b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
| 4 | * All Rights Reserved. |
| 5 | */ |
| 6 | #include "xfs.h" |
| 7 | #include "xfs_fs.h" |
| 8 | #include "xfs_shared.h" |
| 9 | #include "xfs_format.h" |
| 10 | #include "xfs_log_format.h" |
| 11 | #include "xfs_trans_resv.h" |
| 12 | #include "xfs_mount.h" |
| 13 | #include "xfs_inode.h" |
| 14 | #include "xfs_trans.h" |
| 15 | #include "xfs_inode_item.h" |
| 16 | #include "xfs_bmap.h" |
| 17 | #include "xfs_bmap_util.h" |
| 18 | #include "xfs_dir2.h" |
| 19 | #include "xfs_dir2_priv.h" |
| 20 | #include "xfs_ioctl.h" |
| 21 | #include "xfs_trace.h" |
| 22 | #include "xfs_log.h" |
| 23 | #include "xfs_icache.h" |
| 24 | #include "xfs_pnfs.h" |
| 25 | #include "xfs_iomap.h" |
| 26 | #include "xfs_reflink.h" |
| 27 | |
| 28 | #include <linux/falloc.h> |
| 29 | #include <linux/backing-dev.h> |
| 30 | #include <linux/mman.h> |
| 31 | #include <linux/fadvise.h> |
| 32 | |
| 33 | static const struct vm_operations_struct xfs_file_vm_ops; |
| 34 | |
| 35 | int |
| 36 | xfs_update_prealloc_flags( |
| 37 | struct xfs_inode *ip, |
| 38 | enum xfs_prealloc_flags flags) |
| 39 | { |
| 40 | struct xfs_trans *tp; |
| 41 | int error; |
| 42 | |
| 43 | error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid, |
| 44 | 0, 0, 0, &tp); |
| 45 | if (error) |
| 46 | return error; |
| 47 | |
| 48 | xfs_ilock(ip, XFS_ILOCK_EXCL); |
| 49 | xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); |
| 50 | |
| 51 | if (!(flags & XFS_PREALLOC_INVISIBLE)) { |
| 52 | VFS_I(ip)->i_mode &= ~S_ISUID; |
| 53 | if (VFS_I(ip)->i_mode & S_IXGRP) |
| 54 | VFS_I(ip)->i_mode &= ~S_ISGID; |
| 55 | xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| 56 | } |
| 57 | |
| 58 | if (flags & XFS_PREALLOC_SET) |
| 59 | ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC; |
| 60 | if (flags & XFS_PREALLOC_CLEAR) |
| 61 | ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC; |
| 62 | |
| 63 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| 64 | if (flags & XFS_PREALLOC_SYNC) |
| 65 | xfs_trans_set_sync(tp); |
| 66 | return xfs_trans_commit(tp); |
| 67 | } |
| 68 | |
| 69 | /* |
| 70 | * Fsync operations on directories are much simpler than on regular files, |
| 71 | * as there is no file data to flush, and thus also no need for explicit |
| 72 | * cache flush operations, and there are no non-transaction metadata updates |
| 73 | * on directories either. |
| 74 | */ |
| 75 | STATIC int |
| 76 | xfs_dir_fsync( |
| 77 | struct file *file, |
| 78 | loff_t start, |
| 79 | loff_t end, |
| 80 | int datasync) |
| 81 | { |
| 82 | struct xfs_inode *ip = XFS_I(file->f_mapping->host); |
| 83 | |
| 84 | trace_xfs_dir_fsync(ip); |
| 85 | return xfs_log_force_inode(ip); |
| 86 | } |
| 87 | |
| 88 | STATIC int |
| 89 | xfs_file_fsync( |
| 90 | struct file *file, |
| 91 | loff_t start, |
| 92 | loff_t end, |
| 93 | int datasync) |
| 94 | { |
| 95 | struct inode *inode = file->f_mapping->host; |
| 96 | struct xfs_inode *ip = XFS_I(inode); |
| 97 | struct xfs_mount *mp = ip->i_mount; |
| 98 | int error = 0; |
| 99 | int log_flushed = 0; |
| 100 | xfs_lsn_t lsn = 0; |
| 101 | |
| 102 | trace_xfs_file_fsync(ip); |
| 103 | |
| 104 | error = file_write_and_wait_range(file, start, end); |
| 105 | if (error) |
| 106 | return error; |
| 107 | |
| 108 | if (XFS_FORCED_SHUTDOWN(mp)) |
| 109 | return -EIO; |
| 110 | |
| 111 | xfs_iflags_clear(ip, XFS_ITRUNCATED); |
| 112 | |
| 113 | /* |
| 114 | * If we have an RT and/or log subvolume we need to make sure to flush |
| 115 | * the write cache the device used for file data first. This is to |
| 116 | * ensure newly written file data make it to disk before logging the new |
| 117 | * inode size in case of an extending write. |
| 118 | */ |
| 119 | if (XFS_IS_REALTIME_INODE(ip)) |
| 120 | xfs_blkdev_issue_flush(mp->m_rtdev_targp); |
| 121 | else if (mp->m_logdev_targp != mp->m_ddev_targp) |
| 122 | xfs_blkdev_issue_flush(mp->m_ddev_targp); |
| 123 | |
| 124 | /* |
| 125 | * All metadata updates are logged, which means that we just have to |
| 126 | * flush the log up to the latest LSN that touched the inode. If we have |
| 127 | * concurrent fsync/fdatasync() calls, we need them to all block on the |
| 128 | * log force before we clear the ili_fsync_fields field. This ensures |
| 129 | * that we don't get a racing sync operation that does not wait for the |
| 130 | * metadata to hit the journal before returning. If we race with |
| 131 | * clearing the ili_fsync_fields, then all that will happen is the log |
| 132 | * force will do nothing as the lsn will already be on disk. We can't |
| 133 | * race with setting ili_fsync_fields because that is done under |
| 134 | * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared |
| 135 | * until after the ili_fsync_fields is cleared. |
| 136 | */ |
| 137 | xfs_ilock(ip, XFS_ILOCK_SHARED); |
| 138 | if (xfs_ipincount(ip)) { |
| 139 | if (!datasync || |
| 140 | (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) |
| 141 | lsn = ip->i_itemp->ili_last_lsn; |
| 142 | } |
| 143 | |
| 144 | if (lsn) { |
| 145 | error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); |
| 146 | ip->i_itemp->ili_fsync_fields = 0; |
| 147 | } |
| 148 | xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| 149 | |
| 150 | /* |
| 151 | * If we only have a single device, and the log force about was |
| 152 | * a no-op we might have to flush the data device cache here. |
| 153 | * This can only happen for fdatasync/O_DSYNC if we were overwriting |
| 154 | * an already allocated file and thus do not have any metadata to |
| 155 | * commit. |
| 156 | */ |
| 157 | if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && |
| 158 | mp->m_logdev_targp == mp->m_ddev_targp) |
| 159 | xfs_blkdev_issue_flush(mp->m_ddev_targp); |
| 160 | |
| 161 | return error; |
| 162 | } |
| 163 | |
| 164 | STATIC ssize_t |
| 165 | xfs_file_dio_aio_read( |
| 166 | struct kiocb *iocb, |
