blob: 8edf44a2d3dcc66318adb74ca33a5b29254e0396 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/super.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * super.c contains code to handle: - mount structures
8 * - super-block tables
9 * - filesystem drivers list
10 * - mount system call
11 * - umount system call
12 * - ustat system call
13 *
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 *
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22 */
23
24#include <linux/export.h>
25#include <linux/slab.h>
26#include <linux/blkdev.h>
27#include <linux/mount.h>
28#include <linux/security.h>
29#include <linux/writeback.h> /* for the emergency remount stuff */
30#include <linux/idr.h>
31#include <linux/mutex.h>
32#include <linux/backing-dev.h>
33#include <linux/rculist_bl.h>
34#include <linux/cleancache.h>
35#include <linux/fscrypt.h>
36#include <linux/fsnotify.h>
37#include <linux/lockdep.h>
38#include <linux/user_namespace.h>
39#include <linux/fs_context.h>
40#include <uapi/linux/mount.h>
41#include "internal.h"
42
43static int thaw_super_locked(struct super_block *sb);
44
45static LIST_HEAD(super_blocks);
46static DEFINE_SPINLOCK(sb_lock);
47
48static char *sb_writers_name[SB_FREEZE_LEVELS] = {
49 "sb_writers",
50 "sb_pagefaults",
51 "sb_internal",
52};
53
54/*
55 * One thing we have to be careful of with a per-sb shrinker is that we don't
56 * drop the last active reference to the superblock from within the shrinker.
57 * If that happens we could trigger unregistering the shrinker from within the
58 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
59 * take a passive reference to the superblock to avoid this from occurring.
60 */
61static unsigned long super_cache_scan(struct shrinker *shrink,
62 struct shrink_control *sc)
63{
64 struct super_block *sb;
65 long fs_objects = 0;
66 long total_objects;
67 long freed = 0;
68 long dentries;
69 long inodes;
70
71 sb = container_of(shrink, struct super_block, s_shrink);
72
73 /*
74 * Deadlock avoidance. We may hold various FS locks, and we don't want
75 * to recurse into the FS that called us in clear_inode() and friends..
76 */
77 if (!(sc->gfp_mask & __GFP_FS))
78 return SHRINK_STOP;
79
80 if (!trylock_super(sb))
81 return SHRINK_STOP;
82
83 if (sb->s_op->nr_cached_objects)
84 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
85
86 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
87 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
88 total_objects = dentries + inodes + fs_objects + 1;
89 if (!total_objects)
90 total_objects = 1;
91
92 /* proportion the scan between the caches */
93 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
94 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
95 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
96
97 /*
98 * prune the dcache first as the icache is pinned by it, then
99 * prune the icache, followed by the filesystem specific caches
100 *
101 * Ensure that we always scan at least one object - memcg kmem
102 * accounting uses this to fully empty the caches.
103 */
104 sc->nr_to_scan = dentries + 1;
105 freed = prune_dcache_sb(sb, sc);
106 sc->nr_to_scan = inodes + 1;
107 freed += prune_icache_sb(sb, sc);
108
109 if (fs_objects) {
110 sc->nr_to_scan = fs_objects + 1;
111 freed += sb->s_op->free_cached_objects(sb, sc);
112 }
113
114 up_read(&sb->s_umount);
115 return freed;
116}
117
118static unsigned long super_cache_count(struct shrinker *shrink,
119 struct shrink_control *sc)
120{
121 struct super_block *sb;
122 long total_objects = 0;
123
124 sb = container_of(shrink, struct super_block, s_shrink);
125
126 /*
127 * We don't call trylock_super() here as it is a scalability bottleneck,
128 * so we're exposed to partial setup state. The shrinker rwsem does not
129 * protect filesystem operations backing list_lru_shrink_count() or
130 * s_op->nr_cached_objects(). Counts can change between
131 * super_cache_count and super_cache_scan, so we really don't need locks
132 * here.
133 *
134 * However, if we are currently mounting the superblock, the underlying
135 * filesystem might be in a state of partial construction and hence it
136 * is dangerous to access it. trylock_super() uses a SB_BORN check to
137 * avoid this situation, so do the same here. The memory barrier is
138 * matched with the one in mount_fs() as we don't hold locks here.
139 */
140 if (!(sb->s_flags & SB_BORN))
141 return 0;
142 smp_rmb();
143
144 if (sb->s_op && sb->s_op->nr_cached_objects)
145 total_objects = sb->s_op->nr_cached_objects(sb, sc);
146
147 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
148 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
149
150 if (!total_objects)
151 return SHRINK_EMPTY;
152
153 total_objects = vfs_pressure_ratio(total_objects);
154 return total_objects;
155}
156
157static void destroy_super_work(struct work_struct *work)
158{
159 struct super_block *s = container_of(work, struct super_block,
160 destroy_work);
161 int i;
162
163 for (i = 0; i < SB_FREEZE_LEVELS; i++)
164 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
165 kfree(s);
166}
167
168static void destroy_super_rcu(struct rcu_head *head)
169{
170 struct super_block *s = container_of(head, struct super_block, rcu);
171 INIT_WORK(&s->destroy_work, destroy_super_work);
172 schedule_work(&s->destroy_work);
173}
174
175/* Free a superblock that has never been seen by anyone */
176static void destroy_unused_super(struct super_block *s)
177{
178 if (!s)
179 return;
180 up_write(&s->s_umount);
181 list_lru_destroy(&s->s_dentry_lru);
182 list_lru_destroy(&s->s_inode_lru);
183 security_sb_free(s);
184 put_user_ns(s->s_user_ns);
185 kfree(s->s_subtype);
186 free_prealloced_shrinker(&s->s_shrink);
187 /* no delays needed */
188 destroy_super_work(&s->destroy_work);
189}
190
191/**
192 * alloc_super - create new superblock
193 * @type: filesystem type superblock should belong to
194 * @flags: the mount flags
195 * @user_ns: User namespace for the super_block
196 *
197 * Allocates and initializes a new &struct super_block. alloc_super()
198 * returns a pointer new superblock or %NULL if allocation had failed.
199 */
200static struct super_block *alloc_super(struct file_system_type *type, int flags,
201 struct user_namespace *user_ns)
202{
203 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
204 static const struct super_operations default_op;
205 int i;
206
207 if (!s)
208 return NULL;
209
210 INIT_LIST_HEAD(&s->s_mounts);
211 s->s_user_ns = get_user_ns(user_ns);
212 init_rwsem(&s->s_umount);
213 lockdep_set_class(&s->s_umount, &type->s_umount_key);
214 /*
215 * sget() can have s_umount recursion.
216 *
217 * When it cannot find a suitable sb, it allocates a new
218 * one (this one), and tries again to find a suitable old
219 * one.
220 *
221 * In case that succeeds, it will acquire the s_umount
222 * lock of the old one. Since these are clearly distrinct
223 * locks, and this object isn't exposed yet, there's no
224 * risk of deadlocks.
225 *
226 * Annotate this by putting this lock in a different
227 * subclass.
