blob: b60ad648b68cddb2c1f3e7f34ed67644f69350f3 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15#include <linux/anon_inodes.h>
16#include <linux/slab.h>
17#include <linux/sched/autogroup.h>
18#include <linux/sched/mm.h>
19#include <linux/sched/coredump.h>
20#include <linux/sched/user.h>
21#include <linux/sched/numa_balancing.h>
22#include <linux/sched/stat.h>
23#include <linux/sched/task.h>
24#include <linux/sched/task_stack.h>
25#include <linux/sched/cputime.h>
26#include <linux/seq_file.h>
27#include <linux/rtmutex.h>
28#include <linux/init.h>
29#include <linux/unistd.h>
30#include <linux/module.h>
31#include <linux/vmalloc.h>
32#include <linux/completion.h>
33#include <linux/personality.h>
34#include <linux/mempolicy.h>
35#include <linux/sem.h>
36#include <linux/file.h>
37#include <linux/fdtable.h>
38#include <linux/iocontext.h>
39#include <linux/key.h>
40#include <linux/binfmts.h>
41#include <linux/mman.h>
42#include <linux/mmu_notifier.h>
43#include <linux/hmm.h>
44#include <linux/fs.h>
45#include <linux/mm.h>
46#include <linux/vmacache.h>
47#include <linux/nsproxy.h>
48#include <linux/capability.h>
49#include <linux/cpu.h>
50#include <linux/cgroup.h>
51#include <linux/security.h>
52#include <linux/hugetlb.h>
53#include <linux/seccomp.h>
54#include <linux/swap.h>
55#include <linux/syscalls.h>
56#include <linux/jiffies.h>
57#include <linux/futex.h>
58#include <linux/compat.h>
59#include <linux/kthread.h>
60#include <linux/task_io_accounting_ops.h>
61#include <linux/rcupdate.h>
62#include <linux/ptrace.h>
63#include <linux/mount.h>
64#include <linux/audit.h>
65#include <linux/memcontrol.h>
66#include <linux/ftrace.h>
67#include <linux/proc_fs.h>
68#include <linux/profile.h>
69#include <linux/rmap.h>
70#include <linux/ksm.h>
71#include <linux/acct.h>
72#include <linux/userfaultfd_k.h>
73#include <linux/tsacct_kern.h>
74#include <linux/cn_proc.h>
75#include <linux/freezer.h>
76#include <linux/delayacct.h>
77#include <linux/taskstats_kern.h>
78#include <linux/random.h>
79#include <linux/tty.h>
80#include <linux/blkdev.h>
81#include <linux/fs_struct.h>
82#include <linux/magic.h>
83#include <linux/perf_event.h>
84#include <linux/posix-timers.h>
85#include <linux/user-return-notifier.h>
86#include <linux/oom.h>
87#include <linux/khugepaged.h>
88#include <linux/signalfd.h>
89#include <linux/uprobes.h>
90#include <linux/aio.h>
91#include <linux/compiler.h>
92#include <linux/sysctl.h>
93#include <linux/kcov.h>
94#include <linux/livepatch.h>
95#include <linux/thread_info.h>
96#include <linux/cpufreq_times.h>
97#include <linux/stackleak.h>
98#include <linux/scs.h>
99
100#include <asm/pgtable.h>
101#include <asm/pgalloc.h>
102#include <linux/uaccess.h>
103#include <asm/mmu_context.h>
104#include <asm/cacheflush.h>
105#include <asm/tlbflush.h>
106
107#include <trace/events/sched.h>
108
109#define CREATE_TRACE_POINTS
110#include <trace/events/task.h>
111
112/*
113 * Minimum number of threads to boot the kernel
114 */
115#define MIN_THREADS 20
116
117/*
118 * Maximum number of threads
119 */
120#define MAX_THREADS FUTEX_TID_MASK
121
122/*
123 * Protected counters by write_lock_irq(&tasklist_lock)
124 */
125unsigned long total_forks; /* Handle normal Linux uptimes. */
126int nr_threads; /* The idle threads do not count.. */
127
128static int max_threads; /* tunable limit on nr_threads */
129
130#define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
131
132static const char * const resident_page_types[] = {
133 NAMED_ARRAY_INDEX(MM_FILEPAGES),
134 NAMED_ARRAY_INDEX(MM_ANONPAGES),
135 NAMED_ARRAY_INDEX(MM_SWAPENTS),
136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
137};
138
139DEFINE_PER_CPU(unsigned long, process_counts) = 0;
140
141__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
142
143#ifdef CONFIG_PROVE_RCU
144int lockdep_tasklist_lock_is_held(void)
145{
146 return lockdep_is_held(&tasklist_lock);
147}
148EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
149#endif /* #ifdef CONFIG_PROVE_RCU */
150
151int nr_processes(void)
152{
153 int cpu;
154 int total = 0;
155
156 for_each_possible_cpu(cpu)
157 total += per_cpu(process_counts, cpu);
158
159 return total;
160}
161
162void __weak arch_release_task_struct(struct task_struct *tsk)
163{
164}
165
166#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
167static struct kmem_cache *task_struct_cachep;
168
169static inline struct task_struct *alloc_task_struct_node(int node)
170{
171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
172}
173
174static inline void free_task_struct(struct task_struct *tsk)
175{
176 kmem_cache_free(task_struct_cachep, tsk);
177}
178#endif
179
180#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
181
182/*
183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184 * kmemcache based allocator.
185 */
186# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
187
188#ifdef CONFIG_VMAP_STACK
189/*
190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191 * flush. Try to minimize the number of calls by caching stacks.
192 */
193#define NR_CACHED_STACKS 2
194static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
195
196static int free_vm_stack_cache(unsigned int cpu)
197{
198 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
199 int i;
200
201 for (i = 0; i < NR_CACHED_STACKS; i++) {
202 struct vm_struct *vm_stack = cached_vm_stacks[i];
203
204 if (!vm_stack)
205 continue;
206
207 vfree(vm_stack->addr);
208 cached_vm_stacks[i] = NULL;
209 }
210
211 return 0;
212}
213#endif
214
215static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
216{
217#ifdef CONFIG_VMAP_STACK
218 void *stack;
219 int i;
220
221 for (i = 0; i < NR_CACHED_STACKS; i++) {
222 struct vm_struct *s;
223
224 s = this_cpu_xchg(cached_stacks[i], NULL);
225
226 if (!s)
227 continue;
228
229 /* Clear stale pointers from reused stack. */
230 memset(s->addr, 0, THREAD_SIZE);
231
232 tsk->stack_vm_area = s;
233 tsk->stack = s->addr;
234 return s->addr;
235 }
236
237 /*
238 * Allocated stacks are cached and later reused by new threads,
239 * so memcg accounting is performed manually on assigning/releasing
240 * stacks to tasks. Drop __GFP_ACCOUNT.
241 */
242 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
243 VMALLOC_START, VMALLOC_END,
244 THREADINFO_GFP & ~__GFP_ACCOUNT,
245 PAGE_KERNEL,
246 0, node, __builtin_return_address(0));
247
248 /*
249 * We can't call find_vm_area() in interrupt context, and
250 * free_thread_stack() can be called in interrupt context,
251 * so cache the vm_struct.
252 */
253 if (stack) {
254 tsk->stack_vm_area = find_vm_area(stack);
255 tsk->stack = stack;
256 }
257 return stack;
258#else
259 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
260 THREAD_SIZE_ORDER);
261
262 if (likely(page)) {
263 tsk->stack = page_address(page);
264 return tsk->stack;
265 }
266 return NULL;
267#endif
268}
269
270static inline void free_thread_stack(struct task_struct *tsk)
271{
272#ifdef CONFIG_VMAP_STACK
273 struct vm_struct *vm = task_stack_vm_area(tsk);
274
275 if (vm) {
276 int i;
277
278 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
279 mod_memcg_page_state(vm->pages[i],
280 MEMCG_KERNEL_STACK_KB,
281 -(int)(PAGE_SIZE / 1024));
282
283 memcg_kmem_uncharge(vm->pages[i], 0);
284 }
285
286 for (i = 0; i < NR_CACHED_STACKS; i++) {
287 if (this_cpu_cmpxchg(cached_stacks[i],
288 NULL, tsk->stack_vm_area) != NULL)
289 continue;
290
291 return;
292 }
293
294 vfree_atomic(tsk->stack);
295 return;
296 }
297#endif
298
299 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
300}
301# else
302static struct kmem_cache *thread_stack_cache;
303
304static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
305 int node)
306{
307 unsigned long *stack;
308 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
309 tsk->stack = stack;
310 return stack;
311}
312
313static void free_thread_stack(struct task_struct *tsk)
314{
315 kmem_cache_free(thread_stack_cache, tsk->stack);
316}
317
318void thread_stack_cache_init(void)
319{
320 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
321 THREAD_SIZE, THREAD_SIZE, 0, 0,
322 THREAD_SIZE, NULL);
323 BUG_ON(thread_stack_cache == NULL);
324}
325# endif
326#endif
327
328/* SLAB cache for signal_struct structures (tsk->signal) */
329static struct kmem_cache *signal_cachep;
330
331/* SLAB cache for sighand_struct structures (tsk->sighand) */
332struct kmem_cache *sighand_cachep;
333
334/* SLAB cache for files_struct structures (tsk->files) */
335struct kmem_cache *files_cachep;
336
337/* SLAB cache for fs_struct structures (tsk->fs) */
338struct kmem_cache *fs_cachep;
339
340/* SLAB cache for vm_area_struct structures */
341static struct kmem_cache *vm_area_cachep;
342
343/* SLAB cache for mm_struct structures (tsk->mm) */
344static struct kmem_cache *mm_cachep;
345
346struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
347{
348 struct vm_area_struct *vma;
349
350 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
351 if (vma)
352 vma_init(vma, mm);
353 return vma;
354}
355
356struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
357{
358 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
359
360 if (new) {
361 *new = *orig;
362 INIT_LIST_HEAD(&new->anon_vma_chain);
363 }
364 return new;
365}
366
367void vm_area_free(struct vm_area_struct *vma)
368{
369 kmem_cache_free(vm_area_cachep, vma);
370}
371
372static void account_kernel_stack(struct task_struct *tsk, int account)
373{
374 void *stack = task_stack_page(tsk);
375 struct vm_struct *vm = task_stack_vm_area(tsk);
376
377 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
378
379 if (vm) {
380 int i;
381
382 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
383
384 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
385 mod_zone_page_state(page_zone(vm->pages[i]),
386 NR_KERNEL_STACK_KB,
387 PAGE_SIZE / 1024 * account);
388 }
389 } else {
390 /*
391 * All stack pages are in the same zone and belong to the
392 * same memcg.
393 */
394 struct page *first_page = virt_to_page(stack);
395
396 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
397 THREAD_SIZE / 1024 * account);
398
399 mod_memcg_obj_state(stack, MEMCG_KERNEL_STACK_KB,
400 account * (THREAD_SIZE / 1024));
401 }
402}
403
404static int memcg_charge_kernel_stack(struct task_struct *tsk)
405{
406#ifdef CONFIG_VMAP_STACK
407 struct vm_struct *vm = task_stack_vm_area(tsk);
408 int ret;
409
410 if (vm) {
411 int i;
412
413 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
414 /*
415 * If memcg_kmem_charge() fails, page->mem_cgroup
416 * pointer is NULL, and both memcg_kmem_uncharge()
417 * and mod_memcg_page_state() in free_thread_stack()
418 * will ignore this page. So it's safe.
