blob: 063e4ade168069e944dc6a529302041f70b11b5c [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Kernel Probes (KProbes)
4 * kernel/kprobes.c
5 *
6 * Copyright (C) IBM Corporation, 2002, 2004
7 *
8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9 * Probes initial implementation (includes suggestions from
10 * Rusty Russell).
11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12 * hlists and exceptions notifier as suggested by Andi Kleen.
13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14 * interface to access function arguments.
15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16 * exceptions notifier to be first on the priority list.
17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19 * <prasanna@in.ibm.com> added function-return probes.
20 */
21#include <linux/kprobes.h>
22#include <linux/hash.h>
23#include <linux/init.h>
24#include <linux/slab.h>
25#include <linux/stddef.h>
26#include <linux/export.h>
27#include <linux/moduleloader.h>
28#include <linux/kallsyms.h>
29#include <linux/freezer.h>
30#include <linux/seq_file.h>
31#include <linux/debugfs.h>
32#include <linux/sysctl.h>
33#include <linux/kdebug.h>
34#include <linux/memory.h>
35#include <linux/ftrace.h>
36#include <linux/cpu.h>
37#include <linux/jump_label.h>
38
39#include <asm/sections.h>
40#include <asm/cacheflush.h>
41#include <asm/errno.h>
42#include <linux/uaccess.h>
43
44#define KPROBE_HASH_BITS 6
45#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
46
47
48static int kprobes_initialized;
49static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
50static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
51
52/* NOTE: change this value only with kprobe_mutex held */
53static bool kprobes_all_disarmed;
54
55/* This protects kprobe_table and optimizing_list */
56static DEFINE_MUTEX(kprobe_mutex);
57static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
58static struct {
59 raw_spinlock_t lock ____cacheline_aligned_in_smp;
60} kretprobe_table_locks[KPROBE_TABLE_SIZE];
61
62kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
63 unsigned int __unused)
64{
65 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
66}
67
68static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
69{
70 return &(kretprobe_table_locks[hash].lock);
71}
72
73/* Blacklist -- list of struct kprobe_blacklist_entry */
74static LIST_HEAD(kprobe_blacklist);
75
76#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
77/*
78 * kprobe->ainsn.insn points to the copy of the instruction to be
79 * single-stepped. x86_64, POWER4 and above have no-exec support and
80 * stepping on the instruction on a vmalloced/kmalloced/data page
81 * is a recipe for disaster
82 */
83struct kprobe_insn_page {
84 struct list_head list;
85 kprobe_opcode_t *insns; /* Page of instruction slots */
86 struct kprobe_insn_cache *cache;
87 int nused;
88 int ngarbage;
89 char slot_used[];
90};
91
92#define KPROBE_INSN_PAGE_SIZE(slots) \
93 (offsetof(struct kprobe_insn_page, slot_used) + \
94 (sizeof(char) * (slots)))
95
96static int slots_per_page(struct kprobe_insn_cache *c)
97{
98 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
99}
100
101enum kprobe_slot_state {
102 SLOT_CLEAN = 0,
103 SLOT_DIRTY = 1,
104 SLOT_USED = 2,
105};
106
107void __weak *alloc_insn_page(void)
108{
109 return module_alloc(PAGE_SIZE);
110}
111
112void __weak free_insn_page(void *page)
113{
114 module_memfree(page);
115}
116
117struct kprobe_insn_cache kprobe_insn_slots = {
118 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
119 .alloc = alloc_insn_page,
120 .free = free_insn_page,
121 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
122 .insn_size = MAX_INSN_SIZE,
123 .nr_garbage = 0,
124};
125static int collect_garbage_slots(struct kprobe_insn_cache *c);
126
127/**
128 * __get_insn_slot() - Find a slot on an executable page for an instruction.
129 * We allocate an executable page if there's no room on existing ones.
130 */
131kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
132{
133 struct kprobe_insn_page *kip;
134 kprobe_opcode_t *slot = NULL;
135
136 /* Since the slot array is not protected by rcu, we need a mutex */
137 mutex_lock(&c->mutex);
138 retry:
139 rcu_read_lock();
140 list_for_each_entry_rcu(kip, &c->pages, list) {
141 if (kip->nused < slots_per_page(c)) {
142 int i;
143 for (i = 0; i < slots_per_page(c); i++) {
144 if (kip->slot_used[i] == SLOT_CLEAN) {
145 kip->slot_used[i] = SLOT_USED;
146 kip->nused++;
147 slot = kip->insns + (i * c->insn_size);
148 rcu_read_unlock();
149 goto out;
150 }
151 }
152 /* kip->nused is broken. Fix it. */
153 kip->nused = slots_per_page(c);
154 WARN_ON(1);
155 }
156 }
157 rcu_read_unlock();
158
159 /* If there are any garbage slots, collect it and try again. */
160 if (c->nr_garbage && collect_garbage_slots(c) == 0)
161 goto retry;
162
163 /* All out of space. Need to allocate a new page. */
164 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
165 if (!kip)
166 goto out;
167
168 /*
169 * Use module_alloc so this page is within +/- 2GB of where the
170 * kernel image and loaded module images reside. This is required
171 * so x86_64 can correctly handle the %rip-relative fixups.