228 */
229 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
230
231 if (security_sb_alloc(s))
232 goto fail;
233
234 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
235 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
236 sb_writers_name[i],
237 &type->s_writers_key[i]))
238 goto fail;
239 }
240 init_waitqueue_head(&s->s_writers.wait_unfrozen);
241 s->s_bdi = &noop_backing_dev_info;
242 s->s_flags = flags;
243 if (s->s_user_ns != &init_user_ns)
244 s->s_iflags |= SB_I_NODEV;
245 INIT_HLIST_NODE(&s->s_instances);
246 INIT_HLIST_BL_HEAD(&s->s_roots);
247 mutex_init(&s->s_sync_lock);
248 INIT_LIST_HEAD(&s->s_inodes);
249 spin_lock_init(&s->s_inode_list_lock);
250 INIT_LIST_HEAD(&s->s_inodes_wb);
251 spin_lock_init(&s->s_inode_wblist_lock);
252
253 s->s_count = 1;
254 atomic_set(&s->s_active, 1);
255 mutex_init(&s->s_vfs_rename_mutex);
256 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
257 init_rwsem(&s->s_dquot.dqio_sem);
258 s->s_maxbytes = MAX_NON_LFS;
259 s->s_op = &default_op;
260 s->s_time_gran = 1000000000;
261 s->s_time_min = TIME64_MIN;
262 s->s_time_max = TIME64_MAX;
263 s->cleancache_poolid = CLEANCACHE_NO_POOL;
264
265 s->s_shrink.seeks = DEFAULT_SEEKS;
266 s->s_shrink.scan_objects = super_cache_scan;
267 s->s_shrink.count_objects = super_cache_count;
268 s->s_shrink.batch = 1024;
269 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
270 if (prealloc_shrinker(&s->s_shrink))
271 goto fail;
272 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
273 goto fail;
274 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
275 goto fail;
276 return s;
277
278fail:
279 destroy_unused_super(s);
280 return NULL;
281}
282
283/* Superblock refcounting */
284
285/*
286 * Drop a superblock's refcount. The caller must hold sb_lock.
287 */
288static void __put_super(struct super_block *s)
289{
290 if (!--s->s_count) {
291 list_del_init(&s->s_list);
292 WARN_ON(s->s_dentry_lru.node);
293 WARN_ON(s->s_inode_lru.node);
294 WARN_ON(!list_empty(&s->s_mounts));
295 security_sb_free(s);
296 fscrypt_sb_free(s);
297 put_user_ns(s->s_user_ns);
298 kfree(s->s_subtype);
299 call_rcu(&s->rcu, destroy_super_rcu);
300 }
301}
302
303/**
304 * put_super - drop a temporary reference to superblock
305 * @sb: superblock in question
306 *
307 * Drops a temporary reference, frees superblock if there's no
308 * references left.
309 */
310static void put_super(struct super_block *sb)
311{
312 spin_lock(&sb_lock);
313 __put_super(sb);
314 spin_unlock(&sb_lock);
315}
316
317
318/**
319 * deactivate_locked_super - drop an active reference to superblock
320 * @s: superblock to deactivate
321 *
322 * Drops an active reference to superblock, converting it into a temporary
323 * one if there is no other active references left. In that case we
324 * tell fs driver to shut it down and drop the temporary reference we
325 * had just acquired.
326 *
327 * Caller holds exclusive lock on superblock; that lock is released.
328 */
329void deactivate_locked_super(struct super_block *s)
330{
331 struct file_system_type *fs = s->s_type;
332 if (atomic_dec_and_test(&s->s_active)) {
333 cleancache_invalidate_fs(s);
334 unregister_shrinker(&s->s_shrink);
335 fs->kill_sb(s);
336
337 /*
338 * Since list_lru_destroy() may sleep, we cannot call it from
339 * put_super(), where we hold the sb_lock. Therefore we destroy
340 * the lru lists right now.
341 */
342 list_lru_destroy(&s->s_dentry_lru);
343 list_lru_destroy(&s->s_inode_lru);
344
345 put_filesystem(fs);
346 put_super(s);
347 } else {
348 up_write(&s->s_umount);
349 }
350}
351
352EXPORT_SYMBOL(deactivate_locked_super);
353
354/**
355 * deactivate_super - drop an active reference to superblock
356 * @s: superblock to deactivate
357 *
358 * Variant of deactivate_locked_super(), except that superblock is *not*
359 * locked by caller. If we are going to drop the final active reference,
360 * lock will be acquired prior to that.
361 */
362void deactivate_super(struct super_block *s)
363{
364 if (!atomic_add_unless(&s->s_active, -1, 1)) {
365 down_write(&s->s_umount);
366 deactivate_locked_super(s);
367 }
368}
369
370EXPORT_SYMBOL(deactivate_super);
371
372/**
373 * grab_super - acquire an active reference
374 * @s: reference we are trying to make active
375 *
376 * Tries to acquire an active reference. grab_super() is used when we
377 * had just found a superblock in super_blocks or fs_type->fs_supers
378 * and want to turn it into a full-blown active reference. grab_super()
379 * is called with sb_lock held and drops it. Returns 1 in case of
380 * success, 0 if we had failed (superblock contents was already dead or
381 * dying when grab_super() had been called). Note that this is only
382 * called for superblocks not in rundown mode (== ones still on ->fs_supers
383 * of their type), so increment of ->s_count is OK here.
384 */
385static int grab_super(struct super_block *s) __releases(sb_lock)
386{
387 s->s_count++;
388 spin_unlock(&sb_lock);
389 down_write(&s->s_umount);
390 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
391 put_super(s);
392 return 1;
393 }
394 up_write(&s->s_umount);
395 put_super(s);
396 return 0;
397}
398
399/*
400 * trylock_super - try to grab ->s_umount shared
401 * @sb: reference we are trying to grab
402 *
403 * Try to prevent fs shutdown. This is used in places where we
404 * cannot take an active reference but we need to ensure that the
405 * filesystem is not shut down while we are working on it. It returns
406 * false if we cannot acquire s_umount or if we lose the race and
407 * filesystem already got into shutdown, and returns true with the s_umount
408 * lock held in read mode in case of success. On successful return,
409 * the caller must drop the s_umount lock when done.
410 *
411 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
412 * The reason why it's safe is that we are OK with doing trylock instead
413 * of down_read(). There's a couple of places that are OK with that, but
414 * it's very much not a general-purpose interface.
415 */
416bool trylock_super(struct super_block *sb)
417{
418 if (down_read_trylock(&sb->s_umount)) {
419 if (!hlist_unhashed(&sb->s_instances) &&
420 sb->s_root && (sb->s_flags & SB_BORN))
421 return true;
422 up_read(&sb->s_umount);
423 }
424
425 return false;
426}
427
428/**
429 * generic_shutdown_super - common helper for ->kill_sb()
430 * @sb: superblock to kill
431 *
432 * generic_shutdown_super() does all fs-independent work on superblock
433 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
434 * that need destruction out of superblock, call generic_shutdown_super()
435 * and release aforementioned objects. Note: dentries and inodes _are_
436 * taken care of and do not need specific handling.
437 *
438 * Upon calling this function, the filesystem may no longer alter or
439 * rearrange the set of dentries belonging to this super_block, nor may it
440 * change the attachments of dentries to inodes.
