blob: d58c00dd1ed99a4963c786d5d2f166b1fdad3071 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/ipc/sem.c
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 *
7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 *
9 * SMP-threaded, sysctl's added
10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11 * Enforced range limit on SEM_UNDO
12 * (c) 2001 Red Hat Inc
13 * Lockless wakeup
14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16 * Further wakeup optimizations, documentation
17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
18 *
19 * support for audit of ipc object properties and permission changes
20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
21 *
22 * namespaces support
23 * OpenVZ, SWsoft Inc.
24 * Pavel Emelianov <xemul@openvz.org>
25 *
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
28 *
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
31 * protection)
32 * - multiple semaphore operations that alter the same semaphore in
33 * one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35 * SETALL calls.
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40 * to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
42 *
43 * Internals:
44 * - scalability:
45 * - all global variables are read-mostly.
46 * - semop() calls and semctl(RMID) are synchronized by RCU.
47 * - most operations do write operations (actually: spin_lock calls) to
48 * the per-semaphore array structure.
49 * Thus: Perfect SMP scaling between independent semaphore arrays.
50 * If multiple semaphores in one array are used, then cache line
51 * trashing on the semaphore array spinlock will limit the scaling.
52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
53 * - the task that performs a successful semop() scans the list of all
54 * sleeping tasks and completes any pending operations that can be fulfilled.
55 * Semaphores are actively given to waiting tasks (necessary for FIFO).
56 * (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
58 * dropping all locks. (see wake_up_sem_queue_prepare())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - UNDO values are stored in an array (one per process and per
64 * semaphore array, lazily allocated). For backwards compatibility, multiple
65 * modes for the UNDO variables are supported (per process, per thread)
66 * (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 * and per-semaphore list (stored in the array). This allows to achieve FIFO
69 * ordering without always scanning all pending operations.
70 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
71 */
72
73#include <linux/compat.h>
74#include <linux/slab.h>
75#include <linux/spinlock.h>
76#include <linux/init.h>
77#include <linux/proc_fs.h>
78#include <linux/time.h>
79#include <linux/security.h>
80#include <linux/syscalls.h>
81#include <linux/audit.h>
82#include <linux/capability.h>
83#include <linux/seq_file.h>
84#include <linux/rwsem.h>
85#include <linux/nsproxy.h>
86#include <linux/ipc_namespace.h>
87#include <linux/sched/wake_q.h>
88#include <linux/nospec.h>
89#include <linux/rhashtable.h>
90
91#include <linux/uaccess.h>
92#include "util.h"
93
94/* One semaphore structure for each semaphore in the system. */
95struct sem {
96 int semval; /* current value */
97 /*
98 * PID of the process that last modified the semaphore. For
99 * Linux, specifically these are:
100 * - semop
101 * - semctl, via SETVAL and SETALL.
102 * - at task exit when performing undo adjustments (see exit_sem).
103 */
104 struct pid *sempid;
105 spinlock_t lock; /* spinlock for fine-grained semtimedop */
106 struct list_head pending_alter; /* pending single-sop operations */
107 /* that alter the semaphore */
108 struct list_head pending_const; /* pending single-sop operations */
109 /* that do not alter the semaphore*/
110 time64_t sem_otime; /* candidate for sem_otime */
111} ____cacheline_aligned_in_smp;
112
113/* One sem_array data structure for each set of semaphores in the system. */
114struct sem_array {
115 struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */
116 time64_t sem_ctime; /* create/last semctl() time */
117 struct list_head pending_alter; /* pending operations */
118 /* that alter the array */
119 struct list_head pending_const; /* pending complex operations */
120 /* that do not alter semvals */
121 struct list_head list_id; /* undo requests on this array */
122 int sem_nsems; /* no. of semaphores in array */
123 int complex_count; /* pending complex operations */
124 unsigned int use_global_lock;/* >0: global lock required */
125
126 struct sem sems[];
127} __randomize_layout;
128
129/* One queue for each sleeping process in the system. */
130struct sem_queue {
131 struct list_head list; /* queue of pending operations */
132 struct task_struct *sleeper; /* this process */
133 struct sem_undo *undo; /* undo structure */
134 struct pid *pid; /* process id of requesting process */
135 int status; /* completion status of operation */
136 struct sembuf *sops; /* array of pending operations */
137 struct sembuf *blocking; /* the operation that blocked */
138 int nsops; /* number of operations */
139 bool alter; /* does *sops alter the array? */
140 bool dupsop; /* sops on more than one sem_num */
141};
142
143/* Each task has a list of undo requests. They are executed automatically
144 * when the process exits.
145 */
146struct sem_undo {
147 struct list_head list_proc; /* per-process list: *
148 * all undos from one process
149 * rcu protected */
150 struct rcu_head rcu; /* rcu struct for sem_undo */
151 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
152 struct list_head list_id; /* per semaphore array list:
153 * all undos for one array */
154 int semid; /* semaphore set identifier */
155 short *semadj; /* array of adjustments */
156 /* one per semaphore */
157};
158
159/* sem_undo_list controls shared access to the list of sem_undo structures
160 * that may be shared among all a CLONE_SYSVSEM task group.
161 */
162struct sem_undo_list {
163 refcount_t refcnt;
164 spinlock_t lock;
165 struct list_head list_proc;
166};
167
168
169#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
170
171static int newary(struct ipc_namespace *, struct ipc_params *);
172static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
173#ifdef CONFIG_PROC_FS
174static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
175#endif
176
177#define SEMMSL_FAST 256 /* 512 bytes on stack */
178#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
179
180/*
181 * Switching from the mode suitable for simple ops
182 * to the mode for complex ops is costly. Therefore:
183 * use some hysteresis
184 */
185#define USE_GLOBAL_LOCK_HYSTERESIS 10
186
187/*
188 * Locking:
189 * a) global sem_lock() for read/write
190 * sem_undo.id_next,
191 * sem_array.complex_count,
192 * sem_array.pending{_alter,_const},
193 * sem_array.sem_undo
194 *
195 * b) global or semaphore sem_lock() for read/write:
196 * sem_array.sems[i].pending_{const,alter}:
197 *
198 * c) special:
199 * sem_undo_list.list_proc:
200 * * undo_list->lock for write
201 * * rcu for read
202 * use_global_lock:
203 * * global sem_lock() for write
204 * * either local or global sem_lock() for read.
205 *
206 * Memory ordering:
207 * Most ordering is enforced by using spin_lock() and spin_unlock().
208 * The special case is use_global_lock:
209 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
210 * using smp_store_release().
211 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
212 * smp_load_acquire().
213 * Setting it from 0 to non-zero must be ordered with regards to
214 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
215 * is inside a spin_lock() and after a write from 0 to non-zero a
216 * spin_lock()+spin_unlock() is done.
217 */
218
219#define sc_semmsl sem_ctls[0]
220#define sc_semmns sem_ctls[1]
221#define sc_semopm sem_ctls[2]
222#define sc_semmni sem_ctls[3]
223
224void sem_init_ns(struct ipc_namespace *ns)
225{
226 ns->sc_semmsl = SEMMSL;
227 ns->sc_semmns = SEMMNS;
228 ns->sc_semopm = SEMOPM;
229 ns->sc_semmni = SEMMNI;
230 ns->used_sems = 0;
231 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
232}
233
234#ifdef CONFIG_IPC_NS
235void sem_exit_ns(struct ipc_namespace *ns)
236{
237 free_ipcs(ns, &sem_ids(ns), freeary);
238 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
239 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
240}
241#endif
242
243void __init sem_init(void)
244{
245 sem_init_ns(&init_ipc_ns);
246 if (IS_ENABLED(CONFIG_PROC_STRIPPED))
247 return;
248 ipc_init_proc_interface("sysvipc/sem",
249 " key semid perms nsems uid gid cuid cgid otime ctime\n",
250 IPC_SEM_IDS, sysvipc_sem_proc_show);
251}
252
253/**
254 * unmerge_queues - unmerge queues, if possible.
255 * @sma: semaphore array
256 *
257 * The function unmerges the wait queues if complex_count is 0.
258 * It must be called prior to dropping the global semaphore array lock.
259 */
260static void unmerge_queues(struct sem_array *sma)
261{
262 struct sem_queue *q, *tq;
263
264 /* complex operations still around? */
265 if (sma->complex_count)
266 return;
267 /*
268 * We will switch back to simple mode.
269 * Move all pending operation back into the per-semaphore
270 * queues.
271 */
272 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
273 struct sem *curr;
274 curr = &sma->sems[q->sops[0].sem_num];
275
276 list_add_tail(&q->list, &curr->pending_alter);
277 }
278 INIT_LIST_HEAD(&sma->pending_alter);
279}
280
281/**
282 * merge_queues - merge single semop queues into global queue
283 * @sma: semaphore array
284 *
285 * This function merges all per-semaphore queues into the global queue.
286 * It is necessary to achieve FIFO ordering for the pending single-sop
287 * operations when a multi-semop operation must sleep.
288 * Only the alter operations must be moved, the const operations can stay.
289 */
290static void merge_queues(struct sem_array *sma)
291{
292 int i;
293 for (i = 0; i < sma->sem_nsems; i++) {
294 struct sem *sem = &sma->sems[i];
295
296 list_splice_init(&sem->pending_alter, &sma->pending_alter);
297 }
298}
299
300static void sem_rcu_free(struct rcu_head *head)
301{
302 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
303 struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
304
305 security_sem_free(&sma->sem_perm);
306 kvfree(sma);
307}
308
309/*
310 * Enter the mode suitable for non-simple operations:
311 * Caller must own sem_perm.lock.
