blob: 199853b007abfd81e3ac1f1b95fb64181a0d55a3 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the TCP module.
8 *
9 * Version: @(#)tcp.h 1.0.5 05/23/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 */
14#ifndef _TCP_H
15#define _TCP_H
16
17#define FASTRETRANS_DEBUG 1
18
19#include <linux/list.h>
20#include <linux/tcp.h>
21#include <linux/bug.h>
22#include <linux/slab.h>
23#include <linux/cache.h>
24#include <linux/percpu.h>
25#include <linux/skbuff.h>
26#include <linux/cryptohash.h>
27#include <linux/kref.h>
28#include <linux/ktime.h>
29
30#include <net/inet_connection_sock.h>
31#include <net/inet_timewait_sock.h>
32#include <net/inet_hashtables.h>
33#include <net/checksum.h>
34#include <net/request_sock.h>
35#include <net/sock_reuseport.h>
36#include <net/sock.h>
37#include <net/snmp.h>
38#include <net/ip.h>
39#include <net/tcp_states.h>
40#include <net/inet_ecn.h>
41#include <net/dst.h>
42
43#include <linux/seq_file.h>
44#include <linux/memcontrol.h>
45#include <linux/bpf-cgroup.h>
46#include <linux/siphash.h>
47
48extern struct inet_hashinfo tcp_hashinfo;
49
50extern struct percpu_counter tcp_orphan_count;
51void tcp_time_wait(struct sock *sk, int state, int timeo);
52
53#define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER)
54#define MAX_TCP_OPTION_SPACE 40
55#define TCP_MIN_SND_MSS 48
56#define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
57
58/*
59 * Never offer a window over 32767 without using window scaling. Some
60 * poor stacks do signed 16bit maths!
61 */
62#define MAX_TCP_WINDOW 32767U
63
64/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65#define TCP_MIN_MSS 88U
66
67/* The initial MTU to use for probing */
68#define TCP_BASE_MSS 1024
69
70/* probing interval, default to 10 minutes as per RFC4821 */
71#define TCP_PROBE_INTERVAL 600
72
73/* Specify interval when tcp mtu probing will stop */
74#define TCP_PROBE_THRESHOLD 8
75
76/* After receiving this amount of duplicate ACKs fast retransmit starts. */
77#define TCP_FASTRETRANS_THRESH 3
78
79/* Maximal number of ACKs sent quickly to accelerate slow-start. */
80#define TCP_MAX_QUICKACKS 16U
81
82/* Maximal number of window scale according to RFC1323 */
83#define TCP_MAX_WSCALE 14U
84
85/* urg_data states */
86#define TCP_URG_VALID 0x0100
87#define TCP_URG_NOTYET 0x0200
88#define TCP_URG_READ 0x0400
89
90#define TCP_RETR1 3 /*
91 * This is how many retries it does before it
92 * tries to figure out if the gateway is
93 * down. Minimal RFC value is 3; it corresponds
94 * to ~3sec-8min depending on RTO.
95 */
96
97#define TCP_RETR2 15 /*
98 * This should take at least
99 * 90 minutes to time out.
100 * RFC1122 says that the limit is 100 sec.
101 * 15 is ~13-30min depending on RTO.
102 */
103
104#define TCP_SYN_RETRIES 6 /* This is how many retries are done
105 * when active opening a connection.
106 * RFC1122 says the minimum retry MUST
107 * be at least 180secs. Nevertheless
108 * this value is corresponding to
109 * 63secs of retransmission with the
110 * current initial RTO.
111 */
112
113#define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
114 * when passive opening a connection.
115 * This is corresponding to 31secs of
116 * retransmission with the current
117 * initial RTO.
118 */
119
120#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
121 * state, about 60 seconds */
122#define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
123 /* BSD style FIN_WAIT2 deadlock breaker.
124 * It used to be 3min, new value is 60sec,
125 * to combine FIN-WAIT-2 timeout with
126 * TIME-WAIT timer.
127 */
128#define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
129
130#define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
131#if HZ >= 100
132#define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
133#define TCP_ATO_MIN ((unsigned)(HZ/25))
134#else
135#define TCP_DELACK_MIN 4U
136#define TCP_ATO_MIN 4U
137#endif
138#define TCP_RTO_MAX ((unsigned)(120*HZ))
139#define TCP_RTO_MIN ((unsigned)(HZ/5))
140#define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
141
142#define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
143
144#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
145#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
146 * used as a fallback RTO for the
147 * initial data transmission if no
148 * valid RTT sample has been acquired,
149 * most likely due to retrans in 3WHS.
150 */
151
152#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
153 * for local resources.
154 */
155#define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
156#define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
157#define TCP_KEEPALIVE_INTVL (75*HZ)
158
159#define MAX_TCP_KEEPIDLE 32767
160#define MAX_TCP_KEEPINTVL 32767
161#define MAX_TCP_KEEPCNT 127
162#define MAX_TCP_SYNCNT 127
163
164#define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
165
166#define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
167#define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
168 * after this time. It should be equal
169 * (or greater than) TCP_TIMEWAIT_LEN
170 * to provide reliability equal to one
171 * provided by timewait state.
172 */
173#define TCP_PAWS_WINDOW 1 /* Replay window for per-host
174 * timestamps. It must be less than
175 * minimal timewait lifetime.
176 */
177/*
178 * TCP option
179 */
180
181#define TCPOPT_NOP 1 /* Padding */
182#define TCPOPT_EOL 0 /* End of options */
183#define TCPOPT_MSS 2 /* Segment size negotiating */
184#define TCPOPT_WINDOW 3 /* Window scaling */
185#define TCPOPT_SACK_PERM 4 /* SACK Permitted */
186#define TCPOPT_SACK 5 /* SACK Block */
187#define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
188#define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
189#define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
190#define TCPOPT_EXP 254 /* Experimental */
191/* Magic number to be after the option value for sharing TCP
192 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
193 */
194#define TCPOPT_FASTOPEN_MAGIC 0xF989
195#define TCPOPT_SMC_MAGIC 0xE2D4C3D9
196
197/*
198 * TCP option lengths
199 */
200
201#define TCPOLEN_MSS 4
202#define TCPOLEN_WINDOW 3
203#define TCPOLEN_SACK_PERM 2
204#define TCPOLEN_TIMESTAMP 10
205#define TCPOLEN_MD5SIG 18
206#define TCPOLEN_FASTOPEN_BASE 2
207#define TCPOLEN_EXP_FASTOPEN_BASE 4
208#define TCPOLEN_EXP_SMC_BASE 6
209
210/* But this is what stacks really send out. */
211#define TCPOLEN_TSTAMP_ALIGNED 12
212#define TCPOLEN_WSCALE_ALIGNED 4
213#define TCPOLEN_SACKPERM_ALIGNED 4
214#define TCPOLEN_SACK_BASE 2
215#define TCPOLEN_SACK_BASE_ALIGNED 4
216#define TCPOLEN_SACK_PERBLOCK 8
217#define TCPOLEN_MD5SIG_ALIGNED 20
218#define TCPOLEN_MSS_ALIGNED 4
219#define TCPOLEN_EXP_SMC_BASE_ALIGNED 8
220
221/* Flags in tp->nonagle */
222#define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
223#define TCP_NAGLE_CORK 2 /* Socket is corked */
224#define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
225
226/* TCP thin-stream limits */
227#define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
228
229/* TCP initial congestion window as per rfc6928 */
230#define TCP_INIT_CWND 10
231
232/* Bit Flags for sysctl_tcp_fastopen */
233#define TFO_CLIENT_ENABLE 1
234#define TFO_SERVER_ENABLE 2
235#define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
236
237/* Accept SYN data w/o any cookie option */
238#define TFO_SERVER_COOKIE_NOT_REQD 0x200
239
240/* Force enable TFO on all listeners, i.e., not requiring the
241 * TCP_FASTOPEN socket option.
242 */
243#define TFO_SERVER_WO_SOCKOPT1 0x400
244
245
246/* sysctl variables for tcp */
247extern int sysctl_tcp_max_orphans;
248extern long sysctl_tcp_mem[3];
249
250#define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
251#define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */
252#define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */
253
254extern atomic_long_t tcp_memory_allocated;
255extern struct percpu_counter tcp_sockets_allocated;
256extern unsigned long tcp_memory_pressure;
257
258/* optimized version of sk_under_memory_pressure() for TCP sockets */
259static inline bool tcp_under_memory_pressure(const struct sock *sk)
260{
261 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
262 mem_cgroup_under_socket_pressure(sk->sk_memcg))
263 return true;
264
265 return READ_ONCE(tcp_memory_pressure);
266}
267/*
268 * The next routines deal with comparing 32 bit unsigned ints
269 * and worry about wraparound (automatic with unsigned arithmetic).