| 167 | struct iov_iter *to) |
| 168 | { |
| 169 | struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); |
| 170 | size_t count = iov_iter_count(to); |
| 171 | ssize_t ret; |
| 172 | |
| 173 | trace_xfs_file_direct_read(ip, count, iocb->ki_pos); |
| 174 | |
| 175 | if (!count) |
| 176 | return 0; /* skip atime */ |
| 177 | |
| 178 | file_accessed(iocb->ki_filp); |
| 179 | |
| 180 | if (iocb->ki_flags & IOCB_NOWAIT) { |
| 181 | if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) |
| 182 | return -EAGAIN; |
| 183 | } else { |
| 184 | xfs_ilock(ip, XFS_IOLOCK_SHARED); |
| 185 | } |
| 186 | ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL); |
| 187 | xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
| 188 | |
| 189 | return ret; |
| 190 | } |
| 191 | |
| 192 | static noinline ssize_t |
| 193 | xfs_file_dax_read( |
| 194 | struct kiocb *iocb, |
| 195 | struct iov_iter *to) |
| 196 | { |
| 197 | struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host); |
| 198 | size_t count = iov_iter_count(to); |
| 199 | ssize_t ret = 0; |
| 200 | |
| 201 | trace_xfs_file_dax_read(ip, count, iocb->ki_pos); |
| 202 | |
| 203 | if (!count) |
| 204 | return 0; /* skip atime */ |
| 205 | |
| 206 | if (iocb->ki_flags & IOCB_NOWAIT) { |
| 207 | if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) |
| 208 | return -EAGAIN; |
| 209 | } else { |
| 210 | xfs_ilock(ip, XFS_IOLOCK_SHARED); |
| 211 | } |
| 212 | |
| 213 | ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops); |
| 214 | xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
| 215 | |
| 216 | file_accessed(iocb->ki_filp); |
| 217 | return ret; |
| 218 | } |
| 219 | |
| 220 | STATIC ssize_t |
| 221 | xfs_file_buffered_aio_read( |
| 222 | struct kiocb *iocb, |
| 223 | struct iov_iter *to) |
| 224 | { |
| 225 | struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp)); |
| 226 | ssize_t ret; |
| 227 | |
| 228 | trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos); |
| 229 | |
| 230 | if (iocb->ki_flags & IOCB_NOWAIT) { |
| 231 | if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) |
| 232 | return -EAGAIN; |
| 233 | } else { |
| 234 | xfs_ilock(ip, XFS_IOLOCK_SHARED); |
| 235 | } |
| 236 | ret = generic_file_read_iter(iocb, to); |
| 237 | xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
| 238 | |
| 239 | return ret; |
| 240 | } |
| 241 | |
| 242 | STATIC ssize_t |
| 243 | xfs_file_read_iter( |
| 244 | struct kiocb *iocb, |
| 245 | struct iov_iter *to) |
| 246 | { |
| 247 | struct inode *inode = file_inode(iocb->ki_filp); |
| 248 | struct xfs_mount *mp = XFS_I(inode)->i_mount; |
| 249 | ssize_t ret = 0; |
| 250 | |
| 251 | XFS_STATS_INC(mp, xs_read_calls); |
| 252 | |
| 253 | if (XFS_FORCED_SHUTDOWN(mp)) |
| 254 | return -EIO; |
| 255 | |
| 256 | if (IS_DAX(inode)) |
| 257 | ret = xfs_file_dax_read(iocb, to); |
| 258 | else if (iocb->ki_flags & IOCB_DIRECT) |
| 259 | ret = xfs_file_dio_aio_read(iocb, to); |
| 260 | else |
| 261 | ret = xfs_file_buffered_aio_read(iocb, to); |
| 262 | |
| 263 | if (ret > 0) |
| 264 | XFS_STATS_ADD(mp, xs_read_bytes, ret); |
| 265 | return ret; |
| 266 | } |
| 267 | |
| 268 | /* |
| 269 | * Common pre-write limit and setup checks. |
| 270 | * |
| 271 | * Called with the iolocked held either shared and exclusive according to |
| 272 | * @iolock, and returns with it held. Might upgrade the iolock to exclusive |
| 273 | * if called for a direct write beyond i_size. |
| 274 | */ |
| 275 | STATIC ssize_t |
| 276 | xfs_file_aio_write_checks( |
| 277 | struct kiocb *iocb, |
| 278 | struct iov_iter *from, |
| 279 | int *iolock) |
| 280 | { |
| 281 | struct file *file = iocb->ki_filp; |
| 282 | struct inode *inode = file->f_mapping->host; |
| 283 | struct xfs_inode *ip = XFS_I(inode); |
| 284 | ssize_t error = 0; |
| 285 | size_t count = iov_iter_count(from); |
| 286 | bool drained_dio = false; |
| 287 | loff_t isize; |
| 288 | |
| 289 | restart: |
| 290 | error = generic_write_checks(iocb, from); |
| 291 | if (error <= 0) |
| 292 | return error; |
| 293 | |
| 294 | error = xfs_break_layouts(inode, iolock, BREAK_WRITE); |
| 295 | if (error) |
| 296 | return error; |
| 297 | |
| 298 | /* |
| 299 | * For changing security info in file_remove_privs() we need i_rwsem |
| 300 | * exclusively. |
| 301 | */ |
| 302 | if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { |
| 303 | xfs_iunlock(ip, *iolock); |
| 304 | *iolock = XFS_IOLOCK_EXCL; |
| 305 | xfs_ilock(ip, *iolock); |
| 306 | goto restart; |
| 307 | } |
| 308 | /* |
| 309 | * If the offset is beyond the size of the file, we need to zero any |
| 310 | * blocks that fall between the existing EOF and the start of this |
| 311 | * write. If zeroing is needed and we are currently holding the |
| 312 | * iolock shared, we need to update it to exclusive which implies |
| 313 | * having to redo all checks before. |
| 314 | * |
| 315 | * We need to serialise against EOF updates that occur in IO |
| 316 | * completions here. We want to make sure that nobody is changing the |
| 317 | * size while we do this check until we have placed an IO barrier (i.e. |
| 318 | * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. |
| 319 | * The spinlock effectively forms a memory barrier once we have the |
| 320 | * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value |
| 321 | * and hence be able to correctly determine if we need to run zeroing. |
| 322 | */ |
| 323 | spin_lock(&ip->i_flags_lock); |
| 324 | isize = i_size_read(inode); |
| 325 | if (iocb->ki_pos > isize) { |
| 326 | spin_unlock(&ip->i_flags_lock); |
| 327 | if (!drained_dio) { |
| 328 | if (*iolock == XFS_IOLOCK_SHARED) { |
| 329 | xfs_iunlock(ip, *iolock); |
| 330 | *iolock = XFS_IOLOCK_EXCL; |
| 331 | xfs_ilock(ip, *iolock); |
| 332 | iov_iter_reexpand(from, count); |
| 333 | } |
| 334 | /* |
| 335 | * We now have an IO submission barrier in place, but |
| 336 | * AIO can do EOF updates during IO completion and hence |
