, vma);
409 }
410 }
411
412done:
413 if (name) {
414 seq_pad(m, ' ');
415 seq_puts(m, name);
416 }
417 seq_putc(m, '\n');
418}
419
420static int show_map(struct seq_file *m, void *v)
421{
422 show_map_vma(m, v);
423 m_cache_vma(m, v);
424 return 0;
425}
426
427static const struct seq_operations proc_pid_maps_op = {
428 .start = m_start,
429 .next = m_next,
430 .stop = m_stop,
431 .show = show_map
432};
433
434static int pid_maps_open(struct inode *inode, struct file *file)
435{
436 return do_maps_open(inode, file, &proc_pid_maps_op);
437}
438
439const struct file_operations proc_pid_maps_operations = {
440 .open = pid_maps_open,
441 .read = seq_read,
442 .llseek = seq_lseek,
443 .release = proc_map_release,
444};
445
446/*
447 * Proportional Set Size(PSS): my share of RSS.
448 *
449 * PSS of a process is the count of pages it has in memory, where each
450 * page is divided by the number of processes sharing it. So if a
451 * process has 1000 pages all to itself, and 1000 shared with one other
452 * process, its PSS will be 1500.
453 *
454 * To keep (accumulated) division errors low, we adopt a 64bit
455 * fixed-point pss counter to minimize division errors. So (pss >>
456 * PSS_SHIFT) would be the real byte count.
457 *
458 * A shift of 12 before division means (assuming 4K page size):
459 * - 1M 3-user-pages add up to 8KB errors;
460 * - supports mapcount up to 2^24, or 16M;
461 * - supports PSS up to 2^52 bytes, or 4PB.
462 */
463#define PSS_SHIFT 12
464
465#ifdef CONFIG_PROC_PAGE_MONITOR
466struct mem_size_stats {
467 unsigned long resident;
468 unsigned long shared_clean;
469 unsigned long shared_dirty;
470 unsigned long private_clean;
471 unsigned long private_dirty;
472 unsigned long referenced;
473 unsigned long anonymous;
474 unsigned long lazyfree;
475 unsigned long anonymous_thp;
476 unsigned long shmem_thp;
477 unsigned long file_thp;
478 unsigned long swap;
479 unsigned long shared_hugetlb;
480 unsigned long private_hugetlb;
481 u64 pss;
482 u64 pss_anon;
483 u64 pss_file;
484 u64 pss_shmem;
485 u64 pss_locked;
486 u64 swap_pss;
487 bool check_shmem_swap;
488};
489
490static void smaps_page_accumulate(struct mem_size_stats *mss,
491 struct page *page, unsigned long size, unsigned long pss,
492 bool dirty, bool locked, bool private)
493{
494 mss->pss += pss;
495
496 if (PageAnon(page))
497 mss->pss_anon += pss;
498 else if (PageSwapBacked(page))
499 mss->pss_shmem += pss;
500 else
501 mss->pss_file += pss;
502
503 if (locked)
504 mss->pss_locked += pss;
505
506 if (dirty || PageDirty(page)) {
507 if (private)
508 mss->private_dirty += size;
509 else
510 mss->shared_dirty += size;
511 } else {
512 if (private)
513 mss->private_clean += size;
514 else
515 mss->shared_clean += size;
516 }
517}
518
519static void smaps_account(struct mem_size_stats *mss, struct page *page,
520 bool compound, bool young, bool dirty, bool locked)
521{
522 int i, nr = compound ? compound_nr(page) : 1;
523 unsigned long size = nr * PAGE_SIZE;
524
525 /*
526 * First accumulate quantities that depend only on |size| and the type
527 * of the compound page.
528 */
529 if (PageAnon(page)) {
530 mss->anonymous += size;
531 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
532 mss->lazyfree += size;
533 }
534
535 mss->resident += size;
536 /* Accumulate the size in pages that have been accessed. */
537 if (young || page_is_young(page) || PageReferenced(page))
538 mss->referenced += size;
539
540 /*
541 * Then accumulate quantities that may depend on sharing, or that may
542 * differ page-by-page.
543 *
544 * page_count(page) == 1 guarantees the page is mapped exactly once.
545 * If any subpage of the compound page mapped with PTE it would elevate
546 * page_count().
547 */
548 if (page_count(page) == 1) {
549 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
550 locked, true);
551 return;
552 }
553 for (i = 0; i < nr; i++, page++) {
554 int mapcount = page_mapcount(page);
555 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
556 if (mapcount >= 2)
557 pss /= mapcount;
558 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
559 mapcount < 2);
560 }
561}
562
563#ifdef CONFIG_SHMEM
564static int smaps_pte_hole(unsigned long addr, unsigned long end,
565 struct mm_walk *walk)
566{
567 struct mem_size_stats *mss = walk->private;
568
569 mss->swap += shmem_partial_swap_usage(
570 walk->vma->vm_file->f_mapping, addr, end);
571
572 return 0;
573}
574#else
575#define smaps_pte_hole NULL
576#endif /* CONFIG_SHMEM */
577
578static void smaps_pte_entry(pte_t *pte, unsigned long addr,
579 struct mm_walk *walk)
580{
581 struct mem_size_stats *mss = walk->private;
582 struct vm_area_struct *vma = walk->vma;
583 bool locked = !!(vma->vm_flags & VM_LOCKED);
584 struct page *page = NULL;
585
586 if (pte_present(*pte)) {
587 page = vm_normal_page(vma, addr, *pte);
588 } else if (is_swap_pte(*pte)) {
589 swp_entry_t swpent = pte_to_swp_entry(*pte);
590
591 if (!non_swap_entry(swpent)) {
592 int mapcount;
593
594 mss->swap += PAGE_SIZE;
595 mapcount = swp_swapcount(swpent);
596 if (mapcount >= 2) {
597 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
598
599 do_div(pss_delta, mapcount);
600 mss->swap_pss += pss_delta;
601 } else {
602 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
603 }
604 } else if (is_migration_entry(swpent))
605 page = migration_entry_to_page(swpent);
606 else if (is_device_private_entry(swpent))
607 page = device_private_entry_to_page(swpent);
608 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
609 && pte_none(*pte))) {
610 page = find_get_entry(vma->vm_file->f_mapping,
611 linear_page_index(vma, addr));
612 if (!page)
613 return;
614
615 if (xa_is_value(page))
616 mss->swap += PAGE_SIZE;
617 else
618 put_page(page);
619
620 return;
621 }
622
623 if (!page)
624 return;
625