270 */
271
272static inline bool before(__u32 seq1, __u32 seq2)
273{
274 return (__s32)(seq1-seq2) < 0;
275}
276#define after(seq2, seq1) before(seq1, seq2)
277
278/* is s2<=s1<=s3 ? */
279static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
280{
281 return seq3 - seq2 >= seq1 - seq2;
282}
283
284static inline bool tcp_out_of_memory(struct sock *sk)
285{
286 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
287 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
288 return true;
289 return false;
290}
291
292void sk_forced_mem_schedule(struct sock *sk, int size);
293
294static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
295{
296 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
297 int orphans = percpu_counter_read_positive(ocp);
298
299 if (orphans << shift > sysctl_tcp_max_orphans) {
300 orphans = percpu_counter_sum_positive(ocp);
301 if (orphans << shift > sysctl_tcp_max_orphans)
302 return true;
303 }
304 return false;
305}
306
307bool tcp_check_oom(struct sock *sk, int shift);
308
309
310extern struct proto tcp_prot;
311
312#define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313#define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
314#define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
315#define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
316
317void tcp_tasklet_init(void);
318
319int tcp_v4_err(struct sk_buff *skb, u32);
320
321void tcp_shutdown(struct sock *sk, int how);
322
323int tcp_v4_early_demux(struct sk_buff *skb);
324int tcp_v4_rcv(struct sk_buff *skb);
325
326int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
327int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
328int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
329int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
330 int flags);
331int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
332 size_t size, int flags);
333ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
334 size_t size, int flags);
335void tcp_release_cb(struct sock *sk);
336void tcp_wfree(struct sk_buff *skb);
337void tcp_write_timer_handler(struct sock *sk);
338void tcp_delack_timer_handler(struct sock *sk);
339int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
340int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
341void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
342void tcp_rcv_space_adjust(struct sock *sk);
343int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
344void tcp_twsk_destructor(struct sock *sk);
345ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
346 struct pipe_inode_info *pipe, size_t len,
347 unsigned int flags);
348
349static inline void tcp_dec_quickack_mode(struct sock *sk)
350{
351 struct inet_connection_sock *icsk = inet_csk(sk);
352
353 if (icsk->icsk_ack.quick) {
354 /* How many ACKs S/ACKing new data have we sent? */
355 const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
356
357 if (pkts >= icsk->icsk_ack.quick) {
358 icsk->icsk_ack.quick = 0;
359 /* Leaving quickack mode we deflate ATO. */
360 icsk->icsk_ack.ato = TCP_ATO_MIN;
361 } else
362 icsk->icsk_ack.quick -= pkts;
363 }
364}
365
366#define TCP_ECN_OK 1
367#define TCP_ECN_QUEUE_CWR 2
368#define TCP_ECN_DEMAND_CWR 4
369#define TCP_ECN_SEEN 8
370
371enum tcp_tw_status {
372 TCP_TW_SUCCESS = 0,
373 TCP_TW_RST = 1,
374 TCP_TW_ACK = 2,
375 TCP_TW_SYN = 3
376};
377
378
379enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
380 struct sk_buff *skb,
381 const struct tcphdr *th);
382struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
383 struct request_sock *req, bool fastopen,
384 bool *lost_race);
385int tcp_child_process(struct sock *parent, struct sock *child,
386 struct sk_buff *skb);
387void tcp_enter_loss(struct sock *sk);
388void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
389void tcp_clear_retrans(struct tcp_sock *tp);
390void tcp_update_metrics(struct sock *sk);
391void tcp_init_metrics(struct sock *sk);
392void tcp_metrics_init(void);
393bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
394void __tcp_close(struct sock *sk, long timeout);
395void tcp_close(struct sock *sk, long timeout);
396void tcp_init_sock(struct sock *sk);
397void tcp_init_transfer(struct sock *sk, int bpf_op);
398__poll_t tcp_poll(struct file *file, struct socket *sock,
399 struct poll_table_struct *wait);
400int tcp_getsockopt(struct sock *sk, int level, int optname,
401 char __user *optval, int __user *optlen);
402int tcp_setsockopt(struct sock *sk, int level, int optname,
403 char __user *optval, unsigned int optlen);
404int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
405 char __user *optval, int __user *optlen);
406int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
407 char __user *optval, unsigned int optlen);
408void tcp_set_keepalive(struct sock *sk, int val);
409void tcp_syn_ack_timeout(const struct request_sock *req);
410int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
411 int flags, int *addr_len);
412int tcp_set_rcvlowat(struct sock *sk, int val);
413void tcp_data_ready(struct sock *sk);
414#ifdef CONFIG_MMU
415int tcp_mmap(struct file *file, struct socket *sock,
416 struct vm_area_struct *vma);
417#endif
418void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
419 struct tcp_options_received *opt_rx,
420 int estab, struct tcp_fastopen_cookie *foc);
421const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
422
423/*
424 * BPF SKB-less helpers
425 */
426u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
427 struct tcphdr *th, u32 *cookie);
428u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
429 struct tcphdr *th, u32 *cookie);
430u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
431 const struct tcp_request_sock_ops *af_ops,
432 struct sock *sk, struct tcphdr *th);
433/*
434 * TCP v4 functions exported for the inet6 API
435 */
436
437void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
438void tcp_v4_mtu_reduced(struct sock *sk);
439void tcp_req_err(struct sock *sk, u32 seq, bool abort);
440int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
441struct sock *tcp_create_openreq_child(const struct sock *sk,
442 struct request_sock *req,
443 struct sk_buff *skb);
444void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
445struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
446 struct request_sock *req,
447 struct dst_entry *dst,
448 struct request_sock *req_unhash,
449 bool *own_req);
450int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
451int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
452int tcp_connect(struct sock *sk);
453enum tcp_synack_type {
454 TCP_SYNACK_NORMAL,
455 TCP_SYNACK_FASTOPEN,
456 TCP_SYNACK_COOKIE,
457};
458struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
459 struct request_sock *req,
460 struct tcp_fastopen_cookie *foc,
461 enum tcp_synack_type synack_type);
462int tcp_disconnect(struct sock *sk, int flags);
463
464void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
465int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
466void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
467
468/* From syncookies.c */
469struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
470 struct request_sock *req,
471 struct dst_entry *dst, u32 tsoff);
472int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
473 u32 cookie);
474struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
475#ifdef CONFIG_SYN_COOKIES
476
477/* Syncookies use a monotonic timer which increments every 60 seconds.
478 * This counter is used both as a hash input and partially encoded into
479 * the cookie value. A cookie is only validated further if the delta
480 * between the current counter value and the encoded one is less than this,
481 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
482 * the counter advances immediately after a cookie is generated).
483 */
484#define MAX_SYNCOOKIE_AGE 2
485#define TCP_SYNCOOKIE_PERIOD (60 * HZ)
486#define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
487
488/* syncookies: remember time of last synqueue overflow
489 * But do not dirty this field too often (once per second is enough)
490 * It is racy as we do not hold a lock, but race is very minor.
491 */
492static inline void tcp_synq_overflow(const struct sock *sk)
493{
494 unsigned int last_overflow;
495 unsigned int now = jiffies;
496
497 if (sk->sk_reuseport) {
498 struct sock_reuseport *reuse;
499
500 reuse = rcu_dereference(sk->sk_reuseport_cb);
501 if (likely(reuse)) {
502 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
503 if (!time_between32(now, last_overflow,
504 last_overflow + HZ))
505 WRITE_ONCE(reuse->synq_overflow_ts, now);
506 return;
507 }
508 }
509
510 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
511 if (!time_between32(now, last_overflow, last_overflow + HZ))
512 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
513}
514
515/* syncookies: no recent synqueue overflow on this listening socket? */
516static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
517{
518 unsigned int last_overflow;
519 unsigned int now = jiffies;
520
521 if (sk->sk_reuseport) {
522 struct sock_reuseport *reuse;
523
524 reuse = rcu_dereference(sk->sk_reuseport_cb);
525 if (likely(reuse)) {
526 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
527 return !time_between32(now, last_overflow - HZ,
528 last_overflow +
529 TCP_SYNCOOKIE_VALID);
530 }
531 }
532
533 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
534
535 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
536 * then we're under synflood. However, we have to use
537 * 'last_overflow - HZ' as lower bound. That's because a concurrent
538 * tcp_synq_overflow() could update .ts_recent_stamp after we read
539 * jiffies but before we store .ts_recent_stamp into last_overflow,
540 * which could lead to rejecting a valid syncookie.
