b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * fs/userfaultfd.c |
| 4 | * |
| 5 | * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> |
| 6 | * Copyright (C) 2008-2009 Red Hat, Inc. |
| 7 | * Copyright (C) 2015 Red Hat, Inc. |
| 8 | * |
| 9 | * Some part derived from fs/eventfd.c (anon inode setup) and |
| 10 | * mm/ksm.c (mm hashing). |
| 11 | */ |
| 12 | |
| 13 | #include <linux/list.h> |
| 14 | #include <linux/hashtable.h> |
| 15 | #include <linux/sched/signal.h> |
| 16 | #include <linux/sched/mm.h> |
| 17 | #include <linux/mm.h> |
| 18 | #include <linux/mmu_notifier.h> |
| 19 | #include <linux/poll.h> |
| 20 | #include <linux/slab.h> |
| 21 | #include <linux/seq_file.h> |
| 22 | #include <linux/file.h> |
| 23 | #include <linux/bug.h> |
| 24 | #include <linux/anon_inodes.h> |
| 25 | #include <linux/syscalls.h> |
| 26 | #include <linux/userfaultfd_k.h> |
| 27 | #include <linux/mempolicy.h> |
| 28 | #include <linux/ioctl.h> |
| 29 | #include <linux/security.h> |
| 30 | #include <linux/hugetlb.h> |
| 31 | |
| 32 | int sysctl_unprivileged_userfaultfd __read_mostly; |
| 33 | |
| 34 | static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; |
| 35 | |
| 36 | /* |
| 37 | * Start with fault_pending_wqh and fault_wqh so they're more likely |
| 38 | * to be in the same cacheline. |
| 39 | * |
| 40 | * Locking order: |
| 41 | * fd_wqh.lock |
| 42 | * fault_pending_wqh.lock |
| 43 | * fault_wqh.lock |
| 44 | * event_wqh.lock |
| 45 | * |
| 46 | * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, |
| 47 | * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's |
| 48 | * also taken in IRQ context. |
| 49 | */ |
| 50 | struct userfaultfd_ctx { |
| 51 | /* waitqueue head for the pending (i.e. not read) userfaults */ |
| 52 | wait_queue_head_t fault_pending_wqh; |
| 53 | /* waitqueue head for the userfaults */ |
| 54 | wait_queue_head_t fault_wqh; |
| 55 | /* waitqueue head for the pseudo fd to wakeup poll/read */ |
| 56 | wait_queue_head_t fd_wqh; |
| 57 | /* waitqueue head for events */ |
| 58 | wait_queue_head_t event_wqh; |
| 59 | /* a refile sequence protected by fault_pending_wqh lock */ |
| 60 | struct seqcount refile_seq; |
| 61 | /* pseudo fd refcounting */ |
| 62 | refcount_t refcount; |
| 63 | /* userfaultfd syscall flags */ |
| 64 | unsigned int flags; |
| 65 | /* features requested from the userspace */ |
| 66 | unsigned int features; |
| 67 | /* released */ |
| 68 | bool released; |
| 69 | /* memory mappings are changing because of non-cooperative event */ |
| 70 | bool mmap_changing; |
| 71 | /* mm with one ore more vmas attached to this userfaultfd_ctx */ |
| 72 | struct mm_struct *mm; |
| 73 | }; |
| 74 | |
| 75 | struct userfaultfd_fork_ctx { |
| 76 | struct userfaultfd_ctx *orig; |
| 77 | struct userfaultfd_ctx *new; |
| 78 | struct list_head list; |
| 79 | }; |
| 80 | |
| 81 | struct userfaultfd_unmap_ctx { |
| 82 | struct userfaultfd_ctx *ctx; |
| 83 | unsigned long start; |
| 84 | unsigned long end; |
| 85 | struct list_head list; |
| 86 | }; |
| 87 | |
| 88 | struct userfaultfd_wait_queue { |
| 89 | struct uffd_msg msg; |
| 90 | wait_queue_entry_t wq; |
| 91 | struct userfaultfd_ctx *ctx; |
| 92 | bool waken; |
| 93 | }; |
| 94 | |
| 95 | struct userfaultfd_wake_range { |
| 96 | unsigned long start; |
| 97 | unsigned long len; |
| 98 | }; |
| 99 | |
| 100 | /* internal indication that UFFD_API ioctl was successfully executed */ |
| 101 | #define UFFD_FEATURE_INITIALIZED (1u << 31) |
| 102 | |
| 103 | static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx) |
| 104 | { |
| 105 | return ctx->features & UFFD_FEATURE_INITIALIZED; |
| 106 | } |
| 107 | |
| 108 | static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, |
| 109 | int wake_flags, void *key) |
| 110 | { |
| 111 | struct userfaultfd_wake_range *range = key; |
| 112 | int ret; |
| 113 | struct userfaultfd_wait_queue *uwq; |
| 114 | unsigned long start, len; |
| 115 | |
| 116 | uwq = container_of(wq, struct userfaultfd_wait_queue, wq); |
| 117 | ret = 0; |
| 118 | /* len == 0 means wake all */ |
| 119 | start = range->start; |
| 120 | len = range->len; |
| 121 | if (len && (start > uwq->msg.arg.pagefault.address || |
| 122 | start + len <= uwq->msg.arg.pagefault.address)) |
| 123 | goto out; |
| 124 | WRITE_ONCE(uwq->waken, true); |
| 125 | /* |
| 126 | * The Program-Order guarantees provided by the scheduler |
| 127 | * ensure uwq->waken is visible before the task is woken. |
| 128 | */ |
| 129 | ret = wake_up_state(wq->private, mode); |
| 130 | if (ret) { |
| 131 | /* |
| 132 | * Wake only once, autoremove behavior. |
| 133 | * |
| 134 | * After the effect of list_del_init is visible to the other |
| 135 | * CPUs, the waitqueue may disappear from under us, see the |
| 136 | * !list_empty_careful() in handle_userfault(). |
| 137 | * |
| 138 | * try_to_wake_up() has an implicit smp_mb(), and the |
| 139 | * wq->private is read before calling the extern function |
| 140 | * "wake_up_state" (which in turns calls try_to_wake_up). |
| 141 | */ |
| 142 | list_del_init(&wq->entry); |
| 143 | } |
| 144 | out: |
| 145 | return ret; |
| 146 | } |
| 147 | |
| 148 | /** |
| 149 | * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd |
| 150 | * context. |
| 151 | * @ctx: [in] Pointer to the userfaultfd context. |
| 152 | */ |
| 153 | static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) |
| 154 | { |
| 155 | refcount_inc(&ctx->refcount); |
| 156 | } |
| 157 | |
| 158 | /** |
| 159 | * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd |
| 160 | * context. |
| 161 | * @ctx: [in] Pointer to userfaultfd context. |
| 162 | * |
| 163 | * The userfaultfd context reference must have been previously acquired either |
| 164 | * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). |
| 165 | */ |
| 166 | static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) |
| 167 | { |
| 168 | if (refcount_dec_and_test(&ctx->refcount)) { |
| 169 | VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); |
| 170 | VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); |
| 171 | VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); |
| 172 | VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); |
| 173 | VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); |
| 174 | VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); |
| 175 | VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); |
| 176 | VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); |
| 177 | mmdrop(ctx->mm); |
| 178 | kmem_cache_free(userfaultfd_ctx_cachep, ctx); |
| 179 | } |
| 180 | } |
| 181 | |
| 182 | static inline void msg_init(struct uffd_msg *msg) |
| 183 | { |
| 184 | BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); |
| 185 | /* |
| 186 | * Must use memset to zero out the paddings or kernel data is |
| 187 | * leaked to userland. |
| 188 | */ |
| 189 | memset(msg, 0, sizeof(struct uffd_msg)); |
| 190 | } |
| 191 | |
| 192 | static inline struct uffd_msg userfault_msg(unsigned long address, |
| 193 | unsigned int flags, |
| 194 | unsigned long reason, |
| 195 | unsigned int features) |
| 196 | { |
| 197 | struct uffd_msg msg; |
| 198 | msg_init(&msg); |
| 199 | msg.event = UFFD_EVENT_PAGEFAULT; |
| 200 | msg.arg.pagefault.address = address; |
| 201 | /* |
| 202 | * These flags indicate why the userfault occurred: |
| 203 | * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault. |
| 204 | * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault. |
| 205 | * - Neither of these flags being set indicates a MISSING fault. |
| 206 | * |
| 207 | * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write |
| 208 | * fault. Otherwise, it was a read fault. |
| 209 | */ |
| 210 | if (flags & FAULT_FLAG_WRITE) |
| 211 | msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; |
| 212 | if (reason & VM_UFFD_WP) |
| 213 | msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; |
| 214 | if (reason & VM_UFFD_MINOR) |
| 215 | msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR; |
| 216 | if (features & UFFD_FEATURE_THREAD_ID) |
| 217 | msg.arg.pagefault.feat.ptid = task_pid_vnr(current); |
| 218 | return msg; |
| 219 | } |
| 220 | |
| 221 | #ifdef CONFIG_HUGETLB_PAGE |
| 222 | /* |
| 223 | * Same functionality as userfaultfd_must_wait below with modifications for |
| 224 | * hugepmd ranges. |
| 225 | */ |
| 226 | static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, |
| 227 | struct vm_area_struct *vma, |
| 228 | unsigned long address, |
| 229 | unsigned long flags, |
| 230 | unsigned long reason) |
| 231 | { |
| 232 | struct mm_struct *mm = ctx->mm; |
| 233 | pte_t *ptep, pte; |
| 234 | bool ret = true; |
| 235 | |
| 236 | VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); |
| 237 | |
| 238 | ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); |
| 239 | |
| 240 | if (!ptep) |
| 241 | goto out; |
| 242 | |
| 243 | ret = false; |
| 244 | pte = huge_ptep_get(ptep); |
| 245 | |
| 246 | /* |
| 247 | * Lockless access: we're in a wait_event so it's ok if it |
| 248 | * changes under us. |
| 249 | */ |
| 250 | if (huge_pte_none(pte)) |
| 251 | ret = true; |
| 252 | if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) |
