b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | /* |
| 3 | * Copyright (C) 2016 Oracle. All Rights Reserved. |
| 4 | * Author: Darrick J. Wong <darrick.wong@oracle.com> |
| 5 | */ |
| 6 | #include "xfs.h" |
| 7 | #include "xfs_fs.h" |
| 8 | #include "xfs_shared.h" |
| 9 | #include "xfs_format.h" |
| 10 | #include "xfs_log_format.h" |
| 11 | #include "xfs_trans_resv.h" |
| 12 | #include "xfs_mount.h" |
| 13 | #include "xfs_defer.h" |
| 14 | #include "xfs_trans.h" |
| 15 | #include "xfs_buf_item.h" |
| 16 | #include "xfs_inode.h" |
| 17 | #include "xfs_inode_item.h" |
| 18 | #include "xfs_trace.h" |
| 19 | #include "xfs_icache.h" |
| 20 | #include "xfs_log.h" |
| 21 | |
| 22 | /* |
| 23 | * Deferred Operations in XFS |
| 24 | * |
| 25 | * Due to the way locking rules work in XFS, certain transactions (block |
| 26 | * mapping and unmapping, typically) have permanent reservations so that |
| 27 | * we can roll the transaction to adhere to AG locking order rules and |
| 28 | * to unlock buffers between metadata updates. Prior to rmap/reflink, |
| 29 | * the mapping code had a mechanism to perform these deferrals for |
| 30 | * extents that were going to be freed; this code makes that facility |
| 31 | * more generic. |
| 32 | * |
| 33 | * When adding the reverse mapping and reflink features, it became |
| 34 | * necessary to perform complex remapping multi-transactions to comply |
| 35 | * with AG locking order rules, and to be able to spread a single |
| 36 | * refcount update operation (an operation on an n-block extent can |
| 37 | * update as many as n records!) among multiple transactions. XFS can |
| 38 | * roll a transaction to facilitate this, but using this facility |
| 39 | * requires us to log "intent" items in case log recovery needs to |
| 40 | * redo the operation, and to log "done" items to indicate that redo |
| 41 | * is not necessary. |
| 42 | * |
| 43 | * Deferred work is tracked in xfs_defer_pending items. Each pending |
| 44 | * item tracks one type of deferred work. Incoming work items (which |
| 45 | * have not yet had an intent logged) are attached to a pending item |
| 46 | * on the dop_intake list, where they wait for the caller to finish |
| 47 | * the deferred operations. |
| 48 | * |
| 49 | * Finishing a set of deferred operations is an involved process. To |
| 50 | * start, we define "rolling a deferred-op transaction" as follows: |
| 51 | * |
| 52 | * > For each xfs_defer_pending item on the dop_intake list, |
| 53 | * - Sort the work items in AG order. XFS locking |
| 54 | * order rules require us to lock buffers in AG order. |
| 55 | * - Create a log intent item for that type. |
| 56 | * - Attach it to the pending item. |
| 57 | * - Move the pending item from the dop_intake list to the |
| 58 | * dop_pending list. |
| 59 | * > Roll the transaction. |
| 60 | * |
| 61 | * NOTE: To avoid exceeding the transaction reservation, we limit the |
| 62 | * number of items that we attach to a given xfs_defer_pending. |
| 63 | * |
| 64 | * The actual finishing process looks like this: |
| 65 | * |
| 66 | * > For each xfs_defer_pending in the dop_pending list, |
| 67 | * - Roll the deferred-op transaction as above. |
| 68 | * - Create a log done item for that type, and attach it to the |
| 69 | * log intent item. |
| 70 | * - For each work item attached to the log intent item, |
| 71 | * * Perform the described action. |
| 72 | * * Attach the work item to the log done item. |
| 73 | * * If the result of doing the work was -EAGAIN, ->finish work |
| 74 | * wants a new transaction. See the "Requesting a Fresh |
| 75 | * Transaction while Finishing Deferred Work" section below for |
| 76 | * details. |
| 77 | * |
| 78 | * The key here is that we must log an intent item for all pending |