541 */
542 return !time_between32(now, last_overflow - HZ,
543 last_overflow + TCP_SYNCOOKIE_VALID);
544}
545
546static inline u32 tcp_cookie_time(void)
547{
548 u64 val = get_jiffies_64();
549
550 do_div(val, TCP_SYNCOOKIE_PERIOD);
551 return val;
552}
553
554u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
555 u16 *mssp);
556__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
557u64 cookie_init_timestamp(struct request_sock *req, u64 now);
558bool cookie_timestamp_decode(const struct net *net,
559 struct tcp_options_received *opt);
560bool cookie_ecn_ok(const struct tcp_options_received *opt,
561 const struct net *net, const struct dst_entry *dst);
562
563/* From net/ipv6/syncookies.c */
564int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
565 u32 cookie);
566struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
567
568u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
569 const struct tcphdr *th, u16 *mssp);
570__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
571#endif
572/* tcp_output.c */
573
574void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
575 int nonagle);
576int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
577int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
578void tcp_retransmit_timer(struct sock *sk);
579void tcp_xmit_retransmit_queue(struct sock *);
580void tcp_simple_retransmit(struct sock *);
581void tcp_enter_recovery(struct sock *sk, bool ece_ack);
582int tcp_trim_head(struct sock *, struct sk_buff *, u32);
583enum tcp_queue {
584 TCP_FRAG_IN_WRITE_QUEUE,
585 TCP_FRAG_IN_RTX_QUEUE,
586};
587int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
588 struct sk_buff *skb, u32 len,
589 unsigned int mss_now, gfp_t gfp);
590
591void tcp_send_probe0(struct sock *);
592void tcp_send_partial(struct sock *);
593int tcp_write_wakeup(struct sock *, int mib);
594void tcp_send_fin(struct sock *sk);
595void tcp_send_active_reset(struct sock *sk, gfp_t priority);
596int tcp_send_synack(struct sock *);
597void tcp_push_one(struct sock *, unsigned int mss_now);
598void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
599void tcp_send_ack(struct sock *sk);
600void tcp_send_delayed_ack(struct sock *sk);
601void tcp_send_loss_probe(struct sock *sk);
602bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
603void tcp_skb_collapse_tstamp(struct sk_buff *skb,
604 const struct sk_buff *next_skb);
605
606/* tcp_input.c */
607void tcp_rearm_rto(struct sock *sk);
608void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
609void tcp_reset(struct sock *sk);
610void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
611void tcp_fin(struct sock *sk);
612void tcp_check_space(struct sock *sk);
613
614/* tcp_timer.c */
615void tcp_init_xmit_timers(struct sock *);
616static inline void tcp_clear_xmit_timers(struct sock *sk)
617{
618 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
619 __sock_put(sk);
620
621 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
622 __sock_put(sk);
623
624 inet_csk_clear_xmit_timers(sk);
625}
626
627unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
628unsigned int tcp_current_mss(struct sock *sk);
629u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
630
631/* Bound MSS / TSO packet size with the half of the window */
632static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
633{
634 int cutoff;
635
636 /* When peer uses tiny windows, there is no use in packetizing
637 * to sub-MSS pieces for the sake of SWS or making sure there
638 * are enough packets in the pipe for fast recovery.
639 *
640 * On the other hand, for extremely large MSS devices, handling
641 * smaller than MSS windows in this way does make sense.
642 */
643 if (tp->max_window > TCP_MSS_DEFAULT)
644 cutoff = (tp->max_window >> 1);
645 else
646 cutoff = tp->max_window;
647
648 if (cutoff && pktsize > cutoff)
649 return max_t(int, cutoff, 68U - tp->tcp_header_len);
650 else
651 return pktsize;
652}
653
654/* tcp.c */
655void tcp_get_info(struct sock *, struct tcp_info *);
656
657/* Read 'sendfile()'-style from a TCP socket */
658int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
659 sk_read_actor_t recv_actor);
660
661void tcp_initialize_rcv_mss(struct sock *sk);
662
663int tcp_mtu_to_mss(struct sock *sk, int pmtu);
664int tcp_mss_to_mtu(struct sock *sk, int mss);
665void tcp_mtup_init(struct sock *sk);
666void tcp_init_buffer_space(struct sock *sk);
667
668static inline void tcp_bound_rto(const struct sock *sk)
669{
670 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
671 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
672}
673
674static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
675{
676 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
677}
678
679static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
680{
681 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
682 ntohl(TCP_FLAG_ACK) |
683 snd_wnd);
684}
685
686static inline void tcp_fast_path_on(struct tcp_sock *tp)
687{
688 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
689}
690
691static inline void tcp_fast_path_check(struct sock *sk)
692{
693 struct tcp_sock *tp = tcp_sk(sk);
694
695 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
696 tp->rcv_wnd &&
697 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
698 !tp->urg_data)
699 tcp_fast_path_on(tp);
700}
701
702/* Compute the actual rto_min value */
703static inline u32 tcp_rto_min(struct sock *sk)
704{
705 const struct dst_entry *dst = __sk_dst_get(sk);
706 u32 rto_min = TCP_RTO_MIN;
707
708 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
709 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
710 return rto_min;
711}
712
713static inline u32 tcp_rto_min_us(struct sock *sk)
714{
715 return jiffies_to_usecs(tcp_rto_min(sk));
716}
717
718static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
719{
720 return dst_metric_locked(dst, RTAX_CC_ALGO);
721}
722
723/* Minimum RTT in usec. ~0 means not available. */
724static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
725{
726 return minmax_get(&tp->rtt_min);
727}
728
729/* Compute the actual receive window we are currently advertising.
730 * Rcv_nxt can be after the window if our peer push more data
731 * than the offered window.
732 */
733static inline u32 tcp_receive_window(const struct tcp_sock *tp)
734{
735 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
736
737 if (win < 0)
738 win = 0;
739 return (u32) win;
740}
741
742/* Choose a new window, without checks for shrinking, and without
743 * scaling applied to the result. The caller does these things
744 * if necessary. This is a "raw" window selection.
745 */
746u32 __tcp_select_window(struct sock *sk);
747
748void tcp_send_window_probe(struct sock *sk);
749
750/* TCP uses 32bit jiffies to save some space.
751 * Note that this is different from tcp_time_stamp, which
752 * historically has been the same until linux-4.13.
753 */
754#define tcp_jiffies32 ((u32)jiffies)
755
756/*
757 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
758 * It is no longer tied to jiffies, but to 1 ms clock.
759 * Note: double check if you want to use tcp_jiffies32 instead of this.
760 */
761#define TCP_TS_HZ 1000
762
763static inline u64 tcp_clock_ns(void)
764{
765 return ktime_get_ns();
766}
767
768static inline u64 tcp_clock_us(void)
769{
770 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
771}
772
773/* This should only be used in contexts where tp->tcp_mstamp is up to date */
774static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
775{
776 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
777}
778
779/* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
780static inline u64 tcp_ns_to_ts(u64 ns)
781{
782 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
783}
784
785/* Could use tcp_clock_us() / 1000, but this version uses a single divide */
786static inline u32 tcp_time_stamp_raw(void)
787{
788 return tcp_ns_to_ts(tcp_clock_ns());
789}
790
791void tcp_mstamp_refresh(struct tcp_sock *tp);
792
793static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
794{
795 return max_t(s64, t1 - t0, 0);
796}
797
798static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
799{
800 return tcp_ns_to_ts(skb->skb_mstamp_ns);
801}
802
803/* provide the departure time in us unit */
804static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
805{
806 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
807}
808
809
810#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
811
812#define TCPHDR_FIN 0x01
813#define TCPHDR_SYN 0x02
814#define TCPHDR_RST 0x04
815#define TCPHDR_PSH 0x08
816#define TCPHDR_ACK 0x10
817#define TCPHDR_URG 0x20
818#define TCPHDR_ECE 0x40
819#define TCPHDR_CWR 0x80
820
821#define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
822
823/* This is what the send packet queuing engine uses to pass
824 * TCP per-packet control information to the transmission code.
825 * We also store the host-order sequence numbers in here too.
826 * This is 44 bytes if IPV6 is enabled.
