blob: fe5f4196aee6bd27062f5dca1a51568d5b7de3cf [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25#include "cgroup-internal.h"
26#include <linux/cpu.h>
27#include <linux/cpumask.h>
28#include <linux/cpuset.h>
29#include <linux/err.h>
30#include <linux/errno.h>
31#include <linux/file.h>
32#include <linux/fs.h>
33#include <linux/init.h>
34#include <linux/interrupt.h>
35#include <linux/kernel.h>
36#include <linux/kmod.h>
37#include <linux/kthread.h>
38#include <linux/list.h>
39#include <linux/mempolicy.h>
40#include <linux/mm.h>
41#include <linux/memory.h>
42#include <linux/export.h>
43#include <linux/mount.h>
44#include <linux/fs_context.h>
45#include <linux/namei.h>
46#include <linux/pagemap.h>
47#include <linux/proc_fs.h>
48#include <linux/rcupdate.h>
49#include <linux/sched.h>
50#include <linux/sched/deadline.h>
51#include <linux/sched/mm.h>
52#include <linux/sched/task.h>
53#include <linux/seq_file.h>
54#include <linux/security.h>
55#include <linux/slab.h>
56#include <linux/spinlock.h>
57#include <linux/stat.h>
58#include <linux/string.h>
59#include <linux/time.h>
60#include <linux/time64.h>
61#include <linux/backing-dev.h>
62#include <linux/sort.h>
63#include <linux/oom.h>
64#include <linux/sched/isolation.h>
65#include <linux/uaccess.h>
66#include <linux/atomic.h>
67#include <linux/mutex.h>
68#include <linux/cgroup.h>
69#include <linux/wait.h>
70
71DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
72DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
73
74/* See "Frequency meter" comments, below. */
75
76struct fmeter {
77 int cnt; /* unprocessed events count */
78 int val; /* most recent output value */
79 time64_t time; /* clock (secs) when val computed */
80 spinlock_t lock; /* guards read or write of above */
81};
82
83struct cpuset {
84 struct cgroup_subsys_state css;
85
86 unsigned long flags; /* "unsigned long" so bitops work */
87
88 /*
89 * On default hierarchy:
90 *
91 * The user-configured masks can only be changed by writing to
92 * cpuset.cpus and cpuset.mems, and won't be limited by the
93 * parent masks.
94 *
95 * The effective masks is the real masks that apply to the tasks
96 * in the cpuset. They may be changed if the configured masks are
97 * changed or hotplug happens.
98 *
99 * effective_mask == configured_mask & parent's effective_mask,
100 * and if it ends up empty, it will inherit the parent's mask.
101 *
102 *
103 * On legacy hierachy:
104 *
105 * The user-configured masks are always the same with effective masks.
106 */
107
108 /* user-configured CPUs and Memory Nodes allow to tasks */
109 cpumask_var_t cpus_allowed;
110 cpumask_var_t cpus_requested;
111 nodemask_t mems_allowed;
112
113 /* effective CPUs and Memory Nodes allow to tasks */
114 cpumask_var_t effective_cpus;
115 nodemask_t effective_mems;
116
117 /*
118 * CPUs allocated to child sub-partitions (default hierarchy only)
119 * - CPUs granted by the parent = effective_cpus U subparts_cpus
120 * - effective_cpus and subparts_cpus are mutually exclusive.
121 *
122 * effective_cpus contains only onlined CPUs, but subparts_cpus
123 * may have offlined ones.
124 */
125 cpumask_var_t subparts_cpus;
126
127 /*
128 * This is old Memory Nodes tasks took on.
129 *
130 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
131 * - A new cpuset's old_mems_allowed is initialized when some
132 * task is moved into it.
133 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
134 * cpuset.mems_allowed and have tasks' nodemask updated, and
135 * then old_mems_allowed is updated to mems_allowed.
136 */
137 nodemask_t old_mems_allowed;
138
139 struct fmeter fmeter; /* memory_pressure filter */
140
141 /*
142 * Tasks are being attached to this cpuset. Used to prevent
143 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
144 */
145 int attach_in_progress;
146
147 /* partition number for rebuild_sched_domains() */
148 int pn;
149
150 /* for custom sched domain */
151 int relax_domain_level;
152
153 /* number of CPUs in subparts_cpus */
154 int nr_subparts_cpus;
155
156 /* partition root state */
157 int partition_root_state;
158
159 /*
160 * Default hierarchy only:
161 * use_parent_ecpus - set if using parent's effective_cpus
162 * child_ecpus_count - # of children with use_parent_ecpus set
163 */
164 int use_parent_ecpus;
165 int child_ecpus_count;
166};
167
168/*
169 * Partition root states:
170 *
171 * 0 - not a partition root
172 *
173 * 1 - partition root
174 *
175 * -1 - invalid partition root
176 * None of the cpus in cpus_allowed can be put into the parent's
177 * subparts_cpus. In this case, the cpuset is not a real partition
178 * root anymore. However, the CPU_EXCLUSIVE bit will still be set
179 * and the cpuset can be restored back to a partition root if the
180 * parent cpuset can give more CPUs back to this child cpuset.
181 */
182#define PRS_DISABLED 0
183#define PRS_ENABLED 1
184#define PRS_ERROR -1
185
186/*
187 * Temporary cpumasks for working with partitions that are passed among
188 * functions to avoid memory allocation in inner functions.
189 */
190struct tmpmasks {
191 cpumask_var_t addmask, delmask; /* For partition root */
192 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */
193};
194
195static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
196{
197 return css ? container_of(css, struct cpuset, css) : NULL;
198}
199
200/* Retrieve the cpuset for a task */
201static inline struct cpuset *task_cs(struct task_struct *task)
202{
203 return css_cs(task_css(task, cpuset_cgrp_id));
204}
205
206static inline struct cpuset *parent_cs(struct cpuset *cs)
207{
208 return css_cs(cs->css.parent);
209}
210
211/* bits in struct cpuset flags field */
212typedef enum {
213 CS_ONLINE,
214 CS_CPU_EXCLUSIVE,
215 CS_MEM_EXCLUSIVE,
216 CS_MEM_HARDWALL,
217 CS_MEMORY_MIGRATE,
218 CS_SCHED_LOAD_BALANCE,
219 CS_SPREAD_PAGE,
220 CS_SPREAD_SLAB,
221} cpuset_flagbits_t;
222
223/* convenient tests for these bits */
224static inline bool is_cpuset_online(struct cpuset *cs)
225{
226 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
227}
228
229static inline int is_cpu_exclusive(const struct cpuset *cs)
230{
231 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
232}
233
234static inline int is_mem_exclusive(const struct cpuset *cs)
235{
236 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
237}
238
239static inline int is_mem_hardwall(const struct cpuset *cs)
240{
241 return test_bit(CS_MEM_HARDWALL, &cs->flags);
242}
243
244static inline int is_sched_load_balance(const struct cpuset *cs)
245{
246 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
247}
248
249static inline int is_memory_migrate(const struct cpuset *cs)
250{
251 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
252}
253
254static inline int is_spread_page(const struct cpuset *cs)
255{
256 return test_bit(CS_SPREAD_PAGE, &cs->flags);
257}
258
259static inline int is_spread_slab(const struct cpuset *cs)
260{
261 return test_bit(CS_SPREAD_SLAB, &cs->flags);
262}
263
264static inline int is_partition_root(const struct cpuset *cs)
265{
266 return cs->partition_root_state > 0;
267}
268
269static struct cpuset top_cpuset = {
270 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
271 (1 << CS_MEM_EXCLUSIVE)),
272 .partition_root_state = PRS_ENABLED,
273};
274
275/**
276 * cpuset_for_each_child - traverse online children of a cpuset
277 * @child_cs: loop cursor pointing to the current child
278 * @pos_css: used for iteration
279 * @parent_cs: target cpuset to walk children of
280 *
281 * Walk @child_cs through the online children of @parent_cs. Must be used
282 * with RCU read locked.
283 */
284#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
285 css_for_each_child((pos_css), &(parent_cs)->css) \
286 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
287
288/**
289 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
290 * @des_cs: loop cursor pointing to the current descendant
291 * @pos_css: used for iteration
292 * @root_cs: target cpuset to walk ancestor of
293 *
294 * Walk @des_cs through the online descendants of @root_cs. Must be used
295 * with RCU read locked. The caller may modify @pos_css by calling
296 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
297 * iteration and the first node to be visited.
298 */
299#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
300 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
301 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
302
303/*
304 * There are two global locks guarding cpuset structures - cpuset_mutex and
305 * callback_lock. We also require taking task_lock() when dereferencing a
306 * task's cpuset pointer. See "The task_lock() exception", at the end of this
307 * comment.
308 *
309 * A task must hold both locks to modify cpusets. If a task holds
310 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
311 * is the only task able to also acquire callback_lock and be able to
312 * modify cpusets. It can perform various checks on the cpuset structure
313 * first, knowing nothing will change. It can also allocate memory while
314 * just holding cpuset_mutex. While it is performing these checks, various
315 * callback routines can briefly acquire callback_lock to query cpusets.
316 * Once it is ready to make the changes, it takes callback_lock, blocking
317 * everyone else.
318 *
319 * Calls to the kernel memory allocator can not be made while holding
320 * callback_lock, as that would risk double tripping on callback_lock
321 * from one of the callbacks into the cpuset code from within
322 * __alloc_pages().
323 *
324 * If a task is only holding callback_lock, then it has read-only
325 * access to cpusets.
326 *
327 * Now, the task_struct fields mems_allowed and mempolicy may be changed
328 * by other task, we use alloc_lock in the task_struct fields to protect
329 * them.
330 *
331 * The cpuset_common_file_read() handlers only hold callback_lock across
332 * small pieces of code, such as when reading out possibly multi-word
333 * cpumasks and nodemasks.
334 *
335 * Accessing a task's cpuset should be done in accordance with the
336 * guidelines for accessing subsystem state in kernel/cgroup.c
337 */
338
339DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
340static DEFINE_SPINLOCK(callback_lock);
341
342static struct workqueue_struct *cpuset_migrate_mm_wq;
343
344/*
345 * CPU / memory hotplug is handled asynchronously.
346 */
347static void cpuset_hotplug_workfn(struct work_struct *work);
348static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
349
350static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
351
352/*
353 * Cgroup v2 behavior is used when on default hierarchy or the
354 * cgroup_v2_mode flag is set.
355 */
356static inline bool is_in_v2_mode(void)
357{
358 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
359 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
360}
361
362/*
363 * Return in pmask the portion of a cpusets's cpus_allowed that
364 * are online. If none are online, walk up the cpuset hierarchy
365 * until we find one that does have some online cpus.
366 *
367 * One way or another, we guarantee to return some non-empty subset
368 * of cpu_online_mask.
369 *
370 * Call with callback_lock or cpuset_mutex held.
371 */
372static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
373{
374 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
375 cs = parent_cs(cs);
376 if (unlikely(!cs)) {
377 /*
378 * The top cpuset doesn't have any online cpu as a
379 * consequence of a race between cpuset_hotplug_work
380 * and cpu hotplug notifier. But we know the top
381 * cpuset's effective_cpus is on its way to to be
382 * identical to cpu_online_mask.
383 */
384 cpumask_copy(pmask, cpu_online_mask);
385 return;
386 }
387 }
388 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
389}
390
391/*
392 * Return in *pmask the portion of a cpusets's mems_allowed that
393 * are online, with memory. If none are online with memory, walk
394 * up the cpuset hierarchy until we find one that does have some
395 * online mems. The top cpuset always has some mems online.
396 *
397 * One way or another, we guarantee to return some non-empty subset
398 * of node_states[N_MEMORY].
399 *
400 * Call with callback_lock or cpuset_mutex held.
401 */
402static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
403{
404 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
405 cs = parent_cs(cs);
406 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
407}
408
409/*
410 * update task's spread flag if cpuset's page/slab spread flag is set
411 *
412 * Call with callback_lock or cpuset_mutex held.
413 */
414static void cpuset_update_task_spread_flag(struct cpuset *cs,
415 struct task_struct *tsk)
416{
417 if (is_spread_page(cs))
418 task_set_spread_page(tsk);
419 else
420 task_clear_spread_page(tsk);
421
422 if (is_spread_slab(cs))
423 task_set_spread_slab(tsk);
424 else
425 task_clear_spread_slab(tsk);
426}
427
428/*
429 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
430 *
431 * One cpuset is a subset of another if all its allowed CPUs and
432 * Memory Nodes are a subset of the other, and its exclusive flags
433 * are only set if the other's are set. Call holding cpuset_mutex.
434 */
435
436static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
437{
438 return cpumask_subset(p->cpus_requested, q->cpus_requested) &&
439 nodes_subset(p->mems_allowed, q->mems_allowed) &&
440 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
441 is_mem_exclusive(p) <= is_mem_exclusive(q);
442}
443
444/**
445 * alloc_cpumasks - allocate three cpumasks for cpuset
446 * @cs: the cpuset that have cpumasks to be allocated.
447 * @tmp: the tmpmasks structure pointer
448 * Return: 0 if successful, -ENOMEM otherwise.
449 *
450 * Only one of the two input arguments should be non-NULL.
451 */
452static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
453{
454 cpumask_var_t *pmask1, *pmask2, *pmask3;
455
456 if (cs) {
457 pmask1 = &cs->cpus_allowed;
458 pmask2 = &cs->effective_cpus;
459 pmask3 = &cs->subparts_cpus;
460 } else {
461 pmask1 = &tmp->new_cpus;
462 pmask2 = &tmp->addmask;
463 pmask3 = &tmp->delmask;
464 }
465
466 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
467 return -ENOMEM;
468
469 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
470 goto free_one;
471
472 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
473 goto free_two;
474
475 if (cs && !zalloc_cpumask_var(&cs->cpus_requested, GFP_KERNEL))
476 goto free_three;
477
478 return 0;
479
480free_three:
481 free_cpumask_var(*pmask3);
482free_two:
483 free_cpumask_var(*pmask2);
484free_one:
485 free_cpumask_var(*pmask1);
486 return -ENOMEM;
487}
488
489/**
490 * free_cpumasks - free cpumasks in a tmpmasks structure
491 * @cs: the cpuset that have cpumasks to be free.