| 253 | ret = true; |
| 254 | out: |
| 255 | return ret; |
| 256 | } |
| 257 | #else |
| 258 | static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, |
| 259 | struct vm_area_struct *vma, |
| 260 | unsigned long address, |
| 261 | unsigned long flags, |
| 262 | unsigned long reason) |
| 263 | { |
| 264 | return false; /* should never get here */ |
| 265 | } |
| 266 | #endif /* CONFIG_HUGETLB_PAGE */ |
| 267 | |
| 268 | /* |
| 269 | * Verify the pagetables are still not ok after having reigstered into |
| 270 | * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any |
| 271 | * userfault that has already been resolved, if userfaultfd_read and |
| 272 | * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different |
| 273 | * threads. |
| 274 | */ |
| 275 | static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, |
| 276 | unsigned long address, |
| 277 | unsigned long flags, |
| 278 | unsigned long reason) |
| 279 | { |
| 280 | struct mm_struct *mm = ctx->mm; |
| 281 | pgd_t *pgd; |
| 282 | p4d_t *p4d; |
| 283 | pud_t *pud; |
| 284 | pmd_t *pmd, _pmd; |
| 285 | pte_t *pte; |
| 286 | bool ret = true; |
| 287 | |
| 288 | VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); |
| 289 | |
| 290 | pgd = pgd_offset(mm, address); |
| 291 | if (!pgd_present(*pgd)) |
| 292 | goto out; |
| 293 | p4d = p4d_offset(pgd, address); |
| 294 | if (!p4d_present(*p4d)) |
| 295 | goto out; |
| 296 | pud = pud_offset(p4d, address); |
| 297 | if (!pud_present(*pud)) |
| 298 | goto out; |
| 299 | pmd = pmd_offset(pud, address); |
| 300 | /* |
| 301 | * READ_ONCE must function as a barrier with narrower scope |
| 302 | * and it must be equivalent to: |
| 303 | * _pmd = *pmd; barrier(); |
| 304 | * |
| 305 | * This is to deal with the instability (as in |
| 306 | * pmd_trans_unstable) of the pmd. |
| 307 | */ |
| 308 | _pmd = READ_ONCE(*pmd); |
| 309 | if (pmd_none(_pmd)) |
| 310 | goto out; |
| 311 | |
| 312 | ret = false; |
| 313 | if (!pmd_present(_pmd)) |
| 314 | goto out; |
| 315 | |
| 316 | if (pmd_trans_huge(_pmd)) |
| 317 | goto out; |
| 318 | |
| 319 | /* |
| 320 | * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it |
| 321 | * and use the standard pte_offset_map() instead of parsing _pmd. |
| 322 | */ |
| 323 | pte = pte_offset_map(pmd, address); |
| 324 | /* |
| 325 | * Lockless access: we're in a wait_event so it's ok if it |
| 326 | * changes under us. |
| 327 | */ |
| 328 | if (pte_none(*pte)) |
| 329 | ret = true; |
| 330 | pte_unmap(pte); |
| 331 | |
| 332 | out: |
| 333 | return ret; |
| 334 | } |
| 335 | |
| 336 | /* Should pair with userfaultfd_signal_pending() */ |
| 337 | static inline long userfaultfd_get_blocking_state(unsigned int flags) |
| 338 | { |
| 339 | if (flags & FAULT_FLAG_INTERRUPTIBLE) |
| 340 | return TASK_INTERRUPTIBLE; |
| 341 | |
| 342 | if (flags & FAULT_FLAG_KILLABLE) |
| 343 | return TASK_KILLABLE; |
| 344 | |
| 345 | return TASK_UNINTERRUPTIBLE; |
| 346 | } |
| 347 | |
| 348 | /* Should pair with userfaultfd_get_blocking_state() */ |
| 349 | static inline bool userfaultfd_signal_pending(unsigned int flags) |
| 350 | { |
| 351 | if (flags & FAULT_FLAG_INTERRUPTIBLE) |
| 352 | return signal_pending(current); |
| 353 | |
| 354 | if (flags & FAULT_FLAG_KILLABLE) |
| 355 | return fatal_signal_pending(current); |
| 356 | |
| 357 | return false; |
| 358 | } |
| 359 | |
| 360 | /* |
| 361 | * The locking rules involved in returning VM_FAULT_RETRY depending on |
| 362 | * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and |
| 363 | * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" |
| 364 | * recommendation in __lock_page_or_retry is not an understatement. |
| 365 | * |
| 366 | * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released |
| 367 | * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is |
| 368 | * not set. |
| 369 | * |
| 370 | * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not |
| 371 | * set, VM_FAULT_RETRY can still be returned if and only if there are |
| 372 | * fatal_signal_pending()s, and the mmap_sem must be released before |
| 373 | * returning it. |
| 374 | */ |
| 375 | vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) |
| 376 | { |
| 377 | struct mm_struct *mm = vmf->vma->vm_mm; |
| 378 | struct userfaultfd_ctx *ctx; |
| 379 | struct userfaultfd_wait_queue uwq; |
| 380 | vm_fault_t ret = VM_FAULT_SIGBUS; |
| 381 | bool must_wait; |
| 382 | long blocking_state; |
| 383 | |
| 384 | /* |
| 385 | * We don't do userfault handling for the final child pid update. |
| 386 | * |
| 387 | * We also don't do userfault handling during |
| 388 | * coredumping. hugetlbfs has the special |
| 389 | * follow_hugetlb_page() to skip missing pages in the |
| 390 | * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with |
| 391 | * the no_page_table() helper in follow_page_mask(), but the |
| 392 | * shmem_vm_ops->fault method is invoked even during |
| 393 | * coredumping without mmap_sem and it ends up here. |
| 394 | */ |
| 395 | if (current->flags & (PF_EXITING|PF_DUMPCORE)) |
| 396 | goto out; |
| 397 | |
| 398 | /* |
| 399 | * Coredumping runs without mmap_sem so we can only check that |
| 400 | * the mmap_sem is held, if PF_DUMPCORE was not set. |
| 401 | */ |
| 402 | WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem)); |
| 403 | |
| 404 | ctx = vmf->vma->vm_userfaultfd_ctx.ctx; |
| 405 | if (!ctx) |
| 406 | goto out; |
| 407 | |
| 408 | BUG_ON(ctx->mm != mm); |
| 409 | |
| 410 | /* Any unrecognized flag is a bug. */ |
| 411 | VM_BUG_ON(reason & ~__VM_UFFD_FLAGS); |
| 412 | /* 0 or > 1 flags set is a bug; we expect exactly 1. */ |
| 413 | VM_BUG_ON(!reason || (reason & (reason - 1))); |
| 414 | |
| 415 | if (ctx->features & UFFD_FEATURE_SIGBUS) |
| 416 | goto out; |
| 417 | if ((vmf->flags & FAULT_FLAG_USER) == 0 && |
| 418 | ctx->flags & UFFD_USER_MODE_ONLY) { |
| 419 | printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd " |
| 420 | "sysctl knob to 1 if kernel faults must be handled " |
| 421 | "without obtaining CAP_SYS_PTRACE capability\n"); |
| 422 | goto out; |
| 423 | } |
| 424 | |
| 425 | /* |
| 426 | * If it's already released don't get it. This avoids to loop |
| 427 | * in __get_user_pages if userfaultfd_release waits on the |
| 428 | * caller of handle_userfault to release the mmap_sem. |
| 429 | */ |
| 430 | if (unlikely(READ_ONCE(ctx->released))) { |
| 431 | /* |
| 432 | * Don't return VM_FAULT_SIGBUS in this case, so a non |
| 433 | * cooperative manager can close the uffd after the |
| 434 | * last UFFDIO_COPY, without risking to trigger an |
| 435 | * involuntary SIGBUS if the process was starting the |
| 436 | * userfaultfd while the userfaultfd was still armed |
| 437 | * (but after the last UFFDIO_COPY). If the uffd |
| 438 | * wasn't already closed when the userfault reached |
| 439 | * this point, that would normally be solved by |
| 440 | * userfaultfd_must_wait returning 'false'. |
| 441 | * |
| 442 | * If we were to return VM_FAULT_SIGBUS here, the non |
| 443 | * cooperative manager would be instead forced to |
| 444 | * always call UFFDIO_UNREGISTER before it can safely |
| 445 | * close the uffd. |
| 446 | */ |
| 447 | ret = VM_FAULT_NOPAGE; |
| 448 | goto out; |
| 449 | } |
| 450 | |
| 451 | /* |
| 452 | * Check that we can return VM_FAULT_RETRY. |
| 453 | * |
| 454 | * NOTE: it should become possible to return VM_FAULT_RETRY |
| 455 | * even if FAULT_FLAG_TRIED is set without leading to gup() |
| 456 | * -EBUSY failures, if the userfaultfd is to be extended for |
| 457 | * VM_UFFD_WP tracking and we intend to arm the userfault |
| 458 | * without first stopping userland access to the memory. For |
| 459 | * VM_UFFD_MISSING userfaults this is enough for now. |
| 460 | */ |
| 461 | if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { |
| 462 | /* |
| 463 | * Validate the invariant that nowait must allow retry |
| 464 | * to be sure not to return SIGBUS erroneously on |
| 465 | * nowait invocations. |
| 466 | */ |
| 467 | BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); |
| 468 | #ifdef CONFIG_DEBUG_VM |
| 469 | if (printk_ratelimit()) { |
| 470 | printk(KERN_WARNING |
| 471 | "FAULT_FLAG_ALLOW_RETRY missing %x\n", |
| 472 | vmf->flags); |
| 473 | dump_stack(); |
| 474 | } |
| 475 | #endif |
| 476 | goto out; |
| 477 | } |
| 478 | |
| 479 | /* |
| 480 | * Handle nowait, not much to do other than tell it to retry |
| 481 | * and wait. |
| 482 | */ |
| 483 | ret = VM_FAULT_RETRY; |
| 484 | if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) |
| 485 | goto out; |
| 486 | |
| 487 | /* take the reference before dropping the mmap_sem */ |
| 488 | userfaultfd_ctx_get(ctx); |
| 489 | |
| 490 | init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); |
| 491 | uwq.wq.private = current; |
| 492 | uwq.msg = userfault_msg(vmf->address, vmf->flags, reason, |
| 493 | ctx->features); |
| 494 | uwq.ctx = ctx; |
| 495 | uwq.waken = false; |
| 496 | |
| 497 | blocking_state = userfaultfd_get_blocking_state(vmf->flags); |
| 498 | |
| 499 | spin_lock_irq(&ctx->fault_pending_wqh.lock); |
| 500 | /* |
| 501 | * After the __add_wait_queue the uwq is visible to userland |