827 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
828 */
829struct tcp_skb_cb {
830 __u32 seq; /* Starting sequence number */
831 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
832 union {
833 /* Note : tcp_tw_isn is used in input path only
834 * (isn chosen by tcp_timewait_state_process())
835 *
836 * tcp_gso_segs/size are used in write queue only,
837 * cf tcp_skb_pcount()/tcp_skb_mss()
838 */
839 __u32 tcp_tw_isn;
840 struct {
841 u16 tcp_gso_segs;
842 u16 tcp_gso_size;
843 };
844 };
845 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
846
847 __u8 sacked; /* State flags for SACK. */
848#define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
849#define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
850#define TCPCB_LOST 0x04 /* SKB is lost */
851#define TCPCB_TAGBITS 0x07 /* All tag bits */
852#define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */
853#define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
854#define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
855 TCPCB_REPAIRED)
856
857 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
858 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
859 eor:1, /* Is skb MSG_EOR marked? */
860 has_rxtstamp:1, /* SKB has a RX timestamp */
861 unused:5;
862 __u32 ack_seq; /* Sequence number ACK'd */
863 union {
864 struct {
865 /* There is space for up to 24 bytes */
866 __u32 in_flight:30,/* Bytes in flight at transmit */
867 is_app_limited:1, /* cwnd not fully used? */
868 unused:1;
869 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
870 __u32 delivered;
871 /* start of send pipeline phase */
872 u64 first_tx_mstamp;
873 /* when we reached the "delivered" count */
874 u64 delivered_mstamp;
875 } tx; /* only used for outgoing skbs */
876 union {
877 struct inet_skb_parm h4;
878#if IS_ENABLED(CONFIG_IPV6)
879 struct inet6_skb_parm h6;
880#endif
881 } header; /* For incoming skbs */
882 struct {
883 __u32 flags;
884 struct sock *sk_redir;
885 void *data_end;
886 } bpf;
887 };
888};
889
890#define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
891
892static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
893{
894 TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
895}
896
897static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
898{
899 return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
900}
901
902static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
903{
904 return TCP_SKB_CB(skb)->bpf.sk_redir;
905}
906
907static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
908{
909 TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
910}
911
912#if IS_ENABLED(CONFIG_IPV6)
913/* This is the variant of inet6_iif() that must be used by TCP,
914 * as TCP moves IP6CB into a different location in skb->cb[]
915 */
916static inline int tcp_v6_iif(const struct sk_buff *skb)
917{
918 return TCP_SKB_CB(skb)->header.h6.iif;
919}
920
921static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
922{
923 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
924
925 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
926}
927
928/* TCP_SKB_CB reference means this can not be used from early demux */
929static inline int tcp_v6_sdif(const struct sk_buff *skb)
930{
931#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
932 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
933 return TCP_SKB_CB(skb)->header.h6.iif;
934#endif
935 return 0;
936}
937
938void tcp_v6_early_demux(struct sk_buff *skb);
939#endif
940
941static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
942{
943#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
944 if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
945 skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
946 return true;
947#endif
948 return false;
949}
950
951/* TCP_SKB_CB reference means this can not be used from early demux */
952static inline int tcp_v4_sdif(struct sk_buff *skb)
953{
954#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
955 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
956 return TCP_SKB_CB(skb)->header.h4.iif;
957#endif
958 return 0;
959}
960
961/* Due to TSO, an SKB can be composed of multiple actual
962 * packets. To keep these tracked properly, we use this.
963 */
964static inline int tcp_skb_pcount(const struct sk_buff *skb)
965{
966 return TCP_SKB_CB(skb)->tcp_gso_segs;
967}
968
969static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
970{
971 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
972}
973
974static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
975{
976 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
977}
978
979/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
980static inline int tcp_skb_mss(const struct sk_buff *skb)
981{
982 return TCP_SKB_CB(skb)->tcp_gso_size;
983}
984
985static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
986{
987 return likely(!TCP_SKB_CB(skb)->eor);
988}
989
990/* Events passed to congestion control interface */
991enum tcp_ca_event {
992 CA_EVENT_TX_START, /* first transmit when no packets in flight */
993 CA_EVENT_CWND_RESTART, /* congestion window restart */
994 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
995 CA_EVENT_LOSS, /* loss timeout */
996 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
997 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
998};
999
1000/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1001enum tcp_ca_ack_event_flags {
1002 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
1003 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
1004 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
1005};
1006
1007/*
1008 * Interface for adding new TCP congestion control handlers
1009 */
1010#define TCP_CA_NAME_MAX 16
1011#define TCP_CA_MAX 128
1012#define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
1013
1014#define TCP_CA_UNSPEC 0
1015
1016/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1017#define TCP_CONG_NON_RESTRICTED 0x1
1018/* Requires ECN/ECT set on all packets */
1019#define TCP_CONG_NEEDS_ECN 0x2
1020
1021union tcp_cc_info;
1022
1023struct ack_sample {
1024 u32 pkts_acked;
1025 s32 rtt_us;
1026 u32 in_flight;
1027};
1028
1029/* A rate sample measures the number of (original/retransmitted) data
1030 * packets delivered "delivered" over an interval of time "interval_us".
1031 * The tcp_rate.c code fills in the rate sample, and congestion
1032 * control modules that define a cong_control function to run at the end
1033 * of ACK processing can optionally chose to consult this sample when
1034 * setting cwnd and pacing rate.
1035 * A sample is invalid if "delivered" or "interval_us" is negative.
1036 */
1037struct rate_sample {
1038 u64 prior_mstamp; /* starting timestamp for interval */
1039 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
1040 s32 delivered; /* number of packets delivered over interval */
1041 long interval_us; /* time for tp->delivered to incr "delivered" */
1042 u32 snd_interval_us; /* snd interval for delivered packets */
1043 u32 rcv_interval_us; /* rcv interval for delivered packets */
1044 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
1045 int losses; /* number of packets marked lost upon ACK */
1046 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
1047 u32 prior_in_flight; /* in flight before this ACK */
1048 u32 last_end_seq; /* end_seq of most recently ACKed packet */
1049 bool is_app_limited; /* is sample from packet with bubble in pipe? */
1050 bool is_retrans; /* is sample from retransmission? */
1051 bool is_ack_delayed; /* is this (likely) a delayed ACK? */
1052};
1053
1054struct tcp_congestion_ops {
1055 struct list_head list;
1056 u32 key;
1057 u32 flags;
1058
1059 /* initialize private data (optional) */
1060 void (*init)(struct sock *sk);
1061 /* cleanup private data (optional) */
1062 void (*release)(struct sock *sk);
1063
1064 /* return slow start threshold (required) */
1065 u32 (*ssthresh)(struct sock *sk);
1066 /* do new cwnd calculation (required) */
1067 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1068 /* call before changing ca_state (optional) */
1069 void (*set_state)(struct sock *sk, u8 new_state);
1070 /* call when cwnd event occurs (optional) */
1071 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1072 /* call when ack arrives (optional) */
1073 void (*in_ack_event)(struct sock *sk, u32 flags);
1074 /* new value of cwnd after loss (required) */
1075 u32 (*undo_cwnd)(struct sock *sk);
1076 /* hook for packet ack accounting (optional) */
1077 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1078 /* override sysctl_tcp_min_tso_segs */
1079 u32 (*min_tso_segs)(struct sock *sk);
1080 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1081 u32 (*sndbuf_expand)(struct sock *sk);
1082 /* call when packets are delivered to update cwnd and pacing rate,
1083 * after all the ca_state processing. (optional)
1084 */
1085 void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1086 /* get info for inet_diag (optional) */
1087 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1088 union tcp_cc_info *info);
1089
1090 char name[TCP_CA_NAME_MAX];
1091 struct module *owner;
1092};
1093
1094int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1095void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1096
1097void tcp_assign_congestion_control(struct sock *sk);
1098void tcp_init_congestion_control(struct sock *sk);
1099void tcp_cleanup_congestion_control(struct sock *sk);
1100int tcp_set_default_congestion_control(struct net *net, const char *name);
1101void tcp_get_default_congestion_control(struct net *net, char *name);
1102void tcp_get_available_congestion_control(char *buf, size_t len);
1103void tcp_get_allowed_congestion_control(char *buf, size_t len);
1104int tcp_set_allowed_congestion_control(char *allowed);
1105int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1106 bool reinit, bool cap_net_admin);
1107u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1108void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1109
1110u32 tcp_reno_ssthresh(struct sock *sk);
1111u32 tcp_reno_undo_cwnd(struct sock *sk);
1112void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1113extern struct tcp_congestion_ops tcp_reno;
1114
1115struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1116u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1117#ifdef CONFIG_INET
1118char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1119#else
1120static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1121{
1122 return NULL;
1123}
1124#endif
1125
1126static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1127{
1128 const struct inet_connection_sock *icsk = inet_csk(sk);
1129
1130 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1131}
1132
1133static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1134{
1135 struct inet_connection_sock *icsk = inet_csk(sk);
1136
1137 if (icsk->icsk_ca_ops->set_state)
1138 icsk->icsk_ca_ops->set_state(sk, ca_state);
1139 icsk->icsk_ca_state = ca_state;
1140}
1141
1142static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1143{
1144 const struct inet_connection_sock *icsk = inet_csk(sk);
1145
1146 if (icsk->icsk_ca_ops->cwnd_event)
1147 icsk->icsk_ca_ops->cwnd_event(sk, event);
1148}
1149
1150/* From tcp_rate.c */
1151void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1152void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1153 struct rate_sample *rs);
1154void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1155 bool is_sack_reneg, struct rate_sample *rs);
1156void tcp_rate_check_app_limited(struct sock *sk);
1157
1158static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1159{
1160 return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1161}
1162
1163/* These functions determine how the current flow behaves in respect of SACK
1164 * handling. SACK is negotiated with the peer, and therefore it can vary
1165 * between different flows.
