b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (c) 2000-2006 Silicon Graphics, Inc. |
| 4 | * All Rights Reserved. |
| 5 | */ |
| 6 | #include "xfs.h" |
| 7 | #include "xfs_fs.h" |
| 8 | #include "xfs_shared.h" |
| 9 | #include "xfs_format.h" |
| 10 | #include "xfs_log_format.h" |
| 11 | #include "xfs_trans_resv.h" |
| 12 | #include "xfs_bit.h" |
| 13 | #include "xfs_sb.h" |
| 14 | #include "xfs_mount.h" |
| 15 | #include "xfs_defer.h" |
| 16 | #include "xfs_inode.h" |
| 17 | #include "xfs_trans.h" |
| 18 | #include "xfs_log.h" |
| 19 | #include "xfs_log_priv.h" |
| 20 | #include "xfs_log_recover.h" |
| 21 | #include "xfs_inode_item.h" |
| 22 | #include "xfs_extfree_item.h" |
| 23 | #include "xfs_trans_priv.h" |
| 24 | #include "xfs_alloc.h" |
| 25 | #include "xfs_ialloc.h" |
| 26 | #include "xfs_quota.h" |
| 27 | #include "xfs_trace.h" |
| 28 | #include "xfs_icache.h" |
| 29 | #include "xfs_bmap_btree.h" |
| 30 | #include "xfs_error.h" |
| 31 | #include "xfs_dir2.h" |
| 32 | #include "xfs_rmap_item.h" |
| 33 | #include "xfs_buf_item.h" |
| 34 | #include "xfs_refcount_item.h" |
| 35 | #include "xfs_bmap_item.h" |
| 36 | |
| 37 | #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) |
| 38 | |
| 39 | STATIC int |
| 40 | xlog_find_zeroed( |
| 41 | struct xlog *, |
| 42 | xfs_daddr_t *); |
| 43 | STATIC int |
| 44 | xlog_clear_stale_blocks( |
| 45 | struct xlog *, |
| 46 | xfs_lsn_t); |
| 47 | #if defined(DEBUG) |
| 48 | STATIC void |
| 49 | xlog_recover_check_summary( |
| 50 | struct xlog *); |
| 51 | #else |
| 52 | #define xlog_recover_check_summary(log) |
| 53 | #endif |
| 54 | STATIC int |
| 55 | xlog_do_recovery_pass( |
| 56 | struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *); |
| 57 | |
| 58 | /* |
| 59 | * This structure is used during recovery to record the buf log items which |
| 60 | * have been canceled and should not be replayed. |
| 61 | */ |
| 62 | struct xfs_buf_cancel { |
| 63 | xfs_daddr_t bc_blkno; |
| 64 | uint bc_len; |
| 65 | int bc_refcount; |
| 66 | struct list_head bc_list; |
| 67 | }; |
| 68 | |
| 69 | /* |
| 70 | * Sector aligned buffer routines for buffer create/read/write/access |
| 71 | */ |
| 72 | |
| 73 | /* |
| 74 | * Verify the log-relative block number and length in basic blocks are valid for |
| 75 | * an operation involving the given XFS log buffer. Returns true if the fields |
| 76 | * are valid, false otherwise. |
| 77 | */ |
| 78 | static inline bool |
| 79 | xlog_verify_bno( |
| 80 | struct xlog *log, |
| 81 | xfs_daddr_t blk_no, |
| 82 | int bbcount) |
| 83 | { |
| 84 | if (blk_no < 0 || blk_no >= log->l_logBBsize) |
| 85 | return false; |
| 86 | if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize) |
| 87 | return false; |
| 88 | return true; |
| 89 | } |
| 90 | |
| 91 | /* |
| 92 | * Allocate a buffer to hold log data. The buffer needs to be able to map to |
| 93 | * a range of nbblks basic blocks at any valid offset within the log. |
| 94 | */ |
| 95 | static char * |
| 96 | xlog_alloc_buffer( |
| 97 | struct xlog *log, |
| 98 | int nbblks) |
| 99 | { |
| 100 | int align_mask = xfs_buftarg_dma_alignment(log->l_targ); |
| 101 | |
| 102 | /* |
| 103 | * Pass log block 0 since we don't have an addr yet, buffer will be |
| 104 | * verified on read. |
| 105 | */ |
| 106 | if (!xlog_verify_bno(log, 0, nbblks)) { |
| 107 | xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", |
| 108 | nbblks); |
| 109 | XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); |
| 110 | return NULL; |
| 111 | } |
| 112 | |
| 113 | /* |
| 114 | * We do log I/O in units of log sectors (a power-of-2 multiple of the |
| 115 | * basic block size), so we round up the requested size to accommodate |
| 116 | * the basic blocks required for complete log sectors. |
| 117 | * |
| 118 | * In addition, the buffer may be used for a non-sector-aligned block |
| 119 | * offset, in which case an I/O of the requested size could extend |
| 120 | * beyond the end of the buffer. If the requested size is only 1 basic |
| 121 | * block it will never straddle a sector boundary, so this won't be an |
| 122 | * issue. Nor will this be a problem if the log I/O is done in basic |
| 123 | * blocks (sector size 1). But otherwise we extend the buffer by one |
| 124 | * extra log sector to ensure there's space to accommodate this |
| 125 | * possibility. |
| 126 | */ |
| 127 | if (nbblks > 1 && log->l_sectBBsize > 1) |
| 128 | nbblks += log->l_sectBBsize; |
| 129 | nbblks = round_up(nbblks, log->l_sectBBsize); |
| 130 | return kmem_alloc_io(BBTOB(nbblks), align_mask, KM_MAYFAIL | KM_ZERO); |
| 131 | } |
| 132 | |
| 133 | /* |
| 134 | * Return the address of the start of the given block number's data |
| 135 | * in a log buffer. The buffer covers a log sector-aligned region. |
| 136 | */ |
| 137 | static inline unsigned int |
| 138 | xlog_align( |
| 139 | struct xlog *log, |
| 140 | xfs_daddr_t blk_no) |
| 141 | { |
| 142 | return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1)); |
| 143 | } |
| 144 | |
| 145 | static int |
| 146 | xlog_do_io( |
| 147 | struct xlog *log, |
| 148 | xfs_daddr_t blk_no, |
| 149 | unsigned int nbblks, |
| 150 | char *data, |
| 151 | unsigned int op) |
| 152 | { |
| 153 | int error; |
| 154 | |
| 155 | if (!xlog_verify_bno(log, blk_no, nbblks)) { |
| 156 | xfs_warn(log->l_mp, |
| 157 | "Invalid log block/length (0x%llx, 0x%x) for buffer", |
| 158 | blk_no, nbblks); |
| 159 | XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); |
| 160 | return -EFSCORRUPTED; |
| 161 | } |
| 162 | |
| 163 | blk_no = round_down(blk_no, log->l_sectBBsize); |
| 164 | nbblks = round_up(nbblks, log->l_sectBBsize); |
| 165 | ASSERT(nbblks > 0); |
| 166 | |
| 167 | error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no, |
| 168 | BBTOB(nbblks), data, op); |
| 169 | if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) { |
| 170 | xfs_alert(log->l_mp, |
| 171 | "log recovery %s I/O error at daddr 0x%llx len %d error %d", |
| 172 | op == REQ_OP_WRITE ? "write" : "read", |
| 173 | blk_no, nbblks, error); |
| 174 | } |
| 175 | return error; |
| 176 | } |
| 177 | |
| 178 | STATIC int |
| 179 | xlog_bread_noalign( |
| 180 | struct xlog *log, |
| 181 | xfs_daddr_t blk_no, |
| 182 | int nbblks, |
| 183 | char *data) |
| 184 | { |
| 185 | return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ); |
| 186 | } |
| 187 | |
| 188 | STATIC int |
| 189 | xlog_bread( |
| 190 | struct xlog *log, |
| 191 | xfs_daddr_t blk_no, |
| 192 | int nbblks, |
| 193 | char *data, |
| 194 | char **offset) |
| 195 | { |
| 196 | int error; |
| 197 | |
| 198 | error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ); |
| 199 | if (!error) |
| 200 | *offset = data + xlog_align(log, blk_no); |
| 201 | return error; |
| 202 | } |
| 203 | |
| 204 | STATIC int |
| 205 | xlog_bwrite( |
| 206 | struct xlog *log, |
| 207 | xfs_daddr_t blk_no, |
| 208 | int nbblks, |
| 209 | char *data) |
| 210 | { |
| 211 | return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE); |
| 212 | } |
| 213 | |
| 214 | #ifdef DEBUG |
| 215 | /* |
| 216 | * dump debug superblock and log record information |
| 217 | */ |
| 218 | STATIC void |
| 219 | xlog_header_check_dump( |
| 220 | xfs_mount_t *mp, |
| 221 | xlog_rec_header_t *head) |
| 222 | { |
| 223 | xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d", |
| 224 | __func__, &mp->m_sb.sb_uuid, XLOG_FMT); |
| 225 | xfs_debug(mp, " log : uuid = %pU, fmt = %d", |
| 226 | &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); |
| 227 | } |
| 228 | #else |
| 229 | #define xlog_header_check_dump(mp, head) |
| 230 | #endif |
| 231 | |
| 232 | /* |
| 233 | * check log record header for recovery |
| 234 | */ |
| 235 | STATIC int |
| 236 | xlog_header_check_recover( |
| 237 | xfs_mount_t *mp, |
| 238 | xlog_rec_header_t *head) |
| 239 | { |
| 240 | ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); |
| 241 | |
| 242 | /* |
| 243 | * IRIX doesn't write the h_fmt field and leaves it zeroed |
| 244 | * (XLOG_FMT_UNKNOWN). This stops us from trying to recover |
| 245 | * a dirty log created in IRIX. |
| 246 | */ |
| 247 | if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) { |
| 248 | xfs_warn(mp, |
| 249 | "dirty log written in incompatible format - can't recover"); |
| 250 | xlog_header_check_dump(mp, head); |
| 251 | XFS_ERROR_REPORT("xlog_header_check_recover(1)", |
| 252 | XFS_ERRLEVEL_HIGH, mp); |
| 253 | return -EFSCORRUPTED; |
| 254 | } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { |
| 255 | xfs_warn(mp, |
| 256 | "dirty log entry has mismatched uuid - can't recover"); |
| 257 | xlog_header_check_dump(mp, head); |
| 258 | XFS_ERROR_REPORT("xlog_header_check_recover(2)", |
| 259 | XFS_ERRLEVEL_HIGH, mp); |
| 260 | return -EFSCORRUPTED; |
| 261 | } |
| 262 | return 0; |
| 263 | } |
| 264 | |
| 265 | /* |
| 266 | * read the head block of the log and check the header |
| 267 | */ |
| 268 | STATIC int |
| 269 | xlog_header_check_mount( |
| 270 | xfs_mount_t *mp, |
| 271 | xlog_rec_header_t *head) |
| 272 | { |
| 273 | ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); |
| 274 | |
| 275 | if (uuid_is_null(&head->h_fs_uuid)) { |
| 276 | /* |
| 277 | * IRIX doesn't write the h_fs_uuid or h_fmt fields. If |
| 278 | * h_fs_uuid is null, we assume this log was last mounted |
| 279 | * by IRIX and continue. |
| 280 | */ |
| 281 | xfs_warn(mp, "null uuid in log - IRIX style log"); |
| 282 | } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { |
| 283 | xfs_warn(mp, "log has mismatched uuid - can't recover"); |
| 284 | xlog_header_check_dump(mp, head); |
| 285 | XFS_ERROR_REPORT("xlog_header_check_mount", |
| 286 | XFS_ERRLEVEL_HIGH, mp); |
| 287 | return -EFSCORRUPTED; |
| 288 | } |
| 289 | return 0; |
| 290 | } |
| 291 | |
| 292 | STATIC void |
| 293 | xlog_recover_iodone( |
| 294 | struct xfs_buf *bp) |
| 295 | { |
| 296 | if (bp->b_error) { |
| 297 | /* |
| 298 | * We're not going to bother about retrying |
| 299 | * this during recovery. One strike! |
| 300 | */ |
| 301 | if (!XFS_FORCED_SHUTDOWN(bp->b_mount)) { |
| 302 | xfs_buf_ioerror_alert(bp, __func__); |
| 303 | xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR); |
| 304 | } |
| 305 | } |
| 306 | |
| 307 | /* |
| 308 | * On v5 supers, a bli could be attached to update the metadata LSN. |
| 309 | * Clean it up. |
| 310 | */ |
| 311 | if (bp->b_log_item) |
| 312 | xfs_buf_item_relse(bp); |
| 313 | ASSERT(bp->b_log_item == NULL); |
| 314 | |
| 315 | bp->b_iodone = NULL; |
| 316 | xfs_buf_ioend(bp); |
| 317 | } |
| 318 | |
| 319 | /* |
| 320 | * This routine finds (to an approximation) the first block in the physical |
| 321 | * log which contains the given cycle. It uses a binary search algorithm. |
| 322 | * Note that the algorithm can not be perfect because the disk will not |
| 323 | * necessarily be perfect. |
| 324 | */ |
| 325 | STATIC int |
| 326 | xlog_find_cycle_start( |
| 327 | struct xlog *log, |
| 328 | char *buffer, |
| 329 | xfs_daddr_t first_blk, |
| 330 | xfs_daddr_t *last_blk, |
| 331 | uint cycle) |
| 332 | { |
| 333 | char *offset; |
| 334 | xfs_daddr_t mid_blk; |
| 335 | xfs_daddr_t end_blk; |
| 336 | uint mid_cycle; |
| 337 | int error; |
| 338 | |
| 339 | end_blk = *last_blk; |
| 340 | mid_blk = BLK_AVG(first_blk, end_blk); |
| 341 | while (mid_blk != first_blk && mid_blk != end_blk) { |
| 342 | error = xlog_bread(log, mid_blk, 1, buffer, &offset); |
| 343 | if (error) |
| 344 | return error; |
| 345 | mid_cycle = xlog_get_cycle(offset); |
| 346 | if (mid_cycle == cycle) |
| 347 | end_blk = mid_blk; /* last_half_cycle == mid_cycle */ |
| 348 | else |
| 349 | first_blk = mid_blk; /* first_half_cycle == mid_cycle */ |
| 350 | mid_blk = BLK_AVG(first_blk, end_blk); |
| 351 | } |
| 352 | ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || |
| 353 | (mid_blk == end_blk && mid_blk-1 == first_blk)); |
| 354 | |
| 355 | *last_blk = end_blk; |
| 356 | |
| 357 | return 0; |
| 358 | } |
| 359 | |
| 360 | /* |
| 361 | * Check that a range of blocks does not contain stop_on_cycle_no. |
| 362 | * Fill in *new_blk with the block offset where such a block is |
| 363 | * found, or with -1 (an invalid block number) if there is no such |
| 364 | * block in the range. The scan needs to occur from front to back |
| 365 | * and the pointer into the region must be updated since a later |
| 366 | * routine will need to perform another test. |
| 367 | */ |
| 368 | STATIC int |
| 369 | xlog_find_verify_cycle( |
| 370 | struct xlog *log, |
| 371 | xfs_daddr_t start_blk, |
| 372 | int nbblks, |
| 373 | uint stop_on_cycle_no, |
| 374 | xfs_daddr_t *new_blk) |
| 375 | { |
| 376 | xfs_daddr_t i, j; |
| 377 | uint cycle; |
| 378 | char *buffer; |
| 379 | xfs_daddr_t bufblks; |
| 380 | char *buf = NULL; |
| 381 | int error = 0; |
| 382 | |
| 383 | /* |
| 384 | * Greedily allocate a buffer big enough to handle the full |
| 385 | * range of basic blocks we'll be examining. If that fails, |
| 386 | * try a smaller size. We need to be able to read at least |
| 387 | * a log sector, or we're out of luck. |
| 388 | */ |
| 389 | bufblks = 1 << ffs(nbblks); |
| 390 | while (bufblks > log->l_logBBsize) |
| 391 | bufblks >>= 1; |
| 392 | while (!(buffer = xlog_alloc_buffer(log, bufblks))) { |
| 393 | bufblks >>= 1; |
| 394 | if (bufblks < log->l_sectBBsize) |
| 395 | return -ENOMEM; |
| 396 | } |
| 397 | |
| 398 | for (i = start_blk; i < start_blk + nbblks; i += bufblks) { |
| 399 | int bcount; |
| 400 | |
| 401 | bcount = min(bufblks, (start_blk + nbblks - i)); |
| 402 | |
| 403 | error = xlog_bread(log, i, bcount, buffer, &buf); |
| 404 | if (error) |
| 405 | goto out; |
| 406 | |
| 407 | for (j = 0; j < bcount; j++) { |
| 408 | cycle = xlog_get_cycle(buf); |
| 409 | if (cycle == stop_on_cycle_no) { |
| 410 | *new_blk = i+j; |
| 411 | goto out; |
| 412 | } |
| 413 | |
| 414 | buf += BBSIZE; |
| 415 | } |
| 416 | } |
| 417 | |
| 418 | *new_blk = -1; |
| 419 | |
| 420 | out: |
| 421 | kmem_free(buffer); |
| 422 | return error; |
| 423 | } |
| 424 | |
| 425 | /* |
| 426 | * Potentially backup over partial log record write. |
| 427 | * |
| 428 | * In the typical case, last_blk is the number of the block directly after |
| 429 | * a good log record. Therefore, we subtract one to get the block number |
| 430 | * of the last block in the given buffer. extra_bblks contains the number |
| 431 | * of blocks we would have read on a previous read. This happens when the |
| 432 | * last log record is split over the end of the physical log. |
| 433 | * |
| 434 | * extra_bblks is the number of blocks potentially verified on a previous |
| 435 | * call to this routine. |
| 436 | */ |
| 437 | STATIC int |
| 438 | xlog_find_verify_log_record( |
| 439 | struct xlog *log, |
| 440 | xfs_daddr_t start_blk, |
| 441 | xfs_daddr_t *last_blk, |
| 442 | int extra_bblks) |
| 443 | { |
| 444 | xfs_daddr_t i; |
| 445 | char *buffer; |
| 446 | char *offset = NULL; |
| 447 | xlog_rec_header_t *head = NULL; |
| 448 | int error = 0; |
| 449 | int smallmem = 0; |
| 450 | int num_blks = *last_blk - start_blk; |
| 451 | int xhdrs; |
| 452 | |
| 453 | ASSERT(start_blk != 0 || *last_blk != start_blk); |
| 454 | |
| 455 | buffer = xlog_alloc_buffer(log, num_blks); |
| 456 | if (!buffer) { |
| 457 | buffer = xlog_alloc_buffer(log, 1); |
| 458 | if (!buffer) |
| 459 | return -ENOMEM; |
| 460 | smallmem = 1; |
| 461 | } else { |
| 462 | error = xlog_bread(log, start_blk, num_blks, buffer, &offset); |
| 463 | if (error) |
| 464 | goto out; |
| 465 | offset += ((num_blks - 1) << BBSHIFT); |
| 466 | } |
| 467 | |
| 468 | for (i = (*last_blk) - 1; i >= 0; i--) { |
| 469 | if (i < start_blk) { |
| 470 | /* valid log record not found */ |
| 471 | xfs_warn(log->l_mp, |
| 472 | "Log inconsistent (didn't find previous header)"); |
| 473 | ASSERT(0); |
| 474 | error = -EFSCORRUPTED; |
| 475 | goto out; |
| 476 | } |
| 477 | |
| 478 | if (smallmem) { |
| 479 | error = xlog_bread(log, i, 1, buffer, &offset); |
| 480 | if (error) |
| 481 | goto out; |
| 482 | } |
| 483 | |
| 484 | head = (xlog_rec_header_t *)offset; |
| 485 | |
| 486 | if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) |
| 487 | break; |
| 488 | |
| 489 | if (!smallmem) |
| 490 | offset -= BBSIZE; |
| 491 | } |
| 492 | |
| 493 | /* |
| 494 | * We hit the beginning of the physical log & still no header. Return |
| 495 | * to caller. If caller can handle a return of -1, then this routine |
| 496 | * will be called again for the end of the physical log. |
| 497 | */ |
| 498 | if (i == -1) { |
| 499 | error = 1; |
| 500 | goto out; |
| 501 | } |
| 502 | |
| 503 | /* |
| 504 | * We have the final block of the good log (the first block |
| 505 | * of the log record _before_ the head. So we check the uuid. |
| 506 | */ |
| 507 | if ((error = xlog_header_check_mount(log->l_mp, head))) |
| 508 | goto out; |
| 509 | |
| 510 | /* |
| 511 | * We may have found a log record header before we expected one. |
| 512 | * last_blk will be the 1st block # with a given cycle #. We may end |
| 513 | * up reading an entire log record. In this case, we don't want to |
| 514 | * reset last_blk. Only when last_blk points in the middle of a log |
| 515 | * record do we update last_blk. |
| 516 | */ |
| 517 | if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { |
| 518 | uint h_size = be32_to_cpu(head->h_size); |
| 519 | |
| 520 | xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; |
| 521 | if (h_size % XLOG_HEADER_CYCLE_SIZE) |
| 522 | xhdrs++; |
| 523 | } else { |
| 524 | xhdrs = 1; |
| 525 | } |
| 526 | |
| 527 | if (*last_blk - i + extra_bblks != |
| 528 | BTOBB(be32_to_cpu(head->h_len)) + xhdrs) |
| 529 | *last_blk = i; |
| 530 | |
| 531 | out: |
| 532 | kmem_free(buffer); |
| 533 | return error; |
| 534 | } |
| 535 | |
| 536 | /* |
| 537 | * Head is defined to be the point of the log where the next log write |
| 538 | * could go. This means that incomplete LR writes at the end are |
| 539 | * eliminated when calculating the head. We aren't guaranteed that previous |
| 540 | * LR have complete transactions. We only know that a cycle number of |
| 541 | * current cycle number -1 won't be present in the log if we start writing |
| 542 | * from our current block number. |
| 543 | * |
| 544 | * last_blk contains the block number of the first block with a given |
| 545 | * cycle number. |
| 546 | * |
| 547 | * Return: zero if normal, non-zero if error. |
| 548 | */ |
| 549 | STATIC int |
| 550 | xlog_find_head( |
| 551 | struct xlog *log, |
| 552 | xfs_daddr_t *return_head_blk) |
| 553 | { |
| 554 | char *buffer; |
| 555 | char *offset; |
| 556 | xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; |
| 557 | int num_scan_bblks; |
| 558 | uint first_half_cycle, last_half_cycle; |
| 559 | uint stop_on_cycle; |
| 560 | int error, log_bbnum = log->l_logBBsize; |
| 561 | |
| 562 | /* Is the end of the log device zeroed? */ |
| 563 | error = xlog_find_zeroed(log, &first_blk); |
| 564 | if (error < 0) { |
| 565 | xfs_warn(log->l_mp, "empty log check failed"); |
| 566 | return error; |
| 567 | } |
| 568 | if (error == 1) { |
| 569 | *return_head_blk = first_blk; |
| 570 | |
| 571 | /* Is the whole lot zeroed? */ |
| 572 | if (!first_blk) { |
| 573 | /* Linux XFS shouldn't generate totally zeroed logs - |
| 574 | * mkfs etc write a dummy unmount record to a fresh |
| 575 | * log so we can store the uuid in there |
| 576 | */ |
| 577 | xfs_warn(log->l_mp, "totally zeroed log"); |
| 578 | } |
| 579 | |
| 580 | return 0; |
| 581 | } |
| 582 | |
| 583 | first_blk = 0; /* get cycle # of 1st block */ |
| 584 | buffer = xlog_alloc_buffer(log, 1); |
| 585 | if (!buffer) |
| 586 | return -ENOMEM; |
| 587 | |
| 588 | error = xlog_bread(log, 0, 1, buffer, &offset); |
| 589 | if (error) |
| 590 | goto out_free_buffer; |
| 591 | |
| 592 | first_half_cycle = xlog_get_cycle(offset); |
| 593 | |
| 594 | last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ |
| 595 | error = xlog_bread(log, last_blk, 1, buffer, &offset); |
| 596 | if (error) |
| 597 | goto out_free_buffer; |
| 598 | |
| 599 | last_half_cycle = xlog_get_cycle(offset); |
| 600 | ASSERT(last_half_cycle != 0); |
| 601 | |
| 602 | /* |
| 603 | * If the 1st half cycle number is equal to the last half cycle number, |
| 604 | * then the entire log is stamped with the same cycle number. In this |
| 605 | * case, head_blk can't be set to zero (which makes sense). The below |
| 606 | * math doesn't work out properly with head_blk equal to zero. Instead, |
| 607 | * we set it to log_bbnum which is an invalid block number, but this |
| 608 | * value makes the math correct. If head_blk doesn't changed through |
| 609 | * all the tests below, *head_blk is set to zero at the very end rather |
| 610 | * than log_bbnum. In a sense, log_bbnum and zero are the same block |
| 611 | * in a circular file. |
| 612 | */ |
| 613 | if (first_half_cycle == last_half_cycle) { |
| 614 | /* |
| 615 | * In this case we believe that the entire log should have |
| 616 | * cycle number last_half_cycle. We need to scan backwards |
| 617 | * from the end verifying that there are no holes still |
| 618 | * containing last_half_cycle - 1. If we find such a hole, |
| 619 | * then the start of that hole will be the new head. The |
| 620 | * simple case looks like |
| 621 | * x | x ... | x - 1 | x |
| 622 | * Another case that fits this picture would be |
| 623 | * x | x + 1 | x ... | x |
| 624 | * In this case the head really is somewhere at the end of the |
| 625 | * log, as one of the latest writes at the beginning was |
| 626 | * incomplete. |
| 627 | * One more case is |
| 628 | * x | x + 1 | x ... | x - 1 | x |
| 629 | * This is really the combination of the above two cases, and |
| 630 | * the head has to end up at the start of the x-1 hole at the |
| 631 | * end of the log. |
| 632 | * |
| 633 | * In the 256k log case, we will read from the beginning to the |
| 634 | * end of the log and search for cycle numbers equal to x-1. |
| 635 | * We don't worry about the x+1 blocks that we encounter, |
| 636 | * because we know that they cannot be the head since the log |
| 637 | * started with x. |
| 638 | */ |
| 639 | head_blk = log_bbnum; |
| 640 | stop_on_cycle = last_half_cycle - 1; |
| 641 | } else { |
| 642 | /* |
| 643 | * In this case we want to find the first block with cycle |
| 644 | * number matching last_half_cycle. We expect the log to be |
| 645 | * some variation on |
| 646 | * x + 1 ... | x ... | x |
| 647 | * The first block with cycle number x (last_half_cycle) will |
| 648 | * be where the new head belongs. First we do a binary search |
| 649 | * for the first occurrence of last_half_cycle. The binary |
| 650 | * search may not be totally accurate, so then we scan back |
| 651 | * from there looking for occurrences of last_half_cycle before |
| 652 | * us. If that backwards scan wraps around the beginning of |
| 653 | * the log, then we look for occurrences of last_half_cycle - 1 |
| 654 | * at the end of the log. The cases we're looking for look |
| 655 | * like |
| 656 | * v binary search stopped here |
| 657 | * x + 1 ... | x | x + 1 | x ... | x |
| 658 | * ^ but we want to locate this spot |
| 659 | * or |
| 660 | * <---------> less than scan distance |
| 661 | * x + 1 ... | x ... | x - 1 | x |
| 662 | * ^ we want to locate this spot |
| 663 | */ |
| 664 | stop_on_cycle = last_half_cycle; |
| 665 | error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk, |
| 666 | last_half_cycle); |
| 667 | if (error) |
| 668 | goto out_free_buffer; |
| 669 | } |
| 670 | |
| 671 | /* |
| 672 | * Now validate the answer. Scan back some number of maximum possible |
| 673 | * blocks and make sure each one has the expected cycle number. The |
| 674 | * maximum is determined by the total possible amount of buffering |
| 675 | * in the in-core log. The following number can be made tighter if |
| 676 | * we actually look at the block size of the filesystem. |
| 677 | */ |
| 678 | num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log)); |
| 679 | if (head_blk >= num_scan_bblks) { |
| 680 | /* |
| 681 | * We are guaranteed that the entire check can be performed |
| 682 | * in one buffer. |
| 683 | */ |
| 684 | start_blk = head_blk - num_scan_bblks; |
| 685 | if ((error = xlog_find_verify_cycle(log, |
| 686 | start_blk, num_scan_bblks, |
| 687 | stop_on_cycle, &new_blk))) |
| 688 | goto out_free_buffer; |
| 689 | if (new_blk != -1) |
| 690 | head_blk = new_blk; |
| 691 | } else { /* need to read 2 parts of log */ |
| 692 | /* |
| 693 | * We are going to scan backwards in the log in two parts. |
| 694 | * First we scan the physical end of the log. In this part |
| 695 | * of the log, we are looking for blocks with cycle number |
| 696 | * last_half_cycle - 1. |
| 697 | * If we find one, then we know that the log starts there, as |
| 698 | * we've found a hole that didn't get written in going around |
| 699 | * the end of the physical log. The simple case for this is |
| 700 | * x + 1 ... | x ... | x - 1 | x |
| 701 | * <---------> less than scan distance |
| 702 | * If all of the blocks at the end of the log have cycle number |
| 703 | * last_half_cycle, then we check the blocks at the start of |
| 704 | * the log looking for occurrences of last_half_cycle. If we |
| 705 | * find one, then our current estimate for the location of the |
| 706 | * first occurrence of last_half_cycle is wrong and we move |
| 707 | * back to the hole we've found. This case looks like |
| 708 | * x + 1 ... | x | x + 1 | x ... |
| 709 | * ^ binary search stopped here |
| 710 | * Another case we need to handle that only occurs in 256k |
| 711 | * logs is |
| 712 | * x + 1 ... | x ... | x+1 | x ... |
| 713 | * ^ binary search stops here |
| 714 | * In a 256k log, the scan at the end of the log will see the |
| 715 | * x + 1 blocks. We need to skip past those since that is |
| 716 | * certainly not the head of the log. By searching for |
| 717 | * last_half_cycle-1 we accomplish that. |
| 718 | */ |
| 719 | ASSERT(head_blk <= INT_MAX && |
| 720 | (xfs_daddr_t) num_scan_bblks >= head_blk); |
| 721 | start_blk = log_bbnum - (num_scan_bblks - head_blk); |
| 722 | if ((error = xlog_find_verify_cycle(log, start_blk, |
| 723 | num_scan_bblks - (int)head_blk, |
| 724 | (stop_on_cycle - 1), &new_blk))) |
| 725 | goto out_free_buffer; |
| 726 | if (new_blk != -1) { |
| 727 | head_blk = new_blk; |
| 728 | goto validate_head; |
| 729 | } |
| 730 | |
| 731 | /* |
| 732 | * Scan beginning of log now. The last part of the physical |
| 733 | * log is good. This scan needs to verify that it doesn't find |
| 734 | * the last_half_cycle. |
| 735 | */ |
| 736 | start_blk = 0; |
| 737 | ASSERT(head_blk <= INT_MAX); |
| 738 | if ((error = xlog_find_verify_cycle(log, |
| 739 | start_blk, (int)head_blk, |
| 740 | stop_on_cycle, &new_blk))) |
| 741 | goto out_free_buffer; |
| 742 | if (new_blk != -1) |
| 743 | head_blk = new_blk; |
| 744 | } |
| 745 | |
| 746 | validate_head: |
| 747 | /* |
| 748 | * Now we need to make sure head_blk is not pointing to a block in |
| 749 | * the middle of a log record. |
| 750 | */ |
| 751 | num_scan_bblks = XLOG_REC_SHIFT(log); |
| 752 | if (head_blk >= num_scan_bblks) { |
| 753 | start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ |
| 754 | |
| 755 | /* start ptr at last block ptr before head_blk */ |
| 756 | error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); |
| 757 | if (error == 1) |
| 758 | error = -EIO; |
| 759 | if (error) |
| 760 | goto out_free_buffer; |
| 761 | } else { |
| 762 | start_blk = 0; |
| 763 | ASSERT(head_blk <= INT_MAX); |