626 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
627}
628
629#ifdef CONFIG_TRANSPARENT_HUGEPAGE
630static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
631 struct mm_walk *walk)
632{
633 struct mem_size_stats *mss = walk->private;
634 struct vm_area_struct *vma = walk->vma;
635 bool locked = !!(vma->vm_flags & VM_LOCKED);
636 struct page *page;
637
638 /* FOLL_DUMP will return -EFAULT on huge zero page */
639 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
640 if (IS_ERR_OR_NULL(page))
641 return;
642 if (PageAnon(page))
643 mss->anonymous_thp += HPAGE_PMD_SIZE;
644 else if (PageSwapBacked(page))
645 mss->shmem_thp += HPAGE_PMD_SIZE;
646 else if (is_zone_device_page(page))
647 /* pass */;
648 else
649 mss->file_thp += HPAGE_PMD_SIZE;
650 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
651}
652#else
653static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
654 struct mm_walk *walk)
655{
656}
657#endif
658
659static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
660 struct mm_walk *walk)
661{
662 struct vm_area_struct *vma = walk->vma;
663 pte_t *pte;
664 spinlock_t *ptl;
665
666 ptl = pmd_trans_huge_lock(pmd, vma);
667 if (ptl) {
668 if (pmd_present(*pmd))
669 smaps_pmd_entry(pmd, addr, walk);
670 spin_unlock(ptl);
671 goto out;
672 }
673
674 if (pmd_trans_unstable(pmd))
675 goto out;
676 /*
677 * The mmap_sem held all the way back in m_start() is what
678 * keeps khugepaged out of here and from collapsing things
679 * in here.
680 */
681 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
682 for (; addr != end; pte++, addr += PAGE_SIZE)
683 smaps_pte_entry(pte, addr, walk);
684 pte_unmap_unlock(pte - 1, ptl);
685out:
686 cond_resched();
687 return 0;
688}
689
690static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
691{
692 /*
693 * Don't forget to update Documentation/ on changes.
694 */
695 static const char mnemonics[BITS_PER_LONG][2] = {
696 /*
697 * In case if we meet a flag we don't know about.
698 */
699 [0 ... (BITS_PER_LONG-1)] = "??",
700
701 [ilog2(VM_READ)] = "rd",
702 [ilog2(VM_WRITE)] = "wr",
703 [ilog2(VM_EXEC)] = "ex",
704 [ilog2(VM_SHARED)] = "sh",
705 [ilog2(VM_MAYREAD)] = "mr",
706 [ilog2(VM_MAYWRITE)] = "mw",
707 [ilog2(VM_MAYEXEC)] = "me",
708 [ilog2(VM_MAYSHARE)] = "ms",
709 [ilog2(VM_GROWSDOWN)] = "gd",
710 [ilog2(VM_PFNMAP)] = "pf",
711 [ilog2(VM_DENYWRITE)] = "dw",
712#ifdef CONFIG_X86_INTEL_MPX
713 [ilog2(VM_MPX)] = "mp",
714#endif
715 [ilog2(VM_LOCKED)] = "lo",
716 [ilog2(VM_IO)] = "io",
717 [ilog2(VM_SEQ_READ)] = "sr",
718 [ilog2(VM_RAND_READ)] = "rr",
719 [ilog2(VM_DONTCOPY)] = "dc",
720 [ilog2(VM_DONTEXPAND)] = "de",
721 [ilog2(VM_ACCOUNT)] = "ac",
722 [ilog2(VM_NORESERVE)] = "nr",
723 [ilog2(VM_HUGETLB)] = "ht",
724 [ilog2(VM_SYNC)] = "sf",
725 [ilog2(VM_ARCH_1)] = "ar",
726 [ilog2(VM_WIPEONFORK)] = "wf",
727 [ilog2(VM_DONTDUMP)] = "dd",
728#ifdef CONFIG_MEM_SOFT_DIRTY
729 [ilog2(VM_SOFTDIRTY)] = "sd",
730#endif
731 [ilog2(VM_MIXEDMAP)] = "mm",
732 [ilog2(VM_HUGEPAGE)] = "hg",
733 [ilog2(VM_NOHUGEPAGE)] = "nh",
734 [ilog2(VM_MERGEABLE)] = "mg",
735 [ilog2(VM_UFFD_MISSING)]= "um",
736 [ilog2(VM_UFFD_WP)] = "uw",
737#ifdef CONFIG_ARCH_HAS_PKEYS
738 /* These come out via ProtectionKey: */
739 [ilog2(VM_PKEY_BIT0)] = "",
740 [ilog2(VM_PKEY_BIT1)] = "",
741 [ilog2(VM_PKEY_BIT2)] = "",
742 [ilog2(VM_PKEY_BIT3)] = "",
743#if VM_PKEY_BIT4
744 [ilog2(VM_PKEY_BIT4)] = "",
745#endif
746#endif /* CONFIG_ARCH_HAS_PKEYS */
747#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
748 [ilog2(VM_UFFD_MINOR)] = "ui",
749#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
750 };
751 size_t i;
752
753 seq_puts(m, "VmFlags: ");
754 for (i = 0; i < BITS_PER_LONG; i++) {
755 if (!mnemonics[i][0])
756 continue;
757 if (vma->vm_flags & (1UL << i)) {
758 seq_putc(m, mnemonics[i][0]);
759 seq_putc(m, mnemonics[i][1]);
760 seq_putc(m, ' ');
761 }
762 }
763 seq_putc(m, '\n');
764}
765
766#ifdef CONFIG_HUGETLB_PAGE
767static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
768 unsigned long addr, unsigned long end,
769 struct mm_walk *walk)
770{
771 struct mem_size_stats *mss = walk->private;
772 struct vm_area_struct *vma = walk->vma;
773 struct page *page = NULL;
774
775 if (pte_present(*pte)) {
776 page = vm_normal_page(vma, addr, *pte);
777 } else if (is_swap_pte(*pte)) {
778 swp_entry_t swpent = pte_to_swp_entry(*pte);
779
780 if (is_migration_entry(swpent))
781 page = migration_entry_to_page(swpent);
782 else if (is_device_private_entry(swpent))
783 page = device_private_entry_to_page(swpent);
784 }
785 if (page) {
786 if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte))
787 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
788 else
789 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
790 }
791 return 0;
792}
793#else
794#define smaps_hugetlb_range NULL
795#endif /* HUGETLB_PAGE */
796
797static const struct mm_walk_ops smaps_walk_ops = {
798 .pmd_entry = smaps_pte_range,
799 .hugetlb_entry = smaps_hugetlb_range,
800};
801
802static const struct mm_walk_ops smaps_shmem_walk_ops = {
803 .pmd_entry = smaps_pte_range,
804 .hugetlb_entry = smaps_hugetlb_range,
805 .pte_hole = smaps_pte_hole,
806};
807
808static void smap_gather_stats(struct vm_area_struct *vma,
809 struct mem_size_stats *mss)
810{
811#ifdef CONFIG_SHMEM
812 /* In case of smaps_rollup, reset the value from previous vma */
813 mss->check_shmem_swap = false;
814 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
815 /*
816 * For shared or readonly shmem mappings we know that all
817 * swapped out pages belong to the shmem object, and we can
818 * obtain the swap value much more efficiently. For private
819 * writable mappings, we might have COW pages that are
820 * not affected by the parent swapped out pages of the shmem
821 * object, so we have to distinguish them during the page walk.