1166 *
1167 * tcp_is_sack - SACK enabled
1168 * tcp_is_reno - No SACK
1169 */
1170static inline int tcp_is_sack(const struct tcp_sock *tp)
1171{
1172 return likely(tp->rx_opt.sack_ok);
1173}
1174
1175static inline bool tcp_is_reno(const struct tcp_sock *tp)
1176{
1177 return !tcp_is_sack(tp);
1178}
1179
1180static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1181{
1182 return tp->sacked_out + tp->lost_out;
1183}
1184
1185/* This determines how many packets are "in the network" to the best
1186 * of our knowledge. In many cases it is conservative, but where
1187 * detailed information is available from the receiver (via SACK
1188 * blocks etc.) we can make more aggressive calculations.
1189 *
1190 * Use this for decisions involving congestion control, use just
1191 * tp->packets_out to determine if the send queue is empty or not.
1192 *
1193 * Read this equation as:
1194 *
1195 * "Packets sent once on transmission queue" MINUS
1196 * "Packets left network, but not honestly ACKed yet" PLUS
1197 * "Packets fast retransmitted"
1198 */
1199static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1200{
1201 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1202}
1203
1204#define TCP_INFINITE_SSTHRESH 0x7fffffff
1205
1206static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1207{
1208 return tp->snd_cwnd < tp->snd_ssthresh;
1209}
1210
1211static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1212{
1213 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1214}
1215
1216static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1217{
1218 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1219 (1 << inet_csk(sk)->icsk_ca_state);
1220}
1221
1222/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1223 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1224 * ssthresh.
1225 */
1226static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1227{
1228 const struct tcp_sock *tp = tcp_sk(sk);
1229
1230 if (tcp_in_cwnd_reduction(sk))
1231 return tp->snd_ssthresh;
1232 else
1233 return max(tp->snd_ssthresh,
1234 ((tp->snd_cwnd >> 1) +
1235 (tp->snd_cwnd >> 2)));
1236}
1237
1238/* Use define here intentionally to get WARN_ON location shown at the caller */
1239#define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1240
1241void tcp_enter_cwr(struct sock *sk);
1242__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1243
1244/* The maximum number of MSS of available cwnd for which TSO defers
1245 * sending if not using sysctl_tcp_tso_win_divisor.
1246 */
1247static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1248{
1249 return 3;
1250}
1251
1252/* Returns end sequence number of the receiver's advertised window */
1253static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1254{
1255 return tp->snd_una + tp->snd_wnd;
1256}
1257
1258/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1259 * flexible approach. The RFC suggests cwnd should not be raised unless
1260 * it was fully used previously. And that's exactly what we do in
1261 * congestion avoidance mode. But in slow start we allow cwnd to grow
1262 * as long as the application has used half the cwnd.
1263 * Example :
1264 * cwnd is 10 (IW10), but application sends 9 frames.
1265 * We allow cwnd to reach 18 when all frames are ACKed.
1266 * This check is safe because it's as aggressive as slow start which already
1267 * risks 100% overshoot. The advantage is that we discourage application to
1268 * either send more filler packets or data to artificially blow up the cwnd
1269 * usage, and allow application-limited process to probe bw more aggressively.
1270 */
1271static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1272{
1273 const struct tcp_sock *tp = tcp_sk(sk);
1274
1275 if (tp->is_cwnd_limited)
1276 return true;
1277
1278 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1279 if (tcp_in_slow_start(tp))
1280 return tp->snd_cwnd < 2 * tp->max_packets_out;
1281
1282 return false;
1283}
1284
1285/* BBR congestion control needs pacing.
1286 * Same remark for SO_MAX_PACING_RATE.
1287 * sch_fq packet scheduler is efficiently handling pacing,
1288 * but is not always installed/used.
1289 * Return true if TCP stack should pace packets itself.
1290 */
1291static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1292{
1293 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1294}
1295
1296/* Return in jiffies the delay before one skb is sent.
1297 * If @skb is NULL, we look at EDT for next packet being sent on the socket.
1298 */
1299static inline unsigned long tcp_pacing_delay(const struct sock *sk,
1300 const struct sk_buff *skb)
1301{
1302 s64 pacing_delay = skb ? skb->tstamp : tcp_sk(sk)->tcp_wstamp_ns;
1303
1304 pacing_delay -= tcp_sk(sk)->tcp_clock_cache;
1305
1306 return pacing_delay > 0 ? nsecs_to_jiffies(pacing_delay) : 0;
1307}
1308
1309static inline void tcp_reset_xmit_timer(struct sock *sk,
1310 const int what,
1311 unsigned long when,
1312 const unsigned long max_when,
1313 const struct sk_buff *skb)
1314{
1315 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk, skb),
1316 max_when);
1317}
1318
1319/* Something is really bad, we could not queue an additional packet,
1320 * because qdisc is full or receiver sent a 0 window, or we are paced.
1321 * We do not want to add fuel to the fire, or abort too early,
1322 * so make sure the timer we arm now is at least 200ms in the future,
1323 * regardless of current icsk_rto value (as it could be ~2ms)
1324 */
1325static inline unsigned long tcp_probe0_base(const struct sock *sk)
1326{
1327 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1328}
1329
1330/* Variant of inet_csk_rto_backoff() used for zero window probes */
1331static inline unsigned long tcp_probe0_when(const struct sock *sk,
1332 unsigned long max_when)
1333{
1334 u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1335
1336 return (unsigned long)min_t(u64, when, max_when);
1337}
1338
1339static inline void tcp_check_probe_timer(struct sock *sk)
1340{
1341 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1342 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1343 tcp_probe0_base(sk), TCP_RTO_MAX,
1344 NULL);
1345}
1346
1347static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1348{
1349 tp->snd_wl1 = seq;
1350}
1351
1352static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1353{
1354 tp->snd_wl1 = seq;
1355}
1356
1357/*
1358 * Calculate(/check) TCP checksum
1359 */
1360static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1361 __be32 daddr, __wsum base)
1362{
1363 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1364}
1365
1366static inline bool tcp_checksum_complete(struct sk_buff *skb)
1367{
1368 return !skb_csum_unnecessary(skb) &&
1369 __skb_checksum_complete(skb);
1370}
1371
1372bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1373int tcp_filter(struct sock *sk, struct sk_buff *skb);
1374void tcp_set_state(struct sock *sk, int state);
1375void tcp_done(struct sock *sk);
1376int tcp_abort(struct sock *sk, int err);
1377
1378static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1379{
1380 rx_opt->dsack = 0;
1381 rx_opt->num_sacks = 0;
1382}
1383
1384u32 tcp_default_init_rwnd(u32 mss);
1385void tcp_cwnd_restart(struct sock *sk, s32 delta);
1386
1387static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1388{
1389 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1390 struct tcp_sock *tp = tcp_sk(sk);
1391 s32 delta;
1392
1393 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1394 tp->packets_out || ca_ops->cong_control)
1395 return;
1396 delta = tcp_jiffies32 - tp->lsndtime;
1397 if (delta > inet_csk(sk)->icsk_rto)
1398 tcp_cwnd_restart(sk, delta);
1399}
1400
1401/* Determine a window scaling and initial window to offer. */
1402void tcp_select_initial_window(const struct sock *sk, int __space,
1403 __u32 mss, __u32 *rcv_wnd,
1404 __u32 *window_clamp, int wscale_ok,
1405 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1406
1407static inline int tcp_win_from_space(const struct sock *sk, int space)
1408{
1409 int tcp_adv_win_scale = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale);
1410
1411 return tcp_adv_win_scale <= 0 ?
1412 (space>>(-tcp_adv_win_scale)) :
1413 space - (space>>tcp_adv_win_scale);
1414}
1415
1416/* Note: caller must be prepared to deal with negative returns */
1417static inline int tcp_space(const struct sock *sk)
1418{
1419 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1420 READ_ONCE(sk->sk_backlog.len) -
1421 atomic_read(&sk->sk_rmem_alloc));
1422}
1423
1424static inline int tcp_full_space(const struct sock *sk)
1425{
1426 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1427}
1428
1429/* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1430 * If 87.5 % (7/8) of the space has been consumed, we want to override
1431 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1432 * len/truesize ratio.