| 79 | * work items every time we roll the transaction, and that we must log |
| 80 | * a done item as soon as the work is completed. With this mechanism |
| 81 | * we can perform complex remapping operations, chaining intent items |
| 82 | * as needed. |
| 83 | * |
| 84 | * Requesting a Fresh Transaction while Finishing Deferred Work |
| 85 | * |
| 86 | * If ->finish_item decides that it needs a fresh transaction to |
| 87 | * finish the work, it must ask its caller (xfs_defer_finish) for a |
| 88 | * continuation. The most likely cause of this circumstance are the |
| 89 | * refcount adjust functions deciding that they've logged enough items |
| 90 | * to be at risk of exceeding the transaction reservation. |
| 91 | * |
| 92 | * To get a fresh transaction, we want to log the existing log done |
| 93 | * item to prevent the log intent item from replaying, immediately log |
| 94 | * a new log intent item with the unfinished work items, roll the |
| 95 | * transaction, and re-call ->finish_item wherever it left off. The |
| 96 | * log done item and the new log intent item must be in the same |
| 97 | * transaction or atomicity cannot be guaranteed; defer_finish ensures |
| 98 | * that this happens. |
| 99 | * |
| 100 | * This requires some coordination between ->finish_item and |
| 101 | * defer_finish. Upon deciding to request a new transaction, |
| 102 | * ->finish_item should update the current work item to reflect the |
| 103 | * unfinished work. Next, it should reset the log done item's list |
| 104 | * count to the number of items finished, and return -EAGAIN. |
| 105 | * defer_finish sees the -EAGAIN, logs the new log intent item |
| 106 | * with the remaining work items, and leaves the xfs_defer_pending |
| 107 | * item at the head of the dop_work queue. Then it rolls the |
| 108 | * transaction and picks up processing where it left off. It is |
| 109 | * required that ->finish_item must be careful to leave enough |
| 110 | * transaction reservation to fit the new log intent item. |
| 111 | * |
| 112 | * This is an example of remapping the extent (E, E+B) into file X at |
| 113 | * offset A and dealing with the extent (C, C+B) already being mapped |
| 114 | * there: |
| 115 | * +-------------------------------------------------+ |
| 116 | * | Unmap file X startblock C offset A length B | t0 |
| 117 | * | Intent to reduce refcount for extent (C, B) | |
| 118 | * | Intent to remove rmap (X, C, A, B) | |
| 119 | * | Intent to free extent (D, 1) (bmbt block) | |
| 120 | * | Intent to map (X, A, B) at startblock E | |
| 121 | * +-------------------------------------------------+ |
| 122 | * | Map file X startblock E offset A length B | t1 |
| 123 | * | Done mapping (X, E, A, B) | |
| 124 | * | Intent to increase refcount for extent (E, B) | |
| 125 | * | Intent to add rmap (X, E, A, B) | |
| 126 | * +-------------------------------------------------+ |
| 127 | * | Reduce refcount for extent (C, B) | t2 |
| 128 | * | Done reducing refcount for extent (C, 9) | |
| 129 | * | Intent to reduce refcount for extent (C+9, B-9) | |
| 130 | * | (ran out of space after 9 refcount updates) | |
| 131 | * +-------------------------------------------------+ |
| 132 | * | Reduce refcount for extent (C+9, B+9) | t3 |
| 133 | * | Done reducing refcount for extent (C+9, B-9) | |
| 134 | * | Increase refcount for extent (E, B) | |
| 135 | * | Done increasing refcount for extent (E, B) | |
| 136 | * | Intent to free extent (C, B) | |
| 137 | * | Intent to free extent (F, 1) (refcountbt block) | |
| 138 | * | Intent to remove rmap (F, 1, REFC) | |
| 139 | * +-------------------------------------------------+ |
| 140 | * | Remove rmap (X, C, A, B) | t4 |