| 764 | error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); |
| 765 | if (error < 0) |
| 766 | goto out_free_buffer; |
| 767 | if (error == 1) { |
| 768 | /* We hit the beginning of the log during our search */ |
| 769 | start_blk = log_bbnum - (num_scan_bblks - head_blk); |
| 770 | new_blk = log_bbnum; |
| 771 | ASSERT(start_blk <= INT_MAX && |
| 772 | (xfs_daddr_t) log_bbnum-start_blk >= 0); |
| 773 | ASSERT(head_blk <= INT_MAX); |
| 774 | error = xlog_find_verify_log_record(log, start_blk, |
| 775 | &new_blk, (int)head_blk); |
| 776 | if (error == 1) |
| 777 | error = -EIO; |
| 778 | if (error) |
| 779 | goto out_free_buffer; |
| 780 | if (new_blk != log_bbnum) |
| 781 | head_blk = new_blk; |
| 782 | } else if (error) |
| 783 | goto out_free_buffer; |
| 784 | } |
| 785 | |
| 786 | kmem_free(buffer); |
| 787 | if (head_blk == log_bbnum) |
| 788 | *return_head_blk = 0; |
| 789 | else |
| 790 | *return_head_blk = head_blk; |
| 791 | /* |
| 792 | * When returning here, we have a good block number. Bad block |
| 793 | * means that during a previous crash, we didn't have a clean break |
| 794 | * from cycle number N to cycle number N-1. In this case, we need |
| 795 | * to find the first block with cycle number N-1. |
| 796 | */ |
| 797 | return 0; |
| 798 | |
| 799 | out_free_buffer: |
| 800 | kmem_free(buffer); |
| 801 | if (error) |
| 802 | xfs_warn(log->l_mp, "failed to find log head"); |
| 803 | return error; |
| 804 | } |
| 805 | |
| 806 | /* |
| 807 | * Seek backwards in the log for log record headers. |
| 808 | * |
| 809 | * Given a starting log block, walk backwards until we find the provided number |
| 810 | * of records or hit the provided tail block. The return value is the number of |
| 811 | * records encountered or a negative error code. The log block and buffer |
| 812 | * pointer of the last record seen are returned in rblk and rhead respectively. |
| 813 | */ |
| 814 | STATIC int |
| 815 | xlog_rseek_logrec_hdr( |
| 816 | struct xlog *log, |
| 817 | xfs_daddr_t head_blk, |
| 818 | xfs_daddr_t tail_blk, |
| 819 | int count, |
| 820 | char *buffer, |
| 821 | xfs_daddr_t *rblk, |
| 822 | struct xlog_rec_header **rhead, |
| 823 | bool *wrapped) |
| 824 | { |
| 825 | int i; |
| 826 | int error; |
| 827 | int found = 0; |
| 828 | char *offset = NULL; |
| 829 | xfs_daddr_t end_blk; |
| 830 | |
| 831 | *wrapped = false; |
| 832 | |
| 833 | /* |
| 834 | * Walk backwards from the head block until we hit the tail or the first |
| 835 | * block in the log. |
| 836 | */ |
| 837 | end_blk = head_blk > tail_blk ? tail_blk : 0; |
| 838 | for (i = (int) head_blk - 1; i >= end_blk; i--) { |
| 839 | error = xlog_bread(log, i, 1, buffer, &offset); |
| 840 | if (error) |
| 841 | goto out_error; |
| 842 | |
| 843 | if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { |
| 844 | *rblk = i; |
| 845 | *rhead = (struct xlog_rec_header *) offset; |
| 846 | if (++found == count) |
| 847 | break; |
| 848 | } |
| 849 | } |
| 850 | |
| 851 | /* |
| 852 | * If we haven't hit the tail block or the log record header count, |
| 853 | * start looking again from the end of the physical log. Note that |
| 854 | * callers can pass head == tail if the tail is not yet known. |
| 855 | */ |
| 856 | if (tail_blk >= head_blk && found != count) { |
| 857 | for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) { |
| 858 | error = xlog_bread(log, i, 1, buffer, &offset); |
| 859 | if (error) |
| 860 | goto out_error; |
| 861 | |
| 862 | if (*(__be32 *)offset == |
| 863 | cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { |
| 864 | *wrapped = true; |
| 865 | *rblk = i; |
| 866 | *rhead = (struct xlog_rec_header *) offset; |
| 867 | if (++found == count) |
| 868 | break; |
| 869 | } |
| 870 | } |
| 871 | } |
| 872 | |
| 873 | return found; |
| 874 | |
| 875 | out_error: |
| 876 | return error; |
| 877 | } |
| 878 | |
| 879 | /* |
| 880 | * Seek forward in the log for log record headers. |
| 881 | * |
| 882 | * Given head and tail blocks, walk forward from the tail block until we find |
| 883 | * the provided number of records or hit the head block. The return value is the |
| 884 | * number of records encountered or a negative error code. The log block and |
| 885 | * buffer pointer of the last record seen are returned in rblk and rhead |
| 886 | * respectively. |
| 887 | */ |
| 888 | STATIC int |
| 889 | xlog_seek_logrec_hdr( |
| 890 | struct xlog *log, |
| 891 | xfs_daddr_t head_blk, |
| 892 | xfs_daddr_t tail_blk, |
| 893 | int count, |
| 894 | char *buffer, |
| 895 | xfs_daddr_t *rblk, |
| 896 | struct xlog_rec_header **rhead, |
| 897 | bool *wrapped) |
| 898 | { |
| 899 | int i; |
| 900 | int error; |
| 901 | int found = 0; |
| 902 | char *offset = NULL; |
| 903 | xfs_daddr_t end_blk; |
| 904 | |
| 905 | *wrapped = false; |
| 906 | |
| 907 | /* |
| 908 | * Walk forward from the tail block until we hit the head or the last |
| 909 | * block in the log. |
| 910 | */ |
| 911 | end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1; |
| 912 | for (i = (int) tail_blk; i <= end_blk; i++) { |
| 913 | error = xlog_bread(log, i, 1, buffer, &offset); |
| 914 | if (error) |
| 915 | goto out_error; |
| 916 | |
| 917 | if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { |
| 918 | *rblk = i; |
| 919 | *rhead = (struct xlog_rec_header *) offset; |
| 920 | if (++found == count) |
| 921 | break; |
| 922 | } |
| 923 | } |
| 924 | |
| 925 | /* |
| 926 | * If we haven't hit the head block or the log record header count, |
| 927 | * start looking again from the start of the physical log. |
| 928 | */ |
| 929 | if (tail_blk > head_blk && found != count) { |
| 930 | for (i = 0; i < (int) head_blk; i++) { |
| 931 | error = xlog_bread(log, i, 1, buffer, &offset); |
| 932 | if (error) |
| 933 | goto out_error; |
| 934 | |
| 935 | if (*(__be32 *)offset == |
| 936 | cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { |
| 937 | *wrapped = true; |
| 938 | *rblk = i; |
| 939 | *rhead = (struct xlog_rec_header *) offset; |
| 940 | if (++found == count) |
| 941 | break; |
| 942 | } |
| 943 | } |
| 944 | } |
| 945 | |
| 946 | return found; |
| 947 | |
| 948 | out_error: |
| 949 | return error; |
| 950 | } |
| 951 | |
| 952 | /* |
| 953 | * Calculate distance from head to tail (i.e., unused space in the log). |
| 954 | */ |
| 955 | static inline int |
| 956 | xlog_tail_distance( |
| 957 | struct xlog *log, |
| 958 | xfs_daddr_t head_blk, |
| 959 | xfs_daddr_t tail_blk) |
| 960 | { |
| 961 | if (head_blk < tail_blk) |
| 962 | return tail_blk - head_blk; |
| 963 | |
| 964 | return tail_blk + (log->l_logBBsize - head_blk); |
| 965 | } |
| 966 | |
| 967 | /* |
| 968 | * Verify the log tail. This is particularly important when torn or incomplete |
| 969 | * writes have been detected near the front of the log and the head has been |
| 970 | * walked back accordingly. |
| 971 | * |
| 972 | * We also have to handle the case where the tail was pinned and the head |
| 973 | * blocked behind the tail right before a crash. If the tail had been pushed |
| 974 | * immediately prior to the crash and the subsequent checkpoint was only |
| 975 | * partially written, it's possible it overwrote the last referenced tail in the |
| 976 | * log with garbage. This is not a coherency problem because the tail must have |
| 977 | * been pushed before it can be overwritten, but appears as log corruption to |
| 978 | * recovery because we have no way to know the tail was updated if the |
| 979 | * subsequent checkpoint didn't write successfully. |
| 980 | * |
| 981 | * Therefore, CRC check the log from tail to head. If a failure occurs and the |
| 982 | * offending record is within max iclog bufs from the head, walk the tail |
| 983 | * forward and retry until a valid tail is found or corruption is detected out |
| 984 | * of the range of a possible overwrite. |
| 985 | */ |
| 986 | STATIC int |
| 987 | xlog_verify_tail( |
| 988 | struct xlog *log, |
| 989 | xfs_daddr_t head_blk, |
| 990 | xfs_daddr_t *tail_blk, |
| 991 | int hsize) |
| 992 | { |
| 993 | struct xlog_rec_header *thead; |
| 994 | char *buffer; |
| 995 | xfs_daddr_t first_bad; |
| 996 | int error = 0; |
| 997 | bool wrapped; |
| 998 | xfs_daddr_t tmp_tail; |
| 999 | xfs_daddr_t orig_tail = *tail_blk; |
| 1000 | |
| 1001 | buffer = xlog_alloc_buffer(log, 1); |
| 1002 | if (!buffer) |
| 1003 | return -ENOMEM; |
| 1004 | |
| 1005 | /* |
| 1006 | * Make sure the tail points to a record (returns positive count on |
| 1007 | * success). |
| 1008 | */ |
| 1009 | error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer, |
| 1010 | &tmp_tail, &thead, &wrapped); |
| 1011 | if (error < 0) |
| 1012 | goto out; |
| 1013 | if (*tail_blk != tmp_tail) |
| 1014 | *tail_blk = tmp_tail; |
| 1015 | |
| 1016 | /* |
| 1017 | * Run a CRC check from the tail to the head. We can't just check |
| 1018 | * MAX_ICLOGS records past the tail because the tail may point to stale |
| 1019 | * blocks cleared during the search for the head/tail. These blocks are |
| 1020 | * overwritten with zero-length records and thus record count is not a |
| 1021 | * reliable indicator of the iclog state before a crash. |
| 1022 | */ |
| 1023 | first_bad = 0; |
| 1024 | error = xlog_do_recovery_pass(log, head_blk, *tail_blk, |
| 1025 | XLOG_RECOVER_CRCPASS, &first_bad); |
| 1026 | while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { |
| 1027 | int tail_distance; |
| 1028 | |
| 1029 | /* |
| 1030 | * Is corruption within range of the head? If so, retry from |
| 1031 | * the next record. Otherwise return an error. |
| 1032 | */ |
| 1033 | tail_distance = xlog_tail_distance(log, head_blk, first_bad); |
| 1034 | if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize)) |
| 1035 | break; |
| 1036 | |
| 1037 | /* skip to the next record; returns positive count on success */ |
| 1038 | error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, |
| 1039 | buffer, &tmp_tail, &thead, &wrapped); |
| 1040 | if (error < 0) |
| 1041 | goto out; |
| 1042 | |
| 1043 | *tail_blk = tmp_tail; |
| 1044 | first_bad = 0; |
| 1045 | error = xlog_do_recovery_pass(log, head_blk, *tail_blk, |
| 1046 | XLOG_RECOVER_CRCPASS, &first_bad); |
| 1047 | } |
| 1048 | |
| 1049 | if (!error && *tail_blk != orig_tail) |
| 1050 | xfs_warn(log->l_mp, |
| 1051 | "Tail block (0x%llx) overwrite detected. Updated to 0x%llx", |
| 1052 | orig_tail, *tail_blk); |
| 1053 | out: |
| 1054 | kmem_free(buffer); |
| 1055 | return error; |
| 1056 | } |
| 1057 | |
| 1058 | /* |
| 1059 | * Detect and trim torn writes from the head of the log. |
| 1060 | * |
| 1061 | * Storage without sector atomicity guarantees can result in torn writes in the |
| 1062 | * log in the event of a crash. Our only means to detect this scenario is via |
| 1063 | * CRC verification. While we can't always be certain that CRC verification |
| 1064 | * failure is due to a torn write vs. an unrelated corruption, we do know that |
| 1065 | * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at |
| 1066 | * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of |
| 1067 | * the log and treat failures in this range as torn writes as a matter of |
| 1068 | * policy. In the event of CRC failure, the head is walked back to the last good |
| 1069 | * record in the log and the tail is updated from that record and verified. |
| 1070 | */ |
| 1071 | STATIC int |
| 1072 | xlog_verify_head( |
| 1073 | struct xlog *log, |
| 1074 | xfs_daddr_t *head_blk, /* in/out: unverified head */ |
| 1075 | xfs_daddr_t *tail_blk, /* out: tail block */ |
| 1076 | char *buffer, |
| 1077 | xfs_daddr_t *rhead_blk, /* start blk of last record */ |
| 1078 | struct xlog_rec_header **rhead, /* ptr to last record */ |
| 1079 | bool *wrapped) /* last rec. wraps phys. log */ |
| 1080 | { |
| 1081 | struct xlog_rec_header *tmp_rhead; |
| 1082 | char *tmp_buffer; |
| 1083 | xfs_daddr_t first_bad; |
| 1084 | xfs_daddr_t tmp_rhead_blk; |
| 1085 | int found; |
| 1086 | int error; |
| 1087 | bool tmp_wrapped; |
| 1088 | |
| 1089 | /* |
| 1090 | * Check the head of the log for torn writes. Search backwards from the |
| 1091 | * head until we hit the tail or the maximum number of log record I/Os |
| 1092 | * that could have been in flight at one time. Use a temporary buffer so |
| 1093 | * we don't trash the rhead/buffer pointers from the caller. |
| 1094 | */ |
| 1095 | tmp_buffer = xlog_alloc_buffer(log, 1); |
| 1096 | if (!tmp_buffer) |
| 1097 | return -ENOMEM; |
| 1098 | error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk, |
| 1099 | XLOG_MAX_ICLOGS, tmp_buffer, |
| 1100 | &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped); |
| 1101 | kmem_free(tmp_buffer); |
| 1102 | if (error < 0) |
| 1103 | return error; |
| 1104 | |
| 1105 | /* |
| 1106 | * Now run a CRC verification pass over the records starting at the |
| 1107 | * block found above to the current head. If a CRC failure occurs, the |
| 1108 | * log block of the first bad record is saved in first_bad. |
| 1109 | */ |
| 1110 | error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk, |
| 1111 | XLOG_RECOVER_CRCPASS, &first_bad); |
| 1112 | if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { |
| 1113 | /* |
| 1114 | * We've hit a potential torn write. Reset the error and warn |
| 1115 | * about it. |
| 1116 | */ |
| 1117 | error = 0; |
| 1118 | xfs_warn(log->l_mp, |
| 1119 | "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.", |
| 1120 | first_bad, *head_blk); |
| 1121 | |
| 1122 | /* |
| 1123 | * Get the header block and buffer pointer for the last good |
| 1124 | * record before the bad record. |
| 1125 | * |
| 1126 | * Note that xlog_find_tail() clears the blocks at the new head |
| 1127 | * (i.e., the records with invalid CRC) if the cycle number |
| 1128 | * matches the the current cycle. |
| 1129 | */ |
| 1130 | found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, |
| 1131 | buffer, rhead_blk, rhead, wrapped); |
| 1132 | if (found < 0) |
| 1133 | return found; |
| 1134 | if (found == 0) /* XXX: right thing to do here? */ |
| 1135 | return -EIO; |
| 1136 | |
| 1137 | /* |
| 1138 | * Reset the head block to the starting block of the first bad |
| 1139 | * log record and set the tail block based on the last good |
| 1140 | * record. |
| 1141 | * |
| 1142 | * Bail out if the updated head/tail match as this indicates |
| 1143 | * possible corruption outside of the acceptable |
| 1144 | * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair... |
| 1145 | */ |
| 1146 | *head_blk = first_bad; |
| 1147 | *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn)); |
| 1148 | if (*head_blk == *tail_blk) { |
| 1149 | ASSERT(0); |
| 1150 | return 0; |
| 1151 | } |
| 1152 | } |
| 1153 | if (error) |
| 1154 | return error; |
| 1155 | |
| 1156 | return xlog_verify_tail(log, *head_blk, tail_blk, |
| 1157 | be32_to_cpu((*rhead)->h_size)); |
| 1158 | } |
| 1159 | |
| 1160 | /* |
| 1161 | * We need to make sure we handle log wrapping properly, so we can't use the |
| 1162 | * calculated logbno directly. Make sure it wraps to the correct bno inside the |
| 1163 | * log. |
| 1164 | * |
| 1165 | * The log is limited to 32 bit sizes, so we use the appropriate modulus |
| 1166 | * operation here and cast it back to a 64 bit daddr on return. |
| 1167 | */ |
| 1168 | static inline xfs_daddr_t |
| 1169 | xlog_wrap_logbno( |
| 1170 | struct xlog *log, |
| 1171 | xfs_daddr_t bno) |
| 1172 | { |
| 1173 | int mod; |
| 1174 | |
| 1175 | div_s64_rem(bno, log->l_logBBsize, &mod); |
| 1176 | return mod; |
| 1177 | } |
| 1178 | |
| 1179 | /* |
| 1180 | * Check whether the head of the log points to an unmount record. In other |
| 1181 | * words, determine whether the log is clean. If so, update the in-core state |
| 1182 | * appropriately. |
| 1183 | */ |
| 1184 | static int |
| 1185 | xlog_check_unmount_rec( |
| 1186 | struct xlog *log, |
| 1187 | xfs_daddr_t *head_blk, |
| 1188 | xfs_daddr_t *tail_blk, |
| 1189 | struct xlog_rec_header *rhead, |
| 1190 | xfs_daddr_t rhead_blk, |
| 1191 | char *buffer, |
| 1192 | bool *clean) |
| 1193 | { |
| 1194 | struct xlog_op_header *op_head; |
| 1195 | xfs_daddr_t umount_data_blk; |
| 1196 | xfs_daddr_t after_umount_blk; |
| 1197 | int hblks; |
| 1198 | int error; |
| 1199 | char *offset; |
| 1200 | |
| 1201 | *clean = false; |
| 1202 | |
| 1203 | /* |
| 1204 | * Look for unmount record. If we find it, then we know there was a |
| 1205 | * clean unmount. Since 'i' could be the last block in the physical |
| 1206 | * log, we convert to a log block before comparing to the head_blk. |
| 1207 | * |
| 1208 | * Save the current tail lsn to use to pass to xlog_clear_stale_blocks() |
| 1209 | * below. We won't want to clear the unmount record if there is one, so |
| 1210 | * we pass the lsn of the unmount record rather than the block after it. |
| 1211 | */ |
| 1212 | if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { |
| 1213 | int h_size = be32_to_cpu(rhead->h_size); |
| 1214 | int h_version = be32_to_cpu(rhead->h_version); |
| 1215 | |
| 1216 | if ((h_version & XLOG_VERSION_2) && |
| 1217 | (h_size > XLOG_HEADER_CYCLE_SIZE)) { |
| 1218 | hblks = h_size / XLOG_HEADER_CYCLE_SIZE; |
| 1219 | if (h_size % XLOG_HEADER_CYCLE_SIZE) |
| 1220 | hblks++; |
| 1221 | } else { |
| 1222 | hblks = 1; |
| 1223 | } |
| 1224 | } else { |
| 1225 | hblks = 1; |
| 1226 | } |
| 1227 | |
| 1228 | after_umount_blk = xlog_wrap_logbno(log, |
| 1229 | rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len))); |
| 1230 | |
| 1231 | if (*head_blk == after_umount_blk && |
| 1232 | be32_to_cpu(rhead->h_num_logops) == 1) { |
| 1233 | umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks); |
| 1234 | error = xlog_bread(log, umount_data_blk, 1, buffer, &offset); |
| 1235 | if (error) |
| 1236 | return error; |
| 1237 | |
| 1238 | op_head = (struct xlog_op_header *)offset; |
| 1239 | if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { |
| 1240 | /* |
| 1241 | * Set tail and last sync so that newly written log |
| 1242 | * records will point recovery to after the current |
| 1243 | * unmount record. |
| 1244 | */ |
| 1245 | xlog_assign_atomic_lsn(&log->l_tail_lsn, |
| 1246 | log->l_curr_cycle, after_umount_blk); |
| 1247 | xlog_assign_atomic_lsn(&log->l_last_sync_lsn, |
| 1248 | log->l_curr_cycle, after_umount_blk); |
| 1249 | *tail_blk = after_umount_blk; |
| 1250 | |
| 1251 | *clean = true; |
| 1252 | } |
| 1253 | } |
| 1254 | |
| 1255 | return 0; |
| 1256 | } |
| 1257 | |
| 1258 | static void |
| 1259 | xlog_set_state( |
| 1260 | struct xlog *log, |
| 1261 | xfs_daddr_t head_blk, |
| 1262 | struct xlog_rec_header *rhead, |
| 1263 | xfs_daddr_t rhead_blk, |
| 1264 | bool bump_cycle) |
| 1265 | { |
| 1266 | /* |
| 1267 | * Reset log values according to the state of the log when we |
| 1268 | * crashed. In the case where head_blk == 0, we bump curr_cycle |
| 1269 | * one because the next write starts a new cycle rather than |
| 1270 | * continuing the cycle of the last good log record. At this |
| 1271 | * point we have guaranteed that all partial log records have been |
| 1272 | * accounted for. Therefore, we know that the last good log record |
| 1273 | * written was complete and ended exactly on the end boundary |
| 1274 | * of the physical log. |
| 1275 | */ |
| 1276 | log->l_prev_block = rhead_blk; |
| 1277 | log->l_curr_block = (int)head_blk; |
| 1278 | log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); |
| 1279 | if (bump_cycle) |
| 1280 | log->l_curr_cycle++; |
| 1281 | atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); |
| 1282 | atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); |
| 1283 | xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, |
| 1284 | BBTOB(log->l_curr_block)); |
| 1285 | xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, |
| 1286 | BBTOB(log->l_curr_block)); |
| 1287 | } |
| 1288 | |
| 1289 | /* |
| 1290 | * Find the sync block number or the tail of the log. |
| 1291 | * |
| 1292 | * This will be the block number of the last record to have its |
| 1293 | * associated buffers synced to disk. Every log record header has |
| 1294 | * a sync lsn embedded in it. LSNs hold block numbers, so it is easy |
| 1295 | * to get a sync block number. The only concern is to figure out which |
| 1296 | * log record header to believe. |
| 1297 | * |
| 1298 | * The following algorithm uses the log record header with the largest |
| 1299 | * lsn. The entire log record does not need to be valid. We only care |
| 1300 | * that the header is valid. |
| 1301 | * |
| 1302 | * We could speed up search by using current head_blk buffer, but it is not |
| 1303 | * available. |
| 1304 | */ |
| 1305 | STATIC int |
| 1306 | xlog_find_tail( |
| 1307 | struct xlog *log, |
| 1308 | xfs_daddr_t *head_blk, |
| 1309 | xfs_daddr_t *tail_blk) |
| 1310 | { |
| 1311 | xlog_rec_header_t *rhead; |
| 1312 | char *offset = NULL; |
| 1313 | char *buffer; |
| 1314 | int error; |
| 1315 | xfs_daddr_t rhead_blk; |
| 1316 | xfs_lsn_t tail_lsn; |
| 1317 | bool wrapped = false; |
| 1318 | bool clean = false; |
| 1319 | |
| 1320 | /* |
| 1321 | * Find previous log record |
| 1322 | */ |
| 1323 | if ((error = xlog_find_head(log, head_blk))) |
| 1324 | return error; |
| 1325 | ASSERT(*head_blk < INT_MAX); |
| 1326 | |
| 1327 | buffer = xlog_alloc_buffer(log, 1); |
| 1328 | if (!buffer) |
| 1329 | return -ENOMEM; |
| 1330 | if (*head_blk == 0) { /* special case */ |
| 1331 | error = xlog_bread(log, 0, 1, buffer, &offset); |
| 1332 | if (error) |
| 1333 | goto done; |
| 1334 | |
| 1335 | if (xlog_get_cycle(offset) == 0) { |
| 1336 | *tail_blk = 0; |
| 1337 | /* leave all other log inited values alone */ |
| 1338 | goto done; |
| 1339 | } |
| 1340 | } |
| 1341 | |
| 1342 | /* |
| 1343 | * Search backwards through the log looking for the log record header |
| 1344 | * block. This wraps all the way back around to the head so something is |
| 1345 | * seriously wrong if we can't find it. |
| 1346 | */ |
| 1347 | error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer, |
| 1348 | &rhead_blk, &rhead, &wrapped); |
| 1349 | if (error < 0) |
| 1350 | goto done; |
| 1351 | if (!error) { |
| 1352 | xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); |
| 1353 | error = -EFSCORRUPTED; |
| 1354 | goto done; |
| 1355 | } |
| 1356 | *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); |
| 1357 | |
| 1358 | /* |
| 1359 | * Set the log state based on the current head record. |
| 1360 | */ |
| 1361 | xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped); |
| 1362 | tail_lsn = atomic64_read(&log->l_tail_lsn); |
| 1363 | |
| 1364 | /* |
| 1365 | * Look for an unmount record at the head of the log. This sets the log |
| 1366 | * state to determine whether recovery is necessary. |
| 1367 | */ |
| 1368 | error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead, |
| 1369 | rhead_blk, buffer, &clean); |
| 1370 | if (error) |
| 1371 | goto done; |
| 1372 | |
| 1373 | /* |
| 1374 | * Verify the log head if the log is not clean (e.g., we have anything |
| 1375 | * but an unmount record at the head). This uses CRC verification to |
| 1376 | * detect and trim torn writes. If discovered, CRC failures are |
| 1377 | * considered torn writes and the log head is trimmed accordingly. |
| 1378 | * |
| 1379 | * Note that we can only run CRC verification when the log is dirty |
| 1380 | * because there's no guarantee that the log data behind an unmount |
| 1381 | * record is compatible with the current architecture. |
| 1382 | */ |
| 1383 | if (!clean) { |
| 1384 | xfs_daddr_t orig_head = *head_blk; |
| 1385 | |
| 1386 | error = xlog_verify_head(log, head_blk, tail_blk, buffer, |
| 1387 | &rhead_blk, &rhead, &wrapped); |
| 1388 | if (error) |
| 1389 | goto done; |
| 1390 | |
| 1391 | /* update in-core state again if the head changed */ |
| 1392 | if (*head_blk != orig_head) { |
| 1393 | xlog_set_state(log, *head_blk, rhead, rhead_blk, |
| 1394 | wrapped); |
| 1395 | tail_lsn = atomic64_read(&log->l_tail_lsn); |
| 1396 | error = xlog_check_unmount_rec(log, head_blk, tail_blk, |
| 1397 | rhead, rhead_blk, buffer, |
| 1398 | &clean); |
| 1399 | if (error) |
| 1400 | goto done; |
| 1401 | } |
| 1402 | } |
| 1403 | |
| 1404 | /* |
| 1405 | * Note that the unmount was clean. If the unmount was not clean, we |
| 1406 | * need to know this to rebuild the superblock counters from the perag |
| 1407 | * headers if we have a filesystem using non-persistent counters. |
| 1408 | */ |
| 1409 | if (clean) |
| 1410 | log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; |
| 1411 | |
| 1412 | /* |
| 1413 | * Make sure that there are no blocks in front of the head |
| 1414 | * with the same cycle number as the head. This can happen |
| 1415 | * because we allow multiple outstanding log writes concurrently, |
| 1416 | * and the later writes might make it out before earlier ones. |
| 1417 | * |
| 1418 | * We use the lsn from before modifying it so that we'll never |
| 1419 | * overwrite the unmount record after a clean unmount. |
| 1420 | * |
| 1421 | * Do this only if we are going to recover the filesystem |
| 1422 | * |
| 1423 | * NOTE: This used to say "if (!readonly)" |
| 1424 | * However on Linux, we can & do recover a read-only filesystem. |
| 1425 | * We only skip recovery if NORECOVERY is specified on mount, |
| 1426 | * in which case we would not be here. |
| 1427 | * |
| 1428 | * But... if the -device- itself is readonly, just skip this. |
| 1429 | * We can't recover this device anyway, so it won't matter. |
| 1430 | */ |
| 1431 | if (!xfs_readonly_buftarg(log->l_targ)) |
| 1432 | error = xlog_clear_stale_blocks(log, tail_lsn); |
| 1433 | |
| 1434 | done: |
| 1435 | kmem_free(buffer); |
| 1436 | |
| 1437 | if (error) |
| 1438 | xfs_warn(log->l_mp, "failed to locate log tail"); |
| 1439 | return error; |
| 1440 | } |
| 1441 | |
| 1442 | /* |
| 1443 | * Is the log zeroed at all? |
| 1444 | * |
| 1445 | * The last binary search should be changed to perform an X block read |
| 1446 | * once X becomes small enough. You can then search linearly through |
| 1447 | * the X blocks. This will cut down on the number of reads we need to do. |
| 1448 | * |
| 1449 | * If the log is partially zeroed, this routine will pass back the blkno |
| 1450 | * of the first block with cycle number 0. It won't have a complete LR |
| 1451 | * preceding it. |
| 1452 | * |
| 1453 | * Return: |
| 1454 | * 0 => the log is completely written to |
| 1455 | * 1 => use *blk_no as the first block of the log |
| 1456 | * <0 => error has occurred |
| 1457 | */ |
| 1458 | STATIC int |
| 1459 | xlog_find_zeroed( |
| 1460 | struct xlog *log, |
| 1461 | xfs_daddr_t *blk_no) |
| 1462 | { |
| 1463 | char *buffer; |
| 1464 | char *offset; |
| 1465 | uint first_cycle, last_cycle; |
| 1466 | xfs_daddr_t new_blk, last_blk, start_blk; |
| 1467 | xfs_daddr_t num_scan_bblks; |
| 1468 | int error, log_bbnum = log->l_logBBsize; |
| 1469 | |
| 1470 | *blk_no = 0; |
| 1471 | |
| 1472 | /* check totally zeroed log */ |
| 1473 | buffer = xlog_alloc_buffer(log, 1); |
| 1474 | if (!buffer) |
| 1475 | return -ENOMEM; |
| 1476 | error = xlog_bread(log, 0, 1, buffer, &offset); |
| 1477 | if (error) |
| 1478 | goto out_free_buffer; |
| 1479 | |
| 1480 | first_cycle = xlog_get_cycle(offset); |
| 1481 | if (first_cycle == 0) { /* completely zeroed log */ |
| 1482 | *blk_no = 0; |
| 1483 | kmem_free(buffer); |
| 1484 | return 1; |
| 1485 | } |
| 1486 | |
| 1487 | /* check partially zeroed log */ |
| 1488 | error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset); |
| 1489 | if (error) |
| 1490 | goto out_free_buffer; |
| 1491 | |