| 502 | * through poll/read(). |
| 503 | */ |
| 504 | __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); |
| 505 | /* |
| 506 | * The smp_mb() after __set_current_state prevents the reads |
| 507 | * following the spin_unlock to happen before the list_add in |
| 508 | * __add_wait_queue. |
| 509 | */ |
| 510 | set_current_state(blocking_state); |
| 511 | spin_unlock_irq(&ctx->fault_pending_wqh.lock); |
| 512 | |
| 513 | if (!is_vm_hugetlb_page(vmf->vma)) |
| 514 | must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, |
| 515 | reason); |
| 516 | else |
| 517 | must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, |
| 518 | vmf->address, |
| 519 | vmf->flags, reason); |
| 520 | up_read(&mm->mmap_sem); |
| 521 | |
| 522 | if (likely(must_wait && !READ_ONCE(ctx->released) && |
| 523 | !userfaultfd_signal_pending(vmf->flags))) { |
| 524 | wake_up_poll(&ctx->fd_wqh, EPOLLIN); |
| 525 | schedule(); |
| 526 | ret |= VM_FAULT_MAJOR; |
| 527 | |
| 528 | /* |
| 529 | * False wakeups can orginate even from rwsem before |
| 530 | * up_read() however userfaults will wait either for a |
| 531 | * targeted wakeup on the specific uwq waitqueue from |
| 532 | * wake_userfault() or for signals or for uffd |
| 533 | * release. |
| 534 | */ |
| 535 | while (!READ_ONCE(uwq.waken)) { |
| 536 | /* |
| 537 | * This needs the full smp_store_mb() |
| 538 | * guarantee as the state write must be |
| 539 | * visible to other CPUs before reading |
| 540 | * uwq.waken from other CPUs. |
| 541 | */ |
| 542 | set_current_state(blocking_state); |
| 543 | if (READ_ONCE(uwq.waken) || |
| 544 | READ_ONCE(ctx->released) || |
| 545 | userfaultfd_signal_pending(vmf->flags)) |
| 546 | break; |
| 547 | schedule(); |
| 548 | } |
| 549 | } |
| 550 | |
| 551 | __set_current_state(TASK_RUNNING); |
| 552 | |
| 553 | /* |
| 554 | * Here we race with the list_del; list_add in |
| 555 | * userfaultfd_ctx_read(), however because we don't ever run |
| 556 | * list_del_init() to refile across the two lists, the prev |
| 557 | * and next pointers will never point to self. list_add also |
| 558 | * would never let any of the two pointers to point to |
| 559 | * self. So list_empty_careful won't risk to see both pointers |
| 560 | * pointing to self at any time during the list refile. The |
| 561 | * only case where list_del_init() is called is the full |
| 562 | * removal in the wake function and there we don't re-list_add |
| 563 | * and it's fine not to block on the spinlock. The uwq on this |
| 564 | * kernel stack can be released after the list_del_init. |
| 565 | */ |
| 566 | if (!list_empty_careful(&uwq.wq.entry)) { |
| 567 | spin_lock_irq(&ctx->fault_pending_wqh.lock); |
| 568 | /* |
| 569 | * No need of list_del_init(), the uwq on the stack |
| 570 | * will be freed shortly anyway. |
| 571 | */ |
| 572 | list_del(&uwq.wq.entry); |
| 573 | spin_unlock_irq(&ctx->fault_pending_wqh.lock); |
| 574 | } |
| 575 | |
| 576 | /* |
| 577 | * ctx may go away after this if the userfault pseudo fd is |
| 578 | * already released. |
| 579 | */ |
| 580 | userfaultfd_ctx_put(ctx); |
| 581 | |
| 582 | out: |
| 583 | return ret; |
| 584 | } |
| 585 | |
| 586 | static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, |
| 587 | struct userfaultfd_wait_queue *ewq) |
| 588 | { |
| 589 | struct userfaultfd_ctx *release_new_ctx; |
| 590 | |
| 591 | if (WARN_ON_ONCE(current->flags & PF_EXITING)) |
| 592 | goto out; |
| 593 | |
| 594 | ewq->ctx = ctx; |
| 595 | init_waitqueue_entry(&ewq->wq, current); |
| 596 | release_new_ctx = NULL; |
| 597 | |
| 598 | spin_lock_irq(&ctx->event_wqh.lock); |
| 599 | /* |
| 600 | * After the __add_wait_queue the uwq is visible to userland |
| 601 | * through poll/read(). |
| 602 | */ |
| 603 | __add_wait_queue(&ctx->event_wqh, &ewq->wq); |
| 604 | for (;;) { |
| 605 | set_current_state(TASK_KILLABLE); |
| 606 | if (ewq->msg.event == 0) |
| 607 | break; |
| 608 | if (READ_ONCE(ctx->released) || |
| 609 | fatal_signal_pending(current)) { |
| 610 | /* |
| 611 | * &ewq->wq may be queued in fork_event, but |
| 612 | * __remove_wait_queue ignores the head |
| 613 | * parameter. It would be a problem if it |
| 614 | * didn't. |
| 615 | */ |
| 616 | __remove_wait_queue(&ctx->event_wqh, &ewq->wq); |
| 617 | if (ewq->msg.event == UFFD_EVENT_FORK) { |
| 618 | struct userfaultfd_ctx *new; |
| 619 | |
| 620 | new = (struct userfaultfd_ctx *) |
| 621 | (unsigned long) |
| 622 | ewq->msg.arg.reserved.reserved1; |
| 623 | release_new_ctx = new; |
| 624 | } |
| 625 | break; |
| 626 | } |
| 627 | |
| 628 | spin_unlock_irq(&ctx->event_wqh.lock); |
| 629 | |
| 630 | wake_up_poll(&ctx->fd_wqh, EPOLLIN); |
| 631 | schedule(); |
| 632 | |
| 633 | spin_lock_irq(&ctx->event_wqh.lock); |
| 634 | } |
| 635 | __set_current_state(TASK_RUNNING); |
| 636 | spin_unlock_irq(&ctx->event_wqh.lock); |
| 637 | |
| 638 | if (release_new_ctx) { |
| 639 | struct vm_area_struct *vma; |
| 640 | struct mm_struct *mm = release_new_ctx->mm; |
| 641 | |
| 642 | /* the various vma->vm_userfaultfd_ctx still points to it */ |
| 643 | down_write(&mm->mmap_sem); |
| 644 | /* no task can run (and in turn coredump) yet */ |
| 645 | VM_WARN_ON(!mmget_still_valid(mm)); |
| 646 | for (vma = mm->mmap; vma; vma = vma->vm_next) |
| 647 | if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { |
| 648 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; |
| 649 | vma->vm_flags &= ~__VM_UFFD_FLAGS; |
| 650 | } |
| 651 | up_write(&mm->mmap_sem); |
| 652 | |
| 653 | userfaultfd_ctx_put(release_new_ctx); |
| 654 | } |
| 655 | |
| 656 | /* |
| 657 | * ctx may go away after this if the userfault pseudo fd is |
| 658 | * already released. |
| 659 | */ |
| 660 | out: |
| 661 | WRITE_ONCE(ctx->mmap_changing, false); |
| 662 | userfaultfd_ctx_put(ctx); |
| 663 | } |
| 664 | |
| 665 | static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, |
| 666 | struct userfaultfd_wait_queue *ewq) |
| 667 | { |
| 668 | ewq->msg.event = 0; |
| 669 | wake_up_locked(&ctx->event_wqh); |
| 670 | __remove_wait_queue(&ctx->event_wqh, &ewq->wq); |
| 671 | } |
| 672 | |
| 673 | int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) |
| 674 | { |
| 675 | struct userfaultfd_ctx *ctx = NULL, *octx; |
| 676 | struct userfaultfd_fork_ctx *fctx; |
| 677 | |
| 678 | octx = vma->vm_userfaultfd_ctx.ctx; |
| 679 | if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { |
| 680 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; |
| 681 | vma->vm_flags &= ~__VM_UFFD_FLAGS; |
| 682 | return 0; |
| 683 | } |
| 684 | |
| 685 | list_for_each_entry(fctx, fcs, list) |
| 686 | if (fctx->orig == octx) { |
| 687 | ctx = fctx->new; |
| 688 | break; |
| 689 | } |
| 690 | |
| 691 | if (!ctx) { |
| 692 | fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); |
| 693 | if (!fctx) |
| 694 | return -ENOMEM; |
| 695 | |
| 696 | ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); |
| 697 | if (!ctx) { |
| 698 | kfree(fctx); |
| 699 | return -ENOMEM; |
| 700 | } |
| 701 | |
| 702 | refcount_set(&ctx->refcount, 1); |
| 703 | ctx->flags = octx->flags; |
| 704 | ctx->features = octx->features; |
| 705 | ctx->released = false; |
| 706 | ctx->mmap_changing = false; |
| 707 | ctx->mm = vma->vm_mm; |
| 708 | mmgrab(ctx->mm); |
| 709 | |
| 710 | userfaultfd_ctx_get(octx); |
| 711 | WRITE_ONCE(octx->mmap_changing, true); |
| 712 | fctx->orig = octx; |
| 713 | fctx->new = ctx; |
| 714 | list_add_tail(&fctx->list, fcs); |
| 715 | } |
| 716 | |
| 717 | vma->vm_userfaultfd_ctx.ctx = ctx; |
| 718 | return 0; |
| 719 | } |
| 720 | |
| 721 | static void dup_fctx(struct userfaultfd_fork_ctx *fctx) |
| 722 | { |
| 723 | struct userfaultfd_ctx *ctx = fctx->orig; |
| 724 | struct userfaultfd_wait_queue ewq; |
| 725 | |
| 726 | msg_init(&ewq.msg); |
| 727 | |
| 728 | ewq.msg.event = UFFD_EVENT_FORK; |
| 729 | ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; |
| 730 | |
| 731 | userfaultfd_event_wait_completion(ctx, &ewq); |
| 732 | } |
| 733 | |
| 734 | void dup_userfaultfd_complete(struct list_head *fcs) |
| 735 | { |
| 736 | struct userfaultfd_fork_ctx *fctx, *n; |
| 737 | |
| 738 | list_for_each_entry_safe(fctx, n, fcs, list) { |
| 739 | dup_fctx(fctx); |
| 740 | list_del(&fctx->list); |
| 741 | kfree(fctx); |
| 742 | } |
| 743 | } |
| 744 | |
| 745 | void mremap_userfaultfd_prep(struct vm_area_struct *vma, |
| 746 | struct vm_userfaultfd_ctx *vm_ctx) |
| 747 | { |
| 748 | struct userfaultfd_ctx *ctx; |
| 749 | |
| 750 | ctx = vma->vm_userfaultfd_ctx.ctx; |
| 751 | |
| 752 | if (!ctx) |
| 753 | return; |
| 754 | |
| 755 | if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { |
| 756 | vm_ctx->ctx = ctx; |
| 757 | userfaultfd_ctx_get(ctx); |
| 758 | WRITE_ONCE(ctx->mmap_changing, true); |
| 759 | } else { |
| 760 | /* Drop uffd context if remap feature not enabled */ |
| 761 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; |
| 762 | vma->vm_flags &= ~__VM_UFFD_FLAGS; |
| 763 | } |
| 764 | } |
| 765 | |
| 766 | void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, |
| 767 | unsigned long from, unsigned long to, |
| 768 | unsigned long len) |
| 769 | { |
| 770 | struct userfaultfd_ctx *ctx = vm_ctx->ctx; |