| 141 | * | Done removing rmap (X, C, A, B) | |
| 142 | * | Add rmap (X, E, A, B) | |
| 143 | * | Done adding rmap (X, E, A, B) | |
| 144 | * | Remove rmap (F, 1, REFC) | |
| 145 | * | Done removing rmap (F, 1, REFC) | |
| 146 | * +-------------------------------------------------+ |
| 147 | * | Free extent (C, B) | t5 |
| 148 | * | Done freeing extent (C, B) | |
| 149 | * | Free extent (D, 1) | |
| 150 | * | Done freeing extent (D, 1) | |
| 151 | * | Free extent (F, 1) | |
| 152 | * | Done freeing extent (F, 1) | |
| 153 | * +-------------------------------------------------+ |
| 154 | * |
| 155 | * If we should crash before t2 commits, log recovery replays |
| 156 | * the following intent items: |
| 157 | * |
| 158 | * - Intent to reduce refcount for extent (C, B) |
| 159 | * - Intent to remove rmap (X, C, A, B) |
| 160 | * - Intent to free extent (D, 1) (bmbt block) |
| 161 | * - Intent to increase refcount for extent (E, B) |
| 162 | * - Intent to add rmap (X, E, A, B) |
| 163 | * |
| 164 | * In the process of recovering, it should also generate and take care |
| 165 | * of these intent items: |
| 166 | * |
| 167 | * - Intent to free extent (C, B) |
| 168 | * - Intent to free extent (F, 1) (refcountbt block) |
| 169 | * - Intent to remove rmap (F, 1, REFC) |
| 170 | * |
| 171 | * Note that the continuation requested between t2 and t3 is likely to |
| 172 | * reoccur. |
| 173 | */ |
| 174 | |
| 175 | static const struct xfs_defer_op_type *defer_op_types[] = { |
| 176 | [XFS_DEFER_OPS_TYPE_BMAP] = &xfs_bmap_update_defer_type, |
| 177 | [XFS_DEFER_OPS_TYPE_REFCOUNT] = &xfs_refcount_update_defer_type, |
| 178 | [XFS_DEFER_OPS_TYPE_RMAP] = &xfs_rmap_update_defer_type, |
| 179 | [XFS_DEFER_OPS_TYPE_FREE] = &xfs_extent_free_defer_type, |
| 180 | [XFS_DEFER_OPS_TYPE_AGFL_FREE] = &xfs_agfl_free_defer_type, |
| 181 | }; |
| 182 | |
| 183 | static void |
| 184 | xfs_defer_create_intent( |
| 185 | struct xfs_trans *tp, |
| 186 | struct xfs_defer_pending *dfp, |
| 187 | bool sort) |
| 188 | { |
| 189 | const struct xfs_defer_op_type *ops = defer_op_types[dfp->dfp_type]; |
| 190 | |
| 191 | if (!dfp->dfp_intent) |
| 192 | dfp->dfp_intent = ops->create_intent(tp, &dfp->dfp_work, |
| 193 | dfp->dfp_count, sort); |
| 194 | } |
| 195 | |
| 196 | /* |
| 197 | * For each pending item in the intake list, log its intent item and the |
| 198 | * associated extents, then add the entire intake list to the end of |
| 199 | * the pending list. |
| 200 | */ |
| 201 | STATIC void |
| 202 | xfs_defer_create_intents( |
| 203 | struct xfs_trans *tp) |
| 204 | { |
| 205 | struct xfs_defer_pending *dfp; |
| 206 | |
| 207 | list_for_each_entry(dfp, &tp->t_dfops, dfp_list) { |
| 208 | trace_xfs_defer_create_intent(tp->t_mountp, dfp); |
| 209 | xfs_defer_create_intent(tp, dfp, true); |
| 210 | } |
| 211 | } |
| 212 | |
| 213 | /* Abort all the intents that were committed. */ |
| 214 | STATIC void |
| 215 | xfs_defer_trans_abort( |
| 216 | struct xfs_trans *tp, |
| 217 | struct list_head *dop_pending) |
| 218 | { |
| 219 | struct xfs_defer_pending *dfp; |
| 220 | const struct xfs_defer_op_type *ops; |
| 221 | |
| 222 | trace_xfs_defer_trans_abort(tp, _RET_IP_); |
| 223 | |
| 224 | /* Abort intent items that don't have a done item. */ |
| 225 | list_for_each_entry(dfp, dop_pending, dfp_list) { |
| 226 | ops = defer_op_types[dfp->dfp_type]; |
| 227 | trace_xfs_defer_pending_abort(tp->t_mountp, dfp); |
| 228 | if (dfp->dfp_intent && !dfp->dfp_done) { |
| 229 | ops->abort_intent(dfp->dfp_intent); |
| 230 | dfp->dfp_intent = NULL; |
| 231 | } |
| 232 | } |
| 233 | } |
| 234 | |
| 235 | /* Roll a transaction so we can do some deferred op processing. */ |
| 236 | STATIC int |
| 237 | xfs_defer_trans_roll( |
| 238 | struct xfs_trans **tpp) |