822 * Unless we know that the shmem object (or the part mapped by
823 * our VMA) has no swapped out pages at all.
824 */
825 unsigned long shmem_swapped = shmem_swap_usage(vma);
826
827 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
828 !(vma->vm_flags & VM_WRITE)) {
829 mss->swap += shmem_swapped;
830 } else {
831 mss->check_shmem_swap = true;
832 walk_page_vma(vma, &smaps_shmem_walk_ops, mss);
833 return;
834 }
835 }
836#endif
837 /* mmap_sem is held in m_start */
838 walk_page_vma(vma, &smaps_walk_ops, mss);
839}
840
841#define SEQ_PUT_DEC(str, val) \
842 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
843
844/* Show the contents common for smaps and smaps_rollup */
845static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
846 bool rollup_mode)
847{
848 SEQ_PUT_DEC("Rss: ", mss->resident);
849 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
850 if (rollup_mode) {
851 /*
852 * These are meaningful only for smaps_rollup, otherwise two of
853 * them are zero, and the other one is the same as Pss.
854 */
855 SEQ_PUT_DEC(" kB\nPss_Anon: ",
856 mss->pss_anon >> PSS_SHIFT);
857 SEQ_PUT_DEC(" kB\nPss_File: ",
858 mss->pss_file >> PSS_SHIFT);
859 SEQ_PUT_DEC(" kB\nPss_Shmem: ",
860 mss->pss_shmem >> PSS_SHIFT);
861 }
862 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
863 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
864 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
865 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
866 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
867 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
868 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
869 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
870 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
871 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp);
872 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
873 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
874 mss->private_hugetlb >> 10, 7);
875 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
876 SEQ_PUT_DEC(" kB\nSwapPss: ",
877 mss->swap_pss >> PSS_SHIFT);
878 SEQ_PUT_DEC(" kB\nLocked: ",
879 mss->pss_locked >> PSS_SHIFT);
880 seq_puts(m, " kB\n");
881}
882
883static int show_smap(struct seq_file *m, void *v)
884{
885 struct vm_area_struct *vma = v;
886 struct mem_size_stats mss;
887
888 memset(&mss, 0, sizeof(mss));
889
890 smap_gather_stats(vma, &mss);
891
892 show_map_vma(m, vma);
893 if (vma_get_anon_name(vma)) {
894 seq_puts(m, "Name: ");
895 seq_print_vma_name(m, vma);
896 seq_putc(m, '\n');
897 }
898
899 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
900 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
901 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
902 seq_puts(m, " kB\n");
903
904 __show_smap(m, &mss, false);
905
906 seq_printf(m, "THPeligible: %d\n",
907 transparent_hugepage_enabled(vma));
908
909 if (arch_pkeys_enabled())
910 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
911 show_smap_vma_flags(m, vma);
912
913 m_cache_vma(m, vma);
914
915 return 0;
916}
917
918static int show_smaps_rollup(struct seq_file *m, void *v)
919{
920 struct proc_maps_private *priv = m->private;
921 struct mem_size_stats mss;
922 struct mm_struct *mm;
923 struct vm_area_struct *vma;
924 unsigned long last_vma_end = 0;
925 int ret = 0;
926
927 priv->task = get_proc_task(priv->inode);
928 if (!priv->task)
929 return -ESRCH;
930
931 mm = priv->mm;
932 if (!mm || !mmget_not_zero(mm)) {
933 ret = -ESRCH;
934 goto out_put_task;
935 }
936
937 memset(&mss, 0, sizeof(mss));
938
939 ret = down_read_killable(&mm->mmap_sem);
940 if (ret)
941 goto out_put_mm;
942
943 hold_task_mempolicy(priv);
944
945 for (vma = priv->mm->mmap; vma; vma = vma->vm_next) {
946 smap_gather_stats(vma, &mss);
947 last_vma_end = vma->vm_end;
948 }
949
950 show_vma_header_prefix(m, priv->mm->mmap ? priv->mm->mmap->vm_start : 0,
951 last_vma_end, 0, 0, 0, 0);
952 seq_pad(m, ' ');
953 seq_puts(m, "[rollup]\n");
954
955 __show_smap(m, &mss, true);
956
957 release_task_mempolicy(priv);
958 up_read(&mm->mmap_sem);
959
960out_put_mm:
961 mmput(mm);
962out_put_task:
963 put_task_struct(priv->task);
964 priv->task = NULL;
965
966 return ret;
967}
968#undef SEQ_PUT_DEC
969
970static const struct seq_operations proc_pid_smaps_op = {
971 .start = m_start,
972 .next = m_next,
973 .stop = m_stop,
974 .show = show_smap
975};
976
977static int pid_smaps_open(struct inode *inode, struct file *file)
978{
979 return do_maps_open(inode, file, &proc_pid_smaps_op);
980}
981
982static int smaps_rollup_open(struct inode *inode, struct file *file)
983{
984 int ret;
985 struct proc_maps_private *priv;
986
987 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
988 if (!priv)
989 return -ENOMEM;
990
991 ret = single_open(file, show_smaps_rollup, priv);
992 if (ret)
993 goto out_free;
994