1433 */
1434static inline bool tcp_rmem_pressure(const struct sock *sk)
1435{
1436 int rcvbuf, threshold;
1437
1438 if (tcp_under_memory_pressure(sk))
1439 return true;
1440
1441 rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1442 threshold = rcvbuf - (rcvbuf >> 3);
1443
1444 return atomic_read(&sk->sk_rmem_alloc) > threshold;
1445}
1446
1447extern void tcp_openreq_init_rwin(struct request_sock *req,
1448 const struct sock *sk_listener,
1449 const struct dst_entry *dst);
1450
1451void tcp_enter_memory_pressure(struct sock *sk);
1452void tcp_leave_memory_pressure(struct sock *sk);
1453
1454static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1455{
1456 struct net *net = sock_net((struct sock *)tp);
1457
1458 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1459}
1460
1461static inline int keepalive_time_when(const struct tcp_sock *tp)
1462{
1463 struct net *net = sock_net((struct sock *)tp);
1464
1465 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1466}
1467
1468static inline int keepalive_probes(const struct tcp_sock *tp)
1469{
1470 struct net *net = sock_net((struct sock *)tp);
1471
1472 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1473}
1474
1475static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1476{
1477 const struct inet_connection_sock *icsk = &tp->inet_conn;
1478
1479 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1480 tcp_jiffies32 - tp->rcv_tstamp);
1481}
1482
1483static inline int tcp_fin_time(const struct sock *sk)
1484{
1485 int fin_timeout = tcp_sk(sk)->linger2 ? :
1486 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1487 const int rto = inet_csk(sk)->icsk_rto;
1488
1489 if (fin_timeout < (rto << 2) - (rto >> 1))
1490 fin_timeout = (rto << 2) - (rto >> 1);
1491
1492 return fin_timeout;
1493}
1494
1495static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1496 int paws_win)
1497{
1498 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1499 return true;
1500 if (unlikely(!time_before32(ktime_get_seconds(),
1501 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1502 return true;
1503 /*
1504 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1505 * then following tcp messages have valid values. Ignore 0 value,
1506 * or else 'negative' tsval might forbid us to accept their packets.
1507 */
1508 if (!rx_opt->ts_recent)
1509 return true;
1510 return false;
1511}
1512
1513static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1514 int rst)
1515{
1516 if (tcp_paws_check(rx_opt, 0))
1517 return false;
1518
1519 /* RST segments are not recommended to carry timestamp,
1520 and, if they do, it is recommended to ignore PAWS because
1521 "their cleanup function should take precedence over timestamps."
1522 Certainly, it is mistake. It is necessary to understand the reasons
1523 of this constraint to relax it: if peer reboots, clock may go
1524 out-of-sync and half-open connections will not be reset.
1525 Actually, the problem would be not existing if all
1526 the implementations followed draft about maintaining clock
1527 via reboots. Linux-2.2 DOES NOT!
1528
1529 However, we can relax time bounds for RST segments to MSL.
1530 */
1531 if (rst && !time_before32(ktime_get_seconds(),
1532 rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1533 return false;
1534 return true;
1535}
1536
1537bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1538 int mib_idx, u32 *last_oow_ack_time);
1539
1540static inline void tcp_mib_init(struct net *net)
1541{
1542 /* See RFC 2012 */
1543 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1544 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1545 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1546 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1547}
1548
1549/* from STCP */
1550static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1551{
1552 tp->lost_skb_hint = NULL;
1553}
1554
1555static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1556{
1557 tcp_clear_retrans_hints_partial(tp);
1558 tp->retransmit_skb_hint = NULL;
1559}
1560
1561union tcp_md5_addr {
1562 struct in_addr a4;
1563#if IS_ENABLED(CONFIG_IPV6)
1564 struct in6_addr a6;
1565#endif
1566};
1567
1568/* - key database */
1569struct tcp_md5sig_key {
1570 struct hlist_node node;
1571 u8 keylen;
1572 u8 family; /* AF_INET or AF_INET6 */
1573 union tcp_md5_addr addr;
1574 u8 prefixlen;
1575 u8 key[TCP_MD5SIG_MAXKEYLEN];
1576 struct rcu_head rcu;
1577};
1578
1579/* - sock block */
1580struct tcp_md5sig_info {
1581 struct hlist_head head;
1582 struct rcu_head rcu;
1583};
1584
1585/* - pseudo header */
1586struct tcp4_pseudohdr {
1587 __be32 saddr;
1588 __be32 daddr;
1589 __u8 pad;
1590 __u8 protocol;
1591 __be16 len;
1592};
1593
1594struct tcp6_pseudohdr {
1595 struct in6_addr saddr;
1596 struct in6_addr daddr;
1597 __be32 len;
1598 __be32 protocol; /* including padding */
1599};
1600
1601union tcp_md5sum_block {
1602 struct tcp4_pseudohdr ip4;
1603#if IS_ENABLED(CONFIG_IPV6)
1604 struct tcp6_pseudohdr ip6;
1605#endif
1606};
1607
1608/* - pool: digest algorithm, hash description and scratch buffer */
1609struct tcp_md5sig_pool {
1610 struct ahash_request *md5_req;
1611 void *scratch;
1612};
1613
1614/* - functions */
1615int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1616 const struct sock *sk, const struct sk_buff *skb);
1617int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1618 int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1619 gfp_t gfp);
1620int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1621 int family, u8 prefixlen);
1622struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1623 const struct sock *addr_sk);
1624
1625#ifdef CONFIG_TCP_MD5SIG
1626#include <linux/jump_label.h>
1627extern struct static_key_false tcp_md5_needed;
1628struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk,
1629 const union tcp_md5_addr *addr,
1630 int family);
1631static inline struct tcp_md5sig_key *
1632tcp_md5_do_lookup(const struct sock *sk,
1633 const union tcp_md5_addr *addr,
1634 int family)
1635{
1636 if (!static_branch_unlikely(&tcp_md5_needed))
1637 return NULL;
1638 return __tcp_md5_do_lookup(sk, addr, family);
1639}
1640
1641#define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1642#else
1643static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1644 const union tcp_md5_addr *addr,
1645 int family)
1646{
1647 return NULL;
1648}
1649#define tcp_twsk_md5_key(twsk) NULL
1650#endif
1651
1652bool tcp_alloc_md5sig_pool(void);
1653
1654struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1655static inline void tcp_put_md5sig_pool(void)
1656{
1657 local_bh_enable();
1658}
1659
1660int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1661 unsigned int header_len);
1662int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1663 const struct tcp_md5sig_key *key);
1664
1665/* From tcp_fastopen.c */
1666void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1667 struct tcp_fastopen_cookie *cookie);
1668void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1669 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1670 u16 try_exp);
1671struct tcp_fastopen_request {
1672 /* Fast Open cookie. Size 0 means a cookie request */
1673 struct tcp_fastopen_cookie cookie;
1674 struct msghdr *data; /* data in MSG_FASTOPEN */
1675 size_t size;
1676 int copied; /* queued in tcp_connect() */
1677 struct ubuf_info *uarg;
1678};
1679void tcp_free_fastopen_req(struct tcp_sock *tp);
1680void tcp_fastopen_destroy_cipher(struct sock *sk);
1681void tcp_fastopen_ctx_destroy(struct net *net);
1682int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1683 void *primary_key, void *backup_key);
1684int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1685 u64 *key);
1686void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1687struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1688 struct request_sock *req,
1689 struct tcp_fastopen_cookie *foc,
1690 const struct dst_entry *dst);
1691void tcp_fastopen_init_key_once(struct net *net);
1692bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1693 struct tcp_fastopen_cookie *cookie);
1694bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1695#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1696#define TCP_FASTOPEN_KEY_MAX 2
1697#define TCP_FASTOPEN_KEY_BUF_LENGTH \
1698 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1699
1700/* Fastopen key context */
1701struct tcp_fastopen_context {
1702 siphash_key_t key[TCP_FASTOPEN_KEY_MAX];
1703 int num;
1704 struct rcu_head rcu;
1705};
1706
1707extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1708void tcp_fastopen_active_disable(struct sock *sk);
1709bool tcp_fastopen_active_should_disable(struct sock *sk);
1710void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1711void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1712
1713/* Caller needs to wrap with rcu_read_(un)lock() */
1714static inline
1715struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1716{
1717 struct tcp_fastopen_context *ctx;
1718
1719 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1720 if (!ctx)
1721 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1722 return ctx;
1723}
1724
1725static inline
1726bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1727 const struct tcp_fastopen_cookie *orig)
1728{
1729 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1730 orig->len == foc->len &&
1731 !memcmp(orig->val, foc->val, foc->len))
1732 return true;
1733 return false;
1734}
1735
1736static inline
1737int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1738{
1739 return ctx->num;
1740}
1741
1742/* Latencies incurred by various limits for a sender. They are
1743 * chronograph-like stats that are mutually exclusive.