492 * @tmp: the tmpmasks structure pointer
493 */
494static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
495{
496 if (cs) {
497 free_cpumask_var(cs->cpus_allowed);
498 free_cpumask_var(cs->cpus_requested);
499 free_cpumask_var(cs->effective_cpus);
500 free_cpumask_var(cs->subparts_cpus);
501 }
502 if (tmp) {
503 free_cpumask_var(tmp->new_cpus);
504 free_cpumask_var(tmp->addmask);
505 free_cpumask_var(tmp->delmask);
506 }
507}
508
509/**
510 * alloc_trial_cpuset - allocate a trial cpuset
511 * @cs: the cpuset that the trial cpuset duplicates
512 */
513static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
514{
515 struct cpuset *trial;
516
517 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
518 if (!trial)
519 return NULL;
520
521 if (alloc_cpumasks(trial, NULL)) {
522 kfree(trial);
523 return NULL;
524 }
525
526 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
527 cpumask_copy(trial->cpus_requested, cs->cpus_requested);
528 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
529 return trial;
530}
531
532/**
533 * free_cpuset - free the cpuset
534 * @cs: the cpuset to be freed
535 */
536static inline void free_cpuset(struct cpuset *cs)
537{
538 free_cpumasks(cs, NULL);
539 kfree(cs);
540}
541
542/*
543 * validate_change() - Used to validate that any proposed cpuset change
544 * follows the structural rules for cpusets.
545 *
546 * If we replaced the flag and mask values of the current cpuset
547 * (cur) with those values in the trial cpuset (trial), would
548 * our various subset and exclusive rules still be valid? Presumes
549 * cpuset_mutex held.
550 *
551 * 'cur' is the address of an actual, in-use cpuset. Operations
552 * such as list traversal that depend on the actual address of the
553 * cpuset in the list must use cur below, not trial.
554 *
555 * 'trial' is the address of bulk structure copy of cur, with
556 * perhaps one or more of the fields cpus_allowed, mems_allowed,
557 * or flags changed to new, trial values.
558 *
559 * Return 0 if valid, -errno if not.
560 */
561
562static int validate_change(struct cpuset *cur, struct cpuset *trial)
563{
564 struct cgroup_subsys_state *css;
565 struct cpuset *c, *par;
566 int ret;
567
568 rcu_read_lock();
569
570 /* Each of our child cpusets must be a subset of us */
571 ret = -EBUSY;
572 cpuset_for_each_child(c, css, cur)
573 if (!is_cpuset_subset(c, trial))
574 goto out;
575
576 /* Remaining checks don't apply to root cpuset */
577 ret = 0;
578 if (cur == &top_cpuset)
579 goto out;
580
581 par = parent_cs(cur);
582
583 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
584 ret = -EACCES;
585 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
586 goto out;
587
588 /*
589 * If either I or some sibling (!= me) is exclusive, we can't
590 * overlap
591 */
592 ret = -EINVAL;
593 cpuset_for_each_child(c, css, par) {
594 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
595 c != cur &&
596 cpumask_intersects(trial->cpus_requested, c->cpus_requested))
597 goto out;
598 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
599 c != cur &&
600 nodes_intersects(trial->mems_allowed, c->mems_allowed))
601 goto out;
602 }
603
604 /*
605 * Cpusets with tasks - existing or newly being attached - can't
606 * be changed to have empty cpus_allowed or mems_allowed.
607 */
608 ret = -ENOSPC;
609 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
610 if (!cpumask_empty(cur->cpus_allowed) &&
611 cpumask_empty(trial->cpus_allowed))
612 goto out;
613 if (!nodes_empty(cur->mems_allowed) &&
614 nodes_empty(trial->mems_allowed))
615 goto out;
616 }
617
618 /*
619 * We can't shrink if we won't have enough room for SCHED_DEADLINE
620 * tasks.
621 */
622 ret = -EBUSY;
623 if (is_cpu_exclusive(cur) &&
624 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
625 trial->cpus_allowed))
626 goto out;
627
628 ret = 0;
629out:
630 rcu_read_unlock();
631 return ret;
632}
633
634#ifdef CONFIG_SMP
635/*
636 * Helper routine for generate_sched_domains().
637 * Do cpusets a, b have overlapping effective cpus_allowed masks?
638 */
639static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
640{
641 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
642}
643
644static void
645update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
646{
647 if (dattr->relax_domain_level < c->relax_domain_level)
648 dattr->relax_domain_level = c->relax_domain_level;
649 return;
650}
651
652static void update_domain_attr_tree(struct sched_domain_attr *dattr,
653 struct cpuset *root_cs)
654{
655 struct cpuset *cp;
656 struct cgroup_subsys_state *pos_css;
657
658 rcu_read_lock();
659 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
660 /* skip the whole subtree if @cp doesn't have any CPU */
661 if (cpumask_empty(cp->cpus_allowed)) {
662 pos_css = css_rightmost_descendant(pos_css);
663 continue;
664 }
665
666 if (is_sched_load_balance(cp))
667 update_domain_attr(dattr, cp);
668 }
669 rcu_read_unlock();
670}
671
672/* Must be called with cpuset_mutex held. */
673static inline int nr_cpusets(void)
674{
675 /* jump label reference count + the top-level cpuset */
676 return static_key_count(&cpusets_enabled_key.key) + 1;
677}
678
679/*
680 * generate_sched_domains()
681 *
682 * This function builds a partial partition of the systems CPUs
683 * A 'partial partition' is a set of non-overlapping subsets whose
684 * union is a subset of that set.
685 * The output of this function needs to be passed to kernel/sched/core.c
686 * partition_sched_domains() routine, which will rebuild the scheduler's
687 * load balancing domains (sched domains) as specified by that partial
688 * partition.
689 *
690 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
691 * for a background explanation of this.
692 *
693 * Does not return errors, on the theory that the callers of this
694 * routine would rather not worry about failures to rebuild sched
695 * domains when operating in the severe memory shortage situations
696 * that could cause allocation failures below.
697 *
698 * Must be called with cpuset_mutex held.
699 *
700 * The three key local variables below are:
701 * cp - cpuset pointer, used (together with pos_css) to perform a
702 * top-down scan of all cpusets. For our purposes, rebuilding
703 * the schedulers sched domains, we can ignore !is_sched_load_
704 * balance cpusets.
705 * csa - (for CpuSet Array) Array of pointers to all the cpusets
706 * that need to be load balanced, for convenient iterative
707 * access by the subsequent code that finds the best partition,
708 * i.e the set of domains (subsets) of CPUs such that the
709 * cpus_allowed of every cpuset marked is_sched_load_balance
710 * is a subset of one of these domains, while there are as
711 * many such domains as possible, each as small as possible.
712 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
713 * the kernel/sched/core.c routine partition_sched_domains() in a
714 * convenient format, that can be easily compared to the prior
715 * value to determine what partition elements (sched domains)
716 * were changed (added or removed.)
717 *
718 * Finding the best partition (set of domains):
719 * The triple nested loops below over i, j, k scan over the
720 * load balanced cpusets (using the array of cpuset pointers in
721 * csa[]) looking for pairs of cpusets that have overlapping
722 * cpus_allowed, but which don't have the same 'pn' partition
723 * number and gives them in the same partition number. It keeps
724 * looping on the 'restart' label until it can no longer find
725 * any such pairs.
726 *
727 * The union of the cpus_allowed masks from the set of
728 * all cpusets having the same 'pn' value then form the one
729 * element of the partition (one sched domain) to be passed to
730 * partition_sched_domains().
731 */
732static int generate_sched_domains(cpumask_var_t **domains,
733 struct sched_domain_attr **attributes)
734{
735 struct cpuset *cp; /* top-down scan of cpusets */
736 struct cpuset **csa; /* array of all cpuset ptrs */
737 int csn; /* how many cpuset ptrs in csa so far */
738 int i, j, k; /* indices for partition finding loops */
739 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
740 struct sched_domain_attr *dattr; /* attributes for custom domains */
741 int ndoms = 0; /* number of sched domains in result */
742 int nslot; /* next empty doms[] struct cpumask slot */
743 struct cgroup_subsys_state *pos_css;
744 bool root_load_balance = is_sched_load_balance(&top_cpuset);
745
746 doms = NULL;
747 dattr = NULL;
748 csa = NULL;
749
750 /* Special case for the 99% of systems with one, full, sched domain */
751 if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
752 ndoms = 1;
753 doms = alloc_sched_domains(ndoms);
754 if (!doms)
755 goto done;
756
757 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
758 if (dattr) {
759 *dattr = SD_ATTR_INIT;
760 update_domain_attr_tree(dattr, &top_cpuset);
761 }
762 cpumask_and(doms[0], top_cpuset.effective_cpus,
763 housekeeping_cpumask(HK_FLAG_DOMAIN));
764
765 goto done;
766 }
767
768 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
769 if (!csa)
770 goto done;
771 csn = 0;
772
773 rcu_read_lock();
774 if (root_load_balance)
775 csa[csn++] = &top_cpuset;
776 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
777 if (cp == &top_cpuset)
778 continue;
779 /*
780 * Continue traversing beyond @cp iff @cp has some CPUs and
781 * isn't load balancing. The former is obvious. The
782 * latter: All child cpusets contain a subset of the
783 * parent's cpus, so just skip them, and then we call
784 * update_domain_attr_tree() to calc relax_domain_level of
785 * the corresponding sched domain.
786 *
787 * If root is load-balancing, we can skip @cp if it
788 * is a subset of the root's effective_cpus.
789 */
790 if (!cpumask_empty(cp->cpus_allowed) &&
791 !(is_sched_load_balance(cp) &&
792 cpumask_intersects(cp->cpus_allowed,
793 housekeeping_cpumask(HK_FLAG_DOMAIN))))
794 continue;
795
796 if (root_load_balance &&
797 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
798 continue;
799
800 if (is_sched_load_balance(cp) &&
801 !cpumask_empty(cp->effective_cpus))
802 csa[csn++] = cp;
803
804 /* skip @cp's subtree if not a partition root */
805 if (!is_partition_root(cp))
806 pos_css = css_rightmost_descendant(pos_css);
807 }
808 rcu_read_unlock();
809
810 for (i = 0; i < csn; i++)
811 csa[i]->pn = i;
812 ndoms = csn;
813
814restart:
815 /* Find the best partition (set of sched domains) */
816 for (i = 0; i < csn; i++) {
817 struct cpuset *a = csa[i];
818 int apn = a->pn;
819
820 for (j = 0; j < csn; j++) {
821 struct cpuset *b = csa[j];
822 int bpn = b->pn;
823
824 if (apn != bpn && cpusets_overlap(a, b)) {
825 for (k = 0; k < csn; k++) {
826 struct cpuset *c = csa[k];
827
828 if (c->pn == bpn)
829 c->pn = apn;
830 }
831 ndoms--; /* one less element */
832 goto restart;
833 }
834 }
835 }
836
837 /*
838 * Now we know how many domains to create.
839 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
840 */
841 doms = alloc_sched_domains(ndoms);
842 if (!doms)
843 goto done;
844
845 /*
846 * The rest of the code, including the scheduler, can deal with
847 * dattr==NULL case. No need to abort if alloc fails.
848 */
849 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
850 GFP_KERNEL);
851
852 for (nslot = 0, i = 0; i < csn; i++) {
853 struct cpuset *a = csa[i];
854 struct cpumask *dp;
855 int apn = a->pn;
856
857 if (apn < 0) {
858 /* Skip completed partitions */
859 continue;
860 }
861
862 dp = doms[nslot];
863
864 if (nslot == ndoms) {
865 static int warnings = 10;
866 if (warnings) {
867 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
868 nslot, ndoms, csn, i, apn);
869 warnings--;
870 }
871 continue;
872 }
873
874 cpumask_clear(dp);
875 if (dattr)
876 *(dattr + nslot) = SD_ATTR_INIT;
877 for (j = i; j < csn; j++) {
878 struct cpuset *b = csa[j];
879
880 if (apn == b->pn) {
881 cpumask_or(dp, dp, b->effective_cpus);
882 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
883 if (dattr)
884 update_domain_attr_tree(dattr + nslot, b);
885
886 /* Done with this partition */
887 b->pn = -1;
888 }
889 }
890 nslot++;
891 }
892 BUG_ON(nslot != ndoms);
893
894done:
895 kfree(csa);
896
897 /*
898 * Fallback to the default domain if kmalloc() failed.
899 * See comments in partition_sched_domains().
900 */
901 if (doms == NULL)
902 ndoms = 1;
903
904 *domains = doms;
905 *attributes = dattr;
906 return ndoms;
907}
908
909static void update_tasks_root_domain(struct cpuset *cs)
910{
911 struct css_task_iter it;
912 struct task_struct *task;
913
914 css_task_iter_start(&cs->css, 0, &it);
915
916 while ((task = css_task_iter_next(&it)))
917 dl_add_task_root_domain(task);
918
919 css_task_iter_end(&it);
920}
921
922static void rebuild_root_domains(void)
923{
924 struct cpuset *cs = NULL;
925 struct cgroup_subsys_state *pos_css;
926
927 percpu_rwsem_assert_held(&cpuset_rwsem);
928 lockdep_assert_cpus_held();
929 lockdep_assert_held(&sched_domains_mutex);
930
931 cgroup_enable_task_cg_lists();
932
933 rcu_read_lock();
934
935 /*
936 * Clear default root domain DL accounting, it will be computed again
937 * if a task belongs to it.
938 */
939 dl_clear_root_domain(&def_root_domain);
940
941 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
942
943 if (cpumask_empty(cs->effective_cpus)) {
944 pos_css = css_rightmost_descendant(pos_css);
945 continue;
946 }
947
948 css_get(&cs->css);
949
950 rcu_read_unlock();
951
952 update_tasks_root_domain(cs);
953
954 rcu_read_lock();
955 css_put(&cs->css);
956 }
957 rcu_read_unlock();
958}
959
960static void
961partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
962 struct sched_domain_attr *dattr_new)
963{
964 mutex_lock(&sched_domains_mutex);
965 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
966 rebuild_root_domains();
967 mutex_unlock(&sched_domains_mutex);
968}
969
970/*
971 * Rebuild scheduler domains.
972 *
973 * If the flag 'sched_load_balance' of any cpuset with non-empty
974 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
975 * which has that flag enabled, or if any cpuset with a non-empty
976 * 'cpus' is removed, then call this routine to rebuild the
977 * scheduler's dynamic sched domains.
978 *
979 * Call with cpuset_mutex held. Takes get_online_cpus().
980 */
981static void rebuild_sched_domains_locked(void)
982{
983 struct cgroup_subsys_state *pos_css;
984 struct sched_domain_attr *attr;
985 cpumask_var_t *doms;
986 struct cpuset *cs;
987 int ndoms;
988
989 lockdep_assert_cpus_held();
990 percpu_rwsem_assert_held(&cpuset_rwsem);
991
992 /*
993 * If we have raced with CPU hotplug, return early to avoid
994 * passing doms with offlined cpu to partition_sched_domains().