| 1492 | last_cycle = xlog_get_cycle(offset); |
| 1493 | if (last_cycle != 0) { /* log completely written to */ |
| 1494 | kmem_free(buffer); |
| 1495 | return 0; |
| 1496 | } |
| 1497 | |
| 1498 | /* we have a partially zeroed log */ |
| 1499 | last_blk = log_bbnum-1; |
| 1500 | error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0); |
| 1501 | if (error) |
| 1502 | goto out_free_buffer; |
| 1503 | |
| 1504 | /* |
| 1505 | * Validate the answer. Because there is no way to guarantee that |
| 1506 | * the entire log is made up of log records which are the same size, |
| 1507 | * we scan over the defined maximum blocks. At this point, the maximum |
| 1508 | * is not chosen to mean anything special. XXXmiken |
| 1509 | */ |
| 1510 | num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); |
| 1511 | ASSERT(num_scan_bblks <= INT_MAX); |
| 1512 | |
| 1513 | if (last_blk < num_scan_bblks) |
| 1514 | num_scan_bblks = last_blk; |
| 1515 | start_blk = last_blk - num_scan_bblks; |
| 1516 | |
| 1517 | /* |
| 1518 | * We search for any instances of cycle number 0 that occur before |
| 1519 | * our current estimate of the head. What we're trying to detect is |
| 1520 | * 1 ... | 0 | 1 | 0... |
| 1521 | * ^ binary search ends here |
| 1522 | */ |
| 1523 | if ((error = xlog_find_verify_cycle(log, start_blk, |
| 1524 | (int)num_scan_bblks, 0, &new_blk))) |
| 1525 | goto out_free_buffer; |
| 1526 | if (new_blk != -1) |
| 1527 | last_blk = new_blk; |
| 1528 | |
| 1529 | /* |
| 1530 | * Potentially backup over partial log record write. We don't need |
| 1531 | * to search the end of the log because we know it is zero. |
| 1532 | */ |
| 1533 | error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0); |
| 1534 | if (error == 1) |
| 1535 | error = -EIO; |
| 1536 | if (error) |
| 1537 | goto out_free_buffer; |
| 1538 | |
| 1539 | *blk_no = last_blk; |
| 1540 | out_free_buffer: |
| 1541 | kmem_free(buffer); |
| 1542 | if (error) |
| 1543 | return error; |
| 1544 | return 1; |
| 1545 | } |
| 1546 | |
| 1547 | /* |
| 1548 | * These are simple subroutines used by xlog_clear_stale_blocks() below |
| 1549 | * to initialize a buffer full of empty log record headers and write |
| 1550 | * them into the log. |
| 1551 | */ |
| 1552 | STATIC void |
| 1553 | xlog_add_record( |
| 1554 | struct xlog *log, |
| 1555 | char *buf, |
| 1556 | int cycle, |
| 1557 | int block, |
| 1558 | int tail_cycle, |
| 1559 | int tail_block) |
| 1560 | { |
| 1561 | xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; |
| 1562 | |
| 1563 | memset(buf, 0, BBSIZE); |
| 1564 | recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); |
| 1565 | recp->h_cycle = cpu_to_be32(cycle); |
| 1566 | recp->h_version = cpu_to_be32( |
| 1567 | xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); |
| 1568 | recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); |
| 1569 | recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); |
| 1570 | recp->h_fmt = cpu_to_be32(XLOG_FMT); |
| 1571 | memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); |
| 1572 | } |
| 1573 | |
| 1574 | STATIC int |
| 1575 | xlog_write_log_records( |
| 1576 | struct xlog *log, |
| 1577 | int cycle, |
| 1578 | int start_block, |
| 1579 | int blocks, |
| 1580 | int tail_cycle, |
| 1581 | int tail_block) |
| 1582 | { |
| 1583 | char *offset; |
| 1584 | char *buffer; |
| 1585 | int balign, ealign; |
| 1586 | int sectbb = log->l_sectBBsize; |
| 1587 | int end_block = start_block + blocks; |
| 1588 | int bufblks; |
| 1589 | int error = 0; |
| 1590 | int i, j = 0; |
| 1591 | |
| 1592 | /* |
| 1593 | * Greedily allocate a buffer big enough to handle the full |
| 1594 | * range of basic blocks to be written. If that fails, try |
| 1595 | * a smaller size. We need to be able to write at least a |
| 1596 | * log sector, or we're out of luck. |
| 1597 | */ |
| 1598 | bufblks = 1 << ffs(blocks); |
| 1599 | while (bufblks > log->l_logBBsize) |
| 1600 | bufblks >>= 1; |
| 1601 | while (!(buffer = xlog_alloc_buffer(log, bufblks))) { |
| 1602 | bufblks >>= 1; |
| 1603 | if (bufblks < sectbb) |
| 1604 | return -ENOMEM; |
| 1605 | } |
| 1606 | |
| 1607 | /* We may need to do a read at the start to fill in part of |
| 1608 | * the buffer in the starting sector not covered by the first |
| 1609 | * write below. |
| 1610 | */ |
| 1611 | balign = round_down(start_block, sectbb); |
| 1612 | if (balign != start_block) { |
| 1613 | error = xlog_bread_noalign(log, start_block, 1, buffer); |
| 1614 | if (error) |
| 1615 | goto out_free_buffer; |
| 1616 | |
| 1617 | j = start_block - balign; |
| 1618 | } |
| 1619 | |
| 1620 | for (i = start_block; i < end_block; i += bufblks) { |
| 1621 | int bcount, endcount; |
| 1622 | |
| 1623 | bcount = min(bufblks, end_block - start_block); |
| 1624 | endcount = bcount - j; |
| 1625 | |
| 1626 | /* We may need to do a read at the end to fill in part of |
| 1627 | * the buffer in the final sector not covered by the write. |
| 1628 | * If this is the same sector as the above read, skip it. |
| 1629 | */ |
| 1630 | ealign = round_down(end_block, sectbb); |
| 1631 | if (j == 0 && (start_block + endcount > ealign)) { |
| 1632 | error = xlog_bread_noalign(log, ealign, sectbb, |
| 1633 | buffer + BBTOB(ealign - start_block)); |
| 1634 | if (error) |
| 1635 | break; |
| 1636 | |
| 1637 | } |
| 1638 | |
| 1639 | offset = buffer + xlog_align(log, start_block); |
| 1640 | for (; j < endcount; j++) { |
| 1641 | xlog_add_record(log, offset, cycle, i+j, |
| 1642 | tail_cycle, tail_block); |
| 1643 | offset += BBSIZE; |
| 1644 | } |
| 1645 | error = xlog_bwrite(log, start_block, endcount, buffer); |
| 1646 | if (error) |
| 1647 | break; |
| 1648 | start_block += endcount; |
| 1649 | j = 0; |
| 1650 | } |
| 1651 | |
| 1652 | out_free_buffer: |
| 1653 | kmem_free(buffer); |
| 1654 | return error; |
| 1655 | } |
| 1656 | |
| 1657 | /* |
| 1658 | * This routine is called to blow away any incomplete log writes out |
| 1659 | * in front of the log head. We do this so that we won't become confused |
| 1660 | * if we come up, write only a little bit more, and then crash again. |
| 1661 | * If we leave the partial log records out there, this situation could |
| 1662 | * cause us to think those partial writes are valid blocks since they |
| 1663 | * have the current cycle number. We get rid of them by overwriting them |
| 1664 | * with empty log records with the old cycle number rather than the |
| 1665 | * current one. |
| 1666 | * |
| 1667 | * The tail lsn is passed in rather than taken from |
| 1668 | * the log so that we will not write over the unmount record after a |
| 1669 | * clean unmount in a 512 block log. Doing so would leave the log without |
| 1670 | * any valid log records in it until a new one was written. If we crashed |
| 1671 | * during that time we would not be able to recover. |
| 1672 | */ |
| 1673 | STATIC int |
| 1674 | xlog_clear_stale_blocks( |
| 1675 | struct xlog *log, |
| 1676 | xfs_lsn_t tail_lsn) |
| 1677 | { |
| 1678 | int tail_cycle, head_cycle; |
| 1679 | int tail_block, head_block; |
| 1680 | int tail_distance, max_distance; |
| 1681 | int distance; |
| 1682 | int error; |
| 1683 | |
| 1684 | tail_cycle = CYCLE_LSN(tail_lsn); |
| 1685 | tail_block = BLOCK_LSN(tail_lsn); |
| 1686 | head_cycle = log->l_curr_cycle; |
| 1687 | head_block = log->l_curr_block; |
| 1688 | |
| 1689 | /* |
| 1690 | * Figure out the distance between the new head of the log |
| 1691 | * and the tail. We want to write over any blocks beyond the |
| 1692 | * head that we may have written just before the crash, but |
| 1693 | * we don't want to overwrite the tail of the log. |
| 1694 | */ |
| 1695 | if (head_cycle == tail_cycle) { |
| 1696 | /* |
| 1697 | * The tail is behind the head in the physical log, |
| 1698 | * so the distance from the head to the tail is the |
| 1699 | * distance from the head to the end of the log plus |
| 1700 | * the distance from the beginning of the log to the |
| 1701 | * tail. |
| 1702 | */ |
| 1703 | if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { |
| 1704 | XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", |
| 1705 | XFS_ERRLEVEL_LOW, log->l_mp); |
| 1706 | return -EFSCORRUPTED; |
| 1707 | } |
| 1708 | tail_distance = tail_block + (log->l_logBBsize - head_block); |
| 1709 | } else { |
| 1710 | /* |
| 1711 | * The head is behind the tail in the physical log, |
| 1712 | * so the distance from the head to the tail is just |
| 1713 | * the tail block minus the head block. |
| 1714 | */ |
| 1715 | if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ |
| 1716 | XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", |
| 1717 | XFS_ERRLEVEL_LOW, log->l_mp); |
| 1718 | return -EFSCORRUPTED; |
| 1719 | } |
| 1720 | tail_distance = tail_block - head_block; |
| 1721 | } |
| 1722 | |
| 1723 | /* |
| 1724 | * If the head is right up against the tail, we can't clear |
| 1725 | * anything. |
| 1726 | */ |
| 1727 | if (tail_distance <= 0) { |
| 1728 | ASSERT(tail_distance == 0); |
| 1729 | return 0; |
| 1730 | } |
| 1731 | |
| 1732 | max_distance = XLOG_TOTAL_REC_SHIFT(log); |
| 1733 | /* |
| 1734 | * Take the smaller of the maximum amount of outstanding I/O |
| 1735 | * we could have and the distance to the tail to clear out. |
| 1736 | * We take the smaller so that we don't overwrite the tail and |
| 1737 | * we don't waste all day writing from the head to the tail |
| 1738 | * for no reason. |
| 1739 | */ |
| 1740 | max_distance = min(max_distance, tail_distance); |
| 1741 | |
| 1742 | if ((head_block + max_distance) <= log->l_logBBsize) { |
| 1743 | /* |
| 1744 | * We can stomp all the blocks we need to without |
| 1745 | * wrapping around the end of the log. Just do it |
| 1746 | * in a single write. Use the cycle number of the |
| 1747 | * current cycle minus one so that the log will look like: |
| 1748 | * n ... | n - 1 ... |
| 1749 | */ |
| 1750 | error = xlog_write_log_records(log, (head_cycle - 1), |
| 1751 | head_block, max_distance, tail_cycle, |
| 1752 | tail_block); |
| 1753 | if (error) |
| 1754 | return error; |
| 1755 | } else { |
| 1756 | /* |
| 1757 | * We need to wrap around the end of the physical log in |
| 1758 | * order to clear all the blocks. Do it in two separate |
| 1759 | * I/Os. The first write should be from the head to the |
| 1760 | * end of the physical log, and it should use the current |
| 1761 | * cycle number minus one just like above. |
| 1762 | */ |
| 1763 | distance = log->l_logBBsize - head_block; |
| 1764 | error = xlog_write_log_records(log, (head_cycle - 1), |
| 1765 | head_block, distance, tail_cycle, |
| 1766 | tail_block); |
| 1767 | |
| 1768 | if (error) |
| 1769 | return error; |
| 1770 | |
| 1771 | /* |
| 1772 | * Now write the blocks at the start of the physical log. |
| 1773 | * This writes the remainder of the blocks we want to clear. |
| 1774 | * It uses the current cycle number since we're now on the |
| 1775 | * same cycle as the head so that we get: |
| 1776 | * n ... n ... | n - 1 ... |
| 1777 | * ^^^^^ blocks we're writing |
| 1778 | */ |
| 1779 | distance = max_distance - (log->l_logBBsize - head_block); |
| 1780 | error = xlog_write_log_records(log, head_cycle, 0, distance, |
| 1781 | tail_cycle, tail_block); |
| 1782 | if (error) |
| 1783 | return error; |
| 1784 | } |
| 1785 | |
| 1786 | return 0; |
| 1787 | } |
| 1788 | |
| 1789 | /****************************************************************************** |
| 1790 | * |
| 1791 | * Log recover routines |
| 1792 | * |
| 1793 | ****************************************************************************** |
| 1794 | */ |
| 1795 | |
| 1796 | /* |
| 1797 | * Sort the log items in the transaction. |
| 1798 | * |
| 1799 | * The ordering constraints are defined by the inode allocation and unlink |
| 1800 | * behaviour. The rules are: |
| 1801 | * |
| 1802 | * 1. Every item is only logged once in a given transaction. Hence it |
| 1803 | * represents the last logged state of the item. Hence ordering is |
| 1804 | * dependent on the order in which operations need to be performed so |
| 1805 | * required initial conditions are always met. |
| 1806 | * |
| 1807 | * 2. Cancelled buffers are recorded in pass 1 in a separate table and |
| 1808 | * there's nothing to replay from them so we can simply cull them |
| 1809 | * from the transaction. However, we can't do that until after we've |
| 1810 | * replayed all the other items because they may be dependent on the |
| 1811 | * cancelled buffer and replaying the cancelled buffer can remove it |
| 1812 | * form the cancelled buffer table. Hence they have tobe done last. |
| 1813 | * |
| 1814 | * 3. Inode allocation buffers must be replayed before inode items that |
| 1815 | * read the buffer and replay changes into it. For filesystems using the |
| 1816 | * ICREATE transactions, this means XFS_LI_ICREATE objects need to get |
| 1817 | * treated the same as inode allocation buffers as they create and |
| 1818 | * initialise the buffers directly. |
| 1819 | * |
| 1820 | * 4. Inode unlink buffers must be replayed after inode items are replayed. |
| 1821 | * This ensures that inodes are completely flushed to the inode buffer |
| 1822 | * in a "free" state before we remove the unlinked inode list pointer. |
| 1823 | * |
| 1824 | * Hence the ordering needs to be inode allocation buffers first, inode items |
| 1825 | * second, inode unlink buffers third and cancelled buffers last. |
| 1826 | * |
| 1827 | * But there's a problem with that - we can't tell an inode allocation buffer |
| 1828 | * apart from a regular buffer, so we can't separate them. We can, however, |
| 1829 | * tell an inode unlink buffer from the others, and so we can separate them out |
| 1830 | * from all the other buffers and move them to last. |
| 1831 | * |
| 1832 | * Hence, 4 lists, in order from head to tail: |
| 1833 | * - buffer_list for all buffers except cancelled/inode unlink buffers |
| 1834 | * - item_list for all non-buffer items |
| 1835 | * - inode_buffer_list for inode unlink buffers |
| 1836 | * - cancel_list for the cancelled buffers |
| 1837 | * |
| 1838 | * Note that we add objects to the tail of the lists so that first-to-last |
| 1839 | * ordering is preserved within the lists. Adding objects to the head of the |
| 1840 | * list means when we traverse from the head we walk them in last-to-first |
| 1841 | * order. For cancelled buffers and inode unlink buffers this doesn't matter, |
| 1842 | * but for all other items there may be specific ordering that we need to |
| 1843 | * preserve. |
| 1844 | */ |
| 1845 | STATIC int |
| 1846 | xlog_recover_reorder_trans( |
| 1847 | struct xlog *log, |
| 1848 | struct xlog_recover *trans, |
| 1849 | int pass) |
| 1850 | { |
| 1851 | xlog_recover_item_t *item, *n; |
| 1852 | int error = 0; |
| 1853 | LIST_HEAD(sort_list); |
| 1854 | LIST_HEAD(cancel_list); |
| 1855 | LIST_HEAD(buffer_list); |
| 1856 | LIST_HEAD(inode_buffer_list); |
| 1857 | LIST_HEAD(inode_list); |
| 1858 | |
| 1859 | list_splice_init(&trans->r_itemq, &sort_list); |
| 1860 | list_for_each_entry_safe(item, n, &sort_list, ri_list) { |
| 1861 | xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; |
| 1862 | |
| 1863 | switch (ITEM_TYPE(item)) { |
| 1864 | case XFS_LI_ICREATE: |
| 1865 | list_move_tail(&item->ri_list, &buffer_list); |
| 1866 | break; |
| 1867 | case XFS_LI_BUF: |
| 1868 | if (buf_f->blf_flags & XFS_BLF_CANCEL) { |
| 1869 | trace_xfs_log_recover_item_reorder_head(log, |
| 1870 | trans, item, pass); |
| 1871 | list_move(&item->ri_list, &cancel_list); |
| 1872 | break; |
| 1873 | } |
| 1874 | if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { |
| 1875 | list_move(&item->ri_list, &inode_buffer_list); |
| 1876 | break; |
| 1877 | } |
| 1878 | list_move_tail(&item->ri_list, &buffer_list); |
| 1879 | break; |
| 1880 | case XFS_LI_INODE: |
| 1881 | case XFS_LI_DQUOT: |
| 1882 | case XFS_LI_QUOTAOFF: |
| 1883 | case XFS_LI_EFD: |
| 1884 | case XFS_LI_EFI: |
| 1885 | case XFS_LI_RUI: |
| 1886 | case XFS_LI_RUD: |
| 1887 | case XFS_LI_CUI: |
| 1888 | case XFS_LI_CUD: |
| 1889 | case XFS_LI_BUI: |
| 1890 | case XFS_LI_BUD: |
| 1891 | trace_xfs_log_recover_item_reorder_tail(log, |
| 1892 | trans, item, pass); |
| 1893 | list_move_tail(&item->ri_list, &inode_list); |
| 1894 | break; |
| 1895 | default: |
| 1896 | xfs_warn(log->l_mp, |
| 1897 | "%s: unrecognized type of log operation", |
| 1898 | __func__); |
| 1899 | ASSERT(0); |
| 1900 | /* |
| 1901 | * return the remaining items back to the transaction |
| 1902 | * item list so they can be freed in caller. |
| 1903 | */ |
| 1904 | if (!list_empty(&sort_list)) |
| 1905 | list_splice_init(&sort_list, &trans->r_itemq); |
| 1906 | error = -EIO; |
| 1907 | goto out; |
| 1908 | } |
| 1909 | } |
| 1910 | out: |
| 1911 | ASSERT(list_empty(&sort_list)); |
| 1912 | if (!list_empty(&buffer_list)) |
| 1913 | list_splice(&buffer_list, &trans->r_itemq); |
| 1914 | if (!list_empty(&inode_list)) |
| 1915 | list_splice_tail(&inode_list, &trans->r_itemq); |
| 1916 | if (!list_empty(&inode_buffer_list)) |
| 1917 | list_splice_tail(&inode_buffer_list, &trans->r_itemq); |
| 1918 | if (!list_empty(&cancel_list)) |
| 1919 | list_splice_tail(&cancel_list, &trans->r_itemq); |
| 1920 | return error; |
| 1921 | } |
| 1922 | |
| 1923 | /* |
| 1924 | * Build up the table of buf cancel records so that we don't replay |
| 1925 | * cancelled data in the second pass. For buffer records that are |
| 1926 | * not cancel records, there is nothing to do here so we just return. |
| 1927 | * |
| 1928 | * If we get a cancel record which is already in the table, this indicates |
| 1929 | * that the buffer was cancelled multiple times. In order to ensure |
| 1930 | * that during pass 2 we keep the record in the table until we reach its |
| 1931 | * last occurrence in the log, we keep a reference count in the cancel |
| 1932 | * record in the table to tell us how many times we expect to see this |
| 1933 | * record during the second pass. |
| 1934 | */ |
| 1935 | STATIC int |
| 1936 | xlog_recover_buffer_pass1( |
| 1937 | struct xlog *log, |
| 1938 | struct xlog_recover_item *item) |
| 1939 | { |
| 1940 | xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; |
| 1941 | struct list_head *bucket; |
| 1942 | struct xfs_buf_cancel *bcp; |
| 1943 | |
| 1944 | /* |
| 1945 | * If this isn't a cancel buffer item, then just return. |
| 1946 | */ |
| 1947 | if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { |
| 1948 | trace_xfs_log_recover_buf_not_cancel(log, buf_f); |
| 1949 | return 0; |
| 1950 | } |
| 1951 | |
| 1952 | /* |
| 1953 | * Insert an xfs_buf_cancel record into the hash table of them. |
| 1954 | * If there is already an identical record, bump its reference count. |
| 1955 | */ |
| 1956 | bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno); |
| 1957 | list_for_each_entry(bcp, bucket, bc_list) { |
| 1958 | if (bcp->bc_blkno == buf_f->blf_blkno && |
| 1959 | bcp->bc_len == buf_f->blf_len) { |
| 1960 | bcp->bc_refcount++; |
| 1961 | trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); |
| 1962 | return 0; |
| 1963 | } |
| 1964 | } |
| 1965 | |
| 1966 | bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), 0); |
| 1967 | bcp->bc_blkno = buf_f->blf_blkno; |
| 1968 | bcp->bc_len = buf_f->blf_len; |
| 1969 | bcp->bc_refcount = 1; |
| 1970 | list_add_tail(&bcp->bc_list, bucket); |
| 1971 | |
| 1972 | trace_xfs_log_recover_buf_cancel_add(log, buf_f); |
| 1973 | return 0; |
| 1974 | } |
| 1975 | |
| 1976 | /* |
| 1977 | * Check to see whether the buffer being recovered has a corresponding |
| 1978 | * entry in the buffer cancel record table. If it is, return the cancel |
| 1979 | * buffer structure to the caller. |
| 1980 | */ |
| 1981 | STATIC struct xfs_buf_cancel * |
| 1982 | xlog_peek_buffer_cancelled( |
| 1983 | struct xlog *log, |
| 1984 | xfs_daddr_t blkno, |
| 1985 | uint len, |
| 1986 | unsigned short flags) |
| 1987 | { |
| 1988 | struct list_head *bucket; |
| 1989 | struct xfs_buf_cancel *bcp; |
| 1990 | |
| 1991 | if (!log->l_buf_cancel_table) { |
| 1992 | /* empty table means no cancelled buffers in the log */ |
| 1993 | ASSERT(!(flags & XFS_BLF_CANCEL)); |
| 1994 | return NULL; |
| 1995 | } |
| 1996 | |
| 1997 | bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); |
| 1998 | list_for_each_entry(bcp, bucket, bc_list) { |
| 1999 | if (bcp->bc_blkno == blkno && bcp->bc_len == len) |
| 2000 | return bcp; |
| 2001 | } |
| 2002 | |
| 2003 | /* |
| 2004 | * We didn't find a corresponding entry in the table, so return 0 so |
| 2005 | * that the buffer is NOT cancelled. |
| 2006 | */ |
| 2007 | ASSERT(!(flags & XFS_BLF_CANCEL)); |
| 2008 | return NULL; |
| 2009 | } |
| 2010 | |
| 2011 | /* |
| 2012 | * If the buffer is being cancelled then return 1 so that it will be cancelled, |
| 2013 | * otherwise return 0. If the buffer is actually a buffer cancel item |
| 2014 | * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the |
| 2015 | * table and remove it from the table if this is the last reference. |
| 2016 | * |
| 2017 | * We remove the cancel record from the table when we encounter its last |
| 2018 | * occurrence in the log so that if the same buffer is re-used again after its |
| 2019 | * last cancellation we actually replay the changes made at that point. |
| 2020 | */ |
| 2021 | STATIC int |
| 2022 | xlog_check_buffer_cancelled( |
| 2023 | struct xlog *log, |
| 2024 | xfs_daddr_t blkno, |
| 2025 | uint len, |
| 2026 | unsigned short flags) |
| 2027 | { |
| 2028 | struct xfs_buf_cancel *bcp; |
| 2029 | |
| 2030 | bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags); |
| 2031 | if (!bcp) |
| 2032 | return 0; |
| 2033 | |
| 2034 | /* |
| 2035 | * We've go a match, so return 1 so that the recovery of this buffer |
| 2036 | * is cancelled. If this buffer is actually a buffer cancel log |
| 2037 | * item, then decrement the refcount on the one in the table and |
| 2038 | * remove it if this is the last reference. |
| 2039 | */ |
| 2040 | if (flags & XFS_BLF_CANCEL) { |
| 2041 | if (--bcp->bc_refcount == 0) { |
| 2042 | list_del(&bcp->bc_list); |
| 2043 | kmem_free(bcp); |
| 2044 | } |
| 2045 | } |
| 2046 | return 1; |
| 2047 | } |
| 2048 | |
| 2049 | /* |
| 2050 | * Perform recovery for a buffer full of inodes. In these buffers, the only |
| 2051 | * data which should be recovered is that which corresponds to the |
| 2052 | * di_next_unlinked pointers in the on disk inode structures. The rest of the |
| 2053 | * data for the inodes is always logged through the inodes themselves rather |
| 2054 | * than the inode buffer and is recovered in xlog_recover_inode_pass2(). |
| 2055 | * |
| 2056 | * The only time when buffers full of inodes are fully recovered is when the |
| 2057 | * buffer is full of newly allocated inodes. In this case the buffer will |
| 2058 | * not be marked as an inode buffer and so will be sent to |
| 2059 | * xlog_recover_do_reg_buffer() below during recovery. |
| 2060 | */ |
| 2061 | STATIC int |
| 2062 | xlog_recover_do_inode_buffer( |
| 2063 | struct xfs_mount *mp, |
| 2064 | xlog_recover_item_t *item, |
| 2065 | struct xfs_buf *bp, |
| 2066 | xfs_buf_log_format_t *buf_f) |
| 2067 | { |
| 2068 | int i; |
| 2069 | int item_index = 0; |
| 2070 | int bit = 0; |
| 2071 | int nbits = 0; |
| 2072 | int reg_buf_offset = 0; |
| 2073 | int reg_buf_bytes = 0; |
| 2074 | int next_unlinked_offset; |
| 2075 | int inodes_per_buf; |
| 2076 | xfs_agino_t *logged_nextp; |
| 2077 | xfs_agino_t *buffer_nextp; |
| 2078 | |
| 2079 | trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); |
| 2080 | |
| 2081 | /* |
| 2082 | * Post recovery validation only works properly on CRC enabled |
| 2083 | * filesystems. |
| 2084 | */ |
| 2085 | if (xfs_sb_version_hascrc(&mp->m_sb)) |
| 2086 | bp->b_ops = &xfs_inode_buf_ops; |
| 2087 | |
| 2088 | inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog; |
| 2089 | for (i = 0; i < inodes_per_buf; i++) { |
| 2090 | next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + |
| 2091 | offsetof(xfs_dinode_t, di_next_unlinked); |
| 2092 | |
| 2093 | while (next_unlinked_offset >= |
| 2094 | (reg_buf_offset + reg_buf_bytes)) { |
| 2095 | /* |
| 2096 | * The next di_next_unlinked field is beyond |
| 2097 | * the current logged region. Find the next |
| 2098 | * logged region that contains or is beyond |
| 2099 | * the current di_next_unlinked field. |
| 2100 | */ |
| 2101 | bit += nbits; |
| 2102 | bit = xfs_next_bit(buf_f->blf_data_map, |
| 2103 | buf_f->blf_map_size, bit); |
| 2104 | |
| 2105 | /* |
| 2106 | * If there are no more logged regions in the |
| 2107 | * buffer, then we're done. |
| 2108 | */ |
| 2109 | if (bit == -1) |
| 2110 | return 0; |
| 2111 | |
| 2112 | nbits = xfs_contig_bits(buf_f->blf_data_map, |
| 2113 | buf_f->blf_map_size, bit); |
| 2114 | ASSERT(nbits > 0); |
| 2115 | reg_buf_offset = bit << XFS_BLF_SHIFT; |
| 2116 | reg_buf_bytes = nbits << XFS_BLF_SHIFT; |
| 2117 | item_index++; |
| 2118 | } |
| 2119 | |
| 2120 | /* |
| 2121 | * If the current logged region starts after the current |
| 2122 | * di_next_unlinked field, then move on to the next |
| 2123 | * di_next_unlinked field. |
| 2124 | */ |
| 2125 | if (next_unlinked_offset < reg_buf_offset) |
| 2126 | continue; |
| 2127 | |
| 2128 | ASSERT(item->ri_buf[item_index].i_addr != NULL); |
| 2129 | ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); |
| 2130 | ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length)); |
| 2131 | |
| 2132 | /* |
| 2133 | * The current logged region contains a copy of the |
| 2134 | * current di_next_unlinked field. Extract its value |
| 2135 | * and copy it to the buffer copy. |
| 2136 | */ |
| 2137 | logged_nextp = item->ri_buf[item_index].i_addr + |
| 2138 | next_unlinked_offset - reg_buf_offset; |
| 2139 | if (unlikely(*logged_nextp == 0)) { |
| 2140 | xfs_alert(mp, |
| 2141 | "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). " |
| 2142 | "Trying to replay bad (0) inode di_next_unlinked field.", |
| 2143 | item, bp); |
| 2144 | XFS_ERROR_REPORT("xlog_recover_do_inode_buf", |
| 2145 | XFS_ERRLEVEL_LOW, mp); |
| 2146 | return -EFSCORRUPTED; |
| 2147 | } |
| 2148 | |
| 2149 | buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset); |
| 2150 | *buffer_nextp = *logged_nextp; |
| 2151 | |
| 2152 | /* |
| 2153 | * If necessary, recalculate the CRC in the on-disk inode. We |
| 2154 | * have to leave the inode in a consistent state for whoever |
| 2155 | * reads it next.... |
| 2156 | */ |
| 2157 | xfs_dinode_calc_crc(mp, |
| 2158 | xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); |
| 2159 | |
| 2160 | } |
| 2161 | |
| 2162 | return 0; |
| 2163 | } |
| 2164 | |
| 2165 | /* |
| 2166 | * V5 filesystems know the age of the buffer on disk being recovered. We can |
| 2167 | * have newer objects on disk than we are replaying, and so for these cases we |
| 2168 | * don't want to replay the current change as that will make the buffer contents |
| 2169 | * temporarily invalid on disk. |
| 2170 | * |
| 2171 | * The magic number might not match the buffer type we are going to recover |
| 2172 | * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence |
| 2173 | * extract the LSN of the existing object in the buffer based on it's current |
| 2174 | * magic number. If we don't recognise the magic number in the buffer, then |
| 2175 | * return a LSN of -1 so that the caller knows it was an unrecognised block and |
| 2176 | * so can recover the buffer. |
| 2177 | * |
| 2178 | * Note: we cannot rely solely on magic number matches to determine that the |