419 */
420 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
421 if (ret)
422 return ret;
423
424 mod_memcg_page_state(vm->pages[i],
425 MEMCG_KERNEL_STACK_KB,
426 PAGE_SIZE / 1024);
427 }
428 }
429#endif
430 return 0;
431}
432
433static void release_task_stack(struct task_struct *tsk)
434{
435 if (WARN_ON(tsk->state != TASK_DEAD))
436 return; /* Better to leak the stack than to free prematurely */
437
438 account_kernel_stack(tsk, -1);
439 free_thread_stack(tsk);
440 tsk->stack = NULL;
441#ifdef CONFIG_VMAP_STACK
442 tsk->stack_vm_area = NULL;
443#endif
444}
445
446#ifdef CONFIG_THREAD_INFO_IN_TASK
447void put_task_stack(struct task_struct *tsk)
448{
449 if (refcount_dec_and_test(&tsk->stack_refcount))
450 release_task_stack(tsk);
451}
452#endif
453
454void free_task(struct task_struct *tsk)
455{
456 cpufreq_task_times_exit(tsk);
457 scs_release(tsk);
458
459#ifndef CONFIG_THREAD_INFO_IN_TASK
460 /*
461 * The task is finally done with both the stack and thread_info,
462 * so free both.
463 */
464 release_task_stack(tsk);
465#else
466 /*
467 * If the task had a separate stack allocation, it should be gone
468 * by now.
469 */
470 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
471#endif
472 rt_mutex_debug_task_free(tsk);
473 ftrace_graph_exit_task(tsk);
474 arch_release_task_struct(tsk);
475 if (tsk->flags & PF_KTHREAD)
476 free_kthread_struct(tsk);
477 free_task_struct(tsk);
478}
479EXPORT_SYMBOL(free_task);
480
481#ifdef CONFIG_MMU
482static __latent_entropy int dup_mmap(struct mm_struct *mm,
483 struct mm_struct *oldmm)
484{
485 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
486 struct rb_node **rb_link, *rb_parent;
487 int retval;
488 unsigned long charge;
489 LIST_HEAD(uf);
490
491 uprobe_start_dup_mmap();
492 if (down_write_killable(&oldmm->mmap_sem)) {
493 retval = -EINTR;
494 goto fail_uprobe_end;
495 }
496 flush_cache_dup_mm(oldmm);
497 uprobe_dup_mmap(oldmm, mm);
498 /*
499 * Not linked in yet - no deadlock potential:
500 */
501 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
502
503 /* No ordering required: file already has been exposed. */
504 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
505
506 mm->total_vm = oldmm->total_vm;
507 mm->data_vm = oldmm->data_vm;
508 mm->exec_vm = oldmm->exec_vm;
509 mm->stack_vm = oldmm->stack_vm;
510
511 rb_link = &mm->mm_rb.rb_node;
512 rb_parent = NULL;
513 pprev = &mm->mmap;
514 retval = ksm_fork(mm, oldmm);
515 if (retval)
516 goto out;
517 retval = khugepaged_fork(mm, oldmm);
518 if (retval)
519 goto out;
520
521 prev = NULL;
522 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
523 struct file *file;
524
525 if (mpnt->vm_flags & VM_DONTCOPY) {
526 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
527 continue;
528 }
529 charge = 0;
530 /*
531 * Don't duplicate many vmas if we've been oom-killed (for
532 * example)
533 */
534 if (fatal_signal_pending(current)) {
535 retval = -EINTR;
536 goto out;
537 }
538 if (mpnt->vm_flags & VM_ACCOUNT) {
539 unsigned long len = vma_pages(mpnt);
540
541 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
542 goto fail_nomem;
543 charge = len;
544 }
545 tmp = vm_area_dup(mpnt);
546 if (!tmp)
547 goto fail_nomem;
548 retval = vma_dup_policy(mpnt, tmp);
549 if (retval)
550 goto fail_nomem_policy;
551 tmp->vm_mm = mm;
552 retval = dup_userfaultfd(tmp, &uf);
553 if (retval)
554 goto fail_nomem_anon_vma_fork;
555 if (tmp->vm_flags & VM_WIPEONFORK) {
556 /* VM_WIPEONFORK gets a clean slate in the child. */
557 tmp->anon_vma = NULL;
558 if (anon_vma_prepare(tmp))
559 goto fail_nomem_anon_vma_fork;
560 } else if (anon_vma_fork(tmp, mpnt))
561 goto fail_nomem_anon_vma_fork;
562 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
563 tmp->vm_next = tmp->vm_prev = NULL;
564 file = tmp->vm_file;
565 if (file) {
566 struct inode *inode = file_inode(file);
567 struct address_space *mapping = file->f_mapping;
568
569 get_file(file);
570 if (tmp->vm_flags & VM_DENYWRITE)
571 atomic_dec(&inode->i_writecount);
572 i_mmap_lock_write(mapping);
573 if (tmp->vm_flags & VM_SHARED)
574 atomic_inc(&mapping->i_mmap_writable);
575 flush_dcache_mmap_lock(mapping);
576 /* insert tmp into the share list, just after mpnt */
577 vma_interval_tree_insert_after(tmp, mpnt,
578 &mapping->i_mmap);
579 flush_dcache_mmap_unlock(mapping);
580 i_mmap_unlock_write(mapping);
581 }
582
583 /*
584 * Clear hugetlb-related page reserves for children. This only
585 * affects MAP_PRIVATE mappings. Faults generated by the child
586 * are not guaranteed to succeed, even if read-only
587 */
588 if (is_vm_hugetlb_page(tmp))
589 reset_vma_resv_huge_pages(tmp);
590
591 /*
592 * Link in the new vma and copy the page table entries.
593 */
594 *pprev = tmp;
595 pprev = &tmp->vm_next;
596 tmp->vm_prev = prev;
597 prev = tmp;
598
599 __vma_link_rb(mm, tmp, rb_link, rb_parent);
600 rb_link = &tmp->vm_rb.rb_right;
601 rb_parent = &tmp->vm_rb;
602
603 mm->map_count++;
604 if (!(tmp->vm_flags & VM_WIPEONFORK))
605 retval = copy_page_range(mm, oldmm, mpnt);
606
607 if (tmp->vm_ops && tmp->vm_ops->open)
608 tmp->vm_ops->open(tmp);
609
610 if (retval)
611 goto out;
612 }
613 /* a new mm has just been created */
614 retval = arch_dup_mmap(oldmm, mm);
615out:
616 up_write(&mm->mmap_sem);
617 flush_tlb_mm(oldmm);
618 up_write(&oldmm->mmap_sem);
619 dup_userfaultfd_complete(&uf);
620fail_uprobe_end:
621 uprobe_end_dup_mmap();
622 return retval;
623fail_nomem_anon_vma_fork:
624 mpol_put(vma_policy(tmp));
625fail_nomem_policy:
626 vm_area_free(tmp);
627fail_nomem:
628 retval = -ENOMEM;
629 vm_unacct_memory(charge);
630 goto out;
631}
632
633static inline int mm_alloc_pgd(struct mm_struct *mm)
634{
635 mm->pgd = pgd_alloc(mm);
636 if (unlikely(!mm->pgd))
637 return -ENOMEM;
638 return 0;
639}
640
641static inline void mm_free_pgd(struct mm_struct *mm)
642{
643 pgd_free(mm, mm->pgd);
644}
645#else
646static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
647{
648 down_write(&oldmm->mmap_sem);
649 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
650 up_write(&oldmm->mmap_sem);
651 return 0;
652}
653#define mm_alloc_pgd(mm) (0)
654#define mm_free_pgd(mm)
655#endif /* CONFIG_MMU */
656
657static void check_mm(struct mm_struct *mm)
658{
659 int i;
660
661 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
662 "Please make sure 'struct resident_page_types[]' is updated as well");
663
664 for (i = 0; i < NR_MM_COUNTERS; i++) {
665 long x = atomic_long_read(&mm->rss_stat.count[i]);
666
667 if (unlikely(x))
668 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
669 mm, resident_page_types[i], x);
670 }
671
672 if (mm_pgtables_bytes(mm))
673 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
674 mm_pgtables_bytes(mm));
675
676#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
677 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
678#endif
679}
680
681#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
682#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
683
684/*
685 * Called when the last reference to the mm
686 * is dropped: either by a lazy thread or by
687 * mmput. Free the page directory and the mm.
688 */
689void __mmdrop(struct mm_struct *mm)
690{
691 BUG_ON(mm == &init_mm);
692 WARN_ON_ONCE(mm == current->mm);
693 WARN_ON_ONCE(mm == current->active_mm);
694 mm_free_pgd(mm);
695 destroy_context(mm);
696 mmu_notifier_mm_destroy(mm);
697 check_mm(mm);
698 put_user_ns(mm->user_ns);
699 free_mm(mm);
700}
701EXPORT_SYMBOL_GPL(__mmdrop);
702
703static void mmdrop_async_fn(struct work_struct *work)
704{
705 struct mm_struct *mm;
706
707 mm = container_of(work, struct mm_struct, async_put_work);
708 __mmdrop(mm);
709}
710
711static void mmdrop_async(struct mm_struct *mm)
712{
713 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
714 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
715 schedule_work(&mm->async_put_work);
716 }
717}
718
719static inline void free_signal_struct(struct signal_struct *sig)
720{
721 taskstats_tgid_free(sig);
722 sched_autogroup_exit(sig);
723 /*
724 * __mmdrop is not safe to call from softirq context on x86 due to
725 * pgd_dtor so postpone it to the async context
726 */
727 if (sig->oom_mm)
728 mmdrop_async(sig->oom_mm);
729 kmem_cache_free(signal_cachep, sig);
730}
731
732static inline void put_signal_struct(struct signal_struct *sig)
733{
734 if (refcount_dec_and_test(&sig->sigcnt))
735 free_signal_struct(sig);
736}
737
738void __put_task_struct(struct task_struct *tsk)
739{
740 WARN_ON(!tsk->exit_state);
741 WARN_ON(refcount_read(&tsk->usage));
742 WARN_ON(tsk == current);
743
744 cgroup_free(tsk);
745 task_numa_free(tsk, true);
746 security_task_free(tsk);
747 exit_creds(tsk);
748 delayacct_tsk_free(tsk);
749 put_signal_struct(tsk->signal);
750
751 if (!profile_handoff_task(tsk))
752 free_task(tsk);
753}
754EXPORT_SYMBOL_GPL(__put_task_struct);
755
756void __put_task_struct_rcu_cb(struct rcu_head *rhp)
757{
758 struct task_struct *task = container_of(rhp, struct task_struct, rcu);
759
760 __put_task_struct(task);
761}
762EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
763
764void __init __weak arch_task_cache_init(void) { }
765
766/*
767 * set_max_threads
768 */
769static void set_max_threads(unsigned int max_threads_suggested)
770{
771 u64 threads;
772 unsigned long nr_pages = totalram_pages();
773
774 /*
775 * The number of threads shall be limited such that the thread
776 * structures may only consume a small part of the available memory.