441 */
442void generic_shutdown_super(struct super_block *sb)
443{
444 const struct super_operations *sop = sb->s_op;
445
446 if (sb->s_root) {
447 shrink_dcache_for_umount(sb);
448 sync_filesystem(sb);
449 sb->s_flags &= ~SB_ACTIVE;
450
451 cgroup_writeback_umount();
452
453 /* evict all inodes with zero refcount */
454 evict_inodes(sb);
455 /* only nonzero refcount inodes can have marks */
456 fsnotify_sb_delete(sb);
457
458 if (sb->s_dio_done_wq) {
459 destroy_workqueue(sb->s_dio_done_wq);
460 sb->s_dio_done_wq = NULL;
461 }
462
463 if (sop->put_super)
464 sop->put_super(sb);
465
466 if (!list_empty(&sb->s_inodes)) {
467 printk("VFS: Busy inodes after unmount of %s. "
468 "Self-destruct in 5 seconds. Have a nice day...\n",
469 sb->s_id);
470 }
471 }
472 spin_lock(&sb_lock);
473 /* should be initialized for __put_super_and_need_restart() */
474 hlist_del_init(&sb->s_instances);
475 spin_unlock(&sb_lock);
476 up_write(&sb->s_umount);
477 if (sb->s_bdi != &noop_backing_dev_info) {
478 if (sb->s_iflags & SB_I_PERSB_BDI)
479 bdi_unregister(sb->s_bdi);
480 bdi_put(sb->s_bdi);
481 sb->s_bdi = &noop_backing_dev_info;
482 }
483}
484
485EXPORT_SYMBOL(generic_shutdown_super);
486
487bool mount_capable(struct fs_context *fc)
488{
489 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
490 return capable(CAP_SYS_ADMIN);
491 else
492 return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
493}
494
495/**
496 * sget_fc - Find or create a superblock
497 * @fc: Filesystem context.
498 * @test: Comparison callback
499 * @set: Setup callback
500 *
501 * Find or create a superblock using the parameters stored in the filesystem
502 * context and the two callback functions.
503 *
504 * If an extant superblock is matched, then that will be returned with an
505 * elevated reference count that the caller must transfer or discard.
506 *
507 * If no match is made, a new superblock will be allocated and basic
508 * initialisation will be performed (s_type, s_fs_info and s_id will be set and
509 * the set() callback will be invoked), the superblock will be published and it
510 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
511 * as yet unset.
512 */
513struct super_block *sget_fc(struct fs_context *fc,
514 int (*test)(struct super_block *, struct fs_context *),
515 int (*set)(struct super_block *, struct fs_context *))
516{
517 struct super_block *s = NULL;
518 struct super_block *old;
519 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
520 int err;
521
522retry:
523 spin_lock(&sb_lock);
524 if (test) {
525 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
526 if (test(old, fc))
527 goto share_extant_sb;
528 }
529 }
530 if (!s) {
531 spin_unlock(&sb_lock);
532 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
533 if (!s)
534 return ERR_PTR(-ENOMEM);
535 goto retry;
536 }
537
538 s->s_fs_info = fc->s_fs_info;
539 err = set(s, fc);
540 if (err) {
541 s->s_fs_info = NULL;
542 spin_unlock(&sb_lock);
543 destroy_unused_super(s);
544 return ERR_PTR(err);
545 }
546 fc->s_fs_info = NULL;
547 s->s_type = fc->fs_type;
548 s->s_iflags |= fc->s_iflags;
549 strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
550 list_add_tail(&s->s_list, &super_blocks);
551 hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
552 spin_unlock(&sb_lock);
553 get_filesystem(s->s_type);
554 register_shrinker_prepared(&s->s_shrink);
555 return s;
556
557share_extant_sb:
558 if (user_ns != old->s_user_ns) {
559 spin_unlock(&sb_lock);
560 destroy_unused_super(s);
561 return ERR_PTR(-EBUSY);
562 }
563 if (!grab_super(old))
564 goto retry;
565 destroy_unused_super(s);
566 return old;
567}
568EXPORT_SYMBOL(sget_fc);
569
570/**
571 * sget - find or create a superblock
572 * @type: filesystem type superblock should belong to
573 * @test: comparison callback
574 * @set: setup callback
575 * @flags: mount flags
576 * @data: argument to each of them
577 */
578struct super_block *sget(struct file_system_type *type,
579 int (*test)(struct super_block *,void *),
580 int (*set)(struct super_block *,void *),
581 int flags,
582 void *data)
583{
584 struct user_namespace *user_ns = current_user_ns();
585 struct super_block *s = NULL;
586 struct super_block *old;
587 int err;
588
589 /* We don't yet pass the user namespace of the parent
590 * mount through to here so always use &init_user_ns
591 * until that changes.
592 */
593 if (flags & SB_SUBMOUNT)
594 user_ns = &init_user_ns;
595
596retry:
597 spin_lock(&sb_lock);
598 if (test) {
599 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
600 if (!test(old, data))
601 continue;
602 if (user_ns != old->s_user_ns) {
603 spin_unlock(&sb_lock);
604 destroy_unused_super(s);
605 return ERR_PTR(-EBUSY);
606 }
607 if (!grab_super(old))
608 goto retry;
609 destroy_unused_super(s);
610 return old;
611 }
612 }
613 if (!s) {
614 spin_unlock(&sb_lock);
615 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
616 if (!s)
617 return ERR_PTR(-ENOMEM);
618 goto retry;
619 }
620
621 err = set(s, data);
622 if (err) {
623 spin_unlock(&sb_lock);
624 destroy_unused_super(s);
625 return ERR_PTR(err);
626 }
627 s->s_type = type;
628 strlcpy(s->s_id, type->name, sizeof(s->s_id));
629 list_add_tail(&s->s_list, &super_blocks);
630 hlist_add_head(&s->s_instances, &type->fs_supers);
631 spin_unlock(&sb_lock);
632 get_filesystem(type);
633 register_shrinker_prepared(&s->s_shrink);
634 return s;
635}
636EXPORT_SYMBOL(sget);
637
638void drop_super(struct super_block *sb)
639{
640 up_read(&sb->s_umount);
641 put_super(sb);
642}
643
644EXPORT_SYMBOL(drop_super);
645
646void drop_super_exclusive(struct super_block *sb)
647{
648 up_write(&sb->s_umount);
649 put_super(sb);
650}
651EXPORT_SYMBOL(drop_super_exclusive);
652
653static void __iterate_supers(void (*f)(struct super_block *))
654{
655 struct super_block *sb, *p = NULL;
656
657 spin_lock(&sb_lock);
658 list_for_each_entry(sb, &super_blocks, s_list) {
659 if (hlist_unhashed(&sb->s_instances))
660 continue;
661 sb->s_count++;
662 spin_unlock(&sb_lock);
663
664 f(sb);
665
666 spin_lock(&sb_lock);
667 if (p)
668 __put_super(p);
669 p = sb;
670 }
671 if (p)
672 __put_super(p);
673 spin_unlock(&sb_lock);
674}
675/**
676 * iterate_supers - call function for all active superblocks
677 * @f: function to call
678 * @arg: argument to pass to it
679 *
680 * Scans the superblock list and calls given function, passing it
681 * locked superblock and given argument.