| 2179 | * buffer has a valid LSN - we also need to verify that it belongs to this |
| 2180 | * filesystem, so we need to extract the object's LSN and compare it to that |
| 2181 | * which we read from the superblock. If the UUIDs don't match, then we've got a |
| 2182 | * stale metadata block from an old filesystem instance that we need to recover |
| 2183 | * over the top of. |
| 2184 | */ |
| 2185 | static xfs_lsn_t |
| 2186 | xlog_recover_get_buf_lsn( |
| 2187 | struct xfs_mount *mp, |
| 2188 | struct xfs_buf *bp) |
| 2189 | { |
| 2190 | uint32_t magic32; |
| 2191 | uint16_t magic16; |
| 2192 | uint16_t magicda; |
| 2193 | void *blk = bp->b_addr; |
| 2194 | uuid_t *uuid; |
| 2195 | xfs_lsn_t lsn = -1; |
| 2196 | |
| 2197 | /* v4 filesystems always recover immediately */ |
| 2198 | if (!xfs_sb_version_hascrc(&mp->m_sb)) |
| 2199 | goto recover_immediately; |
| 2200 | |
| 2201 | magic32 = be32_to_cpu(*(__be32 *)blk); |
| 2202 | switch (magic32) { |
| 2203 | case XFS_ABTB_CRC_MAGIC: |
| 2204 | case XFS_ABTC_CRC_MAGIC: |
| 2205 | case XFS_ABTB_MAGIC: |
| 2206 | case XFS_ABTC_MAGIC: |
| 2207 | case XFS_RMAP_CRC_MAGIC: |
| 2208 | case XFS_REFC_CRC_MAGIC: |
| 2209 | case XFS_FIBT_CRC_MAGIC: |
| 2210 | case XFS_FIBT_MAGIC: |
| 2211 | case XFS_IBT_CRC_MAGIC: |
| 2212 | case XFS_IBT_MAGIC: { |
| 2213 | struct xfs_btree_block *btb = blk; |
| 2214 | |
| 2215 | lsn = be64_to_cpu(btb->bb_u.s.bb_lsn); |
| 2216 | uuid = &btb->bb_u.s.bb_uuid; |
| 2217 | break; |
| 2218 | } |
| 2219 | case XFS_BMAP_CRC_MAGIC: |
| 2220 | case XFS_BMAP_MAGIC: { |
| 2221 | struct xfs_btree_block *btb = blk; |
| 2222 | |
| 2223 | lsn = be64_to_cpu(btb->bb_u.l.bb_lsn); |
| 2224 | uuid = &btb->bb_u.l.bb_uuid; |
| 2225 | break; |
| 2226 | } |
| 2227 | case XFS_AGF_MAGIC: |
| 2228 | lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn); |
| 2229 | uuid = &((struct xfs_agf *)blk)->agf_uuid; |
| 2230 | break; |
| 2231 | case XFS_AGFL_MAGIC: |
| 2232 | lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn); |
| 2233 | uuid = &((struct xfs_agfl *)blk)->agfl_uuid; |
| 2234 | break; |
| 2235 | case XFS_AGI_MAGIC: |
| 2236 | lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn); |
| 2237 | uuid = &((struct xfs_agi *)blk)->agi_uuid; |
| 2238 | break; |
| 2239 | case XFS_SYMLINK_MAGIC: |
| 2240 | lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn); |
| 2241 | uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid; |
| 2242 | break; |
| 2243 | case XFS_DIR3_BLOCK_MAGIC: |
| 2244 | case XFS_DIR3_DATA_MAGIC: |
| 2245 | case XFS_DIR3_FREE_MAGIC: |
| 2246 | lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn); |
| 2247 | uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid; |
| 2248 | break; |
| 2249 | case XFS_ATTR3_RMT_MAGIC: |
| 2250 | /* |
| 2251 | * Remote attr blocks are written synchronously, rather than |
| 2252 | * being logged. That means they do not contain a valid LSN |
| 2253 | * (i.e. transactionally ordered) in them, and hence any time we |
| 2254 | * see a buffer to replay over the top of a remote attribute |
| 2255 | * block we should simply do so. |
| 2256 | */ |
| 2257 | goto recover_immediately; |
| 2258 | case XFS_SB_MAGIC: |
| 2259 | /* |
| 2260 | * superblock uuids are magic. We may or may not have a |
| 2261 | * sb_meta_uuid on disk, but it will be set in the in-core |
| 2262 | * superblock. We set the uuid pointer for verification |
| 2263 | * according to the superblock feature mask to ensure we check |
| 2264 | * the relevant UUID in the superblock. |
| 2265 | */ |
| 2266 | lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn); |
| 2267 | if (xfs_sb_version_hasmetauuid(&mp->m_sb)) |
| 2268 | uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid; |
| 2269 | else |
| 2270 | uuid = &((struct xfs_dsb *)blk)->sb_uuid; |
| 2271 | break; |
| 2272 | default: |
| 2273 | break; |
| 2274 | } |
| 2275 | |
| 2276 | if (lsn != (xfs_lsn_t)-1) { |
| 2277 | if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid)) |
| 2278 | goto recover_immediately; |
| 2279 | return lsn; |
| 2280 | } |
| 2281 | |
| 2282 | magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic); |
| 2283 | switch (magicda) { |
| 2284 | case XFS_DIR3_LEAF1_MAGIC: |
| 2285 | case XFS_DIR3_LEAFN_MAGIC: |
| 2286 | case XFS_DA3_NODE_MAGIC: |
| 2287 | lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn); |
| 2288 | uuid = &((struct xfs_da3_blkinfo *)blk)->uuid; |
| 2289 | break; |
| 2290 | default: |
| 2291 | break; |
| 2292 | } |
| 2293 | |
| 2294 | if (lsn != (xfs_lsn_t)-1) { |
| 2295 | if (!uuid_equal(&mp->m_sb.sb_uuid, uuid)) |
| 2296 | goto recover_immediately; |
| 2297 | return lsn; |
| 2298 | } |
| 2299 | |
| 2300 | /* |
| 2301 | * We do individual object checks on dquot and inode buffers as they |
| 2302 | * have their own individual LSN records. Also, we could have a stale |
| 2303 | * buffer here, so we have to at least recognise these buffer types. |
| 2304 | * |
| 2305 | * A notd complexity here is inode unlinked list processing - it logs |
| 2306 | * the inode directly in the buffer, but we don't know which inodes have |
| 2307 | * been modified, and there is no global buffer LSN. Hence we need to |
| 2308 | * recover all inode buffer types immediately. This problem will be |
| 2309 | * fixed by logical logging of the unlinked list modifications. |
| 2310 | */ |
| 2311 | magic16 = be16_to_cpu(*(__be16 *)blk); |
| 2312 | switch (magic16) { |
| 2313 | case XFS_DQUOT_MAGIC: |
| 2314 | case XFS_DINODE_MAGIC: |
| 2315 | goto recover_immediately; |
| 2316 | default: |
| 2317 | break; |
| 2318 | } |
| 2319 | |
| 2320 | /* unknown buffer contents, recover immediately */ |
| 2321 | |
| 2322 | recover_immediately: |
| 2323 | return (xfs_lsn_t)-1; |
| 2324 | |
| 2325 | } |
| 2326 | |
| 2327 | /* |
| 2328 | * Validate the recovered buffer is of the correct type and attach the |
| 2329 | * appropriate buffer operations to them for writeback. Magic numbers are in a |
| 2330 | * few places: |
| 2331 | * the first 16 bits of the buffer (inode buffer, dquot buffer), |
| 2332 | * the first 32 bits of the buffer (most blocks), |
| 2333 | * inside a struct xfs_da_blkinfo at the start of the buffer. |
| 2334 | */ |
| 2335 | static void |
| 2336 | xlog_recover_validate_buf_type( |
| 2337 | struct xfs_mount *mp, |
| 2338 | struct xfs_buf *bp, |
| 2339 | xfs_buf_log_format_t *buf_f, |
| 2340 | xfs_lsn_t current_lsn) |
| 2341 | { |
| 2342 | struct xfs_da_blkinfo *info = bp->b_addr; |
| 2343 | uint32_t magic32; |
| 2344 | uint16_t magic16; |
| 2345 | uint16_t magicda; |
| 2346 | char *warnmsg = NULL; |
| 2347 | |
| 2348 | /* |
| 2349 | * We can only do post recovery validation on items on CRC enabled |
| 2350 | * fielsystems as we need to know when the buffer was written to be able |
| 2351 | * to determine if we should have replayed the item. If we replay old |
| 2352 | * metadata over a newer buffer, then it will enter a temporarily |
| 2353 | * inconsistent state resulting in verification failures. Hence for now |
| 2354 | * just avoid the verification stage for non-crc filesystems |
| 2355 | */ |
| 2356 | if (!xfs_sb_version_hascrc(&mp->m_sb)) |
| 2357 | return; |
| 2358 | |
| 2359 | magic32 = be32_to_cpu(*(__be32 *)bp->b_addr); |
| 2360 | magic16 = be16_to_cpu(*(__be16*)bp->b_addr); |
| 2361 | magicda = be16_to_cpu(info->magic); |
| 2362 | switch (xfs_blft_from_flags(buf_f)) { |
| 2363 | case XFS_BLFT_BTREE_BUF: |
| 2364 | switch (magic32) { |
| 2365 | case XFS_ABTB_CRC_MAGIC: |
| 2366 | case XFS_ABTB_MAGIC: |
| 2367 | bp->b_ops = &xfs_bnobt_buf_ops; |
| 2368 | break; |
| 2369 | case XFS_ABTC_CRC_MAGIC: |
| 2370 | case XFS_ABTC_MAGIC: |
| 2371 | bp->b_ops = &xfs_cntbt_buf_ops; |
| 2372 | break; |
| 2373 | case XFS_IBT_CRC_MAGIC: |
| 2374 | case XFS_IBT_MAGIC: |
| 2375 | bp->b_ops = &xfs_inobt_buf_ops; |
| 2376 | break; |
| 2377 | case XFS_FIBT_CRC_MAGIC: |
| 2378 | case XFS_FIBT_MAGIC: |
| 2379 | bp->b_ops = &xfs_finobt_buf_ops; |
| 2380 | break; |
| 2381 | case XFS_BMAP_CRC_MAGIC: |
| 2382 | case XFS_BMAP_MAGIC: |
| 2383 | bp->b_ops = &xfs_bmbt_buf_ops; |
| 2384 | break; |
| 2385 | case XFS_RMAP_CRC_MAGIC: |
| 2386 | bp->b_ops = &xfs_rmapbt_buf_ops; |
| 2387 | break; |
| 2388 | case XFS_REFC_CRC_MAGIC: |
| 2389 | bp->b_ops = &xfs_refcountbt_buf_ops; |
| 2390 | break; |
| 2391 | default: |
| 2392 | warnmsg = "Bad btree block magic!"; |
| 2393 | break; |
| 2394 | } |
| 2395 | break; |
| 2396 | case XFS_BLFT_AGF_BUF: |
| 2397 | if (magic32 != XFS_AGF_MAGIC) { |
| 2398 | warnmsg = "Bad AGF block magic!"; |
| 2399 | break; |
| 2400 | } |
| 2401 | bp->b_ops = &xfs_agf_buf_ops; |
| 2402 | break; |
| 2403 | case XFS_BLFT_AGFL_BUF: |
| 2404 | if (magic32 != XFS_AGFL_MAGIC) { |
| 2405 | warnmsg = "Bad AGFL block magic!"; |
| 2406 | break; |
| 2407 | } |
| 2408 | bp->b_ops = &xfs_agfl_buf_ops; |
| 2409 | break; |
| 2410 | case XFS_BLFT_AGI_BUF: |
| 2411 | if (magic32 != XFS_AGI_MAGIC) { |
| 2412 | warnmsg = "Bad AGI block magic!"; |
| 2413 | break; |
| 2414 | } |
| 2415 | bp->b_ops = &xfs_agi_buf_ops; |
| 2416 | break; |
| 2417 | case XFS_BLFT_UDQUOT_BUF: |
| 2418 | case XFS_BLFT_PDQUOT_BUF: |
| 2419 | case XFS_BLFT_GDQUOT_BUF: |
| 2420 | #ifdef CONFIG_XFS_QUOTA |
| 2421 | if (magic16 != XFS_DQUOT_MAGIC) { |
| 2422 | warnmsg = "Bad DQUOT block magic!"; |
| 2423 | break; |
| 2424 | } |
| 2425 | bp->b_ops = &xfs_dquot_buf_ops; |
| 2426 | #else |
| 2427 | xfs_alert(mp, |
| 2428 | "Trying to recover dquots without QUOTA support built in!"); |
| 2429 | ASSERT(0); |
| 2430 | #endif |
| 2431 | break; |
| 2432 | case XFS_BLFT_DINO_BUF: |
| 2433 | if (magic16 != XFS_DINODE_MAGIC) { |
| 2434 | warnmsg = "Bad INODE block magic!"; |
| 2435 | break; |
| 2436 | } |
| 2437 | bp->b_ops = &xfs_inode_buf_ops; |
| 2438 | break; |
| 2439 | case XFS_BLFT_SYMLINK_BUF: |
| 2440 | if (magic32 != XFS_SYMLINK_MAGIC) { |
| 2441 | warnmsg = "Bad symlink block magic!"; |
| 2442 | break; |
| 2443 | } |
| 2444 | bp->b_ops = &xfs_symlink_buf_ops; |
| 2445 | break; |
| 2446 | case XFS_BLFT_DIR_BLOCK_BUF: |
| 2447 | if (magic32 != XFS_DIR2_BLOCK_MAGIC && |
| 2448 | magic32 != XFS_DIR3_BLOCK_MAGIC) { |
| 2449 | warnmsg = "Bad dir block magic!"; |
| 2450 | break; |
| 2451 | } |
| 2452 | bp->b_ops = &xfs_dir3_block_buf_ops; |
| 2453 | break; |
| 2454 | case XFS_BLFT_DIR_DATA_BUF: |
| 2455 | if (magic32 != XFS_DIR2_DATA_MAGIC && |
| 2456 | magic32 != XFS_DIR3_DATA_MAGIC) { |
| 2457 | warnmsg = "Bad dir data magic!"; |
| 2458 | break; |
| 2459 | } |
| 2460 | bp->b_ops = &xfs_dir3_data_buf_ops; |
| 2461 | break; |
| 2462 | case XFS_BLFT_DIR_FREE_BUF: |
| 2463 | if (magic32 != XFS_DIR2_FREE_MAGIC && |
| 2464 | magic32 != XFS_DIR3_FREE_MAGIC) { |
| 2465 | warnmsg = "Bad dir3 free magic!"; |
| 2466 | break; |
| 2467 | } |
| 2468 | bp->b_ops = &xfs_dir3_free_buf_ops; |
| 2469 | break; |
| 2470 | case XFS_BLFT_DIR_LEAF1_BUF: |
| 2471 | if (magicda != XFS_DIR2_LEAF1_MAGIC && |
| 2472 | magicda != XFS_DIR3_LEAF1_MAGIC) { |
| 2473 | warnmsg = "Bad dir leaf1 magic!"; |
| 2474 | break; |
| 2475 | } |
| 2476 | bp->b_ops = &xfs_dir3_leaf1_buf_ops; |
| 2477 | break; |
| 2478 | case XFS_BLFT_DIR_LEAFN_BUF: |
| 2479 | if (magicda != XFS_DIR2_LEAFN_MAGIC && |
| 2480 | magicda != XFS_DIR3_LEAFN_MAGIC) { |
| 2481 | warnmsg = "Bad dir leafn magic!"; |
| 2482 | break; |
| 2483 | } |
| 2484 | bp->b_ops = &xfs_dir3_leafn_buf_ops; |
| 2485 | break; |
| 2486 | case XFS_BLFT_DA_NODE_BUF: |
| 2487 | if (magicda != XFS_DA_NODE_MAGIC && |
| 2488 | magicda != XFS_DA3_NODE_MAGIC) { |
| 2489 | warnmsg = "Bad da node magic!"; |
| 2490 | break; |
| 2491 | } |
| 2492 | bp->b_ops = &xfs_da3_node_buf_ops; |
| 2493 | break; |
| 2494 | case XFS_BLFT_ATTR_LEAF_BUF: |
| 2495 | if (magicda != XFS_ATTR_LEAF_MAGIC && |
| 2496 | magicda != XFS_ATTR3_LEAF_MAGIC) { |
| 2497 | warnmsg = "Bad attr leaf magic!"; |
| 2498 | break; |
| 2499 | } |
| 2500 | bp->b_ops = &xfs_attr3_leaf_buf_ops; |
| 2501 | break; |
| 2502 | case XFS_BLFT_ATTR_RMT_BUF: |
| 2503 | if (magic32 != XFS_ATTR3_RMT_MAGIC) { |
| 2504 | warnmsg = "Bad attr remote magic!"; |
| 2505 | break; |
| 2506 | } |
| 2507 | bp->b_ops = &xfs_attr3_rmt_buf_ops; |
| 2508 | break; |
| 2509 | case XFS_BLFT_SB_BUF: |
| 2510 | if (magic32 != XFS_SB_MAGIC) { |
| 2511 | warnmsg = "Bad SB block magic!"; |
| 2512 | break; |
| 2513 | } |
| 2514 | bp->b_ops = &xfs_sb_buf_ops; |
| 2515 | break; |
| 2516 | #ifdef CONFIG_XFS_RT |
| 2517 | case XFS_BLFT_RTBITMAP_BUF: |
| 2518 | case XFS_BLFT_RTSUMMARY_BUF: |
| 2519 | /* no magic numbers for verification of RT buffers */ |
| 2520 | bp->b_ops = &xfs_rtbuf_ops; |
| 2521 | break; |
| 2522 | #endif /* CONFIG_XFS_RT */ |
| 2523 | default: |
| 2524 | xfs_warn(mp, "Unknown buffer type %d!", |
| 2525 | xfs_blft_from_flags(buf_f)); |
| 2526 | break; |
| 2527 | } |
| 2528 | |
| 2529 | /* |
| 2530 | * Nothing else to do in the case of a NULL current LSN as this means |
| 2531 | * the buffer is more recent than the change in the log and will be |
| 2532 | * skipped. |
| 2533 | */ |
| 2534 | if (current_lsn == NULLCOMMITLSN) |
| 2535 | return; |
| 2536 | |
| 2537 | if (warnmsg) { |
| 2538 | xfs_warn(mp, warnmsg); |
| 2539 | ASSERT(0); |
| 2540 | } |
| 2541 | |
| 2542 | /* |
| 2543 | * We must update the metadata LSN of the buffer as it is written out to |
| 2544 | * ensure that older transactions never replay over this one and corrupt |
| 2545 | * the buffer. This can occur if log recovery is interrupted at some |
| 2546 | * point after the current transaction completes, at which point a |
| 2547 | * subsequent mount starts recovery from the beginning. |
| 2548 | * |
| 2549 | * Write verifiers update the metadata LSN from log items attached to |
| 2550 | * the buffer. Therefore, initialize a bli purely to carry the LSN to |
| 2551 | * the verifier. We'll clean it up in our ->iodone() callback. |
| 2552 | */ |
| 2553 | if (bp->b_ops) { |
| 2554 | struct xfs_buf_log_item *bip; |
| 2555 | |
| 2556 | ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone); |
| 2557 | bp->b_iodone = xlog_recover_iodone; |
| 2558 | xfs_buf_item_init(bp, mp); |
| 2559 | bip = bp->b_log_item; |
| 2560 | bip->bli_item.li_lsn = current_lsn; |
| 2561 | } |
| 2562 | } |
| 2563 | |
| 2564 | /* |
| 2565 | * Perform a 'normal' buffer recovery. Each logged region of the |
| 2566 | * buffer should be copied over the corresponding region in the |
| 2567 | * given buffer. The bitmap in the buf log format structure indicates |
| 2568 | * where to place the logged data. |
| 2569 | */ |
| 2570 | STATIC void |
| 2571 | xlog_recover_do_reg_buffer( |
| 2572 | struct xfs_mount *mp, |
| 2573 | xlog_recover_item_t *item, |
| 2574 | struct xfs_buf *bp, |
| 2575 | xfs_buf_log_format_t *buf_f, |
| 2576 | xfs_lsn_t current_lsn) |
| 2577 | { |
| 2578 | int i; |
| 2579 | int bit; |
| 2580 | int nbits; |
| 2581 | xfs_failaddr_t fa; |
| 2582 | const size_t size_disk_dquot = sizeof(struct xfs_disk_dquot); |
| 2583 | |
| 2584 | trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); |
| 2585 | |
| 2586 | bit = 0; |
| 2587 | i = 1; /* 0 is the buf format structure */ |
| 2588 | while (1) { |
| 2589 | bit = xfs_next_bit(buf_f->blf_data_map, |
| 2590 | buf_f->blf_map_size, bit); |
| 2591 | if (bit == -1) |
| 2592 | break; |
| 2593 | nbits = xfs_contig_bits(buf_f->blf_data_map, |
| 2594 | buf_f->blf_map_size, bit); |
| 2595 | ASSERT(nbits > 0); |
| 2596 | ASSERT(item->ri_buf[i].i_addr != NULL); |
| 2597 | ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); |
| 2598 | ASSERT(BBTOB(bp->b_length) >= |
| 2599 | ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); |
| 2600 | |
| 2601 | /* |
| 2602 | * The dirty regions logged in the buffer, even though |
| 2603 | * contiguous, may span multiple chunks. This is because the |
| 2604 | * dirty region may span a physical page boundary in a buffer |
| 2605 | * and hence be split into two separate vectors for writing into |
| 2606 | * the log. Hence we need to trim nbits back to the length of |
| 2607 | * the current region being copied out of the log. |
| 2608 | */ |
| 2609 | if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT)) |
| 2610 | nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT; |
| 2611 | |
| 2612 | /* |
| 2613 | * Do a sanity check if this is a dquot buffer. Just checking |
| 2614 | * the first dquot in the buffer should do. XXXThis is |
| 2615 | * probably a good thing to do for other buf types also. |
| 2616 | */ |
| 2617 | fa = NULL; |
| 2618 | if (buf_f->blf_flags & |
| 2619 | (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { |
| 2620 | if (item->ri_buf[i].i_addr == NULL) { |
| 2621 | xfs_alert(mp, |
| 2622 | "XFS: NULL dquot in %s.", __func__); |
| 2623 | goto next; |
| 2624 | } |
| 2625 | if (item->ri_buf[i].i_len < size_disk_dquot) { |
| 2626 | xfs_alert(mp, |
| 2627 | "XFS: dquot too small (%d) in %s.", |
| 2628 | item->ri_buf[i].i_len, __func__); |
| 2629 | goto next; |
| 2630 | } |
| 2631 | fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr, |
| 2632 | -1, 0); |
| 2633 | if (fa) { |
| 2634 | xfs_alert(mp, |
| 2635 | "dquot corrupt at %pS trying to replay into block 0x%llx", |
| 2636 | fa, bp->b_bn); |
| 2637 | goto next; |
| 2638 | } |
| 2639 | } |
| 2640 | |
| 2641 | memcpy(xfs_buf_offset(bp, |
| 2642 | (uint)bit << XFS_BLF_SHIFT), /* dest */ |
| 2643 | item->ri_buf[i].i_addr, /* source */ |
| 2644 | nbits<<XFS_BLF_SHIFT); /* length */ |
| 2645 | next: |
| 2646 | i++; |
| 2647 | bit += nbits; |
| 2648 | } |
| 2649 | |
| 2650 | /* Shouldn't be any more regions */ |
| 2651 | ASSERT(i == item->ri_total); |
| 2652 | |
| 2653 | xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn); |
| 2654 | } |
| 2655 | |
| 2656 | /* |
| 2657 | * Perform a dquot buffer recovery. |
| 2658 | * Simple algorithm: if we have found a QUOTAOFF log item of the same type |
| 2659 | * (ie. USR or GRP), then just toss this buffer away; don't recover it. |
| 2660 | * Else, treat it as a regular buffer and do recovery. |
| 2661 | * |
| 2662 | * Return false if the buffer was tossed and true if we recovered the buffer to |
| 2663 | * indicate to the caller if the buffer needs writing. |
| 2664 | */ |
| 2665 | STATIC bool |
| 2666 | xlog_recover_do_dquot_buffer( |
| 2667 | struct xfs_mount *mp, |
| 2668 | struct xlog *log, |
| 2669 | struct xlog_recover_item *item, |
| 2670 | struct xfs_buf *bp, |
| 2671 | struct xfs_buf_log_format *buf_f) |
| 2672 | { |
| 2673 | uint type; |
| 2674 | |
| 2675 | trace_xfs_log_recover_buf_dquot_buf(log, buf_f); |
| 2676 | |
| 2677 | /* |
| 2678 | * Filesystems are required to send in quota flags at mount time. |
| 2679 | */ |
| 2680 | if (!mp->m_qflags) |
| 2681 | return false; |
| 2682 | |
| 2683 | type = 0; |
| 2684 | if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) |
| 2685 | type |= XFS_DQ_USER; |
| 2686 | if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) |
| 2687 | type |= XFS_DQ_PROJ; |
| 2688 | if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) |
| 2689 | type |= XFS_DQ_GROUP; |
| 2690 | /* |
| 2691 | * This type of quotas was turned off, so ignore this buffer |
| 2692 | */ |
| 2693 | if (log->l_quotaoffs_flag & type) |
| 2694 | return false; |
| 2695 | |
| 2696 | xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN); |
| 2697 | return true; |
| 2698 | } |
| 2699 | |
| 2700 | /* |
| 2701 | * This routine replays a modification made to a buffer at runtime. |
| 2702 | * There are actually two types of buffer, regular and inode, which |
| 2703 | * are handled differently. Inode buffers are handled differently |
| 2704 | * in that we only recover a specific set of data from them, namely |
| 2705 | * the inode di_next_unlinked fields. This is because all other inode |
| 2706 | * data is actually logged via inode records and any data we replay |
| 2707 | * here which overlaps that may be stale. |
| 2708 | * |
| 2709 | * When meta-data buffers are freed at run time we log a buffer item |
| 2710 | * with the XFS_BLF_CANCEL bit set to indicate that previous copies |
| 2711 | * of the buffer in the log should not be replayed at recovery time. |
| 2712 | * This is so that if the blocks covered by the buffer are reused for |
| 2713 | * file data before we crash we don't end up replaying old, freed |
| 2714 | * meta-data into a user's file. |
| 2715 | * |
| 2716 | * To handle the cancellation of buffer log items, we make two passes |
| 2717 | * over the log during recovery. During the first we build a table of |
| 2718 | * those buffers which have been cancelled, and during the second we |
| 2719 | * only replay those buffers which do not have corresponding cancel |
| 2720 | * records in the table. See xlog_recover_buffer_pass[1,2] above |
| 2721 | * for more details on the implementation of the table of cancel records. |
| 2722 | */ |
| 2723 | STATIC int |
| 2724 | xlog_recover_buffer_pass2( |
| 2725 | struct xlog *log, |
| 2726 | struct list_head *buffer_list, |
| 2727 | struct xlog_recover_item *item, |
| 2728 | xfs_lsn_t current_lsn) |
| 2729 | { |
| 2730 | xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; |
| 2731 | xfs_mount_t *mp = log->l_mp; |
| 2732 | xfs_buf_t *bp; |
| 2733 | int error; |
| 2734 | uint buf_flags; |
| 2735 | xfs_lsn_t lsn; |
| 2736 | |
| 2737 | /* |
| 2738 | * In this pass we only want to recover all the buffers which have |
| 2739 | * not been cancelled and are not cancellation buffers themselves. |
| 2740 | */ |
| 2741 | if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno, |
| 2742 | buf_f->blf_len, buf_f->blf_flags)) { |
| 2743 | trace_xfs_log_recover_buf_cancel(log, buf_f); |
| 2744 | return 0; |
| 2745 | } |
| 2746 | |
| 2747 | trace_xfs_log_recover_buf_recover(log, buf_f); |
| 2748 | |
| 2749 | buf_flags = 0; |
| 2750 | if (buf_f->blf_flags & XFS_BLF_INODE_BUF) |
| 2751 | buf_flags |= XBF_UNMAPPED; |
| 2752 | |
| 2753 | bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, |
| 2754 | buf_flags, NULL); |
| 2755 | if (!bp) |
| 2756 | return -ENOMEM; |
| 2757 | error = bp->b_error; |
| 2758 | if (error) { |
| 2759 | xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)"); |
| 2760 | goto out_release; |
| 2761 | } |
| 2762 | |
| 2763 | /* |
| 2764 | * Recover the buffer only if we get an LSN from it and it's less than |
| 2765 | * the lsn of the transaction we are replaying. |
| 2766 | * |
| 2767 | * Note that we have to be extremely careful of readahead here. |
| 2768 | * Readahead does not attach verfiers to the buffers so if we don't |
| 2769 | * actually do any replay after readahead because of the LSN we found |
| 2770 | * in the buffer if more recent than that current transaction then we |
| 2771 | * need to attach the verifier directly. Failure to do so can lead to |
| 2772 | * future recovery actions (e.g. EFI and unlinked list recovery) can |
| 2773 | * operate on the buffers and they won't get the verifier attached. This |
| 2774 | * can lead to blocks on disk having the correct content but a stale |
| 2775 | * CRC. |
| 2776 | * |
| 2777 | * It is safe to assume these clean buffers are currently up to date. |
| 2778 | * If the buffer is dirtied by a later transaction being replayed, then |
| 2779 | * the verifier will be reset to match whatever recover turns that |
| 2780 | * buffer into. |
| 2781 | */ |
| 2782 | lsn = xlog_recover_get_buf_lsn(mp, bp); |
| 2783 | if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { |
| 2784 | trace_xfs_log_recover_buf_skip(log, buf_f); |
| 2785 | xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN); |
| 2786 | |
| 2787 | /* |
| 2788 | * We're skipping replay of this buffer log item due to the log |
| 2789 | * item LSN being behind the ondisk buffer. Verify the buffer |
| 2790 | * contents since we aren't going to run the write verifier. |
| 2791 | */ |
| 2792 | if (bp->b_ops) { |
| 2793 | bp->b_ops->verify_read(bp); |
| 2794 | error = bp->b_error; |
| 2795 | } |
| 2796 | goto out_release; |
| 2797 | } |
| 2798 | |
| 2799 | if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { |
| 2800 | error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); |
| 2801 | if (error) |
| 2802 | goto out_release; |
| 2803 | } else if (buf_f->blf_flags & |
| 2804 | (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { |
| 2805 | bool dirty; |
| 2806 | |
| 2807 | dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); |
| 2808 | if (!dirty) |
| 2809 | goto out_release; |
| 2810 | } else { |
| 2811 | xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn); |
| 2812 | } |
| 2813 | |
| 2814 | /* |
| 2815 | * Perform delayed write on the buffer. Asynchronous writes will be |
| 2816 | * slower when taking into account all the buffers to be flushed. |
| 2817 | * |
| 2818 | * Also make sure that only inode buffers with good sizes stay in |
| 2819 | * the buffer cache. The kernel moves inodes in buffers of 1 block |
| 2820 | * or inode_cluster_size bytes, whichever is bigger. The inode |
| 2821 | * buffers in the log can be a different size if the log was generated |
| 2822 | * by an older kernel using unclustered inode buffers or a newer kernel |
| 2823 | * running with a different inode cluster size. Regardless, if the |
| 2824 | * the inode buffer size isn't max(blocksize, inode_cluster_size) |
| 2825 | * for *our* value of inode_cluster_size, then we need to keep |
| 2826 | * the buffer out of the buffer cache so that the buffer won't |
| 2827 | * overlap with future reads of those inodes. |
| 2828 | */ |
| 2829 | if (XFS_DINODE_MAGIC == |
| 2830 | be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && |
| 2831 | (BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) { |
| 2832 | xfs_buf_stale(bp); |
| 2833 | error = xfs_bwrite(bp); |
| 2834 | } else { |
| 2835 | ASSERT(bp->b_mount == mp); |
| 2836 | bp->b_iodone = xlog_recover_iodone; |
| 2837 | xfs_buf_delwri_queue(bp, buffer_list); |
| 2838 | } |
| 2839 | |
| 2840 | out_release: |
| 2841 | xfs_buf_relse(bp); |
| 2842 | return error; |
| 2843 | } |
| 2844 | |
| 2845 | /* |
| 2846 | * Inode fork owner changes |
| 2847 | * |
| 2848 | * If we have been told that we have to reparent the inode fork, it's because an |
| 2849 | * extent swap operation on a CRC enabled filesystem has been done and we are |
| 2850 | * replaying it. We need to walk the BMBT of the appropriate fork and change the |
| 2851 | * owners of it. |
| 2852 | * |
| 2853 | * The complexity here is that we don't have an inode context to work with, so |
| 2854 | * after we've replayed the inode we need to instantiate one. This is where the |
| 2855 | * fun begins. |
| 2856 | * |
| 2857 | * We are in the middle of log recovery, so we can't run transactions. That |
| 2858 | * means we cannot use cache coherent inode instantiation via xfs_iget(), as |
| 2859 | * that will result in the corresponding iput() running the inode through |
| 2860 | * xfs_inactive(). If we've just replayed an inode core that changes the link |
| 2861 | * count to zero (i.e. it's been unlinked), then xfs_inactive() will run |
| 2862 | * transactions (bad!). |
| 2863 | * |
| 2864 | * So, to avoid this, we instantiate an inode directly from the inode core we've |
| 2865 | * just recovered. We have the buffer still locked, and all we really need to |
| 2866 | * instantiate is the inode core and the forks being modified. We can do this |
| 2867 | * manually, then run the inode btree owner change, and then tear down the |
| 2868 | * xfs_inode without having to run any transactions at all. |
| 2869 | * |
| 2870 | * Also, because we don't have a transaction context available here but need to |
| 2871 | * gather all the buffers we modify for writeback so we pass the buffer_list |
| 2872 | * instead for the operation to use. |
| 2873 | */ |
| 2874 | |