312 */
313static void complexmode_enter(struct sem_array *sma)
314{
315 int i;
316 struct sem *sem;
317
318 if (sma->use_global_lock > 0) {
319 /*
320 * We are already in global lock mode.
321 * Nothing to do, just reset the
322 * counter until we return to simple mode.
323 */
324 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
325 return;
326 }
327 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
328
329 for (i = 0; i < sma->sem_nsems; i++) {
330 sem = &sma->sems[i];
331 spin_lock(&sem->lock);
332 spin_unlock(&sem->lock);
333 }
334}
335
336/*
337 * Try to leave the mode that disallows simple operations:
338 * Caller must own sem_perm.lock.
339 */
340static void complexmode_tryleave(struct sem_array *sma)
341{
342 if (sma->complex_count) {
343 /* Complex ops are sleeping.
344 * We must stay in complex mode
345 */
346 return;
347 }
348 if (sma->use_global_lock == 1) {
349 /*
350 * Immediately after setting use_global_lock to 0,
351 * a simple op can start. Thus: all memory writes
352 * performed by the current operation must be visible
353 * before we set use_global_lock to 0.
354 */
355 smp_store_release(&sma->use_global_lock, 0);
356 } else {
357 sma->use_global_lock--;
358 }
359}
360
361#define SEM_GLOBAL_LOCK (-1)
362/*
363 * If the request contains only one semaphore operation, and there are
364 * no complex transactions pending, lock only the semaphore involved.
365 * Otherwise, lock the entire semaphore array, since we either have
366 * multiple semaphores in our own semops, or we need to look at
367 * semaphores from other pending complex operations.
368 */
369static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
370 int nsops)
371{
372 struct sem *sem;
373 int idx;
374
375 if (nsops != 1) {
376 /* Complex operation - acquire a full lock */
377 ipc_lock_object(&sma->sem_perm);
378
379 /* Prevent parallel simple ops */
380 complexmode_enter(sma);
381 return SEM_GLOBAL_LOCK;
382 }
383
384 /*
385 * Only one semaphore affected - try to optimize locking.
386 * Optimized locking is possible if no complex operation
387 * is either enqueued or processed right now.
388 *
389 * Both facts are tracked by use_global_mode.
390 */
391 idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
392 sem = &sma->sems[idx];
393
394 /*
395 * Initial check for use_global_lock. Just an optimization,
396 * no locking, no memory barrier.
397 */
398 if (!sma->use_global_lock) {
399 /*
400 * It appears that no complex operation is around.
401 * Acquire the per-semaphore lock.
402 */
403 spin_lock(&sem->lock);
404
405 /* pairs with smp_store_release() */
406 if (!smp_load_acquire(&sma->use_global_lock)) {
407 /* fast path successful! */
408 return sops->sem_num;
409 }
410 spin_unlock(&sem->lock);
411 }
412
413 /* slow path: acquire the full lock */
414 ipc_lock_object(&sma->sem_perm);
415
416 if (sma->use_global_lock == 0) {
417 /*
418 * The use_global_lock mode ended while we waited for
419 * sma->sem_perm.lock. Thus we must switch to locking
420 * with sem->lock.
421 * Unlike in the fast path, there is no need to recheck
422 * sma->use_global_lock after we have acquired sem->lock:
423 * We own sma->sem_perm.lock, thus use_global_lock cannot
424 * change.
425 */
426 spin_lock(&sem->lock);
427
428 ipc_unlock_object(&sma->sem_perm);
429 return sops->sem_num;
430 } else {
431 /*
432 * Not a false alarm, thus continue to use the global lock
433 * mode. No need for complexmode_enter(), this was done by
434 * the caller that has set use_global_mode to non-zero.
435 */
436 return SEM_GLOBAL_LOCK;
437 }
438}
439
440static inline void sem_unlock(struct sem_array *sma, int locknum)
441{
442 if (locknum == SEM_GLOBAL_LOCK) {
443 unmerge_queues(sma);
444 complexmode_tryleave(sma);
445 ipc_unlock_object(&sma->sem_perm);
446 } else {
447 struct sem *sem = &sma->sems[locknum];
448 spin_unlock(&sem->lock);
449 }
450}
451
452/*
453 * sem_lock_(check_) routines are called in the paths where the rwsem
454 * is not held.
455 *
456 * The caller holds the RCU read lock.
457 */
458static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
459{
460 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
461
462 if (IS_ERR(ipcp))
463 return ERR_CAST(ipcp);
464
465 return container_of(ipcp, struct sem_array, sem_perm);
466}
467
468static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
469 int id)
470{
471 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
472
473 if (IS_ERR(ipcp))
474 return ERR_CAST(ipcp);
475
476 return container_of(ipcp, struct sem_array, sem_perm);
477}
478
479static inline void sem_lock_and_putref(struct sem_array *sma)
480{
481 sem_lock(sma, NULL, -1);
482 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
483}
484
485static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
486{
487 ipc_rmid(&sem_ids(ns), &s->sem_perm);
488}
489
490static struct sem_array *sem_alloc(size_t nsems)
491{
492 struct sem_array *sma;
493
494 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
495 return NULL;
496
497 sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL_ACCOUNT);
498 if (unlikely(!sma))
499 return NULL;
500
501 return sma;
502}
503
504/**
505 * newary - Create a new semaphore set
506 * @ns: namespace
507 * @params: ptr to the structure that contains key, semflg and nsems
508 *
509 * Called with sem_ids.rwsem held (as a writer)
510 */
511static int newary(struct ipc_namespace *ns, struct ipc_params *params)
512{
513 int retval;
514 struct sem_array *sma;
515 key_t key = params->key;
516 int nsems = params->u.nsems;
517 int semflg = params->flg;
518 int i;
519
520 if (!nsems)
521 return -EINVAL;
522 if (ns->used_sems + nsems > ns->sc_semmns)
523 return -ENOSPC;
524
525 sma = sem_alloc(nsems);
526 if (!sma)
527 return -ENOMEM;
528
529 sma->sem_perm.mode = (semflg & S_IRWXUGO);
530 sma->sem_perm.key = key;
531
532 sma->sem_perm.security = NULL;
533 retval = security_sem_alloc(&sma->sem_perm);
534 if (retval) {
535 kvfree(sma);
536 return retval;
537 }
538
539 for (i = 0; i < nsems; i++) {
540 INIT_LIST_HEAD(&sma->sems[i].pending_alter);
541 INIT_LIST_HEAD(&sma->sems[i].pending_const);
542 spin_lock_init(&sma->sems[i].lock);
543 }
544
545 sma->complex_count = 0;
546 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
547 INIT_LIST_HEAD(&sma->pending_alter);
548 INIT_LIST_HEAD(&sma->pending_const);
549 INIT_LIST_HEAD(&sma->list_id);
550 sma->sem_nsems = nsems;
551 sma->sem_ctime = ktime_get_real_seconds();
552
553 /* ipc_addid() locks sma upon success. */
554 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
555 if (retval < 0) {
556 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
557 return retval;
558 }
559 ns->used_sems += nsems;
560
561 sem_unlock(sma, -1);
562 rcu_read_unlock();
563
564 return sma->sem_perm.id;
565}
566
567
568/*
569 * Called with sem_ids.rwsem and ipcp locked.
570 */
571static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
572 struct ipc_params *params)
573{
574 struct sem_array *sma;
575
576 sma = container_of(ipcp, struct sem_array, sem_perm);
577 if (params->u.nsems > sma->sem_nsems)
578 return -EINVAL;
579
580 return 0;
581}
582
583long ksys_semget(key_t key, int nsems, int semflg)
584{
585 struct ipc_namespace *ns;
586 static const struct ipc_ops sem_ops = {
587 .getnew = newary,
588 .associate = security_sem_associate,
589 .more_checks = sem_more_checks,
590 };
591 struct ipc_params sem_params;
592
593 ns = current->nsproxy->ipc_ns;
594
595 if (nsems < 0 || nsems > ns->sc_semmsl)
596 return -EINVAL;
597
598 sem_params.key = key;
599 sem_params.flg = semflg;
600 sem_params.u.nsems = nsems;
601
602 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
603}
604
605SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
606{
607 return ksys_semget(key, nsems, semflg);
608}
609
610/**
611 * perform_atomic_semop[_slow] - Attempt to perform semaphore
612 * operations on a given array.
613 * @sma: semaphore array
614 * @q: struct sem_queue that describes the operation
615 *
616 * Caller blocking are as follows, based the value
617 * indicated by the semaphore operation (sem_op):
618 *
619 * (1) >0 never blocks.
620 * (2) 0 (wait-for-zero operation): semval is non-zero.
621 * (3) <0 attempting to decrement semval to a value smaller than zero.
622 *
623 * Returns 0 if the operation was possible.
624 * Returns 1 if the operation is impossible, the caller must sleep.
625 * Returns <0 for error codes.