682 */
683void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
684{
685 struct super_block *sb, *p = NULL;
686
687 spin_lock(&sb_lock);
688 list_for_each_entry(sb, &super_blocks, s_list) {
689 if (hlist_unhashed(&sb->s_instances))
690 continue;
691 sb->s_count++;
692 spin_unlock(&sb_lock);
693
694 down_read(&sb->s_umount);
695 if (sb->s_root && (sb->s_flags & SB_BORN))
696 f(sb, arg);
697 up_read(&sb->s_umount);
698
699 spin_lock(&sb_lock);
700 if (p)
701 __put_super(p);
702 p = sb;
703 }
704 if (p)
705 __put_super(p);
706 spin_unlock(&sb_lock);
707}
708
709/**
710 * iterate_supers_type - call function for superblocks of given type
711 * @type: fs type
712 * @f: function to call
713 * @arg: argument to pass to it
714 *
715 * Scans the superblock list and calls given function, passing it
716 * locked superblock and given argument.
717 */
718void iterate_supers_type(struct file_system_type *type,
719 void (*f)(struct super_block *, void *), void *arg)
720{
721 struct super_block *sb, *p = NULL;
722
723 spin_lock(&sb_lock);
724 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
725 sb->s_count++;
726 spin_unlock(&sb_lock);
727
728 down_read(&sb->s_umount);
729 if (sb->s_root && (sb->s_flags & SB_BORN))
730 f(sb, arg);
731 up_read(&sb->s_umount);
732
733 spin_lock(&sb_lock);
734 if (p)
735 __put_super(p);
736 p = sb;
737 }
738 if (p)
739 __put_super(p);
740 spin_unlock(&sb_lock);
741}
742
743EXPORT_SYMBOL(iterate_supers_type);
744
745static struct super_block *__get_super(struct block_device *bdev, bool excl)
746{
747 struct super_block *sb;
748
749 if (!bdev)
750 return NULL;
751
752 spin_lock(&sb_lock);
753rescan:
754 list_for_each_entry(sb, &super_blocks, s_list) {
755 if (hlist_unhashed(&sb->s_instances))
756 continue;
757 if (sb->s_bdev == bdev) {
758 sb->s_count++;
759 spin_unlock(&sb_lock);
760 if (!excl)
761 down_read(&sb->s_umount);
762 else
763 down_write(&sb->s_umount);
764 /* still alive? */
765 if (sb->s_root && (sb->s_flags & SB_BORN))
766 return sb;
767 if (!excl)
768 up_read(&sb->s_umount);
769 else
770 up_write(&sb->s_umount);
771 /* nope, got unmounted */
772 spin_lock(&sb_lock);
773 __put_super(sb);
774 goto rescan;
775 }
776 }
777 spin_unlock(&sb_lock);
778 return NULL;
779}
780
781/**
782 * get_super - get the superblock of a device
783 * @bdev: device to get the superblock for
784 *
785 * Scans the superblock list and finds the superblock of the file system
786 * mounted on the device given. %NULL is returned if no match is found.
787 */
788struct super_block *get_super(struct block_device *bdev)
789{
790 return __get_super(bdev, false);
791}
792EXPORT_SYMBOL(get_super);
793
794static struct super_block *__get_super_thawed(struct block_device *bdev,
795 bool excl)
796{
797 while (1) {
798 struct super_block *s = __get_super(bdev, excl);
799 if (!s || s->s_writers.frozen == SB_UNFROZEN)
800 return s;
801 if (!excl)
802 up_read(&s->s_umount);
803 else
804 up_write(&s->s_umount);
805 wait_event(s->s_writers.wait_unfrozen,
806 s->s_writers.frozen == SB_UNFROZEN);
807 put_super(s);
808 }
809}
810
811/**
812 * get_super_thawed - get thawed superblock of a device
813 * @bdev: device to get the superblock for
814 *
815 * Scans the superblock list and finds the superblock of the file system
816 * mounted on the device. The superblock is returned once it is thawed
817 * (or immediately if it was not frozen). %NULL is returned if no match
818 * is found.
819 */
820struct super_block *get_super_thawed(struct block_device *bdev)
821{
822 return __get_super_thawed(bdev, false);
823}
824EXPORT_SYMBOL(get_super_thawed);
825
826/**
827 * get_super_exclusive_thawed - get thawed superblock of a device
828 * @bdev: device to get the superblock for
829 *
830 * Scans the superblock list and finds the superblock of the file system
831 * mounted on the device. The superblock is returned once it is thawed
832 * (or immediately if it was not frozen) and s_umount semaphore is held
833 * in exclusive mode. %NULL is returned if no match is found.
834 */
835struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
836{
837 return __get_super_thawed(bdev, true);
838}
839EXPORT_SYMBOL(get_super_exclusive_thawed);
840
841/**
842 * get_active_super - get an active reference to the superblock of a device
843 * @bdev: device to get the superblock for
844 *
845 * Scans the superblock list and finds the superblock of the file system
846 * mounted on the device given. Returns the superblock with an active
847 * reference or %NULL if none was found.
848 */
849struct super_block *get_active_super(struct block_device *bdev)
850{
851 struct super_block *sb;
852
853 if (!bdev)
854 return NULL;
855
856restart:
857 spin_lock(&sb_lock);
858 list_for_each_entry(sb, &super_blocks, s_list) {
859 if (hlist_unhashed(&sb->s_instances))
860 continue;
861 if (sb->s_bdev == bdev) {
862 if (!grab_super(sb))
863 goto restart;
864 up_write(&sb->s_umount);
865 return sb;
866 }
867 }
868 spin_unlock(&sb_lock);
869 return NULL;
870}
871
872struct super_block *user_get_super(dev_t dev)
873{
874 struct super_block *sb;
875
876 spin_lock(&sb_lock);
877rescan:
878 list_for_each_entry(sb, &super_blocks, s_list) {
879 if (hlist_unhashed(&sb->s_instances))
880 continue;
881 if (sb->s_dev == dev) {
882 sb->s_count++;
883 spin_unlock(&sb_lock);
884 down_read(&sb->s_umount);
885 /* still alive? */
886 if (sb->s_root && (sb->s_flags & SB_BORN))
887 return sb;
888 up_read(&sb->s_umount);
889 /* nope, got unmounted */
890 spin_lock(&sb_lock);
891 __put_super(sb);
892 goto rescan;
893 }
894 }
895 spin_unlock(&sb_lock);
896 return NULL;
897}
898
899/**
900 * reconfigure_super - asks filesystem to change superblock parameters
901 * @fc: The superblock and configuration
902 *
903 * Alters the configuration parameters of a live superblock.