| 771 | struct userfaultfd_wait_queue ewq; |
| 772 | |
| 773 | if (!ctx) |
| 774 | return; |
| 775 | |
| 776 | if (to & ~PAGE_MASK) { |
| 777 | userfaultfd_ctx_put(ctx); |
| 778 | return; |
| 779 | } |
| 780 | |
| 781 | msg_init(&ewq.msg); |
| 782 | |
| 783 | ewq.msg.event = UFFD_EVENT_REMAP; |
| 784 | ewq.msg.arg.remap.from = from; |
| 785 | ewq.msg.arg.remap.to = to; |
| 786 | ewq.msg.arg.remap.len = len; |
| 787 | |
| 788 | userfaultfd_event_wait_completion(ctx, &ewq); |
| 789 | } |
| 790 | |
| 791 | bool userfaultfd_remove(struct vm_area_struct *vma, |
| 792 | unsigned long start, unsigned long end) |
| 793 | { |
| 794 | struct mm_struct *mm = vma->vm_mm; |
| 795 | struct userfaultfd_ctx *ctx; |
| 796 | struct userfaultfd_wait_queue ewq; |
| 797 | |
| 798 | ctx = vma->vm_userfaultfd_ctx.ctx; |
| 799 | if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) |
| 800 | return true; |
| 801 | |
| 802 | userfaultfd_ctx_get(ctx); |
| 803 | WRITE_ONCE(ctx->mmap_changing, true); |
| 804 | up_read(&mm->mmap_sem); |
| 805 | |
| 806 | msg_init(&ewq.msg); |
| 807 | |
| 808 | ewq.msg.event = UFFD_EVENT_REMOVE; |
| 809 | ewq.msg.arg.remove.start = start; |
| 810 | ewq.msg.arg.remove.end = end; |
| 811 | |
| 812 | userfaultfd_event_wait_completion(ctx, &ewq); |
| 813 | |
| 814 | return false; |
| 815 | } |
| 816 | |
| 817 | static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, |
| 818 | unsigned long start, unsigned long end) |
| 819 | { |
| 820 | struct userfaultfd_unmap_ctx *unmap_ctx; |
| 821 | |
| 822 | list_for_each_entry(unmap_ctx, unmaps, list) |
| 823 | if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && |
| 824 | unmap_ctx->end == end) |
| 825 | return true; |
| 826 | |
| 827 | return false; |
| 828 | } |
| 829 | |
| 830 | int userfaultfd_unmap_prep(struct vm_area_struct *vma, |
| 831 | unsigned long start, unsigned long end, |
| 832 | struct list_head *unmaps) |
| 833 | { |
| 834 | for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { |
| 835 | struct userfaultfd_unmap_ctx *unmap_ctx; |
| 836 | struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; |
| 837 | |
| 838 | if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || |
| 839 | has_unmap_ctx(ctx, unmaps, start, end)) |
| 840 | continue; |
| 841 | |
| 842 | unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); |
| 843 | if (!unmap_ctx) |
| 844 | return -ENOMEM; |
| 845 | |
| 846 | userfaultfd_ctx_get(ctx); |
| 847 | WRITE_ONCE(ctx->mmap_changing, true); |
| 848 | unmap_ctx->ctx = ctx; |
| 849 | unmap_ctx->start = start; |
| 850 | unmap_ctx->end = end; |
| 851 | list_add_tail(&unmap_ctx->list, unmaps); |
| 852 | } |
| 853 | |
| 854 | return 0; |
| 855 | } |
| 856 | |
| 857 | void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) |
| 858 | { |
| 859 | struct userfaultfd_unmap_ctx *ctx, *n; |
| 860 | struct userfaultfd_wait_queue ewq; |
| 861 | |
| 862 | list_for_each_entry_safe(ctx, n, uf, list) { |
| 863 | msg_init(&ewq.msg); |
| 864 | |
| 865 | ewq.msg.event = UFFD_EVENT_UNMAP; |
| 866 | ewq.msg.arg.remove.start = ctx->start; |
| 867 | ewq.msg.arg.remove.end = ctx->end; |
| 868 | |
| 869 | userfaultfd_event_wait_completion(ctx->ctx, &ewq); |
| 870 | |
| 871 | list_del(&ctx->list); |
| 872 | kfree(ctx); |
| 873 | } |
| 874 | } |
| 875 | |
| 876 | static int userfaultfd_release(struct inode *inode, struct file *file) |
| 877 | { |
| 878 | struct userfaultfd_ctx *ctx = file->private_data; |
| 879 | struct mm_struct *mm = ctx->mm; |
| 880 | struct vm_area_struct *vma, *prev; |
| 881 | /* len == 0 means wake all */ |
| 882 | struct userfaultfd_wake_range range = { .len = 0, }; |
| 883 | unsigned long new_flags; |
| 884 | bool still_valid; |
| 885 | |
| 886 | WRITE_ONCE(ctx->released, true); |
| 887 | |
| 888 | if (!mmget_not_zero(mm)) |
| 889 | goto wakeup; |
| 890 | |
| 891 | /* |
| 892 | * Flush page faults out of all CPUs. NOTE: all page faults |
| 893 | * must be retried without returning VM_FAULT_SIGBUS if |
| 894 | * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx |
| 895 | * changes while handle_userfault released the mmap_sem. So |
| 896 | * it's critical that released is set to true (above), before |
| 897 | * taking the mmap_sem for writing. |
| 898 | */ |
| 899 | down_write(&mm->mmap_sem); |
| 900 | still_valid = mmget_still_valid(mm); |
| 901 | prev = NULL; |
| 902 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
| 903 | cond_resched(); |
| 904 | BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ |
| 905 | !!(vma->vm_flags & __VM_UFFD_FLAGS)); |
| 906 | if (vma->vm_userfaultfd_ctx.ctx != ctx) { |
| 907 | prev = vma; |
| 908 | continue; |
| 909 | } |
| 910 | new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; |
| 911 | if (still_valid) { |
| 912 | prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, |
| 913 | new_flags, vma->anon_vma, |
| 914 | vma->vm_file, vma->vm_pgoff, |
| 915 | vma_policy(vma), |
| 916 | NULL_VM_UFFD_CTX, |
| 917 | vma_get_anon_name(vma)); |
| 918 | if (prev) |
| 919 | vma = prev; |
| 920 | else |
| 921 | prev = vma; |
| 922 | } |
| 923 | vma->vm_flags = new_flags; |
| 924 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; |
| 925 | } |
| 926 | up_write(&mm->mmap_sem); |
| 927 | mmput(mm); |
| 928 | wakeup: |
| 929 | /* |
| 930 | * After no new page faults can wait on this fault_*wqh, flush |
| 931 | * the last page faults that may have been already waiting on |
| 932 | * the fault_*wqh. |
| 933 | */ |
| 934 | spin_lock_irq(&ctx->fault_pending_wqh.lock); |
| 935 | __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); |
| 936 | __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); |
| 937 | spin_unlock_irq(&ctx->fault_pending_wqh.lock); |
| 938 | |
| 939 | /* Flush pending events that may still wait on event_wqh */ |
| 940 | wake_up_all(&ctx->event_wqh); |
| 941 | |
| 942 | wake_up_poll(&ctx->fd_wqh, EPOLLHUP); |
| 943 | userfaultfd_ctx_put(ctx); |
| 944 | return 0; |
| 945 | } |
| 946 | |
| 947 | /* fault_pending_wqh.lock must be hold by the caller */ |
| 948 | static inline struct userfaultfd_wait_queue *find_userfault_in( |
| 949 | wait_queue_head_t *wqh) |
| 950 | { |
| 951 | wait_queue_entry_t *wq; |
| 952 | struct userfaultfd_wait_queue *uwq; |
| 953 | |
| 954 | lockdep_assert_held(&wqh->lock); |
| 955 | |
| 956 | uwq = NULL; |
| 957 | if (!waitqueue_active(wqh)) |
| 958 | goto out; |
| 959 | /* walk in reverse to provide FIFO behavior to read userfaults */ |
| 960 | wq = list_last_entry(&wqh->head, typeof(*wq), entry); |
| 961 | uwq = container_of(wq, struct userfaultfd_wait_queue, wq); |
| 962 | out: |
| 963 | return uwq; |
| 964 | } |
| 965 | |
| 966 | static inline struct userfaultfd_wait_queue *find_userfault( |
| 967 | struct userfaultfd_ctx *ctx) |
| 968 | { |
| 969 | return find_userfault_in(&ctx->fault_pending_wqh); |
| 970 | } |
| 971 | |
| 972 | static inline struct userfaultfd_wait_queue *find_userfault_evt( |
| 973 | struct userfaultfd_ctx *ctx) |
| 974 | { |
| 975 | return find_userfault_in(&ctx->event_wqh); |
| 976 | } |
| 977 | |
| 978 | static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) |
| 979 | { |
| 980 | struct userfaultfd_ctx *ctx = file->private_data; |
| 981 | __poll_t ret; |
| 982 | |
| 983 | poll_wait(file, &ctx->fd_wqh, wait); |
| 984 | |
| 985 | if (!userfaultfd_is_initialized(ctx)) |
| 986 | return EPOLLERR; |
| 987 | |
| 988 | /* |
| 989 | * poll() never guarantees that read won't block. |
| 990 | * userfaults can be waken before they're read(). |
| 991 | */ |
| 992 | if (unlikely(!(file->f_flags & O_NONBLOCK))) |
| 993 | return EPOLLERR; |
| 994 | /* |
| 995 | * lockless access to see if there are pending faults |
| 996 | * __pollwait last action is the add_wait_queue but |
| 997 | * the spin_unlock would allow the waitqueue_active to |
| 998 | * pass above the actual list_add inside |
| 999 | * add_wait_queue critical section. So use a full |
| 1000 | * memory barrier to serialize the list_add write of |
| 1001 | * add_wait_queue() with the waitqueue_active read |
| 1002 | * below. |
| 1003 | */ |
| 1004 | ret = 0; |
| 1005 | smp_mb(); |
| 1006 | if (waitqueue_active(&ctx->fault_pending_wqh)) |
| 1007 | ret = EPOLLIN; |
| 1008 | else if (waitqueue_active(&ctx->event_wqh)) |
| 1009 | ret = EPOLLIN; |
| 1010 | |
| 1011 | return ret; |
| 1012 | } |
| 1013 | |
| 1014 | static const struct file_operations userfaultfd_fops; |
| 1015 | |
| 1016 | static int resolve_userfault_fork(struct userfaultfd_ctx *new, |
| 1017 | struct inode *inode, |
| 1018 | struct uffd_msg *msg) |
| 1019 | { |
| 1020 | int fd; |
| 1021 | |
| 1022 | fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new, |
| 1023 | O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode); |
| 1024 | if (fd < 0) |
| 1025 | return fd; |
| 1026 | |
| 1027 | msg->arg.reserved.reserved1 = 0; |
| 1028 | msg->arg.fork.ufd = fd; |
| 1029 | return 0; |
| 1030 | } |
| 1031 | |
| 1032 | static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, |
| 1033 | struct uffd_msg *msg, struct inode *inode) |
| 1034 | { |
| 1035 | ssize_t ret; |
| 1036 | DECLARE_WAITQUEUE(wait, current); |
| 1037 | struct userfaultfd_wait_queue *uwq; |
| 1038 | /* |