626 */
627static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
628{
629 int result, sem_op, nsops;
630 struct pid *pid;
631 struct sembuf *sop;
632 struct sem *curr;
633 struct sembuf *sops;
634 struct sem_undo *un;
635
636 sops = q->sops;
637 nsops = q->nsops;
638 un = q->undo;
639
640 for (sop = sops; sop < sops + nsops; sop++) {
641 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
642 curr = &sma->sems[idx];
643 sem_op = sop->sem_op;
644 result = curr->semval;
645
646 if (!sem_op && result)
647 goto would_block;
648
649 result += sem_op;
650 if (result < 0)
651 goto would_block;
652 if (result > SEMVMX)
653 goto out_of_range;
654
655 if (sop->sem_flg & SEM_UNDO) {
656 int undo = un->semadj[sop->sem_num] - sem_op;
657 /* Exceeding the undo range is an error. */
658 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
659 goto out_of_range;
660 un->semadj[sop->sem_num] = undo;
661 }
662
663 curr->semval = result;
664 }
665
666 sop--;
667 pid = q->pid;
668 while (sop >= sops) {
669 ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
670 sop--;
671 }
672
673 return 0;
674
675out_of_range:
676 result = -ERANGE;
677 goto undo;
678
679would_block:
680 q->blocking = sop;
681
682 if (sop->sem_flg & IPC_NOWAIT)
683 result = -EAGAIN;
684 else
685 result = 1;
686
687undo:
688 sop--;
689 while (sop >= sops) {
690 sem_op = sop->sem_op;
691 sma->sems[sop->sem_num].semval -= sem_op;
692 if (sop->sem_flg & SEM_UNDO)
693 un->semadj[sop->sem_num] += sem_op;
694 sop--;
695 }
696
697 return result;
698}
699
700static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
701{
702 int result, sem_op, nsops;
703 struct sembuf *sop;
704 struct sem *curr;
705 struct sembuf *sops;
706 struct sem_undo *un;
707
708 sops = q->sops;
709 nsops = q->nsops;
710 un = q->undo;
711
712 if (unlikely(q->dupsop))
713 return perform_atomic_semop_slow(sma, q);
714
715 /*
716 * We scan the semaphore set twice, first to ensure that the entire
717 * operation can succeed, therefore avoiding any pointless writes
718 * to shared memory and having to undo such changes in order to block
719 * until the operations can go through.
720 */
721 for (sop = sops; sop < sops + nsops; sop++) {
722 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
723
724 curr = &sma->sems[idx];
725 sem_op = sop->sem_op;
726 result = curr->semval;
727
728 if (!sem_op && result)
729 goto would_block; /* wait-for-zero */
730
731 result += sem_op;
732 if (result < 0)
733 goto would_block;
734
735 if (result > SEMVMX)
736 return -ERANGE;
737
738 if (sop->sem_flg & SEM_UNDO) {
739 int undo = un->semadj[sop->sem_num] - sem_op;
740
741 /* Exceeding the undo range is an error. */
742 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
743 return -ERANGE;
744 }
745 }
746
747 for (sop = sops; sop < sops + nsops; sop++) {
748 curr = &sma->sems[sop->sem_num];
749 sem_op = sop->sem_op;
750 result = curr->semval;
751
752 if (sop->sem_flg & SEM_UNDO) {
753 int undo = un->semadj[sop->sem_num] - sem_op;
754
755 un->semadj[sop->sem_num] = undo;
756 }
757 curr->semval += sem_op;
758 ipc_update_pid(&curr->sempid, q->pid);
759 }
760
761 return 0;
762
763would_block:
764 q->blocking = sop;
765 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
766}
767
768static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
769 struct wake_q_head *wake_q)
770{
771 wake_q_add(wake_q, q->sleeper);
772 /*
773 * Rely on the above implicit barrier, such that we can
774 * ensure that we hold reference to the task before setting
775 * q->status. Otherwise we could race with do_exit if the
776 * task is awoken by an external event before calling
777 * wake_up_process().
778 */
779 WRITE_ONCE(q->status, error);
780}
781
782static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
783{
784 list_del(&q->list);
785 if (q->nsops > 1)
786 sma->complex_count--;
787}
788
789/** check_restart(sma, q)
790 * @sma: semaphore array
791 * @q: the operation that just completed
792 *
793 * update_queue is O(N^2) when it restarts scanning the whole queue of
794 * waiting operations. Therefore this function checks if the restart is
795 * really necessary. It is called after a previously waiting operation
796 * modified the array.
797 * Note that wait-for-zero operations are handled without restart.
798 */
799static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
800{
801 /* pending complex alter operations are too difficult to analyse */
802 if (!list_empty(&sma->pending_alter))
803 return 1;
804
805 /* we were a sleeping complex operation. Too difficult */
806 if (q->nsops > 1)
807 return 1;
808
809 /* It is impossible that someone waits for the new value:
810 * - complex operations always restart.
811 * - wait-for-zero are handled seperately.
812 * - q is a previously sleeping simple operation that
813 * altered the array. It must be a decrement, because
814 * simple increments never sleep.
815 * - If there are older (higher priority) decrements
816 * in the queue, then they have observed the original
817 * semval value and couldn't proceed. The operation
818 * decremented to value - thus they won't proceed either.
819 */
820 return 0;
821}
822
823/**
824 * wake_const_ops - wake up non-alter tasks
825 * @sma: semaphore array.
826 * @semnum: semaphore that was modified.
827 * @wake_q: lockless wake-queue head.
828 *
829 * wake_const_ops must be called after a semaphore in a semaphore array
830 * was set to 0. If complex const operations are pending, wake_const_ops must
831 * be called with semnum = -1, as well as with the number of each modified
832 * semaphore.
833 * The tasks that must be woken up are added to @wake_q. The return code
834 * is stored in q->pid.
835 * The function returns 1 if at least one operation was completed successfully.
836 */
837static int wake_const_ops(struct sem_array *sma, int semnum,
838 struct wake_q_head *wake_q)
839{
840 struct sem_queue *q, *tmp;
841 struct list_head *pending_list;
842 int semop_completed = 0;
843
844 if (semnum == -1)
845 pending_list = &sma->pending_const;
846 else
847 pending_list = &sma->sems[semnum].pending_const;
848
849 list_for_each_entry_safe(q, tmp, pending_list, list) {
850 int error = perform_atomic_semop(sma, q);
851
852 if (error > 0)
853 continue;
854 /* operation completed, remove from queue & wakeup */
855 unlink_queue(sma, q);
856
857 wake_up_sem_queue_prepare(q, error, wake_q);
858 if (error == 0)
859 semop_completed = 1;
860 }
861
862 return semop_completed;
863}
864
865/**
866 * do_smart_wakeup_zero - wakeup all wait for zero tasks
867 * @sma: semaphore array
868 * @sops: operations that were performed
869 * @nsops: number of operations
870 * @wake_q: lockless wake-queue head
871 *
872 * Checks all required queue for wait-for-zero operations, based
873 * on the actual changes that were performed on the semaphore array.
874 * The function returns 1 if at least one operation was completed successfully.
875 */
876static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
877 int nsops, struct wake_q_head *wake_q)
878{
879 int i;
880 int semop_completed = 0;
881 int got_zero = 0;
882
883 /* first: the per-semaphore queues, if known */
884 if (sops) {
885 for (i = 0; i < nsops; i++) {
886 int num = sops[i].sem_num;
887
888 if (sma->sems[num].semval == 0) {
889 got_zero = 1;
890 semop_completed |= wake_const_ops(sma, num, wake_q);
891 }
892 }
893 } else {
894 /*
895 * No sops means modified semaphores not known.
896 * Assume all were changed.
897 */
898 for (i = 0; i < sma->sem_nsems; i++) {
899 if (sma->sems[i].semval == 0) {
900 got_zero = 1;
901 semop_completed |= wake_const_ops(sma, i, wake_q);
902 }
903 }
904 }
905 /*
906 * If one of the modified semaphores got 0,
907 * then check the global queue, too.
908 */
909 if (got_zero)
910 semop_completed |= wake_const_ops(sma, -1, wake_q);
911
912 return semop_completed;
913}
914
915
916/**
917 * update_queue - look for tasks that can be completed.
918 * @sma: semaphore array.
919 * @semnum: semaphore that was modified.
920 * @wake_q: lockless wake-queue head.
921 *
922 * update_queue must be called after a semaphore in a semaphore array
923 * was modified. If multiple semaphores were modified, update_queue must
924 * be called with semnum = -1, as well as with the number of each modified
925 * semaphore.
926 * The tasks that must be woken up are added to @wake_q. The return code
927 * is stored in q->pid.
928 * The function internally checks if const operations can now succeed.
929 *
930 * The function return 1 if at least one semop was completed successfully.
931 */
932static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
933{
934 struct sem_queue *q, *tmp;
935 struct list_head *pending_list;
936 int semop_completed = 0;
937
938 if (semnum == -1)
939 pending_list = &sma->pending_alter;
940 else
941 pending_list = &sma->sems[semnum].pending_alter;
942
943again:
944 list_for_each_entry_safe(q, tmp, pending_list, list) {
945 int error, restart;
946
947 /* If we are scanning the single sop, per-semaphore list of
948 * one semaphore and that semaphore is 0, then it is not
949 * necessary to scan further: simple increments
950 * that affect only one entry succeed immediately and cannot
951 * be in the per semaphore pending queue, and decrements
952 * cannot be successful if the value is already 0.