172 */
173 kip->insns = c->alloc();
174 if (!kip->insns) {
175 kfree(kip);
176 goto out;
177 }
178 INIT_LIST_HEAD(&kip->list);
179 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
180 kip->slot_used[0] = SLOT_USED;
181 kip->nused = 1;
182 kip->ngarbage = 0;
183 kip->cache = c;
184 list_add_rcu(&kip->list, &c->pages);
185 slot = kip->insns;
186out:
187 mutex_unlock(&c->mutex);
188 return slot;
189}
190
191/* Return 1 if all garbages are collected, otherwise 0. */
192static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
193{
194 kip->slot_used[idx] = SLOT_CLEAN;
195 kip->nused--;
196 if (kip->nused == 0) {
197 /*
198 * Page is no longer in use. Free it unless
199 * it's the last one. We keep the last one
200 * so as not to have to set it up again the
201 * next time somebody inserts a probe.
202 */
203 if (!list_is_singular(&kip->list)) {
204 list_del_rcu(&kip->list);
205 synchronize_rcu();
206 kip->cache->free(kip->insns);
207 kfree(kip);
208 }
209 return 1;
210 }
211 return 0;
212}
213
214static int collect_garbage_slots(struct kprobe_insn_cache *c)
215{
216 struct kprobe_insn_page *kip, *next;
217
218 /* Ensure no-one is interrupted on the garbages */
219 synchronize_rcu();
220
221 list_for_each_entry_safe(kip, next, &c->pages, list) {
222 int i;
223 if (kip->ngarbage == 0)
224 continue;
225 kip->ngarbage = 0; /* we will collect all garbages */
226 for (i = 0; i < slots_per_page(c); i++) {
227 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
228 break;
229 }
230 }
231 c->nr_garbage = 0;
232 return 0;
233}
234
235void __free_insn_slot(struct kprobe_insn_cache *c,
236 kprobe_opcode_t *slot, int dirty)
237{
238 struct kprobe_insn_page *kip;
239 long idx;
240
241 mutex_lock(&c->mutex);
242 rcu_read_lock();
243 list_for_each_entry_rcu(kip, &c->pages, list) {
244 idx = ((long)slot - (long)kip->insns) /
245 (c->insn_size * sizeof(kprobe_opcode_t));
246 if (idx >= 0 && idx < slots_per_page(c))
247 goto out;
248 }
249 /* Could not find this slot. */
250 WARN_ON(1);
251 kip = NULL;
252out:
253 rcu_read_unlock();
254 /* Mark and sweep: this may sleep */
255 if (kip) {
256 /* Check double free */
257 WARN_ON(kip->slot_used[idx] != SLOT_USED);
258 if (dirty) {
259 kip->slot_used[idx] = SLOT_DIRTY;
260 kip->ngarbage++;
261 if (++c->nr_garbage > slots_per_page(c))
262 collect_garbage_slots(c);
263 } else {
264 collect_one_slot(kip, idx);
265 }
266 }
267 mutex_unlock(&c->mutex);
268}
269
270/*
271 * Check given address is on the page of kprobe instruction slots.
272 * This will be used for checking whether the address on a stack
273 * is on a text area or not.