904 */
905int reconfigure_super(struct fs_context *fc)
906{
907 struct super_block *sb = fc->root->d_sb;
908 int retval;
909 bool remount_ro = false;
910 bool remount_rw = false;
911 bool force = fc->sb_flags & SB_FORCE;
912
913 if (fc->sb_flags_mask & ~MS_RMT_MASK)
914 return -EINVAL;
915 if (sb->s_writers.frozen != SB_UNFROZEN)
916 return -EBUSY;
917
918 retval = security_sb_remount(sb, fc->security);
919 if (retval)
920 return retval;
921
922 if (fc->sb_flags_mask & SB_RDONLY) {
923#ifdef CONFIG_BLOCK
924 if (!(fc->sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
925 return -EACCES;
926#endif
927 remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
928 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
929 }
930
931 if (remount_ro) {
932 if (!hlist_empty(&sb->s_pins)) {
933 up_write(&sb->s_umount);
934 group_pin_kill(&sb->s_pins);
935 down_write(&sb->s_umount);
936 if (!sb->s_root)
937 return 0;
938 if (sb->s_writers.frozen != SB_UNFROZEN)
939 return -EBUSY;
940 remount_ro = !sb_rdonly(sb);
941 }
942 }
943 shrink_dcache_sb(sb);
944
945 /* If we are reconfiguring to RDONLY and current sb is read/write,
946 * make sure there are no files open for writing.
947 */
948 if (remount_ro) {
949 if (force) {
950 sb->s_readonly_remount = 1;
951 smp_wmb();
952 } else {
953 retval = sb_prepare_remount_readonly(sb);
954 if (retval)
955 return retval;
956 }
957 } else if (remount_rw) {
958 /*
959 * We set s_readonly_remount here to protect filesystem's
960 * reconfigure code from writes from userspace until
961 * reconfigure finishes.
962 */
963 sb->s_readonly_remount = 1;
964 smp_wmb();
965 }
966
967 if (fc->ops->reconfigure) {
968 retval = fc->ops->reconfigure(fc);
969 if (retval) {
970 if (!force)
971 goto cancel_readonly;
972 /* If forced remount, go ahead despite any errors */
973 WARN(1, "forced remount of a %s fs returned %i\n",
974 sb->s_type->name, retval);
975 }
976 }
977
978 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
979 (fc->sb_flags & fc->sb_flags_mask)));
980 /* Needs to be ordered wrt mnt_is_readonly() */
981 smp_wmb();
982 sb->s_readonly_remount = 0;
983
984 /*
985 * Some filesystems modify their metadata via some other path than the
986 * bdev buffer cache (eg. use a private mapping, or directories in
987 * pagecache, etc). Also file data modifications go via their own
988 * mappings. So If we try to mount readonly then copy the filesystem
989 * from bdev, we could get stale data, so invalidate it to give a best
990 * effort at coherency.
991 */
992 if (remount_ro && sb->s_bdev)
993 invalidate_bdev(sb->s_bdev);
994 return 0;
995
996cancel_readonly:
997 sb->s_readonly_remount = 0;
998 return retval;
999}
1000
1001static void do_emergency_remount_callback(struct super_block *sb)
1002{
1003 down_write(&sb->s_umount);
1004 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
1005 !sb_rdonly(sb)) {
1006 struct fs_context *fc;
1007
1008 fc = fs_context_for_reconfigure(sb->s_root,
1009 SB_RDONLY | SB_FORCE, SB_RDONLY);
1010 if (!IS_ERR(fc)) {
1011 if (parse_monolithic_mount_data(fc, NULL) == 0)
1012 (void)reconfigure_super(fc);
1013 put_fs_context(fc);
1014 }
1015 }
1016 up_write(&sb->s_umount);
1017}
1018
1019static void do_emergency_remount(struct work_struct *work)
1020{
1021 __iterate_supers(do_emergency_remount_callback);
1022 kfree(work);
1023 printk("Emergency Remount complete\n");
1024}
1025
1026void emergency_remount(void)
1027{
1028 struct work_struct *work;
1029
1030 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1031 if (work) {
1032 INIT_WORK(work, do_emergency_remount);
1033 schedule_work(work);
1034 }
1035}
1036
1037static void do_thaw_all_callback(struct super_block *sb)
1038{
1039 down_write(&sb->s_umount);
1040 if (sb->s_root && sb->s_flags & SB_BORN) {
1041 emergency_thaw_bdev(sb);
1042 thaw_super_locked(sb);
1043 } else {
1044 up_write(&sb->s_umount);
1045 }
1046}
1047
1048static void do_thaw_all(struct work_struct *work)
1049{
1050 __iterate_supers(do_thaw_all_callback);
1051 kfree(work);
1052 printk(KERN_WARNING "Emergency Thaw complete\n");
1053}
1054
1055/**
1056 * emergency_thaw_all -- forcibly thaw every frozen filesystem
1057 *
1058 * Used for emergency unfreeze of all filesystems via SysRq
1059 */
1060void emergency_thaw_all(void)
1061{
1062 struct work_struct *work;
1063
1064 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1065 if (work) {
1066 INIT_WORK(work, do_thaw_all);
1067 schedule_work(work);
1068 }
1069}
1070
1071static DEFINE_IDA(unnamed_dev_ida);
1072
1073/**
1074 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1075 * @p: Pointer to a dev_t.
1076 *
1077 * Filesystems which don't use real block devices can call this function
1078 * to allocate a virtual block device.
1079 *
1080 * Context: Any context. Frequently called while holding sb_lock.
1081 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1082 * or -ENOMEM if memory allocation failed.
1083 */
1084int get_anon_bdev(dev_t *p)
1085{
1086 int dev;
1087
1088 /*
1089 * Many userspace utilities consider an FSID of 0 invalid.
1090 * Always return at least 1 from get_anon_bdev.
1091 */
1092 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1093 GFP_ATOMIC);
1094 if (dev == -ENOSPC)
1095 dev = -EMFILE;
1096 if (dev < 0)
1097 return dev;
1098
1099 *p = MKDEV(0, dev);
1100 return 0;
1101}
1102EXPORT_SYMBOL(get_anon_bdev);
1103
1104void free_anon_bdev(dev_t dev)
1105{
1106 ida_free(&unnamed_dev_ida, MINOR(dev));
1107}
1108EXPORT_SYMBOL(free_anon_bdev);
1109
1110int set_anon_super(struct super_block *s, void *data)
1111{
1112 return get_anon_bdev(&s->s_dev);
1113}
1114EXPORT_SYMBOL(set_anon_super);
1115
1116void kill_anon_super(struct super_block *sb)
1117{
1118 dev_t dev = sb->s_dev;
1119 generic_shutdown_super(sb);
1120 free_anon_bdev(dev);
1121}
1122EXPORT_SYMBOL(kill_anon_super);
1123
1124void kill_litter_super(struct super_block *sb)
1125{
1126 if (sb->s_root)
1127 d_genocide(sb->s_root);
1128 kill_anon_super(sb);
1129}
1130EXPORT_SYMBOL(kill_litter_super);
1131
1132int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1133{
1134 return set_anon_super(sb, NULL);
1135}
1136EXPORT_SYMBOL(set_anon_super_fc);
1137
1138static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1139{
1140 return sb->s_fs_info == fc->s_fs_info;
1141}
1142
1143static int test_single_super(struct super_block *s, struct fs_context *fc)
1144{
1145 return 1;
1146}
1147
1148/**
1149 * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1150 * @fc: The filesystem context holding the parameters
1151 * @keying: How to distinguish superblocks
1152 * @fill_super: Helper to initialise a new superblock
1153 *
1154 * Search for a superblock and create a new one if not found. The search
1155 * criterion is controlled by @keying. If the search fails, a new superblock
1156 * is created and @fill_super() is called to initialise it.