953 */
954 if (semnum != -1 && sma->sems[semnum].semval == 0)
955 break;
956
957 error = perform_atomic_semop(sma, q);
958
959 /* Does q->sleeper still need to sleep? */
960 if (error > 0)
961 continue;
962
963 unlink_queue(sma, q);
964
965 if (error) {
966 restart = 0;
967 } else {
968 semop_completed = 1;
969 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
970 restart = check_restart(sma, q);
971 }
972
973 wake_up_sem_queue_prepare(q, error, wake_q);
974 if (restart)
975 goto again;
976 }
977 return semop_completed;
978}
979
980/**
981 * set_semotime - set sem_otime
982 * @sma: semaphore array
983 * @sops: operations that modified the array, may be NULL
984 *
985 * sem_otime is replicated to avoid cache line trashing.
986 * This function sets one instance to the current time.
987 */
988static void set_semotime(struct sem_array *sma, struct sembuf *sops)
989{
990 if (sops == NULL) {
991 sma->sems[0].sem_otime = ktime_get_real_seconds();
992 } else {
993 sma->sems[sops[0].sem_num].sem_otime =
994 ktime_get_real_seconds();
995 }
996}
997
998/**
999 * do_smart_update - optimized update_queue
1000 * @sma: semaphore array
1001 * @sops: operations that were performed
1002 * @nsops: number of operations
1003 * @otime: force setting otime
1004 * @wake_q: lockless wake-queue head
1005 *
1006 * do_smart_update() does the required calls to update_queue and wakeup_zero,
1007 * based on the actual changes that were performed on the semaphore array.
1008 * Note that the function does not do the actual wake-up: the caller is
1009 * responsible for calling wake_up_q().
1010 * It is safe to perform this call after dropping all locks.
1011 */
1012static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
1013 int otime, struct wake_q_head *wake_q)
1014{
1015 int i;
1016
1017 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1018
1019 if (!list_empty(&sma->pending_alter)) {
1020 /* semaphore array uses the global queue - just process it. */
1021 otime |= update_queue(sma, -1, wake_q);
1022 } else {
1023 if (!sops) {
1024 /*
1025 * No sops, thus the modified semaphores are not
1026 * known. Check all.
1027 */
1028 for (i = 0; i < sma->sem_nsems; i++)
1029 otime |= update_queue(sma, i, wake_q);
1030 } else {
1031 /*
1032 * Check the semaphores that were increased:
1033 * - No complex ops, thus all sleeping ops are
1034 * decrease.
1035 * - if we decreased the value, then any sleeping
1036 * semaphore ops wont be able to run: If the
1037 * previous value was too small, then the new
1038 * value will be too small, too.
1039 */
1040 for (i = 0; i < nsops; i++) {
1041 if (sops[i].sem_op > 0) {
1042 otime |= update_queue(sma,
1043 sops[i].sem_num, wake_q);
1044 }
1045 }
1046 }
1047 }
1048 if (otime)
1049 set_semotime(sma, sops);
1050}
1051
1052/*
1053 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1054 */
1055static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1056 bool count_zero)
1057{
1058 struct sembuf *sop = q->blocking;
1059
1060 /*
1061 * Linux always (since 0.99.10) reported a task as sleeping on all
1062 * semaphores. This violates SUS, therefore it was changed to the
1063 * standard compliant behavior.
1064 * Give the administrators a chance to notice that an application
1065 * might misbehave because it relies on the Linux behavior.
1066 */
1067 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1068 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1069 current->comm, task_pid_nr(current));
1070
1071 if (sop->sem_num != semnum)
1072 return 0;
1073
1074 if (count_zero && sop->sem_op == 0)
1075 return 1;
1076 if (!count_zero && sop->sem_op < 0)
1077 return 1;
1078
1079 return 0;
1080}
1081
1082/* The following counts are associated to each semaphore:
1083 * semncnt number of tasks waiting on semval being nonzero
1084 * semzcnt number of tasks waiting on semval being zero
1085 *
1086 * Per definition, a task waits only on the semaphore of the first semop
1087 * that cannot proceed, even if additional operation would block, too.
1088 */
1089static int count_semcnt(struct sem_array *sma, ushort semnum,
1090 bool count_zero)
1091{
1092 struct list_head *l;
1093 struct sem_queue *q;
1094 int semcnt;
1095
1096 semcnt = 0;
1097 /* First: check the simple operations. They are easy to evaluate */
1098 if (count_zero)
1099 l = &sma->sems[semnum].pending_const;
1100 else
1101 l = &sma->sems[semnum].pending_alter;
1102
1103 list_for_each_entry(q, l, list) {
1104 /* all task on a per-semaphore list sleep on exactly
1105 * that semaphore
1106 */
1107 semcnt++;
1108 }
1109
1110 /* Then: check the complex operations. */
1111 list_for_each_entry(q, &sma->pending_alter, list) {
1112 semcnt += check_qop(sma, semnum, q, count_zero);
1113 }
1114 if (count_zero) {
1115 list_for_each_entry(q, &sma->pending_const, list) {
1116 semcnt += check_qop(sma, semnum, q, count_zero);
1117 }
1118 }
1119 return semcnt;
1120}
1121
1122/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1123 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1124 * remains locked on exit.
1125 */
1126static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1127{
1128 struct sem_undo *un, *tu;
1129 struct sem_queue *q, *tq;
1130 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1131 int i;
1132 DEFINE_WAKE_Q(wake_q);
1133
1134 /* Free the existing undo structures for this semaphore set. */
1135 ipc_assert_locked_object(&sma->sem_perm);
1136 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1137 list_del(&un->list_id);
1138 spin_lock(&un->ulp->lock);
1139 un->semid = -1;
1140 list_del_rcu(&un->list_proc);
1141 spin_unlock(&un->ulp->lock);
1142 kfree_rcu(un, rcu);
1143 }
1144
1145 /* Wake up all pending processes and let them fail with EIDRM. */
1146 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1147 unlink_queue(sma, q);
1148 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1149 }
1150
1151 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1152 unlink_queue(sma, q);
1153 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1154 }
1155 for (i = 0; i < sma->sem_nsems; i++) {
1156 struct sem *sem = &sma->sems[i];
1157 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1158 unlink_queue(sma, q);
1159 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1160 }
1161 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1162 unlink_queue(sma, q);
1163 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1164 }
1165 ipc_update_pid(&sem->sempid, NULL);
1166 }
1167
1168 /* Remove the semaphore set from the IDR */
1169 sem_rmid(ns, sma);
1170 sem_unlock(sma, -1);
1171 rcu_read_unlock();
1172
1173 wake_up_q(&wake_q);
1174 ns->used_sems -= sma->sem_nsems;
1175 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1176}
1177
1178static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1179{
1180 switch (version) {
1181 case IPC_64:
1182 return copy_to_user(buf, in, sizeof(*in));
1183 case IPC_OLD:
1184 {
1185 struct semid_ds out;
1186
1187 memset(&out, 0, sizeof(out));
1188
1189 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1190
1191 out.sem_otime = in->sem_otime;
1192 out.sem_ctime = in->sem_ctime;
1193 out.sem_nsems = in->sem_nsems;
1194
1195 return copy_to_user(buf, &out, sizeof(out));
1196 }
1197 default:
1198 return -EINVAL;
1199 }
1200}
1201
1202static time64_t get_semotime(struct sem_array *sma)
1203{
1204 int i;
1205 time64_t res;
1206
1207 res = sma->sems[0].sem_otime;
1208 for (i = 1; i < sma->sem_nsems; i++) {
1209 time64_t to = sma->sems[i].sem_otime;
1210
1211 if (to > res)
1212 res = to;
1213 }
1214 return res;
1215}
1216
1217static int semctl_stat(struct ipc_namespace *ns, int semid,
1218 int cmd, struct semid64_ds *semid64)
1219{
1220 struct sem_array *sma;
1221 time64_t semotime;
1222 int err;
1223
1224 memset(semid64, 0, sizeof(*semid64));
1225
1226 rcu_read_lock();
1227 if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
1228 sma = sem_obtain_object(ns, semid);
1229 if (IS_ERR(sma)) {
1230 err = PTR_ERR(sma);
1231 goto out_unlock;
1232 }
1233 } else { /* IPC_STAT */
1234 sma = sem_obtain_object_check(ns, semid);
1235 if (IS_ERR(sma)) {
1236 err = PTR_ERR(sma);
1237 goto out_unlock;
1238 }
1239 }
1240
1241 /* see comment for SHM_STAT_ANY */
1242 if (cmd == SEM_STAT_ANY)
1243 audit_ipc_obj(&sma->sem_perm);
1244 else {
1245 err = -EACCES;
1246 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1247 goto out_unlock;
