b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2018 Christoph Hellwig. |
| 4 | * |
| 5 | * DMA operations that map physical memory directly without using an IOMMU. |
| 6 | */ |
| 7 | #include <linux/memblock.h> /* for max_pfn */ |
| 8 | #include <linux/export.h> |
| 9 | #include <linux/mm.h> |
| 10 | #include <linux/dma-direct.h> |
| 11 | #include <linux/scatterlist.h> |
| 12 | #include <linux/dma-contiguous.h> |
| 13 | #include <linux/dma-noncoherent.h> |
| 14 | #include <linux/pfn.h> |
| 15 | #include <linux/set_memory.h> |
| 16 | #include <linux/swiotlb.h> |
| 17 | |
| 18 | /* |
| 19 | * Most architectures use ZONE_DMA for the first 16 Megabytes, but |
| 20 | * some use it for entirely different regions: |
| 21 | */ |
| 22 | #ifndef ARCH_ZONE_DMA_BITS |
| 23 | #define ARCH_ZONE_DMA_BITS 24 |
| 24 | #endif |
| 25 | |
| 26 | static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size) |
| 27 | { |
| 28 | if (!dev->dma_mask) { |
| 29 | dev_err_once(dev, "DMA map on device without dma_mask\n"); |
| 30 | } else if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_mask) { |
| 31 | dev_err_once(dev, |
| 32 | "overflow %pad+%zu of DMA mask %llx bus mask %llx\n", |
| 33 | &dma_addr, size, *dev->dma_mask, dev->bus_dma_mask); |
| 34 | } |
| 35 | WARN_ON_ONCE(1); |
| 36 | } |
| 37 | |
| 38 | static inline dma_addr_t phys_to_dma_direct(struct device *dev, |
| 39 | phys_addr_t phys) |
| 40 | { |
| 41 | if (force_dma_unencrypted(dev)) |
| 42 | return __phys_to_dma(dev, phys); |
| 43 | return phys_to_dma(dev, phys); |
| 44 | } |
| 45 | |
| 46 | u64 dma_direct_get_required_mask(struct device *dev) |
| 47 | { |
| 48 | phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT; |
| 49 | u64 max_dma = phys_to_dma_direct(dev, phys); |
| 50 | |
| 51 | return (1ULL << (fls64(max_dma) - 1)) * 2 - 1; |
| 52 | } |
| 53 | EXPORT_SYMBOL_GPL(dma_direct_get_required_mask); |
| 54 | |
| 55 | static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask, |
| 56 | u64 *phys_mask) |
| 57 | { |
| 58 | if (dev->bus_dma_mask && dev->bus_dma_mask < dma_mask) |
| 59 | dma_mask = dev->bus_dma_mask; |
| 60 | |
| 61 | if (force_dma_unencrypted(dev)) |
| 62 | *phys_mask = __dma_to_phys(dev, dma_mask); |
| 63 | else |
| 64 | *phys_mask = dma_to_phys(dev, dma_mask); |
| 65 | |
| 66 | /* |
| 67 | * Optimistically try the zone that the physical address mask falls |
| 68 | * into first. If that returns memory that isn't actually addressable |
| 69 | * we will fallback to the next lower zone and try again. |
| 70 | * |
| 71 | * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding |
| 72 | * zones. |
| 73 | */ |
| 74 | if (*phys_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS)) |
| 75 | return GFP_DMA; |
| 76 | if (*phys_mask <= DMA_BIT_MASK(32)) |
| 77 | return GFP_DMA32; |
| 78 | return 0; |
| 79 | } |
| 80 | |
| 81 | static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) |
| 82 | { |
| 83 | return phys_to_dma_direct(dev, phys) + size - 1 <= |
| 84 | min_not_zero(dev->coherent_dma_mask, dev->bus_dma_mask); |
| 85 | } |
| 86 | |
| 87 | struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, |
| 88 | dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) |
| 89 | { |
| 90 | size_t alloc_size = PAGE_ALIGN(size); |
| 91 | int node = dev_to_node(dev); |
| 92 | struct page *page = NULL; |
| 93 | u64 phys_mask; |
| 94 | |
| 95 | if (attrs & DMA_ATTR_NO_WARN) |
| 96 | gfp |= __GFP_NOWARN; |
| 97 | |
| 98 | /* we always manually zero the memory once we are done: */ |
| 99 | gfp &= ~__GFP_ZERO; |
| 100 | gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, |
| 101 | &phys_mask); |
| 102 | page = dma_alloc_contiguous(dev, alloc_size, gfp); |
| 103 | if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { |
| 104 | dma_free_contiguous(dev, page, alloc_size); |
| 105 | page = NULL; |
| 106 | } |
| 107 | again: |
| 108 | if (!page) |