| 2875 | STATIC int |
| 2876 | xfs_recover_inode_owner_change( |
| 2877 | struct xfs_mount *mp, |
| 2878 | struct xfs_dinode *dip, |
| 2879 | struct xfs_inode_log_format *in_f, |
| 2880 | struct list_head *buffer_list) |
| 2881 | { |
| 2882 | struct xfs_inode *ip; |
| 2883 | int error; |
| 2884 | |
| 2885 | ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)); |
| 2886 | |
| 2887 | ip = xfs_inode_alloc(mp, in_f->ilf_ino); |
| 2888 | if (!ip) |
| 2889 | return -ENOMEM; |
| 2890 | |
| 2891 | /* instantiate the inode */ |
| 2892 | ASSERT(dip->di_version >= 3); |
| 2893 | xfs_inode_from_disk(ip, dip); |
| 2894 | |
| 2895 | error = xfs_iformat_fork(ip, dip); |
| 2896 | if (error) |
| 2897 | goto out_free_ip; |
| 2898 | |
| 2899 | if (!xfs_inode_verify_forks(ip)) { |
| 2900 | error = -EFSCORRUPTED; |
| 2901 | goto out_free_ip; |
| 2902 | } |
| 2903 | |
| 2904 | if (in_f->ilf_fields & XFS_ILOG_DOWNER) { |
| 2905 | ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT); |
| 2906 | error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK, |
| 2907 | ip->i_ino, buffer_list); |
| 2908 | if (error) |
| 2909 | goto out_free_ip; |
| 2910 | } |
| 2911 | |
| 2912 | if (in_f->ilf_fields & XFS_ILOG_AOWNER) { |
| 2913 | ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT); |
| 2914 | error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK, |
| 2915 | ip->i_ino, buffer_list); |
| 2916 | if (error) |
| 2917 | goto out_free_ip; |
| 2918 | } |
| 2919 | |
| 2920 | out_free_ip: |
| 2921 | xfs_inode_free(ip); |
| 2922 | return error; |
| 2923 | } |
| 2924 | |
| 2925 | STATIC int |
| 2926 | xlog_recover_inode_pass2( |
| 2927 | struct xlog *log, |
| 2928 | struct list_head *buffer_list, |
| 2929 | struct xlog_recover_item *item, |
| 2930 | xfs_lsn_t current_lsn) |
| 2931 | { |
| 2932 | struct xfs_inode_log_format *in_f; |
| 2933 | xfs_mount_t *mp = log->l_mp; |
| 2934 | xfs_buf_t *bp; |
| 2935 | xfs_dinode_t *dip; |
| 2936 | int len; |
| 2937 | char *src; |
| 2938 | char *dest; |
| 2939 | int error; |
| 2940 | int attr_index; |
| 2941 | uint fields; |
| 2942 | struct xfs_log_dinode *ldip; |
| 2943 | uint isize; |
| 2944 | int need_free = 0; |
| 2945 | |
| 2946 | if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { |
| 2947 | in_f = item->ri_buf[0].i_addr; |
| 2948 | } else { |
| 2949 | in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), 0); |
| 2950 | need_free = 1; |
| 2951 | error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); |
| 2952 | if (error) |
| 2953 | goto error; |
| 2954 | } |
| 2955 | |
| 2956 | /* |
| 2957 | * Inode buffers can be freed, look out for it, |
| 2958 | * and do not replay the inode. |
| 2959 | */ |
| 2960 | if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, |
| 2961 | in_f->ilf_len, 0)) { |
| 2962 | error = 0; |
| 2963 | trace_xfs_log_recover_inode_cancel(log, in_f); |
| 2964 | goto error; |
| 2965 | } |
| 2966 | trace_xfs_log_recover_inode_recover(log, in_f); |
| 2967 | |
| 2968 | bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0, |
| 2969 | &xfs_inode_buf_ops); |
| 2970 | if (!bp) { |
| 2971 | error = -ENOMEM; |
| 2972 | goto error; |
| 2973 | } |
| 2974 | error = bp->b_error; |
| 2975 | if (error) { |
| 2976 | xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)"); |
| 2977 | goto out_release; |
| 2978 | } |
| 2979 | ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); |
| 2980 | dip = xfs_buf_offset(bp, in_f->ilf_boffset); |
| 2981 | |
| 2982 | /* |
| 2983 | * Make sure the place we're flushing out to really looks |
| 2984 | * like an inode! |
| 2985 | */ |
| 2986 | if (unlikely(!xfs_verify_magic16(bp, dip->di_magic))) { |
| 2987 | xfs_alert(mp, |
| 2988 | "%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %Ld", |
| 2989 | __func__, dip, bp, in_f->ilf_ino); |
| 2990 | XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)", |
| 2991 | XFS_ERRLEVEL_LOW, mp); |
| 2992 | error = -EFSCORRUPTED; |
| 2993 | goto out_release; |
| 2994 | } |
| 2995 | ldip = item->ri_buf[1].i_addr; |
| 2996 | if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) { |
| 2997 | xfs_alert(mp, |
| 2998 | "%s: Bad inode log record, rec ptr "PTR_FMT", ino %Ld", |
| 2999 | __func__, item, in_f->ilf_ino); |
| 3000 | XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)", |
| 3001 | XFS_ERRLEVEL_LOW, mp); |
| 3002 | error = -EFSCORRUPTED; |
| 3003 | goto out_release; |
| 3004 | } |
| 3005 | |
| 3006 | /* |
| 3007 | * If the inode has an LSN in it, recover the inode only if it's less |
| 3008 | * than the lsn of the transaction we are replaying. Note: we still |
| 3009 | * need to replay an owner change even though the inode is more recent |
| 3010 | * than the transaction as there is no guarantee that all the btree |
| 3011 | * blocks are more recent than this transaction, too. |
| 3012 | */ |
| 3013 | if (dip->di_version >= 3) { |
| 3014 | xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn); |
| 3015 | |
| 3016 | if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { |
| 3017 | trace_xfs_log_recover_inode_skip(log, in_f); |
| 3018 | error = 0; |
| 3019 | goto out_owner_change; |
| 3020 | } |
| 3021 | } |
| 3022 | |
| 3023 | /* |
| 3024 | * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes |
| 3025 | * are transactional and if ordering is necessary we can determine that |
| 3026 | * more accurately by the LSN field in the V3 inode core. Don't trust |
| 3027 | * the inode versions we might be changing them here - use the |
| 3028 | * superblock flag to determine whether we need to look at di_flushiter |
| 3029 | * to skip replay when the on disk inode is newer than the log one |
| 3030 | */ |
| 3031 | if (!xfs_sb_version_has_v3inode(&mp->m_sb) && |
| 3032 | ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) { |
| 3033 | /* |
| 3034 | * Deal with the wrap case, DI_MAX_FLUSH is less |
| 3035 | * than smaller numbers |
| 3036 | */ |
| 3037 | if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && |
| 3038 | ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) { |
| 3039 | /* do nothing */ |
| 3040 | } else { |
| 3041 | trace_xfs_log_recover_inode_skip(log, in_f); |
| 3042 | error = 0; |
| 3043 | goto out_release; |
| 3044 | } |
| 3045 | } |
| 3046 | |
| 3047 | /* Take the opportunity to reset the flush iteration count */ |
| 3048 | ldip->di_flushiter = 0; |
| 3049 | |
| 3050 | if (unlikely(S_ISREG(ldip->di_mode))) { |
| 3051 | if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) && |
| 3052 | (ldip->di_format != XFS_DINODE_FMT_BTREE)) { |
| 3053 | XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)", |
| 3054 | XFS_ERRLEVEL_LOW, mp, ldip, |
| 3055 | sizeof(*ldip)); |
| 3056 | xfs_alert(mp, |
| 3057 | "%s: Bad regular inode log record, rec ptr "PTR_FMT", " |
| 3058 | "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld", |
| 3059 | __func__, item, dip, bp, in_f->ilf_ino); |
| 3060 | error = -EFSCORRUPTED; |
| 3061 | goto out_release; |
| 3062 | } |
| 3063 | } else if (unlikely(S_ISDIR(ldip->di_mode))) { |
| 3064 | if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) && |
| 3065 | (ldip->di_format != XFS_DINODE_FMT_BTREE) && |
| 3066 | (ldip->di_format != XFS_DINODE_FMT_LOCAL)) { |
| 3067 | XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)", |
| 3068 | XFS_ERRLEVEL_LOW, mp, ldip, |
| 3069 | sizeof(*ldip)); |
| 3070 | xfs_alert(mp, |
| 3071 | "%s: Bad dir inode log record, rec ptr "PTR_FMT", " |
| 3072 | "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld", |
| 3073 | __func__, item, dip, bp, in_f->ilf_ino); |
| 3074 | error = -EFSCORRUPTED; |
| 3075 | goto out_release; |
| 3076 | } |
| 3077 | } |
| 3078 | if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){ |
| 3079 | XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)", |
| 3080 | XFS_ERRLEVEL_LOW, mp, ldip, |
| 3081 | sizeof(*ldip)); |
| 3082 | xfs_alert(mp, |
| 3083 | "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", " |
| 3084 | "dino bp "PTR_FMT", ino %Ld, total extents = %d, nblocks = %Ld", |
| 3085 | __func__, item, dip, bp, in_f->ilf_ino, |
| 3086 | ldip->di_nextents + ldip->di_anextents, |
| 3087 | ldip->di_nblocks); |
| 3088 | error = -EFSCORRUPTED; |
| 3089 | goto out_release; |
| 3090 | } |
| 3091 | if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) { |
| 3092 | XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)", |
| 3093 | XFS_ERRLEVEL_LOW, mp, ldip, |
| 3094 | sizeof(*ldip)); |
| 3095 | xfs_alert(mp, |
| 3096 | "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", " |
| 3097 | "dino bp "PTR_FMT", ino %Ld, forkoff 0x%x", __func__, |
| 3098 | item, dip, bp, in_f->ilf_ino, ldip->di_forkoff); |
| 3099 | error = -EFSCORRUPTED; |
| 3100 | goto out_release; |
| 3101 | } |
| 3102 | isize = xfs_log_dinode_size(mp); |
| 3103 | if (unlikely(item->ri_buf[1].i_len > isize)) { |
| 3104 | XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)", |
| 3105 | XFS_ERRLEVEL_LOW, mp, ldip, |
| 3106 | sizeof(*ldip)); |
| 3107 | xfs_alert(mp, |
| 3108 | "%s: Bad inode log record length %d, rec ptr "PTR_FMT, |
| 3109 | __func__, item->ri_buf[1].i_len, item); |
| 3110 | error = -EFSCORRUPTED; |
| 3111 | goto out_release; |
| 3112 | } |
| 3113 | |
| 3114 | /* recover the log dinode inode into the on disk inode */ |
| 3115 | xfs_log_dinode_to_disk(ldip, dip); |
| 3116 | |
| 3117 | fields = in_f->ilf_fields; |
| 3118 | if (fields & XFS_ILOG_DEV) |
| 3119 | xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); |
| 3120 | |
| 3121 | if (in_f->ilf_size == 2) |
| 3122 | goto out_owner_change; |
| 3123 | len = item->ri_buf[2].i_len; |
| 3124 | src = item->ri_buf[2].i_addr; |
| 3125 | ASSERT(in_f->ilf_size <= 4); |
| 3126 | ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); |
| 3127 | ASSERT(!(fields & XFS_ILOG_DFORK) || |
| 3128 | (len == in_f->ilf_dsize)); |
| 3129 | |
| 3130 | switch (fields & XFS_ILOG_DFORK) { |
| 3131 | case XFS_ILOG_DDATA: |
| 3132 | case XFS_ILOG_DEXT: |
| 3133 | memcpy(XFS_DFORK_DPTR(dip), src, len); |
| 3134 | break; |
| 3135 | |
| 3136 | case XFS_ILOG_DBROOT: |
| 3137 | xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, |
| 3138 | (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), |
| 3139 | XFS_DFORK_DSIZE(dip, mp)); |
| 3140 | break; |
| 3141 | |
| 3142 | default: |
| 3143 | /* |
| 3144 | * There are no data fork flags set. |
| 3145 | */ |
| 3146 | ASSERT((fields & XFS_ILOG_DFORK) == 0); |
| 3147 | break; |
| 3148 | } |
| 3149 | |
| 3150 | /* |
| 3151 | * If we logged any attribute data, recover it. There may or |
| 3152 | * may not have been any other non-core data logged in this |
| 3153 | * transaction. |
| 3154 | */ |
| 3155 | if (in_f->ilf_fields & XFS_ILOG_AFORK) { |
| 3156 | if (in_f->ilf_fields & XFS_ILOG_DFORK) { |
| 3157 | attr_index = 3; |
| 3158 | } else { |
| 3159 | attr_index = 2; |
| 3160 | } |
| 3161 | len = item->ri_buf[attr_index].i_len; |
| 3162 | src = item->ri_buf[attr_index].i_addr; |
| 3163 | ASSERT(len == in_f->ilf_asize); |
| 3164 | |
| 3165 | switch (in_f->ilf_fields & XFS_ILOG_AFORK) { |
| 3166 | case XFS_ILOG_ADATA: |
| 3167 | case XFS_ILOG_AEXT: |
| 3168 | dest = XFS_DFORK_APTR(dip); |
| 3169 | ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); |
| 3170 | memcpy(dest, src, len); |
| 3171 | break; |
| 3172 | |
| 3173 | case XFS_ILOG_ABROOT: |
| 3174 | dest = XFS_DFORK_APTR(dip); |
| 3175 | xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, |
| 3176 | len, (xfs_bmdr_block_t*)dest, |
| 3177 | XFS_DFORK_ASIZE(dip, mp)); |
| 3178 | break; |
| 3179 | |
| 3180 | default: |
| 3181 | xfs_warn(log->l_mp, "%s: Invalid flag", __func__); |
| 3182 | ASSERT(0); |
| 3183 | error = -EFSCORRUPTED; |
| 3184 | goto out_release; |
| 3185 | } |
| 3186 | } |
| 3187 | |
| 3188 | out_owner_change: |
| 3189 | /* Recover the swapext owner change unless inode has been deleted */ |
| 3190 | if ((in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) && |
| 3191 | (dip->di_mode != 0)) |
| 3192 | error = xfs_recover_inode_owner_change(mp, dip, in_f, |
| 3193 | buffer_list); |
| 3194 | /* re-generate the checksum. */ |
| 3195 | xfs_dinode_calc_crc(log->l_mp, dip); |
| 3196 | |
| 3197 | ASSERT(bp->b_mount == mp); |
| 3198 | bp->b_iodone = xlog_recover_iodone; |
| 3199 | xfs_buf_delwri_queue(bp, buffer_list); |
| 3200 | |
| 3201 | out_release: |
| 3202 | xfs_buf_relse(bp); |
| 3203 | error: |
| 3204 | if (need_free) |
| 3205 | kmem_free(in_f); |
| 3206 | return error; |
| 3207 | } |
| 3208 | |
| 3209 | /* |
| 3210 | * Recover QUOTAOFF records. We simply make a note of it in the xlog |
| 3211 | * structure, so that we know not to do any dquot item or dquot buffer recovery, |
| 3212 | * of that type. |
| 3213 | */ |
| 3214 | STATIC int |
| 3215 | xlog_recover_quotaoff_pass1( |
| 3216 | struct xlog *log, |
| 3217 | struct xlog_recover_item *item) |
| 3218 | { |
| 3219 | xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr; |
| 3220 | ASSERT(qoff_f); |
| 3221 | |
| 3222 | /* |
| 3223 | * The logitem format's flag tells us if this was user quotaoff, |
| 3224 | * group/project quotaoff or both. |
| 3225 | */ |
| 3226 | if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) |
| 3227 | log->l_quotaoffs_flag |= XFS_DQ_USER; |
| 3228 | if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) |
| 3229 | log->l_quotaoffs_flag |= XFS_DQ_PROJ; |
| 3230 | if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) |
| 3231 | log->l_quotaoffs_flag |= XFS_DQ_GROUP; |
| 3232 | |
| 3233 | return 0; |
| 3234 | } |
| 3235 | |
| 3236 | /* |
| 3237 | * Recover a dquot record |
| 3238 | */ |
| 3239 | STATIC int |
| 3240 | xlog_recover_dquot_pass2( |
| 3241 | struct xlog *log, |
| 3242 | struct list_head *buffer_list, |
| 3243 | struct xlog_recover_item *item, |
| 3244 | xfs_lsn_t current_lsn) |
| 3245 | { |
| 3246 | xfs_mount_t *mp = log->l_mp; |
| 3247 | xfs_buf_t *bp; |
| 3248 | struct xfs_disk_dquot *ddq, *recddq; |
| 3249 | xfs_failaddr_t fa; |
| 3250 | int error; |
| 3251 | xfs_dq_logformat_t *dq_f; |
| 3252 | uint type; |
| 3253 | |
| 3254 | |
| 3255 | /* |
| 3256 | * Filesystems are required to send in quota flags at mount time. |
| 3257 | */ |
| 3258 | if (mp->m_qflags == 0) |
| 3259 | return 0; |
| 3260 | |
| 3261 | recddq = item->ri_buf[1].i_addr; |
| 3262 | if (recddq == NULL) { |
| 3263 | xfs_alert(log->l_mp, "NULL dquot in %s.", __func__); |
| 3264 | return -EFSCORRUPTED; |
| 3265 | } |
| 3266 | if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot)) { |
| 3267 | xfs_alert(log->l_mp, "dquot too small (%d) in %s.", |
| 3268 | item->ri_buf[1].i_len, __func__); |
| 3269 | return -EFSCORRUPTED; |
| 3270 | } |
| 3271 | |
| 3272 | /* |
| 3273 | * This type of quotas was turned off, so ignore this record. |
| 3274 | */ |
| 3275 | type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); |
| 3276 | ASSERT(type); |
| 3277 | if (log->l_quotaoffs_flag & type) |
| 3278 | return 0; |
| 3279 | |
| 3280 | /* |
| 3281 | * At this point we know that quota was _not_ turned off. |
| 3282 | * Since the mount flags are not indicating to us otherwise, this |
| 3283 | * must mean that quota is on, and the dquot needs to be replayed. |
| 3284 | * Remember that we may not have fully recovered the superblock yet, |
| 3285 | * so we can't do the usual trick of looking at the SB quota bits. |
| 3286 | * |
| 3287 | * The other possibility, of course, is that the quota subsystem was |
| 3288 | * removed since the last mount - ENOSYS. |
| 3289 | */ |
| 3290 | dq_f = item->ri_buf[0].i_addr; |
| 3291 | ASSERT(dq_f); |
| 3292 | fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0); |
| 3293 | if (fa) { |
| 3294 | xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS", |
| 3295 | dq_f->qlf_id, fa); |
| 3296 | return -EFSCORRUPTED; |
| 3297 | } |
| 3298 | ASSERT(dq_f->qlf_len == 1); |
| 3299 | |
| 3300 | /* |
| 3301 | * At this point we are assuming that the dquots have been allocated |
| 3302 | * and hence the buffer has valid dquots stamped in it. It should, |
| 3303 | * therefore, pass verifier validation. If the dquot is bad, then the |
| 3304 | * we'll return an error here, so we don't need to specifically check |
| 3305 | * the dquot in the buffer after the verifier has run. |
| 3306 | */ |
| 3307 | error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno, |
| 3308 | XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp, |
| 3309 | &xfs_dquot_buf_ops); |
| 3310 | if (error) |
| 3311 | return error; |
| 3312 | |
| 3313 | ASSERT(bp); |
| 3314 | ddq = xfs_buf_offset(bp, dq_f->qlf_boffset); |
| 3315 | |
| 3316 | /* |
| 3317 | * If the dquot has an LSN in it, recover the dquot only if it's less |
| 3318 | * than the lsn of the transaction we are replaying. |
| 3319 | */ |
| 3320 | if (xfs_sb_version_hascrc(&mp->m_sb)) { |
| 3321 | struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq; |
| 3322 | xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn); |
| 3323 | |
| 3324 | if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { |
| 3325 | goto out_release; |
| 3326 | } |
| 3327 | } |
| 3328 | |
| 3329 | memcpy(ddq, recddq, item->ri_buf[1].i_len); |
| 3330 | if (xfs_sb_version_hascrc(&mp->m_sb)) { |
| 3331 | xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk), |
| 3332 | XFS_DQUOT_CRC_OFF); |
| 3333 | } |
| 3334 | |
| 3335 | ASSERT(dq_f->qlf_size == 2); |
| 3336 | ASSERT(bp->b_mount == mp); |
| 3337 | bp->b_iodone = xlog_recover_iodone; |
| 3338 | xfs_buf_delwri_queue(bp, buffer_list); |
| 3339 | |
| 3340 | out_release: |
| 3341 | xfs_buf_relse(bp); |
| 3342 | return 0; |
| 3343 | } |
| 3344 | |
| 3345 | /* |
| 3346 | * This routine is called to create an in-core extent free intent |
| 3347 | * item from the efi format structure which was logged on disk. |
| 3348 | * It allocates an in-core efi, copies the extents from the format |
| 3349 | * structure into it, and adds the efi to the AIL with the given |
| 3350 | * LSN. |
| 3351 | */ |
| 3352 | STATIC int |
| 3353 | xlog_recover_efi_pass2( |
| 3354 | struct xlog *log, |
| 3355 | struct xlog_recover_item *item, |
| 3356 | xfs_lsn_t lsn) |
| 3357 | { |
| 3358 | int error; |
| 3359 | struct xfs_mount *mp = log->l_mp; |
| 3360 | struct xfs_efi_log_item *efip; |
| 3361 | struct xfs_efi_log_format *efi_formatp; |
| 3362 | |
| 3363 | efi_formatp = item->ri_buf[0].i_addr; |
| 3364 | |
| 3365 | efip = xfs_efi_init(mp, efi_formatp->efi_nextents); |
| 3366 | error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); |
| 3367 | if (error) { |
| 3368 | xfs_efi_item_free(efip); |
| 3369 | return error; |
| 3370 | } |
| 3371 | atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); |
| 3372 | |
| 3373 | spin_lock(&log->l_ailp->ail_lock); |
| 3374 | /* |
| 3375 | * The EFI has two references. One for the EFD and one for EFI to ensure |
| 3376 | * it makes it into the AIL. Insert the EFI into the AIL directly and |
| 3377 | * drop the EFI reference. Note that xfs_trans_ail_update() drops the |
| 3378 | * AIL lock. |
| 3379 | */ |
| 3380 | xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn); |
| 3381 | xfs_efi_release(efip); |
| 3382 | return 0; |
| 3383 | } |
| 3384 | |
| 3385 | |
| 3386 | /* |
| 3387 | * This routine is called when an EFD format structure is found in a committed |
| 3388 | * transaction in the log. Its purpose is to cancel the corresponding EFI if it |
| 3389 | * was still in the log. To do this it searches the AIL for the EFI with an id |
| 3390 | * equal to that in the EFD format structure. If we find it we drop the EFD |
| 3391 | * reference, which removes the EFI from the AIL and frees it. |
| 3392 | */ |
| 3393 | STATIC int |
| 3394 | xlog_recover_efd_pass2( |
| 3395 | struct xlog *log, |
| 3396 | struct xlog_recover_item *item) |
| 3397 | { |
| 3398 | xfs_efd_log_format_t *efd_formatp; |
| 3399 | struct xfs_efi_log_item *efip = NULL; |
| 3400 | struct xfs_log_item *lip; |
| 3401 | uint64_t efi_id; |
| 3402 | struct xfs_ail_cursor cur; |
| 3403 | struct xfs_ail *ailp = log->l_ailp; |
| 3404 | |
| 3405 | efd_formatp = item->ri_buf[0].i_addr; |
| 3406 | ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + |
| 3407 | ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || |
| 3408 | (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + |
| 3409 | ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); |
| 3410 | efi_id = efd_formatp->efd_efi_id; |
| 3411 | |
| 3412 | /* |
| 3413 | * Search for the EFI with the id in the EFD format structure in the |
| 3414 | * AIL. |
| 3415 | */ |
| 3416 | spin_lock(&ailp->ail_lock); |
| 3417 | lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); |
| 3418 | while (lip != NULL) { |
| 3419 | if (lip->li_type == XFS_LI_EFI) { |
| 3420 | efip = (struct xfs_efi_log_item *)lip; |
| 3421 | if (efip->efi_format.efi_id == efi_id) { |
| 3422 | /* |
| 3423 | * Drop the EFD reference to the EFI. This |
| 3424 | * removes the EFI from the AIL and frees it. |
| 3425 | */ |
| 3426 | spin_unlock(&ailp->ail_lock); |
| 3427 | xfs_efi_release(efip); |
| 3428 | spin_lock(&ailp->ail_lock); |
| 3429 | break; |
| 3430 | } |
| 3431 | } |
| 3432 | lip = xfs_trans_ail_cursor_next(ailp, &cur); |
| 3433 | } |
| 3434 | |
| 3435 | xfs_trans_ail_cursor_done(&cur); |
| 3436 | spin_unlock(&ailp->ail_lock); |
| 3437 | |
| 3438 | return 0; |
| 3439 | } |
| 3440 | |
| 3441 | /* |
| 3442 | * This routine is called to create an in-core extent rmap update |
| 3443 | * item from the rui format structure which was logged on disk. |
| 3444 | * It allocates an in-core rui, copies the extents from the format |
| 3445 | * structure into it, and adds the rui to the AIL with the given |
| 3446 | * LSN. |
| 3447 | */ |
| 3448 | STATIC int |
| 3449 | xlog_recover_rui_pass2( |
| 3450 | struct xlog *log, |
| 3451 | struct xlog_recover_item *item, |
| 3452 | xfs_lsn_t lsn) |
| 3453 | { |
| 3454 | int error; |
| 3455 | struct xfs_mount *mp = log->l_mp; |
| 3456 | struct xfs_rui_log_item *ruip; |
| 3457 | struct xfs_rui_log_format *rui_formatp; |
| 3458 | |
| 3459 | rui_formatp = item->ri_buf[0].i_addr; |
| 3460 | |
| 3461 | ruip = xfs_rui_init(mp, rui_formatp->rui_nextents); |
| 3462 | error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format); |
| 3463 | if (error) { |
| 3464 | xfs_rui_item_free(ruip); |
| 3465 | return error; |
| 3466 | } |
| 3467 | atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents); |
| 3468 | |
| 3469 | spin_lock(&log->l_ailp->ail_lock); |
| 3470 | /* |
| 3471 | * The RUI has two references. One for the RUD and one for RUI to ensure |
| 3472 | * it makes it into the AIL. Insert the RUI into the AIL directly and |
| 3473 | * drop the RUI reference. Note that xfs_trans_ail_update() drops the |
| 3474 | * AIL lock. |
| 3475 | */ |
| 3476 | xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn); |
| 3477 | xfs_rui_release(ruip); |
| 3478 | return 0; |
| 3479 | } |
| 3480 | |
| 3481 | |
| 3482 | /* |
| 3483 | * This routine is called when an RUD format structure is found in a committed |
| 3484 | * transaction in the log. Its purpose is to cancel the corresponding RUI if it |
| 3485 | * was still in the log. To do this it searches the AIL for the RUI with an id |
| 3486 | * equal to that in the RUD format structure. If we find it we drop the RUD |
| 3487 | * reference, which removes the RUI from the AIL and frees it. |
| 3488 | */ |
| 3489 | STATIC int |
| 3490 | xlog_recover_rud_pass2( |
| 3491 | struct xlog *log, |
| 3492 | struct xlog_recover_item *item) |
| 3493 | { |
| 3494 | struct xfs_rud_log_format *rud_formatp; |
| 3495 | struct xfs_rui_log_item *ruip = NULL; |
| 3496 | struct xfs_log_item *lip; |
| 3497 | uint64_t rui_id; |
| 3498 | struct xfs_ail_cursor cur; |
| 3499 | struct xfs_ail *ailp = log->l_ailp; |
| 3500 | |
| 3501 | rud_formatp = item->ri_buf[0].i_addr; |
| 3502 | ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format)); |
| 3503 | rui_id = rud_formatp->rud_rui_id; |
| 3504 | |
| 3505 | /* |
| 3506 | * Search for the RUI with the id in the RUD format structure in the |
| 3507 | * AIL. |
| 3508 | */ |
| 3509 | spin_lock(&ailp->ail_lock); |
| 3510 | lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); |
| 3511 | while (lip != NULL) { |
| 3512 | if (lip->li_type == XFS_LI_RUI) { |
| 3513 | ruip = (struct xfs_rui_log_item *)lip; |
| 3514 | if (ruip->rui_format.rui_id == rui_id) { |
| 3515 | /* |
| 3516 | * Drop the RUD reference to the RUI. This |
| 3517 | * removes the RUI from the AIL and frees it. |
| 3518 | */ |
| 3519 | spin_unlock(&ailp->ail_lock); |
| 3520 | xfs_rui_release(ruip); |
| 3521 | spin_lock(&ailp->ail_lock); |
| 3522 | break; |
| 3523 | } |
| 3524 | } |
| 3525 | lip = xfs_trans_ail_cursor_next(ailp, &cur); |
| 3526 | } |
| 3527 | |
| 3528 | xfs_trans_ail_cursor_done(&cur); |
| 3529 | spin_unlock(&ailp->ail_lock); |
| 3530 | |
| 3531 | return 0; |
| 3532 | } |
| 3533 | |
| 3534 | /* |
| 3535 | * Copy an CUI format buffer from the given buf, and into the destination |
| 3536 | * CUI format structure. The CUI/CUD items were designed not to need any |
| 3537 | * special alignment handling. |
| 3538 | */ |
| 3539 | static int |
| 3540 | xfs_cui_copy_format( |
| 3541 | struct xfs_log_iovec *buf, |
| 3542 | struct xfs_cui_log_format *dst_cui_fmt) |
| 3543 | { |
| 3544 | struct xfs_cui_log_format *src_cui_fmt; |
| 3545 | uint len; |
| 3546 | |
| 3547 | src_cui_fmt = buf->i_addr; |
| 3548 | len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents); |
| 3549 | |
| 3550 | if (buf->i_len == len) { |
| 3551 | memcpy(dst_cui_fmt, src_cui_fmt, len); |
| 3552 | return 0; |
| 3553 | } |
| 3554 | XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); |
| 3555 | return -EFSCORRUPTED; |
| 3556 | } |
| 3557 | |
| 3558 | /* |
| 3559 | * This routine is called to create an in-core extent refcount update |
| 3560 | * item from the cui format structure which was logged on disk. |
| 3561 | * It allocates an in-core cui, copies the extents from the format |
| 3562 | * structure into it, and adds the cui to the AIL with the given |
| 3563 | * LSN. |
| 3564 | */ |
| 3565 | STATIC int |
| 3566 | xlog_recover_cui_pass2( |
| 3567 | struct xlog *log, |
| 3568 | struct xlog_recover_item *item, |
| 3569 | xfs_lsn_t lsn) |
| 3570 | { |
| 3571 | int error; |
| 3572 | struct xfs_mount *mp = log->l_mp; |
| 3573 | struct xfs_cui_log_item *cuip; |
| 3574 | struct xfs_cui_log_format *cui_formatp; |
| 3575 | |
| 3576 | cui_formatp = item->ri_buf[0].i_addr; |
| 3577 | |
| 3578 | cuip = xfs_cui_init(mp, cui_formatp->cui_nextents); |
| 3579 | error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format); |
| 3580 | if (error) { |
| 3581 | xfs_cui_item_free(cuip); |
| 3582 | return error; |
| 3583 | } |
| 3584 | atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents); |
| 3585 | |
| 3586 | spin_lock(&log->l_ailp->ail_lock); |
| 3587 | /* |
| 3588 | * The CUI has two references. One for the CUD and one for CUI to ensure |
| 3589 | * it makes it into the AIL. Insert the CUI into the AIL directly and |
| 3590 | * drop the CUI reference. Note that xfs_trans_ail_update() drops the |
| 3591 | * AIL lock. |
| 3592 | */ |
| 3593 | xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn); |
| 3594 | xfs_cui_release(cuip); |
| 3595 | return 0; |
| 3596 | } |
| 3597 | |
| 3598 | |
| 3599 | /* |
| 3600 | * This routine is called when an CUD format structure is found in a committed |
| 3601 | * transaction in the log. Its purpose is to cancel the corresponding CUI if it |
| 3602 | * was still in the log. To do this it searches the AIL for the CUI with an id |
| 3603 | * equal to that in the CUD format structure. If we find it we drop the CUD |
| 3604 | * reference, which removes the CUI from the AIL and frees it. |