1248 }
1249
1250 err = security_sem_semctl(&sma->sem_perm, cmd);
1251 if (err)
1252 goto out_unlock;
1253
1254 ipc_lock_object(&sma->sem_perm);
1255
1256 if (!ipc_valid_object(&sma->sem_perm)) {
1257 ipc_unlock_object(&sma->sem_perm);
1258 err = -EIDRM;
1259 goto out_unlock;
1260 }
1261
1262 kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1263 semotime = get_semotime(sma);
1264 semid64->sem_otime = semotime;
1265 semid64->sem_ctime = sma->sem_ctime;
1266#ifndef CONFIG_64BIT
1267 semid64->sem_otime_high = semotime >> 32;
1268 semid64->sem_ctime_high = sma->sem_ctime >> 32;
1269#endif
1270 semid64->sem_nsems = sma->sem_nsems;
1271
1272 if (cmd == IPC_STAT) {
1273 /*
1274 * As defined in SUS:
1275 * Return 0 on success
1276 */
1277 err = 0;
1278 } else {
1279 /*
1280 * SEM_STAT and SEM_STAT_ANY (both Linux specific)
1281 * Return the full id, including the sequence number
1282 */
1283 err = sma->sem_perm.id;
1284 }
1285 ipc_unlock_object(&sma->sem_perm);
1286out_unlock:
1287 rcu_read_unlock();
1288 return err;
1289}
1290
1291static int semctl_info(struct ipc_namespace *ns, int semid,
1292 int cmd, void __user *p)
1293{
1294 struct seminfo seminfo;
1295 int max_idx;
1296 int err;
1297
1298 err = security_sem_semctl(NULL, cmd);
1299 if (err)
1300 return err;
1301
1302 memset(&seminfo, 0, sizeof(seminfo));
1303 seminfo.semmni = ns->sc_semmni;
1304 seminfo.semmns = ns->sc_semmns;
1305 seminfo.semmsl = ns->sc_semmsl;
1306 seminfo.semopm = ns->sc_semopm;
1307 seminfo.semvmx = SEMVMX;
1308 seminfo.semmnu = SEMMNU;
1309 seminfo.semmap = SEMMAP;
1310 seminfo.semume = SEMUME;
1311 down_read(&sem_ids(ns).rwsem);
1312 if (cmd == SEM_INFO) {
1313 seminfo.semusz = sem_ids(ns).in_use;
1314 seminfo.semaem = ns->used_sems;
1315 } else {
1316 seminfo.semusz = SEMUSZ;
1317 seminfo.semaem = SEMAEM;
1318 }
1319 max_idx = ipc_get_maxidx(&sem_ids(ns));
1320 up_read(&sem_ids(ns).rwsem);
1321 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1322 return -EFAULT;
1323 return (max_idx < 0) ? 0 : max_idx;
1324}
1325
1326static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1327 int val)
1328{
1329 struct sem_undo *un;
1330 struct sem_array *sma;
1331 struct sem *curr;
1332 int err;
1333 DEFINE_WAKE_Q(wake_q);
1334
1335 if (val > SEMVMX || val < 0)
1336 return -ERANGE;
1337
1338 rcu_read_lock();
1339 sma = sem_obtain_object_check(ns, semid);
1340 if (IS_ERR(sma)) {
1341 rcu_read_unlock();
1342 return PTR_ERR(sma);
1343 }
1344
1345 if (semnum < 0 || semnum >= sma->sem_nsems) {
1346 rcu_read_unlock();
1347 return -EINVAL;
1348 }
1349
1350
1351 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1352 rcu_read_unlock();
1353 return -EACCES;
1354 }
1355
1356 err = security_sem_semctl(&sma->sem_perm, SETVAL);
1357 if (err) {
1358 rcu_read_unlock();
1359 return -EACCES;
1360 }
1361
1362 sem_lock(sma, NULL, -1);
1363
1364 if (!ipc_valid_object(&sma->sem_perm)) {
1365 sem_unlock(sma, -1);
1366 rcu_read_unlock();
1367 return -EIDRM;
1368 }
1369
1370 semnum = array_index_nospec(semnum, sma->sem_nsems);
1371 curr = &sma->sems[semnum];
1372
1373 ipc_assert_locked_object(&sma->sem_perm);
1374 list_for_each_entry(un, &sma->list_id, list_id)
1375 un->semadj[semnum] = 0;
1376
1377 curr->semval = val;
1378 ipc_update_pid(&curr->sempid, task_tgid(current));
1379 sma->sem_ctime = ktime_get_real_seconds();
1380 /* maybe some queued-up processes were waiting for this */
1381 do_smart_update(sma, NULL, 0, 0, &wake_q);
1382 sem_unlock(sma, -1);
1383 rcu_read_unlock();
1384 wake_up_q(&wake_q);
1385 return 0;
1386}
1387
1388static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1389 int cmd, void __user *p)
1390{
1391 struct sem_array *sma;
1392 struct sem *curr;
1393 int err, nsems;
1394 ushort fast_sem_io[SEMMSL_FAST];
1395 ushort *sem_io = fast_sem_io;
1396 DEFINE_WAKE_Q(wake_q);
1397
1398 rcu_read_lock();
1399 sma = sem_obtain_object_check(ns, semid);
1400 if (IS_ERR(sma)) {
1401 rcu_read_unlock();
1402 return PTR_ERR(sma);
1403 }
1404
1405 nsems = sma->sem_nsems;
1406
1407 err = -EACCES;
1408 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1409 goto out_rcu_wakeup;
1410
1411 err = security_sem_semctl(&sma->sem_perm, cmd);
1412 if (err)
1413 goto out_rcu_wakeup;
1414
1415 err = -EACCES;
1416 switch (cmd) {
1417 case GETALL:
1418 {
1419 ushort __user *array = p;
1420 int i;
1421
1422 sem_lock(sma, NULL, -1);
1423 if (!ipc_valid_object(&sma->sem_perm)) {
1424 err = -EIDRM;
1425 goto out_unlock;
1426 }
1427 if (nsems > SEMMSL_FAST) {
1428 if (!ipc_rcu_getref(&sma->sem_perm)) {
1429 err = -EIDRM;
1430 goto out_unlock;
1431 }
1432 sem_unlock(sma, -1);
1433 rcu_read_unlock();
1434 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1435 GFP_KERNEL);
1436 if (sem_io == NULL) {
1437 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1438 return -ENOMEM;
1439 }
1440
1441 rcu_read_lock();
1442 sem_lock_and_putref(sma);
1443 if (!ipc_valid_object(&sma->sem_perm)) {
1444 err = -EIDRM;
1445 goto out_unlock;
1446 }
1447 }
1448 for (i = 0; i < sma->sem_nsems; i++)
1449 sem_io[i] = sma->sems[i].semval;
1450 sem_unlock(sma, -1);
1451 rcu_read_unlock();
1452 err = 0;
1453 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1454 err = -EFAULT;
1455 goto out_free;
1456 }
1457 case SETALL:
1458 {
1459 int i;
1460 struct sem_undo *un;
1461
1462 if (!ipc_rcu_getref(&sma->sem_perm)) {
1463 err = -EIDRM;
1464 goto out_rcu_wakeup;
1465 }
1466 rcu_read_unlock();
1467
1468 if (nsems > SEMMSL_FAST) {
1469 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1470 GFP_KERNEL);
1471 if (sem_io == NULL) {
1472 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1473 return -ENOMEM;
1474 }
1475 }
1476
1477 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1478 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1479 err = -EFAULT;
1480 goto out_free;
1481 }
1482
1483 for (i = 0; i < nsems; i++) {
1484 if (sem_io[i] > SEMVMX) {
1485 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1486 err = -ERANGE;
1487 goto out_free;
1488 }
1489 }
1490 rcu_read_lock();
1491 sem_lock_and_putref(sma);
1492 if (!ipc_valid_object(&sma->sem_perm)) {
1493 err = -EIDRM;
1494 goto out_unlock;
1495 }
1496
1497 for (i = 0; i < nsems; i++) {
1498 sma->sems[i].semval = sem_io[i];
1499 ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
1500 }
1501
1502 ipc_assert_locked_object(&sma->sem_perm);
1503 list_for_each_entry(un, &sma->list_id, list_id) {
1504 for (i = 0; i < nsems; i++)
1505 un->semadj[i] = 0;
1506 }
1507 sma->sem_ctime = ktime_get_real_seconds();
1508 /* maybe some queued-up processes were waiting for this */
1509 do_smart_update(sma, NULL, 0, 0, &wake_q);
1510 err = 0;
1511 goto out_unlock;
1512 }
1513 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1514 }
1515 err = -EINVAL;
1516 if (semnum < 0 || semnum >= nsems)
1517 goto out_rcu_wakeup;
1518
1519 sem_lock(sma, NULL, -1);
1520 if (!ipc_valid_object(&sma->sem_perm)) {
1521 err = -EIDRM;
1522 goto out_unlock;
1523 }
1524
1525 semnum = array_index_nospec(semnum, nsems);
1526 curr = &sma->sems[semnum];
1527
1528 switch (cmd) {
1529 case GETVAL:
1530 err = curr->semval;
1531 goto out_unlock;
1532 case GETPID:
1533 err = pid_vnr(curr->sempid);
1534 goto out_unlock;
1535 case GETNCNT:
1536 err = count_semcnt(sma, semnum, 0);
1537 goto out_unlock;
1538 case GETZCNT:
1539 err = count_semcnt(sma, semnum, 1);
1540 goto out_unlock;
1541 }
1542
1543out_unlock:
1544 sem_unlock(sma, -1);
1545out_rcu_wakeup:
1546 rcu_read_unlock();
1547 wake_up_q(&wake_q);
1548out_free:
1549 if (sem_io != fast_sem_io)
1550 kvfree(sem_io);
1551 return err;
1552}
1553
1554static inline unsigned long
1555copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1556{
1557 switch (version) {
1558 case IPC_64:
1559 if (copy_from_user(out, buf, sizeof(*out)))
1560 return -EFAULT;
1561 return 0;
1562 case IPC_OLD:
1563 {
1564 struct semid_ds tbuf_old;
1565
1566 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1567 return -EFAULT;
1568
1569 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1570 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1571 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1572
1573 return 0;
1574 }
1575 default:
1576 return -EINVAL;
1577 }
1578}
1579
1580/*
1581 * This function handles some semctl commands which require the rwsem
1582 * to be held in write mode.