| 239 | { |
| 240 | struct xfs_trans *tp = *tpp; |
| 241 | struct xfs_buf_log_item *bli; |
| 242 | struct xfs_inode_log_item *ili; |
| 243 | struct xfs_log_item *lip; |
| 244 | struct xfs_buf *bplist[XFS_DEFER_OPS_NR_BUFS]; |
| 245 | struct xfs_inode *iplist[XFS_DEFER_OPS_NR_INODES]; |
| 246 | unsigned int ordered = 0; /* bitmap */ |
| 247 | int bpcount = 0, ipcount = 0; |
| 248 | int i; |
| 249 | int error; |
| 250 | |
| 251 | BUILD_BUG_ON(NBBY * sizeof(ordered) < XFS_DEFER_OPS_NR_BUFS); |
| 252 | |
| 253 | list_for_each_entry(lip, &tp->t_items, li_trans) { |
| 254 | switch (lip->li_type) { |
| 255 | case XFS_LI_BUF: |
| 256 | bli = container_of(lip, struct xfs_buf_log_item, |
| 257 | bli_item); |
| 258 | if (bli->bli_flags & XFS_BLI_HOLD) { |
| 259 | if (bpcount >= XFS_DEFER_OPS_NR_BUFS) { |
| 260 | ASSERT(0); |
| 261 | return -EFSCORRUPTED; |
| 262 | } |
| 263 | if (bli->bli_flags & XFS_BLI_ORDERED) |
| 264 | ordered |= (1U << bpcount); |
| 265 | else |
| 266 | xfs_trans_dirty_buf(tp, bli->bli_buf); |
| 267 | bplist[bpcount++] = bli->bli_buf; |
| 268 | } |
| 269 | break; |
| 270 | case XFS_LI_INODE: |
| 271 | ili = container_of(lip, struct xfs_inode_log_item, |
| 272 | ili_item); |
| 273 | if (ili->ili_lock_flags == 0) { |
| 274 | if (ipcount >= XFS_DEFER_OPS_NR_INODES) { |
| 275 | ASSERT(0); |
| 276 | return -EFSCORRUPTED; |
| 277 | } |
| 278 | xfs_trans_log_inode(tp, ili->ili_inode, |
| 279 | XFS_ILOG_CORE); |
| 280 | iplist[ipcount++] = ili->ili_inode; |
| 281 | } |
| 282 | break; |
| 283 | default: |
| 284 | break; |
| 285 | } |
| 286 | } |
| 287 | |
| 288 | trace_xfs_defer_trans_roll(tp, _RET_IP_); |
| 289 | |
| 290 | /* |
| 291 | * Roll the transaction. Rolling always given a new transaction (even |
| 292 | * if committing the old one fails!) to hand back to the caller, so we |
| 293 | * join the held resources to the new transaction so that we always |
| 294 | * return with the held resources joined to @tpp, no matter what |
| 295 | * happened. |
| 296 | */ |
| 297 | error = xfs_trans_roll(tpp); |
| 298 | tp = *tpp; |
| 299 | |
| 300 | /* Rejoin the joined inodes. */ |
| 301 | for (i = 0; i < ipcount; i++) |
| 302 | xfs_trans_ijoin(tp, iplist[i], 0); |
| 303 | |
| 304 | /* Rejoin the buffers and dirty them so the log moves forward. */ |
| 305 | for (i = 0; i < bpcount; i++) { |
| 306 | xfs_trans_bjoin(tp, bplist[i]); |
| 307 | if (ordered & (1U << i)) |
| 308 | xfs_trans_ordered_buf(tp, bplist[i]); |
| 309 | xfs_trans_bhold(tp, bplist[i]); |
| 310 | } |
| 311 | |
| 312 | if (error) |
| 313 | trace_xfs_defer_trans_roll_error(tp, error); |
| 314 | return error; |
| 315 | } |
| 316 | |
| 317 | /* |
| 318 | * Reset an already used dfops after finish. |
| 319 | */ |
| 320 | static void |
| 321 | xfs_defer_reset( |
| 322 | struct xfs_trans *tp) |
| 323 | { |
| 324 | ASSERT(list_empty(&tp->t_dfops)); |
| 325 | |
| 326 | /* |
| 327 | * Low mode state transfers across transaction rolls to mirror dfops |
| 328 | * lifetime. Clear it now that dfops is reset. |
| 329 | */ |
| 330 | tp->t_flags &= ~XFS_TRANS_LOWMODE; |
| 331 | } |
| 332 | |
| 333 | /* |
| 334 | * Free up any items left in the list. |
| 335 | */ |
| 336 | static void |
| 337 | xfs_defer_cancel_list( |
| 338 | struct xfs_mount *mp, |
| 339 | struct list_head *dop_list) |
| 340 | { |
| 341 | struct xfs_defer_pending *dfp; |
| 342 | struct xfs_defer_pending *pli; |
| 343 | struct list_head *pwi; |
| 344 | struct list_head *n; |
| 345 | const struct xfs_defer_op_type *ops; |
| 346 | |
| 347 | /* |
| 348 | * Free the pending items. Caller should already have arranged |
| 349 | * for the intent items to be released. |
| 350 | */ |
| 351 | list_for_each_entry_safe(dfp, pli, dop_list, dfp_list) { |
| 352 | ops = defer_op_types[dfp->dfp_type]; |