| 109 | page = alloc_pages_node(node, gfp, get_order(alloc_size)); |
| 110 | if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { |
| 111 | dma_free_contiguous(dev, page, size); |
| 112 | page = NULL; |
| 113 | |
| 114 | if (IS_ENABLED(CONFIG_ZONE_DMA32) && |
| 115 | phys_mask < DMA_BIT_MASK(64) && |
| 116 | !(gfp & (GFP_DMA32 | GFP_DMA))) { |
| 117 | gfp |= GFP_DMA32; |
| 118 | goto again; |
| 119 | } |
| 120 | |
| 121 | if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) { |
| 122 | gfp = (gfp & ~GFP_DMA32) | GFP_DMA; |
| 123 | goto again; |
| 124 | } |
| 125 | } |
| 126 | |
| 127 | return page; |
| 128 | } |
| 129 | |
| 130 | void *dma_direct_alloc_pages(struct device *dev, size_t size, |
| 131 | dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) |
| 132 | { |
| 133 | struct page *page; |
| 134 | void *ret; |
| 135 | |
| 136 | page = __dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs); |
| 137 | if (!page) |
| 138 | return NULL; |
| 139 | |
| 140 | if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && |
| 141 | !force_dma_unencrypted(dev)) { |
| 142 | /* remove any dirty cache lines on the kernel alias */ |
| 143 | if (!PageHighMem(page)) |
| 144 | arch_dma_prep_coherent(page, size); |
| 145 | *dma_handle = phys_to_dma(dev, page_to_phys(page)); |
| 146 | /* return the page pointer as the opaque cookie */ |
| 147 | return page; |
| 148 | } |
| 149 | |
| 150 | if (PageHighMem(page)) { |
| 151 | /* |
| 152 | * Depending on the cma= arguments and per-arch setup |
| 153 | * dma_alloc_contiguous could return highmem pages. |
| 154 | * Without remapping there is no way to return them here, |
| 155 | * so log an error and fail. |
| 156 | */ |
| 157 | dev_info(dev, "Rejecting highmem page from CMA.\n"); |
| 158 | __dma_direct_free_pages(dev, size, page); |
| 159 | return NULL; |
| 160 | } |
| 161 | |
| 162 | ret = page_address(page); |
| 163 | if (force_dma_unencrypted(dev)) { |
| 164 | set_memory_decrypted((unsigned long)ret, 1 << get_order(size)); |
| 165 | *dma_handle = __phys_to_dma(dev, page_to_phys(page)); |
| 166 | } else { |
| 167 | *dma_handle = phys_to_dma(dev, page_to_phys(page)); |
| 168 | } |
| 169 | memset(ret, 0, size); |
| 170 | |
| 171 | if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) && |
| 172 | dma_alloc_need_uncached(dev, attrs)) { |
| 173 | arch_dma_prep_coherent(page, size); |
| 174 | ret = uncached_kernel_address(ret); |
| 175 | } |
| 176 | |
| 177 | return ret; |
| 178 | } |
| 179 | |
| 180 | void __dma_direct_free_pages(struct device *dev, size_t size, struct page *page) |
| 181 | { |
| 182 | dma_free_contiguous(dev, page, size); |
| 183 | } |
| 184 | |
| 185 | void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr, |
| 186 | dma_addr_t dma_addr, unsigned long attrs) |
| 187 | { |
| 188 | unsigned int page_order = get_order(size); |
| 189 | |
| 190 | if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && |
| 191 | !force_dma_unencrypted(dev)) { |
| 192 | /* cpu_addr is a struct page cookie, not a kernel address */ |
| 193 | __dma_direct_free_pages(dev, size, cpu_addr); |
| 194 | return; |
| 195 | } |
| 196 | |
| 197 | if (force_dma_unencrypted(dev)) |
| 198 | set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order); |
| 199 | |
| 200 | if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) && |
| 201 | dma_alloc_need_uncached(dev, attrs)) |
| 202 | cpu_addr = cached_kernel_address(cpu_addr); |
| 203 | __dma_direct_free_pages(dev, size, virt_to_page(cpu_addr)); |
| 204 | } |
| 205 | |
| 206 | void *dma_direct_alloc(struct device *dev, size_t size, |
| 207 | dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) |
| 208 | { |
| 209 | if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) && |
| 210 | dma_alloc_need_uncached(dev, attrs)) |
| 211 | return arch_dma_alloc(dev, size, dma_handle, gfp, attrs); |
| 212 | return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs); |
| 213 | } |
| 214 | EXPORT_SYMBOL_GPL(dma_direct_alloc); |