1583 * NOTE: no locks must be held, the rwsem is taken inside this function.
1584 */
1585static int semctl_down(struct ipc_namespace *ns, int semid,
1586 int cmd, struct semid64_ds *semid64)
1587{
1588 struct sem_array *sma;
1589 int err;
1590 struct kern_ipc_perm *ipcp;
1591
1592 down_write(&sem_ids(ns).rwsem);
1593 rcu_read_lock();
1594
1595 ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd,
1596 &semid64->sem_perm, 0);
1597 if (IS_ERR(ipcp)) {
1598 err = PTR_ERR(ipcp);
1599 goto out_unlock1;
1600 }
1601
1602 sma = container_of(ipcp, struct sem_array, sem_perm);
1603
1604 err = security_sem_semctl(&sma->sem_perm, cmd);
1605 if (err)
1606 goto out_unlock1;
1607
1608 switch (cmd) {
1609 case IPC_RMID:
1610 sem_lock(sma, NULL, -1);
1611 /* freeary unlocks the ipc object and rcu */
1612 freeary(ns, ipcp);
1613 goto out_up;
1614 case IPC_SET:
1615 sem_lock(sma, NULL, -1);
1616 err = ipc_update_perm(&semid64->sem_perm, ipcp);
1617 if (err)
1618 goto out_unlock0;
1619 sma->sem_ctime = ktime_get_real_seconds();
1620 break;
1621 default:
1622 err = -EINVAL;
1623 goto out_unlock1;
1624 }
1625
1626out_unlock0:
1627 sem_unlock(sma, -1);
1628out_unlock1:
1629 rcu_read_unlock();
1630out_up:
1631 up_write(&sem_ids(ns).rwsem);
1632 return err;
1633}
1634
1635static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version)
1636{
1637 struct ipc_namespace *ns;
1638 void __user *p = (void __user *)arg;
1639 struct semid64_ds semid64;
1640 int err;
1641
1642 if (semid < 0)
1643 return -EINVAL;
1644
1645 ns = current->nsproxy->ipc_ns;
1646
1647 switch (cmd) {
1648 case IPC_INFO:
1649 case SEM_INFO:
1650 return semctl_info(ns, semid, cmd, p);
1651 case IPC_STAT:
1652 case SEM_STAT:
1653 case SEM_STAT_ANY:
1654 err = semctl_stat(ns, semid, cmd, &semid64);
1655 if (err < 0)
1656 return err;
1657 if (copy_semid_to_user(p, &semid64, version))
1658 err = -EFAULT;
1659 return err;
1660 case GETALL:
1661 case GETVAL:
1662 case GETPID:
1663 case GETNCNT:
1664 case GETZCNT:
1665 case SETALL:
1666 return semctl_main(ns, semid, semnum, cmd, p);
1667 case SETVAL: {
1668 int val;
1669#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1670 /* big-endian 64bit */
1671 val = arg >> 32;
1672#else
1673 /* 32bit or little-endian 64bit */
1674 val = arg;
1675#endif
1676 return semctl_setval(ns, semid, semnum, val);
1677 }
1678 case IPC_SET:
1679 if (copy_semid_from_user(&semid64, p, version))
1680 return -EFAULT;
1681 /* fall through */
1682 case IPC_RMID:
1683 return semctl_down(ns, semid, cmd, &semid64);
1684 default:
1685 return -EINVAL;
1686 }
1687}
1688
1689SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1690{
1691 return ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1692}
1693
1694#ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION
1695long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg)
1696{
1697 int version = ipc_parse_version(&cmd);
1698
1699 return ksys_semctl(semid, semnum, cmd, arg, version);
1700}
1701
1702SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1703{
1704 return ksys_old_semctl(semid, semnum, cmd, arg);
1705}
1706#endif
1707
1708#ifdef CONFIG_COMPAT
1709
1710struct compat_semid_ds {
1711 struct compat_ipc_perm sem_perm;
1712 old_time32_t sem_otime;
1713 old_time32_t sem_ctime;
1714 compat_uptr_t sem_base;
1715 compat_uptr_t sem_pending;
1716 compat_uptr_t sem_pending_last;
1717 compat_uptr_t undo;
1718 unsigned short sem_nsems;
1719};
1720
1721static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1722 int version)
1723{
1724 memset(out, 0, sizeof(*out));
1725 if (version == IPC_64) {
1726 struct compat_semid64_ds __user *p = buf;
1727 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1728 } else {
1729 struct compat_semid_ds __user *p = buf;
1730 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1731 }
1732}
1733
1734static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1735 int version)
1736{
1737 if (version == IPC_64) {
1738 struct compat_semid64_ds v;
1739 memset(&v, 0, sizeof(v));
1740 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1741 v.sem_otime = lower_32_bits(in->sem_otime);
1742 v.sem_otime_high = upper_32_bits(in->sem_otime);
1743 v.sem_ctime = lower_32_bits(in->sem_ctime);
1744 v.sem_ctime_high = upper_32_bits(in->sem_ctime);
1745 v.sem_nsems = in->sem_nsems;
1746 return copy_to_user(buf, &v, sizeof(v));
1747 } else {
1748 struct compat_semid_ds v;
1749 memset(&v, 0, sizeof(v));
1750 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1751 v.sem_otime = in->sem_otime;
1752 v.sem_ctime = in->sem_ctime;
1753 v.sem_nsems = in->sem_nsems;
1754 return copy_to_user(buf, &v, sizeof(v));
1755 }
1756}
1757
1758static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version)
1759{
1760 void __user *p = compat_ptr(arg);
1761 struct ipc_namespace *ns;
1762 struct semid64_ds semid64;
1763 int err;
1764
1765 ns = current->nsproxy->ipc_ns;
1766
1767 if (semid < 0)
1768 return -EINVAL;
1769
1770 switch (cmd & (~IPC_64)) {
1771 case IPC_INFO:
1772 case SEM_INFO:
1773 return semctl_info(ns, semid, cmd, p);
1774 case IPC_STAT:
1775 case SEM_STAT:
1776 case SEM_STAT_ANY:
1777 err = semctl_stat(ns, semid, cmd, &semid64);
1778 if (err < 0)
1779 return err;
1780 if (copy_compat_semid_to_user(p, &semid64, version))
1781 err = -EFAULT;
1782 return err;
1783 case GETVAL:
1784 case GETPID:
1785 case GETNCNT:
1786 case GETZCNT:
1787 case GETALL:
1788 case SETALL:
1789 return semctl_main(ns, semid, semnum, cmd, p);
1790 case SETVAL:
1791 return semctl_setval(ns, semid, semnum, arg);
1792 case IPC_SET:
1793 if (copy_compat_semid_from_user(&semid64, p, version))
1794 return -EFAULT;
1795 /* fallthru */
1796 case IPC_RMID:
1797 return semctl_down(ns, semid, cmd, &semid64);
1798 default:
1799 return -EINVAL;
1800 }
1801}
1802
1803COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1804{
1805 return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1806}
1807
1808#ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION
1809long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg)
1810{
1811 int version = compat_ipc_parse_version(&cmd);
1812
1813 return compat_ksys_semctl(semid, semnum, cmd, arg, version);
1814}
1815
1816COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg)
1817{
1818 return compat_ksys_old_semctl(semid, semnum, cmd, arg);
1819}
1820#endif
1821#endif
1822
1823/* If the task doesn't already have a undo_list, then allocate one
1824 * here. We guarantee there is only one thread using this undo list,
1825 * and current is THE ONE
1826 *
1827 * If this allocation and assignment succeeds, but later
1828 * portions of this code fail, there is no need to free the sem_undo_list.
1829 * Just let it stay associated with the task, and it'll be freed later
1830 * at exit time.
1831 *
1832 * This can block, so callers must hold no locks.
1833 */
1834static inline int get_undo_list(struct sem_undo_list **undo_listp)
1835{
1836 struct sem_undo_list *undo_list;
1837
1838 undo_list = current->sysvsem.undo_list;
1839 if (!undo_list) {
1840 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL_ACCOUNT);
1841 if (undo_list == NULL)
1842 return -ENOMEM;
1843 spin_lock_init(&undo_list->lock);
1844 refcount_set(&undo_list->refcnt, 1);
1845 INIT_LIST_HEAD(&undo_list->list_proc);
1846
1847 current->sysvsem.undo_list = undo_list;
1848 }
1849 *undo_listp = undo_list;
1850 return 0;
1851}
1852
1853static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1854{
1855 struct sem_undo *un;
1856
1857 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc,
1858 spin_is_locked(&ulp->lock)) {
1859 if (un->semid == semid)
1860 return un;
1861 }
1862 return NULL;
1863}
1864
1865static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1866{
1867 struct sem_undo *un;
1868
1869 assert_spin_locked(&ulp->lock);
1870
1871 un = __lookup_undo(ulp, semid);
1872 if (un) {
1873 list_del_rcu(&un->list_proc);
1874 list_add_rcu(&un->list_proc, &ulp->list_proc);
1875 }
1876 return un;
1877}
1878
1879/**
1880 * find_alloc_undo - lookup (and if not present create) undo array
1881 * @ns: namespace
1882 * @semid: semaphore array id
1883 *
1884 * The function looks up (and if not present creates) the undo structure.