| 337 | * we now need to wait for all of them to drain. Non-AIO |
| 338 | * DIO will have drained before we are given the |
| 339 | * XFS_IOLOCK_EXCL, and so for most cases this wait is a |
| 340 | * no-op. |
| 341 | */ |
| 342 | inode_dio_wait(inode); |
| 343 | drained_dio = true; |
| 344 | goto restart; |
| 345 | } |
| 346 | |
| 347 | trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize); |
| 348 | error = iomap_zero_range(inode, isize, iocb->ki_pos - isize, |
| 349 | NULL, &xfs_iomap_ops); |
| 350 | if (error) |
| 351 | return error; |
| 352 | } else |
| 353 | spin_unlock(&ip->i_flags_lock); |
| 354 | |
| 355 | /* |
| 356 | * Updating the timestamps will grab the ilock again from |
| 357 | * xfs_fs_dirty_inode, so we have to call it after dropping the |
| 358 | * lock above. Eventually we should look into a way to avoid |
| 359 | * the pointless lock roundtrip. |
| 360 | */ |
| 361 | return file_modified(file); |
| 362 | } |
| 363 | |
| 364 | static int |
| 365 | xfs_dio_write_end_io( |
| 366 | struct kiocb *iocb, |
| 367 | ssize_t size, |
| 368 | int error, |
| 369 | unsigned flags) |
| 370 | { |
| 371 | struct inode *inode = file_inode(iocb->ki_filp); |
| 372 | struct xfs_inode *ip = XFS_I(inode); |
| 373 | loff_t offset = iocb->ki_pos; |
| 374 | unsigned int nofs_flag; |
| 375 | |
| 376 | trace_xfs_end_io_direct_write(ip, offset, size); |
| 377 | |
| 378 | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) |
| 379 | return -EIO; |
| 380 | |
| 381 | if (error) |
| 382 | return error; |
| 383 | if (!size) |
| 384 | return 0; |
| 385 | |
| 386 | /* |
| 387 | * Capture amount written on completion as we can't reliably account |
| 388 | * for it on submission. |
| 389 | */ |
| 390 | XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size); |
| 391 | |
| 392 | /* |
| 393 | * We can allocate memory here while doing writeback on behalf of |
| 394 | * memory reclaim. To avoid memory allocation deadlocks set the |
| 395 | * task-wide nofs context for the following operations. |
| 396 | */ |
| 397 | nofs_flag = memalloc_nofs_save(); |
| 398 | |
| 399 | if (flags & IOMAP_DIO_COW) { |
| 400 | error = xfs_reflink_end_cow(ip, offset, size); |
| 401 | if (error) |
| 402 | goto out; |
| 403 | } |
| 404 | |
| 405 | /* |
| 406 | * Unwritten conversion updates the in-core isize after extent |
| 407 | * conversion but before updating the on-disk size. Updating isize any |
| 408 | * earlier allows a racing dio read to find unwritten extents before |
| 409 | * they are converted. |
| 410 | */ |
| 411 | if (flags & IOMAP_DIO_UNWRITTEN) { |
| 412 | error = xfs_iomap_write_unwritten(ip, offset, size, true); |
| 413 | goto out; |
| 414 | } |
| 415 | |
| 416 | /* |
| 417 | * We need to update the in-core inode size here so that we don't end up |
| 418 | * with the on-disk inode size being outside the in-core inode size. We |
| 419 | * have no other method of updating EOF for AIO, so always do it here |
| 420 | * if necessary. |
| 421 | * |
| 422 | * We need to lock the test/set EOF update as we can be racing with |
| 423 | * other IO completions here to update the EOF. Failing to serialise |
| 424 | * here can result in EOF moving backwards and Bad Things Happen when |
| 425 | * that occurs. |
| 426 | */ |
| 427 | spin_lock(&ip->i_flags_lock); |
| 428 | if (offset + size > i_size_read(inode)) { |
| 429 | i_size_write(inode, offset + size); |
| 430 | spin_unlock(&ip->i_flags_lock); |
| 431 | error = xfs_setfilesize(ip, offset, size); |
| 432 | } else { |
| 433 | spin_unlock(&ip->i_flags_lock); |
| 434 | } |
| 435 | |
| 436 | out: |
| 437 | memalloc_nofs_restore(nofs_flag); |
| 438 | return error; |
| 439 | } |
| 440 | |
| 441 | static const struct iomap_dio_ops xfs_dio_write_ops = { |
| 442 | .end_io = xfs_dio_write_end_io, |
| 443 | }; |
| 444 | |
| 445 | /* |
| 446 | * xfs_file_dio_aio_write - handle direct IO writes |
| 447 | * |
| 448 | * Lock the inode appropriately to prepare for and issue a direct IO write. |
| 449 | * By separating it from the buffered write path we remove all the tricky to |
| 450 | * follow locking changes and looping. |
| 451 | * |
| 452 | * If there are cached pages or we're extending the file, we need IOLOCK_EXCL |
| 453 | * until we're sure the bytes at the new EOF have been zeroed and/or the cached |
| 454 | * pages are flushed out. |
| 455 | * |
| 456 | * In most cases the direct IO writes will be done holding IOLOCK_SHARED |
| 457 | * allowing them to be done in parallel with reads and other direct IO writes. |
| 458 | * However, if the IO is not aligned to filesystem blocks, the direct IO layer |
| 459 | * needs to do sub-block zeroing and that requires serialisation against other |
| 460 | * direct IOs to the same block. In this case we need to serialise the |
| 461 | * submission of the unaligned IOs so that we don't get racing block zeroing in |
| 462 | * the dio layer. To avoid the problem with aio, we also need to wait for |
| 463 | * outstanding IOs to complete so that unwritten extent conversion is completed |
| 464 | * before we try to map the overlapping block. This is currently implemented by |
| 465 | * hitting it with a big hammer (i.e. inode_dio_wait()). |
| 466 | * |
| 467 | * Returns with locks held indicated by @iolock and errors indicated by |
| 468 | * negative return values. |
| 469 | */ |
| 470 | STATIC ssize_t |
| 471 | xfs_file_dio_aio_write( |
| 472 | struct kiocb *iocb, |
| 473 | struct iov_iter *from) |
| 474 | { |
| 475 | struct file *file = iocb->ki_filp; |
| 476 | struct address_space *mapping = file->f_mapping; |
| 477 | struct inode *inode = mapping->host; |
| 478 | struct xfs_inode *ip = XFS_I(inode); |
| 479 | struct xfs_mount *mp = ip->i_mount; |
| 480 | ssize_t ret = 0; |
| 481 | int unaligned_io = 0; |
| 482 | int iolock; |
| 483 | size_t count = iov_iter_count(from); |
| 484 | struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? |
| 485 | mp->m_rtdev_targp : mp->m_ddev_targp; |
| 486 | |