995 priv->inode = inode;
996 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
997 if (IS_ERR(priv->mm)) {
998 ret = PTR_ERR(priv->mm);
999
1000 single_release(inode, file);
1001 goto out_free;
1002 }
1003
1004 return 0;
1005
1006out_free:
1007 kfree(priv);
1008 return ret;
1009}
1010
1011static int smaps_rollup_release(struct inode *inode, struct file *file)
1012{
1013 struct seq_file *seq = file->private_data;
1014 struct proc_maps_private *priv = seq->private;
1015
1016 if (priv->mm)
1017 mmdrop(priv->mm);
1018
1019 kfree(priv);
1020 return single_release(inode, file);
1021}
1022
1023const struct file_operations proc_pid_smaps_operations = {
1024 .open = pid_smaps_open,
1025 .read = seq_read,
1026 .llseek = seq_lseek,
1027 .release = proc_map_release,
1028};
1029
1030const struct file_operations proc_pid_smaps_rollup_operations = {
1031 .open = smaps_rollup_open,
1032 .read = seq_read,
1033 .llseek = seq_lseek,
1034 .release = smaps_rollup_release,
1035};
1036
1037enum clear_refs_types {
1038 CLEAR_REFS_ALL = 1,
1039 CLEAR_REFS_ANON,
1040 CLEAR_REFS_MAPPED,
1041 CLEAR_REFS_SOFT_DIRTY,
1042 CLEAR_REFS_MM_HIWATER_RSS,
1043 CLEAR_REFS_LAST,
1044};
1045
1046struct clear_refs_private {
1047 enum clear_refs_types type;
1048};
1049
1050#ifdef CONFIG_MEM_SOFT_DIRTY
1051static inline void clear_soft_dirty(struct vm_area_struct *vma,
1052 unsigned long addr, pte_t *pte)
1053{
1054 /*
1055 * The soft-dirty tracker uses #PF-s to catch writes
1056 * to pages, so write-protect the pte as well. See the
1057 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1058 * of how soft-dirty works.
1059 */
1060 pte_t ptent = *pte;
1061
1062 if (pte_present(ptent)) {
1063 pte_t old_pte;
1064
1065 old_pte = ptep_modify_prot_start(vma, addr, pte);
1066 ptent = pte_wrprotect(old_pte);
1067 ptent = pte_clear_soft_dirty(ptent);
1068 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1069 } else if (is_swap_pte(ptent)) {
1070 ptent = pte_swp_clear_soft_dirty(ptent);
1071 set_pte_at(vma->vm_mm, addr, pte, ptent);
1072 }
1073}
1074#else
1075static inline void clear_soft_dirty(struct vm_area_struct *vma,
1076 unsigned long addr, pte_t *pte)
1077{
1078}
1079#endif
1080
1081#if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1082static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1083 unsigned long addr, pmd_t *pmdp)
1084{
1085 pmd_t old, pmd = *pmdp;
1086
1087 if (pmd_present(pmd)) {
1088 /* See comment in change_huge_pmd() */
1089 old = pmdp_invalidate(vma, addr, pmdp);
1090 if (pmd_dirty(old))
1091 pmd = pmd_mkdirty(pmd);
1092 if (pmd_young(old))
1093 pmd = pmd_mkyoung(pmd);
1094
1095 pmd = pmd_wrprotect(pmd);
1096 pmd = pmd_clear_soft_dirty(pmd);
1097
1098 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1099 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1100 pmd = pmd_swp_clear_soft_dirty(pmd);
1101 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1102 }
1103}
1104#else
1105static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1106 unsigned long addr, pmd_t *pmdp)
1107{
1108}
1109#endif
1110
1111static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1112 unsigned long end, struct mm_walk *walk)
1113{
1114 struct clear_refs_private *cp = walk->private;
1115 struct vm_area_struct *vma = walk->vma;
1116 pte_t *pte, ptent;
1117 spinlock_t *ptl;
1118 struct page *page;
1119
1120 ptl = pmd_trans_huge_lock(pmd, vma);
1121 if (ptl) {
1122 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1123 clear_soft_dirty_pmd(vma, addr, pmd);
1124 goto out;
1125 }
1126
1127 if (!pmd_present(*pmd))
1128 goto out;
1129
1130 page = pmd_page(*pmd);
1131
1132 /* Clear accessed and referenced bits. */
1133 pmdp_test_and_clear_young(vma, addr, pmd);
1134 test_and_clear_page_young(page);
1135 ClearPageReferenced(page);
1136out:
1137 spin_unlock(ptl);
1138 return 0;
1139 }
1140
1141 if (pmd_trans_unstable(pmd))
1142 return 0;
1143
1144 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1145 for (; addr != end; pte++, addr += PAGE_SIZE) {
1146 ptent = *pte;
1147
1148 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1149 clear_soft_dirty(vma, addr, pte);
1150 continue;
1151 }
1152
1153 if (!pte_present(ptent))
1154 continue;
1155
1156 page = vm_normal_page(vma, addr, ptent);
1157 if (!page)
1158 continue;
1159
1160 /* Clear accessed and referenced bits. */
1161 ptep_test_and_clear_young(vma, addr, pte);
1162 test_and_clear_page_young(page);
1163 ClearPageReferenced(page);
1164 }
1165 pte_unmap_unlock(pte - 1, ptl);
1166 cond_resched();
1167 return 0;
1168}
1169
1170static int clear_refs_test_walk(unsigned long start, unsigned long end,
1171 struct mm_walk *walk)
1172{
1173 struct clear_refs_private *cp = walk->private;
1174 struct vm_area_struct *vma = walk->vma;
1175
1176 if (vma->vm_flags & VM_PFNMAP)
1177 return 1;
1178
1179 /*
1180 * Writing 1 to /proc/pid/clear_refs affects all pages.