777 */
778 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
779 threads = MAX_THREADS;
780 else
781 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
782 (u64) THREAD_SIZE * 8UL);
783
784 if (threads > max_threads_suggested)
785 threads = max_threads_suggested;
786
787 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
788}
789
790#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
791/* Initialized by the architecture: */
792int arch_task_struct_size __read_mostly;
793#endif
794
795#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
796static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
797{
798 /* Fetch thread_struct whitelist for the architecture. */
799 arch_thread_struct_whitelist(offset, size);
800
801 /*
802 * Handle zero-sized whitelist or empty thread_struct, otherwise
803 * adjust offset to position of thread_struct in task_struct.
804 */
805 if (unlikely(*size == 0))
806 *offset = 0;
807 else
808 *offset += offsetof(struct task_struct, thread);
809}
810#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
811
812void __init fork_init(void)
813{
814 int i;
815#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
816#ifndef ARCH_MIN_TASKALIGN
817#define ARCH_MIN_TASKALIGN 0
818#endif
819 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
820 unsigned long useroffset, usersize;
821
822 /* create a slab on which task_structs can be allocated */
823 task_struct_whitelist(&useroffset, &usersize);
824 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
825 arch_task_struct_size, align,
826 SLAB_PANIC|SLAB_ACCOUNT,
827 useroffset, usersize, NULL);
828#endif
829
830 /* do the arch specific task caches init */
831 arch_task_cache_init();
832
833 set_max_threads(MAX_THREADS);
834
835 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
836 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
837 init_task.signal->rlim[RLIMIT_SIGPENDING] =
838 init_task.signal->rlim[RLIMIT_NPROC];
839
840 for (i = 0; i < UCOUNT_COUNTS; i++) {
841 init_user_ns.ucount_max[i] = max_threads/2;
842 }
843
844#ifdef CONFIG_VMAP_STACK
845 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
846 NULL, free_vm_stack_cache);
847#endif
848
849 scs_init();
850
851 lockdep_init_task(&init_task);
852 uprobes_init();
853}
854
855int __weak arch_dup_task_struct(struct task_struct *dst,
856 struct task_struct *src)
857{
858 *dst = *src;
859 return 0;
860}
861
862void set_task_stack_end_magic(struct task_struct *tsk)
863{
864 unsigned long *stackend;
865
866 stackend = end_of_stack(tsk);
867 *stackend = STACK_END_MAGIC; /* for overflow detection */
868}
869
870static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
871{
872 struct task_struct *tsk;
873 unsigned long *stack;
874 struct vm_struct *stack_vm_area __maybe_unused;
875 int err;
876
877 if (node == NUMA_NO_NODE)
878 node = tsk_fork_get_node(orig);
879 tsk = alloc_task_struct_node(node);
880 if (!tsk)
881 return NULL;
882
883 stack = alloc_thread_stack_node(tsk, node);
884 if (!stack)
885 goto free_tsk;
886
887 if (memcg_charge_kernel_stack(tsk))
888 goto free_stack;
889
890 stack_vm_area = task_stack_vm_area(tsk);
891
892 err = arch_dup_task_struct(tsk, orig);
893
894 /*
895 * arch_dup_task_struct() clobbers the stack-related fields. Make
896 * sure they're properly initialized before using any stack-related
897 * functions again.
898 */
899 tsk->stack = stack;
900#ifdef CONFIG_VMAP_STACK
901 tsk->stack_vm_area = stack_vm_area;
902#endif
903#ifdef CONFIG_THREAD_INFO_IN_TASK
904 refcount_set(&tsk->stack_refcount, 1);
905#endif
906
907 if (err)
908 goto free_stack;
909
910 err = scs_prepare(tsk, node);
911 if (err)
912 goto free_stack;
913
914#ifdef CONFIG_SECCOMP
915 /*
916 * We must handle setting up seccomp filters once we're under
917 * the sighand lock in case orig has changed between now and
918 * then. Until then, filter must be NULL to avoid messing up
919 * the usage counts on the error path calling free_task.
920 */
921 tsk->seccomp.filter = NULL;
922#endif
923
924 setup_thread_stack(tsk, orig);
925 clear_user_return_notifier(tsk);
926 clear_tsk_need_resched(tsk);
927 set_task_stack_end_magic(tsk);
928
929#ifdef CONFIG_STACKPROTECTOR
930 tsk->stack_canary = get_random_canary();
931#endif
932 if (orig->cpus_ptr == &orig->cpus_mask)
933 tsk->cpus_ptr = &tsk->cpus_mask;
934
935 /*
936 * One for the user space visible state that goes away when reaped.
937 * One for the scheduler.
938 */
939 refcount_set(&tsk->rcu_users, 2);
940 /* One for the rcu users */
941 refcount_set(&tsk->usage, 1);
942#ifdef CONFIG_BLK_DEV_IO_TRACE
943 tsk->btrace_seq = 0;
944#endif
945 tsk->splice_pipe = NULL;
946 tsk->task_frag.page = NULL;
947 tsk->wake_q.next = NULL;
948
949 account_kernel_stack(tsk, 1);
950
951 kcov_task_init(tsk);
952
953#ifdef CONFIG_FAULT_INJECTION
954 tsk->fail_nth = 0;
955#endif
956
957#ifdef CONFIG_BLK_CGROUP
958 tsk->throttle_queue = NULL;
959 tsk->use_memdelay = 0;
960#endif
961
962#ifdef CONFIG_MEMCG
963 tsk->active_memcg = NULL;
964#endif
965 return tsk;
966
967free_stack:
968 free_thread_stack(tsk);
969free_tsk:
970 free_task_struct(tsk);
971 return NULL;
972}
973
974__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
975
976static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
977
978static int __init coredump_filter_setup(char *s)
979{
980 default_dump_filter =
981 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
982 MMF_DUMP_FILTER_MASK;
983 return 1;
984}
985
986__setup("coredump_filter=", coredump_filter_setup);
987
988#include <linux/init_task.h>
989
990static void mm_init_aio(struct mm_struct *mm)
991{
992#ifdef CONFIG_AIO
993 spin_lock_init(&mm->ioctx_lock);
994 mm->ioctx_table = NULL;
995#endif
996}
997
998static __always_inline void mm_clear_owner(struct mm_struct *mm,
999 struct task_struct *p)
1000{
1001#ifdef CONFIG_MEMCG
1002 if (mm->owner == p)
1003 WRITE_ONCE(mm->owner, NULL);
1004#endif
1005}
1006
1007static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1008{
1009#ifdef CONFIG_MEMCG
1010 mm->owner = p;
1011#endif
1012}
1013
1014static void mm_init_uprobes_state(struct mm_struct *mm)
1015{
1016#ifdef CONFIG_UPROBES
1017 mm->uprobes_state.xol_area = NULL;
1018#endif
1019}
1020
1021static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1022 struct user_namespace *user_ns)
1023{
1024 mm->mmap = NULL;
1025 mm->mm_rb = RB_ROOT;
1026 mm->vmacache_seqnum = 0;
1027 atomic_set(&mm->mm_users, 1);
1028 atomic_set(&mm->mm_count, 1);
1029 init_rwsem(&mm->mmap_sem);
1030 INIT_LIST_HEAD(&mm->mmlist);
1031 mm->core_state = NULL;
1032 mm_pgtables_bytes_init(mm);
1033 mm->map_count = 0;
1034 mm->locked_vm = 0;
1035 atomic64_set(&mm->pinned_vm, 0);
1036 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1037 spin_lock_init(&mm->page_table_lock);
1038 spin_lock_init(&mm->arg_lock);
1039 mm_init_cpumask(mm);
1040 mm_init_aio(mm);
1041 mm_init_owner(mm, p);
1042 RCU_INIT_POINTER(mm->exe_file, NULL);
1043 mmu_notifier_mm_init(mm);
1044 init_tlb_flush_pending(mm);
1045#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1046 mm->pmd_huge_pte = NULL;
1047#endif
1048 mm_init_uprobes_state(mm);
1049 hugetlb_count_init(mm);
1050
1051 if (current->mm) {
1052 mm->flags = current->mm->flags & MMF_INIT_MASK;
1053 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1054 } else {
1055 mm->flags = default_dump_filter;
1056 mm->def_flags = 0;
1057 }
1058
1059 if (mm_alloc_pgd(mm))
1060 goto fail_nopgd;
1061
1062 if (init_new_context(p, mm))
1063 goto fail_nocontext;
1064
1065 mm->user_ns = get_user_ns(user_ns);
1066 return mm;
1067
1068fail_nocontext:
1069 mm_free_pgd(mm);
1070fail_nopgd:
1071 free_mm(mm);
1072 return NULL;
1073}
1074
1075/*
1076 * Allocate and initialize an mm_struct.
1077 */
1078struct mm_struct *mm_alloc(void)
1079{
1080 struct mm_struct *mm;
1081
1082 mm = allocate_mm();
1083 if (!mm)
1084 return NULL;
1085
1086 memset(mm, 0, sizeof(*mm));
1087 return mm_init(mm, current, current_user_ns());
1088}
1089
1090static inline void __mmput(struct mm_struct *mm)
1091{
1092 VM_BUG_ON(atomic_read(&mm->mm_users));
1093
1094 uprobe_clear_state(mm);
1095 exit_aio(mm);
1096 ksm_exit(mm);
1097 khugepaged_exit(mm); /* must run before exit_mmap */
1098 exit_mmap(mm);
1099 mm_put_huge_zero_page(mm);
1100 set_mm_exe_file(mm, NULL);
1101 if (!list_empty(&mm->mmlist)) {
1102 spin_lock(&mmlist_lock);
1103 list_del(&mm->mmlist);
1104 spin_unlock(&mmlist_lock);
1105 }
1106 if (mm->binfmt)
1107 module_put(mm->binfmt->module);
1108 mmdrop(mm);
1109}
1110
1111/*
1112 * Decrement the use count and release all resources for an mm.
1113 */
1114void mmput(struct mm_struct *mm)
1115{
1116 might_sleep();
1117
1118 if (atomic_dec_and_test(&mm->mm_users))
1119 __mmput(mm);
1120}
1121EXPORT_SYMBOL_GPL(mmput);
1122
1123#ifdef CONFIG_MMU
1124static void mmput_async_fn(struct work_struct *work)
1125{
1126 struct mm_struct *mm = container_of(work, struct mm_struct,
1127 async_put_work);
1128
1129 __mmput(mm);
1130}
1131
1132void mmput_async(struct mm_struct *mm)
1133{
1134 if (atomic_dec_and_test(&mm->mm_users)) {
1135 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1136 schedule_work(&mm->async_put_work);
1137 }
1138}
1139#endif
1140
1141/**
1142 * set_mm_exe_file - change a reference to the mm's executable file
1143 *
1144 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1145 *
1146 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1147 * invocations: in mmput() nobody alive left, in execve task is single
1148 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1149 * mm->exe_file, but does so without using set_mm_exe_file() in order
1150 * to do avoid the need for any locks.
1151 */
1152void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1153{
1154 struct file *old_exe_file;
1155
1156 /*
1157 * It is safe to dereference the exe_file without RCU as
1158 * this function is only called if nobody else can access
1159 * this mm -- see comment above for justification.
1160 */
1161 old_exe_file = rcu_dereference_raw(mm->exe_file);
1162
1163 if (new_exe_file)
1164 get_file(new_exe_file);
1165 rcu_assign_pointer(mm->exe_file, new_exe_file);
1166 if (old_exe_file)
1167 fput(old_exe_file);
1168}
1169
1170/**
1171 * get_mm_exe_file - acquire a reference to the mm's executable file
1172 *
1173 * Returns %NULL if mm has no associated executable file.