995 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
996 *
997 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
998 * should be the same as the active CPUs, so checking only top_cpuset
999 * is enough to detect racing CPU offlines.
1000 */
1001 if (!top_cpuset.nr_subparts_cpus &&
1002 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1003 return;
1004
1005 /*
1006 * With subpartition CPUs, however, the effective CPUs of a partition
1007 * root should be only a subset of the active CPUs. Since a CPU in any
1008 * partition root could be offlined, all must be checked.
1009 */
1010 if (top_cpuset.nr_subparts_cpus) {
1011 rcu_read_lock();
1012 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1013 if (!is_partition_root(cs)) {
1014 pos_css = css_rightmost_descendant(pos_css);
1015 continue;
1016 }
1017 if (!cpumask_subset(cs->effective_cpus,
1018 cpu_active_mask)) {
1019 rcu_read_unlock();
1020 return;
1021 }
1022 }
1023 rcu_read_unlock();
1024 }
1025
1026 /* Generate domain masks and attrs */
1027 ndoms = generate_sched_domains(&doms, &attr);
1028
1029 /* Have scheduler rebuild the domains */
1030 partition_and_rebuild_sched_domains(ndoms, doms, attr);
1031}
1032#else /* !CONFIG_SMP */
1033static void rebuild_sched_domains_locked(void)
1034{
1035}
1036#endif /* CONFIG_SMP */
1037
1038void rebuild_sched_domains(void)
1039{
1040 get_online_cpus();
1041 percpu_down_write(&cpuset_rwsem);
1042 rebuild_sched_domains_locked();
1043 percpu_up_write(&cpuset_rwsem);
1044 put_online_cpus();
1045}
1046
1047/**
1048 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1049 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1050 *
1051 * Iterate through each task of @cs updating its cpus_allowed to the
1052 * effective cpuset's. As this function is called with cpuset_mutex held,
1053 * cpuset membership stays stable.
1054 */
1055static void update_tasks_cpumask(struct cpuset *cs)
1056{
1057 struct css_task_iter it;
1058 struct task_struct *task;
1059 bool top_cs = cs == &top_cpuset;
1060
1061 css_task_iter_start(&cs->css, 0, &it);
1062 while ((task = css_task_iter_next(&it))) {
1063 /*
1064 * Percpu kthreads in top_cpuset are ignored
1065 */
1066 if (top_cs && (task->flags & PF_KTHREAD) &&
1067 kthread_is_per_cpu(task))
1068 continue;
1069 set_cpus_allowed_ptr(task, cs->effective_cpus);
1070 }
1071 css_task_iter_end(&it);
1072}
1073
1074/**
1075 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1076 * @new_cpus: the temp variable for the new effective_cpus mask
1077 * @cs: the cpuset the need to recompute the new effective_cpus mask
1078 * @parent: the parent cpuset
1079 *
1080 * If the parent has subpartition CPUs, include them in the list of
1081 * allowable CPUs in computing the new effective_cpus mask. Since offlined
1082 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1083 * to mask those out.
1084 */
1085static void compute_effective_cpumask(struct cpumask *new_cpus,
1086 struct cpuset *cs, struct cpuset *parent)
1087{
1088 if (parent->nr_subparts_cpus) {
1089 cpumask_or(new_cpus, parent->effective_cpus,
1090 parent->subparts_cpus);
1091 cpumask_and(new_cpus, new_cpus, cs->cpus_requested);
1092 cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1093 } else {
1094 cpumask_and(new_cpus, cs->cpus_requested, parent_cs(cs)->effective_cpus);
1095 }
1096}
1097
1098/*
1099 * Commands for update_parent_subparts_cpumask
1100 */
1101enum subparts_cmd {
1102 partcmd_enable, /* Enable partition root */
1103 partcmd_disable, /* Disable partition root */
1104 partcmd_update, /* Update parent's subparts_cpus */
1105};
1106
1107/**
1108 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1109 * @cpuset: The cpuset that requests change in partition root state
1110 * @cmd: Partition root state change command
1111 * @newmask: Optional new cpumask for partcmd_update
1112 * @tmp: Temporary addmask and delmask
1113 * Return: 0, 1 or an error code
1114 *
1115 * For partcmd_enable, the cpuset is being transformed from a non-partition
1116 * root to a partition root. The cpus_allowed mask of the given cpuset will
1117 * be put into parent's subparts_cpus and taken away from parent's
1118 * effective_cpus. The function will return 0 if all the CPUs listed in
1119 * cpus_allowed can be granted or an error code will be returned.
1120 *
1121 * For partcmd_disable, the cpuset is being transofrmed from a partition
1122 * root back to a non-partition root. any CPUs in cpus_allowed that are in
1123 * parent's subparts_cpus will be taken away from that cpumask and put back
1124 * into parent's effective_cpus. 0 should always be returned.
1125 *
1126 * For partcmd_update, if the optional newmask is specified, the cpu
1127 * list is to be changed from cpus_allowed to newmask. Otherwise,
1128 * cpus_allowed is assumed to remain the same. The cpuset should either
1129 * be a partition root or an invalid partition root. The partition root
1130 * state may change if newmask is NULL and none of the requested CPUs can
1131 * be granted by the parent. The function will return 1 if changes to
1132 * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1133 * Error code should only be returned when newmask is non-NULL.
1134 *
1135 * The partcmd_enable and partcmd_disable commands are used by
1136 * update_prstate(). The partcmd_update command is used by
1137 * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1138 * newmask set.
1139 *
1140 * The checking is more strict when enabling partition root than the
1141 * other two commands.
1142 *
1143 * Because of the implicit cpu exclusive nature of a partition root,
1144 * cpumask changes that violates the cpu exclusivity rule will not be
1145 * permitted when checked by validate_change(). The validate_change()
1146 * function will also prevent any changes to the cpu list if it is not
1147 * a superset of children's cpu lists.
1148 */
1149static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1150 struct cpumask *newmask,
1151 struct tmpmasks *tmp)
1152{
1153 struct cpuset *parent = parent_cs(cpuset);
1154 int adding; /* Moving cpus from effective_cpus to subparts_cpus */
1155 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */
1156 bool part_error = false; /* Partition error? */
1157
1158 percpu_rwsem_assert_held(&cpuset_rwsem);
1159
1160 /*
1161 * The parent must be a partition root.
1162 * The new cpumask, if present, or the current cpus_allowed must
1163 * not be empty.
1164 */
1165 if (!is_partition_root(parent) ||
1166 (newmask && cpumask_empty(newmask)) ||
1167 (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1168 return -EINVAL;
1169
1170 /*
1171 * Enabling/disabling partition root is not allowed if there are
1172 * online children.
1173 */
1174 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1175 return -EBUSY;
1176
1177 /*
1178 * Enabling partition root is not allowed if not all the CPUs
1179 * can be granted from parent's effective_cpus or at least one
1180 * CPU will be left after that.
1181 */
1182 if ((cmd == partcmd_enable) &&
1183 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1184 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1185 return -EINVAL;
1186
1187 /*
1188 * A cpumask update cannot make parent's effective_cpus become empty.
1189 */
1190 adding = deleting = false;
1191 if (cmd == partcmd_enable) {
1192 cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1193 adding = true;
1194 } else if (cmd == partcmd_disable) {
1195 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1196 parent->subparts_cpus);
1197 } else if (newmask) {
1198 /*
1199 * partcmd_update with newmask:
1200 *
1201 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1202 * addmask = newmask & parent->effective_cpus
1203 * & ~parent->subparts_cpus
1204 */
1205 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1206 deleting = cpumask_and(tmp->delmask, tmp->delmask,
1207 parent->subparts_cpus);
1208
1209 cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1210 adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1211 parent->subparts_cpus);
1212 /*
1213 * Return error if the new effective_cpus could become empty.
1214 */
1215 if (adding &&
1216 cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1217 if (!deleting)
1218 return -EINVAL;
1219 /*
1220 * As some of the CPUs in subparts_cpus might have
1221 * been offlined, we need to compute the real delmask
1222 * to confirm that.
1223 */
1224 if (!cpumask_and(tmp->addmask, tmp->delmask,
1225 cpu_active_mask))
1226 return -EINVAL;
1227 cpumask_copy(tmp->addmask, parent->effective_cpus);
1228 }
1229 } else {
1230 /*
1231 * partcmd_update w/o newmask:
1232 *
1233 * addmask = cpus_allowed & parent->effectiveb_cpus
1234 *
1235 * Note that parent's subparts_cpus may have been
1236 * pre-shrunk in case there is a change in the cpu list.
1237 * So no deletion is needed.
1238 */
1239 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1240 parent->effective_cpus);
1241 part_error = cpumask_equal(tmp->addmask,
1242 parent->effective_cpus);
1243 }
1244
1245 if (cmd == partcmd_update) {
1246 int prev_prs = cpuset->partition_root_state;
1247
1248 /*
1249 * Check for possible transition between PRS_ENABLED
1250 * and PRS_ERROR.
1251 */
1252 switch (cpuset->partition_root_state) {
1253 case PRS_ENABLED:
1254 if (part_error)
1255 cpuset->partition_root_state = PRS_ERROR;
1256 break;
1257 case PRS_ERROR:
1258 if (!part_error)
1259 cpuset->partition_root_state = PRS_ENABLED;
1260 break;
1261 }
1262 /*
1263 * Set part_error if previously in invalid state.
1264 */
1265 part_error = (prev_prs == PRS_ERROR);
1266 }
1267
1268 if (!part_error && (cpuset->partition_root_state == PRS_ERROR))
1269 return 0; /* Nothing need to be done */
1270
1271 if (cpuset->partition_root_state == PRS_ERROR) {
1272 /*
1273 * Remove all its cpus from parent's subparts_cpus.
1274 */
1275 adding = false;
1276 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1277 parent->subparts_cpus);
1278 }
1279
1280 if (!adding && !deleting)
1281 return 0;
1282
1283 /*
1284 * Change the parent's subparts_cpus.
1285 * Newly added CPUs will be removed from effective_cpus and
1286 * newly deleted ones will be added back to effective_cpus.
1287 */
1288 spin_lock_irq(&callback_lock);
1289 if (adding) {
1290 cpumask_or(parent->subparts_cpus,
1291 parent->subparts_cpus, tmp->addmask);
1292 cpumask_andnot(parent->effective_cpus,
1293 parent->effective_cpus, tmp->addmask);
1294 }
1295 if (deleting) {
1296 cpumask_andnot(parent->subparts_cpus,
1297 parent->subparts_cpus, tmp->delmask);
1298 /*
1299 * Some of the CPUs in subparts_cpus might have been offlined.
1300 */
1301 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1302 cpumask_or(parent->effective_cpus,
1303 parent->effective_cpus, tmp->delmask);
1304 }
1305
1306 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1307 spin_unlock_irq(&callback_lock);
1308
1309 return cmd == partcmd_update;
1310}
1311
1312/*
1313 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1314 * @cs: the cpuset to consider
1315 * @tmp: temp variables for calculating effective_cpus & partition setup
1316 *
1317 * When congifured cpumask is changed, the effective cpumasks of this cpuset
1318 * and all its descendants need to be updated.
1319 *
1320 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1321 *
1322 * Called with cpuset_mutex held
1323 */
1324static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1325{
1326 struct cpuset *cp;
1327 struct cgroup_subsys_state *pos_css;
1328 bool need_rebuild_sched_domains = false;
1329
1330 rcu_read_lock();
1331 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1332 struct cpuset *parent = parent_cs(cp);
1333
1334 compute_effective_cpumask(tmp->new_cpus, cp, parent);
1335
1336 /*
1337 * If it becomes empty, inherit the effective mask of the
1338 * parent, which is guaranteed to have some CPUs.
1339 */
1340 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1341 cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1342 if (!cp->use_parent_ecpus) {
1343 cp->use_parent_ecpus = true;
1344 parent->child_ecpus_count++;
1345 }
1346 } else if (cp->use_parent_ecpus) {
1347 cp->use_parent_ecpus = false;
1348 WARN_ON_ONCE(!parent->child_ecpus_count);
1349 parent->child_ecpus_count--;
1350 }
1351
1352 /*
1353 * Skip the whole subtree if the cpumask remains the same
1354 * and has no partition root state.
1355 */
1356 if (!cp->partition_root_state &&
1357 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1358 pos_css = css_rightmost_descendant(pos_css);
1359 continue;
1360 }
1361
1362 /*
1363 * update_parent_subparts_cpumask() should have been called
1364 * for cs already in update_cpumask(). We should also call
1365 * update_tasks_cpumask() again for tasks in the parent
1366 * cpuset if the parent's subparts_cpus changes.
1367 */
1368 if ((cp != cs) && cp->partition_root_state) {
1369 switch (parent->partition_root_state) {
1370 case PRS_DISABLED:
1371 /*
1372 * If parent is not a partition root or an
1373 * invalid partition root, clear the state
1374 * state and the CS_CPU_EXCLUSIVE flag.
1375 */
1376 WARN_ON_ONCE(cp->partition_root_state
1377 != PRS_ERROR);
1378 cp->partition_root_state = 0;
1379
1380 /*
1381 * clear_bit() is an atomic operation and
1382 * readers aren't interested in the state
1383 * of CS_CPU_EXCLUSIVE anyway. So we can
1384 * just update the flag without holding
1385 * the callback_lock.
1386 */
1387 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1388 break;
1389
1390 case PRS_ENABLED:
1391 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1392 update_tasks_cpumask(parent);
1393 break;
1394
1395 case PRS_ERROR:
1396 /*
1397 * When parent is invalid, it has to be too.
1398 */
1399 cp->partition_root_state = PRS_ERROR;
1400 if (cp->nr_subparts_cpus) {
1401 cp->nr_subparts_cpus = 0;
1402 cpumask_clear(cp->subparts_cpus);
1403 }
1404 break;
1405 }
1406 }
1407
1408 if (!css_tryget_online(&cp->css))
1409 continue;
1410 rcu_read_unlock();
1411
1412 spin_lock_irq(&callback_lock);
1413
1414 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1415 if (cp->nr_subparts_cpus &&
1416 (cp->partition_root_state != PRS_ENABLED)) {
1417 cp->nr_subparts_cpus = 0;
1418 cpumask_clear(cp->subparts_cpus);
1419 } else if (cp->nr_subparts_cpus) {
1420 /*
1421 * Make sure that effective_cpus & subparts_cpus
1422 * are mutually exclusive.