1157 *
1158 * @keying can take one of a number of values:
1159 *
1160 * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1161 * system. This is typically used for special system filesystems.
1162 *
1163 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1164 * distinct keys (where the key is in s_fs_info). Searching for the same
1165 * key again will turn up the superblock for that key.
1166 *
1167 * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1168 * unkeyed. Each call will get a new superblock.
1169 *
1170 * A permissions check is made by sget_fc() unless we're getting a superblock
1171 * for a kernel-internal mount or a submount.
1172 */
1173int vfs_get_super(struct fs_context *fc,
1174 enum vfs_get_super_keying keying,
1175 int (*fill_super)(struct super_block *sb,
1176 struct fs_context *fc))
1177{
1178 int (*test)(struct super_block *, struct fs_context *);
1179 struct super_block *sb;
1180 int err;
1181
1182 switch (keying) {
1183 case vfs_get_single_super:
1184 case vfs_get_single_reconf_super:
1185 test = test_single_super;
1186 break;
1187 case vfs_get_keyed_super:
1188 test = test_keyed_super;
1189 break;
1190 case vfs_get_independent_super:
1191 test = NULL;
1192 break;
1193 default:
1194 BUG();
1195 }
1196
1197 sb = sget_fc(fc, test, set_anon_super_fc);
1198 if (IS_ERR(sb))
1199 return PTR_ERR(sb);
1200
1201 if (!sb->s_root) {
1202 err = fill_super(sb, fc);
1203 if (err)
1204 goto error;
1205
1206 sb->s_flags |= SB_ACTIVE;
1207 fc->root = dget(sb->s_root);
1208 } else {
1209 fc->root = dget(sb->s_root);
1210 if (keying == vfs_get_single_reconf_super) {
1211 err = reconfigure_super(fc);
1212 if (err < 0) {
1213 dput(fc->root);
1214 fc->root = NULL;
1215 goto error;
1216 }
1217 }
1218 }
1219
1220 return 0;
1221
1222error:
1223 deactivate_locked_super(sb);
1224 return err;
1225}
1226EXPORT_SYMBOL(vfs_get_super);
1227
1228int get_tree_nodev(struct fs_context *fc,
1229 int (*fill_super)(struct super_block *sb,
1230 struct fs_context *fc))
1231{
1232 return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1233}
1234EXPORT_SYMBOL(get_tree_nodev);
1235
1236int get_tree_single(struct fs_context *fc,
1237 int (*fill_super)(struct super_block *sb,
1238 struct fs_context *fc))
1239{
1240 return vfs_get_super(fc, vfs_get_single_super, fill_super);
1241}
1242EXPORT_SYMBOL(get_tree_single);
1243
1244int get_tree_single_reconf(struct fs_context *fc,
1245 int (*fill_super)(struct super_block *sb,
1246 struct fs_context *fc))
1247{
1248 return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super);
1249}
1250EXPORT_SYMBOL(get_tree_single_reconf);
1251
1252int get_tree_keyed(struct fs_context *fc,
1253 int (*fill_super)(struct super_block *sb,
1254 struct fs_context *fc),
1255 void *key)
1256{
1257 fc->s_fs_info = key;
1258 return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
1259}
1260EXPORT_SYMBOL(get_tree_keyed);
1261
1262#ifdef CONFIG_BLOCK
1263
1264static int set_bdev_super(struct super_block *s, void *data)
1265{
1266 s->s_bdev = data;
1267 s->s_dev = s->s_bdev->bd_dev;
1268 s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1269
1270 return 0;
1271}
1272
1273static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1274{
1275 return set_bdev_super(s, fc->sget_key);
1276}
1277
1278static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1279{
1280 return s->s_bdev == fc->sget_key;
1281}
1282
1283/**
1284 * get_tree_bdev - Get a superblock based on a single block device
1285 * @fc: The filesystem context holding the parameters
1286 * @fill_super: Helper to initialise a new superblock
1287 */
1288int get_tree_bdev(struct fs_context *fc,
1289 int (*fill_super)(struct super_block *,
1290 struct fs_context *))
1291{
1292 struct block_device *bdev;
1293 struct super_block *s;
1294 fmode_t mode = FMODE_READ | FMODE_EXCL;
1295 int error = 0;
1296
1297 if (!(fc->sb_flags & SB_RDONLY))
1298 mode |= FMODE_WRITE;
1299
1300 if (!fc->source)
1301 return invalf(fc, "No source specified");
1302
1303 bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1304 if (IS_ERR(bdev)) {
1305 errorf(fc, "%s: Can't open blockdev", fc->source);
1306 return PTR_ERR(bdev);
1307 }
1308
1309 /* Once the superblock is inserted into the list by sget_fc(), s_umount
1310 * will protect the lockfs code from trying to start a snapshot while
1311 * we are mounting
1312 */
1313 mutex_lock(&bdev->bd_fsfreeze_mutex);
1314 if (bdev->bd_fsfreeze_count > 0) {
1315 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1316 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1317 blkdev_put(bdev, mode);
1318 return -EBUSY;
1319 }
1320
1321 fc->sb_flags |= SB_NOSEC;
1322 fc->sget_key = bdev;
1323 s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1324 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1325 if (IS_ERR(s)) {
1326 blkdev_put(bdev, mode);
1327 return PTR_ERR(s);
1328 }
1329
1330 if (s->s_root) {
1331 /* Don't summarily change the RO/RW state. */
1332 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1333 warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1334 deactivate_locked_super(s);
1335 blkdev_put(bdev, mode);
1336 return -EBUSY;
1337 }
1338
1339 /*
1340 * s_umount nests inside bd_mutex during
1341 * __invalidate_device(). blkdev_put() acquires
1342 * bd_mutex and can't be called under s_umount. Drop
1343 * s_umount temporarily. This is safe as we're
1344 * holding an active reference.
1345 */
1346 up_write(&s->s_umount);
1347 blkdev_put(bdev, mode);
1348 down_write(&s->s_umount);
1349 } else {
1350 s->s_mode = mode;
1351 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1352 sb_set_blocksize(s, block_size(bdev));
1353 error = fill_super(s, fc);
1354 if (error) {
1355 deactivate_locked_super(s);
1356 return error;
1357 }
1358
1359 s->s_flags |= SB_ACTIVE;
1360 bdev->bd_super = s;
1361 }
1362
1363 BUG_ON(fc->root);
1364 fc->root = dget(s->s_root);
1365 return 0;
1366}
1367EXPORT_SYMBOL(get_tree_bdev);
1368
1369static int test_bdev_super(struct super_block *s, void *data)
1370{
1371 return (void *)s->s_bdev == data;
1372}
1373
1374struct dentry *mount_bdev(struct file_system_type *fs_type,
1375 int flags, const char *dev_name, void *data,
1376 int (*fill_super)(struct super_block *, void *, int))
1377{
1378 struct block_device *bdev;
1379 struct super_block *s;
1380 fmode_t mode = FMODE_READ | FMODE_EXCL;
1381 int error = 0;
1382
1383 if (!(flags & SB_RDONLY))
1384 mode |= FMODE_WRITE;
1385
1386 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1387 if (IS_ERR(bdev))
1388 return ERR_CAST(bdev);
1389
1390 /*
1391 * once the super is inserted into the list by sget, s_umount
1392 * will protect the lockfs code from trying to start a snapshot
1393 * while we are mounting
1394 */
1395 mutex_lock(&bdev->bd_fsfreeze_mutex);
1396 if (bdev->bd_fsfreeze_count > 0) {
1397 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1398 error = -EBUSY;
1399 goto error_bdev;
1400 }
1401 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1402 bdev);
1403 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1404 if (IS_ERR(s))
1405 goto error_s;
1406
1407 if (s->s_root) {
1408 if ((flags ^ s->s_flags) & SB_RDONLY) {
1409 deactivate_locked_super(s);
1410 error = -EBUSY;
1411 goto error_bdev;
1412 }
1413
1414 /*
1415 * s_umount nests inside bd_mutex during
1416 * __invalidate_device(). blkdev_put() acquires
1417 * bd_mutex and can't be called under s_umount. Drop
1418 * s_umount temporarily. This is safe as we're
1419 * holding an active reference.