1744 */
1745enum tcp_chrono {
1746 TCP_CHRONO_UNSPEC,
1747 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1748 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1749 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1750 __TCP_CHRONO_MAX,
1751};
1752
1753void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1754void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1755
1756/* This helper is needed, because skb->tcp_tsorted_anchor uses
1757 * the same memory storage than skb->destructor/_skb_refdst
1758 */
1759static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1760{
1761 skb->destructor = NULL;
1762 skb->_skb_refdst = 0UL;
1763}
1764
1765#define tcp_skb_tsorted_save(skb) { \
1766 unsigned long _save = skb->_skb_refdst; \
1767 skb->_skb_refdst = 0UL;
1768
1769#define tcp_skb_tsorted_restore(skb) \
1770 skb->_skb_refdst = _save; \
1771}
1772
1773void tcp_write_queue_purge(struct sock *sk);
1774
1775static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1776{
1777 return skb_rb_first(&sk->tcp_rtx_queue);
1778}
1779
1780static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1781{
1782 return skb_rb_last(&sk->tcp_rtx_queue);
1783}
1784
1785static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1786{
1787 return skb_peek(&sk->sk_write_queue);
1788}
1789
1790static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1791{
1792 return skb_peek_tail(&sk->sk_write_queue);
1793}
1794
1795#define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1796 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1797
1798static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1799{
1800 return skb_peek(&sk->sk_write_queue);
1801}
1802
1803static inline bool tcp_skb_is_last(const struct sock *sk,
1804 const struct sk_buff *skb)
1805{
1806 return skb_queue_is_last(&sk->sk_write_queue, skb);
1807}
1808
1809static inline bool tcp_write_queue_empty(const struct sock *sk)
1810{
1811 return skb_queue_empty(&sk->sk_write_queue);
1812}
1813
1814static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1815{
1816 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1817}
1818
1819static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1820{
1821 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1822}
1823
1824static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1825{
1826 __skb_queue_tail(&sk->sk_write_queue, skb);
1827
1828 /* Queue it, remembering where we must start sending. */
1829 if (sk->sk_write_queue.next == skb)
1830 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1831}
1832
1833/* Insert new before skb on the write queue of sk. */
1834static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1835 struct sk_buff *skb,
1836 struct sock *sk)
1837{
1838 __skb_queue_before(&sk->sk_write_queue, skb, new);
1839}
1840
1841static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1842{
1843 tcp_skb_tsorted_anchor_cleanup(skb);
1844 __skb_unlink(skb, &sk->sk_write_queue);
1845}
1846
1847void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1848
1849static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1850{
1851 tcp_skb_tsorted_anchor_cleanup(skb);
1852 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1853}
1854
1855static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1856{
1857 list_del(&skb->tcp_tsorted_anchor);
1858 tcp_rtx_queue_unlink(skb, sk);
1859 sk_wmem_free_skb(sk, skb);
1860}
1861
1862static inline void tcp_push_pending_frames(struct sock *sk)
1863{
1864 if (tcp_send_head(sk)) {
1865 struct tcp_sock *tp = tcp_sk(sk);
1866
1867 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1868 }
1869}
1870
1871/* Start sequence of the skb just after the highest skb with SACKed
1872 * bit, valid only if sacked_out > 0 or when the caller has ensured
1873 * validity by itself.
1874 */
1875static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1876{
1877 if (!tp->sacked_out)
1878 return tp->snd_una;
1879
1880 if (tp->highest_sack == NULL)
1881 return tp->snd_nxt;
1882
1883 return TCP_SKB_CB(tp->highest_sack)->seq;
1884}
1885
1886static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1887{
1888 tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1889}
1890
1891static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1892{
1893 return tcp_sk(sk)->highest_sack;
1894}
1895
1896static inline void tcp_highest_sack_reset(struct sock *sk)
1897{
1898 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1899}
1900
1901/* Called when old skb is about to be deleted and replaced by new skb */
1902static inline void tcp_highest_sack_replace(struct sock *sk,
1903 struct sk_buff *old,
1904 struct sk_buff *new)
1905{
1906 if (old == tcp_highest_sack(sk))
1907 tcp_sk(sk)->highest_sack = new;
1908}
1909
1910/* This helper checks if socket has IP_TRANSPARENT set */
1911static inline bool inet_sk_transparent(const struct sock *sk)
1912{
1913 switch (sk->sk_state) {
1914 case TCP_TIME_WAIT:
1915 return inet_twsk(sk)->tw_transparent;
1916 case TCP_NEW_SYN_RECV:
1917 return inet_rsk(inet_reqsk(sk))->no_srccheck;
1918 }
1919 return inet_sk(sk)->transparent;
1920}
1921
1922/* Determines whether this is a thin stream (which may suffer from
1923 * increased latency). Used to trigger latency-reducing mechanisms.
1924 */
1925static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1926{
1927 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1928}
1929
1930/* /proc */
1931enum tcp_seq_states {
1932 TCP_SEQ_STATE_LISTENING,
1933 TCP_SEQ_STATE_ESTABLISHED,
1934};
1935
1936void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1937void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1938void tcp_seq_stop(struct seq_file *seq, void *v);
1939
1940struct tcp_seq_afinfo {
1941 sa_family_t family;
1942};
1943
1944struct tcp_iter_state {
1945 struct seq_net_private p;
1946 enum tcp_seq_states state;
1947 struct sock *syn_wait_sk;
1948 int bucket, offset, sbucket, num;
1949 loff_t last_pos;
1950};
1951
1952extern struct request_sock_ops tcp_request_sock_ops;
1953extern struct request_sock_ops tcp6_request_sock_ops;
1954
1955void tcp_v4_destroy_sock(struct sock *sk);
1956
1957struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1958 netdev_features_t features);
1959struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1960int tcp_gro_complete(struct sk_buff *skb);
1961
1962void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1963
1964static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1965{
1966 struct net *net = sock_net((struct sock *)tp);
1967 u32 val;
1968
1969 val = READ_ONCE(tp->notsent_lowat);
1970
1971 return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
1972}
1973
1974/* @wake is one when sk_stream_write_space() calls us.
1975 * This sends EPOLLOUT only if notsent_bytes is half the limit.
1976 * This mimics the strategy used in sock_def_write_space().
1977 */
1978static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1979{
1980 const struct tcp_sock *tp = tcp_sk(sk);
1981 u32 notsent_bytes = READ_ONCE(tp->write_seq) -
1982 READ_ONCE(tp->snd_nxt);
1983
1984 return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1985}
1986
1987#ifdef CONFIG_PROC_FS
1988int tcp4_proc_init(void);
1989void tcp4_proc_exit(void);
1990#endif
1991
1992int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1993int tcp_conn_request(struct request_sock_ops *rsk_ops,
1994 const struct tcp_request_sock_ops *af_ops,
1995 struct sock *sk, struct sk_buff *skb);
1996
1997/* TCP af-specific functions */
1998struct tcp_sock_af_ops {
1999#ifdef CONFIG_TCP_MD5SIG
2000 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
2001 const struct sock *addr_sk);
2002 int (*calc_md5_hash)(char *location,
2003 const struct tcp_md5sig_key *md5,
2004 const struct sock *sk,
2005 const struct sk_buff *skb);
2006 int (*md5_parse)(struct sock *sk,
2007 int optname,
2008 char __user *optval,
2009 int optlen);
2010#endif
2011};
2012
2013struct tcp_request_sock_ops {
2014 u16 mss_clamp;
2015#ifdef CONFIG_TCP_MD5SIG
2016 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2017 const struct sock *addr_sk);
2018 int (*calc_md5_hash) (char *location,
2019 const struct tcp_md5sig_key *md5,
2020 const struct sock *sk,
2021 const struct sk_buff *skb);
2022#endif
2023 void (*init_req)(struct request_sock *req,
2024 const struct sock *sk_listener,
2025 struct sk_buff *skb);
2026#ifdef CONFIG_SYN_COOKIES
2027 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
2028 __u16 *mss);
2029#endif
2030 struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
2031 const struct request_sock *req);
2032 u32 (*init_seq)(const struct sk_buff *skb);
2033 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2034 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2035 struct flowi *fl, struct request_sock *req,
2036 struct tcp_fastopen_cookie *foc,
2037 enum tcp_synack_type synack_type);
2038};
2039
2040extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2041#if IS_ENABLED(CONFIG_IPV6)
2042extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2043#endif
2044
2045#ifdef CONFIG_SYN_COOKIES
2046static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2047 const struct sock *sk, struct sk_buff *skb,
2048 __u16 *mss)
2049{
2050 tcp_synq_overflow(sk);
2051 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2052 return ops->cookie_init_seq(skb, mss);
2053}
2054#else
2055static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2056 const struct sock *sk, struct sk_buff *skb,
2057 __u16 *mss)
2058{
2059 return 0;
2060}
2061#endif
2062
2063int tcpv4_offload_init(void);
2064
2065void tcp_v4_init(void);
2066void tcp_init(void);
2067
2068/* tcp_recovery.c */
2069void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2070void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2071extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2072 u32 reo_wnd);
2073extern bool tcp_rack_mark_lost(struct sock *sk);
2074extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2075 u64 xmit_time);
2076extern void tcp_rack_reo_timeout(struct sock *sk);
2077extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2078
2079/* At how many usecs into the future should the RTO fire? */
2080static inline s64 tcp_rto_delta_us(const struct sock *sk)
2081{
2082 const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2083 u32 rto = inet_csk(sk)->icsk_rto;
2084
2085 if (likely(skb)) {
2086 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2087
2088 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2089 } else {
2090 WARN_ONCE(1,
2091 "rtx queue emtpy: "
2092 "out:%u sacked:%u lost:%u retrans:%u "
2093 "tlp_high_seq:%u sk_state:%u ca_state:%u "
2094 "advmss:%u mss_cache:%u pmtu:%u\n",
2095 tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out,
2096 tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out,
2097 tcp_sk(sk)->tlp_high_seq, sk->sk_state,
2098 inet_csk(sk)->icsk_ca_state,
2099 tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache,
2100 inet_csk(sk)->icsk_pmtu_cookie);
2101 return jiffies_to_usecs(rto);
2102 }
2103
2104}
2105
2106/*
2107 * Save and compile IPv4 options, return a pointer to it
2108 */
2109static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2110 struct sk_buff *skb)
2111{
2112 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2113 struct ip_options_rcu *dopt = NULL;
2114
2115 if (opt->optlen) {
2116 int opt_size = sizeof(*dopt) + opt->optlen;
2117
2118 dopt = kmalloc(opt_size, GFP_ATOMIC);
2119 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2120 kfree(dopt);
2121 dopt = NULL;
2122 }
2123 }
2124 return dopt;
2125}
2126
2127/* locally generated TCP pure ACKs have skb->truesize == 2
2128 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2129 * This is much faster than dissecting the packet to find out.