1423 *
1424 * In the unlikely event that effective_cpus
1425 * becomes empty. we clear cp->nr_subparts_cpus and
1426 * let its child partition roots to compete for
1427 * CPUs again.
1428 */
1429 cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1430 cp->subparts_cpus);
1431 if (cpumask_empty(cp->effective_cpus)) {
1432 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1433 cpumask_clear(cp->subparts_cpus);
1434 cp->nr_subparts_cpus = 0;
1435 } else if (!cpumask_subset(cp->subparts_cpus,
1436 tmp->new_cpus)) {
1437 cpumask_andnot(cp->subparts_cpus,
1438 cp->subparts_cpus, tmp->new_cpus);
1439 cp->nr_subparts_cpus
1440 = cpumask_weight(cp->subparts_cpus);
1441 }
1442 }
1443 spin_unlock_irq(&callback_lock);
1444
1445 WARN_ON(!is_in_v2_mode() &&
1446 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1447
1448 update_tasks_cpumask(cp);
1449
1450 /*
1451 * On legacy hierarchy, if the effective cpumask of any non-
1452 * empty cpuset is changed, we need to rebuild sched domains.
1453 * On default hierarchy, the cpuset needs to be a partition
1454 * root as well.
1455 */
1456 if (!cpumask_empty(cp->cpus_allowed) &&
1457 is_sched_load_balance(cp) &&
1458 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1459 is_partition_root(cp)))
1460 need_rebuild_sched_domains = true;
1461
1462 rcu_read_lock();
1463 css_put(&cp->css);
1464 }
1465 rcu_read_unlock();
1466
1467 if (need_rebuild_sched_domains)
1468 rebuild_sched_domains_locked();
1469}
1470
1471/**
1472 * update_sibling_cpumasks - Update siblings cpumasks
1473 * @parent: Parent cpuset
1474 * @cs: Current cpuset
1475 * @tmp: Temp variables
1476 */
1477static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1478 struct tmpmasks *tmp)
1479{
1480 struct cpuset *sibling;
1481 struct cgroup_subsys_state *pos_css;
1482
1483 percpu_rwsem_assert_held(&cpuset_rwsem);
1484
1485 /*
1486 * Check all its siblings and call update_cpumasks_hier()
1487 * if their use_parent_ecpus flag is set in order for them
1488 * to use the right effective_cpus value.
1489 *
1490 * The update_cpumasks_hier() function may sleep. So we have to
1491 * release the RCU read lock before calling it.
1492 */
1493 rcu_read_lock();
1494 cpuset_for_each_child(sibling, pos_css, parent) {
1495 if (sibling == cs)
1496 continue;
1497 if (!sibling->use_parent_ecpus)
1498 continue;
1499 if (!css_tryget_online(&sibling->css))
1500 continue;
1501
1502 rcu_read_unlock();
1503 update_cpumasks_hier(sibling, tmp);
1504 rcu_read_lock();
1505 css_put(&sibling->css);
1506 }
1507 rcu_read_unlock();
1508}
1509
1510/**
1511 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1512 * @cs: the cpuset to consider
1513 * @trialcs: trial cpuset
1514 * @buf: buffer of cpu numbers written to this cpuset
1515 */
1516static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1517 const char *buf)
1518{
1519 int retval;
1520 struct tmpmasks tmp;
1521
1522 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1523 if (cs == &top_cpuset)
1524 return -EACCES;
1525
1526 /*
1527 * An empty cpus_requested is ok only if the cpuset has no tasks.
1528 * Since cpulist_parse() fails on an empty mask, we special case
1529 * that parsing. The validate_change() call ensures that cpusets
1530 * with tasks have cpus.
1531 */
1532 if (!*buf) {
1533 cpumask_clear(trialcs->cpus_requested);
1534 } else {
1535 retval = cpulist_parse(buf, trialcs->cpus_requested);
1536 if (retval < 0)
1537 return retval;
1538 }
1539
1540 if (!cpumask_subset(trialcs->cpus_requested, cpu_present_mask))
1541 return -EINVAL;
1542
1543 cpumask_and(trialcs->cpus_allowed, trialcs->cpus_requested, cpu_active_mask);
1544
1545 /* Nothing to do if the cpus didn't change */
1546 if (cpumask_equal(cs->cpus_requested, trialcs->cpus_requested))
1547 return 0;
1548
1549 retval = validate_change(cs, trialcs);
1550 if (retval < 0)
1551 return retval;
1552
1553#ifdef CONFIG_CPUMASK_OFFSTACK
1554 /*
1555 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1556 * to allocated cpumasks.
1557 */
1558 tmp.addmask = trialcs->subparts_cpus;
1559 tmp.delmask = trialcs->effective_cpus;
1560 tmp.new_cpus = trialcs->cpus_allowed;
1561#endif
1562
1563 if (cs->partition_root_state) {
1564 /* Cpumask of a partition root cannot be empty */
1565 if (cpumask_empty(trialcs->cpus_allowed))
1566 return -EINVAL;
1567 if (update_parent_subparts_cpumask(cs, partcmd_update,
1568 trialcs->cpus_allowed, &tmp) < 0)
1569 return -EINVAL;
1570 }
1571
1572 spin_lock_irq(&callback_lock);
1573 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1574 cpumask_copy(cs->cpus_requested, trialcs->cpus_requested);
1575
1576 /*
1577 * Make sure that subparts_cpus is a subset of cpus_allowed.
1578 */
1579 if (cs->nr_subparts_cpus) {
1580 cpumask_and(cs->subparts_cpus, cs->subparts_cpus, cs->cpus_allowed);
1581 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1582 }
1583 spin_unlock_irq(&callback_lock);
1584
1585 update_cpumasks_hier(cs, &tmp);
1586
1587 if (cs->partition_root_state) {
1588 struct cpuset *parent = parent_cs(cs);
1589
1590 /*
1591 * For partition root, update the cpumasks of sibling
1592 * cpusets if they use parent's effective_cpus.
1593 */
1594 if (parent->child_ecpus_count)
1595 update_sibling_cpumasks(parent, cs, &tmp);
1596 }
1597 return 0;
1598}
1599
1600/*
1601 * Migrate memory region from one set of nodes to another. This is
1602 * performed asynchronously as it can be called from process migration path
1603 * holding locks involved in process management. All mm migrations are
1604 * performed in the queued order and can be waited for by flushing
1605 * cpuset_migrate_mm_wq.
1606 */
1607
1608struct cpuset_migrate_mm_work {
1609 struct work_struct work;
1610 struct mm_struct *mm;
1611 nodemask_t from;
1612 nodemask_t to;
1613};
1614
1615static void cpuset_migrate_mm_workfn(struct work_struct *work)
1616{
1617 struct cpuset_migrate_mm_work *mwork =
1618 container_of(work, struct cpuset_migrate_mm_work, work);
1619
1620 /* on a wq worker, no need to worry about %current's mems_allowed */
1621 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1622 mmput(mwork->mm);
1623 kfree(mwork);
1624}
1625
1626static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1627 const nodemask_t *to)
1628{
1629 struct cpuset_migrate_mm_work *mwork;
1630
1631 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1632 if (mwork) {
1633 mwork->mm = mm;
1634 mwork->from = *from;
1635 mwork->to = *to;
1636 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1637 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1638 } else {
1639 mmput(mm);
1640 }
1641}
1642
1643static void cpuset_post_attach(void)
1644{
1645 flush_workqueue(cpuset_migrate_mm_wq);
1646}
1647
1648/*
1649 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1650 * @tsk: the task to change
1651 * @newmems: new nodes that the task will be set
1652 *
1653 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1654 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1655 * parallel, it might temporarily see an empty intersection, which results in
1656 * a seqlock check and retry before OOM or allocation failure.
1657 */
1658static void cpuset_change_task_nodemask(struct task_struct *tsk,
1659 nodemask_t *newmems)
1660{
1661 task_lock(tsk);
1662
1663 local_irq_disable();
1664 write_seqcount_begin(&tsk->mems_allowed_seq);
1665
1666 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1667 mpol_rebind_task(tsk, newmems);
1668 tsk->mems_allowed = *newmems;
1669
1670 write_seqcount_end(&tsk->mems_allowed_seq);
1671 local_irq_enable();
1672
1673 task_unlock(tsk);
1674}
1675
1676static void *cpuset_being_rebound;
1677
1678/**
1679 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1680 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1681 *
1682 * Iterate through each task of @cs updating its mems_allowed to the
1683 * effective cpuset's. As this function is called with cpuset_mutex held,
1684 * cpuset membership stays stable.
1685 */
1686static void update_tasks_nodemask(struct cpuset *cs)
1687{
1688 static nodemask_t newmems; /* protected by cpuset_mutex */
1689 struct css_task_iter it;
1690 struct task_struct *task;
1691
1692 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1693
1694 guarantee_online_mems(cs, &newmems);
1695
1696 /*
1697 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1698 * take while holding tasklist_lock. Forks can happen - the
1699 * mpol_dup() cpuset_being_rebound check will catch such forks,
1700 * and rebind their vma mempolicies too. Because we still hold
1701 * the global cpuset_mutex, we know that no other rebind effort
1702 * will be contending for the global variable cpuset_being_rebound.
1703 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1704 * is idempotent. Also migrate pages in each mm to new nodes.
1705 */
1706 css_task_iter_start(&cs->css, 0, &it);
1707 while ((task = css_task_iter_next(&it))) {
1708 struct mm_struct *mm;
1709 bool migrate;
1710
1711 cpuset_change_task_nodemask(task, &newmems);
1712
1713 mm = get_task_mm(task);
1714 if (!mm)
1715 continue;
1716
1717 migrate = is_memory_migrate(cs);
1718
1719 mpol_rebind_mm(mm, &cs->mems_allowed);
1720 if (migrate)
1721 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1722 else
1723 mmput(mm);
1724 }
1725 css_task_iter_end(&it);
1726
1727 /*
1728 * All the tasks' nodemasks have been updated, update
1729 * cs->old_mems_allowed.
1730 */
1731 cs->old_mems_allowed = newmems;
1732
1733 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1734 cpuset_being_rebound = NULL;
1735}
1736
1737/*
1738 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1739 * @cs: the cpuset to consider
1740 * @new_mems: a temp variable for calculating new effective_mems
1741 *
1742 * When configured nodemask is changed, the effective nodemasks of this cpuset
1743 * and all its descendants need to be updated.
1744 *
1745 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1746 *
1747 * Called with cpuset_mutex held
1748 */
1749static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1750{
1751 struct cpuset *cp;
1752 struct cgroup_subsys_state *pos_css;
1753
1754 rcu_read_lock();
1755 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1756 struct cpuset *parent = parent_cs(cp);
1757
1758 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1759
1760 /*
1761 * If it becomes empty, inherit the effective mask of the
1762 * parent, which is guaranteed to have some MEMs.
1763 */
1764 if (is_in_v2_mode() && nodes_empty(*new_mems))
1765 *new_mems = parent->effective_mems;
1766
1767 /* Skip the whole subtree if the nodemask remains the same. */
1768 if (nodes_equal(*new_mems, cp->effective_mems)) {
1769 pos_css = css_rightmost_descendant(pos_css);
1770 continue;
1771 }
1772
1773 if (!css_tryget_online(&cp->css))
1774 continue;
1775 rcu_read_unlock();
1776
1777 spin_lock_irq(&callback_lock);
1778 cp->effective_mems = *new_mems;
1779 spin_unlock_irq(&callback_lock);
1780
1781 WARN_ON(!is_in_v2_mode() &&
1782 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1783
1784 update_tasks_nodemask(cp);
1785
1786 rcu_read_lock();
1787 css_put(&cp->css);
1788 }
1789 rcu_read_unlock();
1790}
1791
1792/*
1793 * Handle user request to change the 'mems' memory placement
1794 * of a cpuset. Needs to validate the request, update the
1795 * cpusets mems_allowed, and for each task in the cpuset,
1796 * update mems_allowed and rebind task's mempolicy and any vma
1797 * mempolicies and if the cpuset is marked 'memory_migrate',
1798 * migrate the tasks pages to the new memory.
1799 *
1800 * Call with cpuset_mutex held. May take callback_lock during call.
1801 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1802 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1803 * their mempolicies to the cpusets new mems_allowed.
1804 */
1805static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1806 const char *buf)
1807{
1808 int retval;
1809
1810 /*
1811 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1812 * it's read-only
1813 */
1814 if (cs == &top_cpuset) {
1815 retval = -EACCES;
1816 goto done;
1817 }
1818
1819 /*
1820 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1821 * Since nodelist_parse() fails on an empty mask, we special case
1822 * that parsing. The validate_change() call ensures that cpusets
1823 * with tasks have memory.
1824 */
1825 if (!*buf) {
1826 nodes_clear(trialcs->mems_allowed);
1827 } else {
1828 retval = nodelist_parse(buf, trialcs->mems_allowed);
1829 if (retval < 0)
1830 goto done;
1831
1832 if (!nodes_subset(trialcs->mems_allowed,
1833 top_cpuset.mems_allowed)) {
1834 retval = -EINVAL;
1835 goto done;
1836 }
1837 }
1838
1839 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1840 retval = 0; /* Too easy - nothing to do */
1841 goto done;
1842 }
1843 retval = validate_change(cs, trialcs);
1844 if (retval < 0)
1845 goto done;
1846
1847 spin_lock_irq(&callback_lock);
1848 cs->mems_allowed = trialcs->mems_allowed;
1849 spin_unlock_irq(&callback_lock);
1850
1851 /* use trialcs->mems_allowed as a temp variable */
1852 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1853done:
1854 return retval;
1855}
1856
1857bool current_cpuset_is_being_rebound(void)
1858{
1859 bool ret;
1860
1861 rcu_read_lock();
1862 ret = task_cs(current) == cpuset_being_rebound;
1863 rcu_read_unlock();
1864
1865 return ret;
1866}
1867
1868static int update_relax_domain_level(struct cpuset *cs, s64 val)
1869{
1870#ifdef CONFIG_SMP
1871 if (val < -1 || val > sched_domain_level_max + 1)
1872 return -EINVAL;
1873#endif
1874
1875 if (val != cs->relax_domain_level) {
1876 cs->relax_domain_level = val;
1877 if (!cpumask_empty(cs->cpus_allowed) &&
1878 is_sched_load_balance(cs))
1879 rebuild_sched_domains_locked();
1880 }
1881
1882 return 0;
1883}
1884
1885/**
1886 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1887 * @cs: the cpuset in which each task's spread flags needs to be changed
1888 *
1889 * Iterate through each task of @cs updating its spread flags. As this
1890 * function is called with cpuset_mutex held, cpuset membership stays
1891 * stable.