1420 */
1421 up_write(&s->s_umount);
1422 blkdev_put(bdev, mode);
1423 down_write(&s->s_umount);
1424 } else {
1425 s->s_mode = mode;
1426 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1427 sb_set_blocksize(s, block_size(bdev));
1428 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1429 if (error) {
1430 deactivate_locked_super(s);
1431 goto error;
1432 }
1433
1434 s->s_flags |= SB_ACTIVE;
1435 bdev->bd_super = s;
1436 }
1437
1438 return dget(s->s_root);
1439
1440error_s:
1441 error = PTR_ERR(s);
1442error_bdev:
1443 blkdev_put(bdev, mode);
1444error:
1445 return ERR_PTR(error);
1446}
1447EXPORT_SYMBOL(mount_bdev);
1448
1449void kill_block_super(struct super_block *sb)
1450{
1451 struct block_device *bdev = sb->s_bdev;
1452 fmode_t mode = sb->s_mode;
1453
1454 bdev->bd_super = NULL;
1455 generic_shutdown_super(sb);
1456 sync_blockdev(bdev);
1457 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1458 blkdev_put(bdev, mode | FMODE_EXCL);
1459}
1460
1461EXPORT_SYMBOL(kill_block_super);
1462#endif
1463
1464struct dentry *mount_nodev(struct file_system_type *fs_type,
1465 int flags, void *data,
1466 int (*fill_super)(struct super_block *, void *, int))
1467{
1468 int error;
1469 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1470
1471 if (IS_ERR(s))
1472 return ERR_CAST(s);
1473
1474 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1475 if (error) {
1476 deactivate_locked_super(s);
1477 return ERR_PTR(error);
1478 }
1479 s->s_flags |= SB_ACTIVE;
1480 return dget(s->s_root);
1481}
1482EXPORT_SYMBOL(mount_nodev);
1483
1484int reconfigure_single(struct super_block *s,
1485 int flags, void *data)
1486{
1487 struct fs_context *fc;
1488 int ret;
1489
1490 /* The caller really need to be passing fc down into mount_single(),
1491 * then a chunk of this can be removed. [Bollocks -- AV]
1492 * Better yet, reconfiguration shouldn't happen, but rather the second
1493 * mount should be rejected if the parameters are not compatible.
1494 */
1495 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1496 if (IS_ERR(fc))
1497 return PTR_ERR(fc);
1498
1499 ret = parse_monolithic_mount_data(fc, data);
1500 if (ret < 0)
1501 goto out;
1502
1503 ret = reconfigure_super(fc);
1504out:
1505 put_fs_context(fc);
1506 return ret;
1507}
1508
1509static int compare_single(struct super_block *s, void *p)
1510{
1511 return 1;
1512}
1513
1514struct dentry *mount_single(struct file_system_type *fs_type,
1515 int flags, void *data,
1516 int (*fill_super)(struct super_block *, void *, int))
1517{
1518 struct super_block *s;
1519 int error;
1520
1521 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1522 if (IS_ERR(s))
1523 return ERR_CAST(s);
1524 if (!s->s_root) {
1525 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1526 if (!error)
1527 s->s_flags |= SB_ACTIVE;
1528 } else {
1529 error = reconfigure_single(s, flags, data);
1530 }
1531 if (unlikely(error)) {
1532 deactivate_locked_super(s);
1533 return ERR_PTR(error);
1534 }
1535 return dget(s->s_root);
1536}
1537EXPORT_SYMBOL(mount_single);
1538
1539/**
1540 * vfs_get_tree - Get the mountable root
1541 * @fc: The superblock configuration context.
1542 *
1543 * The filesystem is invoked to get or create a superblock which can then later
1544 * be used for mounting. The filesystem places a pointer to the root to be
1545 * used for mounting in @fc->root.
1546 */
1547int vfs_get_tree(struct fs_context *fc)
1548{
1549 struct super_block *sb;
1550 int error;
1551
1552 if (fc->root)
1553 return -EBUSY;
1554
1555 /* Get the mountable root in fc->root, with a ref on the root and a ref
1556 * on the superblock.
1557 */
1558 error = fc->ops->get_tree(fc);
1559 if (error < 0)
1560 return error;
1561
1562 if (!fc->root) {
1563 pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1564 fc->fs_type->name);
1565 /* We don't know what the locking state of the superblock is -
1566 * if there is a superblock.
1567 */
1568 BUG();
1569 }
1570
1571 sb = fc->root->d_sb;
1572 WARN_ON(!sb->s_bdi);
1573
1574 /*
1575 * Write barrier is for super_cache_count(). We place it before setting
1576 * SB_BORN as the data dependency between the two functions is the
1577 * superblock structure contents that we just set up, not the SB_BORN
1578 * flag.
1579 */
1580 smp_wmb();
1581 sb->s_flags |= SB_BORN;
1582
1583 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1584 if (unlikely(error)) {
1585 fc_drop_locked(fc);
1586 return error;
1587 }
1588
1589 /*
1590 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1591 * but s_maxbytes was an unsigned long long for many releases. Throw
1592 * this warning for a little while to try and catch filesystems that
1593 * violate this rule.
1594 */
1595 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1596 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1597
1598 return 0;
1599}
1600EXPORT_SYMBOL(vfs_get_tree);
1601
1602/*
1603 * Setup private BDI for given superblock. It gets automatically cleaned up
1604 * in generic_shutdown_super().
1605 */
1606int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1607{
1608 struct backing_dev_info *bdi;
1609 int err;
1610 va_list args;
1611
1612 bdi = bdi_alloc(GFP_KERNEL);
1613 if (!bdi)
1614 return -ENOMEM;
1615
1616 bdi->name = sb->s_type->name;
1617
1618 va_start(args, fmt);
1619 err = bdi_register_va(bdi, fmt, args);
1620 va_end(args);
1621 if (err) {
1622 bdi_put(bdi);
1623 return err;
1624 }
1625 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1626 sb->s_bdi = bdi;
1627 sb->s_iflags |= SB_I_PERSB_BDI;
1628
1629 return 0;
1630}
1631EXPORT_SYMBOL(super_setup_bdi_name);
1632
1633/*
1634 * Setup private BDI for given superblock. I gets automatically cleaned up
1635 * in generic_shutdown_super().