| 353 | trace_xfs_defer_cancel_list(mp, dfp); |
| 354 | list_del(&dfp->dfp_list); |
| 355 | list_for_each_safe(pwi, n, &dfp->dfp_work) { |
| 356 | list_del(pwi); |
| 357 | dfp->dfp_count--; |
| 358 | ops->cancel_item(pwi); |
| 359 | } |
| 360 | ASSERT(dfp->dfp_count == 0); |
| 361 | kmem_free(dfp); |
| 362 | } |
| 363 | } |
| 364 | |
| 365 | /* |
| 366 | * Prevent a log intent item from pinning the tail of the log by logging a |
| 367 | * done item to release the intent item; and then log a new intent item. |
| 368 | * The caller should provide a fresh transaction and roll it after we're done. |
| 369 | */ |
| 370 | static int |
| 371 | xfs_defer_relog( |
| 372 | struct xfs_trans **tpp, |
| 373 | struct list_head *dfops) |
| 374 | { |
| 375 | struct xlog *log = (*tpp)->t_mountp->m_log; |
| 376 | struct xfs_defer_pending *dfp; |
| 377 | xfs_lsn_t threshold_lsn = NULLCOMMITLSN; |
| 378 | |
| 379 | |
| 380 | ASSERT((*tpp)->t_flags & XFS_TRANS_PERM_LOG_RES); |
| 381 | |
| 382 | list_for_each_entry(dfp, dfops, dfp_list) { |
| 383 | /* |
| 384 | * If the log intent item for this deferred op is not a part of |
| 385 | * the current log checkpoint, relog the intent item to keep |
| 386 | * the log tail moving forward. We're ok with this being racy |
| 387 | * because an incorrect decision means we'll be a little slower |
| 388 | * at pushing the tail. |
| 389 | */ |
| 390 | if (dfp->dfp_intent == NULL || |
| 391 | xfs_log_item_in_current_chkpt(dfp->dfp_intent)) |
| 392 | continue; |
| 393 | |
| 394 | /* |
| 395 | * Figure out where we need the tail to be in order to maintain |
| 396 | * the minimum required free space in the log. Only sample |
| 397 | * the log threshold once per call. |
| 398 | */ |
| 399 | if (threshold_lsn == NULLCOMMITLSN) { |
| 400 | threshold_lsn = xlog_grant_push_threshold(log, 0); |
| 401 | if (threshold_lsn == NULLCOMMITLSN) |
| 402 | break; |
| 403 | } |
| 404 | if (XFS_LSN_CMP(dfp->dfp_intent->li_lsn, threshold_lsn) >= 0) |
| 405 | continue; |
| 406 | |
| 407 | trace_xfs_defer_relog_intent((*tpp)->t_mountp, dfp); |
| 408 | XFS_STATS_INC((*tpp)->t_mountp, defer_relog); |
| 409 | dfp->dfp_intent = xfs_trans_item_relog(dfp->dfp_intent, *tpp); |
| 410 | } |
| 411 | |
| 412 | if ((*tpp)->t_flags & XFS_TRANS_DIRTY) |
| 413 | return xfs_defer_trans_roll(tpp); |
| 414 | return 0; |
| 415 | } |
| 416 | |
| 417 | /* |
| 418 | * Log an intent-done item for the first pending intent, and finish the work |
| 419 | * items. |
| 420 | */ |
| 421 | static int |
| 422 | xfs_defer_finish_one( |
| 423 | struct xfs_trans *tp, |
| 424 | struct xfs_defer_pending *dfp) |
| 425 | { |
| 426 | const struct xfs_defer_op_type *ops = defer_op_types[dfp->dfp_type]; |
| 427 | void *state = NULL; |
| 428 | struct list_head *li, *n; |
| 429 | int error; |
| 430 | |
| 431 | trace_xfs_defer_pending_finish(tp->t_mountp, dfp); |
| 432 | |
| 433 | dfp->dfp_done = ops->create_done(tp, dfp->dfp_intent, dfp->dfp_count); |
| 434 | list_for_each_safe(li, n, &dfp->dfp_work) { |
| 435 | list_del(li); |
| 436 | dfp->dfp_count--; |
| 437 | error = ops->finish_item(tp, li, dfp->dfp_done, &state); |
| 438 | if (error == -EAGAIN) { |
| 439 | /* |
| 440 | * Caller wants a fresh transaction; put the work item |
| 441 | * back on the list and log a new log intent item to |
| 442 | * replace the old one. See "Requesting a Fresh |
| 443 | * Transaction while Finishing Deferred Work" above. |
| 444 | */ |
| 445 | list_add(li, &dfp->dfp_work); |
| 446 | dfp->dfp_count++; |
| 447 | dfp->dfp_done = NULL; |
| 448 | dfp->dfp_intent = NULL; |
| 449 | xfs_defer_create_intent(tp, dfp, false); |
| 450 | } |
| 451 | |
| 452 | if (error) |
| 453 | goto out; |
| 454 | } |
| 455 | |
| 456 | /* Done with the dfp, free it. */ |