1892 */
1893static void update_tasks_flags(struct cpuset *cs)
1894{
1895 struct css_task_iter it;
1896 struct task_struct *task;
1897
1898 css_task_iter_start(&cs->css, 0, &it);
1899 while ((task = css_task_iter_next(&it)))
1900 cpuset_update_task_spread_flag(cs, task);
1901 css_task_iter_end(&it);
1902}
1903
1904/*
1905 * update_flag - read a 0 or a 1 in a file and update associated flag
1906 * bit: the bit to update (see cpuset_flagbits_t)
1907 * cs: the cpuset to update
1908 * turning_on: whether the flag is being set or cleared
1909 *
1910 * Call with cpuset_mutex held.
1911 */
1912
1913static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1914 int turning_on)
1915{
1916 struct cpuset *trialcs;
1917 int balance_flag_changed;
1918 int spread_flag_changed;
1919 int err;
1920
1921 trialcs = alloc_trial_cpuset(cs);
1922 if (!trialcs)
1923 return -ENOMEM;
1924
1925 if (turning_on)
1926 set_bit(bit, &trialcs->flags);
1927 else
1928 clear_bit(bit, &trialcs->flags);
1929
1930 err = validate_change(cs, trialcs);
1931 if (err < 0)
1932 goto out;
1933
1934 balance_flag_changed = (is_sched_load_balance(cs) !=
1935 is_sched_load_balance(trialcs));
1936
1937 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1938 || (is_spread_page(cs) != is_spread_page(trialcs)));
1939
1940 spin_lock_irq(&callback_lock);
1941 cs->flags = trialcs->flags;
1942 spin_unlock_irq(&callback_lock);
1943
1944 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1945 rebuild_sched_domains_locked();
1946
1947 if (spread_flag_changed)
1948 update_tasks_flags(cs);
1949out:
1950 free_cpuset(trialcs);
1951 return err;
1952}
1953
1954/*
1955 * update_prstate - update partititon_root_state
1956 * cs: the cpuset to update
1957 * val: 0 - disabled, 1 - enabled
1958 *
1959 * Call with cpuset_mutex held.
1960 */
1961static int update_prstate(struct cpuset *cs, int val)
1962{
1963 int err;
1964 struct cpuset *parent = parent_cs(cs);
1965 struct tmpmasks tmp;
1966
1967 if ((val != 0) && (val != 1))
1968 return -EINVAL;
1969 if (val == cs->partition_root_state)
1970 return 0;
1971
1972 /*
1973 * Cannot force a partial or invalid partition root to a full
1974 * partition root.
1975 */
1976 if (val && cs->partition_root_state)
1977 return -EINVAL;
1978
1979 if (alloc_cpumasks(NULL, &tmp))
1980 return -ENOMEM;
1981
1982 err = -EINVAL;
1983 if (!cs->partition_root_state) {
1984 /*
1985 * Turning on partition root requires setting the
1986 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
1987 * cannot be NULL.
1988 */
1989 if (cpumask_empty(cs->cpus_allowed))
1990 goto out;
1991
1992 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
1993 if (err)
1994 goto out;
1995
1996 err = update_parent_subparts_cpumask(cs, partcmd_enable,
1997 NULL, &tmp);
1998 if (err) {
1999 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2000 goto out;
2001 }
2002 cs->partition_root_state = PRS_ENABLED;
2003 } else {
2004 /*
2005 * Turning off partition root will clear the
2006 * CS_CPU_EXCLUSIVE bit.
2007 */
2008 if (cs->partition_root_state == PRS_ERROR) {
2009 cs->partition_root_state = 0;
2010 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2011 err = 0;
2012 goto out;
2013 }
2014
2015 err = update_parent_subparts_cpumask(cs, partcmd_disable,
2016 NULL, &tmp);
2017 if (err)
2018 goto out;
2019
2020 cs->partition_root_state = 0;
2021
2022 /* Turning off CS_CPU_EXCLUSIVE will not return error */
2023 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2024 }
2025
2026 update_tasks_cpumask(parent);
2027
2028 if (parent->child_ecpus_count)
2029 update_sibling_cpumasks(parent, cs, &tmp);
2030
2031 rebuild_sched_domains_locked();
2032out:
2033 free_cpumasks(NULL, &tmp);
2034 return err;
2035}
2036
2037/*
2038 * Frequency meter - How fast is some event occurring?
2039 *
2040 * These routines manage a digitally filtered, constant time based,
2041 * event frequency meter. There are four routines:
2042 * fmeter_init() - initialize a frequency meter.
2043 * fmeter_markevent() - called each time the event happens.
2044 * fmeter_getrate() - returns the recent rate of such events.
2045 * fmeter_update() - internal routine used to update fmeter.
2046 *
2047 * A common data structure is passed to each of these routines,
2048 * which is used to keep track of the state required to manage the
2049 * frequency meter and its digital filter.
2050 *
2051 * The filter works on the number of events marked per unit time.
2052 * The filter is single-pole low-pass recursive (IIR). The time unit
2053 * is 1 second. Arithmetic is done using 32-bit integers scaled to
2054 * simulate 3 decimal digits of precision (multiplied by 1000).
2055 *
2056 * With an FM_COEF of 933, and a time base of 1 second, the filter
2057 * has a half-life of 10 seconds, meaning that if the events quit
2058 * happening, then the rate returned from the fmeter_getrate()
2059 * will be cut in half each 10 seconds, until it converges to zero.
2060 *
2061 * It is not worth doing a real infinitely recursive filter. If more
2062 * than FM_MAXTICKS ticks have elapsed since the last filter event,
2063 * just compute FM_MAXTICKS ticks worth, by which point the level
2064 * will be stable.
2065 *
2066 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2067 * arithmetic overflow in the fmeter_update() routine.
2068 *
2069 * Given the simple 32 bit integer arithmetic used, this meter works
2070 * best for reporting rates between one per millisecond (msec) and
2071 * one per 32 (approx) seconds. At constant rates faster than one
2072 * per msec it maxes out at values just under 1,000,000. At constant
2073 * rates between one per msec, and one per second it will stabilize
2074 * to a value N*1000, where N is the rate of events per second.
2075 * At constant rates between one per second and one per 32 seconds,
2076 * it will be choppy, moving up on the seconds that have an event,
2077 * and then decaying until the next event. At rates slower than
2078 * about one in 32 seconds, it decays all the way back to zero between
2079 * each event.
2080 */
2081
2082#define FM_COEF 933 /* coefficient for half-life of 10 secs */
2083#define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
2084#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
2085#define FM_SCALE 1000 /* faux fixed point scale */
2086
2087/* Initialize a frequency meter */
2088static void fmeter_init(struct fmeter *fmp)
2089{
2090 fmp->cnt = 0;
2091 fmp->val = 0;
2092 fmp->time = 0;
2093 spin_lock_init(&fmp->lock);
2094}
2095
2096/* Internal meter update - process cnt events and update value */
2097static void fmeter_update(struct fmeter *fmp)
2098{
2099 time64_t now;
2100 u32 ticks;
2101
2102 now = ktime_get_seconds();
2103 ticks = now - fmp->time;
2104
2105 if (ticks == 0)
2106 return;
2107
2108 ticks = min(FM_MAXTICKS, ticks);
2109 while (ticks-- > 0)
2110 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2111 fmp->time = now;
2112
2113 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2114 fmp->cnt = 0;
2115}
2116
2117/* Process any previous ticks, then bump cnt by one (times scale). */
2118static void fmeter_markevent(struct fmeter *fmp)
2119{
2120 spin_lock(&fmp->lock);
2121 fmeter_update(fmp);
2122 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2123 spin_unlock(&fmp->lock);
2124}
2125
2126/* Process any previous ticks, then return current value. */
2127static int fmeter_getrate(struct fmeter *fmp)
2128{
2129 int val;
2130
2131 spin_lock(&fmp->lock);
2132 fmeter_update(fmp);
2133 val = fmp->val;
2134 spin_unlock(&fmp->lock);
2135 return val;
2136}
2137
2138static struct cpuset *cpuset_attach_old_cs;
2139
2140/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2141static int cpuset_can_attach(struct cgroup_taskset *tset)
2142{
2143 struct cgroup_subsys_state *css;
2144 struct cpuset *cs;
2145 struct task_struct *task;
2146 int ret;
2147
2148 /* used later by cpuset_attach() */
2149 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2150 cs = css_cs(css);
2151
2152 percpu_down_write(&cpuset_rwsem);
2153
2154 /* allow moving tasks into an empty cpuset if on default hierarchy */
2155 ret = -ENOSPC;
2156 if (!is_in_v2_mode() &&
2157 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2158 goto out_unlock;
2159
2160 cgroup_taskset_for_each(task, css, tset) {
2161 ret = task_can_attach(task, cs->cpus_allowed);
2162 if (ret)
2163 goto out_unlock;
2164 ret = security_task_setscheduler(task);
2165 if (ret)
2166 goto out_unlock;
2167 }
2168
2169 /*
2170 * Mark attach is in progress. This makes validate_change() fail
2171 * changes which zero cpus/mems_allowed.
2172 */
2173 cs->attach_in_progress++;
2174 ret = 0;
2175out_unlock:
2176 percpu_up_write(&cpuset_rwsem);
2177 return ret;
2178}
2179
2180static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2181{
2182 struct cgroup_subsys_state *css;
2183 struct cpuset *cs;
2184
2185 cgroup_taskset_first(tset, &css);
2186 cs = css_cs(css);
2187
2188 percpu_down_write(&cpuset_rwsem);
2189 cs->attach_in_progress--;
2190 if (!cs->attach_in_progress)
2191 wake_up(&cpuset_attach_wq);
2192 percpu_up_write(&cpuset_rwsem);
2193}
2194
2195/*
2196 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
2197 * but we can't allocate it dynamically there. Define it global and
2198 * allocate from cpuset_init().
2199 */
2200static cpumask_var_t cpus_attach;
2201
2202static void cpuset_attach(struct cgroup_taskset *tset)
2203{
2204 /* static buf protected by cpuset_mutex */
2205 static nodemask_t cpuset_attach_nodemask_to;
2206 struct task_struct *task;
2207 struct task_struct *leader;
2208 struct cgroup_subsys_state *css;
2209 struct cpuset *cs;
2210 struct cpuset *oldcs = cpuset_attach_old_cs;
2211
2212 cgroup_taskset_first(tset, &css);
2213 cs = css_cs(css);
2214
2215 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */
2216 percpu_down_write(&cpuset_rwsem);
2217
2218 /* prepare for attach */
2219 if (cs == &top_cpuset)
2220 cpumask_copy(cpus_attach, cpu_possible_mask);
2221 else
2222 guarantee_online_cpus(cs, cpus_attach);
2223
2224 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2225
2226 cgroup_taskset_for_each(task, css, tset) {
2227 /*
2228 * can_attach beforehand should guarantee that this doesn't
2229 * fail. TODO: have a better way to handle failure here
2230 */
2231 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2232
2233 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2234 cpuset_update_task_spread_flag(cs, task);
2235 }
2236
2237 /*
2238 * Change mm for all threadgroup leaders. This is expensive and may
2239 * sleep and should be moved outside migration path proper.
2240 */
2241 cpuset_attach_nodemask_to = cs->effective_mems;
2242 cgroup_taskset_for_each_leader(leader, css, tset) {
2243 struct mm_struct *mm = get_task_mm(leader);
2244
2245 if (mm) {
2246 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2247
2248 /*
2249 * old_mems_allowed is the same with mems_allowed
2250 * here, except if this task is being moved
2251 * automatically due to hotplug. In that case
2252 * @mems_allowed has been updated and is empty, so
2253 * @old_mems_allowed is the right nodesets that we
2254 * migrate mm from.
2255 */
2256 if (is_memory_migrate(cs))
2257 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2258 &cpuset_attach_nodemask_to);
2259 else
2260 mmput(mm);
2261 }
2262 }
2263
2264 cs->old_mems_allowed = cpuset_attach_nodemask_to;
2265
2266 cs->attach_in_progress--;
2267 if (!cs->attach_in_progress)
2268 wake_up(&cpuset_attach_wq);
2269
2270 percpu_up_write(&cpuset_rwsem);
2271}
2272
2273/* The various types of files and directories in a cpuset file system */
2274
2275typedef enum {
2276 FILE_MEMORY_MIGRATE,
2277 FILE_CPULIST,
2278 FILE_MEMLIST,
2279 FILE_EFFECTIVE_CPULIST,
2280 FILE_EFFECTIVE_MEMLIST,
2281 FILE_SUBPARTS_CPULIST,
2282 FILE_CPU_EXCLUSIVE,
2283 FILE_MEM_EXCLUSIVE,
2284 FILE_MEM_HARDWALL,
2285 FILE_SCHED_LOAD_BALANCE,
2286 FILE_PARTITION_ROOT,
2287 FILE_SCHED_RELAX_DOMAIN_LEVEL,
2288 FILE_MEMORY_PRESSURE_ENABLED,
2289 FILE_MEMORY_PRESSURE,
2290 FILE_SPREAD_PAGE,
2291 FILE_SPREAD_SLAB,
2292} cpuset_filetype_t;
2293
2294static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2295 u64 val)
2296{
2297 struct cpuset *cs = css_cs(css);
2298 cpuset_filetype_t type = cft->private;
2299 int retval = 0;
2300
2301 get_online_cpus();
2302 percpu_down_write(&cpuset_rwsem);
2303 if (!is_cpuset_online(cs)) {
2304 retval = -ENODEV;
2305 goto out_unlock;
2306 }
2307
2308 switch (type) {
2309 case FILE_CPU_EXCLUSIVE:
2310 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2311 break;
2312 case FILE_MEM_EXCLUSIVE:
2313 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2314 break;
2315 case FILE_MEM_HARDWALL:
2316 retval = update_flag(CS_MEM_HARDWALL, cs, val);
2317 break;
2318 case FILE_SCHED_LOAD_BALANCE:
2319 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2320 break;
2321 case FILE_MEMORY_MIGRATE:
2322 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2323 break;
2324 case FILE_MEMORY_PRESSURE_ENABLED:
2325 cpuset_memory_pressure_enabled = !!val;
2326 break;
2327 case FILE_SPREAD_PAGE:
2328 retval = update_flag(CS_SPREAD_PAGE, cs, val);
2329 break;
2330 case FILE_SPREAD_SLAB:
2331 retval = update_flag(CS_SPREAD_SLAB, cs, val);
2332 break;
2333 default:
2334 retval = -EINVAL;
2335 break;
2336 }
2337out_unlock:
2338 percpu_up_write(&cpuset_rwsem);
2339 put_online_cpus();
2340 return retval;
2341}
2342
2343static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2344 s64 val)
2345{
2346 struct cpuset *cs = css_cs(css);
2347 cpuset_filetype_t type = cft->private;
2348 int retval = -ENODEV;
2349
2350 get_online_cpus();
2351 percpu_down_write(&cpuset_rwsem);
2352 if (!is_cpuset_online(cs))
2353 goto out_unlock;
2354
2355 switch (type) {
2356 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2357 retval = update_relax_domain_level(cs, val);
2358 break;
2359 default:
2360 retval = -EINVAL;
2361 break;
2362 }
2363out_unlock:
2364 percpu_up_write(&cpuset_rwsem);
2365 put_online_cpus();
2366 return retval;
2367}
2368
2369/*
2370 * Common handling for a write to a "cpus" or "mems" file.