| 1039 | * Handling fork event requires sleeping operations, so |
| 1040 | * we drop the event_wqh lock, then do these ops, then |
| 1041 | * lock it back and wake up the waiter. While the lock is |
| 1042 | * dropped the ewq may go away so we keep track of it |
| 1043 | * carefully. |
| 1044 | */ |
| 1045 | LIST_HEAD(fork_event); |
| 1046 | struct userfaultfd_ctx *fork_nctx = NULL; |
| 1047 | |
| 1048 | /* always take the fd_wqh lock before the fault_pending_wqh lock */ |
| 1049 | spin_lock_irq(&ctx->fd_wqh.lock); |
| 1050 | __add_wait_queue(&ctx->fd_wqh, &wait); |
| 1051 | for (;;) { |
| 1052 | set_current_state(TASK_INTERRUPTIBLE); |
| 1053 | spin_lock(&ctx->fault_pending_wqh.lock); |
| 1054 | uwq = find_userfault(ctx); |
| 1055 | if (uwq) { |
| 1056 | /* |
| 1057 | * Use a seqcount to repeat the lockless check |
| 1058 | * in wake_userfault() to avoid missing |
| 1059 | * wakeups because during the refile both |
| 1060 | * waitqueue could become empty if this is the |
| 1061 | * only userfault. |
| 1062 | */ |
| 1063 | write_seqcount_begin(&ctx->refile_seq); |
| 1064 | |
| 1065 | /* |
| 1066 | * The fault_pending_wqh.lock prevents the uwq |
| 1067 | * to disappear from under us. |
| 1068 | * |
| 1069 | * Refile this userfault from |
| 1070 | * fault_pending_wqh to fault_wqh, it's not |
| 1071 | * pending anymore after we read it. |
| 1072 | * |
| 1073 | * Use list_del() by hand (as |
| 1074 | * userfaultfd_wake_function also uses |
| 1075 | * list_del_init() by hand) to be sure nobody |
| 1076 | * changes __remove_wait_queue() to use |
| 1077 | * list_del_init() in turn breaking the |
| 1078 | * !list_empty_careful() check in |
| 1079 | * handle_userfault(). The uwq->wq.head list |
| 1080 | * must never be empty at any time during the |
| 1081 | * refile, or the waitqueue could disappear |
| 1082 | * from under us. The "wait_queue_head_t" |
| 1083 | * parameter of __remove_wait_queue() is unused |
| 1084 | * anyway. |
| 1085 | */ |
| 1086 | list_del(&uwq->wq.entry); |
| 1087 | add_wait_queue(&ctx->fault_wqh, &uwq->wq); |
| 1088 | |
| 1089 | write_seqcount_end(&ctx->refile_seq); |
| 1090 | |
| 1091 | /* careful to always initialize msg if ret == 0 */ |
| 1092 | *msg = uwq->msg; |
| 1093 | spin_unlock(&ctx->fault_pending_wqh.lock); |
| 1094 | ret = 0; |
| 1095 | break; |
| 1096 | } |
| 1097 | spin_unlock(&ctx->fault_pending_wqh.lock); |
| 1098 | |
| 1099 | spin_lock(&ctx->event_wqh.lock); |
| 1100 | uwq = find_userfault_evt(ctx); |
| 1101 | if (uwq) { |
| 1102 | *msg = uwq->msg; |
| 1103 | |
| 1104 | if (uwq->msg.event == UFFD_EVENT_FORK) { |
| 1105 | fork_nctx = (struct userfaultfd_ctx *) |
| 1106 | (unsigned long) |
| 1107 | uwq->msg.arg.reserved.reserved1; |
| 1108 | list_move(&uwq->wq.entry, &fork_event); |
| 1109 | /* |
| 1110 | * fork_nctx can be freed as soon as |
| 1111 | * we drop the lock, unless we take a |
| 1112 | * reference on it. |
| 1113 | */ |
| 1114 | userfaultfd_ctx_get(fork_nctx); |
| 1115 | spin_unlock(&ctx->event_wqh.lock); |
| 1116 | ret = 0; |
| 1117 | break; |
| 1118 | } |
| 1119 | |
| 1120 | userfaultfd_event_complete(ctx, uwq); |
| 1121 | spin_unlock(&ctx->event_wqh.lock); |
| 1122 | ret = 0; |
| 1123 | break; |
| 1124 | } |
| 1125 | spin_unlock(&ctx->event_wqh.lock); |
| 1126 | |
| 1127 | if (signal_pending(current)) { |
| 1128 | ret = -ERESTARTSYS; |
| 1129 | break; |
| 1130 | } |
| 1131 | if (no_wait) { |
| 1132 | ret = -EAGAIN; |
| 1133 | break; |
| 1134 | } |
| 1135 | spin_unlock_irq(&ctx->fd_wqh.lock); |
| 1136 | schedule(); |
| 1137 | spin_lock_irq(&ctx->fd_wqh.lock); |
| 1138 | } |
| 1139 | __remove_wait_queue(&ctx->fd_wqh, &wait); |
| 1140 | __set_current_state(TASK_RUNNING); |
| 1141 | spin_unlock_irq(&ctx->fd_wqh.lock); |
| 1142 | |
| 1143 | if (!ret && msg->event == UFFD_EVENT_FORK) { |
| 1144 | ret = resolve_userfault_fork(fork_nctx, inode, msg); |
| 1145 | spin_lock_irq(&ctx->event_wqh.lock); |
| 1146 | if (!list_empty(&fork_event)) { |
| 1147 | /* |
| 1148 | * The fork thread didn't abort, so we can |
| 1149 | * drop the temporary refcount. |
| 1150 | */ |
| 1151 | userfaultfd_ctx_put(fork_nctx); |
| 1152 | |
| 1153 | uwq = list_first_entry(&fork_event, |
| 1154 | typeof(*uwq), |
| 1155 | wq.entry); |
| 1156 | /* |
| 1157 | * If fork_event list wasn't empty and in turn |
| 1158 | * the event wasn't already released by fork |
| 1159 | * (the event is allocated on fork kernel |
| 1160 | * stack), put the event back to its place in |
| 1161 | * the event_wq. fork_event head will be freed |
| 1162 | * as soon as we return so the event cannot |
| 1163 | * stay queued there no matter the current |
| 1164 | * "ret" value. |
| 1165 | */ |
| 1166 | list_del(&uwq->wq.entry); |
| 1167 | __add_wait_queue(&ctx->event_wqh, &uwq->wq); |
| 1168 | |
| 1169 | /* |
| 1170 | * Leave the event in the waitqueue and report |
| 1171 | * error to userland if we failed to resolve |
| 1172 | * the userfault fork. |
| 1173 | */ |
| 1174 | if (likely(!ret)) |
| 1175 | userfaultfd_event_complete(ctx, uwq); |
| 1176 | } else { |
| 1177 | /* |
| 1178 | * Here the fork thread aborted and the |
| 1179 | * refcount from the fork thread on fork_nctx |
| 1180 | * has already been released. We still hold |
| 1181 | * the reference we took before releasing the |
| 1182 | * lock above. If resolve_userfault_fork |
| 1183 | * failed we've to drop it because the |
| 1184 | * fork_nctx has to be freed in such case. If |
| 1185 | * it succeeded we'll hold it because the new |
| 1186 | * uffd references it. |
| 1187 | */ |
| 1188 | if (ret) |
| 1189 | userfaultfd_ctx_put(fork_nctx); |
| 1190 | } |
| 1191 | spin_unlock_irq(&ctx->event_wqh.lock); |
| 1192 | } |
| 1193 | |
| 1194 | return ret; |
| 1195 | } |
| 1196 | |
| 1197 | static ssize_t userfaultfd_read(struct file *file, char __user *buf, |
| 1198 | size_t count, loff_t *ppos) |
| 1199 | { |
| 1200 | struct userfaultfd_ctx *ctx = file->private_data; |
| 1201 | ssize_t _ret, ret = 0; |
| 1202 | struct uffd_msg msg; |
| 1203 | int no_wait = file->f_flags & O_NONBLOCK; |
| 1204 | struct inode *inode = file_inode(file); |
| 1205 | |
| 1206 | if (!userfaultfd_is_initialized(ctx)) |
| 1207 | return -EINVAL; |
| 1208 | |
| 1209 | for (;;) { |
| 1210 | if (count < sizeof(msg)) |
| 1211 | return ret ? ret : -EINVAL; |
| 1212 | _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode); |
| 1213 | if (_ret < 0) |
| 1214 | return ret ? ret : _ret; |
| 1215 | if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) |
| 1216 | return ret ? ret : -EFAULT; |
| 1217 | ret += sizeof(msg); |
| 1218 | buf += sizeof(msg); |
| 1219 | count -= sizeof(msg); |
| 1220 | /* |
| 1221 | * Allow to read more than one fault at time but only |
| 1222 | * block if waiting for the very first one. |
| 1223 | */ |
| 1224 | no_wait = O_NONBLOCK; |
| 1225 | } |
| 1226 | } |
| 1227 | |
| 1228 | static void __wake_userfault(struct userfaultfd_ctx *ctx, |
| 1229 | struct userfaultfd_wake_range *range) |
| 1230 | { |
| 1231 | spin_lock_irq(&ctx->fault_pending_wqh.lock); |
| 1232 | /* wake all in the range and autoremove */ |
| 1233 | if (waitqueue_active(&ctx->fault_pending_wqh)) |
| 1234 | __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, |
| 1235 | range); |
| 1236 | if (waitqueue_active(&ctx->fault_wqh)) |
| 1237 | __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); |
| 1238 | spin_unlock_irq(&ctx->fault_pending_wqh.lock); |
| 1239 | } |
| 1240 | |
| 1241 | static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, |
| 1242 | struct userfaultfd_wake_range *range) |
| 1243 | { |
| 1244 | unsigned seq; |
| 1245 | bool need_wakeup; |
| 1246 | |
| 1247 | /* |
| 1248 | * To be sure waitqueue_active() is not reordered by the CPU |
| 1249 | * before the pagetable update, use an explicit SMP memory |
| 1250 | * barrier here. PT lock release or up_read(mmap_sem) still |
| 1251 | * have release semantics that can allow the |
| 1252 | * waitqueue_active() to be reordered before the pte update. |
| 1253 | */ |
| 1254 | smp_mb(); |
| 1255 | |
| 1256 | /* |
| 1257 | * Use waitqueue_active because it's very frequent to |
| 1258 | * change the address space atomically even if there are no |
| 1259 | * userfaults yet. So we take the spinlock only when we're |
| 1260 | * sure we've userfaults to wake. |
| 1261 | */ |
| 1262 | do { |
| 1263 | seq = read_seqcount_begin(&ctx->refile_seq); |
| 1264 | need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || |
| 1265 | waitqueue_active(&ctx->fault_wqh); |
| 1266 | cond_resched(); |
| 1267 | } while (read_seqcount_retry(&ctx->refile_seq, seq)); |
| 1268 | if (need_wakeup) |
| 1269 | __wake_userfault(ctx, range); |
| 1270 | } |
| 1271 | |
| 1272 | static __always_inline int validate_range(struct mm_struct *mm, |
| 1273 | __u64 start, __u64 len) |
| 1274 | { |
| 1275 | __u64 task_size = mm->task_size; |
| 1276 | |
| 1277 | if (start & ~PAGE_MASK) |
| 1278 | return -EINVAL; |
| 1279 | if (len & ~PAGE_MASK) |
| 1280 | return -EINVAL; |
| 1281 | if (!len) |
| 1282 | return -EINVAL; |
| 1283 | if (start < mmap_min_addr) |
| 1284 | return -EINVAL; |
| 1285 | if (start >= task_size) |
| 1286 | return -EINVAL; |
| 1287 | if (len > task_size - start) |