| 3605 | */ |
| 3606 | STATIC int |
| 3607 | xlog_recover_cud_pass2( |
| 3608 | struct xlog *log, |
| 3609 | struct xlog_recover_item *item) |
| 3610 | { |
| 3611 | struct xfs_cud_log_format *cud_formatp; |
| 3612 | struct xfs_cui_log_item *cuip = NULL; |
| 3613 | struct xfs_log_item *lip; |
| 3614 | uint64_t cui_id; |
| 3615 | struct xfs_ail_cursor cur; |
| 3616 | struct xfs_ail *ailp = log->l_ailp; |
| 3617 | |
| 3618 | cud_formatp = item->ri_buf[0].i_addr; |
| 3619 | if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) { |
| 3620 | XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp); |
| 3621 | return -EFSCORRUPTED; |
| 3622 | } |
| 3623 | cui_id = cud_formatp->cud_cui_id; |
| 3624 | |
| 3625 | /* |
| 3626 | * Search for the CUI with the id in the CUD format structure in the |
| 3627 | * AIL. |
| 3628 | */ |
| 3629 | spin_lock(&ailp->ail_lock); |
| 3630 | lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); |
| 3631 | while (lip != NULL) { |
| 3632 | if (lip->li_type == XFS_LI_CUI) { |
| 3633 | cuip = (struct xfs_cui_log_item *)lip; |
| 3634 | if (cuip->cui_format.cui_id == cui_id) { |
| 3635 | /* |
| 3636 | * Drop the CUD reference to the CUI. This |
| 3637 | * removes the CUI from the AIL and frees it. |
| 3638 | */ |
| 3639 | spin_unlock(&ailp->ail_lock); |
| 3640 | xfs_cui_release(cuip); |
| 3641 | spin_lock(&ailp->ail_lock); |
| 3642 | break; |
| 3643 | } |
| 3644 | } |
| 3645 | lip = xfs_trans_ail_cursor_next(ailp, &cur); |
| 3646 | } |
| 3647 | |
| 3648 | xfs_trans_ail_cursor_done(&cur); |
| 3649 | spin_unlock(&ailp->ail_lock); |
| 3650 | |
| 3651 | return 0; |
| 3652 | } |
| 3653 | |
| 3654 | /* |
| 3655 | * Copy an BUI format buffer from the given buf, and into the destination |
| 3656 | * BUI format structure. The BUI/BUD items were designed not to need any |
| 3657 | * special alignment handling. |
| 3658 | */ |
| 3659 | static int |
| 3660 | xfs_bui_copy_format( |
| 3661 | struct xfs_log_iovec *buf, |
| 3662 | struct xfs_bui_log_format *dst_bui_fmt) |
| 3663 | { |
| 3664 | struct xfs_bui_log_format *src_bui_fmt; |
| 3665 | uint len; |
| 3666 | |
| 3667 | src_bui_fmt = buf->i_addr; |
| 3668 | len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents); |
| 3669 | |
| 3670 | if (buf->i_len == len) { |
| 3671 | memcpy(dst_bui_fmt, src_bui_fmt, len); |
| 3672 | return 0; |
| 3673 | } |
| 3674 | XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); |
| 3675 | return -EFSCORRUPTED; |
| 3676 | } |
| 3677 | |
| 3678 | /* |
| 3679 | * This routine is called to create an in-core extent bmap update |
| 3680 | * item from the bui format structure which was logged on disk. |
| 3681 | * It allocates an in-core bui, copies the extents from the format |
| 3682 | * structure into it, and adds the bui to the AIL with the given |
| 3683 | * LSN. |
| 3684 | */ |
| 3685 | STATIC int |
| 3686 | xlog_recover_bui_pass2( |
| 3687 | struct xlog *log, |
| 3688 | struct xlog_recover_item *item, |
| 3689 | xfs_lsn_t lsn) |
| 3690 | { |
| 3691 | int error; |
| 3692 | struct xfs_mount *mp = log->l_mp; |
| 3693 | struct xfs_bui_log_item *buip; |
| 3694 | struct xfs_bui_log_format *bui_formatp; |
| 3695 | |
| 3696 | bui_formatp = item->ri_buf[0].i_addr; |
| 3697 | |
| 3698 | if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS) { |
| 3699 | XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp); |
| 3700 | return -EFSCORRUPTED; |
| 3701 | } |
| 3702 | buip = xfs_bui_init(mp); |
| 3703 | error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format); |
| 3704 | if (error) { |
| 3705 | xfs_bui_item_free(buip); |
| 3706 | return error; |
| 3707 | } |
| 3708 | atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents); |
| 3709 | |
| 3710 | spin_lock(&log->l_ailp->ail_lock); |
| 3711 | /* |
| 3712 | * The RUI has two references. One for the RUD and one for RUI to ensure |
| 3713 | * it makes it into the AIL. Insert the RUI into the AIL directly and |
| 3714 | * drop the RUI reference. Note that xfs_trans_ail_update() drops the |
| 3715 | * AIL lock. |
| 3716 | */ |
| 3717 | xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn); |
| 3718 | xfs_bui_release(buip); |
| 3719 | return 0; |
| 3720 | } |
| 3721 | |
| 3722 | |
| 3723 | /* |
| 3724 | * This routine is called when an BUD format structure is found in a committed |
| 3725 | * transaction in the log. Its purpose is to cancel the corresponding BUI if it |
| 3726 | * was still in the log. To do this it searches the AIL for the BUI with an id |
| 3727 | * equal to that in the BUD format structure. If we find it we drop the BUD |
| 3728 | * reference, which removes the BUI from the AIL and frees it. |
| 3729 | */ |
| 3730 | STATIC int |
| 3731 | xlog_recover_bud_pass2( |
| 3732 | struct xlog *log, |
| 3733 | struct xlog_recover_item *item) |
| 3734 | { |
| 3735 | struct xfs_bud_log_format *bud_formatp; |
| 3736 | struct xfs_bui_log_item *buip = NULL; |
| 3737 | struct xfs_log_item *lip; |
| 3738 | uint64_t bui_id; |
| 3739 | struct xfs_ail_cursor cur; |
| 3740 | struct xfs_ail *ailp = log->l_ailp; |
| 3741 | |
| 3742 | bud_formatp = item->ri_buf[0].i_addr; |
| 3743 | if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format)) { |
| 3744 | XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp); |
| 3745 | return -EFSCORRUPTED; |
| 3746 | } |
| 3747 | bui_id = bud_formatp->bud_bui_id; |
| 3748 | |
| 3749 | /* |
| 3750 | * Search for the BUI with the id in the BUD format structure in the |
| 3751 | * AIL. |
| 3752 | */ |
| 3753 | spin_lock(&ailp->ail_lock); |
| 3754 | lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); |
| 3755 | while (lip != NULL) { |
| 3756 | if (lip->li_type == XFS_LI_BUI) { |
| 3757 | buip = (struct xfs_bui_log_item *)lip; |
| 3758 | if (buip->bui_format.bui_id == bui_id) { |
| 3759 | /* |
| 3760 | * Drop the BUD reference to the BUI. This |
| 3761 | * removes the BUI from the AIL and frees it. |
| 3762 | */ |
| 3763 | spin_unlock(&ailp->ail_lock); |
| 3764 | xfs_bui_release(buip); |
| 3765 | spin_lock(&ailp->ail_lock); |
| 3766 | break; |
| 3767 | } |
| 3768 | } |
| 3769 | lip = xfs_trans_ail_cursor_next(ailp, &cur); |
| 3770 | } |
| 3771 | |
| 3772 | xfs_trans_ail_cursor_done(&cur); |
| 3773 | spin_unlock(&ailp->ail_lock); |
| 3774 | |
| 3775 | return 0; |
| 3776 | } |
| 3777 | |
| 3778 | /* |
| 3779 | * This routine is called when an inode create format structure is found in a |
| 3780 | * committed transaction in the log. It's purpose is to initialise the inodes |
| 3781 | * being allocated on disk. This requires us to get inode cluster buffers that |
| 3782 | * match the range to be initialised, stamped with inode templates and written |
| 3783 | * by delayed write so that subsequent modifications will hit the cached buffer |
| 3784 | * and only need writing out at the end of recovery. |
| 3785 | */ |
| 3786 | STATIC int |
| 3787 | xlog_recover_do_icreate_pass2( |
| 3788 | struct xlog *log, |
| 3789 | struct list_head *buffer_list, |
| 3790 | xlog_recover_item_t *item) |
| 3791 | { |
| 3792 | struct xfs_mount *mp = log->l_mp; |
| 3793 | struct xfs_icreate_log *icl; |
| 3794 | struct xfs_ino_geometry *igeo = M_IGEO(mp); |
| 3795 | xfs_agnumber_t agno; |
| 3796 | xfs_agblock_t agbno; |
| 3797 | unsigned int count; |
| 3798 | unsigned int isize; |
| 3799 | xfs_agblock_t length; |
| 3800 | int bb_per_cluster; |
| 3801 | int cancel_count; |
| 3802 | int nbufs; |
| 3803 | int i; |
| 3804 | |
| 3805 | icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr; |
| 3806 | if (icl->icl_type != XFS_LI_ICREATE) { |
| 3807 | xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type"); |
| 3808 | return -EINVAL; |
| 3809 | } |
| 3810 | |
| 3811 | if (icl->icl_size != 1) { |
| 3812 | xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size"); |
| 3813 | return -EINVAL; |
| 3814 | } |
| 3815 | |
| 3816 | agno = be32_to_cpu(icl->icl_ag); |
| 3817 | if (agno >= mp->m_sb.sb_agcount) { |
| 3818 | xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno"); |
| 3819 | return -EINVAL; |
| 3820 | } |
| 3821 | agbno = be32_to_cpu(icl->icl_agbno); |
| 3822 | if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) { |
| 3823 | xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno"); |
| 3824 | return -EINVAL; |
| 3825 | } |
| 3826 | isize = be32_to_cpu(icl->icl_isize); |
| 3827 | if (isize != mp->m_sb.sb_inodesize) { |
| 3828 | xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize"); |
| 3829 | return -EINVAL; |
| 3830 | } |
| 3831 | count = be32_to_cpu(icl->icl_count); |
| 3832 | if (!count) { |
| 3833 | xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count"); |
| 3834 | return -EINVAL; |
| 3835 | } |
| 3836 | length = be32_to_cpu(icl->icl_length); |
| 3837 | if (!length || length >= mp->m_sb.sb_agblocks) { |
| 3838 | xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length"); |
| 3839 | return -EINVAL; |
| 3840 | } |
| 3841 | |
| 3842 | /* |
| 3843 | * The inode chunk is either full or sparse and we only support |
| 3844 | * m_ino_geo.ialloc_min_blks sized sparse allocations at this time. |
| 3845 | */ |
| 3846 | if (length != igeo->ialloc_blks && |
| 3847 | length != igeo->ialloc_min_blks) { |
| 3848 | xfs_warn(log->l_mp, |
| 3849 | "%s: unsupported chunk length", __FUNCTION__); |
| 3850 | return -EINVAL; |
| 3851 | } |
| 3852 | |
| 3853 | /* verify inode count is consistent with extent length */ |
| 3854 | if ((count >> mp->m_sb.sb_inopblog) != length) { |
| 3855 | xfs_warn(log->l_mp, |
| 3856 | "%s: inconsistent inode count and chunk length", |
| 3857 | __FUNCTION__); |
| 3858 | return -EINVAL; |
| 3859 | } |
| 3860 | |
| 3861 | /* |
| 3862 | * The icreate transaction can cover multiple cluster buffers and these |
| 3863 | * buffers could have been freed and reused. Check the individual |
| 3864 | * buffers for cancellation so we don't overwrite anything written after |
| 3865 | * a cancellation. |
| 3866 | */ |
| 3867 | bb_per_cluster = XFS_FSB_TO_BB(mp, igeo->blocks_per_cluster); |
| 3868 | nbufs = length / igeo->blocks_per_cluster; |
| 3869 | for (i = 0, cancel_count = 0; i < nbufs; i++) { |
| 3870 | xfs_daddr_t daddr; |
| 3871 | |
| 3872 | daddr = XFS_AGB_TO_DADDR(mp, agno, |
| 3873 | agbno + i * igeo->blocks_per_cluster); |
| 3874 | if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0)) |
| 3875 | cancel_count++; |
| 3876 | } |
| 3877 | |
| 3878 | /* |
| 3879 | * We currently only use icreate for a single allocation at a time. This |
| 3880 | * means we should expect either all or none of the buffers to be |
| 3881 | * cancelled. Be conservative and skip replay if at least one buffer is |
| 3882 | * cancelled, but warn the user that something is awry if the buffers |
| 3883 | * are not consistent. |
| 3884 | * |
| 3885 | * XXX: This must be refined to only skip cancelled clusters once we use |
| 3886 | * icreate for multiple chunk allocations. |
| 3887 | */ |
| 3888 | ASSERT(!cancel_count || cancel_count == nbufs); |
| 3889 | if (cancel_count) { |
| 3890 | if (cancel_count != nbufs) |
| 3891 | xfs_warn(mp, |
| 3892 | "WARNING: partial inode chunk cancellation, skipped icreate."); |
| 3893 | trace_xfs_log_recover_icreate_cancel(log, icl); |
| 3894 | return 0; |
| 3895 | } |
| 3896 | |
| 3897 | trace_xfs_log_recover_icreate_recover(log, icl); |
| 3898 | return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno, |
| 3899 | length, be32_to_cpu(icl->icl_gen)); |
| 3900 | } |
| 3901 | |
| 3902 | STATIC void |
| 3903 | xlog_recover_buffer_ra_pass2( |
| 3904 | struct xlog *log, |
| 3905 | struct xlog_recover_item *item) |
| 3906 | { |
| 3907 | struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; |
| 3908 | struct xfs_mount *mp = log->l_mp; |
| 3909 | |
| 3910 | if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno, |
| 3911 | buf_f->blf_len, buf_f->blf_flags)) { |
| 3912 | return; |
| 3913 | } |
| 3914 | |
| 3915 | xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno, |
| 3916 | buf_f->blf_len, NULL); |
| 3917 | } |
| 3918 | |
| 3919 | STATIC void |
| 3920 | xlog_recover_inode_ra_pass2( |
| 3921 | struct xlog *log, |
| 3922 | struct xlog_recover_item *item) |
| 3923 | { |
| 3924 | struct xfs_inode_log_format ilf_buf; |
| 3925 | struct xfs_inode_log_format *ilfp; |
| 3926 | struct xfs_mount *mp = log->l_mp; |
| 3927 | int error; |
| 3928 | |
| 3929 | if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { |
| 3930 | ilfp = item->ri_buf[0].i_addr; |
| 3931 | } else { |
| 3932 | ilfp = &ilf_buf; |
| 3933 | memset(ilfp, 0, sizeof(*ilfp)); |
| 3934 | error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp); |
| 3935 | if (error) |
| 3936 | return; |
| 3937 | } |
| 3938 | |
| 3939 | if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0)) |
| 3940 | return; |
| 3941 | |
| 3942 | xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno, |
| 3943 | ilfp->ilf_len, &xfs_inode_buf_ra_ops); |
| 3944 | } |
| 3945 | |
| 3946 | STATIC void |
| 3947 | xlog_recover_dquot_ra_pass2( |
| 3948 | struct xlog *log, |
| 3949 | struct xlog_recover_item *item) |
| 3950 | { |
| 3951 | struct xfs_mount *mp = log->l_mp; |
| 3952 | struct xfs_disk_dquot *recddq; |
| 3953 | struct xfs_dq_logformat *dq_f; |
| 3954 | uint type; |
| 3955 | int len; |
| 3956 | |
| 3957 | |
| 3958 | if (mp->m_qflags == 0) |
| 3959 | return; |
| 3960 | |
| 3961 | recddq = item->ri_buf[1].i_addr; |
| 3962 | if (recddq == NULL) |
| 3963 | return; |
| 3964 | if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot)) |
| 3965 | return; |
| 3966 | |
| 3967 | type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); |
| 3968 | ASSERT(type); |
| 3969 | if (log->l_quotaoffs_flag & type) |
| 3970 | return; |
| 3971 | |
| 3972 | dq_f = item->ri_buf[0].i_addr; |
| 3973 | ASSERT(dq_f); |
| 3974 | ASSERT(dq_f->qlf_len == 1); |
| 3975 | |
| 3976 | len = XFS_FSB_TO_BB(mp, dq_f->qlf_len); |
| 3977 | if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0)) |
| 3978 | return; |
| 3979 | |
| 3980 | xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len, |
| 3981 | &xfs_dquot_buf_ra_ops); |
| 3982 | } |
| 3983 | |
| 3984 | STATIC void |
| 3985 | xlog_recover_ra_pass2( |
| 3986 | struct xlog *log, |
| 3987 | struct xlog_recover_item *item) |
| 3988 | { |
| 3989 | switch (ITEM_TYPE(item)) { |
| 3990 | case XFS_LI_BUF: |
| 3991 | xlog_recover_buffer_ra_pass2(log, item); |
| 3992 | break; |
| 3993 | case XFS_LI_INODE: |
| 3994 | xlog_recover_inode_ra_pass2(log, item); |
| 3995 | break; |
| 3996 | case XFS_LI_DQUOT: |
| 3997 | xlog_recover_dquot_ra_pass2(log, item); |
| 3998 | break; |
| 3999 | case XFS_LI_EFI: |
| 4000 | case XFS_LI_EFD: |
| 4001 | case XFS_LI_QUOTAOFF: |
| 4002 | case XFS_LI_RUI: |
| 4003 | case XFS_LI_RUD: |
| 4004 | case XFS_LI_CUI: |
| 4005 | case XFS_LI_CUD: |
| 4006 | case XFS_LI_BUI: |
| 4007 | case XFS_LI_BUD: |
| 4008 | default: |
| 4009 | break; |
| 4010 | } |
| 4011 | } |
| 4012 | |
| 4013 | STATIC int |
| 4014 | xlog_recover_commit_pass1( |
| 4015 | struct xlog *log, |
| 4016 | struct xlog_recover *trans, |
| 4017 | struct xlog_recover_item *item) |
| 4018 | { |
| 4019 | trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1); |
| 4020 | |
| 4021 | switch (ITEM_TYPE(item)) { |
| 4022 | case XFS_LI_BUF: |
| 4023 | return xlog_recover_buffer_pass1(log, item); |
| 4024 | case XFS_LI_QUOTAOFF: |
| 4025 | return xlog_recover_quotaoff_pass1(log, item); |
| 4026 | case XFS_LI_INODE: |
| 4027 | case XFS_LI_EFI: |
| 4028 | case XFS_LI_EFD: |
| 4029 | case XFS_LI_DQUOT: |
| 4030 | case XFS_LI_ICREATE: |
| 4031 | case XFS_LI_RUI: |
| 4032 | case XFS_LI_RUD: |
| 4033 | case XFS_LI_CUI: |
| 4034 | case XFS_LI_CUD: |
| 4035 | case XFS_LI_BUI: |
| 4036 | case XFS_LI_BUD: |
| 4037 | /* nothing to do in pass 1 */ |
| 4038 | return 0; |
| 4039 | default: |
| 4040 | xfs_warn(log->l_mp, "%s: invalid item type (%d)", |
| 4041 | __func__, ITEM_TYPE(item)); |
| 4042 | ASSERT(0); |
| 4043 | return -EFSCORRUPTED; |
| 4044 | } |
| 4045 | } |
| 4046 | |
| 4047 | STATIC int |
| 4048 | xlog_recover_commit_pass2( |
| 4049 | struct xlog *log, |
| 4050 | struct xlog_recover *trans, |
| 4051 | struct list_head *buffer_list, |
| 4052 | struct xlog_recover_item *item) |
| 4053 | { |
| 4054 | trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); |
| 4055 | |
| 4056 | switch (ITEM_TYPE(item)) { |
| 4057 | case XFS_LI_BUF: |
| 4058 | return xlog_recover_buffer_pass2(log, buffer_list, item, |
| 4059 | trans->r_lsn); |
| 4060 | case XFS_LI_INODE: |
| 4061 | return xlog_recover_inode_pass2(log, buffer_list, item, |
| 4062 | trans->r_lsn); |
| 4063 | case XFS_LI_EFI: |
| 4064 | return xlog_recover_efi_pass2(log, item, trans->r_lsn); |
| 4065 | case XFS_LI_EFD: |
| 4066 | return xlog_recover_efd_pass2(log, item); |
| 4067 | case XFS_LI_RUI: |
| 4068 | return xlog_recover_rui_pass2(log, item, trans->r_lsn); |
| 4069 | case XFS_LI_RUD: |
| 4070 | return xlog_recover_rud_pass2(log, item); |
| 4071 | case XFS_LI_CUI: |
| 4072 | return xlog_recover_cui_pass2(log, item, trans->r_lsn); |
| 4073 | case XFS_LI_CUD: |
| 4074 | return xlog_recover_cud_pass2(log, item); |
| 4075 | case XFS_LI_BUI: |
| 4076 | return xlog_recover_bui_pass2(log, item, trans->r_lsn); |
| 4077 | case XFS_LI_BUD: |
| 4078 | return xlog_recover_bud_pass2(log, item); |
| 4079 | case XFS_LI_DQUOT: |
| 4080 | return xlog_recover_dquot_pass2(log, buffer_list, item, |
| 4081 | trans->r_lsn); |
| 4082 | case XFS_LI_ICREATE: |
| 4083 | return xlog_recover_do_icreate_pass2(log, buffer_list, item); |
| 4084 | case XFS_LI_QUOTAOFF: |
| 4085 | /* nothing to do in pass2 */ |
| 4086 | return 0; |
| 4087 | default: |
| 4088 | xfs_warn(log->l_mp, "%s: invalid item type (%d)", |
| 4089 | __func__, ITEM_TYPE(item)); |
| 4090 | ASSERT(0); |
| 4091 | return -EFSCORRUPTED; |
| 4092 | } |
| 4093 | } |
| 4094 | |
| 4095 | STATIC int |
| 4096 | xlog_recover_items_pass2( |
| 4097 | struct xlog *log, |
| 4098 | struct xlog_recover *trans, |
| 4099 | struct list_head *buffer_list, |
| 4100 | struct list_head *item_list) |
| 4101 | { |
| 4102 | struct xlog_recover_item *item; |
| 4103 | int error = 0; |
| 4104 | |
| 4105 | list_for_each_entry(item, item_list, ri_list) { |
| 4106 | error = xlog_recover_commit_pass2(log, trans, |
| 4107 | buffer_list, item); |
| 4108 | if (error) |
| 4109 | return error; |
| 4110 | } |
| 4111 | |
| 4112 | return error; |
| 4113 | } |
| 4114 | |
| 4115 | /* |
| 4116 | * Perform the transaction. |
| 4117 | * |
| 4118 | * If the transaction modifies a buffer or inode, do it now. Otherwise, |
| 4119 | * EFIs and EFDs get queued up by adding entries into the AIL for them. |
| 4120 | */ |
| 4121 | STATIC int |
| 4122 | xlog_recover_commit_trans( |
| 4123 | struct xlog *log, |
| 4124 | struct xlog_recover *trans, |
| 4125 | int pass, |
| 4126 | struct list_head *buffer_list) |
| 4127 | { |
| 4128 | int error = 0; |
| 4129 | int items_queued = 0; |
| 4130 | struct xlog_recover_item *item; |
| 4131 | struct xlog_recover_item *next; |
| 4132 | LIST_HEAD (ra_list); |
| 4133 | LIST_HEAD (done_list); |
| 4134 | |
| 4135 | #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 |
| 4136 | |
| 4137 | hlist_del_init(&trans->r_list); |
| 4138 | |
| 4139 | error = xlog_recover_reorder_trans(log, trans, pass); |
| 4140 | if (error) |
| 4141 | return error; |
| 4142 | |
| 4143 | list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { |
| 4144 | switch (pass) { |
| 4145 | case XLOG_RECOVER_PASS1: |
| 4146 | error = xlog_recover_commit_pass1(log, trans, item); |
| 4147 | break; |
| 4148 | case XLOG_RECOVER_PASS2: |
| 4149 | xlog_recover_ra_pass2(log, item); |
| 4150 | list_move_tail(&item->ri_list, &ra_list); |
| 4151 | items_queued++; |
| 4152 | if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { |
| 4153 | error = xlog_recover_items_pass2(log, trans, |
| 4154 | buffer_list, &ra_list); |
| 4155 | list_splice_tail_init(&ra_list, &done_list); |
| 4156 | items_queued = 0; |
| 4157 | } |
| 4158 | |
| 4159 | break; |
| 4160 | default: |
| 4161 | ASSERT(0); |
| 4162 | } |
| 4163 | |
| 4164 | if (error) |
| 4165 | goto out; |
| 4166 | } |
| 4167 | |
| 4168 | out: |
| 4169 | if (!list_empty(&ra_list)) { |
| 4170 | if (!error) |
| 4171 | error = xlog_recover_items_pass2(log, trans, |
| 4172 | buffer_list, &ra_list); |
| 4173 | list_splice_tail_init(&ra_list, &done_list); |
| 4174 | } |
| 4175 | |
| 4176 | if (!list_empty(&done_list)) |
| 4177 | list_splice_init(&done_list, &trans->r_itemq); |
| 4178 | |
| 4179 | return error; |
| 4180 | } |
| 4181 | |
| 4182 | STATIC void |
| 4183 | xlog_recover_add_item( |
| 4184 | struct list_head *head) |
| 4185 | { |
| 4186 | xlog_recover_item_t *item; |
| 4187 | |
| 4188 | item = kmem_zalloc(sizeof(xlog_recover_item_t), 0); |
| 4189 | INIT_LIST_HEAD(&item->ri_list); |
| 4190 | list_add_tail(&item->ri_list, head); |
| 4191 | } |
| 4192 | |
| 4193 | STATIC int |
| 4194 | xlog_recover_add_to_cont_trans( |
| 4195 | struct xlog *log, |
| 4196 | struct xlog_recover *trans, |
| 4197 | char *dp, |
| 4198 | int len) |
| 4199 | { |
| 4200 | xlog_recover_item_t *item; |
| 4201 | char *ptr, *old_ptr; |
| 4202 | int old_len; |
| 4203 | |
| 4204 | /* |
| 4205 | * If the transaction is empty, the header was split across this and the |
| 4206 | * previous record. Copy the rest of the header. |
| 4207 | */ |
| 4208 | if (list_empty(&trans->r_itemq)) { |
| 4209 | ASSERT(len <= sizeof(struct xfs_trans_header)); |
| 4210 | if (len > sizeof(struct xfs_trans_header)) { |
| 4211 | xfs_warn(log->l_mp, "%s: bad header length", __func__); |
| 4212 | return -EFSCORRUPTED; |
| 4213 | } |
| 4214 | |
| 4215 | xlog_recover_add_item(&trans->r_itemq); |
| 4216 | ptr = (char *)&trans->r_theader + |
| 4217 | sizeof(struct xfs_trans_header) - len; |
| 4218 | memcpy(ptr, dp, len); |
| 4219 | return 0; |
| 4220 | } |
| 4221 | |
| 4222 | /* take the tail entry */ |
| 4223 | item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); |
| 4224 | |
| 4225 | old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; |
| 4226 | old_len = item->ri_buf[item->ri_cnt-1].i_len; |
| 4227 | |
| 4228 | ptr = kmem_realloc(old_ptr, len + old_len, 0); |
| 4229 | memcpy(&ptr[old_len], dp, len); |
| 4230 | item->ri_buf[item->ri_cnt-1].i_len += len; |
| 4231 | item->ri_buf[item->ri_cnt-1].i_addr = ptr; |
| 4232 | trace_xfs_log_recover_item_add_cont(log, trans, item, 0); |
| 4233 | return 0; |
| 4234 | } |
| 4235 | |
| 4236 | /* |
| 4237 | * The next region to add is the start of a new region. It could be |
| 4238 | * a whole region or it could be the first part of a new region. Because |
| 4239 | * of this, the assumption here is that the type and size fields of all |
| 4240 | * format structures fit into the first 32 bits of the structure. |
| 4241 | * |
| 4242 | * This works because all regions must be 32 bit aligned. Therefore, we |
| 4243 | * either have both fields or we have neither field. In the case we have |
| 4244 | * neither field, the data part of the region is zero length. We only have |
| 4245 | * a log_op_header and can throw away the header since a new one will appear |
| 4246 | * later. If we have at least 4 bytes, then we can determine how many regions |
| 4247 | * will appear in the current log item. |
| 4248 | */ |
| 4249 | STATIC int |
| 4250 | xlog_recover_add_to_trans( |
| 4251 | struct xlog *log, |
| 4252 | struct xlog_recover *trans, |
| 4253 | char *dp, |
| 4254 | int len) |
| 4255 | { |
| 4256 | struct xfs_inode_log_format *in_f; /* any will do */ |
| 4257 | xlog_recover_item_t *item; |
| 4258 | char *ptr; |
| 4259 | |
| 4260 | if (!len) |
| 4261 | return 0; |
| 4262 | if (list_empty(&trans->r_itemq)) { |
| 4263 | /* we need to catch log corruptions here */ |
| 4264 | if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { |
| 4265 | xfs_warn(log->l_mp, "%s: bad header magic number", |
| 4266 | __func__); |
| 4267 | ASSERT(0); |
| 4268 | return -EFSCORRUPTED; |
| 4269 | } |
| 4270 | |
| 4271 | if (len > sizeof(struct xfs_trans_header)) { |
| 4272 | xfs_warn(log->l_mp, "%s: bad header length", __func__); |
| 4273 | ASSERT(0); |
| 4274 | return -EFSCORRUPTED; |
| 4275 | } |
| 4276 | |
| 4277 | /* |
| 4278 | * The transaction header can be arbitrarily split across op |
| 4279 | * records. If we don't have the whole thing here, copy what we |
| 4280 | * do have and handle the rest in the next record. |
| 4281 | */ |
| 4282 | if (len == sizeof(struct xfs_trans_header)) |
| 4283 | xlog_recover_add_item(&trans->r_itemq); |
| 4284 | memcpy(&trans->r_theader, dp, len); |
| 4285 | return 0; |
| 4286 | } |
| 4287 | |
| 4288 | ptr = kmem_alloc(len, 0); |
| 4289 | memcpy(ptr, dp, len); |
| 4290 | in_f = (struct xfs_inode_log_format *)ptr; |
| 4291 | |
| 4292 | /* take the tail entry */ |
| 4293 | item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); |
| 4294 | if (item->ri_total != 0 && |
| 4295 | item->ri_total == item->ri_cnt) { |
| 4296 | /* tail item is in use, get a new one */ |
| 4297 | xlog_recover_add_item(&trans->r_itemq); |
| 4298 | item = list_entry(trans->r_itemq.prev, |
| 4299 | xlog_recover_item_t, ri_list); |
| 4300 | } |
| 4301 | |
| 4302 | if (item->ri_total == 0) { /* first region to be added */ |
| 4303 | if (in_f->ilf_size == 0 || |
| 4304 | in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { |
| 4305 | xfs_warn(log->l_mp, |
| 4306 | "bad number of regions (%d) in inode log format", |
| 4307 | in_f->ilf_size); |
| 4308 | ASSERT(0); |
| 4309 | kmem_free(ptr); |
| 4310 | return -EFSCORRUPTED; |
| 4311 | } |
| 4312 | |
| 4313 | item->ri_total = in_f->ilf_size; |
| 4314 | item->ri_buf = |
| 4315 | kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), |
| 4316 | 0); |
| 4317 | } |
| 4318 | |
| 4319 | if (item->ri_total <= item->ri_cnt) { |
| 4320 | xfs_warn(log->l_mp, |
| 4321 | "log item region count (%d) overflowed size (%d)", |
| 4322 | item->ri_cnt, item->ri_total); |
| 4323 | ASSERT(0); |
| 4324 | kmem_free(ptr); |
| 4325 | return -EFSCORRUPTED; |
| 4326 | } |
| 4327 | |
| 4328 | /* Description region is ri_buf[0] */ |
| 4329 | item->ri_buf[item->ri_cnt].i_addr = ptr; |
| 4330 | item->ri_buf[item->ri_cnt].i_len = len; |
| 4331 | item->ri_cnt++; |
| 4332 | trace_xfs_log_recover_item_add(log, trans, item, 0); |
| 4333 | return 0; |
| 4334 | } |
| 4335 | |
| 4336 | /* |
| 4337 | * Free up any resources allocated by the transaction |
| 4338 | * |
| 4339 | * Remember that EFIs, EFDs, and IUNLINKs are handled later. |
| 4340 | */ |
| 4341 | STATIC void |
| 4342 | xlog_recover_free_trans( |
| 4343 | struct xlog_recover *trans) |
| 4344 | { |
| 4345 | xlog_recover_item_t *item, *n; |
| 4346 | int i; |
| 4347 | |
| 4348 | hlist_del_init(&trans->r_list); |
| 4349 | |
| 4350 | list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { |
| 4351 | /* Free the regions in the item. */ |
| 4352 | list_del(&item->ri_list); |
| 4353 | for (i = 0; i < item->ri_cnt; i++) |
| 4354 | kmem_free(item->ri_buf[i].i_addr); |
| 4355 | /* Free the item itself */ |
| 4356 | kmem_free(item->ri_buf); |
| 4357 | kmem_free(item); |
| 4358 | } |
| 4359 | /* Free the transaction recover structure */ |
| 4360 | kmem_free(trans); |
| 4361 | } |
| 4362 | |
| 4363 | /* |
| 4364 | * On error or completion, trans is freed. |
| 4365 | */ |
| 4366 | STATIC int |
| 4367 | xlog_recovery_process_trans( |
| 4368 | struct xlog *log, |
| 4369 | struct xlog_recover *trans, |
| 4370 | char *dp, |
| 4371 | unsigned int len, |
| 4372 | unsigned int flags, |
| 4373 | int pass, |
| 4374 | struct list_head *buffer_list) |
| 4375 | { |
| 4376 | int error = 0; |
| 4377 | bool freeit = false; |
| 4378 | |
| 4379 | /* mask off ophdr transaction container flags */ |
| 4380 | flags &= ~XLOG_END_TRANS; |