1174 * User must release file via fput().
1175 */
1176struct file *get_mm_exe_file(struct mm_struct *mm)
1177{
1178 struct file *exe_file;
1179
1180 rcu_read_lock();
1181 exe_file = rcu_dereference(mm->exe_file);
1182 if (exe_file && !get_file_rcu(exe_file))
1183 exe_file = NULL;
1184 rcu_read_unlock();
1185 return exe_file;
1186}
1187EXPORT_SYMBOL(get_mm_exe_file);
1188
1189/**
1190 * get_task_exe_file - acquire a reference to the task's executable file
1191 *
1192 * Returns %NULL if task's mm (if any) has no associated executable file or
1193 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1194 * User must release file via fput().
1195 */
1196struct file *get_task_exe_file(struct task_struct *task)
1197{
1198 struct file *exe_file = NULL;
1199 struct mm_struct *mm;
1200
1201 task_lock(task);
1202 mm = task->mm;
1203 if (mm) {
1204 if (!(task->flags & PF_KTHREAD))
1205 exe_file = get_mm_exe_file(mm);
1206 }
1207 task_unlock(task);
1208 return exe_file;
1209}
1210EXPORT_SYMBOL(get_task_exe_file);
1211
1212/**
1213 * get_task_mm - acquire a reference to the task's mm
1214 *
1215 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1216 * this kernel workthread has transiently adopted a user mm with use_mm,
1217 * to do its AIO) is not set and if so returns a reference to it, after
1218 * bumping up the use count. User must release the mm via mmput()
1219 * after use. Typically used by /proc and ptrace.
1220 */
1221struct mm_struct *get_task_mm(struct task_struct *task)
1222{
1223 struct mm_struct *mm;
1224
1225 task_lock(task);
1226 mm = task->mm;
1227 if (mm) {
1228 if (task->flags & PF_KTHREAD)
1229 mm = NULL;
1230 else
1231 mmget(mm);
1232 }
1233 task_unlock(task);
1234 return mm;
1235}
1236EXPORT_SYMBOL_GPL(get_task_mm);
1237
1238struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1239{
1240 struct mm_struct *mm;
1241 int err;
1242
1243 err = down_read_killable(&task->signal->exec_update_lock);
1244 if (err)
1245 return ERR_PTR(err);
1246
1247 mm = get_task_mm(task);
1248 if (mm && mm != current->mm &&
1249 !ptrace_may_access(task, mode)) {
1250 mmput(mm);
1251 mm = ERR_PTR(-EACCES);
1252 }
1253 up_read(&task->signal->exec_update_lock);
1254
1255 return mm;
1256}
1257
1258static void complete_vfork_done(struct task_struct *tsk)
1259{
1260 struct completion *vfork;
1261
1262 task_lock(tsk);
1263 vfork = tsk->vfork_done;
1264 if (likely(vfork)) {
1265 tsk->vfork_done = NULL;
1266 complete(vfork);
1267 }
1268 task_unlock(tsk);
1269}
1270
1271static int wait_for_vfork_done(struct task_struct *child,
1272 struct completion *vfork)
1273{
1274 int killed;
1275
1276 freezer_do_not_count();
1277 cgroup_enter_frozen();
1278 killed = wait_for_completion_killable(vfork);
1279 cgroup_leave_frozen(false);
1280 freezer_count();
1281
1282 if (killed) {
1283 task_lock(child);
1284 child->vfork_done = NULL;
1285 task_unlock(child);
1286 }
1287
1288 put_task_struct(child);
1289 return killed;
1290}
1291
1292/* Please note the differences between mmput and mm_release.
1293 * mmput is called whenever we stop holding onto a mm_struct,
1294 * error success whatever.
1295 *
1296 * mm_release is called after a mm_struct has been removed
1297 * from the current process.
1298 *
1299 * This difference is important for error handling, when we
1300 * only half set up a mm_struct for a new process and need to restore
1301 * the old one. Because we mmput the new mm_struct before
1302 * restoring the old one. . .
1303 * Eric Biederman 10 January 1998
1304 */
1305static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1306{
1307 uprobe_free_utask(tsk);
1308
1309 /* Get rid of any cached register state */
1310 deactivate_mm(tsk, mm);
1311
1312 /*
1313 * Signal userspace if we're not exiting with a core dump
1314 * because we want to leave the value intact for debugging
1315 * purposes.
1316 */
1317 if (tsk->clear_child_tid) {
1318 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1319 atomic_read(&mm->mm_users) > 1) {
1320 /*
1321 * We don't check the error code - if userspace has
1322 * not set up a proper pointer then tough luck.
1323 */
1324 put_user(0, tsk->clear_child_tid);
1325 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1326 1, NULL, NULL, 0, 0);
1327 }
1328 tsk->clear_child_tid = NULL;
1329 }
1330
1331 /*
1332 * All done, finally we can wake up parent and return this mm to him.
1333 * Also kthread_stop() uses this completion for synchronization.
1334 */
1335 if (tsk->vfork_done)
1336 complete_vfork_done(tsk);
1337}
1338
1339void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1340{
1341 futex_exit_release(tsk);
1342 mm_release(tsk, mm);
1343}
1344
1345void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1346{
1347 futex_exec_release(tsk);
1348 mm_release(tsk, mm);
1349}
1350
1351/**
1352 * dup_mm() - duplicates an existing mm structure
1353 * @tsk: the task_struct with which the new mm will be associated.
1354 * @oldmm: the mm to duplicate.
1355 *
1356 * Allocates a new mm structure and duplicates the provided @oldmm structure
1357 * content into it.
1358 *
1359 * Return: the duplicated mm or NULL on failure.
1360 */
1361static struct mm_struct *dup_mm(struct task_struct *tsk,
1362 struct mm_struct *oldmm)
1363{
1364 struct mm_struct *mm;
1365 int err;
1366
1367 mm = allocate_mm();
1368 if (!mm)
1369 goto fail_nomem;
1370
1371 memcpy(mm, oldmm, sizeof(*mm));
1372
1373 if (!mm_init(mm, tsk, mm->user_ns))
1374 goto fail_nomem;
1375
1376 err = dup_mmap(mm, oldmm);
1377 if (err)
1378 goto free_pt;
1379
1380 mm->hiwater_rss = get_mm_rss(mm);
1381 mm->hiwater_vm = mm->total_vm;
1382
1383 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1384 goto free_pt;
1385
1386 return mm;
1387
1388free_pt:
1389 /* don't put binfmt in mmput, we haven't got module yet */
1390 mm->binfmt = NULL;
1391 mm_init_owner(mm, NULL);
1392 mmput(mm);
1393
1394fail_nomem:
1395 return NULL;
1396}
1397
1398static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1399{
1400 struct mm_struct *mm, *oldmm;
1401 int retval;
1402
1403 tsk->min_flt = tsk->maj_flt = 0;
1404 tsk->nvcsw = tsk->nivcsw = 0;
1405#ifdef CONFIG_DETECT_HUNG_TASK
1406 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1407 tsk->last_switch_time = 0;
1408#endif
1409
1410 tsk->mm = NULL;
1411 tsk->active_mm = NULL;
1412
1413 /*
1414 * Are we cloning a kernel thread?
1415 *
1416 * We need to steal a active VM for that..
1417 */
1418 oldmm = current->mm;
1419 if (!oldmm)
1420 return 0;
1421
1422 /* initialize the new vmacache entries */
1423 vmacache_flush(tsk);
1424
1425 if (clone_flags & CLONE_VM) {
1426 mmget(oldmm);
1427 mm = oldmm;
1428 goto good_mm;
1429 }
1430
1431 retval = -ENOMEM;
1432 mm = dup_mm(tsk, current->mm);
1433 if (!mm)
1434 goto fail_nomem;
1435
1436good_mm:
1437 tsk->mm = mm;
1438 tsk->active_mm = mm;
1439 return 0;
1440
1441fail_nomem:
1442 return retval;
1443}
1444
1445static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1446{
1447 struct fs_struct *fs = current->fs;
1448 if (clone_flags & CLONE_FS) {
1449 /* tsk->fs is already what we want */
1450 spin_lock(&fs->lock);
1451 if (fs->in_exec) {
1452 spin_unlock(&fs->lock);
1453 return -EAGAIN;
1454 }
1455 fs->users++;
1456 spin_unlock(&fs->lock);
1457 return 0;
1458 }
1459 tsk->fs = copy_fs_struct(fs);
1460 if (!tsk->fs)
1461 return -ENOMEM;
1462 return 0;
1463}
1464
1465static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1466{
1467 struct files_struct *oldf, *newf;
1468 int error = 0;
1469
1470 /*
1471 * A background process may not have any files ...
1472 */
1473 oldf = current->files;
1474 if (!oldf)
1475 goto out;
1476
1477 if (clone_flags & CLONE_FILES) {
1478 atomic_inc(&oldf->count);
1479 goto out;
1480 }
1481
1482 newf = dup_fd(oldf, &error);
1483 if (!newf)
1484 goto out;
1485
1486 tsk->files = newf;
1487 error = 0;
1488out:
1489 return error;
1490}
1491
1492static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1493{
1494#ifdef CONFIG_BLOCK
1495 struct io_context *ioc = current->io_context;
1496 struct io_context *new_ioc;
1497
1498 if (!ioc)
1499 return 0;
1500 /*
1501 * Share io context with parent, if CLONE_IO is set
1502 */
1503 if (clone_flags & CLONE_IO) {
1504 ioc_task_link(ioc);
1505 tsk->io_context = ioc;
1506 } else if (ioprio_valid(ioc->ioprio)) {
1507 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1508 if (unlikely(!new_ioc))
1509 return -ENOMEM;
1510
1511 new_ioc->ioprio = ioc->ioprio;
1512 put_io_context(new_ioc);
1513 }
1514#endif
1515 return 0;
1516}
1517
1518static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1519{
1520 struct sighand_struct *sig;
1521
1522 if (clone_flags & CLONE_SIGHAND) {
1523 refcount_inc(&current->sighand->count);
1524 return 0;
1525 }
1526 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1527 rcu_assign_pointer(tsk->sighand, sig);
1528 if (!sig)
1529 return -ENOMEM;
1530
1531 refcount_set(&sig->count, 1);
1532 spin_lock_irq(&current->sighand->siglock);
1533 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1534 spin_unlock_irq(&current->sighand->siglock);
1535 return 0;
1536}
1537
1538void __cleanup_sighand(struct sighand_struct *sighand)
1539{
1540 if (refcount_dec_and_test(&sighand->count)) {
1541 signalfd_cleanup(sighand);
1542 /*
1543 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1544 * without an RCU grace period, see __lock_task_sighand().
1545 */
1546 kmem_cache_free(sighand_cachep, sighand);
1547 }
1548}
1549
1550/*
1551 * Initialize POSIX timer handling for a thread group.