| 1288 | return -EINVAL; |
| 1289 | return 0; |
| 1290 | } |
| 1291 | |
| 1292 | static inline bool vma_can_userfault(struct vm_area_struct *vma, |
| 1293 | unsigned long vm_flags) |
| 1294 | { |
| 1295 | if (vm_flags & VM_UFFD_MINOR) { |
| 1296 | if (!(is_vm_hugetlb_page(vma) || vma_is_shmem(vma))) |
| 1297 | return false; |
| 1298 | } |
| 1299 | |
| 1300 | return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || |
| 1301 | vma_is_shmem(vma); |
| 1302 | } |
| 1303 | |
| 1304 | static int userfaultfd_register(struct userfaultfd_ctx *ctx, |
| 1305 | unsigned long arg) |
| 1306 | { |
| 1307 | struct mm_struct *mm = ctx->mm; |
| 1308 | struct vm_area_struct *vma, *prev, *cur; |
| 1309 | int ret; |
| 1310 | struct uffdio_register uffdio_register; |
| 1311 | struct uffdio_register __user *user_uffdio_register; |
| 1312 | unsigned long vm_flags, new_flags; |
| 1313 | bool found; |
| 1314 | bool basic_ioctls; |
| 1315 | unsigned long start, end, vma_end; |
| 1316 | |
| 1317 | user_uffdio_register = (struct uffdio_register __user *) arg; |
| 1318 | |
| 1319 | ret = -EFAULT; |
| 1320 | if (copy_from_user(&uffdio_register, user_uffdio_register, |
| 1321 | sizeof(uffdio_register)-sizeof(__u64))) |
| 1322 | goto out; |
| 1323 | |
| 1324 | ret = -EINVAL; |
| 1325 | if (!uffdio_register.mode) |
| 1326 | goto out; |
| 1327 | if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES) |
| 1328 | goto out; |
| 1329 | vm_flags = 0; |
| 1330 | if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) |
| 1331 | vm_flags |= VM_UFFD_MISSING; |
| 1332 | if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { |
| 1333 | vm_flags |= VM_UFFD_WP; |
| 1334 | /* |
| 1335 | * FIXME: remove the below error constraint by |
| 1336 | * implementing the wprotect tracking mode. |
| 1337 | */ |
| 1338 | ret = -EINVAL; |
| 1339 | goto out; |
| 1340 | } |
| 1341 | if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) { |
| 1342 | #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR |
| 1343 | goto out; |
| 1344 | #endif |
| 1345 | vm_flags |= VM_UFFD_MINOR; |
| 1346 | } |
| 1347 | |
| 1348 | ret = validate_range(mm, uffdio_register.range.start, |
| 1349 | uffdio_register.range.len); |
| 1350 | if (ret) |
| 1351 | goto out; |
| 1352 | |
| 1353 | start = uffdio_register.range.start; |
| 1354 | end = start + uffdio_register.range.len; |
| 1355 | |
| 1356 | ret = -ENOMEM; |
| 1357 | if (!mmget_not_zero(mm)) |
| 1358 | goto out; |
| 1359 | |
| 1360 | down_write(&mm->mmap_sem); |
| 1361 | if (!mmget_still_valid(mm)) |
| 1362 | goto out_unlock; |
| 1363 | vma = find_vma_prev(mm, start, &prev); |
| 1364 | if (!vma) |
| 1365 | goto out_unlock; |
| 1366 | |
| 1367 | /* check that there's at least one vma in the range */ |
| 1368 | ret = -EINVAL; |
| 1369 | if (vma->vm_start >= end) |
| 1370 | goto out_unlock; |
| 1371 | |
| 1372 | /* |
| 1373 | * If the first vma contains huge pages, make sure start address |
| 1374 | * is aligned to huge page size. |
| 1375 | */ |
| 1376 | if (is_vm_hugetlb_page(vma)) { |
| 1377 | unsigned long vma_hpagesize = vma_kernel_pagesize(vma); |
| 1378 | |
| 1379 | if (start & (vma_hpagesize - 1)) |
| 1380 | goto out_unlock; |
| 1381 | } |
| 1382 | |
| 1383 | /* |
| 1384 | * Search for not compatible vmas. |
| 1385 | */ |
| 1386 | found = false; |
| 1387 | basic_ioctls = false; |
| 1388 | for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { |
| 1389 | cond_resched(); |
| 1390 | |
| 1391 | BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ |
| 1392 | !!(cur->vm_flags & __VM_UFFD_FLAGS)); |
| 1393 | |
| 1394 | /* check not compatible vmas */ |
| 1395 | ret = -EINVAL; |
| 1396 | if (!vma_can_userfault(cur, vm_flags)) |
| 1397 | goto out_unlock; |
| 1398 | |
| 1399 | /* |
| 1400 | * UFFDIO_COPY will fill file holes even without |
| 1401 | * PROT_WRITE. This check enforces that if this is a |
| 1402 | * MAP_SHARED, the process has write permission to the backing |
| 1403 | * file. If VM_MAYWRITE is set it also enforces that on a |
| 1404 | * MAP_SHARED vma: there is no F_WRITE_SEAL and no further |
| 1405 | * F_WRITE_SEAL can be taken until the vma is destroyed. |
| 1406 | */ |
| 1407 | ret = -EPERM; |
| 1408 | if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) |
| 1409 | goto out_unlock; |
| 1410 | |
| 1411 | /* |
| 1412 | * If this vma contains ending address, and huge pages |
| 1413 | * check alignment. |
| 1414 | */ |
| 1415 | if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && |
| 1416 | end > cur->vm_start) { |
| 1417 | unsigned long vma_hpagesize = vma_kernel_pagesize(cur); |
| 1418 | |
| 1419 | ret = -EINVAL; |
| 1420 | |
| 1421 | if (end & (vma_hpagesize - 1)) |
| 1422 | goto out_unlock; |
| 1423 | } |
| 1424 | |
| 1425 | /* |
| 1426 | * Check that this vma isn't already owned by a |
| 1427 | * different userfaultfd. We can't allow more than one |
| 1428 | * userfaultfd to own a single vma simultaneously or we |
| 1429 | * wouldn't know which one to deliver the userfaults to. |
| 1430 | */ |
| 1431 | ret = -EBUSY; |
| 1432 | if (cur->vm_userfaultfd_ctx.ctx && |
| 1433 | cur->vm_userfaultfd_ctx.ctx != ctx) |
| 1434 | goto out_unlock; |
| 1435 | |
| 1436 | /* |
| 1437 | * Note vmas containing huge pages |
| 1438 | */ |
| 1439 | if (is_vm_hugetlb_page(cur)) |
| 1440 | basic_ioctls = true; |
| 1441 | |
| 1442 | found = true; |
| 1443 | } |
| 1444 | BUG_ON(!found); |
| 1445 | |
| 1446 | if (vma->vm_start < start) |
| 1447 | prev = vma; |
| 1448 | |
| 1449 | ret = 0; |
| 1450 | do { |
| 1451 | cond_resched(); |
| 1452 | |
| 1453 | BUG_ON(!vma_can_userfault(vma, vm_flags)); |
| 1454 | BUG_ON(vma->vm_userfaultfd_ctx.ctx && |
| 1455 | vma->vm_userfaultfd_ctx.ctx != ctx); |
| 1456 | WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); |
| 1457 | |
| 1458 | /* |
| 1459 | * Nothing to do: this vma is already registered into this |
| 1460 | * userfaultfd and with the right tracking mode too. |
| 1461 | */ |
| 1462 | if (vma->vm_userfaultfd_ctx.ctx == ctx && |
| 1463 | (vma->vm_flags & vm_flags) == vm_flags) |
| 1464 | goto skip; |
| 1465 | |
| 1466 | if (vma->vm_start > start) |
| 1467 | start = vma->vm_start; |
| 1468 | vma_end = min(end, vma->vm_end); |
| 1469 | |
| 1470 | new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags; |
| 1471 | prev = vma_merge(mm, prev, start, vma_end, new_flags, |
| 1472 | vma->anon_vma, vma->vm_file, vma->vm_pgoff, |
| 1473 | vma_policy(vma), |
| 1474 | ((struct vm_userfaultfd_ctx){ ctx }), |
| 1475 | vma_get_anon_name(vma)); |
| 1476 | if (prev) { |
| 1477 | vma = prev; |
| 1478 | goto next; |
| 1479 | } |
| 1480 | if (vma->vm_start < start) { |
| 1481 | ret = split_vma(mm, vma, start, 1); |
| 1482 | if (ret) |
| 1483 | break; |
| 1484 | } |
| 1485 | if (vma->vm_end > end) { |
| 1486 | ret = split_vma(mm, vma, end, 0); |
| 1487 | if (ret) |
| 1488 | break; |
| 1489 | } |
| 1490 | next: |
| 1491 | /* |
| 1492 | * In the vma_merge() successful mprotect-like case 8: |
| 1493 | * the next vma was merged into the current one and |
| 1494 | * the current one has not been updated yet. |
| 1495 | */ |
| 1496 | vma->vm_flags = new_flags; |
| 1497 | vma->vm_userfaultfd_ctx.ctx = ctx; |
| 1498 | |
| 1499 | if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma)) |
| 1500 | hugetlb_unshare_all_pmds(vma); |
| 1501 | |
| 1502 | skip: |
| 1503 | prev = vma; |
| 1504 | start = vma->vm_end; |
| 1505 | vma = vma->vm_next; |
| 1506 | } while (vma && vma->vm_start < end); |
| 1507 | out_unlock: |
| 1508 | up_write(&mm->mmap_sem); |
| 1509 | mmput(mm); |
| 1510 | if (!ret) { |
| 1511 | __u64 ioctls_out; |
| 1512 | |
| 1513 | ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : |
| 1514 | UFFD_API_RANGE_IOCTLS; |
| 1515 | |
| 1516 | /* CONTINUE ioctl is only supported for MINOR ranges. */ |
| 1517 | if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR)) |
| 1518 | ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE); |
| 1519 | |
| 1520 | /* |
| 1521 | * Now that we scanned all vmas we can already tell |
| 1522 | * userland which ioctls methods are guaranteed to |
| 1523 | * succeed on this range. |
| 1524 | */ |
| 1525 | if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : |
| 1526 | UFFD_API_RANGE_IOCTLS, |
| 1527 | &user_uffdio_register->ioctls)) |
| 1528 | ret = -EFAULT; |
| 1529 | } |
| 1530 | out: |
| 1531 | return ret; |
| 1532 | } |
| 1533 | |
| 1534 | static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, |
| 1535 | unsigned long arg) |
| 1536 | { |
| 1537 | struct mm_struct *mm = ctx->mm; |
| 1538 | struct vm_area_struct *vma, *prev, *cur; |
| 1539 | int ret; |
| 1540 | struct uffdio_range uffdio_unregister; |
| 1541 | unsigned long new_flags; |
| 1542 | bool found; |
| 1543 | unsigned long start, end, vma_end; |
| 1544 | const void __user *buf = (void __user *)arg; |
| 1545 | |
| 1546 | ret = -EFAULT; |
| 1547 | if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) |
| 1548 | goto out; |
| 1549 | |
| 1550 | ret = validate_range(mm, uffdio_unregister.start, |
| 1551 | uffdio_unregister.len); |
| 1552 | if (ret) |
| 1553 | goto out; |
| 1554 | |
| 1555 | start = uffdio_unregister.start; |
| 1556 | end = start + uffdio_unregister.len; |
| 1557 | |