| 487 | /* DIO must be aligned to device logical sector size */ |
| 488 | if ((iocb->ki_pos | count) & target->bt_logical_sectormask) |
| 489 | return -EINVAL; |
| 490 | |
| 491 | /* |
| 492 | * Don't take the exclusive iolock here unless the I/O is unaligned to |
| 493 | * the file system block size. We don't need to consider the EOF |
| 494 | * extension case here because xfs_file_aio_write_checks() will relock |
| 495 | * the inode as necessary for EOF zeroing cases and fill out the new |
| 496 | * inode size as appropriate. |
| 497 | */ |
| 498 | if ((iocb->ki_pos & mp->m_blockmask) || |
| 499 | ((iocb->ki_pos + count) & mp->m_blockmask)) { |
| 500 | unaligned_io = 1; |
| 501 | |
| 502 | /* |
| 503 | * We can't properly handle unaligned direct I/O to reflink |
| 504 | * files yet, as we can't unshare a partial block. |
| 505 | */ |
| 506 | if (xfs_is_cow_inode(ip)) { |
| 507 | trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count); |
| 508 | return -EREMCHG; |
| 509 | } |
| 510 | iolock = XFS_IOLOCK_EXCL; |
| 511 | } else { |
| 512 | iolock = XFS_IOLOCK_SHARED; |
| 513 | } |
| 514 | |
| 515 | if (iocb->ki_flags & IOCB_NOWAIT) { |
| 516 | /* unaligned dio always waits, bail */ |
| 517 | if (unaligned_io) |
| 518 | return -EAGAIN; |
| 519 | if (!xfs_ilock_nowait(ip, iolock)) |
| 520 | return -EAGAIN; |
| 521 | } else { |
| 522 | xfs_ilock(ip, iolock); |
| 523 | } |
| 524 | |
| 525 | ret = xfs_file_aio_write_checks(iocb, from, &iolock); |
| 526 | if (ret) |
| 527 | goto out; |
| 528 | count = iov_iter_count(from); |
| 529 | |
| 530 | /* |
| 531 | * If we are doing unaligned IO, we can't allow any other overlapping IO |
| 532 | * in-flight at the same time or we risk data corruption. Wait for all |
| 533 | * other IO to drain before we submit. If the IO is aligned, demote the |
| 534 | * iolock if we had to take the exclusive lock in |
| 535 | * xfs_file_aio_write_checks() for other reasons. |
| 536 | */ |
| 537 | if (unaligned_io) { |
| 538 | inode_dio_wait(inode); |
| 539 | } else if (iolock == XFS_IOLOCK_EXCL) { |
| 540 | xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); |
| 541 | iolock = XFS_IOLOCK_SHARED; |
| 542 | } |
| 543 | |
| 544 | trace_xfs_file_direct_write(ip, count, iocb->ki_pos); |
| 545 | ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, &xfs_dio_write_ops); |
| 546 | |
| 547 | /* |
| 548 | * If unaligned, this is the only IO in-flight. If it has not yet |
| 549 | * completed, wait on it before we release the iolock to prevent |
| 550 | * subsequent overlapping IO. |
| 551 | */ |
| 552 | if (ret == -EIOCBQUEUED && unaligned_io) |
| 553 | inode_dio_wait(inode); |
| 554 | out: |
| 555 | xfs_iunlock(ip, iolock); |
| 556 | |
| 557 | /* |
| 558 | * No fallback to buffered IO on errors for XFS, direct IO will either |
| 559 | * complete fully or fail. |
| 560 | */ |
| 561 | ASSERT(ret < 0 || ret == count); |
| 562 | return ret; |
| 563 | } |
| 564 | |
| 565 | static noinline ssize_t |
| 566 | xfs_file_dax_write( |
| 567 | struct kiocb *iocb, |
| 568 | struct iov_iter *from) |
| 569 | { |
| 570 | struct inode *inode = iocb->ki_filp->f_mapping->host; |
| 571 | struct xfs_inode *ip = XFS_I(inode); |
| 572 | int iolock = XFS_IOLOCK_EXCL; |
| 573 | ssize_t ret, error = 0; |
| 574 | size_t count; |
| 575 | loff_t pos; |
| 576 | |
| 577 | if (iocb->ki_flags & IOCB_NOWAIT) { |
| 578 | if (!xfs_ilock_nowait(ip, iolock)) |
| 579 | return -EAGAIN; |
| 580 | } else { |
| 581 | xfs_ilock(ip, iolock); |
| 582 | } |
| 583 | |
| 584 | ret = xfs_file_aio_write_checks(iocb, from, &iolock); |
| 585 | if (ret) |
| 586 | goto out; |
| 587 | |
| 588 | pos = iocb->ki_pos; |
| 589 | count = iov_iter_count(from); |
| 590 | |
| 591 | trace_xfs_file_dax_write(ip, count, pos); |
| 592 | ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops); |
| 593 | if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { |
| 594 | i_size_write(inode, iocb->ki_pos); |
| 595 | error = xfs_setfilesize(ip, pos, ret); |
| 596 | } |
| 597 | out: |
| 598 | xfs_iunlock(ip, iolock); |
| 599 | if (error) |
| 600 | return error; |
| 601 | |
| 602 | if (ret > 0) { |
| 603 | XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); |
| 604 | |
| 605 | /* Handle various SYNC-type writes */ |
| 606 | ret = generic_write_sync(iocb, ret); |
| 607 | } |
| 608 | return ret; |
| 609 | } |
| 610 | |
| 611 | STATIC ssize_t |
| 612 | xfs_file_buffered_aio_write( |
| 613 | struct kiocb *iocb, |
| 614 | struct iov_iter *from) |
| 615 | { |
| 616 | struct file *file = iocb->ki_filp; |
| 617 | struct address_space *mapping = file->f_mapping; |
| 618 | struct inode *inode = mapping->host; |
| 619 | struct xfs_inode *ip = XFS_I(inode); |
| 620 | ssize_t ret; |
| 621 | int enospc = 0; |
| 622 | int iolock; |
| 623 | |
| 624 | if (iocb->ki_flags & IOCB_NOWAIT) |
| 625 | return -EOPNOTSUPP; |
| 626 | |
| 627 | write_retry: |
| 628 | iolock = XFS_IOLOCK_EXCL; |
| 629 | xfs_ilock(ip, iolock); |
| 630 | |
| 631 | ret = xfs_file_aio_write_checks(iocb, from, &iolock); |
| 632 | if (ret) |
| 633 | goto out; |
| 634 | |
| 635 | /* We can write back this queue in page reclaim */ |
| 636 | current->backing_dev_info = inode_to_bdi(inode); |
| 637 | |
| 638 | trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos); |
| 639 | ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops); |
| 640 | if (likely(ret >= 0)) |
| 641 | iocb->ki_pos += ret; |
| 642 | |
| 643 | /* |
| 644 | * If we hit a space limit, try to free up some lingering preallocated |
| 645 | * space before returning an error. In the case of ENOSPC, first try to |
| 646 | * write back all dirty inodes to free up some of the excess reserved |
| 647 | * metadata space. This reduces the chances that the eofblocks scan |
| 648 | * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this |
| 649 | * also behaves as a filter to prevent too many eofblocks scans from |
| 650 | * running at the same time. |
| 651 | */ |