1552 */
1553static void posix_cpu_timers_init_group(struct signal_struct *sig)
1554{
1555 struct posix_cputimers *pct = &sig->posix_cputimers;
1556 unsigned long cpu_limit;
1557
1558 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1559 posix_cputimers_group_init(pct, cpu_limit);
1560}
1561
1562static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1563{
1564 struct signal_struct *sig;
1565
1566 if (clone_flags & CLONE_THREAD)
1567 return 0;
1568
1569 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1570 tsk->signal = sig;
1571 if (!sig)
1572 return -ENOMEM;
1573
1574 sig->nr_threads = 1;
1575 atomic_set(&sig->live, 1);
1576 refcount_set(&sig->sigcnt, 1);
1577
1578 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1579 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1580 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1581
1582 init_waitqueue_head(&sig->wait_chldexit);
1583 sig->curr_target = tsk;
1584 init_sigpending(&sig->shared_pending);
1585 INIT_HLIST_HEAD(&sig->multiprocess);
1586 seqlock_init(&sig->stats_lock);
1587 prev_cputime_init(&sig->prev_cputime);
1588
1589#ifdef CONFIG_POSIX_TIMERS
1590 INIT_LIST_HEAD(&sig->posix_timers);
1591 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1592 sig->real_timer.function = it_real_fn;
1593#endif
1594
1595 task_lock(current->group_leader);
1596 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1597 task_unlock(current->group_leader);
1598
1599 posix_cpu_timers_init_group(sig);
1600
1601 tty_audit_fork(sig);
1602 sched_autogroup_fork(sig);
1603
1604 sig->oom_score_adj = current->signal->oom_score_adj;
1605 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1606
1607 mutex_init(&sig->cred_guard_mutex);
1608 init_rwsem(&sig->exec_update_lock);
1609
1610 return 0;
1611}
1612
1613static void copy_seccomp(struct task_struct *p)
1614{
1615#ifdef CONFIG_SECCOMP
1616 /*
1617 * Must be called with sighand->lock held, which is common to
1618 * all threads in the group. Holding cred_guard_mutex is not
1619 * needed because this new task is not yet running and cannot
1620 * be racing exec.
1621 */
1622 assert_spin_locked(&current->sighand->siglock);
1623
1624 /* Ref-count the new filter user, and assign it. */
1625 get_seccomp_filter(current);
1626 p->seccomp = current->seccomp;
1627
1628 /*
1629 * Explicitly enable no_new_privs here in case it got set
1630 * between the task_struct being duplicated and holding the
1631 * sighand lock. The seccomp state and nnp must be in sync.
1632 */
1633 if (task_no_new_privs(current))
1634 task_set_no_new_privs(p);
1635
1636 /*
1637 * If the parent gained a seccomp mode after copying thread
1638 * flags and between before we held the sighand lock, we have
1639 * to manually enable the seccomp thread flag here.
1640 */
1641 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1642 set_tsk_thread_flag(p, TIF_SECCOMP);
1643#endif
1644}
1645
1646SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1647{
1648 current->clear_child_tid = tidptr;
1649
1650 return task_pid_vnr(current);
1651}
1652
1653static void rt_mutex_init_task(struct task_struct *p)
1654{
1655 raw_spin_lock_init(&p->pi_lock);
1656#ifdef CONFIG_RT_MUTEXES
1657 p->pi_waiters = RB_ROOT_CACHED;
1658 p->pi_top_task = NULL;
1659 p->pi_blocked_on = NULL;
1660#endif
1661}
1662
1663static inline void init_task_pid_links(struct task_struct *task)
1664{
1665 enum pid_type type;
1666
1667 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1668 INIT_HLIST_NODE(&task->pid_links[type]);
1669 }
1670}
1671
1672static inline void
1673init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1674{
1675 if (type == PIDTYPE_PID)
1676 task->thread_pid = pid;
1677 else
1678 task->signal->pids[type] = pid;
1679}
1680
1681static inline void rcu_copy_process(struct task_struct *p)
1682{
1683#ifdef CONFIG_PREEMPT_RCU
1684 p->rcu_read_lock_nesting = 0;
1685 p->rcu_read_unlock_special.s = 0;
1686 p->rcu_blocked_node = NULL;
1687 INIT_LIST_HEAD(&p->rcu_node_entry);
1688#endif /* #ifdef CONFIG_PREEMPT_RCU */
1689#ifdef CONFIG_TASKS_RCU
1690 p->rcu_tasks_holdout = false;
1691 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1692 p->rcu_tasks_idle_cpu = -1;
1693#endif /* #ifdef CONFIG_TASKS_RCU */
1694}
1695
1696struct pid *pidfd_pid(const struct file *file)
1697{
1698 if (file->f_op == &pidfd_fops)
1699 return file->private_data;
1700
1701 return ERR_PTR(-EBADF);
1702}
1703
1704static int pidfd_release(struct inode *inode, struct file *file)
1705{
1706 struct pid *pid = file->private_data;
1707
1708 file->private_data = NULL;
1709 put_pid(pid);
1710 return 0;
1711}
1712
1713#ifdef CONFIG_PROC_FS
1714static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1715{
1716 struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1717 struct pid *pid = f->private_data;
1718
1719 seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1720 seq_putc(m, '\n');
1721}
1722#endif
1723
1724/*
1725 * Poll support for process exit notification.
1726 */
1727static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1728{
1729 struct task_struct *task;
1730 struct pid *pid = file->private_data;
1731 __poll_t poll_flags = 0;
1732
1733 poll_wait(file, &pid->wait_pidfd, pts);
1734
1735 rcu_read_lock();
1736 task = pid_task(pid, PIDTYPE_PID);
1737 /*
1738 * Inform pollers only when the whole thread group exits.
1739 * If the thread group leader exits before all other threads in the
1740 * group, then poll(2) should block, similar to the wait(2) family.
1741 */
1742 if (!task || (task->exit_state && thread_group_empty(task)))
1743 poll_flags = EPOLLIN | EPOLLRDNORM;
1744 rcu_read_unlock();
1745
1746 return poll_flags;
1747}
1748
1749const struct file_operations pidfd_fops = {
1750 .release = pidfd_release,
1751 .poll = pidfd_poll,
1752#ifdef CONFIG_PROC_FS
1753 .show_fdinfo = pidfd_show_fdinfo,
1754#endif
1755};
1756
1757static void __delayed_free_task(struct rcu_head *rhp)
1758{
1759 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1760
1761 free_task(tsk);
1762}
1763
1764static __always_inline void delayed_free_task(struct task_struct *tsk)
1765{
1766 if (IS_ENABLED(CONFIG_MEMCG))
1767 call_rcu(&tsk->rcu, __delayed_free_task);
1768 else
1769 free_task(tsk);
1770}
1771
1772static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1773{
1774 /* Skip if kernel thread */
1775 if (!tsk->mm)
1776 return;
1777
1778 /* Skip if spawning a thread or using vfork */
1779 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1780 return;
1781
1782 /* We need to synchronize with __set_oom_adj */
1783 mutex_lock(&oom_adj_mutex);
1784 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1785 /* Update the values in case they were changed after copy_signal */
1786 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1787 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1788 mutex_unlock(&oom_adj_mutex);
1789}
1790
1791/*
1792 * This creates a new process as a copy of the old one,
1793 * but does not actually start it yet.
1794 *
1795 * It copies the registers, and all the appropriate
1796 * parts of the process environment (as per the clone
1797 * flags). The actual kick-off is left to the caller.
1798 */
1799static __latent_entropy struct task_struct *copy_process(
1800 struct pid *pid,
1801 int trace,
1802 int node,
1803 struct kernel_clone_args *args)
1804{
1805 int pidfd = -1, retval;
1806 struct task_struct *p;
1807 struct multiprocess_signals delayed;
1808 struct file *pidfile = NULL;
1809 u64 clone_flags = args->flags;
1810
1811 /*
1812 * Don't allow sharing the root directory with processes in a different
1813 * namespace
1814 */
1815 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1816 return ERR_PTR(-EINVAL);
1817
1818 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1819 return ERR_PTR(-EINVAL);
1820
1821 /*
1822 * Thread groups must share signals as well, and detached threads
1823 * can only be started up within the thread group.
1824 */
1825 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1826 return ERR_PTR(-EINVAL);
1827
1828 /*
1829 * Shared signal handlers imply shared VM. By way of the above,
1830 * thread groups also imply shared VM. Blocking this case allows
1831 * for various simplifications in other code.
1832 */
1833 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1834 return ERR_PTR(-EINVAL);
1835
1836 /*
1837 * Siblings of global init remain as zombies on exit since they are
1838 * not reaped by their parent (swapper). To solve this and to avoid
1839 * multi-rooted process trees, prevent global and container-inits
1840 * from creating siblings.
1841 */
1842 if ((clone_flags & CLONE_PARENT) &&
1843 current->signal->flags & SIGNAL_UNKILLABLE)
1844 return ERR_PTR(-EINVAL);
1845
1846 /*
1847 * If the new process will be in a different pid or user namespace
1848 * do not allow it to share a thread group with the forking task.
1849 */
1850 if (clone_flags & CLONE_THREAD) {
1851 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1852 (task_active_pid_ns(current) !=
1853 current->nsproxy->pid_ns_for_children))
1854 return ERR_PTR(-EINVAL);
1855 }
1856
1857 if (clone_flags & CLONE_PIDFD) {
1858 /*
1859 * - CLONE_DETACHED is blocked so that we can potentially
1860 * reuse it later for CLONE_PIDFD.
1861 * - CLONE_THREAD is blocked until someone really needs it.
1862 */
1863 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1864 return ERR_PTR(-EINVAL);
1865 }
1866
1867 /*
1868 * Force any signals received before this point to be delivered
1869 * before the fork happens. Collect up signals sent to multiple
1870 * processes that happen during the fork and delay them so that
1871 * they appear to happen after the fork.
1872 */
1873 sigemptyset(&delayed.signal);
1874 INIT_HLIST_NODE(&delayed.node);
1875
1876 spin_lock_irq(&current->sighand->siglock);
1877 if (!(clone_flags & CLONE_THREAD))
1878 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1879 recalc_sigpending();
1880 spin_unlock_irq(&current->sighand->siglock);
1881 retval = -ERESTARTNOINTR;
1882 if (signal_pending(current))
1883 goto fork_out;
1884
1885 retval = -ENOMEM;
1886 p = dup_task_struct(current, node);
1887 if (!p)
1888 goto fork_out;
1889
1890 cpufreq_task_times_init(p);
1891
1892 /*
1893 * This _must_ happen before we call free_task(), i.e. before we jump
1894 * to any of the bad_fork_* labels. This is to avoid freeing
1895 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1896 * kernel threads (PF_KTHREAD).
1897 */
1898 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1899 /*
1900 * Clear TID on mm_release()?
1901 */
1902 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1903
1904 ftrace_graph_init_task(p);
1905
1906 rt_mutex_init_task(p);
1907
1908#ifdef CONFIG_PROVE_LOCKING
1909 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1910 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1911#endif
1912 retval = -EAGAIN;
1913 if (atomic_read(&p->real_cred->user->processes) >=
1914 task_rlimit(p, RLIMIT_NPROC)) {
1915 if (p->real_cred->user != INIT_USER &&
1916 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1917 goto bad_fork_free;
1918 }
1919 current->flags &= ~PF_NPROC_EXCEEDED;
1920
1921 retval = copy_creds(p, clone_flags);
1922 if (retval < 0)
1923 goto bad_fork_free;
1924
1925 /*
1926 * If multiple threads are within copy_process(), then this check
1927 * triggers too late. This doesn't hurt, the check is only there
1928 * to stop root fork bombs.