| 457 | list_del(&dfp->dfp_list); |
| 458 | kmem_free(dfp); |
| 459 | out: |
| 460 | if (ops->finish_cleanup) |
| 461 | ops->finish_cleanup(tp, state, error); |
| 462 | return error; |
| 463 | } |
| 464 | |
| 465 | /* |
| 466 | * Finish all the pending work. This involves logging intent items for |
| 467 | * any work items that wandered in since the last transaction roll (if |
| 468 | * one has even happened), rolling the transaction, and finishing the |
| 469 | * work items in the first item on the logged-and-pending list. |
| 470 | * |
| 471 | * If an inode is provided, relog it to the new transaction. |
| 472 | */ |
| 473 | int |
| 474 | xfs_defer_finish_noroll( |
| 475 | struct xfs_trans **tp) |
| 476 | { |
| 477 | struct xfs_defer_pending *dfp; |
| 478 | int error = 0; |
| 479 | LIST_HEAD(dop_pending); |
| 480 | |
| 481 | ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); |
| 482 | |
| 483 | trace_xfs_defer_finish(*tp, _RET_IP_); |
| 484 | |
| 485 | /* Until we run out of pending work to finish... */ |
| 486 | while (!list_empty(&dop_pending) || !list_empty(&(*tp)->t_dfops)) { |
| 487 | /* |
| 488 | * Deferred items that are created in the process of finishing |
| 489 | * other deferred work items should be queued at the head of |
| 490 | * the pending list, which puts them ahead of the deferred work |
| 491 | * that was created by the caller. This keeps the number of |
| 492 | * pending work items to a minimum, which decreases the amount |
| 493 | * of time that any one intent item can stick around in memory, |
| 494 | * pinning the log tail. |
| 495 | */ |
| 496 | xfs_defer_create_intents(*tp); |
| 497 | list_splice_init(&(*tp)->t_dfops, &dop_pending); |
| 498 | |
| 499 | error = xfs_defer_trans_roll(tp); |
| 500 | if (error) |
| 501 | goto out_shutdown; |
| 502 | |
| 503 | /* Possibly relog intent items to keep the log moving. */ |
| 504 | error = xfs_defer_relog(tp, &dop_pending); |
| 505 | if (error) |
| 506 | goto out_shutdown; |
| 507 | |
| 508 | dfp = list_first_entry(&dop_pending, struct xfs_defer_pending, |
| 509 | dfp_list); |
| 510 | error = xfs_defer_finish_one(*tp, dfp); |
| 511 | if (error && error != -EAGAIN) |
| 512 | goto out_shutdown; |
| 513 | } |
| 514 | |
| 515 | trace_xfs_defer_finish_done(*tp, _RET_IP_); |
| 516 | return 0; |
| 517 | |
| 518 | out_shutdown: |
| 519 | xfs_defer_trans_abort(*tp, &dop_pending); |
| 520 | xfs_force_shutdown((*tp)->t_mountp, SHUTDOWN_CORRUPT_INCORE); |
| 521 | trace_xfs_defer_finish_error(*tp, error); |
| 522 | xfs_defer_cancel_list((*tp)->t_mountp, &dop_pending); |
| 523 | xfs_defer_cancel(*tp); |
| 524 | return error; |
| 525 | } |
| 526 | |
| 527 | int |
| 528 | xfs_defer_finish( |
| 529 | struct xfs_trans **tp) |
| 530 | { |
| 531 | int error; |
| 532 | |
| 533 | /* |
| 534 | * Finish and roll the transaction once more to avoid returning to the |
| 535 | * caller with a dirty transaction. |
| 536 | */ |
| 537 | error = xfs_defer_finish_noroll(tp); |
| 538 | if (error) |
| 539 | return error; |
| 540 | if ((*tp)->t_flags & XFS_TRANS_DIRTY) { |
| 541 | error = xfs_defer_trans_roll(tp); |
| 542 | if (error) { |
| 543 | xfs_force_shutdown((*tp)->t_mountp, |
| 544 | SHUTDOWN_CORRUPT_INCORE); |
| 545 | return error; |
| 546 | } |
| 547 | } |
| 548 | xfs_defer_reset(*tp); |
| 549 | return 0; |
| 550 | } |
| 551 | |
| 552 | void |
| 553 | xfs_defer_cancel( |
| 554 | struct xfs_trans *tp) |
| 555 | { |
| 556 | struct xfs_mount *mp = tp->t_mountp; |
| 557 | |
| 558 | trace_xfs_defer_cancel(tp, _RET_IP_); |
| 559 | xfs_defer_cancel_list(mp, &tp->t_dfops); |
| 560 | } |
| 561 | |
| 562 | /* Add an item for later deferred processing. */ |
| 563 | void |
| 564 | xfs_defer_add( |
| 565 | struct xfs_trans *tp, |