| 215 | |
| 216 | void dma_direct_free(struct device *dev, size_t size, |
| 217 | void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) |
| 218 | { |
| 219 | if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) && |
| 220 | dma_alloc_need_uncached(dev, attrs)) |
| 221 | arch_dma_free(dev, size, cpu_addr, dma_addr, attrs); |
| 222 | else |
| 223 | dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs); |
| 224 | } |
| 225 | EXPORT_SYMBOL_GPL(dma_direct_free); |
| 226 | |
| 227 | #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ |
| 228 | defined(CONFIG_SWIOTLB) |
| 229 | void dma_direct_sync_single_for_device(struct device *dev, |
| 230 | dma_addr_t addr, size_t size, enum dma_data_direction dir) |
| 231 | { |
| 232 | phys_addr_t paddr = dma_to_phys(dev, addr); |
| 233 | |
| 234 | if (unlikely(is_swiotlb_buffer(paddr))) |
| 235 | swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE); |
| 236 | |
| 237 | if (!dev_is_dma_coherent(dev)) |
| 238 | arch_sync_dma_for_device(paddr, size, dir); |
| 239 | } |
| 240 | EXPORT_SYMBOL(dma_direct_sync_single_for_device); |
| 241 | |
| 242 | void dma_direct_sync_sg_for_device(struct device *dev, |
| 243 | struct scatterlist *sgl, int nents, enum dma_data_direction dir) |
| 244 | { |
| 245 | struct scatterlist *sg; |
| 246 | int i; |
| 247 | |
| 248 | for_each_sg(sgl, sg, nents, i) { |
| 249 | phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); |
| 250 | |
| 251 | if (unlikely(is_swiotlb_buffer(paddr))) |
| 252 | swiotlb_tbl_sync_single(dev, paddr, sg->length, |
| 253 | dir, SYNC_FOR_DEVICE); |
| 254 | |
| 255 | if (!dev_is_dma_coherent(dev)) |
| 256 | arch_sync_dma_for_device(paddr, sg->length, |
| 257 | dir); |
| 258 | } |
| 259 | } |
| 260 | EXPORT_SYMBOL(dma_direct_sync_sg_for_device); |
| 261 | #endif |
| 262 | |
| 263 | #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ |
| 264 | defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \ |
| 265 | defined(CONFIG_SWIOTLB) |
| 266 | void dma_direct_sync_single_for_cpu(struct device *dev, |
| 267 | dma_addr_t addr, size_t size, enum dma_data_direction dir) |
| 268 | { |
| 269 | phys_addr_t paddr = dma_to_phys(dev, addr); |
| 270 | |
| 271 | if (!dev_is_dma_coherent(dev)) { |
| 272 | arch_sync_dma_for_cpu(paddr, size, dir); |
| 273 | arch_sync_dma_for_cpu_all(); |
| 274 | } |
| 275 | |
| 276 | if (unlikely(is_swiotlb_buffer(paddr))) |
| 277 | swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU); |
| 278 | } |
| 279 | EXPORT_SYMBOL(dma_direct_sync_single_for_cpu); |
| 280 | |
| 281 | void dma_direct_sync_sg_for_cpu(struct device *dev, |
| 282 | struct scatterlist *sgl, int nents, enum dma_data_direction dir) |
| 283 | { |
| 284 | struct scatterlist *sg; |
| 285 | int i; |
| 286 | |
| 287 | for_each_sg(sgl, sg, nents, i) { |
| 288 | phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); |
| 289 | |
| 290 | if (!dev_is_dma_coherent(dev)) |
| 291 | arch_sync_dma_for_cpu(paddr, sg->length, dir); |
| 292 | |
| 293 | if (unlikely(is_swiotlb_buffer(paddr))) |
| 294 | swiotlb_tbl_sync_single(dev, paddr, sg->length, dir, |
| 295 | SYNC_FOR_CPU); |
| 296 | } |
| 297 | |
| 298 | if (!dev_is_dma_coherent(dev)) |
| 299 | arch_sync_dma_for_cpu_all(); |
| 300 | } |
| 301 | EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu); |
| 302 | |
| 303 | void dma_direct_unmap_page(struct device *dev, dma_addr_t addr, |
| 304 | size_t size, enum dma_data_direction dir, unsigned long attrs) |
| 305 | { |
| 306 | phys_addr_t phys = dma_to_phys(dev, addr); |
| 307 | |
| 308 | if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) |
| 309 | dma_direct_sync_single_for_cpu(dev, addr, size, dir); |
| 310 | |
| 311 | if (unlikely(is_swiotlb_buffer(phys))) |
| 312 | swiotlb_tbl_unmap_single(dev, phys, size, size, dir, |
| 313 | attrs | DMA_ATTR_SKIP_CPU_SYNC); |
| 314 | } |
| 315 | EXPORT_SYMBOL(dma_direct_unmap_page); |
| 316 | |