1885 * The size of the undo structure depends on the size of the semaphore
1886 * array, thus the alloc path is not that straightforward.
1887 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1888 * performs a rcu_read_lock().
1889 */
1890static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1891{
1892 struct sem_array *sma;
1893 struct sem_undo_list *ulp;
1894 struct sem_undo *un, *new;
1895 int nsems, error;
1896
1897 error = get_undo_list(&ulp);
1898 if (error)
1899 return ERR_PTR(error);
1900
1901 rcu_read_lock();
1902 spin_lock(&ulp->lock);
1903 un = lookup_undo(ulp, semid);
1904 spin_unlock(&ulp->lock);
1905 if (likely(un != NULL))
1906 goto out;
1907
1908 /* no undo structure around - allocate one. */
1909 /* step 1: figure out the size of the semaphore array */
1910 sma = sem_obtain_object_check(ns, semid);
1911 if (IS_ERR(sma)) {
1912 rcu_read_unlock();
1913 return ERR_CAST(sma);
1914 }
1915
1916 nsems = sma->sem_nsems;
1917 if (!ipc_rcu_getref(&sma->sem_perm)) {
1918 rcu_read_unlock();
1919 un = ERR_PTR(-EIDRM);
1920 goto out;
1921 }
1922 rcu_read_unlock();
1923
1924 /* step 2: allocate new undo structure */
1925 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL_ACCOUNT);
1926 if (!new) {
1927 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1928 return ERR_PTR(-ENOMEM);
1929 }
1930
1931 /* step 3: Acquire the lock on semaphore array */
1932 rcu_read_lock();
1933 sem_lock_and_putref(sma);
1934 if (!ipc_valid_object(&sma->sem_perm)) {
1935 sem_unlock(sma, -1);
1936 rcu_read_unlock();
1937 kfree(new);
1938 un = ERR_PTR(-EIDRM);
1939 goto out;
1940 }
1941 spin_lock(&ulp->lock);
1942
1943 /*
1944 * step 4: check for races: did someone else allocate the undo struct?
1945 */
1946 un = lookup_undo(ulp, semid);
1947 if (un) {
1948 kfree(new);
1949 goto success;
1950 }
1951 /* step 5: initialize & link new undo structure */
1952 new->semadj = (short *) &new[1];
1953 new->ulp = ulp;
1954 new->semid = semid;
1955 assert_spin_locked(&ulp->lock);
1956 list_add_rcu(&new->list_proc, &ulp->list_proc);
1957 ipc_assert_locked_object(&sma->sem_perm);
1958 list_add(&new->list_id, &sma->list_id);
1959 un = new;
1960
1961success:
1962 spin_unlock(&ulp->lock);
1963 sem_unlock(sma, -1);
1964out:
1965 return un;
1966}
1967
1968static long do_semtimedop(int semid, struct sembuf __user *tsops,
1969 unsigned nsops, const struct timespec64 *timeout)
1970{
1971 int error = -EINVAL;
1972 struct sem_array *sma;
1973 struct sembuf fast_sops[SEMOPM_FAST];
1974 struct sembuf *sops = fast_sops, *sop;
1975 struct sem_undo *un;
1976 int max, locknum;
1977 bool undos = false, alter = false, dupsop = false;
1978 struct sem_queue queue;
1979 unsigned long dup = 0, jiffies_left = 0;
1980 struct ipc_namespace *ns;
1981
1982 ns = current->nsproxy->ipc_ns;
1983
1984 if (nsops < 1 || semid < 0)
1985 return -EINVAL;
1986 if (nsops > ns->sc_semopm)
1987 return -E2BIG;
1988 if (nsops > SEMOPM_FAST) {
1989 sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL);
1990 if (sops == NULL)
1991 return -ENOMEM;
1992 }
1993
1994 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1995 error = -EFAULT;
1996 goto out_free;
1997 }
1998
1999 if (timeout) {
2000 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
2001 timeout->tv_nsec >= 1000000000L) {
2002 error = -EINVAL;
2003 goto out_free;
2004 }
2005 jiffies_left = timespec64_to_jiffies(timeout);
2006 }
2007
2008 max = 0;
2009 for (sop = sops; sop < sops + nsops; sop++) {
2010 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
2011
2012 if (sop->sem_num >= max)
2013 max = sop->sem_num;
2014 if (sop->sem_flg & SEM_UNDO)
2015 undos = true;
2016 if (dup & mask) {
2017 /*
2018 * There was a previous alter access that appears
2019 * to have accessed the same semaphore, thus use
2020 * the dupsop logic. "appears", because the detection
2021 * can only check % BITS_PER_LONG.
2022 */
2023 dupsop = true;
2024 }
2025 if (sop->sem_op != 0) {
2026 alter = true;
2027 dup |= mask;
2028 }
2029 }
2030
2031 if (undos) {
2032 /* On success, find_alloc_undo takes the rcu_read_lock */
2033 un = find_alloc_undo(ns, semid);
2034 if (IS_ERR(un)) {
2035 error = PTR_ERR(un);
2036 goto out_free;
2037 }
2038 } else {
2039 un = NULL;
2040 rcu_read_lock();
2041 }
2042
2043 sma = sem_obtain_object_check(ns, semid);
2044 if (IS_ERR(sma)) {
2045 rcu_read_unlock();
2046 error = PTR_ERR(sma);
2047 goto out_free;
2048 }
2049
2050 error = -EFBIG;
2051 if (max >= sma->sem_nsems) {
2052 rcu_read_unlock();
2053 goto out_free;
2054 }
2055
2056 error = -EACCES;
2057 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2058 rcu_read_unlock();
2059 goto out_free;
2060 }
2061
2062 error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
2063 if (error) {
2064 rcu_read_unlock();
2065 goto out_free;
2066 }
2067
2068 error = -EIDRM;
2069 locknum = sem_lock(sma, sops, nsops);
2070 /*
2071 * We eventually might perform the following check in a lockless
2072 * fashion, considering ipc_valid_object() locking constraints.
2073 * If nsops == 1 and there is no contention for sem_perm.lock, then
2074 * only a per-semaphore lock is held and it's OK to proceed with the
2075 * check below. More details on the fine grained locking scheme
2076 * entangled here and why it's RMID race safe on comments at sem_lock()
2077 */
2078 if (!ipc_valid_object(&sma->sem_perm))
2079 goto out_unlock_free;
2080 /*
2081 * semid identifiers are not unique - find_alloc_undo may have
2082 * allocated an undo structure, it was invalidated by an RMID
2083 * and now a new array with received the same id. Check and fail.
2084 * This case can be detected checking un->semid. The existence of
2085 * "un" itself is guaranteed by rcu.
2086 */
2087 if (un && un->semid == -1)
2088 goto out_unlock_free;
2089
2090 queue.sops = sops;
2091 queue.nsops = nsops;
2092 queue.undo = un;
2093 queue.pid = task_tgid(current);
2094 queue.alter = alter;
2095 queue.dupsop = dupsop;
2096
2097 error = perform_atomic_semop(sma, &queue);
2098 if (error == 0) { /* non-blocking succesfull path */
2099 DEFINE_WAKE_Q(wake_q);
2100
2101 /*
2102 * If the operation was successful, then do
2103 * the required updates.
2104 */
2105 if (alter)
2106 do_smart_update(sma, sops, nsops, 1, &wake_q);
2107 else
2108 set_semotime(sma, sops);
2109
2110 sem_unlock(sma, locknum);
2111 rcu_read_unlock();
2112 wake_up_q(&wake_q);
2113
2114 goto out_free;
2115 }
2116 if (error < 0) /* non-blocking error path */
2117 goto out_unlock_free;
2118
2119 /*
2120 * We need to sleep on this operation, so we put the current
2121 * task into the pending queue and go to sleep.
2122 */
2123 if (nsops == 1) {
2124 struct sem *curr;
2125 int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
2126 curr = &sma->sems[idx];
2127
2128 if (alter) {
2129 if (sma->complex_count) {
2130 list_add_tail(&queue.list,
2131 &sma->pending_alter);
2132 } else {
2133
2134 list_add_tail(&queue.list,
2135 &curr->pending_alter);
2136 }
2137 } else {
2138 list_add_tail(&queue.list, &curr->pending_const);
2139 }
2140 } else {
2141 if (!sma->complex_count)
2142 merge_queues(sma);
2143
2144 if (alter)
2145 list_add_tail(&queue.list, &sma->pending_alter);
2146 else
2147 list_add_tail(&queue.list, &sma->pending_const);
2148
2149 sma->complex_count++;
2150 }
2151
2152 do {
2153 WRITE_ONCE(queue.status, -EINTR);
2154 queue.sleeper = current;
2155
2156 __set_current_state(TASK_INTERRUPTIBLE);
2157 sem_unlock(sma, locknum);
2158 rcu_read_unlock();
2159
2160 if (timeout)
2161 jiffies_left = schedule_timeout(jiffies_left);
2162 else
2163 schedule();
2164
2165 /*
2166 * fastpath: the semop has completed, either successfully or
2167 * not, from the syscall pov, is quite irrelevant to us at this
2168 * point; we're done.