| 652 | if (ret == -EDQUOT && !enospc) { |
| 653 | xfs_iunlock(ip, iolock); |
| 654 | enospc = xfs_inode_free_quota_eofblocks(ip); |
| 655 | if (enospc) |
| 656 | goto write_retry; |
| 657 | enospc = xfs_inode_free_quota_cowblocks(ip); |
| 658 | if (enospc) |
| 659 | goto write_retry; |
| 660 | iolock = 0; |
| 661 | } else if (ret == -ENOSPC && !enospc) { |
| 662 | struct xfs_eofblocks eofb = {0}; |
| 663 | |
| 664 | enospc = 1; |
| 665 | xfs_flush_inodes(ip->i_mount); |
| 666 | |
| 667 | xfs_iunlock(ip, iolock); |
| 668 | eofb.eof_flags = XFS_EOF_FLAGS_SYNC; |
| 669 | xfs_icache_free_eofblocks(ip->i_mount, &eofb); |
| 670 | xfs_icache_free_cowblocks(ip->i_mount, &eofb); |
| 671 | goto write_retry; |
| 672 | } |
| 673 | |
| 674 | current->backing_dev_info = NULL; |
| 675 | out: |
| 676 | if (iolock) |
| 677 | xfs_iunlock(ip, iolock); |
| 678 | |
| 679 | if (ret > 0) { |
| 680 | XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); |
| 681 | /* Handle various SYNC-type writes */ |
| 682 | ret = generic_write_sync(iocb, ret); |
| 683 | } |
| 684 | return ret; |
| 685 | } |
| 686 | |
| 687 | STATIC ssize_t |
| 688 | xfs_file_write_iter( |
| 689 | struct kiocb *iocb, |
| 690 | struct iov_iter *from) |
| 691 | { |
| 692 | struct file *file = iocb->ki_filp; |
| 693 | struct address_space *mapping = file->f_mapping; |
| 694 | struct inode *inode = mapping->host; |
| 695 | struct xfs_inode *ip = XFS_I(inode); |
| 696 | ssize_t ret; |
| 697 | size_t ocount = iov_iter_count(from); |
| 698 | |
| 699 | XFS_STATS_INC(ip->i_mount, xs_write_calls); |
| 700 | |
| 701 | if (ocount == 0) |
| 702 | return 0; |
| 703 | |
| 704 | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) |
| 705 | return -EIO; |
| 706 | |
| 707 | if (IS_DAX(inode)) |
| 708 | return xfs_file_dax_write(iocb, from); |
| 709 | |
| 710 | if (iocb->ki_flags & IOCB_DIRECT) { |
| 711 | /* |
| 712 | * Allow a directio write to fall back to a buffered |
| 713 | * write *only* in the case that we're doing a reflink |
| 714 | * CoW. In all other directio scenarios we do not |
| 715 | * allow an operation to fall back to buffered mode. |
| 716 | */ |
| 717 | ret = xfs_file_dio_aio_write(iocb, from); |
| 718 | if (ret != -EREMCHG) |
| 719 | return ret; |
| 720 | } |
| 721 | |
| 722 | return xfs_file_buffered_aio_write(iocb, from); |
| 723 | } |
| 724 | |
| 725 | static void |
| 726 | xfs_wait_dax_page( |
| 727 | struct inode *inode) |
| 728 | { |
| 729 | struct xfs_inode *ip = XFS_I(inode); |
| 730 | |
| 731 | xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); |
| 732 | schedule(); |
| 733 | xfs_ilock(ip, XFS_MMAPLOCK_EXCL); |
| 734 | } |
| 735 | |
| 736 | static int |
| 737 | xfs_break_dax_layouts( |
| 738 | struct inode *inode, |
| 739 | bool *retry) |
| 740 | { |
| 741 | struct page *page; |
| 742 | |
| 743 | ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL)); |
| 744 | |
| 745 | page = dax_layout_busy_page(inode->i_mapping); |
| 746 | if (!page) |
| 747 | return 0; |
| 748 | |
| 749 | *retry = true; |
| 750 | return ___wait_var_event(&page->_refcount, |
| 751 | atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE, |
| 752 | 0, 0, xfs_wait_dax_page(inode)); |
| 753 | } |
| 754 | |
| 755 | int |
| 756 | xfs_break_layouts( |
| 757 | struct inode *inode, |
| 758 | uint *iolock, |
| 759 | enum layout_break_reason reason) |
| 760 | { |
| 761 | bool retry; |
| 762 | int error; |
| 763 | |
| 764 | ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)); |
| 765 | |
| 766 | do { |
| 767 | retry = false; |
| 768 | switch (reason) { |
| 769 | case BREAK_UNMAP: |
| 770 | error = xfs_break_dax_layouts(inode, &retry); |
| 771 | if (error || retry) |
| 772 | break; |
| 773 | /* fall through */ |
| 774 | case BREAK_WRITE: |
| 775 | error = xfs_break_leased_layouts(inode, iolock, &retry); |
| 776 | break; |
| 777 | default: |
| 778 | WARN_ON_ONCE(1); |
| 779 | error = -EINVAL; |
| 780 | } |
| 781 | } while (error == 0 && retry); |
| 782 | |
| 783 | return error; |
| 784 | } |
| 785 | |
| 786 | #define XFS_FALLOC_FL_SUPPORTED \ |
| 787 | (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ |
| 788 | FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ |
| 789 | FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) |
| 790 | |
| 791 | STATIC long |
| 792 | xfs_file_fallocate( |
| 793 | struct file *file, |
| 794 | int mode, |
| 795 | loff_t offset, |
| 796 | loff_t len) |
| 797 | { |
| 798 | struct inode *inode = file_inode(file); |
| 799 | struct xfs_inode *ip = XFS_I(inode); |
| 800 | long error; |
| 801 | enum xfs_prealloc_flags flags = 0; |
| 802 | uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; |
| 803 | loff_t new_size = 0; |
| 804 | bool do_file_insert = false; |
| 805 | |
| 806 | if (!S_ISREG(inode->i_mode)) |
| 807 | return -EINVAL; |
| 808 | if (mode & ~XFS_FALLOC_FL_SUPPORTED) |
| 809 | return -EOPNOTSUPP; |
| 810 | |
| 811 | xfs_ilock(ip, iolock); |
| 812 | error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP); |
| 813 | if (error) |
| 814 | goto out_unlock; |
| 815 | |
| 816 | /* |
| 817 | * Must wait for all AIO to complete before we continue as AIO can |
| 818 | * change the file size on completion without holding any locks we |
| 819 | * currently hold. We must do this first because AIO can update both |
| 820 | * the on disk and in memory inode sizes, and the operations that follow |
| 821 | * require the in-memory size to be fully up-to-date. |
| 822 | */ |
| 823 | inode_dio_wait(inode); |
| 824 | |
| 825 | /* |
| 826 | * Now AIO and DIO has drained we flush and (if necessary) invalidate |
| 827 | * the cached range over the first operation we are about to run. |
| 828 | * |
| 829 | * We care about zero and collapse here because they both run a hole |
| 830 | * punch over the range first. Because that can zero data, and the range |
| 831 | * of invalidation for the shift operations is much larger, we still do |
| 832 | * the required flush for collapse in xfs_prepare_shift(). |