2130 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2131 */
2132static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2133{
2134 return skb->truesize == 2;
2135}
2136
2137static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2138{
2139 skb->truesize = 2;
2140}
2141
2142static inline int tcp_inq(struct sock *sk)
2143{
2144 struct tcp_sock *tp = tcp_sk(sk);
2145 int answ;
2146
2147 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2148 answ = 0;
2149 } else if (sock_flag(sk, SOCK_URGINLINE) ||
2150 !tp->urg_data ||
2151 before(tp->urg_seq, tp->copied_seq) ||
2152 !before(tp->urg_seq, tp->rcv_nxt)) {
2153
2154 answ = tp->rcv_nxt - tp->copied_seq;
2155
2156 /* Subtract 1, if FIN was received */
2157 if (answ && sock_flag(sk, SOCK_DONE))
2158 answ--;
2159 } else {
2160 answ = tp->urg_seq - tp->copied_seq;
2161 }
2162
2163 return answ;
2164}
2165
2166int tcp_peek_len(struct socket *sock);
2167
2168static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2169{
2170 u16 segs_in;
2171
2172 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2173 tp->segs_in += segs_in;
2174 if (skb->len > tcp_hdrlen(skb))
2175 tp->data_segs_in += segs_in;
2176}
2177
2178/*
2179 * TCP listen path runs lockless.
2180 * We forced "struct sock" to be const qualified to make sure
2181 * we don't modify one of its field by mistake.
2182 * Here, we increment sk_drops which is an atomic_t, so we can safely
2183 * make sock writable again.
2184 */
2185static inline void tcp_listendrop(const struct sock *sk)
2186{
2187 atomic_inc(&((struct sock *)sk)->sk_drops);
2188 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2189}
2190
2191enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2192
2193/*
2194 * Interface for adding Upper Level Protocols over TCP
2195 */
2196
2197#define TCP_ULP_NAME_MAX 16
2198#define TCP_ULP_MAX 128
2199#define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2200
2201struct tcp_ulp_ops {
2202 struct list_head list;
2203
2204 /* initialize ulp */
2205 int (*init)(struct sock *sk);
2206 /* update ulp */
2207 void (*update)(struct sock *sk, struct proto *p,
2208 void (*write_space)(struct sock *sk));
2209 /* cleanup ulp */
2210 void (*release)(struct sock *sk);
2211 /* diagnostic */
2212 int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2213 size_t (*get_info_size)(const struct sock *sk);
2214
2215 char name[TCP_ULP_NAME_MAX];
2216 struct module *owner;
2217};
2218int tcp_register_ulp(struct tcp_ulp_ops *type);
2219void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2220int tcp_set_ulp(struct sock *sk, const char *name);
2221void tcp_get_available_ulp(char *buf, size_t len);
2222void tcp_cleanup_ulp(struct sock *sk);
2223void tcp_update_ulp(struct sock *sk, struct proto *p,
2224 void (*write_space)(struct sock *sk));
2225
2226#define MODULE_ALIAS_TCP_ULP(name) \
2227 __MODULE_INFO(alias, alias_userspace, name); \
2228 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2229
2230struct sk_msg;
2231struct sk_psock;
2232
2233int tcp_bpf_init(struct sock *sk);
2234void tcp_bpf_reinit(struct sock *sk);
2235int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2236 int flags);
2237int tcp_bpf_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2238 int nonblock, int flags, int *addr_len);
2239int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2240 struct msghdr *msg, int len, int flags);
2241
2242/* Call BPF_SOCK_OPS program that returns an int. If the return value
2243 * is < 0, then the BPF op failed (for example if the loaded BPF
2244 * program does not support the chosen operation or there is no BPF
2245 * program loaded).
2246 */
2247#ifdef CONFIG_BPF
2248static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2249{
2250 struct bpf_sock_ops_kern sock_ops;
2251 int ret;
2252
2253 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2254 if (sk_fullsock(sk)) {
2255 sock_ops.is_fullsock = 1;
2256 sock_owned_by_me(sk);
2257 }
2258
2259 sock_ops.sk = sk;
2260 sock_ops.op = op;
2261 if (nargs > 0)
2262 memcpy(sock_ops.args, args, nargs * sizeof(*args));
2263
2264 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2265 if (ret == 0)
2266 ret = sock_ops.reply;
2267 else
2268 ret = -1;
2269 return ret;
2270}
2271
2272static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2273{
2274 u32 args[2] = {arg1, arg2};
2275
2276 return tcp_call_bpf(sk, op, 2, args);
2277}
2278
2279static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2280 u32 arg3)
2281{
2282 u32 args[3] = {arg1, arg2, arg3};
2283
2284 return tcp_call_bpf(sk, op, 3, args);
2285}
2286
2287#else
2288static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2289{
2290 return -EPERM;
2291}
2292
2293static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2294{
2295 return -EPERM;
2296}
2297
2298static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2299 u32 arg3)
2300{
2301 return -EPERM;
2302}
2303
2304#endif
2305
2306static inline u32 tcp_timeout_init(struct sock *sk)
2307{
2308 int timeout;
2309
2310 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2311
2312 if (timeout <= 0)
2313 timeout = TCP_TIMEOUT_INIT;
2314 return timeout;
2315}
2316
2317static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2318{
2319 int rwnd;
2320
2321 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2322
2323 if (rwnd < 0)
2324 rwnd = 0;
2325 return rwnd;
2326}
2327
2328static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2329{
2330 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2331}
2332
2333static inline void tcp_bpf_rtt(struct sock *sk)
2334{
2335 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2336 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2337}
2338
2339#if IS_ENABLED(CONFIG_SMC)
2340extern struct static_key_false tcp_have_smc;
2341#endif
2342
2343#if IS_ENABLED(CONFIG_TLS_DEVICE)
2344void clean_acked_data_enable(struct inet_connection_sock *icsk,
2345 void (*cad)(struct sock *sk, u32 ack_seq));
2346void clean_acked_data_disable(struct inet_connection_sock *icsk);
2347void clean_acked_data_flush(void);
2348#endif
2349
2350DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2351static inline void tcp_add_tx_delay(struct sk_buff *skb,
2352 const struct tcp_sock *tp)
2353{
2354 if (static_branch_unlikely(&tcp_tx_delay_enabled))
2355 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2356}
2357
2358/* Compute Earliest Departure Time for some control packets
2359 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2360 */
2361static inline u64 tcp_transmit_time(const struct sock *sk)
2362{
2363 if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2364 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2365 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2366
2367 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2368 }
2369 return 0;
2370}
2371
2372#endif /* _TCP_H */