2169 *
2170 * We _do_ care, nonetheless, about being awoken by a signal or
2171 * spuriously. The queue.status is checked again in the
2172 * slowpath (aka after taking sem_lock), such that we can detect
2173 * scenarios where we were awakened externally, during the
2174 * window between wake_q_add() and wake_up_q().
2175 */
2176 rcu_read_lock();
2177 error = READ_ONCE(queue.status);
2178 if (error != -EINTR) {
2179 /*
2180 * User space could assume that semop() is a memory
2181 * barrier: Without the mb(), the cpu could
2182 * speculatively read in userspace stale data that was
2183 * overwritten by the previous owner of the semaphore.
2184 */
2185 smp_mb();
2186 rcu_read_unlock();
2187 goto out_free;
2188 }
2189
2190 locknum = sem_lock(sma, sops, nsops);
2191
2192 if (!ipc_valid_object(&sma->sem_perm))
2193 goto out_unlock_free;
2194
2195 error = READ_ONCE(queue.status);
2196
2197 /*
2198 * If queue.status != -EINTR we are woken up by another process.
2199 * Leave without unlink_queue(), but with sem_unlock().
2200 */
2201 if (error != -EINTR)
2202 goto out_unlock_free;
2203
2204 /*
2205 * If an interrupt occurred we have to clean up the queue.
2206 */
2207 if (timeout && jiffies_left == 0)
2208 error = -EAGAIN;
2209 } while (error == -EINTR && !signal_pending(current)); /* spurious */
2210
2211 unlink_queue(sma, &queue);
2212
2213out_unlock_free:
2214 sem_unlock(sma, locknum);
2215 rcu_read_unlock();
2216out_free:
2217 if (sops != fast_sops)
2218 kvfree(sops);
2219 return error;
2220}
2221
2222long ksys_semtimedop(int semid, struct sembuf __user *tsops,
2223 unsigned int nsops, const struct __kernel_timespec __user *timeout)
2224{
2225 if (timeout) {
2226 struct timespec64 ts;
2227 if (get_timespec64(&ts, timeout))
2228 return -EFAULT;
2229 return do_semtimedop(semid, tsops, nsops, &ts);
2230 }
2231 return do_semtimedop(semid, tsops, nsops, NULL);
2232}
2233
2234SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2235 unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
2236{
2237 return ksys_semtimedop(semid, tsops, nsops, timeout);
2238}
2239
2240#ifdef CONFIG_COMPAT_32BIT_TIME
2241long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2242 unsigned int nsops,
2243 const struct old_timespec32 __user *timeout)
2244{
2245 if (timeout) {
2246 struct timespec64 ts;
2247 if (get_old_timespec32(&ts, timeout))
2248 return -EFAULT;
2249 return do_semtimedop(semid, tsems, nsops, &ts);
2250 }
2251 return do_semtimedop(semid, tsems, nsops, NULL);
2252}
2253
2254SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems,
2255 unsigned int, nsops,
2256 const struct old_timespec32 __user *, timeout)
2257{
2258 return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2259}
2260#endif
2261
2262SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2263 unsigned, nsops)
2264{
2265 return do_semtimedop(semid, tsops, nsops, NULL);
2266}
2267
2268/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2269 * parent and child tasks.
2270 */
2271
2272int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2273{
2274 struct sem_undo_list *undo_list;
2275 int error;
2276
2277 if (clone_flags & CLONE_SYSVSEM) {
2278 error = get_undo_list(&undo_list);
2279 if (error)
2280 return error;
2281 refcount_inc(&undo_list->refcnt);
2282 tsk->sysvsem.undo_list = undo_list;
2283 } else
2284 tsk->sysvsem.undo_list = NULL;
2285
2286 return 0;
2287}
2288
2289/*
2290 * add semadj values to semaphores, free undo structures.
2291 * undo structures are not freed when semaphore arrays are destroyed
2292 * so some of them may be out of date.
2293 * IMPLEMENTATION NOTE: There is some confusion over whether the
2294 * set of adjustments that needs to be done should be done in an atomic
2295 * manner or not. That is, if we are attempting to decrement the semval
2296 * should we queue up and wait until we can do so legally?
2297 * The original implementation attempted to do this (queue and wait).
2298 * The current implementation does not do so. The POSIX standard
2299 * and SVID should be consulted to determine what behavior is mandated.
2300 */
2301void exit_sem(struct task_struct *tsk)
2302{
2303 struct sem_undo_list *ulp;
2304
2305 ulp = tsk->sysvsem.undo_list;
2306 if (!ulp)
2307 return;
2308 tsk->sysvsem.undo_list = NULL;
2309
2310 if (!refcount_dec_and_test(&ulp->refcnt))
2311 return;
2312
2313 for (;;) {
2314 struct sem_array *sma;
2315 struct sem_undo *un;
2316 int semid, i;
2317 DEFINE_WAKE_Q(wake_q);
2318
2319 cond_resched();
2320
2321 rcu_read_lock();
2322 un = list_entry_rcu(ulp->list_proc.next,
2323 struct sem_undo, list_proc);
2324 if (&un->list_proc == &ulp->list_proc) {
2325 /*
2326 * We must wait for freeary() before freeing this ulp,
2327 * in case we raced with last sem_undo. There is a small
2328 * possibility where we exit while freeary() didn't
2329 * finish unlocking sem_undo_list.
2330 */
2331 spin_lock(&ulp->lock);
2332 spin_unlock(&ulp->lock);
2333 rcu_read_unlock();
2334 break;
2335 }
2336 spin_lock(&ulp->lock);
2337 semid = un->semid;
2338 spin_unlock(&ulp->lock);
2339
2340 /* exit_sem raced with IPC_RMID, nothing to do */
2341 if (semid == -1) {
2342 rcu_read_unlock();
2343 continue;
2344 }
2345
2346 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2347 /* exit_sem raced with IPC_RMID, nothing to do */
2348 if (IS_ERR(sma)) {
2349 rcu_read_unlock();
2350 continue;
2351 }
2352
2353 sem_lock(sma, NULL, -1);
2354 /* exit_sem raced with IPC_RMID, nothing to do */
2355 if (!ipc_valid_object(&sma->sem_perm)) {
2356 sem_unlock(sma, -1);
2357 rcu_read_unlock();
2358 continue;
2359 }
2360 un = __lookup_undo(ulp, semid);
2361 if (un == NULL) {
2362 /* exit_sem raced with IPC_RMID+semget() that created
2363 * exactly the same semid. Nothing to do.
2364 */
2365 sem_unlock(sma, -1);
2366 rcu_read_unlock();
2367 continue;
2368 }
2369
2370 /* remove un from the linked lists */
2371 ipc_assert_locked_object(&sma->sem_perm);
2372 list_del(&un->list_id);
2373
2374 spin_lock(&ulp->lock);
2375 list_del_rcu(&un->list_proc);
2376 spin_unlock(&ulp->lock);
2377
2378 /* perform adjustments registered in un */
2379 for (i = 0; i < sma->sem_nsems; i++) {
2380 struct sem *semaphore = &sma->sems[i];
2381 if (un->semadj[i]) {
2382 semaphore->semval += un->semadj[i];
2383 /*
2384 * Range checks of the new semaphore value,
2385 * not defined by sus:
2386 * - Some unices ignore the undo entirely
2387 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2388 * - some cap the value (e.g. FreeBSD caps
2389 * at 0, but doesn't enforce SEMVMX)
2390 *
2391 * Linux caps the semaphore value, both at 0
2392 * and at SEMVMX.
2393 *
2394 * Manfred <manfred@colorfullife.com>
2395 */
2396 if (semaphore->semval < 0)
2397 semaphore->semval = 0;
2398 if (semaphore->semval > SEMVMX)
2399 semaphore->semval = SEMVMX;
2400 ipc_update_pid(&semaphore->sempid, task_tgid(current));
2401 }
2402 }
2403 /* maybe some queued-up processes were waiting for this */
2404 do_smart_update(sma, NULL, 0, 1, &wake_q);
2405 sem_unlock(sma, -1);
2406 rcu_read_unlock();
2407 wake_up_q(&wake_q);
2408
2409 kfree_rcu(un, rcu);
2410 }
2411 kfree(ulp);
2412}
2413
2414#ifdef CONFIG_PROC_FS
2415static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2416{
2417 struct user_namespace *user_ns = seq_user_ns(s);
2418 struct kern_ipc_perm *ipcp = it;
2419 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2420 time64_t sem_otime;
2421
2422 /*
2423 * The proc interface isn't aware of sem_lock(), it calls
2424 * ipc_lock_object() directly (in sysvipc_find_ipc).
2425 * In order to stay compatible with sem_lock(), we must
2426 * enter / leave complex_mode.
2427 */
2428 complexmode_enter(sma);
2429
2430 sem_otime = get_semotime(sma);
2431
2432 seq_printf(s,
2433 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2434 sma->sem_perm.key,
2435 sma->sem_perm.id,
2436 sma->sem_perm.mode,
2437 sma->sem_nsems,
2438 from_kuid_munged(user_ns, sma->sem_perm.uid),
2439 from_kgid_munged(user_ns, sma->sem_perm.gid),
2440 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2441 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2442 sem_otime,
2443 sma->sem_ctime);
2444
2445 complexmode_tryleave(sma);
2446
2447 return 0;
2448}
2449#endif