1929 */
1930 retval = -EAGAIN;
1931 if (nr_threads >= max_threads)
1932 goto bad_fork_cleanup_count;
1933
1934 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1935 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1936 p->flags |= PF_FORKNOEXEC;
1937 INIT_LIST_HEAD(&p->children);
1938 INIT_LIST_HEAD(&p->sibling);
1939 rcu_copy_process(p);
1940 p->vfork_done = NULL;
1941 spin_lock_init(&p->alloc_lock);
1942
1943 init_sigpending(&p->pending);
1944
1945 p->utime = p->stime = p->gtime = 0;
1946#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1947 p->utimescaled = p->stimescaled = 0;
1948#endif
1949 prev_cputime_init(&p->prev_cputime);
1950
1951#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1952 seqcount_init(&p->vtime.seqcount);
1953 p->vtime.starttime = 0;
1954 p->vtime.state = VTIME_INACTIVE;
1955#endif
1956
1957#if defined(SPLIT_RSS_COUNTING)
1958 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1959#endif
1960
1961 p->default_timer_slack_ns = current->timer_slack_ns;
1962
1963#ifdef CONFIG_PSI
1964 p->psi_flags = 0;
1965#endif
1966
1967 task_io_accounting_init(&p->ioac);
1968 acct_clear_integrals(p);
1969
1970 posix_cputimers_init(&p->posix_cputimers);
1971
1972 p->io_context = NULL;
1973 audit_set_context(p, NULL);
1974 cgroup_fork(p);
1975#ifdef CONFIG_NUMA
1976 p->mempolicy = mpol_dup(p->mempolicy);
1977 if (IS_ERR(p->mempolicy)) {
1978 retval = PTR_ERR(p->mempolicy);
1979 p->mempolicy = NULL;
1980 goto bad_fork_cleanup_threadgroup_lock;
1981 }
1982#endif
1983#ifdef CONFIG_CPUSETS
1984 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1985 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1986 seqcount_init(&p->mems_allowed_seq);
1987#endif
1988#ifdef CONFIG_TRACE_IRQFLAGS
1989 p->irq_events = 0;
1990 p->hardirqs_enabled = 0;
1991 p->hardirq_enable_ip = 0;
1992 p->hardirq_enable_event = 0;
1993 p->hardirq_disable_ip = _THIS_IP_;
1994 p->hardirq_disable_event = 0;
1995 p->softirqs_enabled = 1;
1996 p->softirq_enable_ip = _THIS_IP_;
1997 p->softirq_enable_event = 0;
1998 p->softirq_disable_ip = 0;
1999 p->softirq_disable_event = 0;
2000 p->hardirq_context = 0;
2001 p->softirq_context = 0;
2002#endif
2003
2004 p->pagefault_disabled = 0;
2005
2006#ifdef CONFIG_LOCKDEP
2007 lockdep_init_task(p);
2008#endif
2009
2010#ifdef CONFIG_DEBUG_MUTEXES
2011 p->blocked_on = NULL; /* not blocked yet */
2012#endif
2013#ifdef CONFIG_BCACHE
2014 p->sequential_io = 0;
2015 p->sequential_io_avg = 0;
2016#endif
2017
2018 /* Perform scheduler related setup. Assign this task to a CPU. */
2019 retval = sched_fork(clone_flags, p);
2020 if (retval)
2021 goto bad_fork_cleanup_policy;
2022
2023 retval = perf_event_init_task(p);
2024 if (retval)
2025 goto bad_fork_cleanup_policy;
2026 retval = audit_alloc(p);
2027 if (retval)
2028 goto bad_fork_cleanup_perf;
2029 /* copy all the process information */
2030 shm_init_task(p);
2031 retval = security_task_alloc(p, clone_flags);
2032 if (retval)
2033 goto bad_fork_cleanup_audit;
2034 retval = copy_semundo(clone_flags, p);
2035 if (retval)
2036 goto bad_fork_cleanup_security;
2037 retval = copy_files(clone_flags, p);
2038 if (retval)
2039 goto bad_fork_cleanup_semundo;
2040 retval = copy_fs(clone_flags, p);
2041 if (retval)
2042 goto bad_fork_cleanup_files;
2043 retval = copy_sighand(clone_flags, p);
2044 if (retval)
2045 goto bad_fork_cleanup_fs;
2046 retval = copy_signal(clone_flags, p);
2047 if (retval)
2048 goto bad_fork_cleanup_sighand;
2049 retval = copy_mm(clone_flags, p);
2050 if (retval)
2051 goto bad_fork_cleanup_signal;
2052 retval = copy_namespaces(clone_flags, p);
2053 if (retval)
2054 goto bad_fork_cleanup_mm;
2055 retval = copy_io(clone_flags, p);
2056 if (retval)
2057 goto bad_fork_cleanup_namespaces;
2058 retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2059 args->tls);
2060 if (retval)
2061 goto bad_fork_cleanup_io;
2062
2063 stackleak_task_init(p);
2064
2065 if (pid != &init_struct_pid) {
2066 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
2067 if (IS_ERR(pid)) {
2068 retval = PTR_ERR(pid);
2069 goto bad_fork_cleanup_thread;
2070 }
2071 }
2072
2073 /*
2074 * This has to happen after we've potentially unshared the file
2075 * descriptor table (so that the pidfd doesn't leak into the child
2076 * if the fd table isn't shared).
2077 */
2078 if (clone_flags & CLONE_PIDFD) {
2079 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2080 if (retval < 0)
2081 goto bad_fork_free_pid;
2082
2083 pidfd = retval;
2084
2085 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2086 O_RDWR | O_CLOEXEC);
2087 if (IS_ERR(pidfile)) {
2088 put_unused_fd(pidfd);
2089 retval = PTR_ERR(pidfile);
2090 goto bad_fork_free_pid;
2091 }
2092 get_pid(pid); /* held by pidfile now */
2093
2094 retval = put_user(pidfd, args->pidfd);
2095 if (retval)
2096 goto bad_fork_put_pidfd;
2097 }
2098
2099#ifdef CONFIG_BLOCK
2100 p->plug = NULL;
2101#endif
2102 futex_init_task(p);
2103
2104 /*
2105 * sigaltstack should be cleared when sharing the same VM
2106 */
2107 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2108 sas_ss_reset(p);
2109
2110 /*
2111 * Syscall tracing and stepping should be turned off in the
2112 * child regardless of CLONE_PTRACE.
2113 */
2114 user_disable_single_step(p);
2115 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2116#ifdef TIF_SYSCALL_EMU
2117 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2118#endif
2119 clear_tsk_latency_tracing(p);
2120
2121 /* ok, now we should be set up.. */
2122 p->pid = pid_nr(pid);
2123 if (clone_flags & CLONE_THREAD) {
2124 p->group_leader = current->group_leader;
2125 p->tgid = current->tgid;
2126 } else {
2127 p->group_leader = p;
2128 p->tgid = p->pid;
2129 }
2130
2131 p->nr_dirtied = 0;
2132 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2133 p->dirty_paused_when = 0;
2134
2135 p->pdeath_signal = 0;
2136 INIT_LIST_HEAD(&p->thread_group);
2137 p->task_works = NULL;
2138
2139 cgroup_threadgroup_change_begin(current);
2140 /*
2141 * Ensure that the cgroup subsystem policies allow the new process to be
2142 * forked. It should be noted the the new process's css_set can be changed
2143 * between here and cgroup_post_fork() if an organisation operation is in
2144 * progress.
2145 */
2146 retval = cgroup_can_fork(p);
2147 if (retval)
2148 goto bad_fork_cgroup_threadgroup_change_end;
2149
2150 /*
2151 * From this point on we must avoid any synchronous user-space
2152 * communication until we take the tasklist-lock. In particular, we do
2153 * not want user-space to be able to predict the process start-time by
2154 * stalling fork(2) after we recorded the start_time but before it is
2155 * visible to the system.
2156 */
2157
2158 p->start_time = ktime_get_ns();
2159 p->real_start_time = ktime_get_boottime_ns();
2160
2161 /*
2162 * Make it visible to the rest of the system, but dont wake it up yet.
2163 * Need tasklist lock for parent etc handling!
2164 */
2165 write_lock_irq(&tasklist_lock);
2166
2167 /* CLONE_PARENT re-uses the old parent */
2168 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2169 p->real_parent = current->real_parent;
2170 p->parent_exec_id = current->parent_exec_id;
2171 if (clone_flags & CLONE_THREAD)
2172 p->exit_signal = -1;
2173 else
2174 p->exit_signal = current->group_leader->exit_signal;
2175 } else {
2176 p->real_parent = current;
2177 p->parent_exec_id = current->self_exec_id;
2178 p->exit_signal = args->exit_signal;
2179 }
2180
2181 klp_copy_process(p);
2182
2183 spin_lock(&current->sighand->siglock);
2184
2185 /*
2186 * Copy seccomp details explicitly here, in case they were changed
2187 * before holding sighand lock.
2188 */
2189 copy_seccomp(p);
2190
2191 rseq_fork(p, clone_flags);
2192
2193 /* Don't start children in a dying pid namespace */
2194 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2195 retval = -ENOMEM;
2196 goto bad_fork_cancel_cgroup;
2197 }
2198
2199 /* Let kill terminate clone/fork in the middle */
2200 if (fatal_signal_pending(current)) {
2201 retval = -EINTR;
2202 goto bad_fork_cancel_cgroup;
2203 }
2204
2205 init_task_pid_links(p);
2206 if (likely(p->pid)) {
2207 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2208
2209 init_task_pid(p, PIDTYPE_PID, pid);
2210 if (thread_group_leader(p)) {
2211 init_task_pid(p, PIDTYPE_TGID, pid);
2212 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2213 init_task_pid(p, PIDTYPE_SID, task_session(current));
2214
2215 if (is_child_reaper(pid)) {
2216 ns_of_pid(pid)->child_reaper = p;
2217 p->signal->flags |= SIGNAL_UNKILLABLE;
2218 }
2219 p->signal->shared_pending.signal = delayed.signal;
2220 p->signal->tty = tty_kref_get(current->signal->tty);
2221 /*
2222 * Inherit has_child_subreaper flag under the same
2223 * tasklist_lock with adding child to the process tree
2224 * for propagate_has_child_subreaper optimization.