| 317 | void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, |
| 318 | int nents, enum dma_data_direction dir, unsigned long attrs) |
| 319 | { |
| 320 | struct scatterlist *sg; |
| 321 | int i; |
| 322 | |
| 323 | for_each_sg(sgl, sg, nents, i) |
| 324 | dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir, |
| 325 | attrs); |
| 326 | } |
| 327 | EXPORT_SYMBOL(dma_direct_unmap_sg); |
| 328 | #endif |
| 329 | |
| 330 | static inline bool dma_direct_possible(struct device *dev, dma_addr_t dma_addr, |
| 331 | size_t size) |
| 332 | { |
| 333 | return swiotlb_force != SWIOTLB_FORCE && |
| 334 | dma_capable(dev, dma_addr, size); |
| 335 | } |
| 336 | |
| 337 | dma_addr_t dma_direct_map_page(struct device *dev, struct page *page, |
| 338 | unsigned long offset, size_t size, enum dma_data_direction dir, |
| 339 | unsigned long attrs) |
| 340 | { |
| 341 | phys_addr_t phys = page_to_phys(page) + offset; |
| 342 | dma_addr_t dma_addr = phys_to_dma(dev, phys); |
| 343 | |
| 344 | if (unlikely(!dma_direct_possible(dev, dma_addr, size)) && |
| 345 | !swiotlb_map(dev, &phys, &dma_addr, size, dir, attrs)) { |
| 346 | report_addr(dev, dma_addr, size); |
| 347 | return DMA_MAPPING_ERROR; |
| 348 | } |
| 349 | |
| 350 | if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) |
| 351 | arch_sync_dma_for_device(phys, size, dir); |
| 352 | return dma_addr; |
| 353 | } |
| 354 | EXPORT_SYMBOL(dma_direct_map_page); |
| 355 | |
| 356 | int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, |
| 357 | enum dma_data_direction dir, unsigned long attrs) |
| 358 | { |
| 359 | int i; |
| 360 | struct scatterlist *sg; |
| 361 | |
| 362 | for_each_sg(sgl, sg, nents, i) { |
| 363 | sg->dma_address = dma_direct_map_page(dev, sg_page(sg), |
| 364 | sg->offset, sg->length, dir, attrs); |
| 365 | if (sg->dma_address == DMA_MAPPING_ERROR) |
| 366 | goto out_unmap; |
| 367 | sg_dma_len(sg) = sg->length; |
| 368 | } |
| 369 | |
| 370 | return nents; |
| 371 | |
| 372 | out_unmap: |
| 373 | dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); |
| 374 | return 0; |
| 375 | } |
| 376 | EXPORT_SYMBOL(dma_direct_map_sg); |
| 377 | |
| 378 | dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr, |
| 379 | size_t size, enum dma_data_direction dir, unsigned long attrs) |
| 380 | { |
| 381 | dma_addr_t dma_addr = paddr; |
| 382 | |
| 383 | if (unlikely(!dma_capable(dev, dma_addr, size))) { |
| 384 | report_addr(dev, dma_addr, size); |
| 385 | return DMA_MAPPING_ERROR; |
| 386 | } |
| 387 | |
| 388 | return dma_addr; |
| 389 | } |
| 390 | EXPORT_SYMBOL(dma_direct_map_resource); |
| 391 | |
| 392 | /* |
| 393 | * Because 32-bit DMA masks are so common we expect every architecture to be |
| 394 | * able to satisfy them - either by not supporting more physical memory, or by |
| 395 | * providing a ZONE_DMA32. If neither is the case, the architecture needs to |
| 396 | * use an IOMMU instead of the direct mapping. |
| 397 | */ |
| 398 | int dma_direct_supported(struct device *dev, u64 mask) |
| 399 | { |
| 400 | u64 min_mask; |
| 401 | |
| 402 | if (IS_ENABLED(CONFIG_ZONE_DMA)) |
| 403 | min_mask = DMA_BIT_MASK(ARCH_ZONE_DMA_BITS); |
| 404 | else |
| 405 | min_mask = DMA_BIT_MASK(32); |
| 406 | |
| 407 | min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT); |
| 408 | |
| 409 | /* |
| 410 | * This check needs to be against the actual bit mask value, so |
| 411 | * use __phys_to_dma() here so that the SME encryption mask isn't |
| 412 | * part of the check. |
| 413 | */ |
| 414 | return mask >= __phys_to_dma(dev, min_mask); |
| 415 | } |
| 416 | |
| 417 | size_t dma_direct_max_mapping_size(struct device *dev) |
| 418 | { |
| 419 | /* If SWIOTLB is active, use its maximum mapping size */ |
| 420 | if (is_swiotlb_active() && |
| 421 | (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE)) |
| 422 | return swiotlb_max_mapping_size(dev); |
| 423 | return SIZE_MAX; |
| 424 | } |