1181 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1182 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1183 * Writing 4 to /proc/pid/clear_refs affects all pages.
1184 */
1185 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1186 return 1;
1187 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1188 return 1;
1189 return 0;
1190}
1191
1192static const struct mm_walk_ops clear_refs_walk_ops = {
1193 .pmd_entry = clear_refs_pte_range,
1194 .test_walk = clear_refs_test_walk,
1195};
1196
1197static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1198 size_t count, loff_t *ppos)
1199{
1200 struct task_struct *task;
1201 char buffer[PROC_NUMBUF];
1202 struct mm_struct *mm;
1203 struct vm_area_struct *vma;
1204 enum clear_refs_types type;
1205 struct mmu_gather tlb;
1206 int itype;
1207 int rv;
1208
1209 memset(buffer, 0, sizeof(buffer));
1210 if (count > sizeof(buffer) - 1)
1211 count = sizeof(buffer) - 1;
1212 if (copy_from_user(buffer, buf, count))
1213 return -EFAULT;
1214 rv = kstrtoint(strstrip(buffer), 10, &itype);
1215 if (rv < 0)
1216 return rv;
1217 type = (enum clear_refs_types)itype;
1218 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1219 return -EINVAL;
1220
1221 task = get_proc_task(file_inode(file));
1222 if (!task)
1223 return -ESRCH;
1224 mm = get_task_mm(task);
1225 if (mm) {
1226 struct mmu_notifier_range range;
1227 struct clear_refs_private cp = {
1228 .type = type,
1229 };
1230
1231 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1232 if (down_write_killable(&mm->mmap_sem)) {
1233 count = -EINTR;
1234 goto out_mm;
1235 }
1236
1237 /*
1238 * Writing 5 to /proc/pid/clear_refs resets the peak
1239 * resident set size to this mm's current rss value.
1240 */
1241 reset_mm_hiwater_rss(mm);
1242 up_write(&mm->mmap_sem);
1243 goto out_mm;
1244 }
1245
1246 if (down_read_killable(&mm->mmap_sem)) {
1247 count = -EINTR;
1248 goto out_mm;
1249 }
1250 tlb_gather_mmu(&tlb, mm, 0, -1);
1251 if (type == CLEAR_REFS_SOFT_DIRTY) {
1252 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1253 if (!(vma->vm_flags & VM_SOFTDIRTY))
1254 continue;
1255 up_read(&mm->mmap_sem);
1256 if (down_write_killable(&mm->mmap_sem)) {
1257 count = -EINTR;
1258 goto out_mm;
1259 }
1260 /*
1261 * Avoid to modify vma->vm_flags
1262 * without locked ops while the
1263 * coredump reads the vm_flags.
1264 */
1265 if (!mmget_still_valid(mm)) {
1266 /*
1267 * Silently return "count"
1268 * like if get_task_mm()
1269 * failed. FIXME: should this
1270 * function have returned
1271 * -ESRCH if get_task_mm()
1272 * failed like if
1273 * get_proc_task() fails?
1274 */
1275 up_write(&mm->mmap_sem);
1276 goto out_mm;
1277 }
1278 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1279 vma->vm_flags &= ~VM_SOFTDIRTY;
1280 vma_set_page_prot(vma);
1281 }
1282 downgrade_write(&mm->mmap_sem);
1283 break;
1284 }
1285
1286 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1287 0, NULL, mm, 0, -1UL);
1288 mmu_notifier_invalidate_range_start(&range);
1289 }
1290 walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1291 &cp);
1292 if (type == CLEAR_REFS_SOFT_DIRTY)
1293 mmu_notifier_invalidate_range_end(&range);
1294 tlb_finish_mmu(&tlb, 0, -1);
1295 up_read(&mm->mmap_sem);
1296out_mm:
1297 mmput(mm);
1298 }
1299 put_task_struct(task);
1300
1301 return count;
1302}
1303
1304const struct file_operations proc_clear_refs_operations = {
1305 .write = clear_refs_write,
1306 .llseek = noop_llseek,
1307};
1308
1309typedef struct {
1310 u64 pme;
1311} pagemap_entry_t;
1312
1313struct pagemapread {
1314 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1315 pagemap_entry_t *buffer;
1316 bool show_pfn;
1317};
1318
1319#define PAGEMAP_WALK_SIZE (PMD_SIZE)
1320#define PAGEMAP_WALK_MASK (PMD_MASK)
1321
1322#define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1323#define PM_PFRAME_BITS 55
1324#define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1325#define PM_SOFT_DIRTY BIT_ULL(55)
1326#define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1327#define PM_FILE BIT_ULL(61)
1328#define PM_SWAP BIT_ULL(62)
1329#define PM_PRESENT BIT_ULL(63)
1330
1331#define PM_END_OF_BUFFER 1
1332
1333static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1334{
1335 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1336}
1337
1338static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1339 struct pagemapread *pm)
1340{
1341 pm->buffer[pm->pos++] = *pme;
1342 if (pm->pos >= pm->len)
1343 return PM_END_OF_BUFFER;
1344 return 0;
1345}
1346
1347static int pagemap_pte_hole(unsigned long start, unsigned long end,
1348 struct mm_walk *walk)
1349{
1350 struct pagemapread *pm = walk->private;
1351 unsigned long addr = start;
1352 int err = 0;
1353
1354 while (addr < end) {
1355 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1356 pagemap_entry_t pme = make_pme(0, 0);
1357 /* End of address space hole, which we mark as non-present. */
1358 unsigned long hole_end;
1359
1360 if (vma)
1361 hole_end = min(end, vma->vm_start);
1362 else
1363 hole_end = end;
1364
1365 for (; addr < hole_end; addr += PAGE_SIZE) {
1366 err = add_to_pagemap(addr, &pme, pm);
1367 if (err)
1368 goto out;
1369 }
1370
1371 if (!vma)
1372 break;
1373
1374 /* Addresses in the VMA. */
1375 if (vma->vm_flags & VM_SOFTDIRTY)
1376 pme = make_pme(0, PM_SOFT_DIRTY);
1377 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1378 err = add_to_pagemap(addr, &pme, pm);
1379 if (err)
1380 goto out;
1381 }
1382 }
1383out:
1384 return err;
1385}
1386
1387static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1388 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1389{
1390 u64 frame = 0, flags = 0;
1391 struct page *page = NULL;