2225 */
2226 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2227 p->real_parent->signal->is_child_subreaper;
2228 list_add_tail(&p->sibling, &p->real_parent->children);
2229 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2230 attach_pid(p, PIDTYPE_TGID);
2231 attach_pid(p, PIDTYPE_PGID);
2232 attach_pid(p, PIDTYPE_SID);
2233 __this_cpu_inc(process_counts);
2234 } else {
2235 current->signal->nr_threads++;
2236 atomic_inc(&current->signal->live);
2237 refcount_inc(&current->signal->sigcnt);
2238 task_join_group_stop(p);
2239 list_add_tail_rcu(&p->thread_group,
2240 &p->group_leader->thread_group);
2241 list_add_tail_rcu(&p->thread_node,
2242 &p->signal->thread_head);
2243 }
2244 attach_pid(p, PIDTYPE_PID);
2245 nr_threads++;
2246 }
2247 total_forks++;
2248 hlist_del_init(&delayed.node);
2249 spin_unlock(&current->sighand->siglock);
2250 syscall_tracepoint_update(p);
2251 write_unlock_irq(&tasklist_lock);
2252
2253 if (pidfile)
2254 fd_install(pidfd, pidfile);
2255
2256 proc_fork_connector(p);
2257 sched_post_fork(p);
2258 cgroup_post_fork(p);
2259 cgroup_threadgroup_change_end(current);
2260 perf_event_fork(p);
2261
2262 trace_task_newtask(p, clone_flags);
2263 uprobe_copy_process(p, clone_flags);
2264
2265 copy_oom_score_adj(clone_flags, p);
2266
2267 return p;
2268
2269bad_fork_cancel_cgroup:
2270 spin_unlock(&current->sighand->siglock);
2271 write_unlock_irq(&tasklist_lock);
2272 cgroup_cancel_fork(p);
2273bad_fork_cgroup_threadgroup_change_end:
2274 cgroup_threadgroup_change_end(current);
2275bad_fork_put_pidfd:
2276 if (clone_flags & CLONE_PIDFD) {
2277 fput(pidfile);
2278 put_unused_fd(pidfd);
2279 }
2280bad_fork_free_pid:
2281 if (pid != &init_struct_pid)
2282 free_pid(pid);
2283bad_fork_cleanup_thread:
2284 exit_thread(p);
2285bad_fork_cleanup_io:
2286 if (p->io_context)
2287 exit_io_context(p);
2288bad_fork_cleanup_namespaces:
2289 exit_task_namespaces(p);
2290bad_fork_cleanup_mm:
2291 if (p->mm) {
2292 mm_clear_owner(p->mm, p);
2293 mmput(p->mm);
2294 }
2295bad_fork_cleanup_signal:
2296 if (!(clone_flags & CLONE_THREAD))
2297 free_signal_struct(p->signal);
2298bad_fork_cleanup_sighand:
2299 __cleanup_sighand(p->sighand);
2300bad_fork_cleanup_fs:
2301 exit_fs(p); /* blocking */
2302bad_fork_cleanup_files:
2303 exit_files(p); /* blocking */
2304bad_fork_cleanup_semundo:
2305 exit_sem(p);
2306bad_fork_cleanup_security:
2307 security_task_free(p);
2308bad_fork_cleanup_audit:
2309 audit_free(p);
2310bad_fork_cleanup_perf:
2311 perf_event_free_task(p);
2312bad_fork_cleanup_policy:
2313 lockdep_free_task(p);
2314#ifdef CONFIG_NUMA
2315 mpol_put(p->mempolicy);
2316bad_fork_cleanup_threadgroup_lock:
2317#endif
2318 delayacct_tsk_free(p);
2319bad_fork_cleanup_count:
2320 atomic_dec(&p->cred->user->processes);
2321 exit_creds(p);
2322bad_fork_free:
2323 p->state = TASK_DEAD;
2324 put_task_stack(p);
2325 delayed_free_task(p);
2326fork_out:
2327 spin_lock_irq(&current->sighand->siglock);
2328 hlist_del_init(&delayed.node);
2329 spin_unlock_irq(&current->sighand->siglock);
2330 return ERR_PTR(retval);
2331}
2332
2333static inline void init_idle_pids(struct task_struct *idle)
2334{
2335 enum pid_type type;
2336
2337 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2338 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2339 init_task_pid(idle, type, &init_struct_pid);
2340 }
2341}
2342
2343struct task_struct *fork_idle(int cpu)
2344{
2345 struct task_struct *task;
2346 struct kernel_clone_args args = {
2347 .flags = CLONE_VM,
2348 };
2349
2350 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2351 if (!IS_ERR(task)) {
2352 init_idle_pids(task);
2353 init_idle(task, cpu);
2354 }
2355
2356 return task;
2357}
2358
2359/*
2360 * Ok, this is the main fork-routine.
2361 *
2362 * It copies the process, and if successful kick-starts
2363 * it and waits for it to finish using the VM if required.
2364 *
2365 * args->exit_signal is expected to be checked for sanity by the caller.
2366 */
2367long _do_fork(struct kernel_clone_args *args)
2368{
2369 u64 clone_flags = args->flags;
2370 struct completion vfork;
2371 struct pid *pid;
2372 struct task_struct *p;
2373 int trace = 0;
2374 long nr;
2375
2376 /*
2377 * Determine whether and which event to report to ptracer. When
2378 * called from kernel_thread or CLONE_UNTRACED is explicitly
2379 * requested, no event is reported; otherwise, report if the event
2380 * for the type of forking is enabled.
2381 */
2382 if (!(clone_flags & CLONE_UNTRACED)) {
2383 if (clone_flags & CLONE_VFORK)
2384 trace = PTRACE_EVENT_VFORK;
2385 else if (args->exit_signal != SIGCHLD)
2386 trace = PTRACE_EVENT_CLONE;
2387 else
2388 trace = PTRACE_EVENT_FORK;
2389
2390 if (likely(!ptrace_event_enabled(current, trace)))
2391 trace = 0;
2392 }
2393
2394 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2395 add_latent_entropy();
2396
2397 if (IS_ERR(p))
2398 return PTR_ERR(p);
2399
2400 cpufreq_task_times_alloc(p);
2401
2402 /*
2403 * Do this prior waking up the new thread - the thread pointer
2404 * might get invalid after that point, if the thread exits quickly.
2405 */
2406 trace_sched_process_fork(current, p);
2407
2408 pid = get_task_pid(p, PIDTYPE_PID);
2409 nr = pid_vnr(pid);
2410
2411 if (clone_flags & CLONE_PARENT_SETTID)
2412 put_user(nr, args->parent_tid);
2413
2414 if (clone_flags & CLONE_VFORK) {
2415 p->vfork_done = &vfork;
2416 init_completion(&vfork);
2417 get_task_struct(p);
2418 }
2419
2420 wake_up_new_task(p);
2421
2422 /* forking complete and child started to run, tell ptracer */
2423 if (unlikely(trace))
2424 ptrace_event_pid(trace, pid);
2425
2426 if (clone_flags & CLONE_VFORK) {
2427 if (!wait_for_vfork_done(p, &vfork))
2428 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2429 }
2430
2431 put_pid(pid);
2432 return nr;
2433}
2434
2435bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2436{
2437 /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2438 if ((kargs->flags & CLONE_PIDFD) &&
2439 (kargs->flags & CLONE_PARENT_SETTID))
2440 return false;
2441
2442 return true;
2443}
2444
2445#ifndef CONFIG_HAVE_COPY_THREAD_TLS
2446/* For compatibility with architectures that call do_fork directly rather than
2447 * using the syscall entry points below. */
2448long do_fork(unsigned long clone_flags,
2449 unsigned long stack_start,
2450 unsigned long stack_size,
2451 int __user *parent_tidptr,
2452 int __user *child_tidptr)
2453{
2454 struct kernel_clone_args args = {
2455 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2456 .pidfd = parent_tidptr,
2457 .child_tid = child_tidptr,
2458 .parent_tid = parent_tidptr,
2459 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2460 .stack = stack_start,
2461 .stack_size = stack_size,
2462 };
2463
2464 if (!legacy_clone_args_valid(&args))
2465 return -EINVAL;
2466
2467 return _do_fork(&args);
2468}
2469#endif
2470
2471/*
2472 * Create a kernel thread.
2473 */
2474pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2475{
2476 struct kernel_clone_args args = {
2477 .flags = ((lower_32_bits(flags) | CLONE_VM |
2478 CLONE_UNTRACED) & ~CSIGNAL),
2479 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2480 .stack = (unsigned long)fn,
2481 .stack_size = (unsigned long)arg,
2482 };
2483
2484 return _do_fork(&args);
2485}
2486
2487#ifdef __ARCH_WANT_SYS_FORK
2488SYSCALL_DEFINE0(fork)
2489{
2490#ifdef CONFIG_MMU
2491 struct kernel_clone_args args = {
2492 .exit_signal = SIGCHLD,
2493 };
2494
2495 return _do_fork(&args);
2496#else
2497 /* can not support in nommu mode */
2498 return -EINVAL;
2499#endif
2500}
2501#endif
2502
2503#ifdef __ARCH_WANT_SYS_VFORK
2504SYSCALL_DEFINE0(vfork)
2505{
2506 struct kernel_clone_args args = {
2507 .flags = CLONE_VFORK | CLONE_VM,
2508 .exit_signal = SIGCHLD,
2509 };
2510
2511 return _do_fork(&args);
2512}
2513#endif
2514
2515#ifdef __ARCH_WANT_SYS_CLONE
2516#ifdef CONFIG_CLONE_BACKWARDS
2517SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2518 int __user *, parent_tidptr,
2519 unsigned long, tls,
2520 int __user *, child_tidptr)
2521#elif defined(CONFIG_CLONE_BACKWARDS2)
2522SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2523 int __user *, parent_tidptr,
2524 int __user *, child_tidptr,
2525 unsigned long, tls)
2526#elif defined(CONFIG_CLONE_BACKWARDS3)
2527SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2528 int, stack_size,
2529 int __user *, parent_tidptr,
2530 int __user *, child_tidptr,
2531 unsigned long, tls)
2532#else
2533SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2534 int __user *, parent_tidptr,
2535 int __user *, child_tidptr,
2536 unsigned long, tls)
2537#endif
2538{
2539 struct kernel_clone_args args = {
2540 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2541 .pidfd = parent_tidptr,
2542 .child_tid = child_tidptr,
2543 .parent_tid = parent_tidptr,
2544 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2545 .stack = newsp,
2546 .tls = tls,
2547 };
2548
2549 if (!legacy_clone_args_valid(&args))
2550 return -EINVAL;
2551
2552 return _do_fork(&args);
2553}
2554#endif
2555
2556#ifdef __ARCH_WANT_SYS_CLONE3
2557
2558/*
2559 * copy_thread implementations handle CLONE_SETTLS by reading the TLS value from
2560 * the registers containing the syscall arguments for clone. This doesn't work
2561 * with clone3 since the TLS value is passed in clone_args instead.
2562 */
2563#ifndef CONFIG_HAVE_COPY_THREAD_TLS
2564#error clone3 requires copy_thread_tls support in arch
2565#endif
2566
2567noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2568 struct clone_args __user *uargs,
2569 size_t usize)
2570{
2571 int err;
2572 struct clone_args args;
2573
2574 if (unlikely(usize > PAGE_SIZE))
2575 return -E2BIG;
2576 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2577 return -EINVAL;
2578
2579 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2580 if (err)
2581 return err;
2582
2583 /*
2584 * Verify that higher 32bits of exit_signal are unset and that
2585 * it is a valid signal
2586 */
2587 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2588 !valid_signal(args.exit_signal)))
2589 return -EINVAL;
2590
2591 *kargs = (struct kernel_clone_args){
2592 .flags = args.flags,
2593 .pidfd = u64_to_user_ptr(args.pidfd),
2594 .child_tid = u64_to_user_ptr(args.child_tid),
2595 .parent_tid = u64_to_user_ptr(args.parent_tid),
2596 .exit_signal = args.exit_signal,
2597 .stack = args.stack,
2598 .stack_size = args.stack_size,
2599 .tls = args.tls,
2600 };
2601
2602 return 0;
2603}
2604
2605/**
2606 * clone3_stack_valid - check and prepare stack
2607 * @kargs: kernel clone args
2608 *
2609 * Verify that the stack arguments userspace gave us are sane.
2610 * In addition, set the stack direction for userspace since it's easy for us to
2611 * determine.