2371 */
2372static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2373 char *buf, size_t nbytes, loff_t off)
2374{
2375 struct cpuset *cs = css_cs(of_css(of));
2376 struct cpuset *trialcs;
2377 int retval = -ENODEV;
2378
2379 buf = strstrip(buf);
2380
2381 /*
2382 * CPU or memory hotunplug may leave @cs w/o any execution
2383 * resources, in which case the hotplug code asynchronously updates
2384 * configuration and transfers all tasks to the nearest ancestor
2385 * which can execute.
2386 *
2387 * As writes to "cpus" or "mems" may restore @cs's execution
2388 * resources, wait for the previously scheduled operations before
2389 * proceeding, so that we don't end up keep removing tasks added
2390 * after execution capability is restored.
2391 *
2392 * cpuset_hotplug_work calls back into cgroup core via
2393 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2394 * operation like this one can lead to a deadlock through kernfs
2395 * active_ref protection. Let's break the protection. Losing the
2396 * protection is okay as we check whether @cs is online after
2397 * grabbing cpuset_mutex anyway. This only happens on the legacy
2398 * hierarchies.
2399 */
2400 css_get(&cs->css);
2401 kernfs_break_active_protection(of->kn);
2402 flush_work(&cpuset_hotplug_work);
2403
2404 get_online_cpus();
2405 percpu_down_write(&cpuset_rwsem);
2406 if (!is_cpuset_online(cs))
2407 goto out_unlock;
2408
2409 trialcs = alloc_trial_cpuset(cs);
2410 if (!trialcs) {
2411 retval = -ENOMEM;
2412 goto out_unlock;
2413 }
2414
2415 switch (of_cft(of)->private) {
2416 case FILE_CPULIST:
2417 retval = update_cpumask(cs, trialcs, buf);
2418 break;
2419 case FILE_MEMLIST:
2420 retval = update_nodemask(cs, trialcs, buf);
2421 break;
2422 default:
2423 retval = -EINVAL;
2424 break;
2425 }
2426
2427 free_cpuset(trialcs);
2428out_unlock:
2429 percpu_up_write(&cpuset_rwsem);
2430 put_online_cpus();
2431 kernfs_unbreak_active_protection(of->kn);
2432 css_put(&cs->css);
2433 flush_workqueue(cpuset_migrate_mm_wq);
2434 return retval ?: nbytes;
2435}
2436
2437/*
2438 * These ascii lists should be read in a single call, by using a user
2439 * buffer large enough to hold the entire map. If read in smaller
2440 * chunks, there is no guarantee of atomicity. Since the display format
2441 * used, list of ranges of sequential numbers, is variable length,
2442 * and since these maps can change value dynamically, one could read
2443 * gibberish by doing partial reads while a list was changing.
2444 */
2445static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2446{
2447 struct cpuset *cs = css_cs(seq_css(sf));
2448 cpuset_filetype_t type = seq_cft(sf)->private;
2449 int ret = 0;
2450
2451 spin_lock_irq(&callback_lock);
2452
2453 switch (type) {
2454 case FILE_CPULIST:
2455 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_requested));
2456 break;
2457 case FILE_MEMLIST:
2458 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2459 break;
2460 case FILE_EFFECTIVE_CPULIST:
2461 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2462 break;
2463 case FILE_EFFECTIVE_MEMLIST:
2464 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2465 break;
2466 case FILE_SUBPARTS_CPULIST:
2467 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2468 break;
2469 default:
2470 ret = -EINVAL;
2471 }
2472
2473 spin_unlock_irq(&callback_lock);
2474 return ret;
2475}
2476
2477static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2478{
2479 struct cpuset *cs = css_cs(css);
2480 cpuset_filetype_t type = cft->private;
2481 switch (type) {
2482 case FILE_CPU_EXCLUSIVE:
2483 return is_cpu_exclusive(cs);
2484 case FILE_MEM_EXCLUSIVE:
2485 return is_mem_exclusive(cs);
2486 case FILE_MEM_HARDWALL:
2487 return is_mem_hardwall(cs);
2488 case FILE_SCHED_LOAD_BALANCE:
2489 return is_sched_load_balance(cs);
2490 case FILE_MEMORY_MIGRATE:
2491 return is_memory_migrate(cs);
2492 case FILE_MEMORY_PRESSURE_ENABLED:
2493 return cpuset_memory_pressure_enabled;
2494 case FILE_MEMORY_PRESSURE:
2495 return fmeter_getrate(&cs->fmeter);
2496 case FILE_SPREAD_PAGE:
2497 return is_spread_page(cs);
2498 case FILE_SPREAD_SLAB:
2499 return is_spread_slab(cs);
2500 default:
2501 BUG();
2502 }
2503
2504 /* Unreachable but makes gcc happy */
2505 return 0;
2506}
2507
2508static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2509{
2510 struct cpuset *cs = css_cs(css);
2511 cpuset_filetype_t type = cft->private;
2512 switch (type) {
2513 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2514 return cs->relax_domain_level;
2515 default:
2516 BUG();
2517 }
2518
2519 /* Unrechable but makes gcc happy */
2520 return 0;
2521}
2522
2523static int sched_partition_show(struct seq_file *seq, void *v)
2524{
2525 struct cpuset *cs = css_cs(seq_css(seq));
2526
2527 switch (cs->partition_root_state) {
2528 case PRS_ENABLED:
2529 seq_puts(seq, "root\n");
2530 break;
2531 case PRS_DISABLED:
2532 seq_puts(seq, "member\n");
2533 break;
2534 case PRS_ERROR:
2535 seq_puts(seq, "root invalid\n");
2536 break;
2537 }
2538 return 0;
2539}
2540
2541static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2542 size_t nbytes, loff_t off)
2543{
2544 struct cpuset *cs = css_cs(of_css(of));
2545 int val;
2546 int retval = -ENODEV;
2547
2548 buf = strstrip(buf);
2549
2550 /*
2551 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2552 */
2553 if (!strcmp(buf, "root"))
2554 val = PRS_ENABLED;
2555 else if (!strcmp(buf, "member"))
2556 val = PRS_DISABLED;
2557 else
2558 return -EINVAL;
2559
2560 css_get(&cs->css);
2561 get_online_cpus();
2562 percpu_down_write(&cpuset_rwsem);
2563 if (!is_cpuset_online(cs))
2564 goto out_unlock;
2565
2566 retval = update_prstate(cs, val);
2567out_unlock:
2568 percpu_up_write(&cpuset_rwsem);
2569 put_online_cpus();
2570 css_put(&cs->css);
2571 return retval ?: nbytes;
2572}
2573
2574/*
2575 * for the common functions, 'private' gives the type of file
2576 */
2577
2578static struct cftype legacy_files[] = {
2579 {
2580 .name = "cpus",
2581 .seq_show = cpuset_common_seq_show,
2582 .write = cpuset_write_resmask,
2583 .max_write_len = (100U + 6 * NR_CPUS),
2584 .private = FILE_CPULIST,
2585 },
2586
2587 {
2588 .name = "mems",
2589 .seq_show = cpuset_common_seq_show,
2590 .write = cpuset_write_resmask,
2591 .max_write_len = (100U + 6 * MAX_NUMNODES),
2592 .private = FILE_MEMLIST,
2593 },
2594
2595 {
2596 .name = "effective_cpus",
2597 .seq_show = cpuset_common_seq_show,
2598 .private = FILE_EFFECTIVE_CPULIST,
2599 },
2600
2601 {
2602 .name = "effective_mems",
2603 .seq_show = cpuset_common_seq_show,
2604 .private = FILE_EFFECTIVE_MEMLIST,
2605 },
2606
2607 {
2608 .name = "cpu_exclusive",
2609 .read_u64 = cpuset_read_u64,
2610 .write_u64 = cpuset_write_u64,
2611 .private = FILE_CPU_EXCLUSIVE,
2612 },
2613
2614 {
2615 .name = "mem_exclusive",
2616 .read_u64 = cpuset_read_u64,
2617 .write_u64 = cpuset_write_u64,
2618 .private = FILE_MEM_EXCLUSIVE,
2619 },
2620
2621 {
2622 .name = "mem_hardwall",
2623 .read_u64 = cpuset_read_u64,
2624 .write_u64 = cpuset_write_u64,
2625 .private = FILE_MEM_HARDWALL,
2626 },
2627
2628 {
2629 .name = "sched_load_balance",
2630 .read_u64 = cpuset_read_u64,
2631 .write_u64 = cpuset_write_u64,
2632 .private = FILE_SCHED_LOAD_BALANCE,
2633 },
2634
2635 {
2636 .name = "sched_relax_domain_level",
2637 .read_s64 = cpuset_read_s64,
2638 .write_s64 = cpuset_write_s64,
2639 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2640 },
2641
2642 {
2643 .name = "memory_migrate",
2644 .read_u64 = cpuset_read_u64,
2645 .write_u64 = cpuset_write_u64,
2646 .private = FILE_MEMORY_MIGRATE,
2647 },
2648
2649 {
2650 .name = "memory_pressure",
2651 .read_u64 = cpuset_read_u64,
2652 .private = FILE_MEMORY_PRESSURE,
2653 },
2654
2655 {
2656 .name = "memory_spread_page",
2657 .read_u64 = cpuset_read_u64,
2658 .write_u64 = cpuset_write_u64,
2659 .private = FILE_SPREAD_PAGE,
2660 },
2661
2662 {
2663 .name = "memory_spread_slab",
2664 .read_u64 = cpuset_read_u64,
2665 .write_u64 = cpuset_write_u64,
2666 .private = FILE_SPREAD_SLAB,
2667 },
2668
2669 {
2670 .name = "memory_pressure_enabled",
2671 .flags = CFTYPE_ONLY_ON_ROOT,
2672 .read_u64 = cpuset_read_u64,
2673 .write_u64 = cpuset_write_u64,
2674 .private = FILE_MEMORY_PRESSURE_ENABLED,
2675 },
2676
2677 { } /* terminate */
2678};
2679
2680/*
2681 * This is currently a minimal set for the default hierarchy. It can be
2682 * expanded later on by migrating more features and control files from v1.
2683 */
2684static struct cftype dfl_files[] = {
2685 {
2686 .name = "cpus",
2687 .seq_show = cpuset_common_seq_show,
2688 .write = cpuset_write_resmask,
2689 .max_write_len = (100U + 6 * NR_CPUS),
2690 .private = FILE_CPULIST,
2691 .flags = CFTYPE_NOT_ON_ROOT,
2692 },
2693
2694 {
2695 .name = "mems",
2696 .seq_show = cpuset_common_seq_show,
2697 .write = cpuset_write_resmask,
2698 .max_write_len = (100U + 6 * MAX_NUMNODES),
2699 .private = FILE_MEMLIST,
2700 .flags = CFTYPE_NOT_ON_ROOT,
2701 },
2702
2703 {
2704 .name = "cpus.effective",
2705 .seq_show = cpuset_common_seq_show,
2706 .private = FILE_EFFECTIVE_CPULIST,
2707 },
2708
2709 {
2710 .name = "mems.effective",
2711 .seq_show = cpuset_common_seq_show,
2712 .private = FILE_EFFECTIVE_MEMLIST,
2713 },
2714
2715 {
2716 .name = "cpus.partition",
2717 .seq_show = sched_partition_show,
2718 .write = sched_partition_write,
2719 .private = FILE_PARTITION_ROOT,
2720 .flags = CFTYPE_NOT_ON_ROOT,
2721 },
2722
2723 {
2724 .name = "cpus.subpartitions",
2725 .seq_show = cpuset_common_seq_show,
2726 .private = FILE_SUBPARTS_CPULIST,
2727 .flags = CFTYPE_DEBUG,
2728 },
2729
2730 { } /* terminate */
2731};
2732
2733
2734/*
2735 * cpuset_css_alloc - allocate a cpuset css
2736 * cgrp: control group that the new cpuset will be part of
2737 */
2738
2739static struct cgroup_subsys_state *
2740cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2741{
2742 struct cpuset *cs;
2743
2744 if (!parent_css)
2745 return &top_cpuset.css;
2746
2747 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2748 if (!cs)
2749 return ERR_PTR(-ENOMEM);
2750
2751 if (alloc_cpumasks(cs, NULL)) {
2752 kfree(cs);
2753 return ERR_PTR(-ENOMEM);
2754 }
2755
2756 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2757 nodes_clear(cs->mems_allowed);
2758 nodes_clear(cs->effective_mems);
2759 fmeter_init(&cs->fmeter);
2760 cs->relax_domain_level = -1;
2761
2762 return &cs->css;
2763}
2764
2765static int cpuset_css_online(struct cgroup_subsys_state *css)
2766{
2767 struct cpuset *cs = css_cs(css);
2768 struct cpuset *parent = parent_cs(cs);
2769 struct cpuset *tmp_cs;
2770 struct cgroup_subsys_state *pos_css;
2771
2772 if (!parent)
2773 return 0;
2774
2775 get_online_cpus();
2776 percpu_down_write(&cpuset_rwsem);
2777
2778 set_bit(CS_ONLINE, &cs->flags);
2779 if (is_spread_page(parent))
2780 set_bit(CS_SPREAD_PAGE, &cs->flags);
2781 if (is_spread_slab(parent))
2782 set_bit(CS_SPREAD_SLAB, &cs->flags);
2783
2784 cpuset_inc();
2785
2786 spin_lock_irq(&callback_lock);
2787 if (is_in_v2_mode()) {
2788 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2789 cs->effective_mems = parent->effective_mems;
2790 cs->use_parent_ecpus = true;
2791 parent->child_ecpus_count++;
2792 }
2793 spin_unlock_irq(&callback_lock);
2794
2795 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2796 goto out_unlock;
2797
2798 /*
2799 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2800 * set. This flag handling is implemented in cgroup core for
2801 * histrical reasons - the flag may be specified during mount.