1392
1393 if (pte_present(pte)) {
1394 if (pm->show_pfn)
1395 frame = pte_pfn(pte);
1396 flags |= PM_PRESENT;
1397 page = vm_normal_page(vma, addr, pte);
1398 if (pte_soft_dirty(pte))
1399 flags |= PM_SOFT_DIRTY;
1400 } else if (is_swap_pte(pte)) {
1401 swp_entry_t entry;
1402 if (pte_swp_soft_dirty(pte))
1403 flags |= PM_SOFT_DIRTY;
1404 entry = pte_to_swp_entry(pte);
1405 if (pm->show_pfn)
1406 frame = swp_type(entry) |
1407 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1408 flags |= PM_SWAP;
1409 if (is_migration_entry(entry))
1410 page = migration_entry_to_page(entry);
1411
1412 if (is_device_private_entry(entry))
1413 page = device_private_entry_to_page(entry);
1414 }
1415
1416 if (page && !PageAnon(page))
1417 flags |= PM_FILE;
1418 if (page && page_mapcount(page) == 1)
1419 flags |= PM_MMAP_EXCLUSIVE;
1420 if (vma->vm_flags & VM_SOFTDIRTY)
1421 flags |= PM_SOFT_DIRTY;
1422
1423 return make_pme(frame, flags);
1424}
1425
1426static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1427 struct mm_walk *walk)
1428{
1429 struct vm_area_struct *vma = walk->vma;
1430 struct pagemapread *pm = walk->private;
1431 spinlock_t *ptl;
1432 pte_t *pte, *orig_pte;
1433 int err = 0;
1434
1435#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1436 ptl = pmd_trans_huge_lock(pmdp, vma);
1437 if (ptl) {
1438 u64 flags = 0, frame = 0;
1439 pmd_t pmd = *pmdp;
1440 struct page *page = NULL;
1441
1442 if (vma->vm_flags & VM_SOFTDIRTY)
1443 flags |= PM_SOFT_DIRTY;
1444
1445 if (pmd_present(pmd)) {
1446 page = pmd_page(pmd);
1447
1448 flags |= PM_PRESENT;
1449 if (pmd_soft_dirty(pmd))
1450 flags |= PM_SOFT_DIRTY;
1451 if (pm->show_pfn)
1452 frame = pmd_pfn(pmd) +
1453 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1454 }
1455#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1456 else if (is_swap_pmd(pmd)) {
1457 swp_entry_t entry = pmd_to_swp_entry(pmd);
1458 unsigned long offset;
1459
1460 if (pm->show_pfn) {
1461 offset = swp_offset(entry) +
1462 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1463 frame = swp_type(entry) |
1464 (offset << MAX_SWAPFILES_SHIFT);
1465 }
1466 flags |= PM_SWAP;
1467 if (pmd_swp_soft_dirty(pmd))
1468 flags |= PM_SOFT_DIRTY;
1469 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1470 page = migration_entry_to_page(entry);
1471 }
1472#endif
1473
1474 if (page && page_mapcount(page) == 1)
1475 flags |= PM_MMAP_EXCLUSIVE;
1476
1477 for (; addr != end; addr += PAGE_SIZE) {
1478 pagemap_entry_t pme = make_pme(frame, flags);
1479
1480 err = add_to_pagemap(addr, &pme, pm);
1481 if (err)
1482 break;
1483 if (pm->show_pfn) {
1484 if (flags & PM_PRESENT)
1485 frame++;
1486 else if (flags & PM_SWAP)
1487 frame += (1 << MAX_SWAPFILES_SHIFT);
1488 }
1489 }
1490 spin_unlock(ptl);
1491 return err;
1492 }
1493
1494 if (pmd_trans_unstable(pmdp))
1495 return 0;
1496#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1497
1498 /*
1499 * We can assume that @vma always points to a valid one and @end never
1500 * goes beyond vma->vm_end.
1501 */
1502 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1503 for (; addr < end; pte++, addr += PAGE_SIZE) {
1504 pagemap_entry_t pme;
1505
1506 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1507 err = add_to_pagemap(addr, &pme, pm);
1508 if (err)
1509 break;
1510 }
1511 pte_unmap_unlock(orig_pte, ptl);
1512
1513 cond_resched();
1514
1515 return err;
1516}
1517
1518#ifdef CONFIG_HUGETLB_PAGE
1519/* This function walks within one hugetlb entry in the single call */
1520static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1521 unsigned long addr, unsigned long end,
1522 struct mm_walk *walk)
1523{
1524 struct pagemapread *pm = walk->private;
1525 struct vm_area_struct *vma = walk->vma;
1526 u64 flags = 0, frame = 0;
1527 int err = 0;
1528 pte_t pte;
1529
1530 if (vma->vm_flags & VM_SOFTDIRTY)
1531 flags |= PM_SOFT_DIRTY;
1532
1533 pte = huge_ptep_get(ptep);
1534 if (pte_present(pte)) {
1535 struct page *page = pte_page(pte);
1536
1537 if (!PageAnon(page))
1538 flags |= PM_FILE;
1539
1540 if (page_mapcount(page) == 1)
1541 flags |= PM_MMAP_EXCLUSIVE;
1542
1543 flags |= PM_PRESENT;
1544 if (pm->show_pfn)
1545 frame = pte_pfn(pte) +
1546 ((addr & ~hmask) >> PAGE_SHIFT);
1547 }
1548
1549 for (; addr != end; addr += PAGE_SIZE) {
1550 pagemap_entry_t pme = make_pme(frame, flags);
1551
1552 err = add_to_pagemap(addr, &pme, pm);
1553 if (err)
1554 return err;
1555 if (pm->show_pfn && (flags & PM_PRESENT))
1556 frame++;
1557 }
1558
1559 cond_resched();
1560
1561 return err;
1562}
1563#else
1564#define pagemap_hugetlb_range NULL
1565#endif /* HUGETLB_PAGE */
1566
1567static const struct mm_walk_ops pagemap_ops = {
1568 .pmd_entry = pagemap_pmd_range,
1569 .pte_hole = pagemap_pte_hole,
1570 .hugetlb_entry = pagemap_hugetlb_range,
1571};
1572
1573/*
1574 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1575 *
1576 * For each page in the address space, this file contains one 64-bit entry
1577 * consisting of the following:
1578 *
1579 * Bits 0-54 page frame number (PFN) if present
1580 * Bits 0-4 swap type if swapped
1581 * Bits 5-54 swap offset if swapped
1582 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1583 * Bit 56 page exclusively mapped
1584 * Bits 57-60 zero
1585 * Bit 61 page is file-page or shared-anon
1586 * Bit 62 page swapped
1587 * Bit 63 page present
1588 *
1589 * If the page is not present but in swap, then the PFN contains an
1590 * encoding of the swap file number and the page's offset into the
1591 * swap. Unmapped pages return a null PFN. This allows determining
1592 * precisely which pages are mapped (or in swap) and comparing mapped
1593 * pages between processes.