| 566 | enum xfs_defer_ops_type type, |
| 567 | struct list_head *li) |
| 568 | { |
| 569 | struct xfs_defer_pending *dfp = NULL; |
| 570 | const struct xfs_defer_op_type *ops; |
| 571 | |
| 572 | ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); |
| 573 | BUILD_BUG_ON(ARRAY_SIZE(defer_op_types) != XFS_DEFER_OPS_TYPE_MAX); |
| 574 | |
| 575 | /* |
| 576 | * Add the item to a pending item at the end of the intake list. |
| 577 | * If the last pending item has the same type, reuse it. Else, |
| 578 | * create a new pending item at the end of the intake list. |
| 579 | */ |
| 580 | if (!list_empty(&tp->t_dfops)) { |
| 581 | dfp = list_last_entry(&tp->t_dfops, |
| 582 | struct xfs_defer_pending, dfp_list); |
| 583 | ops = defer_op_types[dfp->dfp_type]; |
| 584 | if (dfp->dfp_type != type || |
| 585 | (ops->max_items && dfp->dfp_count >= ops->max_items)) |
| 586 | dfp = NULL; |
| 587 | } |
| 588 | if (!dfp) { |
| 589 | dfp = kmem_alloc(sizeof(struct xfs_defer_pending), |
| 590 | KM_NOFS); |
| 591 | dfp->dfp_type = type; |
| 592 | dfp->dfp_intent = NULL; |
| 593 | dfp->dfp_done = NULL; |
| 594 | dfp->dfp_count = 0; |
| 595 | INIT_LIST_HEAD(&dfp->dfp_work); |
| 596 | list_add_tail(&dfp->dfp_list, &tp->t_dfops); |
| 597 | } |
| 598 | |
| 599 | list_add_tail(li, &dfp->dfp_work); |
| 600 | dfp->dfp_count++; |
| 601 | } |
| 602 | |
| 603 | /* |
| 604 | * Move deferred ops from one transaction to another and reset the source to |
| 605 | * initial state. This is primarily used to carry state forward across |
| 606 | * transaction rolls with pending dfops. |
| 607 | */ |
| 608 | void |
| 609 | xfs_defer_move( |
| 610 | struct xfs_trans *dtp, |
| 611 | struct xfs_trans *stp) |
| 612 | { |
| 613 | list_splice_init(&stp->t_dfops, &dtp->t_dfops); |
| 614 | |
| 615 | /* |
| 616 | * Low free space mode was historically controlled by a dfops field. |
| 617 | * This meant that low mode state potentially carried across multiple |
| 618 | * transaction rolls. Transfer low mode on a dfops move to preserve |
| 619 | * that behavior. |
| 620 | */ |
| 621 | dtp->t_flags |= (stp->t_flags & XFS_TRANS_LOWMODE); |
| 622 | |
| 623 | xfs_defer_reset(stp); |
| 624 | } |
| 625 | |
| 626 | /* |
| 627 | * Prepare a chain of fresh deferred ops work items to be completed later. Log |
| 628 | * recovery requires the ability to put off until later the actual finishing |
| 629 | * work so that it can process unfinished items recovered from the log in |
| 630 | * correct order. |
| 631 | * |
| 632 | * Create and log intent items for all the work that we're capturing so that we |
| 633 | * can be assured that the items will get replayed if the system goes down |
| 634 | * before log recovery gets a chance to finish the work it put off. The entire |
| 635 | * deferred ops state is transferred to the capture structure and the |
| 636 | * transaction is then ready for the caller to commit it. If there are no |
| 637 | * intent items to capture, this function returns NULL. |
| 638 | * |
| 639 | * If capture_ip is not NULL, the capture structure will obtain an extra |
| 640 | * reference to the inode. |
| 641 | */ |
| 642 | static struct xfs_defer_capture * |
| 643 | xfs_defer_ops_capture( |
| 644 | struct xfs_trans *tp, |
| 645 | struct xfs_inode *capture_ip) |
| 646 | { |
| 647 | struct xfs_defer_capture *dfc; |
| 648 | |
| 649 | if (list_empty(&tp->t_dfops)) |
| 650 | return NULL; |
| 651 | |
| 652 | /* Create an object to capture the defer ops. */ |
| 653 | dfc = kmem_zalloc(sizeof(*dfc), KM_NOFS); |
| 654 | INIT_LIST_HEAD(&dfc->dfc_list); |
| 655 | INIT_LIST_HEAD(&dfc->dfc_dfops); |
| 656 | |
| 657 | xfs_defer_create_intents(tp); |
| 658 | |
| 659 | /* Move the dfops chain and transaction state to the capture struct. */ |