| 833 | * |
| 834 | * Insert has the same range requirements as collapse, and we extend the |
| 835 | * file first which can zero data. Hence insert has the same |
| 836 | * flush/invalidate requirements as collapse and so they are both |
| 837 | * handled at the right time by xfs_prepare_shift(). |
| 838 | */ |
| 839 | if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE | |
| 840 | FALLOC_FL_COLLAPSE_RANGE)) { |
| 841 | error = xfs_flush_unmap_range(ip, offset, len); |
| 842 | if (error) |
| 843 | goto out_unlock; |
| 844 | } |
| 845 | |
| 846 | if (mode & FALLOC_FL_PUNCH_HOLE) { |
| 847 | error = xfs_free_file_space(ip, offset, len); |
| 848 | if (error) |
| 849 | goto out_unlock; |
| 850 | } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { |
| 851 | unsigned int blksize_mask = i_blocksize(inode) - 1; |
| 852 | |
| 853 | if (offset & blksize_mask || len & blksize_mask) { |
| 854 | error = -EINVAL; |
| 855 | goto out_unlock; |
| 856 | } |
| 857 | |
| 858 | /* |
| 859 | * There is no need to overlap collapse range with EOF, |
| 860 | * in which case it is effectively a truncate operation |
| 861 | */ |
| 862 | if (offset + len >= i_size_read(inode)) { |
| 863 | error = -EINVAL; |
| 864 | goto out_unlock; |
| 865 | } |
| 866 | |
| 867 | new_size = i_size_read(inode) - len; |
| 868 | |
| 869 | error = xfs_collapse_file_space(ip, offset, len); |
| 870 | if (error) |
| 871 | goto out_unlock; |
| 872 | } else if (mode & FALLOC_FL_INSERT_RANGE) { |
| 873 | unsigned int blksize_mask = i_blocksize(inode) - 1; |
| 874 | loff_t isize = i_size_read(inode); |
| 875 | |
| 876 | if (offset & blksize_mask || len & blksize_mask) { |
| 877 | error = -EINVAL; |
| 878 | goto out_unlock; |
| 879 | } |
| 880 | |
| 881 | /* |
| 882 | * New inode size must not exceed ->s_maxbytes, accounting for |
| 883 | * possible signed overflow. |
| 884 | */ |
| 885 | if (inode->i_sb->s_maxbytes - isize < len) { |
| 886 | error = -EFBIG; |
| 887 | goto out_unlock; |
| 888 | } |
| 889 | new_size = isize + len; |
| 890 | |
| 891 | /* Offset should be less than i_size */ |
| 892 | if (offset >= isize) { |
| 893 | error = -EINVAL; |
| 894 | goto out_unlock; |
| 895 | } |
| 896 | do_file_insert = true; |
| 897 | } else { |
| 898 | flags |= XFS_PREALLOC_SET; |
| 899 | |
| 900 | if (!(mode & FALLOC_FL_KEEP_SIZE) && |
| 901 | offset + len > i_size_read(inode)) { |
| 902 | new_size = offset + len; |
| 903 | error = inode_newsize_ok(inode, new_size); |
| 904 | if (error) |
| 905 | goto out_unlock; |
| 906 | } |
| 907 | |
| 908 | if (mode & FALLOC_FL_ZERO_RANGE) { |
| 909 | error = xfs_zero_file_space(ip, offset, len); |
| 910 | } else if (mode & FALLOC_FL_UNSHARE_RANGE) { |
| 911 | error = xfs_reflink_unshare(ip, offset, len); |
| 912 | if (error) |
| 913 | goto out_unlock; |
| 914 | |
| 915 | if (!xfs_is_always_cow_inode(ip)) { |
| 916 | error = xfs_alloc_file_space(ip, offset, len, |
| 917 | XFS_BMAPI_PREALLOC); |
| 918 | } |
| 919 | } else { |
| 920 | /* |
| 921 | * If always_cow mode we can't use preallocations and |
| 922 | * thus should not create them. |
| 923 | */ |
| 924 | if (xfs_is_always_cow_inode(ip)) { |
| 925 | error = -EOPNOTSUPP; |
| 926 | goto out_unlock; |
| 927 | } |
| 928 | |
| 929 | error = xfs_alloc_file_space(ip, offset, len, |
| 930 | XFS_BMAPI_PREALLOC); |
| 931 | } |
| 932 | if (error) |
| 933 | goto out_unlock; |
| 934 | } |
| 935 | |
| 936 | if (file->f_flags & O_DSYNC) |
| 937 | flags |= XFS_PREALLOC_SYNC; |
| 938 | |
| 939 | error = xfs_update_prealloc_flags(ip, flags); |
| 940 | if (error) |
| 941 | goto out_unlock; |
| 942 | |
| 943 | /* Change file size if needed */ |
| 944 | if (new_size) { |
| 945 | struct iattr iattr; |
| 946 | |
| 947 | iattr.ia_valid = ATTR_SIZE; |
| 948 | iattr.ia_size = new_size; |
| 949 | error = xfs_vn_setattr_size(file_dentry(file), &iattr); |
| 950 | if (error) |
| 951 | goto out_unlock; |
| 952 | } |
| 953 | |
| 954 | /* |
| 955 | * Perform hole insertion now that the file size has been |
| 956 | * updated so that if we crash during the operation we don't |
| 957 | * leave shifted extents past EOF and hence losing access to |
| 958 | * the data that is contained within them. |
| 959 | */ |
| 960 | if (do_file_insert) |
| 961 | error = xfs_insert_file_space(ip, offset, len); |
| 962 | |
| 963 | out_unlock: |
| 964 | xfs_iunlock(ip, iolock); |
| 965 | return error; |
| 966 | } |
| 967 | |
| 968 | STATIC int |
| 969 | xfs_file_fadvise( |
| 970 | struct file *file, |
| 971 | loff_t start, |
| 972 | loff_t end, |
| 973 | int advice) |
| 974 | { |
| 975 | struct xfs_inode *ip = XFS_I(file_inode(file)); |
| 976 | int ret; |
| 977 | int lockflags = 0; |
| 978 | |
| 979 | /* |
| 980 | * Operations creating pages in page cache need protection from hole |
| 981 | * punching and similar ops |
| 982 | */ |
| 983 | if (advice == POSIX_FADV_WILLNEED) { |
| 984 | lockflags = XFS_IOLOCK_SHARED; |
| 985 | xfs_ilock(ip, lockflags); |
| 986 | } |
| 987 | ret = generic_fadvise(file, start, end, advice); |
| 988 | if (lockflags) |
| 989 | xfs_iunlock(ip, lockflags); |
| 990 | return ret; |
| 991 | } |
| 992 | |
| 993 | /* Does this file, inode, or mount want synchronous writes? */ |
| 994 | static inline bool xfs_file_sync_writes(struct file *filp) |
| 995 | { |
| 996 | struct xfs_inode *ip = XFS_I(file_inode(filp)); |
| 997 | |
| 998 | if (ip->i_mount->m_flags & XFS_MOUNT_WSYNC) |
| 999 | return true; |
| 1000 | if (filp->f_flags & (__O_SYNC | O_DSYNC)) |
| 1001 | return true; |
| 1002 | if (IS_SYNC(file_inode(filp))) |
| 1003 | return true; |
| 1004 | |
| 1005 | return false; |
| 1006 | } |
| 1007 | |
| 1008 | STATIC loff_t |
| 1009 | xfs_file_remap_range( |
| 1010 | struct file *file_in, |
| 1011 | loff_t pos_in, |
| 1012 | struct file *file_out, |
| 1013 | loff_t pos_out, |
| 1014 | loff_t len, |
| 1015 | unsigned int remap_flags) |
| 1016 | { |
| 1017 | struct inode *inode_in = file_inode(file_in); |