| 4381 | if (flags & XLOG_WAS_CONT_TRANS) |
| 4382 | flags &= ~XLOG_CONTINUE_TRANS; |
| 4383 | |
| 4384 | /* |
| 4385 | * Callees must not free the trans structure. We'll decide if we need to |
| 4386 | * free it or not based on the operation being done and it's result. |
| 4387 | */ |
| 4388 | switch (flags) { |
| 4389 | /* expected flag values */ |
| 4390 | case 0: |
| 4391 | case XLOG_CONTINUE_TRANS: |
| 4392 | error = xlog_recover_add_to_trans(log, trans, dp, len); |
| 4393 | break; |
| 4394 | case XLOG_WAS_CONT_TRANS: |
| 4395 | error = xlog_recover_add_to_cont_trans(log, trans, dp, len); |
| 4396 | break; |
| 4397 | case XLOG_COMMIT_TRANS: |
| 4398 | error = xlog_recover_commit_trans(log, trans, pass, |
| 4399 | buffer_list); |
| 4400 | /* success or fail, we are now done with this transaction. */ |
| 4401 | freeit = true; |
| 4402 | break; |
| 4403 | |
| 4404 | /* unexpected flag values */ |
| 4405 | case XLOG_UNMOUNT_TRANS: |
| 4406 | /* just skip trans */ |
| 4407 | xfs_warn(log->l_mp, "%s: Unmount LR", __func__); |
| 4408 | freeit = true; |
| 4409 | break; |
| 4410 | case XLOG_START_TRANS: |
| 4411 | default: |
| 4412 | xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags); |
| 4413 | ASSERT(0); |
| 4414 | error = -EFSCORRUPTED; |
| 4415 | break; |
| 4416 | } |
| 4417 | if (error || freeit) |
| 4418 | xlog_recover_free_trans(trans); |
| 4419 | return error; |
| 4420 | } |
| 4421 | |
| 4422 | /* |
| 4423 | * Lookup the transaction recovery structure associated with the ID in the |
| 4424 | * current ophdr. If the transaction doesn't exist and the start flag is set in |
| 4425 | * the ophdr, then allocate a new transaction for future ID matches to find. |
| 4426 | * Either way, return what we found during the lookup - an existing transaction |
| 4427 | * or nothing. |
| 4428 | */ |
| 4429 | STATIC struct xlog_recover * |
| 4430 | xlog_recover_ophdr_to_trans( |
| 4431 | struct hlist_head rhash[], |
| 4432 | struct xlog_rec_header *rhead, |
| 4433 | struct xlog_op_header *ohead) |
| 4434 | { |
| 4435 | struct xlog_recover *trans; |
| 4436 | xlog_tid_t tid; |
| 4437 | struct hlist_head *rhp; |
| 4438 | |
| 4439 | tid = be32_to_cpu(ohead->oh_tid); |
| 4440 | rhp = &rhash[XLOG_RHASH(tid)]; |
| 4441 | hlist_for_each_entry(trans, rhp, r_list) { |
| 4442 | if (trans->r_log_tid == tid) |
| 4443 | return trans; |
| 4444 | } |
| 4445 | |
| 4446 | /* |
| 4447 | * skip over non-start transaction headers - we could be |
| 4448 | * processing slack space before the next transaction starts |
| 4449 | */ |
| 4450 | if (!(ohead->oh_flags & XLOG_START_TRANS)) |
| 4451 | return NULL; |
| 4452 | |
| 4453 | ASSERT(be32_to_cpu(ohead->oh_len) == 0); |
| 4454 | |
| 4455 | /* |
| 4456 | * This is a new transaction so allocate a new recovery container to |
| 4457 | * hold the recovery ops that will follow. |
| 4458 | */ |
| 4459 | trans = kmem_zalloc(sizeof(struct xlog_recover), 0); |
| 4460 | trans->r_log_tid = tid; |
| 4461 | trans->r_lsn = be64_to_cpu(rhead->h_lsn); |
| 4462 | INIT_LIST_HEAD(&trans->r_itemq); |
| 4463 | INIT_HLIST_NODE(&trans->r_list); |
| 4464 | hlist_add_head(&trans->r_list, rhp); |
| 4465 | |
| 4466 | /* |
| 4467 | * Nothing more to do for this ophdr. Items to be added to this new |
| 4468 | * transaction will be in subsequent ophdr containers. |
| 4469 | */ |
| 4470 | return NULL; |
| 4471 | } |
| 4472 | |
| 4473 | STATIC int |
| 4474 | xlog_recover_process_ophdr( |
| 4475 | struct xlog *log, |
| 4476 | struct hlist_head rhash[], |
| 4477 | struct xlog_rec_header *rhead, |
| 4478 | struct xlog_op_header *ohead, |
| 4479 | char *dp, |
| 4480 | char *end, |
| 4481 | int pass, |
| 4482 | struct list_head *buffer_list) |
| 4483 | { |
| 4484 | struct xlog_recover *trans; |
| 4485 | unsigned int len; |
| 4486 | int error; |
| 4487 | |
| 4488 | /* Do we understand who wrote this op? */ |
| 4489 | if (ohead->oh_clientid != XFS_TRANSACTION && |
| 4490 | ohead->oh_clientid != XFS_LOG) { |
| 4491 | xfs_warn(log->l_mp, "%s: bad clientid 0x%x", |
| 4492 | __func__, ohead->oh_clientid); |
| 4493 | ASSERT(0); |
| 4494 | return -EFSCORRUPTED; |
| 4495 | } |
| 4496 | |
| 4497 | /* |
| 4498 | * Check the ophdr contains all the data it is supposed to contain. |
| 4499 | */ |
| 4500 | len = be32_to_cpu(ohead->oh_len); |
| 4501 | if (dp + len > end) { |
| 4502 | xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len); |
| 4503 | WARN_ON(1); |
| 4504 | return -EFSCORRUPTED; |
| 4505 | } |
| 4506 | |
| 4507 | trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead); |
| 4508 | if (!trans) { |
| 4509 | /* nothing to do, so skip over this ophdr */ |
| 4510 | return 0; |
| 4511 | } |
| 4512 | |
| 4513 | /* |
| 4514 | * The recovered buffer queue is drained only once we know that all |
| 4515 | * recovery items for the current LSN have been processed. This is |
| 4516 | * required because: |
| 4517 | * |
| 4518 | * - Buffer write submission updates the metadata LSN of the buffer. |
| 4519 | * - Log recovery skips items with a metadata LSN >= the current LSN of |
| 4520 | * the recovery item. |
| 4521 | * - Separate recovery items against the same metadata buffer can share |
| 4522 | * a current LSN. I.e., consider that the LSN of a recovery item is |
| 4523 | * defined as the starting LSN of the first record in which its |
| 4524 | * transaction appears, that a record can hold multiple transactions, |
| 4525 | * and/or that a transaction can span multiple records. |
| 4526 | * |
| 4527 | * In other words, we are allowed to submit a buffer from log recovery |
| 4528 | * once per current LSN. Otherwise, we may incorrectly skip recovery |
| 4529 | * items and cause corruption. |
| 4530 | * |
| 4531 | * We don't know up front whether buffers are updated multiple times per |
| 4532 | * LSN. Therefore, track the current LSN of each commit log record as it |
| 4533 | * is processed and drain the queue when it changes. Use commit records |
| 4534 | * because they are ordered correctly by the logging code. |
| 4535 | */ |
| 4536 | if (log->l_recovery_lsn != trans->r_lsn && |
| 4537 | ohead->oh_flags & XLOG_COMMIT_TRANS) { |
| 4538 | error = xfs_buf_delwri_submit(buffer_list); |
| 4539 | if (error) |
| 4540 | return error; |
| 4541 | log->l_recovery_lsn = trans->r_lsn; |
| 4542 | } |
| 4543 | |
| 4544 | return xlog_recovery_process_trans(log, trans, dp, len, |
| 4545 | ohead->oh_flags, pass, buffer_list); |
| 4546 | } |
| 4547 | |
| 4548 | /* |
| 4549 | * There are two valid states of the r_state field. 0 indicates that the |
| 4550 | * transaction structure is in a normal state. We have either seen the |
| 4551 | * start of the transaction or the last operation we added was not a partial |
| 4552 | * operation. If the last operation we added to the transaction was a |
| 4553 | * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. |
| 4554 | * |
| 4555 | * NOTE: skip LRs with 0 data length. |
| 4556 | */ |
| 4557 | STATIC int |
| 4558 | xlog_recover_process_data( |
| 4559 | struct xlog *log, |
| 4560 | struct hlist_head rhash[], |
| 4561 | struct xlog_rec_header *rhead, |
| 4562 | char *dp, |
| 4563 | int pass, |
| 4564 | struct list_head *buffer_list) |
| 4565 | { |
| 4566 | struct xlog_op_header *ohead; |
| 4567 | char *end; |
| 4568 | int num_logops; |
| 4569 | int error; |
| 4570 | |
| 4571 | end = dp + be32_to_cpu(rhead->h_len); |
| 4572 | num_logops = be32_to_cpu(rhead->h_num_logops); |
| 4573 | |
| 4574 | /* check the log format matches our own - else we can't recover */ |
| 4575 | if (xlog_header_check_recover(log->l_mp, rhead)) |
| 4576 | return -EIO; |
| 4577 | |
| 4578 | trace_xfs_log_recover_record(log, rhead, pass); |
| 4579 | while ((dp < end) && num_logops) { |
| 4580 | |
| 4581 | ohead = (struct xlog_op_header *)dp; |
| 4582 | dp += sizeof(*ohead); |
| 4583 | ASSERT(dp <= end); |
| 4584 | |
| 4585 | /* errors will abort recovery */ |
| 4586 | error = xlog_recover_process_ophdr(log, rhash, rhead, ohead, |
| 4587 | dp, end, pass, buffer_list); |
| 4588 | if (error) |
| 4589 | return error; |
| 4590 | |
| 4591 | dp += be32_to_cpu(ohead->oh_len); |
| 4592 | num_logops--; |
| 4593 | } |
| 4594 | return 0; |
| 4595 | } |
| 4596 | |
| 4597 | /* Recover the EFI if necessary. */ |
| 4598 | STATIC int |
| 4599 | xlog_recover_process_efi( |
| 4600 | struct xfs_ail *ailp, |
| 4601 | struct xfs_log_item *lip, |
| 4602 | struct list_head *capture_list) |
| 4603 | { |
| 4604 | struct xfs_efi_log_item *efip; |
| 4605 | int error; |
| 4606 | |
| 4607 | /* |
| 4608 | * Skip EFIs that we've already processed. |
| 4609 | */ |
| 4610 | efip = container_of(lip, struct xfs_efi_log_item, efi_item); |
| 4611 | if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) |
| 4612 | return 0; |
| 4613 | |
| 4614 | spin_unlock(&ailp->ail_lock); |
| 4615 | error = xfs_efi_recover(efip, capture_list); |
| 4616 | spin_lock(&ailp->ail_lock); |
| 4617 | |
| 4618 | return error; |
| 4619 | } |
| 4620 | |
| 4621 | /* Release the EFI since we're cancelling everything. */ |
| 4622 | STATIC void |
| 4623 | xlog_recover_cancel_efi( |
| 4624 | struct xfs_mount *mp, |
| 4625 | struct xfs_ail *ailp, |
| 4626 | struct xfs_log_item *lip) |
| 4627 | { |
| 4628 | struct xfs_efi_log_item *efip; |
| 4629 | |
| 4630 | efip = container_of(lip, struct xfs_efi_log_item, efi_item); |
| 4631 | |
| 4632 | spin_unlock(&ailp->ail_lock); |
| 4633 | xfs_efi_release(efip); |
| 4634 | spin_lock(&ailp->ail_lock); |
| 4635 | } |
| 4636 | |
| 4637 | /* Recover the RUI if necessary. */ |
| 4638 | STATIC int |
| 4639 | xlog_recover_process_rui( |
| 4640 | struct xfs_ail *ailp, |
| 4641 | struct xfs_log_item *lip, |
| 4642 | struct list_head *capture_list) |
| 4643 | { |
| 4644 | struct xfs_rui_log_item *ruip; |
| 4645 | int error; |
| 4646 | |
| 4647 | /* |
| 4648 | * Skip RUIs that we've already processed. |
| 4649 | */ |
| 4650 | ruip = container_of(lip, struct xfs_rui_log_item, rui_item); |
| 4651 | if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags)) |
| 4652 | return 0; |
| 4653 | |
| 4654 | spin_unlock(&ailp->ail_lock); |
| 4655 | error = xfs_rui_recover(ruip, capture_list); |
| 4656 | spin_lock(&ailp->ail_lock); |
| 4657 | |
| 4658 | return error; |
| 4659 | } |
| 4660 | |
| 4661 | /* Release the RUI since we're cancelling everything. */ |
| 4662 | STATIC void |
| 4663 | xlog_recover_cancel_rui( |
| 4664 | struct xfs_mount *mp, |
| 4665 | struct xfs_ail *ailp, |
| 4666 | struct xfs_log_item *lip) |
| 4667 | { |
| 4668 | struct xfs_rui_log_item *ruip; |
| 4669 | |
| 4670 | ruip = container_of(lip, struct xfs_rui_log_item, rui_item); |
| 4671 | |
| 4672 | spin_unlock(&ailp->ail_lock); |
| 4673 | xfs_rui_release(ruip); |
| 4674 | spin_lock(&ailp->ail_lock); |
| 4675 | } |
| 4676 | |
| 4677 | /* Recover the CUI if necessary. */ |
| 4678 | STATIC int |
| 4679 | xlog_recover_process_cui( |
| 4680 | struct xfs_ail *ailp, |
| 4681 | struct xfs_log_item *lip, |
| 4682 | struct list_head *capture_list) |
| 4683 | { |
| 4684 | struct xfs_cui_log_item *cuip; |
| 4685 | int error; |
| 4686 | |
| 4687 | /* |
| 4688 | * Skip CUIs that we've already processed. |
| 4689 | */ |
| 4690 | cuip = container_of(lip, struct xfs_cui_log_item, cui_item); |
| 4691 | if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags)) |
| 4692 | return 0; |
| 4693 | |
| 4694 | spin_unlock(&ailp->ail_lock); |
| 4695 | error = xfs_cui_recover(cuip, capture_list); |
| 4696 | spin_lock(&ailp->ail_lock); |
| 4697 | |
| 4698 | return error; |
| 4699 | } |
| 4700 | |
| 4701 | /* Release the CUI since we're cancelling everything. */ |
| 4702 | STATIC void |
| 4703 | xlog_recover_cancel_cui( |
| 4704 | struct xfs_mount *mp, |
| 4705 | struct xfs_ail *ailp, |
| 4706 | struct xfs_log_item *lip) |
| 4707 | { |
| 4708 | struct xfs_cui_log_item *cuip; |
| 4709 | |
| 4710 | cuip = container_of(lip, struct xfs_cui_log_item, cui_item); |
| 4711 | |
| 4712 | spin_unlock(&ailp->ail_lock); |
| 4713 | xfs_cui_release(cuip); |
| 4714 | spin_lock(&ailp->ail_lock); |
| 4715 | } |
| 4716 | |
| 4717 | /* Recover the BUI if necessary. */ |
| 4718 | STATIC int |
| 4719 | xlog_recover_process_bui( |
| 4720 | struct xfs_ail *ailp, |
| 4721 | struct xfs_log_item *lip, |
| 4722 | struct list_head *capture_list) |
| 4723 | { |
| 4724 | struct xfs_bui_log_item *buip; |
| 4725 | int error; |
| 4726 | |
| 4727 | /* |
| 4728 | * Skip BUIs that we've already processed. |
| 4729 | */ |
| 4730 | buip = container_of(lip, struct xfs_bui_log_item, bui_item); |
| 4731 | if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags)) |
| 4732 | return 0; |
| 4733 | |
| 4734 | spin_unlock(&ailp->ail_lock); |
| 4735 | error = xfs_bui_recover(buip, capture_list); |
| 4736 | spin_lock(&ailp->ail_lock); |
| 4737 | |
| 4738 | return error; |
| 4739 | } |
| 4740 | |
| 4741 | /* Release the BUI since we're cancelling everything. */ |
| 4742 | STATIC void |
| 4743 | xlog_recover_cancel_bui( |
| 4744 | struct xfs_mount *mp, |
| 4745 | struct xfs_ail *ailp, |
| 4746 | struct xfs_log_item *lip) |
| 4747 | { |
| 4748 | struct xfs_bui_log_item *buip; |
| 4749 | |
| 4750 | buip = container_of(lip, struct xfs_bui_log_item, bui_item); |
| 4751 | |
| 4752 | spin_unlock(&ailp->ail_lock); |
| 4753 | xfs_bui_release(buip); |
| 4754 | spin_lock(&ailp->ail_lock); |
| 4755 | } |
| 4756 | |
| 4757 | /* Is this log item a deferred action intent? */ |
| 4758 | static inline bool xlog_item_is_intent(struct xfs_log_item *lip) |
| 4759 | { |
| 4760 | switch (lip->li_type) { |
| 4761 | case XFS_LI_EFI: |
| 4762 | case XFS_LI_RUI: |
| 4763 | case XFS_LI_CUI: |
| 4764 | case XFS_LI_BUI: |
| 4765 | return true; |
| 4766 | default: |
| 4767 | return false; |
| 4768 | } |
| 4769 | } |
| 4770 | |
| 4771 | /* Take all the collected deferred ops and finish them in order. */ |
| 4772 | static int |
| 4773 | xlog_finish_defer_ops( |
| 4774 | struct xfs_mount *mp, |
| 4775 | struct list_head *capture_list) |
| 4776 | { |
| 4777 | struct xfs_defer_capture *dfc, *next; |
| 4778 | struct xfs_trans *tp; |
| 4779 | struct xfs_inode *ip; |
| 4780 | int error = 0; |
| 4781 | |
| 4782 | list_for_each_entry_safe(dfc, next, capture_list, dfc_list) { |
| 4783 | struct xfs_trans_res resv; |
| 4784 | |
| 4785 | /* |
| 4786 | * Create a new transaction reservation from the captured |
| 4787 | * information. Set logcount to 1 to force the new transaction |
| 4788 | * to regrant every roll so that we can make forward progress |
| 4789 | * in recovery no matter how full the log might be. |
| 4790 | */ |
| 4791 | resv.tr_logres = dfc->dfc_logres; |
| 4792 | resv.tr_logcount = 1; |
| 4793 | resv.tr_logflags = XFS_TRANS_PERM_LOG_RES; |
| 4794 | |
| 4795 | error = xfs_trans_alloc(mp, &resv, dfc->dfc_blkres, |
| 4796 | dfc->dfc_rtxres, XFS_TRANS_RESERVE, &tp); |
| 4797 | if (error) |
| 4798 | return error; |
| 4799 | |
| 4800 | /* |
| 4801 | * Transfer to this new transaction all the dfops we captured |
| 4802 | * from recovering a single intent item. |
| 4803 | */ |
| 4804 | list_del_init(&dfc->dfc_list); |
| 4805 | xfs_defer_ops_continue(dfc, tp, &ip); |
| 4806 | |
| 4807 | error = xfs_trans_commit(tp); |
| 4808 | if (ip) { |
| 4809 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 4810 | xfs_irele(ip); |
| 4811 | } |
| 4812 | if (error) |
| 4813 | return error; |
| 4814 | } |
| 4815 | |
| 4816 | ASSERT(list_empty(capture_list)); |
| 4817 | return 0; |
| 4818 | } |
| 4819 | |
| 4820 | /* Release all the captured defer ops and capture structures in this list. */ |
| 4821 | static void |
| 4822 | xlog_abort_defer_ops( |
| 4823 | struct xfs_mount *mp, |
| 4824 | struct list_head *capture_list) |
| 4825 | { |
| 4826 | struct xfs_defer_capture *dfc; |
| 4827 | struct xfs_defer_capture *next; |
| 4828 | |
| 4829 | list_for_each_entry_safe(dfc, next, capture_list, dfc_list) { |
| 4830 | list_del_init(&dfc->dfc_list); |
| 4831 | xfs_defer_ops_release(mp, dfc); |
| 4832 | } |
| 4833 | } |
| 4834 | /* |
| 4835 | * When this is called, all of the log intent items which did not have |
| 4836 | * corresponding log done items should be in the AIL. What we do now |
| 4837 | * is update the data structures associated with each one. |
| 4838 | * |
| 4839 | * Since we process the log intent items in normal transactions, they |
| 4840 | * will be removed at some point after the commit. This prevents us |
| 4841 | * from just walking down the list processing each one. We'll use a |
| 4842 | * flag in the intent item to skip those that we've already processed |
| 4843 | * and use the AIL iteration mechanism's generation count to try to |
| 4844 | * speed this up at least a bit. |
| 4845 | * |
| 4846 | * When we start, we know that the intents are the only things in the |
| 4847 | * AIL. As we process them, however, other items are added to the |
| 4848 | * AIL. |
| 4849 | */ |
| 4850 | STATIC int |
| 4851 | xlog_recover_process_intents( |
| 4852 | struct xlog *log) |
| 4853 | { |
| 4854 | LIST_HEAD(capture_list); |
| 4855 | struct xfs_ail_cursor cur; |
| 4856 | struct xfs_log_item *lip; |
| 4857 | struct xfs_ail *ailp; |
| 4858 | int error = 0; |
| 4859 | #if defined(DEBUG) || defined(XFS_WARN) |
| 4860 | xfs_lsn_t last_lsn; |
| 4861 | #endif |
| 4862 | |
| 4863 | ailp = log->l_ailp; |
| 4864 | spin_lock(&ailp->ail_lock); |
| 4865 | #if defined(DEBUG) || defined(XFS_WARN) |
| 4866 | last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block); |
| 4867 | #endif |
| 4868 | for (lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); |
| 4869 | lip != NULL; |
| 4870 | lip = xfs_trans_ail_cursor_next(ailp, &cur)) { |
| 4871 | /* |
| 4872 | * We're done when we see something other than an intent. |
| 4873 | * There should be no intents left in the AIL now. |
| 4874 | */ |
| 4875 | if (!xlog_item_is_intent(lip)) { |
| 4876 | #ifdef DEBUG |
| 4877 | for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) |
| 4878 | ASSERT(!xlog_item_is_intent(lip)); |
| 4879 | #endif |
| 4880 | break; |
| 4881 | } |
| 4882 | |
| 4883 | /* |
| 4884 | * We should never see a redo item with a LSN higher than |
| 4885 | * the last transaction we found in the log at the start |
| 4886 | * of recovery. |
| 4887 | */ |
| 4888 | ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0); |
| 4889 | |
| 4890 | /* |
| 4891 | * NOTE: If your intent processing routine can create more |
| 4892 | * deferred ops, you /must/ attach them to the capture list in |
| 4893 | * the recover routine or else those subsequent intents will be |
| 4894 | * replayed in the wrong order! |
| 4895 | */ |
| 4896 | switch (lip->li_type) { |
| 4897 | case XFS_LI_EFI: |
| 4898 | error = xlog_recover_process_efi(ailp, lip, &capture_list); |
| 4899 | break; |
| 4900 | case XFS_LI_RUI: |
| 4901 | error = xlog_recover_process_rui(ailp, lip, &capture_list); |
| 4902 | break; |
| 4903 | case XFS_LI_CUI: |
| 4904 | error = xlog_recover_process_cui(ailp, lip, &capture_list); |
| 4905 | break; |
| 4906 | case XFS_LI_BUI: |
| 4907 | error = xlog_recover_process_bui(ailp, lip, &capture_list); |
| 4908 | break; |
| 4909 | } |
| 4910 | if (error) |
| 4911 | break; |
| 4912 | } |
| 4913 | |
| 4914 | xfs_trans_ail_cursor_done(&cur); |
| 4915 | spin_unlock(&ailp->ail_lock); |
| 4916 | if (error) |
| 4917 | goto err; |
| 4918 | |
| 4919 | error = xlog_finish_defer_ops(log->l_mp, &capture_list); |
| 4920 | if (error) |
| 4921 | goto err; |
| 4922 | |
| 4923 | return 0; |
| 4924 | err: |
| 4925 | xlog_abort_defer_ops(log->l_mp, &capture_list); |
| 4926 | return error; |
| 4927 | } |
| 4928 | |
| 4929 | /* |
| 4930 | * A cancel occurs when the mount has failed and we're bailing out. |
| 4931 | * Release all pending log intent items so they don't pin the AIL. |
| 4932 | */ |
| 4933 | STATIC void |
| 4934 | xlog_recover_cancel_intents( |
| 4935 | struct xlog *log) |
| 4936 | { |
| 4937 | struct xfs_log_item *lip; |
| 4938 | struct xfs_ail_cursor cur; |
| 4939 | struct xfs_ail *ailp; |
| 4940 | |
| 4941 | ailp = log->l_ailp; |
| 4942 | spin_lock(&ailp->ail_lock); |
| 4943 | lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); |
| 4944 | while (lip != NULL) { |
| 4945 | /* |
| 4946 | * We're done when we see something other than an intent. |
| 4947 | * There should be no intents left in the AIL now. |
| 4948 | */ |
| 4949 | if (!xlog_item_is_intent(lip)) { |
| 4950 | #ifdef DEBUG |
| 4951 | for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) |
| 4952 | ASSERT(!xlog_item_is_intent(lip)); |
| 4953 | #endif |
| 4954 | break; |
| 4955 | } |
| 4956 | |
| 4957 | switch (lip->li_type) { |
| 4958 | case XFS_LI_EFI: |
| 4959 | xlog_recover_cancel_efi(log->l_mp, ailp, lip); |
| 4960 | break; |
| 4961 | case XFS_LI_RUI: |
| 4962 | xlog_recover_cancel_rui(log->l_mp, ailp, lip); |
| 4963 | break; |
| 4964 | case XFS_LI_CUI: |
| 4965 | xlog_recover_cancel_cui(log->l_mp, ailp, lip); |
| 4966 | break; |
| 4967 | case XFS_LI_BUI: |
| 4968 | xlog_recover_cancel_bui(log->l_mp, ailp, lip); |
| 4969 | break; |
| 4970 | } |
| 4971 | |
| 4972 | lip = xfs_trans_ail_cursor_next(ailp, &cur); |
| 4973 | } |
| 4974 | |
| 4975 | xfs_trans_ail_cursor_done(&cur); |
| 4976 | spin_unlock(&ailp->ail_lock); |
| 4977 | } |
| 4978 | |
| 4979 | /* |
| 4980 | * This routine performs a transaction to null out a bad inode pointer |
| 4981 | * in an agi unlinked inode hash bucket. |
| 4982 | */ |
| 4983 | STATIC void |
| 4984 | xlog_recover_clear_agi_bucket( |
| 4985 | xfs_mount_t *mp, |
| 4986 | xfs_agnumber_t agno, |
| 4987 | int bucket) |
| 4988 | { |
| 4989 | xfs_trans_t *tp; |
| 4990 | xfs_agi_t *agi; |
| 4991 | xfs_buf_t *agibp; |
| 4992 | int offset; |
| 4993 | int error; |
| 4994 | |
| 4995 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp); |
| 4996 | if (error) |
| 4997 | goto out_error; |
| 4998 | |
| 4999 | error = xfs_read_agi(mp, tp, agno, &agibp); |
| 5000 | if (error) |
| 5001 | goto out_abort; |
| 5002 | |
| 5003 | agi = XFS_BUF_TO_AGI(agibp); |
| 5004 | agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); |
| 5005 | offset = offsetof(xfs_agi_t, agi_unlinked) + |
| 5006 | (sizeof(xfs_agino_t) * bucket); |
| 5007 | xfs_trans_log_buf(tp, agibp, offset, |
| 5008 | (offset + sizeof(xfs_agino_t) - 1)); |
| 5009 | |
| 5010 | error = xfs_trans_commit(tp); |
| 5011 | if (error) |
| 5012 | goto out_error; |
| 5013 | return; |
| 5014 | |
| 5015 | out_abort: |
| 5016 | xfs_trans_cancel(tp); |
| 5017 | out_error: |
| 5018 | xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); |
| 5019 | return; |
| 5020 | } |
| 5021 | |
| 5022 | STATIC xfs_agino_t |
| 5023 | xlog_recover_process_one_iunlink( |
| 5024 | struct xfs_mount *mp, |
| 5025 | xfs_agnumber_t agno, |
| 5026 | xfs_agino_t agino, |
| 5027 | int bucket) |
| 5028 | { |
| 5029 | struct xfs_buf *ibp; |
| 5030 | struct xfs_dinode *dip; |
| 5031 | struct xfs_inode *ip; |
| 5032 | xfs_ino_t ino; |
| 5033 | int error; |
| 5034 | |
| 5035 | ino = XFS_AGINO_TO_INO(mp, agno, agino); |
| 5036 | error = xfs_iget(mp, NULL, ino, 0, 0, &ip); |
| 5037 | if (error) |
| 5038 | goto fail; |
| 5039 | |
| 5040 | /* |
| 5041 | * Get the on disk inode to find the next inode in the bucket. |
| 5042 | */ |
| 5043 | error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0); |
| 5044 | if (error) |
| 5045 | goto fail_iput; |
| 5046 | |
| 5047 | xfs_iflags_clear(ip, XFS_IRECOVERY); |
| 5048 | ASSERT(VFS_I(ip)->i_nlink == 0); |
| 5049 | ASSERT(VFS_I(ip)->i_mode != 0); |
| 5050 | |
| 5051 | /* setup for the next pass */ |
| 5052 | agino = be32_to_cpu(dip->di_next_unlinked); |
| 5053 | xfs_buf_relse(ibp); |
| 5054 | |
| 5055 | /* |
| 5056 | * Prevent any DMAPI event from being sent when the reference on |
| 5057 | * the inode is dropped. |
| 5058 | */ |
| 5059 | ip->i_d.di_dmevmask = 0; |
| 5060 | |
| 5061 | xfs_irele(ip); |
| 5062 | return agino; |
| 5063 | |
| 5064 | fail_iput: |
| 5065 | xfs_irele(ip); |
| 5066 | fail: |
| 5067 | /* |
| 5068 | * We can't read in the inode this bucket points to, or this inode |
| 5069 | * is messed up. Just ditch this bucket of inodes. We will lose |
| 5070 | * some inodes and space, but at least we won't hang. |
| 5071 | * |
| 5072 | * Call xlog_recover_clear_agi_bucket() to perform a transaction to |
| 5073 | * clear the inode pointer in the bucket. |
| 5074 | */ |
| 5075 | xlog_recover_clear_agi_bucket(mp, agno, bucket); |
| 5076 | return NULLAGINO; |
| 5077 | } |
| 5078 | |
| 5079 | /* |
| 5080 | * Recover AGI unlinked lists |
| 5081 | * |
| 5082 | * This is called during recovery to process any inodes which we unlinked but |
| 5083 | * not freed when the system crashed. These inodes will be on the lists in the |
| 5084 | * AGI blocks. What we do here is scan all the AGIs and fully truncate and free |
| 5085 | * any inodes found on the lists. Each inode is removed from the lists when it |
| 5086 | * has been fully truncated and is freed. The freeing of the inode and its |
| 5087 | * removal from the list must be atomic. |
| 5088 | * |
| 5089 | * If everything we touch in the agi processing loop is already in memory, this |
| 5090 | * loop can hold the cpu for a long time. It runs without lock contention, |
| 5091 | * memory allocation contention, the need wait for IO, etc, and so will run |
| 5092 | * until we either run out of inodes to process, run low on memory or we run out |
| 5093 | * of log space. |
| 5094 | * |
| 5095 | * This behaviour is bad for latency on single CPU and non-preemptible kernels, |
| 5096 | * and can prevent other filesytem work (such as CIL pushes) from running. This |
| 5097 | * can lead to deadlocks if the recovery process runs out of log reservation |
| 5098 | * space. Hence we need to yield the CPU when there is other kernel work |
| 5099 | * scheduled on this CPU to ensure other scheduled work can run without undue |
| 5100 | * latency. |
| 5101 | */ |
| 5102 | STATIC void |
| 5103 | xlog_recover_process_iunlinks( |
| 5104 | struct xlog *log) |
| 5105 | { |
| 5106 | xfs_mount_t *mp; |
| 5107 | xfs_agnumber_t agno; |
| 5108 | xfs_agi_t *agi; |
| 5109 | xfs_buf_t *agibp; |
| 5110 | xfs_agino_t agino; |
| 5111 | int bucket; |
| 5112 | int error; |
| 5113 | |
| 5114 | mp = log->l_mp; |
| 5115 | |
| 5116 | for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { |
| 5117 | /* |
| 5118 | * Find the agi for this ag. |
| 5119 | */ |
| 5120 | error = xfs_read_agi(mp, NULL, agno, &agibp); |
| 5121 | if (error) { |
| 5122 | /* |
| 5123 | * AGI is b0rked. Don't process it. |
| 5124 | * |
| 5125 | * We should probably mark the filesystem as corrupt |
| 5126 | * after we've recovered all the ag's we can.... |
| 5127 | */ |
| 5128 | continue; |
| 5129 | } |
| 5130 | /* |
| 5131 | * Unlock the buffer so that it can be acquired in the normal |
| 5132 | * course of the transaction to truncate and free each inode. |
| 5133 | * Because we are not racing with anyone else here for the AGI |
| 5134 | * buffer, we don't even need to hold it locked to read the |
| 5135 | * initial unlinked bucket entries out of the buffer. We keep |
| 5136 | * buffer reference though, so that it stays pinned in memory |
| 5137 | * while we need the buffer. |
| 5138 | */ |
| 5139 | agi = XFS_BUF_TO_AGI(agibp); |
| 5140 | xfs_buf_unlock(agibp); |
| 5141 | |
| 5142 | for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { |
| 5143 | agino = be32_to_cpu(agi->agi_unlinked[bucket]); |
| 5144 | while (agino != NULLAGINO) { |
| 5145 | agino = xlog_recover_process_one_iunlink(mp, |
| 5146 | agno, agino, bucket); |
| 5147 | cond_resched(); |
| 5148 | } |
| 5149 | } |
| 5150 | xfs_buf_rele(agibp); |
| 5151 | } |
| 5152 | } |
| 5153 | |
| 5154 | STATIC void |
| 5155 | xlog_unpack_data( |
| 5156 | struct xlog_rec_header *rhead, |