1636 */
1637int super_setup_bdi(struct super_block *sb)
1638{
1639 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1640
1641 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1642 atomic_long_inc_return(&bdi_seq));
1643}
1644EXPORT_SYMBOL(super_setup_bdi);
1645
1646/*
1647 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1648 * instead.
1649 */
1650void __sb_end_write(struct super_block *sb, int level)
1651{
1652 percpu_up_read(sb->s_writers.rw_sem + level-1);
1653}
1654EXPORT_SYMBOL(__sb_end_write);
1655
1656/*
1657 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1658 * instead.
1659 */
1660int __sb_start_write(struct super_block *sb, int level, bool wait)
1661{
1662 if (!wait)
1663 return percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1664
1665 percpu_down_read(sb->s_writers.rw_sem + level-1);
1666 return 1;
1667}
1668EXPORT_SYMBOL(__sb_start_write);
1669
1670/**
1671 * sb_wait_write - wait until all writers to given file system finish
1672 * @sb: the super for which we wait
1673 * @level: type of writers we wait for (normal vs page fault)
1674 *
1675 * This function waits until there are no writers of given type to given file
1676 * system.
1677 */
1678static void sb_wait_write(struct super_block *sb, int level)
1679{
1680 percpu_down_write(sb->s_writers.rw_sem + level-1);
1681}
1682
1683/*
1684 * We are going to return to userspace and forget about these locks, the
1685 * ownership goes to the caller of thaw_super() which does unlock().
1686 */
1687static void lockdep_sb_freeze_release(struct super_block *sb)
1688{
1689 int level;
1690
1691 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1692 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1693}
1694
1695/*
1696 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1697 */
1698static void lockdep_sb_freeze_acquire(struct super_block *sb)
1699{
1700 int level;
1701
1702 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1703 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1704}
1705
1706static void sb_freeze_unlock(struct super_block *sb, int level)
1707{
1708 for (level--; level >= 0; level--)
1709 percpu_up_write(sb->s_writers.rw_sem + level);
1710}
1711
1712/**
1713 * freeze_super - lock the filesystem and force it into a consistent state
1714 * @sb: the super to lock
1715 *
1716 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1717 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1718 * -EBUSY.
1719 *
1720 * During this function, sb->s_writers.frozen goes through these values:
1721 *
1722 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1723 *
1724 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1725 * writes should be blocked, though page faults are still allowed. We wait for
1726 * all writes to complete and then proceed to the next stage.
1727 *
1728 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1729 * but internal fs threads can still modify the filesystem (although they
1730 * should not dirty new pages or inodes), writeback can run etc. After waiting
1731 * for all running page faults we sync the filesystem which will clean all
1732 * dirty pages and inodes (no new dirty pages or inodes can be created when
1733 * sync is running).
1734 *
1735 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1736 * modification are blocked (e.g. XFS preallocation truncation on inode
1737 * reclaim). This is usually implemented by blocking new transactions for
1738 * filesystems that have them and need this additional guard. After all
1739 * internal writers are finished we call ->freeze_fs() to finish filesystem
1740 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1741 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1742 *
1743 * sb->s_writers.frozen is protected by sb->s_umount.
1744 */
1745int freeze_super(struct super_block *sb)
1746{
1747 int ret;
1748
1749 atomic_inc(&sb->s_active);
1750 down_write(&sb->s_umount);
1751 if (sb->s_writers.frozen != SB_UNFROZEN) {
1752 deactivate_locked_super(sb);
1753 return -EBUSY;
1754 }
1755
1756 if (!(sb->s_flags & SB_BORN)) {
1757 up_write(&sb->s_umount);
1758 return 0; /* sic - it's "nothing to do" */
1759 }
1760
1761 if (sb_rdonly(sb)) {
1762 /* Nothing to do really... */
1763 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1764 up_write(&sb->s_umount);
1765 return 0;
1766 }
1767
1768 sb->s_writers.frozen = SB_FREEZE_WRITE;
1769 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1770 up_write(&sb->s_umount);
1771 sb_wait_write(sb, SB_FREEZE_WRITE);
1772 down_write(&sb->s_umount);
1773
1774 /* Now we go and block page faults... */
1775 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1776 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1777
1778 /* All writers are done so after syncing there won't be dirty data */
1779 ret = sync_filesystem(sb);
1780 if (ret) {
1781 sb->s_writers.frozen = SB_UNFROZEN;
1782 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
1783 wake_up(&sb->s_writers.wait_unfrozen);
1784 deactivate_locked_super(sb);
1785 return ret;
1786 }
1787
1788 /* Now wait for internal filesystem counter */
1789 sb->s_writers.frozen = SB_FREEZE_FS;
1790 sb_wait_write(sb, SB_FREEZE_FS);
1791
1792 if (sb->s_op->freeze_fs) {
1793 ret = sb->s_op->freeze_fs(sb);
1794 if (ret) {
1795 printk(KERN_ERR
1796 "VFS:Filesystem freeze failed\n");
1797 sb->s_writers.frozen = SB_UNFROZEN;
1798 sb_freeze_unlock(sb, SB_FREEZE_FS);
1799 wake_up(&sb->s_writers.wait_unfrozen);
1800 deactivate_locked_super(sb);
1801 return ret;
1802 }
1803 }
1804 /*
1805 * For debugging purposes so that fs can warn if it sees write activity
1806 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1807 */
1808 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1809 lockdep_sb_freeze_release(sb);
1810 up_write(&sb->s_umount);
1811 return 0;
1812}
1813EXPORT_SYMBOL(freeze_super);
1814
1815/**
1816 * thaw_super -- unlock filesystem
1817 * @sb: the super to thaw
1818 *
1819 * Unlocks the filesystem and marks it writeable again after freeze_super().
1820 */
1821static int thaw_super_locked(struct super_block *sb)
1822{
1823 int error;
1824
1825 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1826 up_write(&sb->s_umount);
1827 return -EINVAL;
1828 }
1829
1830 if (sb_rdonly(sb)) {
1831 sb->s_writers.frozen = SB_UNFROZEN;
1832 goto out;
1833 }
1834
1835 lockdep_sb_freeze_acquire(sb);
1836
1837 if (sb->s_op->unfreeze_fs) {
1838 error = sb->s_op->unfreeze_fs(sb);
1839 if (error) {
1840 printk(KERN_ERR
1841 "VFS:Filesystem thaw failed\n");
1842 lockdep_sb_freeze_release(sb);
1843 up_write(&sb->s_umount);
1844 return error;
1845 }
1846 }
1847
1848 sb->s_writers.frozen = SB_UNFROZEN;
1849 sb_freeze_unlock(sb, SB_FREEZE_FS);
1850out:
1851 wake_up(&sb->s_writers.wait_unfrozen);
1852 deactivate_locked_super(sb);
1853 return 0;
1854}
1855
1856int thaw_super(struct super_block *sb)
1857{
1858 down_write(&sb->s_umount);
1859 return thaw_super_locked(sb);
1860}
1861EXPORT_SYMBOL(thaw_super);