| 1558 | ret = -ENOMEM; |
| 1559 | if (!mmget_not_zero(mm)) |
| 1560 | goto out; |
| 1561 | |
| 1562 | down_write(&mm->mmap_sem); |
| 1563 | if (!mmget_still_valid(mm)) |
| 1564 | goto out_unlock; |
| 1565 | vma = find_vma_prev(mm, start, &prev); |
| 1566 | if (!vma) |
| 1567 | goto out_unlock; |
| 1568 | |
| 1569 | /* check that there's at least one vma in the range */ |
| 1570 | ret = -EINVAL; |
| 1571 | if (vma->vm_start >= end) |
| 1572 | goto out_unlock; |
| 1573 | |
| 1574 | /* |
| 1575 | * If the first vma contains huge pages, make sure start address |
| 1576 | * is aligned to huge page size. |
| 1577 | */ |
| 1578 | if (is_vm_hugetlb_page(vma)) { |
| 1579 | unsigned long vma_hpagesize = vma_kernel_pagesize(vma); |
| 1580 | |
| 1581 | if (start & (vma_hpagesize - 1)) |
| 1582 | goto out_unlock; |
| 1583 | } |
| 1584 | |
| 1585 | /* |
| 1586 | * Search for not compatible vmas. |
| 1587 | */ |
| 1588 | found = false; |
| 1589 | ret = -EINVAL; |
| 1590 | for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { |
| 1591 | cond_resched(); |
| 1592 | |
| 1593 | BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ |
| 1594 | !!(cur->vm_flags & __VM_UFFD_FLAGS)); |
| 1595 | |
| 1596 | /* |
| 1597 | * Check not compatible vmas, not strictly required |
| 1598 | * here as not compatible vmas cannot have an |
| 1599 | * userfaultfd_ctx registered on them, but this |
| 1600 | * provides for more strict behavior to notice |
| 1601 | * unregistration errors. |
| 1602 | */ |
| 1603 | if (!vma_can_userfault(cur, cur->vm_flags)) |
| 1604 | goto out_unlock; |
| 1605 | |
| 1606 | found = true; |
| 1607 | } |
| 1608 | BUG_ON(!found); |
| 1609 | |
| 1610 | if (vma->vm_start < start) |
| 1611 | prev = vma; |
| 1612 | |
| 1613 | ret = 0; |
| 1614 | do { |
| 1615 | cond_resched(); |
| 1616 | |
| 1617 | BUG_ON(!vma_can_userfault(vma, vma->vm_flags)); |
| 1618 | |
| 1619 | /* |
| 1620 | * Nothing to do: this vma is already registered into this |
| 1621 | * userfaultfd and with the right tracking mode too. |
| 1622 | */ |
| 1623 | if (!vma->vm_userfaultfd_ctx.ctx) |
| 1624 | goto skip; |
| 1625 | |
| 1626 | WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); |
| 1627 | |
| 1628 | if (vma->vm_start > start) |
| 1629 | start = vma->vm_start; |
| 1630 | vma_end = min(end, vma->vm_end); |
| 1631 | |
| 1632 | if (userfaultfd_missing(vma)) { |
| 1633 | /* |
| 1634 | * Wake any concurrent pending userfault while |
| 1635 | * we unregister, so they will not hang |
| 1636 | * permanently and it avoids userland to call |
| 1637 | * UFFDIO_WAKE explicitly. |
| 1638 | */ |
| 1639 | struct userfaultfd_wake_range range; |
| 1640 | range.start = start; |
| 1641 | range.len = vma_end - start; |
| 1642 | wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); |
| 1643 | } |
| 1644 | |
| 1645 | new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; |
| 1646 | prev = vma_merge(mm, prev, start, vma_end, new_flags, |
| 1647 | vma->anon_vma, vma->vm_file, vma->vm_pgoff, |
| 1648 | vma_policy(vma), |
| 1649 | NULL_VM_UFFD_CTX, |
| 1650 | vma_get_anon_name(vma)); |
| 1651 | if (prev) { |
| 1652 | vma = prev; |
| 1653 | goto next; |
| 1654 | } |
| 1655 | if (vma->vm_start < start) { |
| 1656 | ret = split_vma(mm, vma, start, 1); |
| 1657 | if (ret) |
| 1658 | break; |
| 1659 | } |
| 1660 | if (vma->vm_end > end) { |
| 1661 | ret = split_vma(mm, vma, end, 0); |
| 1662 | if (ret) |
| 1663 | break; |
| 1664 | } |
| 1665 | next: |
| 1666 | /* |
| 1667 | * In the vma_merge() successful mprotect-like case 8: |
| 1668 | * the next vma was merged into the current one and |
| 1669 | * the current one has not been updated yet. |
| 1670 | */ |
| 1671 | vma->vm_flags = new_flags; |
| 1672 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; |
| 1673 | |
| 1674 | skip: |
| 1675 | prev = vma; |
| 1676 | start = vma->vm_end; |
| 1677 | vma = vma->vm_next; |
| 1678 | } while (vma && vma->vm_start < end); |
| 1679 | out_unlock: |
| 1680 | up_write(&mm->mmap_sem); |
| 1681 | mmput(mm); |
| 1682 | out: |
| 1683 | return ret; |
| 1684 | } |
| 1685 | |
| 1686 | /* |
| 1687 | * userfaultfd_wake may be used in combination with the |
| 1688 | * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. |
| 1689 | */ |
| 1690 | static int userfaultfd_wake(struct userfaultfd_ctx *ctx, |
| 1691 | unsigned long arg) |
| 1692 | { |
| 1693 | int ret; |
| 1694 | struct uffdio_range uffdio_wake; |
| 1695 | struct userfaultfd_wake_range range; |
| 1696 | const void __user *buf = (void __user *)arg; |
| 1697 | |
| 1698 | ret = -EFAULT; |
| 1699 | if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) |
| 1700 | goto out; |
| 1701 | |
| 1702 | ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); |
| 1703 | if (ret) |
| 1704 | goto out; |
| 1705 | |
| 1706 | range.start = uffdio_wake.start; |
| 1707 | range.len = uffdio_wake.len; |
| 1708 | |
| 1709 | /* |
| 1710 | * len == 0 means wake all and we don't want to wake all here, |
| 1711 | * so check it again to be sure. |
| 1712 | */ |
| 1713 | VM_BUG_ON(!range.len); |
| 1714 | |
| 1715 | wake_userfault(ctx, &range); |
| 1716 | ret = 0; |
| 1717 | |
| 1718 | out: |
| 1719 | return ret; |
| 1720 | } |
| 1721 | |
| 1722 | static int userfaultfd_copy(struct userfaultfd_ctx *ctx, |
| 1723 | unsigned long arg) |
| 1724 | { |
| 1725 | __s64 ret; |
| 1726 | struct uffdio_copy uffdio_copy; |
| 1727 | struct uffdio_copy __user *user_uffdio_copy; |
| 1728 | struct userfaultfd_wake_range range; |
| 1729 | |
| 1730 | user_uffdio_copy = (struct uffdio_copy __user *) arg; |
| 1731 | |
| 1732 | ret = -EAGAIN; |
| 1733 | if (READ_ONCE(ctx->mmap_changing)) |
| 1734 | goto out; |
| 1735 | |
| 1736 | ret = -EFAULT; |
| 1737 | if (copy_from_user(&uffdio_copy, user_uffdio_copy, |
| 1738 | /* don't copy "copy" last field */ |
| 1739 | sizeof(uffdio_copy)-sizeof(__s64))) |
| 1740 | goto out; |
| 1741 | |
| 1742 | ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); |
| 1743 | if (ret) |
| 1744 | goto out; |
| 1745 | /* |
| 1746 | * double check for wraparound just in case. copy_from_user() |
| 1747 | * will later check uffdio_copy.src + uffdio_copy.len to fit |
| 1748 | * in the userland range. |
| 1749 | */ |
| 1750 | ret = -EINVAL; |
| 1751 | if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) |
| 1752 | goto out; |
| 1753 | if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) |
| 1754 | goto out; |
| 1755 | if (mmget_not_zero(ctx->mm)) { |
| 1756 | ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, |
| 1757 | uffdio_copy.len, &ctx->mmap_changing); |
| 1758 | mmput(ctx->mm); |
| 1759 | } else { |
| 1760 | return -ESRCH; |
| 1761 | } |
| 1762 | if (unlikely(put_user(ret, &user_uffdio_copy->copy))) |
| 1763 | return -EFAULT; |
| 1764 | if (ret < 0) |
| 1765 | goto out; |
| 1766 | BUG_ON(!ret); |
| 1767 | /* len == 0 would wake all */ |
| 1768 | range.len = ret; |
| 1769 | if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { |
| 1770 | range.start = uffdio_copy.dst; |
| 1771 | wake_userfault(ctx, &range); |
| 1772 | } |
| 1773 | ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; |
| 1774 | out: |
| 1775 | return ret; |
| 1776 | } |
| 1777 | |
| 1778 | static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, |
| 1779 | unsigned long arg) |
| 1780 | { |
| 1781 | __s64 ret; |
| 1782 | struct uffdio_zeropage uffdio_zeropage; |
| 1783 | struct uffdio_zeropage __user *user_uffdio_zeropage; |
| 1784 | struct userfaultfd_wake_range range; |
| 1785 | |
| 1786 | user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; |
| 1787 | |
| 1788 | ret = -EAGAIN; |
| 1789 | if (READ_ONCE(ctx->mmap_changing)) |
| 1790 | goto out; |
| 1791 | |
| 1792 | ret = -EFAULT; |
| 1793 | if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, |
| 1794 | /* don't copy "zeropage" last field */ |
| 1795 | sizeof(uffdio_zeropage)-sizeof(__s64))) |
| 1796 | goto out; |
| 1797 | |
| 1798 | ret = validate_range(ctx->mm, uffdio_zeropage.range.start, |
| 1799 | uffdio_zeropage.range.len); |
| 1800 | if (ret) |
| 1801 | goto out; |
| 1802 | ret = -EINVAL; |
| 1803 | if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) |
| 1804 | goto out; |
| 1805 | |
| 1806 | if (mmget_not_zero(ctx->mm)) { |
| 1807 | ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, |
| 1808 | uffdio_zeropage.range.len, |
| 1809 | &ctx->mmap_changing); |
| 1810 | mmput(ctx->mm); |
| 1811 | } else { |
| 1812 | return -ESRCH; |
| 1813 | } |
| 1814 | if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) |
| 1815 | return -EFAULT; |
| 1816 | if (ret < 0) |
| 1817 | goto out; |
| 1818 | /* len == 0 would wake all */ |
| 1819 | BUG_ON(!ret); |
| 1820 | range.len = ret; |
| 1821 | if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { |
| 1822 | range.start = uffdio_zeropage.range.start; |
| 1823 | wake_userfault(ctx, &range); |
| 1824 | } |
| 1825 | ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; |
| 1826 | out: |
| 1827 | return ret; |
| 1828 | } |
| 1829 | |
| 1830 | static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg) |
| 1831 | { |
| 1832 | __s64 ret; |
| 1833 | struct uffdio_continue uffdio_continue; |
| 1834 | struct uffdio_continue __user *user_uffdio_continue; |