| 5157 | char *dp, |
| 5158 | struct xlog *log) |
| 5159 | { |
| 5160 | int i, j, k; |
| 5161 | |
| 5162 | for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && |
| 5163 | i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { |
| 5164 | *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; |
| 5165 | dp += BBSIZE; |
| 5166 | } |
| 5167 | |
| 5168 | if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { |
| 5169 | xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; |
| 5170 | for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { |
| 5171 | j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); |
| 5172 | k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); |
| 5173 | *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; |
| 5174 | dp += BBSIZE; |
| 5175 | } |
| 5176 | } |
| 5177 | } |
| 5178 | |
| 5179 | /* |
| 5180 | * CRC check, unpack and process a log record. |
| 5181 | */ |
| 5182 | STATIC int |
| 5183 | xlog_recover_process( |
| 5184 | struct xlog *log, |
| 5185 | struct hlist_head rhash[], |
| 5186 | struct xlog_rec_header *rhead, |
| 5187 | char *dp, |
| 5188 | int pass, |
| 5189 | struct list_head *buffer_list) |
| 5190 | { |
| 5191 | __le32 old_crc = rhead->h_crc; |
| 5192 | __le32 crc; |
| 5193 | |
| 5194 | crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); |
| 5195 | |
| 5196 | /* |
| 5197 | * Nothing else to do if this is a CRC verification pass. Just return |
| 5198 | * if this a record with a non-zero crc. Unfortunately, mkfs always |
| 5199 | * sets old_crc to 0 so we must consider this valid even on v5 supers. |
| 5200 | * Otherwise, return EFSBADCRC on failure so the callers up the stack |
| 5201 | * know precisely what failed. |
| 5202 | */ |
| 5203 | if (pass == XLOG_RECOVER_CRCPASS) { |
| 5204 | if (old_crc && crc != old_crc) |
| 5205 | return -EFSBADCRC; |
| 5206 | return 0; |
| 5207 | } |
| 5208 | |
| 5209 | /* |
| 5210 | * We're in the normal recovery path. Issue a warning if and only if the |
| 5211 | * CRC in the header is non-zero. This is an advisory warning and the |
| 5212 | * zero CRC check prevents warnings from being emitted when upgrading |
| 5213 | * the kernel from one that does not add CRCs by default. |
| 5214 | */ |
| 5215 | if (crc != old_crc) { |
| 5216 | if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) { |
| 5217 | xfs_alert(log->l_mp, |
| 5218 | "log record CRC mismatch: found 0x%x, expected 0x%x.", |
| 5219 | le32_to_cpu(old_crc), |
| 5220 | le32_to_cpu(crc)); |
| 5221 | xfs_hex_dump(dp, 32); |
| 5222 | } |
| 5223 | |
| 5224 | /* |
| 5225 | * If the filesystem is CRC enabled, this mismatch becomes a |
| 5226 | * fatal log corruption failure. |
| 5227 | */ |
| 5228 | if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) { |
| 5229 | XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp); |
| 5230 | return -EFSCORRUPTED; |
| 5231 | } |
| 5232 | } |
| 5233 | |
| 5234 | xlog_unpack_data(rhead, dp, log); |
| 5235 | |
| 5236 | return xlog_recover_process_data(log, rhash, rhead, dp, pass, |
| 5237 | buffer_list); |
| 5238 | } |
| 5239 | |
| 5240 | STATIC int |
| 5241 | xlog_valid_rec_header( |
| 5242 | struct xlog *log, |
| 5243 | struct xlog_rec_header *rhead, |
| 5244 | xfs_daddr_t blkno) |
| 5245 | { |
| 5246 | int hlen; |
| 5247 | |
| 5248 | if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) { |
| 5249 | XFS_ERROR_REPORT("xlog_valid_rec_header(1)", |
| 5250 | XFS_ERRLEVEL_LOW, log->l_mp); |
| 5251 | return -EFSCORRUPTED; |
| 5252 | } |
| 5253 | if (unlikely( |
| 5254 | (!rhead->h_version || |
| 5255 | (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { |
| 5256 | xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", |
| 5257 | __func__, be32_to_cpu(rhead->h_version)); |
| 5258 | return -EFSCORRUPTED; |
| 5259 | } |
| 5260 | |
| 5261 | /* LR body must have data or it wouldn't have been written */ |
| 5262 | hlen = be32_to_cpu(rhead->h_len); |
| 5263 | if (unlikely( hlen <= 0 || hlen > INT_MAX )) { |
| 5264 | XFS_ERROR_REPORT("xlog_valid_rec_header(2)", |
| 5265 | XFS_ERRLEVEL_LOW, log->l_mp); |
| 5266 | return -EFSCORRUPTED; |
| 5267 | } |
| 5268 | if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { |
| 5269 | XFS_ERROR_REPORT("xlog_valid_rec_header(3)", |
| 5270 | XFS_ERRLEVEL_LOW, log->l_mp); |
| 5271 | return -EFSCORRUPTED; |
| 5272 | } |
| 5273 | return 0; |
| 5274 | } |
| 5275 | |
| 5276 | /* |
| 5277 | * Read the log from tail to head and process the log records found. |
| 5278 | * Handle the two cases where the tail and head are in the same cycle |
| 5279 | * and where the active portion of the log wraps around the end of |
| 5280 | * the physical log separately. The pass parameter is passed through |
| 5281 | * to the routines called to process the data and is not looked at |
| 5282 | * here. |
| 5283 | */ |
| 5284 | STATIC int |
| 5285 | xlog_do_recovery_pass( |
| 5286 | struct xlog *log, |
| 5287 | xfs_daddr_t head_blk, |
| 5288 | xfs_daddr_t tail_blk, |
| 5289 | int pass, |
| 5290 | xfs_daddr_t *first_bad) /* out: first bad log rec */ |
| 5291 | { |
| 5292 | xlog_rec_header_t *rhead; |
| 5293 | xfs_daddr_t blk_no, rblk_no; |
| 5294 | xfs_daddr_t rhead_blk; |
| 5295 | char *offset; |
| 5296 | char *hbp, *dbp; |
| 5297 | int error = 0, h_size, h_len; |
| 5298 | int error2 = 0; |
| 5299 | int bblks, split_bblks; |
| 5300 | int hblks, split_hblks, wrapped_hblks; |
| 5301 | int i; |
| 5302 | struct hlist_head rhash[XLOG_RHASH_SIZE]; |
| 5303 | LIST_HEAD (buffer_list); |
| 5304 | |
| 5305 | ASSERT(head_blk != tail_blk); |
| 5306 | blk_no = rhead_blk = tail_blk; |
| 5307 | |
| 5308 | for (i = 0; i < XLOG_RHASH_SIZE; i++) |
| 5309 | INIT_HLIST_HEAD(&rhash[i]); |
| 5310 | |
| 5311 | /* |
| 5312 | * Read the header of the tail block and get the iclog buffer size from |
| 5313 | * h_size. Use this to tell how many sectors make up the log header. |
| 5314 | */ |
| 5315 | if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { |
| 5316 | /* |
| 5317 | * When using variable length iclogs, read first sector of |
| 5318 | * iclog header and extract the header size from it. Get a |
| 5319 | * new hbp that is the correct size. |
| 5320 | */ |
| 5321 | hbp = xlog_alloc_buffer(log, 1); |
| 5322 | if (!hbp) |
| 5323 | return -ENOMEM; |
| 5324 | |
| 5325 | error = xlog_bread(log, tail_blk, 1, hbp, &offset); |
| 5326 | if (error) |
| 5327 | goto bread_err1; |
| 5328 | |
| 5329 | rhead = (xlog_rec_header_t *)offset; |
| 5330 | error = xlog_valid_rec_header(log, rhead, tail_blk); |
| 5331 | if (error) |
| 5332 | goto bread_err1; |
| 5333 | |
| 5334 | /* |
| 5335 | * xfsprogs has a bug where record length is based on lsunit but |
| 5336 | * h_size (iclog size) is hardcoded to 32k. Now that we |
| 5337 | * unconditionally CRC verify the unmount record, this means the |
| 5338 | * log buffer can be too small for the record and cause an |
| 5339 | * overrun. |
| 5340 | * |
| 5341 | * Detect this condition here. Use lsunit for the buffer size as |
| 5342 | * long as this looks like the mkfs case. Otherwise, return an |
| 5343 | * error to avoid a buffer overrun. |
| 5344 | */ |
| 5345 | h_size = be32_to_cpu(rhead->h_size); |
| 5346 | h_len = be32_to_cpu(rhead->h_len); |
| 5347 | if (h_len > h_size) { |
| 5348 | if (h_len <= log->l_mp->m_logbsize && |
| 5349 | be32_to_cpu(rhead->h_num_logops) == 1) { |
| 5350 | xfs_warn(log->l_mp, |
| 5351 | "invalid iclog size (%d bytes), using lsunit (%d bytes)", |
| 5352 | h_size, log->l_mp->m_logbsize); |
| 5353 | h_size = log->l_mp->m_logbsize; |
| 5354 | } else { |
| 5355 | XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, |
| 5356 | log->l_mp); |
| 5357 | error = -EFSCORRUPTED; |
| 5358 | goto bread_err1; |
| 5359 | } |
| 5360 | } |
| 5361 | |
| 5362 | if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && |
| 5363 | (h_size > XLOG_HEADER_CYCLE_SIZE)) { |
| 5364 | hblks = h_size / XLOG_HEADER_CYCLE_SIZE; |
| 5365 | if (h_size % XLOG_HEADER_CYCLE_SIZE) |
| 5366 | hblks++; |
| 5367 | kmem_free(hbp); |
| 5368 | hbp = xlog_alloc_buffer(log, hblks); |
| 5369 | } else { |
| 5370 | hblks = 1; |
| 5371 | } |
| 5372 | } else { |
| 5373 | ASSERT(log->l_sectBBsize == 1); |
| 5374 | hblks = 1; |
| 5375 | hbp = xlog_alloc_buffer(log, 1); |
| 5376 | h_size = XLOG_BIG_RECORD_BSIZE; |
| 5377 | } |
| 5378 | |
| 5379 | if (!hbp) |
| 5380 | return -ENOMEM; |
| 5381 | dbp = xlog_alloc_buffer(log, BTOBB(h_size)); |
| 5382 | if (!dbp) { |
| 5383 | kmem_free(hbp); |
| 5384 | return -ENOMEM; |
| 5385 | } |
| 5386 | |
| 5387 | memset(rhash, 0, sizeof(rhash)); |
| 5388 | if (tail_blk > head_blk) { |
| 5389 | /* |
| 5390 | * Perform recovery around the end of the physical log. |
| 5391 | * When the head is not on the same cycle number as the tail, |
| 5392 | * we can't do a sequential recovery. |
| 5393 | */ |
| 5394 | while (blk_no < log->l_logBBsize) { |
| 5395 | /* |
| 5396 | * Check for header wrapping around physical end-of-log |
| 5397 | */ |
| 5398 | offset = hbp; |
| 5399 | split_hblks = 0; |
| 5400 | wrapped_hblks = 0; |
| 5401 | if (blk_no + hblks <= log->l_logBBsize) { |
| 5402 | /* Read header in one read */ |
| 5403 | error = xlog_bread(log, blk_no, hblks, hbp, |
| 5404 | &offset); |
| 5405 | if (error) |
| 5406 | goto bread_err2; |
| 5407 | } else { |
| 5408 | /* This LR is split across physical log end */ |
| 5409 | if (blk_no != log->l_logBBsize) { |
| 5410 | /* some data before physical log end */ |
| 5411 | ASSERT(blk_no <= INT_MAX); |
| 5412 | split_hblks = log->l_logBBsize - (int)blk_no; |
| 5413 | ASSERT(split_hblks > 0); |
| 5414 | error = xlog_bread(log, blk_no, |
| 5415 | split_hblks, hbp, |
| 5416 | &offset); |
| 5417 | if (error) |
| 5418 | goto bread_err2; |
| 5419 | } |
| 5420 | |
| 5421 | /* |
| 5422 | * Note: this black magic still works with |
| 5423 | * large sector sizes (non-512) only because: |
| 5424 | * - we increased the buffer size originally |
| 5425 | * by 1 sector giving us enough extra space |
| 5426 | * for the second read; |
| 5427 | * - the log start is guaranteed to be sector |
| 5428 | * aligned; |
| 5429 | * - we read the log end (LR header start) |
| 5430 | * _first_, then the log start (LR header end) |
| 5431 | * - order is important. |
| 5432 | */ |
| 5433 | wrapped_hblks = hblks - split_hblks; |
| 5434 | error = xlog_bread_noalign(log, 0, |
| 5435 | wrapped_hblks, |
| 5436 | offset + BBTOB(split_hblks)); |
| 5437 | if (error) |
| 5438 | goto bread_err2; |
| 5439 | } |
| 5440 | rhead = (xlog_rec_header_t *)offset; |
| 5441 | error = xlog_valid_rec_header(log, rhead, |
| 5442 | split_hblks ? blk_no : 0); |
| 5443 | if (error) |
| 5444 | goto bread_err2; |
| 5445 | |
| 5446 | bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); |
| 5447 | blk_no += hblks; |
| 5448 | |
| 5449 | /* |
| 5450 | * Read the log record data in multiple reads if it |
| 5451 | * wraps around the end of the log. Note that if the |
| 5452 | * header already wrapped, blk_no could point past the |
| 5453 | * end of the log. The record data is contiguous in |
| 5454 | * that case. |
| 5455 | */ |
| 5456 | if (blk_no + bblks <= log->l_logBBsize || |
| 5457 | blk_no >= log->l_logBBsize) { |
| 5458 | rblk_no = xlog_wrap_logbno(log, blk_no); |
| 5459 | error = xlog_bread(log, rblk_no, bblks, dbp, |
| 5460 | &offset); |
| 5461 | if (error) |
| 5462 | goto bread_err2; |
| 5463 | } else { |
| 5464 | /* This log record is split across the |
| 5465 | * physical end of log */ |
| 5466 | offset = dbp; |
| 5467 | split_bblks = 0; |
| 5468 | if (blk_no != log->l_logBBsize) { |
| 5469 | /* some data is before the physical |
| 5470 | * end of log */ |
| 5471 | ASSERT(!wrapped_hblks); |
| 5472 | ASSERT(blk_no <= INT_MAX); |
| 5473 | split_bblks = |
| 5474 | log->l_logBBsize - (int)blk_no; |
| 5475 | ASSERT(split_bblks > 0); |
| 5476 | error = xlog_bread(log, blk_no, |
| 5477 | split_bblks, dbp, |
| 5478 | &offset); |
| 5479 | if (error) |
| 5480 | goto bread_err2; |
| 5481 | } |
| 5482 | |
| 5483 | /* |
| 5484 | * Note: this black magic still works with |
| 5485 | * large sector sizes (non-512) only because: |
| 5486 | * - we increased the buffer size originally |
| 5487 | * by 1 sector giving us enough extra space |
| 5488 | * for the second read; |
| 5489 | * - the log start is guaranteed to be sector |
| 5490 | * aligned; |
| 5491 | * - we read the log end (LR header start) |
| 5492 | * _first_, then the log start (LR header end) |
| 5493 | * - order is important. |
| 5494 | */ |
| 5495 | error = xlog_bread_noalign(log, 0, |
| 5496 | bblks - split_bblks, |
| 5497 | offset + BBTOB(split_bblks)); |
| 5498 | if (error) |
| 5499 | goto bread_err2; |
| 5500 | } |
| 5501 | |
| 5502 | error = xlog_recover_process(log, rhash, rhead, offset, |
| 5503 | pass, &buffer_list); |
| 5504 | if (error) |
| 5505 | goto bread_err2; |
| 5506 | |
| 5507 | blk_no += bblks; |
| 5508 | rhead_blk = blk_no; |
| 5509 | } |
| 5510 | |
| 5511 | ASSERT(blk_no >= log->l_logBBsize); |
| 5512 | blk_no -= log->l_logBBsize; |
| 5513 | rhead_blk = blk_no; |
| 5514 | } |
| 5515 | |
| 5516 | /* read first part of physical log */ |
| 5517 | while (blk_no < head_blk) { |
| 5518 | error = xlog_bread(log, blk_no, hblks, hbp, &offset); |
| 5519 | if (error) |
| 5520 | goto bread_err2; |
| 5521 | |
| 5522 | rhead = (xlog_rec_header_t *)offset; |
| 5523 | error = xlog_valid_rec_header(log, rhead, blk_no); |
| 5524 | if (error) |
| 5525 | goto bread_err2; |
| 5526 | |
| 5527 | /* blocks in data section */ |
| 5528 | bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); |
| 5529 | error = xlog_bread(log, blk_no+hblks, bblks, dbp, |
| 5530 | &offset); |
| 5531 | if (error) |
| 5532 | goto bread_err2; |
| 5533 | |
| 5534 | error = xlog_recover_process(log, rhash, rhead, offset, pass, |
| 5535 | &buffer_list); |
| 5536 | if (error) |
| 5537 | goto bread_err2; |
| 5538 | |
| 5539 | blk_no += bblks + hblks; |
| 5540 | rhead_blk = blk_no; |
| 5541 | } |
| 5542 | |
| 5543 | bread_err2: |
| 5544 | kmem_free(dbp); |
| 5545 | bread_err1: |
| 5546 | kmem_free(hbp); |
| 5547 | |
| 5548 | /* |
| 5549 | * Submit buffers that have been added from the last record processed, |
| 5550 | * regardless of error status. |
| 5551 | */ |
| 5552 | if (!list_empty(&buffer_list)) |
| 5553 | error2 = xfs_buf_delwri_submit(&buffer_list); |
| 5554 | |
| 5555 | if (error && first_bad) |
| 5556 | *first_bad = rhead_blk; |
| 5557 | |
| 5558 | /* |
| 5559 | * Transactions are freed at commit time but transactions without commit |
| 5560 | * records on disk are never committed. Free any that may be left in the |
| 5561 | * hash table. |
| 5562 | */ |
| 5563 | for (i = 0; i < XLOG_RHASH_SIZE; i++) { |
| 5564 | struct hlist_node *tmp; |
| 5565 | struct xlog_recover *trans; |
| 5566 | |
| 5567 | hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list) |
| 5568 | xlog_recover_free_trans(trans); |
| 5569 | } |
| 5570 | |
| 5571 | return error ? error : error2; |
| 5572 | } |
| 5573 | |
| 5574 | /* |
| 5575 | * Do the recovery of the log. We actually do this in two phases. |
| 5576 | * The two passes are necessary in order to implement the function |
| 5577 | * of cancelling a record written into the log. The first pass |
| 5578 | * determines those things which have been cancelled, and the |
| 5579 | * second pass replays log items normally except for those which |
| 5580 | * have been cancelled. The handling of the replay and cancellations |
| 5581 | * takes place in the log item type specific routines. |
| 5582 | * |
| 5583 | * The table of items which have cancel records in the log is allocated |
| 5584 | * and freed at this level, since only here do we know when all of |
| 5585 | * the log recovery has been completed. |
| 5586 | */ |
| 5587 | STATIC int |
| 5588 | xlog_do_log_recovery( |
| 5589 | struct xlog *log, |
| 5590 | xfs_daddr_t head_blk, |
| 5591 | xfs_daddr_t tail_blk) |
| 5592 | { |
| 5593 | int error, i; |
| 5594 | |
| 5595 | ASSERT(head_blk != tail_blk); |
| 5596 | |
| 5597 | /* |
| 5598 | * First do a pass to find all of the cancelled buf log items. |
| 5599 | * Store them in the buf_cancel_table for use in the second pass. |
| 5600 | */ |
| 5601 | log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * |
| 5602 | sizeof(struct list_head), |
| 5603 | 0); |
| 5604 | for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) |
| 5605 | INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); |
| 5606 | |
| 5607 | error = xlog_do_recovery_pass(log, head_blk, tail_blk, |
| 5608 | XLOG_RECOVER_PASS1, NULL); |
| 5609 | if (error != 0) { |
| 5610 | kmem_free(log->l_buf_cancel_table); |
| 5611 | log->l_buf_cancel_table = NULL; |
| 5612 | return error; |
| 5613 | } |
| 5614 | /* |
| 5615 | * Then do a second pass to actually recover the items in the log. |
| 5616 | * When it is complete free the table of buf cancel items. |
| 5617 | */ |
| 5618 | error = xlog_do_recovery_pass(log, head_blk, tail_blk, |
| 5619 | XLOG_RECOVER_PASS2, NULL); |
| 5620 | #ifdef DEBUG |
| 5621 | if (!error) { |
| 5622 | int i; |
| 5623 | |
| 5624 | for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) |
| 5625 | ASSERT(list_empty(&log->l_buf_cancel_table[i])); |
| 5626 | } |
| 5627 | #endif /* DEBUG */ |
| 5628 | |
| 5629 | kmem_free(log->l_buf_cancel_table); |
| 5630 | log->l_buf_cancel_table = NULL; |
| 5631 | |
| 5632 | return error; |
| 5633 | } |
| 5634 | |
| 5635 | /* |
| 5636 | * Do the actual recovery |
| 5637 | */ |
| 5638 | STATIC int |
| 5639 | xlog_do_recover( |
| 5640 | struct xlog *log, |
| 5641 | xfs_daddr_t head_blk, |
| 5642 | xfs_daddr_t tail_blk) |
| 5643 | { |
| 5644 | struct xfs_mount *mp = log->l_mp; |
| 5645 | int error; |
| 5646 | xfs_buf_t *bp; |
| 5647 | xfs_sb_t *sbp; |
| 5648 | |
| 5649 | trace_xfs_log_recover(log, head_blk, tail_blk); |
| 5650 | |
| 5651 | /* |
| 5652 | * First replay the images in the log. |
| 5653 | */ |
| 5654 | error = xlog_do_log_recovery(log, head_blk, tail_blk); |
| 5655 | if (error) |
| 5656 | return error; |
| 5657 | |
| 5658 | /* |
| 5659 | * If IO errors happened during recovery, bail out. |
| 5660 | */ |
| 5661 | if (XFS_FORCED_SHUTDOWN(mp)) { |
| 5662 | return -EIO; |
| 5663 | } |
| 5664 | |
| 5665 | /* |
| 5666 | * We now update the tail_lsn since much of the recovery has completed |
| 5667 | * and there may be space available to use. If there were no extent |
| 5668 | * or iunlinks, we can free up the entire log and set the tail_lsn to |
| 5669 | * be the last_sync_lsn. This was set in xlog_find_tail to be the |
| 5670 | * lsn of the last known good LR on disk. If there are extent frees |
| 5671 | * or iunlinks they will have some entries in the AIL; so we look at |
| 5672 | * the AIL to determine how to set the tail_lsn. |
| 5673 | */ |
| 5674 | xlog_assign_tail_lsn(mp); |
| 5675 | |
| 5676 | /* |
| 5677 | * Now that we've finished replaying all buffer and inode |
| 5678 | * updates, re-read in the superblock and reverify it. |
| 5679 | */ |
| 5680 | bp = xfs_getsb(mp); |
| 5681 | bp->b_flags &= ~(XBF_DONE | XBF_ASYNC); |
| 5682 | ASSERT(!(bp->b_flags & XBF_WRITE)); |
| 5683 | bp->b_flags |= XBF_READ; |
| 5684 | bp->b_ops = &xfs_sb_buf_ops; |
| 5685 | |
| 5686 | error = xfs_buf_submit(bp); |
| 5687 | if (error) { |
| 5688 | if (!XFS_FORCED_SHUTDOWN(mp)) { |
| 5689 | xfs_buf_ioerror_alert(bp, __func__); |
| 5690 | ASSERT(0); |
| 5691 | } |
| 5692 | xfs_buf_relse(bp); |
| 5693 | return error; |
| 5694 | } |
| 5695 | |
| 5696 | /* Convert superblock from on-disk format */ |
| 5697 | sbp = &mp->m_sb; |
| 5698 | xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); |
| 5699 | xfs_buf_relse(bp); |
| 5700 | |
| 5701 | /* re-initialise in-core superblock and geometry structures */ |
| 5702 | xfs_reinit_percpu_counters(mp); |
| 5703 | error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); |
| 5704 | if (error) { |
| 5705 | xfs_warn(mp, "Failed post-recovery per-ag init: %d", error); |
| 5706 | return error; |
| 5707 | } |
| 5708 | mp->m_alloc_set_aside = xfs_alloc_set_aside(mp); |
| 5709 | |
| 5710 | xlog_recover_check_summary(log); |
| 5711 | |
| 5712 | /* Normal transactions can now occur */ |
| 5713 | log->l_flags &= ~XLOG_ACTIVE_RECOVERY; |
| 5714 | return 0; |
| 5715 | } |
| 5716 | |
| 5717 | /* |
| 5718 | * Perform recovery and re-initialize some log variables in xlog_find_tail. |
| 5719 | * |
| 5720 | * Return error or zero. |
| 5721 | */ |
| 5722 | int |
| 5723 | xlog_recover( |
| 5724 | struct xlog *log) |
| 5725 | { |
| 5726 | xfs_daddr_t head_blk, tail_blk; |
| 5727 | int error; |
| 5728 | |
| 5729 | /* find the tail of the log */ |
| 5730 | error = xlog_find_tail(log, &head_blk, &tail_blk); |
| 5731 | if (error) |
| 5732 | return error; |
| 5733 | |
| 5734 | /* |
| 5735 | * The superblock was read before the log was available and thus the LSN |
| 5736 | * could not be verified. Check the superblock LSN against the current |
| 5737 | * LSN now that it's known. |
| 5738 | */ |
| 5739 | if (xfs_sb_version_hascrc(&log->l_mp->m_sb) && |
| 5740 | !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn)) |
| 5741 | return -EINVAL; |
| 5742 | |
| 5743 | if (tail_blk != head_blk) { |
| 5744 | /* There used to be a comment here: |
| 5745 | * |
| 5746 | * disallow recovery on read-only mounts. note -- mount |
| 5747 | * checks for ENOSPC and turns it into an intelligent |
| 5748 | * error message. |
| 5749 | * ...but this is no longer true. Now, unless you specify |
| 5750 | * NORECOVERY (in which case this function would never be |
| 5751 | * called), we just go ahead and recover. We do this all |
| 5752 | * under the vfs layer, so we can get away with it unless |
| 5753 | * the device itself is read-only, in which case we fail. |
| 5754 | */ |
| 5755 | if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { |
| 5756 | return error; |
| 5757 | } |
| 5758 | |
| 5759 | /* |
| 5760 | * Version 5 superblock log feature mask validation. We know the |
| 5761 | * log is dirty so check if there are any unknown log features |
| 5762 | * in what we need to recover. If there are unknown features |
| 5763 | * (e.g. unsupported transactions, then simply reject the |
| 5764 | * attempt at recovery before touching anything. |
| 5765 | */ |
| 5766 | if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 && |
| 5767 | xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, |
| 5768 | XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { |
| 5769 | xfs_warn(log->l_mp, |
| 5770 | "Superblock has unknown incompatible log features (0x%x) enabled.", |
| 5771 | (log->l_mp->m_sb.sb_features_log_incompat & |
| 5772 | XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); |
| 5773 | xfs_warn(log->l_mp, |
| 5774 | "The log can not be fully and/or safely recovered by this kernel."); |
| 5775 | xfs_warn(log->l_mp, |
| 5776 | "Please recover the log on a kernel that supports the unknown features."); |
| 5777 | return -EINVAL; |
| 5778 | } |
| 5779 | |
| 5780 | /* |
| 5781 | * Delay log recovery if the debug hook is set. This is debug |
| 5782 | * instrumention to coordinate simulation of I/O failures with |
| 5783 | * log recovery. |
| 5784 | */ |
| 5785 | if (xfs_globals.log_recovery_delay) { |
| 5786 | xfs_notice(log->l_mp, |
| 5787 | "Delaying log recovery for %d seconds.", |
| 5788 | xfs_globals.log_recovery_delay); |
| 5789 | msleep(xfs_globals.log_recovery_delay * 1000); |
| 5790 | } |
| 5791 | |
| 5792 | xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", |
| 5793 | log->l_mp->m_logname ? log->l_mp->m_logname |
| 5794 | : "internal"); |
| 5795 | |
| 5796 | error = xlog_do_recover(log, head_blk, tail_blk); |
| 5797 | log->l_flags |= XLOG_RECOVERY_NEEDED; |
| 5798 | } |
| 5799 | return error; |
| 5800 | } |
| 5801 | |
| 5802 | /* |
| 5803 | * In the first part of recovery we replay inodes and buffers and build |
| 5804 | * up the list of extent free items which need to be processed. Here |
| 5805 | * we process the extent free items and clean up the on disk unlinked |
| 5806 | * inode lists. This is separated from the first part of recovery so |
| 5807 | * that the root and real-time bitmap inodes can be read in from disk in |
| 5808 | * between the two stages. This is necessary so that we can free space |
| 5809 | * in the real-time portion of the file system. |
| 5810 | */ |
| 5811 | int |
| 5812 | xlog_recover_finish( |
| 5813 | struct xlog *log) |
| 5814 | { |
| 5815 | /* |
| 5816 | * Now we're ready to do the transactions needed for the |
| 5817 | * rest of recovery. Start with completing all the extent |
| 5818 | * free intent records and then process the unlinked inode |
| 5819 | * lists. At this point, we essentially run in normal mode |
| 5820 | * except that we're still performing recovery actions |
| 5821 | * rather than accepting new requests. |
| 5822 | */ |
| 5823 | if (log->l_flags & XLOG_RECOVERY_NEEDED) { |
| 5824 | int error; |
| 5825 | error = xlog_recover_process_intents(log); |
| 5826 | if (error) { |
| 5827 | xfs_alert(log->l_mp, "Failed to recover intents"); |
| 5828 | return error; |
| 5829 | } |
| 5830 | |
| 5831 | /* |
| 5832 | * Sync the log to get all the intents out of the AIL. |
| 5833 | * This isn't absolutely necessary, but it helps in |
| 5834 | * case the unlink transactions would have problems |
| 5835 | * pushing the intents out of the way. |
| 5836 | */ |
| 5837 | xfs_log_force(log->l_mp, XFS_LOG_SYNC); |
| 5838 | |
| 5839 | xlog_recover_process_iunlinks(log); |
| 5840 | |
| 5841 | xlog_recover_check_summary(log); |
| 5842 | |
| 5843 | xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", |
| 5844 | log->l_mp->m_logname ? log->l_mp->m_logname |
| 5845 | : "internal"); |
| 5846 | log->l_flags &= ~XLOG_RECOVERY_NEEDED; |
| 5847 | } else { |
| 5848 | xfs_info(log->l_mp, "Ending clean mount"); |
| 5849 | } |
| 5850 | return 0; |
| 5851 | } |
| 5852 | |
| 5853 | void |
| 5854 | xlog_recover_cancel( |
| 5855 | struct xlog *log) |
| 5856 | { |
| 5857 | if (log->l_flags & XLOG_RECOVERY_NEEDED) |
| 5858 | xlog_recover_cancel_intents(log); |
| 5859 | } |
| 5860 | |
| 5861 | #if defined(DEBUG) |
| 5862 | /* |
| 5863 | * Read all of the agf and agi counters and check that they |
| 5864 | * are consistent with the superblock counters. |
| 5865 | */ |
| 5866 | STATIC void |
| 5867 | xlog_recover_check_summary( |
| 5868 | struct xlog *log) |
| 5869 | { |
| 5870 | xfs_mount_t *mp; |
| 5871 | xfs_agf_t *agfp; |
| 5872 | xfs_buf_t *agfbp; |
| 5873 | xfs_buf_t *agibp; |
| 5874 | xfs_agnumber_t agno; |
| 5875 | uint64_t freeblks; |
| 5876 | uint64_t itotal; |
| 5877 | uint64_t ifree; |
| 5878 | int error; |
| 5879 | |
| 5880 | mp = log->l_mp; |
| 5881 | |
| 5882 | freeblks = 0LL; |
| 5883 | itotal = 0LL; |
| 5884 | ifree = 0LL; |
| 5885 | for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { |
| 5886 | error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); |
| 5887 | if (error) { |
| 5888 | xfs_alert(mp, "%s agf read failed agno %d error %d", |
| 5889 | __func__, agno, error); |
| 5890 | } else { |
| 5891 | agfp = XFS_BUF_TO_AGF(agfbp); |
| 5892 | freeblks += be32_to_cpu(agfp->agf_freeblks) + |
| 5893 | be32_to_cpu(agfp->agf_flcount); |
| 5894 | xfs_buf_relse(agfbp); |
| 5895 | } |
| 5896 | |
| 5897 | error = xfs_read_agi(mp, NULL, agno, &agibp); |
| 5898 | if (error) { |
| 5899 | xfs_alert(mp, "%s agi read failed agno %d error %d", |
| 5900 | __func__, agno, error); |
| 5901 | } else { |
| 5902 | struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); |
| 5903 | |
| 5904 | itotal += be32_to_cpu(agi->agi_count); |
| 5905 | ifree += be32_to_cpu(agi->agi_freecount); |
| 5906 | xfs_buf_relse(agibp); |
| 5907 | } |
| 5908 | } |
| 5909 | } |
| 5910 | #endif /* DEBUG */ |