| 1018 | struct xfs_inode *src = XFS_I(inode_in); |
| 1019 | struct inode *inode_out = file_inode(file_out); |
| 1020 | struct xfs_inode *dest = XFS_I(inode_out); |
| 1021 | struct xfs_mount *mp = src->i_mount; |
| 1022 | loff_t remapped = 0; |
| 1023 | xfs_extlen_t cowextsize; |
| 1024 | int ret; |
| 1025 | |
| 1026 | if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) |
| 1027 | return -EINVAL; |
| 1028 | |
| 1029 | if (!xfs_sb_version_hasreflink(&mp->m_sb)) |
| 1030 | return -EOPNOTSUPP; |
| 1031 | |
| 1032 | if (XFS_FORCED_SHUTDOWN(mp)) |
| 1033 | return -EIO; |
| 1034 | |
| 1035 | /* Prepare and then clone file data. */ |
| 1036 | ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out, |
| 1037 | &len, remap_flags); |
| 1038 | if (ret < 0 || len == 0) |
| 1039 | return ret; |
| 1040 | |
| 1041 | trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out); |
| 1042 | |
| 1043 | ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len, |
| 1044 | &remapped); |
| 1045 | if (ret) |
| 1046 | goto out_unlock; |
| 1047 | |
| 1048 | /* |
| 1049 | * Carry the cowextsize hint from src to dest if we're sharing the |
| 1050 | * entire source file to the entire destination file, the source file |
| 1051 | * has a cowextsize hint, and the destination file does not. |
| 1052 | */ |
| 1053 | cowextsize = 0; |
| 1054 | if (pos_in == 0 && len == i_size_read(inode_in) && |
| 1055 | (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) && |
| 1056 | pos_out == 0 && len >= i_size_read(inode_out) && |
| 1057 | !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)) |
| 1058 | cowextsize = src->i_d.di_cowextsize; |
| 1059 | |
| 1060 | ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize, |
| 1061 | remap_flags); |
| 1062 | if (ret) |
| 1063 | goto out_unlock; |
| 1064 | |
| 1065 | if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out)) |
| 1066 | xfs_log_force_inode(dest); |
| 1067 | out_unlock: |
| 1068 | xfs_reflink_remap_unlock(file_in, file_out); |
| 1069 | if (ret) |
| 1070 | trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_); |
| 1071 | /* |
| 1072 | * If the caller did not set CAN_SHORTEN, then it is not prepared to |
| 1073 | * handle partial results -- either the whole remap succeeds, or we |
| 1074 | * must say why it did not. In this case, any error should be returned |
| 1075 | * to the caller. |
| 1076 | */ |
| 1077 | if (ret && remapped < len && !(remap_flags & REMAP_FILE_CAN_SHORTEN)) |
| 1078 | return ret; |
| 1079 | return remapped > 0 ? remapped : ret; |
| 1080 | } |
| 1081 | |
| 1082 | STATIC int |
| 1083 | xfs_file_open( |
| 1084 | struct inode *inode, |
| 1085 | struct file *file) |
| 1086 | { |
| 1087 | if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) |
| 1088 | return -EFBIG; |
| 1089 | if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) |
| 1090 | return -EIO; |
| 1091 | file->f_mode |= FMODE_NOWAIT; |
| 1092 | return 0; |
| 1093 | } |
| 1094 | |
| 1095 | STATIC int |
| 1096 | xfs_dir_open( |
| 1097 | struct inode *inode, |
| 1098 | struct file *file) |
| 1099 | { |
| 1100 | struct xfs_inode *ip = XFS_I(inode); |
| 1101 | int mode; |
| 1102 | int error; |
| 1103 | |
| 1104 | error = xfs_file_open(inode, file); |
| 1105 | if (error) |
| 1106 | return error; |
| 1107 | |
| 1108 | /* |
| 1109 | * If there are any blocks, read-ahead block 0 as we're almost |
| 1110 | * certain to have the next operation be a read there. |
| 1111 | */ |
| 1112 | mode = xfs_ilock_data_map_shared(ip); |
| 1113 | if (ip->i_d.di_nextents > 0) |
| 1114 | error = xfs_dir3_data_readahead(ip, 0, -1); |
| 1115 | xfs_iunlock(ip, mode); |
| 1116 | return error; |
| 1117 | } |
| 1118 | |
| 1119 | STATIC int |
| 1120 | xfs_file_release( |
| 1121 | struct inode *inode, |
| 1122 | struct file *filp) |
| 1123 | { |
| 1124 | return xfs_release(XFS_I(inode)); |
| 1125 | } |
| 1126 | |
| 1127 | STATIC int |
| 1128 | xfs_file_readdir( |
| 1129 | struct file *file, |
| 1130 | struct dir_context *ctx) |
| 1131 | { |
| 1132 | struct inode *inode = file_inode(file); |
| 1133 | xfs_inode_t *ip = XFS_I(inode); |
| 1134 | size_t bufsize; |
| 1135 | |
| 1136 | /* |
| 1137 | * The Linux API doesn't pass down the total size of the buffer |
| 1138 | * we read into down to the filesystem. With the filldir concept |
| 1139 | * it's not needed for correct information, but the XFS dir2 leaf |
| 1140 | * code wants an estimate of the buffer size to calculate it's |
| 1141 | * readahead window and size the buffers used for mapping to |
| 1142 | * physical blocks. |
| 1143 | * |
| 1144 | * Try to give it an estimate that's good enough, maybe at some |
| 1145 | * point we can change the ->readdir prototype to include the |
| 1146 | * buffer size. For now we use the current glibc buffer size. |
| 1147 | */ |
| 1148 | bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size); |
| 1149 | |
| 1150 | return xfs_readdir(NULL, ip, ctx, bufsize); |
| 1151 | } |
| 1152 | |
| 1153 | STATIC loff_t |
| 1154 | xfs_file_llseek( |
| 1155 | struct file *file, |
| 1156 | loff_t offset, |
| 1157 | int whence) |
| 1158 | { |
| 1159 | struct inode *inode = file->f_mapping->host; |
| 1160 | |
| 1161 | if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount)) |
| 1162 | return -EIO; |
| 1163 | |
| 1164 | switch (whence) { |
| 1165 | default: |
| 1166 | return generic_file_llseek(file, offset, whence); |
| 1167 | case SEEK_HOLE: |
| 1168 | offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops); |
| 1169 | break; |
| 1170 | case SEEK_DATA: |
| 1171 | offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops); |
| 1172 | break; |
| 1173 | } |
| 1174 | |
| 1175 | if (offset < 0) |
| 1176 | return offset; |
| 1177 | return vfs_setpos(file, offset, inode->i_sb->s_maxbytes); |
| 1178 | } |
| 1179 | |
| 1180 | /* |
| 1181 | * Locking for serialisation of IO during page faults. This results in a lock |
| 1182 | * ordering of: |
| 1183 | * |
| 1184 | * mmap_sem (MM) |
| 1185 | * sb_start_pagefault(vfs, freeze) |