1594 *
1595 * Efficient users of this interface will use /proc/pid/maps to
1596 * determine which areas of memory are actually mapped and llseek to
1597 * skip over unmapped regions.
1598 */
1599static ssize_t pagemap_read(struct file *file, char __user *buf,
1600 size_t count, loff_t *ppos)
1601{
1602 struct mm_struct *mm = file->private_data;
1603 struct pagemapread pm;
1604 unsigned long src;
1605 unsigned long svpfn;
1606 unsigned long start_vaddr;
1607 unsigned long end_vaddr;
1608 int ret = 0, copied = 0;
1609
1610 if (!mm || !mmget_not_zero(mm))
1611 goto out;
1612
1613 ret = -EINVAL;
1614 /* file position must be aligned */
1615 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1616 goto out_mm;
1617
1618 ret = 0;
1619 if (!count)
1620 goto out_mm;
1621
1622 /* do not disclose physical addresses: attack vector */
1623 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1624
1625 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1626 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1627 ret = -ENOMEM;
1628 if (!pm.buffer)
1629 goto out_mm;
1630
1631 src = *ppos;
1632 svpfn = src / PM_ENTRY_BYTES;
1633 end_vaddr = mm->task_size;
1634
1635 /* watch out for wraparound */
1636 start_vaddr = end_vaddr;
1637 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1638 start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1639
1640 /* Ensure the address is inside the task */
1641 if (start_vaddr > mm->task_size)
1642 start_vaddr = end_vaddr;
1643
1644 /*
1645 * The odds are that this will stop walking way
1646 * before end_vaddr, because the length of the
1647 * user buffer is tracked in "pm", and the walk
1648 * will stop when we hit the end of the buffer.
1649 */
1650 ret = 0;
1651 while (count && (start_vaddr < end_vaddr)) {
1652 int len;
1653 unsigned long end;
1654
1655 pm.pos = 0;
1656 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1657 /* overflow ? */
1658 if (end < start_vaddr || end > end_vaddr)
1659 end = end_vaddr;
1660 ret = down_read_killable(&mm->mmap_sem);
1661 if (ret)
1662 goto out_free;
1663 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1664 up_read(&mm->mmap_sem);
1665 start_vaddr = end;
1666
1667 len = min(count, PM_ENTRY_BYTES * pm.pos);
1668 if (copy_to_user(buf, pm.buffer, len)) {
1669 ret = -EFAULT;
1670 goto out_free;
1671 }
1672 copied += len;
1673 buf += len;
1674 count -= len;
1675 }
1676 *ppos += copied;
1677 if (!ret || ret == PM_END_OF_BUFFER)
1678 ret = copied;
1679
1680out_free:
1681 kfree(pm.buffer);
1682out_mm:
1683 mmput(mm);
1684out:
1685 return ret;
1686}
1687
1688static int pagemap_open(struct inode *inode, struct file *file)
1689{
1690 struct mm_struct *mm;
1691
1692 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1693 if (IS_ERR(mm))
1694 return PTR_ERR(mm);
1695 file->private_data = mm;
1696 return 0;
1697}
1698
1699static int pagemap_release(struct inode *inode, struct file *file)
1700{
1701 struct mm_struct *mm = file->private_data;
1702
1703 if (mm)
1704 mmdrop(mm);
1705 return 0;
1706}
1707
1708const struct file_operations proc_pagemap_operations = {
1709 .llseek = mem_lseek, /* borrow this */
1710 .read = pagemap_read,
1711 .open = pagemap_open,
1712 .release = pagemap_release,
1713};
1714#endif /* CONFIG_PROC_PAGE_MONITOR */
1715
1716#ifdef CONFIG_NUMA
1717
1718struct numa_maps {
1719 unsigned long pages;
1720 unsigned long anon;
1721 unsigned long active;
1722 unsigned long writeback;
1723 unsigned long mapcount_max;
1724 unsigned long dirty;
1725 unsigned long swapcache;
1726 unsigned long node[MAX_NUMNODES];
1727};
1728
1729struct numa_maps_private {
1730 struct proc_maps_private proc_maps;
1731 struct numa_maps md;
1732};
1733
1734static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1735 unsigned long nr_pages)
1736{
1737 int count = page_mapcount(page);
1738
1739 md->pages += nr_pages;
1740 if (pte_dirty || PageDirty(page))
1741 md->dirty += nr_pages;
1742
1743 if (PageSwapCache(page))
1744 md->swapcache += nr_pages;
1745
1746 if (PageActive(page) || PageUnevictable(page))
1747 md->active += nr_pages;
1748
1749 if (PageWriteback(page))
1750 md->writeback += nr_pages;
1751
1752 if (PageAnon(page))
1753 md->anon += nr_pages;
1754
1755 if (count > md->mapcount_max)
1756 md->mapcount_max = count;
1757
1758 md->node[page_to_nid(page)] += nr_pages;
1759}
1760
1761static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1762 unsigned long addr)
1763{
1764 struct page *page;
1765 int nid;
1766
1767 if (!pte_present(pte))
1768 return NULL;
1769
1770 page = vm_normal_page(vma, addr, pte);
1771 if (!page)
1772 return NULL;
1773
1774 if (PageReserved(page))
1775 return NULL;
1776
1777 nid = page_to_nid(page);
1778 if (!node_isset(nid, node_states[N_MEMORY]))
1779 return NULL;
1780
1781 return page;
1782}
1783
1784#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1785static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1786 struct vm_area_struct *vma,
1787 unsigned long addr)
1788{
1789 struct page *page;
1790 int nid;