| 660 | list_splice_init(&tp->t_dfops, &dfc->dfc_dfops); |
| 661 | dfc->dfc_tpflags = tp->t_flags & XFS_TRANS_LOWMODE; |
| 662 | tp->t_flags &= ~XFS_TRANS_LOWMODE; |
| 663 | |
| 664 | /* Capture the remaining block reservations along with the dfops. */ |
| 665 | dfc->dfc_blkres = tp->t_blk_res - tp->t_blk_res_used; |
| 666 | dfc->dfc_rtxres = tp->t_rtx_res - tp->t_rtx_res_used; |
| 667 | |
| 668 | /* Preserve the log reservation size. */ |
| 669 | dfc->dfc_logres = tp->t_log_res; |
| 670 | |
| 671 | /* |
| 672 | * Grab an extra reference to this inode and attach it to the capture |
| 673 | * structure. |
| 674 | */ |
| 675 | if (capture_ip) { |
| 676 | ihold(VFS_I(capture_ip)); |
| 677 | dfc->dfc_capture_ip = capture_ip; |
| 678 | } |
| 679 | |
| 680 | return dfc; |
| 681 | } |
| 682 | |
| 683 | /* Release all resources that we used to capture deferred ops. */ |
| 684 | void |
| 685 | xfs_defer_ops_release( |
| 686 | struct xfs_mount *mp, |
| 687 | struct xfs_defer_capture *dfc) |
| 688 | { |
| 689 | xfs_defer_cancel_list(mp, &dfc->dfc_dfops); |
| 690 | if (dfc->dfc_capture_ip) |
| 691 | xfs_irele(dfc->dfc_capture_ip); |
| 692 | kmem_free(dfc); |
| 693 | } |
| 694 | |
| 695 | /* |
| 696 | * Capture any deferred ops and commit the transaction. This is the last step |
| 697 | * needed to finish a log intent item that we recovered from the log. If any |
| 698 | * of the deferred ops operate on an inode, the caller must pass in that inode |
| 699 | * so that the reference can be transferred to the capture structure. The |
| 700 | * caller must hold ILOCK_EXCL on the inode, and must unlock it before calling |
| 701 | * xfs_defer_ops_continue. |
| 702 | */ |
| 703 | int |
| 704 | xfs_defer_ops_capture_and_commit( |
| 705 | struct xfs_trans *tp, |
| 706 | struct xfs_inode *capture_ip, |
| 707 | struct list_head *capture_list) |
| 708 | { |
| 709 | struct xfs_mount *mp = tp->t_mountp; |
| 710 | struct xfs_defer_capture *dfc; |
| 711 | int error; |
| 712 | |
| 713 | ASSERT(!capture_ip || xfs_isilocked(capture_ip, XFS_ILOCK_EXCL)); |
| 714 | |
| 715 | /* If we don't capture anything, commit transaction and exit. */ |
| 716 | dfc = xfs_defer_ops_capture(tp, capture_ip); |
| 717 | if (!dfc) |
| 718 | return xfs_trans_commit(tp); |
| 719 | |
| 720 | /* Commit the transaction and add the capture structure to the list. */ |
| 721 | error = xfs_trans_commit(tp); |
| 722 | if (error) { |
| 723 | xfs_defer_ops_release(mp, dfc); |
| 724 | return error; |
| 725 | } |
| 726 | |
| 727 | list_add_tail(&dfc->dfc_list, capture_list); |
| 728 | return 0; |
| 729 | } |
| 730 | |
| 731 | /* |
| 732 | * Attach a chain of captured deferred ops to a new transaction and free the |
| 733 | * capture structure. If an inode was captured, it will be passed back to the |
| 734 | * caller with ILOCK_EXCL held and joined to the transaction with lockflags==0. |
| 735 | * The caller now owns the inode reference. |
| 736 | */ |
| 737 | void |
| 738 | xfs_defer_ops_continue( |
| 739 | struct xfs_defer_capture *dfc, |
| 740 | struct xfs_trans *tp, |
| 741 | struct xfs_inode **captured_ipp) |
| 742 | { |
| 743 | ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); |
| 744 | ASSERT(!(tp->t_flags & XFS_TRANS_DIRTY)); |
| 745 | |
| 746 | /* Lock and join the captured inode to the new transaction. */ |
| 747 | if (dfc->dfc_capture_ip) { |
| 748 | xfs_ilock(dfc->dfc_capture_ip, XFS_ILOCK_EXCL); |
| 749 | xfs_trans_ijoin(tp, dfc->dfc_capture_ip, 0); |
| 750 | } |
| 751 | *captured_ipp = dfc->dfc_capture_ip; |
| 752 | |
| 753 | /* Move captured dfops chain and state to the transaction. */ |
| 754 | list_splice_init(&dfc->dfc_dfops, &tp->t_dfops); |
| 755 | tp->t_flags |= dfc->dfc_tpflags; |
| 756 | |
| 757 | kmem_free(dfc); |
| 758 | } |