| 1186 | * i_mmaplock (XFS - truncate serialisation) |
| 1187 | * page_lock (MM) |
| 1188 | * i_lock (XFS - extent map serialisation) |
| 1189 | */ |
| 1190 | static vm_fault_t |
| 1191 | __xfs_filemap_fault( |
| 1192 | struct vm_fault *vmf, |
| 1193 | enum page_entry_size pe_size, |
| 1194 | bool write_fault) |
| 1195 | { |
| 1196 | struct inode *inode = file_inode(vmf->vma->vm_file); |
| 1197 | struct xfs_inode *ip = XFS_I(inode); |
| 1198 | vm_fault_t ret; |
| 1199 | |
| 1200 | trace_xfs_filemap_fault(ip, pe_size, write_fault); |
| 1201 | |
| 1202 | if (write_fault) { |
| 1203 | sb_start_pagefault(inode->i_sb); |
| 1204 | file_update_time(vmf->vma->vm_file); |
| 1205 | } |
| 1206 | |
| 1207 | xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); |
| 1208 | if (IS_DAX(inode)) { |
| 1209 | pfn_t pfn; |
| 1210 | |
| 1211 | ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops); |
| 1212 | if (ret & VM_FAULT_NEEDDSYNC) |
| 1213 | ret = dax_finish_sync_fault(vmf, pe_size, pfn); |
| 1214 | } else { |
| 1215 | if (write_fault) |
| 1216 | ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops); |
| 1217 | else |
| 1218 | ret = filemap_fault(vmf); |
| 1219 | } |
| 1220 | xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); |
| 1221 | |
| 1222 | if (write_fault) |
| 1223 | sb_end_pagefault(inode->i_sb); |
| 1224 | return ret; |
| 1225 | } |
| 1226 | |
| 1227 | static inline bool |
| 1228 | xfs_is_write_fault( |
| 1229 | struct vm_fault *vmf) |
| 1230 | { |
| 1231 | return (vmf->flags & FAULT_FLAG_WRITE) && |
| 1232 | (vmf->vma->vm_flags & VM_SHARED); |
| 1233 | } |
| 1234 | |
| 1235 | static vm_fault_t |
| 1236 | xfs_filemap_fault( |
| 1237 | struct vm_fault *vmf) |
| 1238 | { |
| 1239 | /* DAX can shortcut the normal fault path on write faults! */ |
| 1240 | return __xfs_filemap_fault(vmf, PE_SIZE_PTE, |
| 1241 | IS_DAX(file_inode(vmf->vma->vm_file)) && |
| 1242 | xfs_is_write_fault(vmf)); |
| 1243 | } |
| 1244 | |
| 1245 | static vm_fault_t |
| 1246 | xfs_filemap_huge_fault( |
| 1247 | struct vm_fault *vmf, |
| 1248 | enum page_entry_size pe_size) |
| 1249 | { |
| 1250 | if (!IS_DAX(file_inode(vmf->vma->vm_file))) |
| 1251 | return VM_FAULT_FALLBACK; |
| 1252 | |
| 1253 | /* DAX can shortcut the normal fault path on write faults! */ |
| 1254 | return __xfs_filemap_fault(vmf, pe_size, |
| 1255 | xfs_is_write_fault(vmf)); |
| 1256 | } |
| 1257 | |
| 1258 | static vm_fault_t |
| 1259 | xfs_filemap_page_mkwrite( |
| 1260 | struct vm_fault *vmf) |
| 1261 | { |
| 1262 | return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); |
| 1263 | } |
| 1264 | |
| 1265 | /* |
| 1266 | * pfn_mkwrite was originally intended to ensure we capture time stamp updates |
| 1267 | * on write faults. In reality, it needs to serialise against truncate and |
| 1268 | * prepare memory for writing so handle is as standard write fault. |
| 1269 | */ |
| 1270 | static vm_fault_t |
| 1271 | xfs_filemap_pfn_mkwrite( |
| 1272 | struct vm_fault *vmf) |
| 1273 | { |
| 1274 | |
| 1275 | return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true); |
| 1276 | } |
| 1277 | |
| 1278 | static void |
| 1279 | xfs_filemap_map_pages( |
| 1280 | struct vm_fault *vmf, |
| 1281 | pgoff_t start_pgoff, |
| 1282 | pgoff_t end_pgoff) |
| 1283 | { |
| 1284 | struct inode *inode = file_inode(vmf->vma->vm_file); |
| 1285 | |
| 1286 | xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED); |
| 1287 | filemap_map_pages(vmf, start_pgoff, end_pgoff); |
| 1288 | xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED); |
| 1289 | } |
| 1290 | |
| 1291 | static const struct vm_operations_struct xfs_file_vm_ops = { |
| 1292 | .fault = xfs_filemap_fault, |
| 1293 | .huge_fault = xfs_filemap_huge_fault, |
| 1294 | .map_pages = xfs_filemap_map_pages, |
| 1295 | .page_mkwrite = xfs_filemap_page_mkwrite, |
| 1296 | .pfn_mkwrite = xfs_filemap_pfn_mkwrite, |
| 1297 | }; |
| 1298 | |
| 1299 | STATIC int |
| 1300 | xfs_file_mmap( |
| 1301 | struct file *filp, |
| 1302 | struct vm_area_struct *vma) |
| 1303 | { |
| 1304 | struct dax_device *dax_dev; |
| 1305 | |
| 1306 | dax_dev = xfs_find_daxdev_for_inode(file_inode(filp)); |
| 1307 | /* |
| 1308 | * We don't support synchronous mappings for non-DAX files and |
| 1309 | * for DAX files if underneath dax_device is not synchronous. |
| 1310 | */ |
| 1311 | if (!daxdev_mapping_supported(vma, dax_dev)) |
| 1312 | return -EOPNOTSUPP; |
| 1313 | |
| 1314 | file_accessed(filp); |
| 1315 | vma->vm_ops = &xfs_file_vm_ops; |
| 1316 | if (IS_DAX(file_inode(filp))) |
| 1317 | vma->vm_flags |= VM_HUGEPAGE; |
| 1318 | return 0; |
| 1319 | } |
| 1320 | |
| 1321 | const struct file_operations xfs_file_operations = { |
| 1322 | .llseek = xfs_file_llseek, |
| 1323 | .read_iter = xfs_file_read_iter, |
| 1324 | .write_iter = xfs_file_write_iter, |
| 1325 | .splice_read = generic_file_splice_read, |
| 1326 | .splice_write = iter_file_splice_write, |
| 1327 | .iopoll = iomap_dio_iopoll, |
| 1328 | .unlocked_ioctl = xfs_file_ioctl, |
| 1329 | #ifdef CONFIG_COMPAT |
| 1330 | .compat_ioctl = xfs_file_compat_ioctl, |
| 1331 | #endif |
| 1332 | .mmap = xfs_file_mmap, |
| 1333 | .mmap_supported_flags = MAP_SYNC, |
| 1334 | .open = xfs_file_open, |
| 1335 | .release = xfs_file_release, |
| 1336 | .fsync = xfs_file_fsync, |
| 1337 | .get_unmapped_area = thp_get_unmapped_area, |
| 1338 | .fallocate = xfs_file_fallocate, |
| 1339 | .fadvise = xfs_file_fadvise, |
| 1340 | .remap_file_range = xfs_file_remap_range, |
| 1341 | }; |
| 1342 | |
| 1343 | const struct file_operations xfs_dir_file_operations = { |
| 1344 | .open = xfs_dir_open, |
| 1345 | .read = generic_read_dir, |
| 1346 | .iterate_shared = xfs_file_readdir, |
| 1347 | .llseek = generic_file_llseek, |
| 1348 | .unlocked_ioctl = xfs_file_ioctl, |
| 1349 | #ifdef CONFIG_COMPAT |
| 1350 | .compat_ioctl = xfs_file_compat_ioctl, |
| 1351 | #endif |
| 1352 | .fsync = xfs_dir_fsync, |
| 1353 | }; |