2612 */
2613static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2614{
2615 if (kargs->stack == 0) {
2616 if (kargs->stack_size > 0)
2617 return false;
2618 } else {
2619 if (kargs->stack_size == 0)
2620 return false;
2621
2622 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2623 return false;
2624
2625#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2626 kargs->stack += kargs->stack_size;
2627#endif
2628 }
2629
2630 return true;
2631}
2632
2633static bool clone3_args_valid(struct kernel_clone_args *kargs)
2634{
2635 /*
2636 * All lower bits of the flag word are taken.
2637 * Verify that no other unknown flags are passed along.
2638 */
2639 if (kargs->flags & ~CLONE_LEGACY_FLAGS)
2640 return false;
2641
2642 /*
2643 * - make the CLONE_DETACHED bit reuseable for clone3
2644 * - make the CSIGNAL bits reuseable for clone3
2645 */
2646 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2647 return false;
2648
2649 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2650 kargs->exit_signal)
2651 return false;
2652
2653 if (!clone3_stack_valid(kargs))
2654 return false;
2655
2656 return true;
2657}
2658
2659/**
2660 * clone3 - create a new process with specific properties
2661 * @uargs: argument structure
2662 * @size: size of @uargs
2663 *
2664 * clone3() is the extensible successor to clone()/clone2().
2665 * It takes a struct as argument that is versioned by its size.
2666 *
2667 * Return: On success, a positive PID for the child process.
2668 * On error, a negative errno number.
2669 */
2670SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2671{
2672 int err;
2673
2674 struct kernel_clone_args kargs;
2675
2676 err = copy_clone_args_from_user(&kargs, uargs, size);
2677 if (err)
2678 return err;
2679
2680 if (!clone3_args_valid(&kargs))
2681 return -EINVAL;
2682
2683 return _do_fork(&kargs);
2684}
2685#endif
2686
2687void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2688{
2689 struct task_struct *leader, *parent, *child;
2690 int res;
2691
2692 read_lock(&tasklist_lock);
2693 leader = top = top->group_leader;
2694down:
2695 for_each_thread(leader, parent) {
2696 list_for_each_entry(child, &parent->children, sibling) {
2697 res = visitor(child, data);
2698 if (res) {
2699 if (res < 0)
2700 goto out;
2701 leader = child;
2702 goto down;
2703 }
2704up:
2705 ;
2706 }
2707 }
2708
2709 if (leader != top) {
2710 child = leader;
2711 parent = child->real_parent;
2712 leader = parent->group_leader;
2713 goto up;
2714 }
2715out:
2716 read_unlock(&tasklist_lock);
2717}
2718
2719#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2720#define ARCH_MIN_MMSTRUCT_ALIGN 0
2721#endif
2722
2723static void sighand_ctor(void *data)
2724{
2725 struct sighand_struct *sighand = data;
2726
2727 spin_lock_init(&sighand->siglock);
2728 init_waitqueue_head(&sighand->signalfd_wqh);
2729}
2730
2731void __init mm_cache_init(void)
2732{
2733 unsigned int mm_size;
2734
2735 /*
2736 * The mm_cpumask is located at the end of mm_struct, and is
2737 * dynamically sized based on the maximum CPU number this system
2738 * can have, taking hotplug into account (nr_cpu_ids).
2739 */
2740 mm_size = sizeof(struct mm_struct) + cpumask_size();
2741
2742 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2743 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2744 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2745 offsetof(struct mm_struct, saved_auxv),
2746 sizeof_field(struct mm_struct, saved_auxv),
2747 NULL);
2748}
2749
2750void __init proc_caches_init(void)
2751{
2752 sighand_cachep = kmem_cache_create("sighand_cache",
2753 sizeof(struct sighand_struct), 0,
2754 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2755 SLAB_ACCOUNT, sighand_ctor);
2756 signal_cachep = kmem_cache_create("signal_cache",
2757 sizeof(struct signal_struct), 0,
2758 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2759 NULL);
2760 files_cachep = kmem_cache_create("files_cache",
2761 sizeof(struct files_struct), 0,
2762 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2763 NULL);
2764 fs_cachep = kmem_cache_create("fs_cache",
2765 sizeof(struct fs_struct), 0,
2766 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2767 NULL);
2768
2769 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2770 mmap_init();
2771 nsproxy_cache_init();
2772}
2773
2774/*
2775 * Check constraints on flags passed to the unshare system call.
2776 */
2777static int check_unshare_flags(unsigned long unshare_flags)
2778{
2779 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2780 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2781 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2782 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2783 return -EINVAL;
2784 /*
2785 * Not implemented, but pretend it works if there is nothing
2786 * to unshare. Note that unsharing the address space or the
2787 * signal handlers also need to unshare the signal queues (aka
2788 * CLONE_THREAD).
2789 */
2790 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2791 if (!thread_group_empty(current))
2792 return -EINVAL;
2793 }
2794 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2795 if (refcount_read(&current->sighand->count) > 1)
2796 return -EINVAL;
2797 }
2798 if (unshare_flags & CLONE_VM) {
2799 if (!current_is_single_threaded())
2800 return -EINVAL;
2801 }
2802
2803 return 0;
2804}
2805
2806/*
2807 * Unshare the filesystem structure if it is being shared
2808 */
2809static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2810{
2811 struct fs_struct *fs = current->fs;
2812
2813 if (!(unshare_flags & CLONE_FS) || !fs)
2814 return 0;
2815
2816 /* don't need lock here; in the worst case we'll do useless copy */
2817 if (fs->users == 1)
2818 return 0;
2819
2820 *new_fsp = copy_fs_struct(fs);
2821 if (!*new_fsp)
2822 return -ENOMEM;
2823
2824 return 0;
2825}
2826
2827/*
2828 * Unshare file descriptor table if it is being shared
2829 */
2830static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2831{
2832 struct files_struct *fd = current->files;
2833 int error = 0;
2834
2835 if ((unshare_flags & CLONE_FILES) &&
2836 (fd && atomic_read(&fd->count) > 1)) {
2837 *new_fdp = dup_fd(fd, &error);
2838 if (!*new_fdp)
2839 return error;
2840 }
2841
2842 return 0;
2843}
2844
2845/*
2846 * unshare allows a process to 'unshare' part of the process
2847 * context which was originally shared using clone. copy_*
2848 * functions used by do_fork() cannot be used here directly
2849 * because they modify an inactive task_struct that is being
2850 * constructed. Here we are modifying the current, active,
2851 * task_struct.
2852 */
2853int ksys_unshare(unsigned long unshare_flags)
2854{
2855 struct fs_struct *fs, *new_fs = NULL;
2856 struct files_struct *fd, *new_fd = NULL;
2857 struct cred *new_cred = NULL;
2858 struct nsproxy *new_nsproxy = NULL;
2859 int do_sysvsem = 0;
2860 int err;
2861
2862 /*
2863 * If unsharing a user namespace must also unshare the thread group
2864 * and unshare the filesystem root and working directories.
2865 */
2866 if (unshare_flags & CLONE_NEWUSER)
2867 unshare_flags |= CLONE_THREAD | CLONE_FS;
2868 /*
2869 * If unsharing vm, must also unshare signal handlers.
2870 */
2871 if (unshare_flags & CLONE_VM)
2872 unshare_flags |= CLONE_SIGHAND;
2873 /*
2874 * If unsharing a signal handlers, must also unshare the signal queues.
2875 */
2876 if (unshare_flags & CLONE_SIGHAND)
2877 unshare_flags |= CLONE_THREAD;
2878 /*
2879 * If unsharing namespace, must also unshare filesystem information.
2880 */
2881 if (unshare_flags & CLONE_NEWNS)
2882 unshare_flags |= CLONE_FS;
2883
2884 err = check_unshare_flags(unshare_flags);
2885 if (err)
2886 goto bad_unshare_out;
2887 /*
2888 * CLONE_NEWIPC must also detach from the undolist: after switching
2889 * to a new ipc namespace, the semaphore arrays from the old
2890 * namespace are unreachable.
2891 */
2892 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2893 do_sysvsem = 1;
2894 err = unshare_fs(unshare_flags, &new_fs);
2895 if (err)
2896 goto bad_unshare_out;
2897 err = unshare_fd(unshare_flags, &new_fd);
2898 if (err)
2899 goto bad_unshare_cleanup_fs;
2900 err = unshare_userns(unshare_flags, &new_cred);
2901 if (err)
2902 goto bad_unshare_cleanup_fd;
2903 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2904 new_cred, new_fs);
2905 if (err)
2906 goto bad_unshare_cleanup_cred;
2907
2908 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2909 if (do_sysvsem) {
2910 /*
2911 * CLONE_SYSVSEM is equivalent to sys_exit().
2912 */
2913 exit_sem(current);
2914 }
2915 if (unshare_flags & CLONE_NEWIPC) {
2916 /* Orphan segments in old ns (see sem above). */
2917 exit_shm(current);
2918 shm_init_task(current);
2919 }
2920
2921 if (new_nsproxy)
2922 switch_task_namespaces(current, new_nsproxy);
2923
2924 task_lock(current);
2925
2926 if (new_fs) {
2927 fs = current->fs;
2928 spin_lock(&fs->lock);
2929 current->fs = new_fs;
2930 if (--fs->users)
2931 new_fs = NULL;
2932 else
2933 new_fs = fs;
2934 spin_unlock(&fs->lock);
2935 }
2936
2937 if (new_fd) {
2938 fd = current->files;
2939 current->files = new_fd;
2940 new_fd = fd;
2941 }
2942
2943 task_unlock(current);
2944
2945 if (new_cred) {
2946 /* Install the new user namespace */
2947 commit_creds(new_cred);
2948 new_cred = NULL;
2949 }
2950 }
2951
2952 perf_event_namespaces(current);
2953
2954bad_unshare_cleanup_cred:
2955 if (new_cred)
2956 put_cred(new_cred);
2957bad_unshare_cleanup_fd:
2958 if (new_fd)
2959 put_files_struct(new_fd);
2960
2961bad_unshare_cleanup_fs:
2962 if (new_fs)
2963 free_fs_struct(new_fs);
2964
2965bad_unshare_out:
2966 return err;
2967}
2968
2969SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2970{
2971 return ksys_unshare(unshare_flags);
2972}
2973
2974/*
2975 * Helper to unshare the files of the current task.
2976 * We don't want to expose copy_files internals to
2977 * the exec layer of the kernel.
2978 */
2979
2980int unshare_files(struct files_struct **displaced)
2981{
2982 struct task_struct *task = current;
2983 struct files_struct *copy = NULL;
2984 int error;
2985
2986 error = unshare_fd(CLONE_FILES, &copy);
2987 if (error || !copy) {
2988 *displaced = NULL;
2989 return error;
2990 }
2991 *displaced = task->files;
2992 task_lock(task);
2993 task->files = copy;
2994 task_unlock(task);
2995 return 0;
2996}
2997
2998int sysctl_max_threads(struct ctl_table *table, int write,
2999 void __user *buffer, size_t *lenp, loff_t *ppos)
3000{
3001 struct ctl_table t;
3002 int ret;
3003 int threads = max_threads;
3004 int min = 1;
3005 int max = MAX_THREADS;
3006
3007 t = *table;
3008 t.data = &threads;
3009 t.extra1 = &min;
3010 t.extra2 = &max;
3011
3012 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3013 if (ret || !write)
3014 return ret;
3015
3016 max_threads = threads;
3017
3018 return 0;
3019}