1791
1792 if (!pmd_present(pmd))
1793 return NULL;
1794
1795 page = vm_normal_page_pmd(vma, addr, pmd);
1796 if (!page)
1797 return NULL;
1798
1799 if (PageReserved(page))
1800 return NULL;
1801
1802 nid = page_to_nid(page);
1803 if (!node_isset(nid, node_states[N_MEMORY]))
1804 return NULL;
1805
1806 return page;
1807}
1808#endif
1809
1810static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1811 unsigned long end, struct mm_walk *walk)
1812{
1813 struct numa_maps *md = walk->private;
1814 struct vm_area_struct *vma = walk->vma;
1815 spinlock_t *ptl;
1816 pte_t *orig_pte;
1817 pte_t *pte;
1818
1819#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1820 ptl = pmd_trans_huge_lock(pmd, vma);
1821 if (ptl) {
1822 struct page *page;
1823
1824 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1825 if (page)
1826 gather_stats(page, md, pmd_dirty(*pmd),
1827 HPAGE_PMD_SIZE/PAGE_SIZE);
1828 spin_unlock(ptl);
1829 return 0;
1830 }
1831
1832 if (pmd_trans_unstable(pmd))
1833 return 0;
1834#endif
1835 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1836 do {
1837 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1838 if (!page)
1839 continue;
1840 gather_stats(page, md, pte_dirty(*pte), 1);
1841
1842 } while (pte++, addr += PAGE_SIZE, addr != end);
1843 pte_unmap_unlock(orig_pte, ptl);
1844 cond_resched();
1845 return 0;
1846}
1847#ifdef CONFIG_HUGETLB_PAGE
1848static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1849 unsigned long addr, unsigned long end, struct mm_walk *walk)
1850{
1851 pte_t huge_pte = huge_ptep_get(pte);
1852 struct numa_maps *md;
1853 struct page *page;
1854
1855 if (!pte_present(huge_pte))
1856 return 0;
1857
1858 page = pte_page(huge_pte);
1859 if (!page)
1860 return 0;
1861
1862 md = walk->private;
1863 gather_stats(page, md, pte_dirty(huge_pte), 1);
1864 return 0;
1865}
1866
1867#else
1868static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1869 unsigned long addr, unsigned long end, struct mm_walk *walk)
1870{
1871 return 0;
1872}
1873#endif
1874
1875static const struct mm_walk_ops show_numa_ops = {
1876 .hugetlb_entry = gather_hugetlb_stats,
1877 .pmd_entry = gather_pte_stats,
1878};
1879
1880/*
1881 * Display pages allocated per node and memory policy via /proc.
1882 */
1883static int show_numa_map(struct seq_file *m, void *v)
1884{
1885 struct numa_maps_private *numa_priv = m->private;
1886 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1887 struct vm_area_struct *vma = v;
1888 struct numa_maps *md = &numa_priv->md;
1889 struct file *file = vma->vm_file;
1890 struct mm_struct *mm = vma->vm_mm;
1891 struct mempolicy *pol;
1892 char buffer[64];
1893 int nid;
1894
1895 if (!mm)
1896 return 0;
1897
1898 /* Ensure we start with an empty set of numa_maps statistics. */
1899 memset(md, 0, sizeof(*md));
1900
1901 pol = __get_vma_policy(vma, vma->vm_start);
1902 if (pol) {
1903 mpol_to_str(buffer, sizeof(buffer), pol);
1904 mpol_cond_put(pol);
1905 } else {
1906 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1907 }
1908
1909 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1910
1911 if (file) {
1912 seq_puts(m, " file=");
1913 seq_file_path(m, file, "\n\t= ");
1914 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1915 seq_puts(m, " heap");
1916 } else if (is_stack(vma)) {
1917 seq_puts(m, " stack");
1918 }
1919
1920 if (is_vm_hugetlb_page(vma))
1921 seq_puts(m, " huge");
1922
1923 /* mmap_sem is held by m_start */
1924 walk_page_vma(vma, &show_numa_ops, md);
1925
1926 if (!md->pages)
1927 goto out;
1928
1929 if (md->anon)
1930 seq_printf(m, " anon=%lu", md->anon);
1931
1932 if (md->dirty)
1933 seq_printf(m, " dirty=%lu", md->dirty);
1934
1935 if (md->pages != md->anon && md->pages != md->dirty)
1936 seq_printf(m, " mapped=%lu", md->pages);
1937
1938 if (md->mapcount_max > 1)
1939 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1940
1941 if (md->swapcache)
1942 seq_printf(m, " swapcache=%lu", md->swapcache);
1943
1944 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1945 seq_printf(m, " active=%lu", md->active);
1946
1947 if (md->writeback)
1948 seq_printf(m, " writeback=%lu", md->writeback);
1949
1950 for_each_node_state(nid, N_MEMORY)
1951 if (md->node[nid])
1952 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1953
1954 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1955out:
1956 seq_putc(m, '\n');
1957 m_cache_vma(m, vma);
1958 return 0;
1959}
1960
1961static const struct seq_operations proc_pid_numa_maps_op = {
1962 .start = m_start,
1963 .next = m_next,
1964 .stop = m_stop,
1965 .show = show_numa_map,
1966};
1967
1968static int pid_numa_maps_open(struct inode *inode, struct file *file)
1969{
1970 return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1971 sizeof(struct numa_maps_private));
1972}
1973
1974const struct file_operations proc_pid_numa_maps_operations = {
1975 .open = pid_numa_maps_open,
1976 .read = seq_read,
1977 .llseek = seq_lseek,
1978 .release = proc_map_release,
1979};
1980
1981#endif /* CONFIG_NUMA */