2802 *
2803 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2804 * refuse to clone the configuration - thereby refusing the task to
2805 * be entered, and as a result refusing the sys_unshare() or
2806 * clone() which initiated it. If this becomes a problem for some
2807 * users who wish to allow that scenario, then this could be
2808 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2809 * (and likewise for mems) to the new cgroup.
2810 */
2811 rcu_read_lock();
2812 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2813 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2814 rcu_read_unlock();
2815 goto out_unlock;
2816 }
2817 }
2818 rcu_read_unlock();
2819
2820 spin_lock_irq(&callback_lock);
2821 cs->mems_allowed = parent->mems_allowed;
2822 cs->effective_mems = parent->mems_allowed;
2823 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2824 cpumask_copy(cs->cpus_requested, parent->cpus_requested);
2825 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2826 spin_unlock_irq(&callback_lock);
2827out_unlock:
2828 percpu_up_write(&cpuset_rwsem);
2829 put_online_cpus();
2830 return 0;
2831}
2832
2833/*
2834 * If the cpuset being removed has its flag 'sched_load_balance'
2835 * enabled, then simulate turning sched_load_balance off, which
2836 * will call rebuild_sched_domains_locked(). That is not needed
2837 * in the default hierarchy where only changes in partition
2838 * will cause repartitioning.
2839 *
2840 * If the cpuset has the 'sched.partition' flag enabled, simulate
2841 * turning 'sched.partition" off.
2842 */
2843
2844static void cpuset_css_offline(struct cgroup_subsys_state *css)
2845{
2846 struct cpuset *cs = css_cs(css);
2847
2848 get_online_cpus();
2849 percpu_down_write(&cpuset_rwsem);
2850
2851 if (is_partition_root(cs))
2852 update_prstate(cs, 0);
2853
2854 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2855 is_sched_load_balance(cs))
2856 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2857
2858 if (cs->use_parent_ecpus) {
2859 struct cpuset *parent = parent_cs(cs);
2860
2861 cs->use_parent_ecpus = false;
2862 parent->child_ecpus_count--;
2863 }
2864
2865 cpuset_dec();
2866 clear_bit(CS_ONLINE, &cs->flags);
2867
2868 percpu_up_write(&cpuset_rwsem);
2869 put_online_cpus();
2870}
2871
2872static void cpuset_css_free(struct cgroup_subsys_state *css)
2873{
2874 struct cpuset *cs = css_cs(css);
2875
2876 free_cpuset(cs);
2877}
2878
2879static void cpuset_bind(struct cgroup_subsys_state *root_css)
2880{
2881 percpu_down_write(&cpuset_rwsem);
2882 spin_lock_irq(&callback_lock);
2883
2884 if (is_in_v2_mode()) {
2885 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2886 top_cpuset.mems_allowed = node_possible_map;
2887 } else {
2888 cpumask_copy(top_cpuset.cpus_allowed,
2889 top_cpuset.effective_cpus);
2890 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2891 }
2892
2893 spin_unlock_irq(&callback_lock);
2894 percpu_up_write(&cpuset_rwsem);
2895}
2896
2897/*
2898 * Make sure the new task conform to the current state of its parent,
2899 * which could have been changed by cpuset just after it inherits the
2900 * state from the parent and before it sits on the cgroup's task list.
2901 */
2902static void cpuset_fork(struct task_struct *task)
2903{
2904 if (task_css_is_root(task, cpuset_cgrp_id))
2905 return;
2906
2907 set_cpus_allowed_ptr(task, current->cpus_ptr);
2908 task->mems_allowed = current->mems_allowed;
2909}
2910
2911struct cgroup_subsys cpuset_cgrp_subsys = {
2912 .css_alloc = cpuset_css_alloc,
2913 .css_online = cpuset_css_online,
2914 .css_offline = cpuset_css_offline,
2915 .css_free = cpuset_css_free,
2916 .can_attach = cpuset_can_attach,
2917 .cancel_attach = cpuset_cancel_attach,
2918 .attach = cpuset_attach,
2919 .post_attach = cpuset_post_attach,
2920 .bind = cpuset_bind,
2921 .fork = cpuset_fork,
2922 .legacy_cftypes = legacy_files,
2923 .dfl_cftypes = dfl_files,
2924 .early_init = true,
2925 .threaded = true,
2926};
2927
2928/**
2929 * cpuset_init - initialize cpusets at system boot
2930 *
2931 * Description: Initialize top_cpuset
2932 **/
2933
2934int __init cpuset_init(void)
2935{
2936 BUG_ON(percpu_init_rwsem(&cpuset_rwsem));
2937
2938 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2939 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2940 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2941 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_requested, GFP_KERNEL));
2942
2943 cpumask_setall(top_cpuset.cpus_allowed);
2944 cpumask_setall(top_cpuset.cpus_requested);
2945 nodes_setall(top_cpuset.mems_allowed);
2946 cpumask_setall(top_cpuset.effective_cpus);
2947 nodes_setall(top_cpuset.effective_mems);
2948
2949 fmeter_init(&top_cpuset.fmeter);
2950 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2951 top_cpuset.relax_domain_level = -1;
2952
2953 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2954
2955 return 0;
2956}
2957
2958/*
2959 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2960 * or memory nodes, we need to walk over the cpuset hierarchy,
2961 * removing that CPU or node from all cpusets. If this removes the
2962 * last CPU or node from a cpuset, then move the tasks in the empty
2963 * cpuset to its next-highest non-empty parent.
2964 */
2965static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2966{
2967 struct cpuset *parent;
2968
2969 /*
2970 * Find its next-highest non-empty parent, (top cpuset
2971 * has online cpus, so can't be empty).
2972 */
2973 parent = parent_cs(cs);
2974 while (cpumask_empty(parent->cpus_allowed) ||
2975 nodes_empty(parent->mems_allowed))
2976 parent = parent_cs(parent);
2977
2978 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2979 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2980 pr_cont_cgroup_name(cs->css.cgroup);
2981 pr_cont("\n");
2982 }
2983}
2984
2985static void
2986hotplug_update_tasks_legacy(struct cpuset *cs,
2987 struct cpumask *new_cpus, nodemask_t *new_mems,
2988 bool cpus_updated, bool mems_updated)
2989{
2990 bool is_empty;
2991
2992 spin_lock_irq(&callback_lock);
2993 cpumask_copy(cs->cpus_allowed, new_cpus);
2994 cpumask_copy(cs->effective_cpus, new_cpus);
2995 cs->mems_allowed = *new_mems;
2996 cs->effective_mems = *new_mems;
2997 spin_unlock_irq(&callback_lock);
2998
2999 /*
3000 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
3001 * as the tasks will be migratecd to an ancestor.
3002 */
3003 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
3004 update_tasks_cpumask(cs);
3005 if (mems_updated && !nodes_empty(cs->mems_allowed))
3006 update_tasks_nodemask(cs);
3007
3008 is_empty = cpumask_empty(cs->cpus_allowed) ||
3009 nodes_empty(cs->mems_allowed);
3010
3011 percpu_up_write(&cpuset_rwsem);
3012
3013 /*
3014 * Move tasks to the nearest ancestor with execution resources,
3015 * This is full cgroup operation which will also call back into
3016 * cpuset. Should be done outside any lock.
3017 */
3018 if (is_empty)
3019 remove_tasks_in_empty_cpuset(cs);
3020
3021 percpu_down_write(&cpuset_rwsem);
3022}
3023
3024static void
3025hotplug_update_tasks(struct cpuset *cs,
3026 struct cpumask *new_cpus, nodemask_t *new_mems,
3027 bool cpus_updated, bool mems_updated)
3028{
3029 if (cpumask_empty(new_cpus))
3030 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3031 if (nodes_empty(*new_mems))
3032 *new_mems = parent_cs(cs)->effective_mems;
3033
3034 spin_lock_irq(&callback_lock);
3035 cpumask_copy(cs->effective_cpus, new_cpus);
3036 cs->effective_mems = *new_mems;
3037 spin_unlock_irq(&callback_lock);
3038
3039 if (cpus_updated)
3040 update_tasks_cpumask(cs);
3041 if (mems_updated)
3042 update_tasks_nodemask(cs);
3043}
3044
3045static bool force_rebuild;
3046
3047void cpuset_force_rebuild(void)
3048{
3049 force_rebuild = true;
3050}
3051
3052/**
3053 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3054 * @cs: cpuset in interest
3055 * @tmp: the tmpmasks structure pointer
3056 *
3057 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3058 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
3059 * all its tasks are moved to the nearest ancestor with both resources.
3060 */
3061static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3062{
3063 static cpumask_t new_cpus;
3064 static nodemask_t new_mems;
3065 bool cpus_updated;
3066 bool mems_updated;
3067 struct cpuset *parent;
3068retry:
3069 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3070
3071 percpu_down_write(&cpuset_rwsem);
3072
3073 /*
3074 * We have raced with task attaching. We wait until attaching
3075 * is finished, so we won't attach a task to an empty cpuset.
3076 */
3077 if (cs->attach_in_progress) {
3078 percpu_up_write(&cpuset_rwsem);
3079 goto retry;
3080 }
3081
3082 parent = parent_cs(cs);
3083 compute_effective_cpumask(&new_cpus, cs, parent);
3084 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3085
3086 if (cs->nr_subparts_cpus)
3087 /*
3088 * Make sure that CPUs allocated to child partitions
3089 * do not show up in effective_cpus.
3090 */
3091 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3092
3093 if (!tmp || !cs->partition_root_state)
3094 goto update_tasks;
3095
3096 /*
3097 * In the unlikely event that a partition root has empty
3098 * effective_cpus or its parent becomes erroneous, we have to
3099 * transition it to the erroneous state.
3100 */
3101 if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3102 (parent->partition_root_state == PRS_ERROR))) {
3103 if (cs->nr_subparts_cpus) {
3104 cs->nr_subparts_cpus = 0;
3105 cpumask_clear(cs->subparts_cpus);
3106 compute_effective_cpumask(&new_cpus, cs, parent);
3107 }
3108
3109 /*
3110 * If the effective_cpus is empty because the child
3111 * partitions take away all the CPUs, we can keep
3112 * the current partition and let the child partitions
3113 * fight for available CPUs.
3114 */
3115 if ((parent->partition_root_state == PRS_ERROR) ||
3116 cpumask_empty(&new_cpus)) {
3117 update_parent_subparts_cpumask(cs, partcmd_disable,
3118 NULL, tmp);
3119 cs->partition_root_state = PRS_ERROR;
3120 }
3121 cpuset_force_rebuild();
3122 }
3123
3124 /*
3125 * On the other hand, an erroneous partition root may be transitioned
3126 * back to a regular one or a partition root with no CPU allocated
3127 * from the parent may change to erroneous.
3128 */
3129 if (is_partition_root(parent) &&
3130 ((cs->partition_root_state == PRS_ERROR) ||
3131 !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3132 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3133 cpuset_force_rebuild();
3134
3135update_tasks:
3136 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3137 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3138
3139 if (is_in_v2_mode())
3140 hotplug_update_tasks(cs, &new_cpus, &new_mems,
3141 cpus_updated, mems_updated);
3142 else
3143 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3144 cpus_updated, mems_updated);
3145
3146 percpu_up_write(&cpuset_rwsem);
3147}
3148
3149/**
3150 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3151 *
3152 * This function is called after either CPU or memory configuration has
3153 * changed and updates cpuset accordingly. The top_cpuset is always
3154 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3155 * order to make cpusets transparent (of no affect) on systems that are
3156 * actively using CPU hotplug but making no active use of cpusets.
3157 *
3158 * Non-root cpusets are only affected by offlining. If any CPUs or memory
3159 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3160 * all descendants.
3161 *
3162 * Note that CPU offlining during suspend is ignored. We don't modify
3163 * cpusets across suspend/resume cycles at all.
3164 */
3165static void cpuset_hotplug_workfn(struct work_struct *work)
3166{
3167 static cpumask_t new_cpus;
3168 static nodemask_t new_mems;
3169 bool cpus_updated, mems_updated;
3170 bool on_dfl = is_in_v2_mode();
3171 struct tmpmasks tmp, *ptmp = NULL;
3172
3173 if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3174 ptmp = &tmp;
3175
3176 percpu_down_write(&cpuset_rwsem);
3177
3178 /* fetch the available cpus/mems and find out which changed how */
3179 cpumask_copy(&new_cpus, cpu_active_mask);
3180 new_mems = node_states[N_MEMORY];
3181
3182 /*
3183 * If subparts_cpus is populated, it is likely that the check below
3184 * will produce a false positive on cpus_updated when the cpu list
3185 * isn't changed. It is extra work, but it is better to be safe.
3186 */
3187 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3188 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3189
3190 /*
3191 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3192 * we assumed that cpus are updated.
3193 */
3194 if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3195 cpus_updated = true;
3196
3197 /* synchronize cpus_allowed to cpu_active_mask */
3198 if (cpus_updated) {
3199 spin_lock_irq(&callback_lock);
3200 if (!on_dfl)
3201 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3202 /*
3203 * Make sure that CPUs allocated to child partitions
3204 * do not show up in effective_cpus. If no CPU is left,
3205 * we clear the subparts_cpus & let the child partitions
3206 * fight for the CPUs again.