274 */
275bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
276{
277 struct kprobe_insn_page *kip;
278 bool ret = false;
279
280 rcu_read_lock();
281 list_for_each_entry_rcu(kip, &c->pages, list) {
282 if (addr >= (unsigned long)kip->insns &&
283 addr < (unsigned long)kip->insns + PAGE_SIZE) {
284 ret = true;
285 break;
286 }
287 }
288 rcu_read_unlock();
289
290 return ret;
291}
292
293#ifdef CONFIG_OPTPROBES
294/* For optimized_kprobe buffer */
295struct kprobe_insn_cache kprobe_optinsn_slots = {
296 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
297 .alloc = alloc_insn_page,
298 .free = free_insn_page,
299 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
300 /* .insn_size is initialized later */
301 .nr_garbage = 0,
302};
303#endif
304#endif
305
306/* We have preemption disabled.. so it is safe to use __ versions */
307static inline void set_kprobe_instance(struct kprobe *kp)
308{
309 __this_cpu_write(kprobe_instance, kp);
310}
311
312static inline void reset_kprobe_instance(void)
313{
314 __this_cpu_write(kprobe_instance, NULL);
315}
316
317/*
318 * This routine is called either:
319 * - under the kprobe_mutex - during kprobe_[un]register()
320 * OR
321 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
322 */
323struct kprobe *get_kprobe(void *addr)
324{
325 struct hlist_head *head;
326 struct kprobe *p;
327
328 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
329 hlist_for_each_entry_rcu(p, head, hlist,
330 lockdep_is_held(&kprobe_mutex)) {
331 if (p->addr == addr)
332 return p;
333 }
334
335 return NULL;
336}
337NOKPROBE_SYMBOL(get_kprobe);
338
339static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
340
341/* Return true if the kprobe is an aggregator */
342static inline int kprobe_aggrprobe(struct kprobe *p)
343{
344 return p->pre_handler == aggr_pre_handler;
345}
346
347/* Return true(!0) if the kprobe is unused */
348static inline int kprobe_unused(struct kprobe *p)
349{
350 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
351 list_empty(&p->list);
352}
353
354/*
355 * Keep all fields in the kprobe consistent
356 */
357static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
358{
359 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
360 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
361}
362
363#ifdef CONFIG_OPTPROBES
364/* NOTE: change this value only with kprobe_mutex held */
365static bool kprobes_allow_optimization;
366
367/*
368 * Call all pre_handler on the list, but ignores its return value.
369 * This must be called from arch-dep optimized caller.
370 */
371void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
372{
373 struct kprobe *kp;
374
375 list_for_each_entry_rcu(kp, &p->list, list) {
376 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
377 set_kprobe_instance(kp);
378 kp->pre_handler(kp, regs);
379 }
380 reset_kprobe_instance();
381 }
382}
383NOKPROBE_SYMBOL(opt_pre_handler);
384
385/* Free optimized instructions and optimized_kprobe */
386static void free_aggr_kprobe(struct kprobe *p)
387{
388 struct optimized_kprobe *op;
389
390 op = container_of(p, struct optimized_kprobe, kp);
391 arch_remove_optimized_kprobe(op);
392 arch_remove_kprobe(p);
393 kfree(op);
394}
395
396/* Return true(!0) if the kprobe is ready for optimization. */
397static inline int kprobe_optready(struct kprobe *p)
398{
399 struct optimized_kprobe *op;
400
401 if (kprobe_aggrprobe(p)) {
402 op = container_of(p, struct optimized_kprobe, kp);
403 return arch_prepared_optinsn(&op->optinsn);
404 }
405
406 return 0;
407}
408
409/* Return true if the kprobe is disarmed. Note: p must be on hash list */
410bool kprobe_disarmed(struct kprobe *p)
411{
412 struct optimized_kprobe *op;
413
414 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
415 if (!kprobe_aggrprobe(p))
416 return kprobe_disabled(p);
417
418 op = container_of(p, struct optimized_kprobe, kp);
419
420 return kprobe_disabled(p) && list_empty(&op->list);
421}
422
423/* Return true(!0) if the probe is queued on (un)optimizing lists */
424static int kprobe_queued(struct kprobe *p)
425{
426 struct optimized_kprobe *op;
427
428 if (kprobe_aggrprobe(p)) {
429 op = container_of(p, struct optimized_kprobe, kp);
430 if (!list_empty(&op->list))
431 return 1;
432 }
433 return 0;
434}
435
436/*
437 * Return an optimized kprobe whose optimizing code replaces
438 * instructions including addr (exclude breakpoint).
439 */
440static struct kprobe *get_optimized_kprobe(unsigned long addr)
441{
442 int i;
443 struct kprobe *p = NULL;
444 struct optimized_kprobe *op;
445
446 /* Don't check i == 0, since that is a breakpoint case. */
447 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
448 p = get_kprobe((void *)(addr - i));
449
450 if (p && kprobe_optready(p)) {
451 op = container_of(p, struct optimized_kprobe, kp);
452 if (arch_within_optimized_kprobe(op, addr))
453 return p;
454 }
455
456 return NULL;
457}
458
459/* Optimization staging list, protected by kprobe_mutex */
460static LIST_HEAD(optimizing_list);
461static LIST_HEAD(unoptimizing_list);
462static LIST_HEAD(freeing_list);
463
464static void kprobe_optimizer(struct work_struct *work);
465static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
466#define OPTIMIZE_DELAY 5
467
468/*
469 * Optimize (replace a breakpoint with a jump) kprobes listed on
470 * optimizing_list.