| 1835 | struct userfaultfd_wake_range range; |
| 1836 | |
| 1837 | user_uffdio_continue = (struct uffdio_continue __user *)arg; |
| 1838 | |
| 1839 | ret = -EAGAIN; |
| 1840 | if (READ_ONCE(ctx->mmap_changing)) |
| 1841 | goto out; |
| 1842 | |
| 1843 | ret = -EFAULT; |
| 1844 | if (copy_from_user(&uffdio_continue, user_uffdio_continue, |
| 1845 | /* don't copy the output fields */ |
| 1846 | sizeof(uffdio_continue) - (sizeof(__s64)))) |
| 1847 | goto out; |
| 1848 | |
| 1849 | ret = validate_range(ctx->mm, uffdio_continue.range.start, |
| 1850 | uffdio_continue.range.len); |
| 1851 | if (ret) |
| 1852 | goto out; |
| 1853 | |
| 1854 | ret = -EINVAL; |
| 1855 | /* double check for wraparound just in case. */ |
| 1856 | if (uffdio_continue.range.start + uffdio_continue.range.len <= |
| 1857 | uffdio_continue.range.start) { |
| 1858 | goto out; |
| 1859 | } |
| 1860 | if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE) |
| 1861 | goto out; |
| 1862 | |
| 1863 | if (mmget_not_zero(ctx->mm)) { |
| 1864 | ret = mcopy_continue(ctx->mm, uffdio_continue.range.start, |
| 1865 | uffdio_continue.range.len, |
| 1866 | &ctx->mmap_changing); |
| 1867 | mmput(ctx->mm); |
| 1868 | } else { |
| 1869 | return -ESRCH; |
| 1870 | } |
| 1871 | |
| 1872 | if (unlikely(put_user(ret, &user_uffdio_continue->mapped))) |
| 1873 | return -EFAULT; |
| 1874 | if (ret < 0) |
| 1875 | goto out; |
| 1876 | |
| 1877 | /* len == 0 would wake all */ |
| 1878 | BUG_ON(!ret); |
| 1879 | range.len = ret; |
| 1880 | if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) { |
| 1881 | range.start = uffdio_continue.range.start; |
| 1882 | wake_userfault(ctx, &range); |
| 1883 | } |
| 1884 | ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN; |
| 1885 | |
| 1886 | out: |
| 1887 | return ret; |
| 1888 | } |
| 1889 | |
| 1890 | static inline unsigned int uffd_ctx_features(__u64 user_features) |
| 1891 | { |
| 1892 | /* |
| 1893 | * For the current set of features the bits just coincide. Set |
| 1894 | * UFFD_FEATURE_INITIALIZED to mark the features as enabled. |
| 1895 | */ |
| 1896 | return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED; |
| 1897 | } |
| 1898 | |
| 1899 | /* |
| 1900 | * userland asks for a certain API version and we return which bits |
| 1901 | * and ioctl commands are implemented in this kernel for such API |
| 1902 | * version or -EINVAL if unknown. |
| 1903 | */ |
| 1904 | static int userfaultfd_api(struct userfaultfd_ctx *ctx, |
| 1905 | unsigned long arg) |
| 1906 | { |
| 1907 | struct uffdio_api uffdio_api; |
| 1908 | void __user *buf = (void __user *)arg; |
| 1909 | unsigned int ctx_features; |
| 1910 | int ret; |
| 1911 | __u64 features; |
| 1912 | |
| 1913 | ret = -EFAULT; |
| 1914 | if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) |
| 1915 | goto out; |
| 1916 | features = uffdio_api.features; |
| 1917 | ret = -EINVAL; |
| 1918 | if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) |
| 1919 | goto err_out; |
| 1920 | ret = -EPERM; |
| 1921 | if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) |
| 1922 | goto err_out; |
| 1923 | /* report all available features and ioctls to userland */ |
| 1924 | uffdio_api.features = UFFD_API_FEATURES; |
| 1925 | #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR |
| 1926 | uffdio_api.features &= |
| 1927 | ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM); |
| 1928 | #endif |
| 1929 | uffdio_api.ioctls = UFFD_API_IOCTLS; |
| 1930 | ret = -EFAULT; |
| 1931 | if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) |
| 1932 | goto out; |
| 1933 | |
| 1934 | /* only enable the requested features for this uffd context */ |
| 1935 | ctx_features = uffd_ctx_features(features); |
| 1936 | ret = -EINVAL; |
| 1937 | if (cmpxchg(&ctx->features, 0, ctx_features) != 0) |
| 1938 | goto err_out; |
| 1939 | |
| 1940 | ret = 0; |
| 1941 | out: |
| 1942 | return ret; |
| 1943 | err_out: |
| 1944 | memset(&uffdio_api, 0, sizeof(uffdio_api)); |
| 1945 | if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) |
| 1946 | ret = -EFAULT; |
| 1947 | goto out; |
| 1948 | } |
| 1949 | |
| 1950 | static long userfaultfd_ioctl(struct file *file, unsigned cmd, |
| 1951 | unsigned long arg) |
| 1952 | { |
| 1953 | int ret = -EINVAL; |
| 1954 | struct userfaultfd_ctx *ctx = file->private_data; |
| 1955 | |
| 1956 | if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx)) |
| 1957 | return -EINVAL; |
| 1958 | |
| 1959 | switch(cmd) { |
| 1960 | case UFFDIO_API: |
| 1961 | ret = userfaultfd_api(ctx, arg); |
| 1962 | break; |
| 1963 | case UFFDIO_REGISTER: |
| 1964 | ret = userfaultfd_register(ctx, arg); |
| 1965 | break; |
| 1966 | case UFFDIO_UNREGISTER: |
| 1967 | ret = userfaultfd_unregister(ctx, arg); |
| 1968 | break; |
| 1969 | case UFFDIO_WAKE: |
| 1970 | ret = userfaultfd_wake(ctx, arg); |
| 1971 | break; |
| 1972 | case UFFDIO_COPY: |
| 1973 | ret = userfaultfd_copy(ctx, arg); |
| 1974 | break; |
| 1975 | case UFFDIO_ZEROPAGE: |
| 1976 | ret = userfaultfd_zeropage(ctx, arg); |
| 1977 | break; |
| 1978 | case UFFDIO_CONTINUE: |
| 1979 | ret = userfaultfd_continue(ctx, arg); |
| 1980 | break; |
| 1981 | } |
| 1982 | return ret; |
| 1983 | } |
| 1984 | |
| 1985 | #ifdef CONFIG_PROC_FS |
| 1986 | static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) |
| 1987 | { |
| 1988 | struct userfaultfd_ctx *ctx = f->private_data; |
| 1989 | wait_queue_entry_t *wq; |
| 1990 | unsigned long pending = 0, total = 0; |
| 1991 | |
| 1992 | spin_lock_irq(&ctx->fault_pending_wqh.lock); |
| 1993 | list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { |
| 1994 | pending++; |
| 1995 | total++; |
| 1996 | } |
| 1997 | list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { |
| 1998 | total++; |
| 1999 | } |
| 2000 | spin_unlock_irq(&ctx->fault_pending_wqh.lock); |
| 2001 | |
| 2002 | /* |
| 2003 | * If more protocols will be added, there will be all shown |
| 2004 | * separated by a space. Like this: |
| 2005 | * protocols: aa:... bb:... |
| 2006 | */ |
| 2007 | seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", |
| 2008 | pending, total, UFFD_API, ctx->features, |
| 2009 | UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); |
| 2010 | } |
| 2011 | #endif |
| 2012 | |
| 2013 | static const struct file_operations userfaultfd_fops = { |
| 2014 | #ifdef CONFIG_PROC_FS |
| 2015 | .show_fdinfo = userfaultfd_show_fdinfo, |
| 2016 | #endif |
| 2017 | .release = userfaultfd_release, |
| 2018 | .poll = userfaultfd_poll, |
| 2019 | .read = userfaultfd_read, |
| 2020 | .unlocked_ioctl = userfaultfd_ioctl, |
| 2021 | .compat_ioctl = userfaultfd_ioctl, |
| 2022 | .llseek = noop_llseek, |
| 2023 | }; |
| 2024 | |
| 2025 | static void init_once_userfaultfd_ctx(void *mem) |
| 2026 | { |
| 2027 | struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; |
| 2028 | |
| 2029 | init_waitqueue_head(&ctx->fault_pending_wqh); |
| 2030 | init_waitqueue_head(&ctx->fault_wqh); |
| 2031 | init_waitqueue_head(&ctx->event_wqh); |
| 2032 | init_waitqueue_head(&ctx->fd_wqh); |
| 2033 | seqcount_init(&ctx->refile_seq); |
| 2034 | } |
| 2035 | |
| 2036 | SYSCALL_DEFINE1(userfaultfd, int, flags) |
| 2037 | { |
| 2038 | struct userfaultfd_ctx *ctx; |
| 2039 | int fd; |
| 2040 | |
| 2041 | if (!sysctl_unprivileged_userfaultfd && |
| 2042 | (flags & UFFD_USER_MODE_ONLY) == 0 && |
| 2043 | !capable(CAP_SYS_PTRACE)) { |
| 2044 | printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd " |
| 2045 | "sysctl knob to 1 if kernel faults must be handled " |
| 2046 | "without obtaining CAP_SYS_PTRACE capability\n"); |
| 2047 | return -EPERM; |
| 2048 | } |
| 2049 | |
| 2050 | BUG_ON(!current->mm); |
| 2051 | |
| 2052 | /* Check the UFFD_* constants for consistency. */ |
| 2053 | BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS); |
| 2054 | BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); |
| 2055 | BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); |
| 2056 | |
| 2057 | if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY)) |
| 2058 | return -EINVAL; |
| 2059 | |
| 2060 | ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); |
| 2061 | if (!ctx) |
| 2062 | return -ENOMEM; |
| 2063 | |
| 2064 | refcount_set(&ctx->refcount, 1); |
| 2065 | ctx->flags = flags; |
| 2066 | ctx->features = 0; |
| 2067 | ctx->released = false; |
| 2068 | ctx->mmap_changing = false; |
| 2069 | ctx->mm = current->mm; |
| 2070 | /* prevent the mm struct to be freed */ |
| 2071 | mmgrab(ctx->mm); |
| 2072 | |
| 2073 | fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx, |
| 2074 | O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL); |
| 2075 | if (fd < 0) { |
| 2076 | mmdrop(ctx->mm); |
| 2077 | kmem_cache_free(userfaultfd_ctx_cachep, ctx); |
| 2078 | } |
| 2079 | return fd; |
| 2080 | } |
| 2081 | |
| 2082 | static int __init userfaultfd_init(void) |
| 2083 | { |
| 2084 | userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", |
| 2085 | sizeof(struct userfaultfd_ctx), |
| 2086 | 0, |
| 2087 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, |
| 2088 | init_once_userfaultfd_ctx); |
| 2089 | return 0; |
| 2090 | } |
| 2091 | __initcall(userfaultfd_init); |