3207 */
3208 if (top_cpuset.nr_subparts_cpus) {
3209 if (cpumask_subset(&new_cpus,
3210 top_cpuset.subparts_cpus)) {
3211 top_cpuset.nr_subparts_cpus = 0;
3212 cpumask_clear(top_cpuset.subparts_cpus);
3213 } else {
3214 cpumask_andnot(&new_cpus, &new_cpus,
3215 top_cpuset.subparts_cpus);
3216 }
3217 }
3218 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3219 spin_unlock_irq(&callback_lock);
3220 /* we don't mess with cpumasks of tasks in top_cpuset */
3221 }
3222
3223 /* synchronize mems_allowed to N_MEMORY */
3224 if (mems_updated) {
3225 spin_lock_irq(&callback_lock);
3226 if (!on_dfl)
3227 top_cpuset.mems_allowed = new_mems;
3228 top_cpuset.effective_mems = new_mems;
3229 spin_unlock_irq(&callback_lock);
3230 update_tasks_nodemask(&top_cpuset);
3231 }
3232
3233 percpu_up_write(&cpuset_rwsem);
3234
3235 /* if cpus or mems changed, we need to propagate to descendants */
3236 if (cpus_updated || mems_updated) {
3237 struct cpuset *cs;
3238 struct cgroup_subsys_state *pos_css;
3239
3240 rcu_read_lock();
3241 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3242 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3243 continue;
3244 rcu_read_unlock();
3245
3246 cpuset_hotplug_update_tasks(cs, ptmp);
3247
3248 rcu_read_lock();
3249 css_put(&cs->css);
3250 }
3251 rcu_read_unlock();
3252 }
3253
3254 /* rebuild sched domains if cpus_allowed has changed */
3255 if (cpus_updated || force_rebuild) {
3256 force_rebuild = false;
3257 rebuild_sched_domains();
3258 }
3259
3260 free_cpumasks(NULL, ptmp);
3261}
3262
3263void cpuset_update_active_cpus(void)
3264{
3265 /*
3266 * We're inside cpu hotplug critical region which usually nests
3267 * inside cgroup synchronization. Bounce actual hotplug processing
3268 * to a work item to avoid reverse locking order.
3269 */
3270 schedule_work(&cpuset_hotplug_work);
3271}
3272
3273void cpuset_wait_for_hotplug(void)
3274{
3275 flush_work(&cpuset_hotplug_work);
3276}
3277
3278/*
3279 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3280 * Call this routine anytime after node_states[N_MEMORY] changes.
3281 * See cpuset_update_active_cpus() for CPU hotplug handling.
3282 */
3283static int cpuset_track_online_nodes(struct notifier_block *self,
3284 unsigned long action, void *arg)
3285{
3286 schedule_work(&cpuset_hotplug_work);
3287 return NOTIFY_OK;
3288}
3289
3290static struct notifier_block cpuset_track_online_nodes_nb = {
3291 .notifier_call = cpuset_track_online_nodes,
3292 .priority = 10, /* ??! */
3293};
3294
3295/**
3296 * cpuset_init_smp - initialize cpus_allowed
3297 *
3298 * Description: Finish top cpuset after cpu, node maps are initialized
3299 */
3300void __init cpuset_init_smp(void)
3301{
3302 /*
3303 * cpus_allowd/mems_allowed set to v2 values in the initial
3304 * cpuset_bind() call will be reset to v1 values in another
3305 * cpuset_bind() call when v1 cpuset is mounted.
3306 */
3307 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3308
3309 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3310 top_cpuset.effective_mems = node_states[N_MEMORY];
3311
3312 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3313
3314 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3315 BUG_ON(!cpuset_migrate_mm_wq);
3316}
3317
3318/**
3319 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3320 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3321 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3322 *
3323 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3324 * attached to the specified @tsk. Guaranteed to return some non-empty
3325 * subset of cpu_online_mask, even if this means going outside the
3326 * tasks cpuset.
3327 **/
3328
3329void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3330{
3331 unsigned long flags;
3332
3333 spin_lock_irqsave(&callback_lock, flags);
3334 rcu_read_lock();
3335 guarantee_online_cpus(task_cs(tsk), pmask);
3336 rcu_read_unlock();
3337 spin_unlock_irqrestore(&callback_lock, flags);
3338}
3339
3340/**
3341 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3342 * @tsk: pointer to task_struct with which the scheduler is struggling
3343 *
3344 * Description: In the case that the scheduler cannot find an allowed cpu in
3345 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3346 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3347 * which will not contain a sane cpumask during cases such as cpu hotplugging.
3348 * This is the absolute last resort for the scheduler and it is only used if
3349 * _every_ other avenue has been traveled.
3350 **/
3351
3352void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3353{
3354 rcu_read_lock();
3355 do_set_cpus_allowed(tsk, is_in_v2_mode() ?
3356 task_cs(tsk)->cpus_allowed : cpu_possible_mask);
3357 rcu_read_unlock();
3358
3359 /*
3360 * We own tsk->cpus_allowed, nobody can change it under us.
3361 *
3362 * But we used cs && cs->cpus_allowed lockless and thus can
3363 * race with cgroup_attach_task() or update_cpumask() and get
3364 * the wrong tsk->cpus_allowed. However, both cases imply the
3365 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3366 * which takes task_rq_lock().
3367 *
3368 * If we are called after it dropped the lock we must see all
3369 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3370 * set any mask even if it is not right from task_cs() pov,
3371 * the pending set_cpus_allowed_ptr() will fix things.
3372 *
3373 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3374 * if required.
3375 */
3376}
3377
3378void __init cpuset_init_current_mems_allowed(void)
3379{
3380 nodes_setall(current->mems_allowed);
3381}
3382
3383/**
3384 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3385 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3386 *
3387 * Description: Returns the nodemask_t mems_allowed of the cpuset
3388 * attached to the specified @tsk. Guaranteed to return some non-empty
3389 * subset of node_states[N_MEMORY], even if this means going outside the
3390 * tasks cpuset.
3391 **/
3392
3393nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3394{
3395 nodemask_t mask;
3396 unsigned long flags;
3397
3398 spin_lock_irqsave(&callback_lock, flags);
3399 rcu_read_lock();
3400 guarantee_online_mems(task_cs(tsk), &mask);
3401 rcu_read_unlock();
3402 spin_unlock_irqrestore(&callback_lock, flags);
3403
3404 return mask;
3405}
3406
3407/**
3408 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3409 * @nodemask: the nodemask to be checked
3410 *
3411 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3412 */
3413int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3414{
3415 return nodes_intersects(*nodemask, current->mems_allowed);
3416}
3417
3418/*
3419 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3420 * mem_hardwall ancestor to the specified cpuset. Call holding
3421 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
3422 * (an unusual configuration), then returns the root cpuset.
3423 */
3424static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3425{
3426 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3427 cs = parent_cs(cs);
3428 return cs;
3429}
3430
3431/**
3432 * cpuset_node_allowed - Can we allocate on a memory node?
3433 * @node: is this an allowed node?
3434 * @gfp_mask: memory allocation flags
3435 *
3436 * If we're in interrupt, yes, we can always allocate. If @node is set in
3437 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
3438 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3439 * yes. If current has access to memory reserves as an oom victim, yes.
3440 * Otherwise, no.
3441 *
3442 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3443 * and do not allow allocations outside the current tasks cpuset
3444 * unless the task has been OOM killed.
3445 * GFP_KERNEL allocations are not so marked, so can escape to the
3446 * nearest enclosing hardwalled ancestor cpuset.
3447 *
3448 * Scanning up parent cpusets requires callback_lock. The
3449 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3450 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3451 * current tasks mems_allowed came up empty on the first pass over
3452 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
3453 * cpuset are short of memory, might require taking the callback_lock.
3454 *
3455 * The first call here from mm/page_alloc:get_page_from_freelist()
3456 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3457 * so no allocation on a node outside the cpuset is allowed (unless
3458 * in interrupt, of course).
3459 *
3460 * The second pass through get_page_from_freelist() doesn't even call
3461 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
3462 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3463 * in alloc_flags. That logic and the checks below have the combined
3464 * affect that:
3465 * in_interrupt - any node ok (current task context irrelevant)
3466 * GFP_ATOMIC - any node ok
3467 * tsk_is_oom_victim - any node ok
3468 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
3469 * GFP_USER - only nodes in current tasks mems allowed ok.
3470 */
3471bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3472{
3473 struct cpuset *cs; /* current cpuset ancestors */
3474 int allowed; /* is allocation in zone z allowed? */
3475 unsigned long flags;
3476
3477 if (in_interrupt())
3478 return true;
3479 if (node_isset(node, current->mems_allowed))
3480 return true;
3481 /*
3482 * Allow tasks that have access to memory reserves because they have
3483 * been OOM killed to get memory anywhere.
3484 */
3485 if (unlikely(tsk_is_oom_victim(current)))
3486 return true;
3487 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
3488 return false;
3489
3490 if (current->flags & PF_EXITING) /* Let dying task have memory */
3491 return true;
3492
3493 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3494 spin_lock_irqsave(&callback_lock, flags);
3495
3496 rcu_read_lock();
3497 cs = nearest_hardwall_ancestor(task_cs(current));
3498 allowed = node_isset(node, cs->mems_allowed);
3499 rcu_read_unlock();
3500
3501 spin_unlock_irqrestore(&callback_lock, flags);
3502 return allowed;
3503}
3504
3505/**
3506 * cpuset_mem_spread_node() - On which node to begin search for a file page
3507 * cpuset_slab_spread_node() - On which node to begin search for a slab page
3508 *
3509 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3510 * tasks in a cpuset with is_spread_page or is_spread_slab set),
3511 * and if the memory allocation used cpuset_mem_spread_node()
3512 * to determine on which node to start looking, as it will for
3513 * certain page cache or slab cache pages such as used for file
3514 * system buffers and inode caches, then instead of starting on the
3515 * local node to look for a free page, rather spread the starting
3516 * node around the tasks mems_allowed nodes.
3517 *
3518 * We don't have to worry about the returned node being offline
3519 * because "it can't happen", and even if it did, it would be ok.
3520 *
3521 * The routines calling guarantee_online_mems() are careful to
3522 * only set nodes in task->mems_allowed that are online. So it
3523 * should not be possible for the following code to return an
3524 * offline node. But if it did, that would be ok, as this routine
3525 * is not returning the node where the allocation must be, only
3526 * the node where the search should start. The zonelist passed to
3527 * __alloc_pages() will include all nodes. If the slab allocator
3528 * is passed an offline node, it will fall back to the local node.
3529 * See kmem_cache_alloc_node().
3530 */
3531
3532static int cpuset_spread_node(int *rotor)
3533{
3534 return *rotor = next_node_in(*rotor, current->mems_allowed);
3535}
3536
3537int cpuset_mem_spread_node(void)
3538{
3539 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3540 current->cpuset_mem_spread_rotor =
3541 node_random(&current->mems_allowed);
3542
3543 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3544}
3545
3546int cpuset_slab_spread_node(void)
3547{
3548 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3549 current->cpuset_slab_spread_rotor =
3550 node_random(&current->mems_allowed);
3551
3552 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3553}
3554
3555EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3556
3557/**
3558 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3559 * @tsk1: pointer to task_struct of some task.
3560 * @tsk2: pointer to task_struct of some other task.
3561 *
3562 * Description: Return true if @tsk1's mems_allowed intersects the
3563 * mems_allowed of @tsk2. Used by the OOM killer to determine if
3564 * one of the task's memory usage might impact the memory available
3565 * to the other.
3566 **/
3567
3568int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3569 const struct task_struct *tsk2)
3570{
3571 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3572}
3573
3574/**
3575 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3576 *
3577 * Description: Prints current's name, cpuset name, and cached copy of its
3578 * mems_allowed to the kernel log.
3579 */
3580void cpuset_print_current_mems_allowed(void)
3581{
3582 struct cgroup *cgrp;
3583
3584 rcu_read_lock();
3585
3586 cgrp = task_cs(current)->css.cgroup;
3587 pr_cont(",cpuset=");
3588 pr_cont_cgroup_name(cgrp);
3589 pr_cont(",mems_allowed=%*pbl",
3590 nodemask_pr_args(&current->mems_allowed));
3591
3592 rcu_read_unlock();
3593}
3594
3595/*
3596 * Collection of memory_pressure is suppressed unless
3597 * this flag is enabled by writing "1" to the special
3598 * cpuset file 'memory_pressure_enabled' in the root cpuset.
3599 */
3600
3601int cpuset_memory_pressure_enabled __read_mostly;
3602
3603/**
3604 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3605 *
3606 * Keep a running average of the rate of synchronous (direct)
3607 * page reclaim efforts initiated by tasks in each cpuset.
3608 *
3609 * This represents the rate at which some task in the cpuset
3610 * ran low on memory on all nodes it was allowed to use, and
3611 * had to enter the kernels page reclaim code in an effort to
3612 * create more free memory by tossing clean pages or swapping
3613 * or writing dirty pages.
3614 *
3615 * Display to user space in the per-cpuset read-only file
3616 * "memory_pressure". Value displayed is an integer
3617 * representing the recent rate of entry into the synchronous
3618 * (direct) page reclaim by any task attached to the cpuset.
3619 **/
3620
3621void __cpuset_memory_pressure_bump(void)
3622{
3623 rcu_read_lock();
3624 fmeter_markevent(&task_cs(current)->fmeter);
3625 rcu_read_unlock();
3626}
3627
3628#ifdef CONFIG_PROC_PID_CPUSET
3629/*
3630 * proc_cpuset_show()
3631 * - Print tasks cpuset path into seq_file.
3632 * - Used for /proc/<pid>/cpuset.
3633 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3634 * doesn't really matter if tsk->cpuset changes after we read it,
3635 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
3636 * anyway.
3637 */
3638int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3639 struct pid *pid, struct task_struct *tsk)
3640{
3641 char *buf;
3642 struct cgroup_subsys_state *css;
3643 int retval;
3644
3645 retval = -ENOMEM;
3646 buf = kmalloc(PATH_MAX, GFP_KERNEL);
3647 if (!buf)
3648 goto out;
3649
3650 rcu_read_lock();
3651 spin_lock_irq(&css_set_lock);
3652 css = task_css(tsk, cpuset_cgrp_id);
3653 retval = cgroup_path_ns_locked(css->cgroup, buf, PATH_MAX,
3654 current->nsproxy->cgroup_ns);
3655 spin_unlock_irq(&css_set_lock);
3656 rcu_read_unlock();
3657
3658 if (retval >= PATH_MAX)
3659 retval = -ENAMETOOLONG;
3660 if (retval < 0)
3661 goto out_free;
3662 seq_puts(m, buf);
3663 seq_putc(m, '\n');
3664 retval = 0;
3665out_free:
3666 kfree(buf);
3667out:
3668 return retval;
3669}
3670#endif /* CONFIG_PROC_PID_CPUSET */
3671
3672/* Display task mems_allowed in /proc/<pid>/status file. */
3673void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3674{
3675 seq_printf(m, "Mems_allowed:\t%*pb\n",
3676 nodemask_pr_args(&task->mems_allowed));
3677 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3678 nodemask_pr_args(&task->mems_allowed));
3679}