471 */
472static void do_optimize_kprobes(void)
473{
474 lockdep_assert_held(&text_mutex);
475 /*
476 * The optimization/unoptimization refers online_cpus via
477 * stop_machine() and cpu-hotplug modifies online_cpus.
478 * And same time, text_mutex will be held in cpu-hotplug and here.
479 * This combination can cause a deadlock (cpu-hotplug try to lock
480 * text_mutex but stop_machine can not be done because online_cpus
481 * has been changed)
482 * To avoid this deadlock, caller must have locked cpu hotplug
483 * for preventing cpu-hotplug outside of text_mutex locking.
484 */
485 lockdep_assert_cpus_held();
486
487 /* Optimization never be done when disarmed */
488 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
489 list_empty(&optimizing_list))
490 return;
491
492 arch_optimize_kprobes(&optimizing_list);
493}
494
495/*
496 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
497 * if need) kprobes listed on unoptimizing_list.
498 */
499static void do_unoptimize_kprobes(void)
500{
501 struct optimized_kprobe *op, *tmp;
502
503 lockdep_assert_held(&text_mutex);
504 /* See comment in do_optimize_kprobes() */
505 lockdep_assert_cpus_held();
506
507 /* Unoptimization must be done anytime */
508 if (list_empty(&unoptimizing_list))
509 return;
510
511 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
512 /* Loop free_list for disarming */
513 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
514 /* Switching from detour code to origin */
515 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
516 /* Disarm probes if marked disabled */
517 if (kprobe_disabled(&op->kp))
518 arch_disarm_kprobe(&op->kp);
519 if (kprobe_unused(&op->kp)) {
520 /*
521 * Remove unused probes from hash list. After waiting
522 * for synchronization, these probes are reclaimed.
523 * (reclaiming is done by do_free_cleaned_kprobes.)
524 */
525 hlist_del_rcu(&op->kp.hlist);
526 } else
527 list_del_init(&op->list);
528 }
529}
530
531/* Reclaim all kprobes on the free_list */
532static void do_free_cleaned_kprobes(void)
533{
534 struct optimized_kprobe *op, *tmp;
535
536 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
537 list_del_init(&op->list);
538 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
539 /*
540 * This must not happen, but if there is a kprobe
541 * still in use, keep it on kprobes hash list.
542 */
543 continue;
544 }
545 free_aggr_kprobe(&op->kp);
546 }
547}
548
549/* Start optimizer after OPTIMIZE_DELAY passed */
550static void kick_kprobe_optimizer(void)
551{
552 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
553}
554
555/* Kprobe jump optimizer */
556static void kprobe_optimizer(struct work_struct *work)
557{
558 mutex_lock(&kprobe_mutex);
559 cpus_read_lock();
560 mutex_lock(&text_mutex);
561 /* Lock modules while optimizing kprobes */
562 mutex_lock(&module_mutex);
563
564 /*
565 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
566 * kprobes before waiting for quiesence period.
567 */
568 do_unoptimize_kprobes();
569
570 /*
571 * Step 2: Wait for quiesence period to ensure all potentially
572 * preempted tasks to have normally scheduled. Because optprobe
573 * may modify multiple instructions, there is a chance that Nth
574 * instruction is preempted. In that case, such tasks can return
575 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
576 * Note that on non-preemptive kernel, this is transparently converted
577 * to synchronoze_sched() to wait for all interrupts to have completed.
578 */
579 synchronize_rcu_tasks();
580
581 /* Step 3: Optimize kprobes after quiesence period */
582 do_optimize_kprobes();
583
584 /* Step 4: Free cleaned kprobes after quiesence period */
585 do_free_cleaned_kprobes();
586
587 mutex_unlock(&module_mutex);
588 mutex_unlock(&text_mutex);
589 cpus_read_unlock();
590
591 /* Step 5: Kick optimizer again if needed */
592 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
593 kick_kprobe_optimizer();
594
595 mutex_unlock(&kprobe_mutex);
596}
597
598/* Wait for completing optimization and unoptimization */
599void wait_for_kprobe_optimizer(void)
600{
601 mutex_lock(&kprobe_mutex);
602
603 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
604 mutex_unlock(&kprobe_mutex);
605
606 /* this will also make optimizing_work execute immmediately */
607 flush_delayed_work(&optimizing_work);
608 /* @optimizing_work might not have been queued yet, relax */
609 cpu_relax();
610
611 mutex_lock(&kprobe_mutex);
612 }
613
614 mutex_unlock(&kprobe_mutex);
615}
616
617bool optprobe_queued_unopt(struct optimized_kprobe *op)
618{
619 struct optimized_kprobe *_op;
620
621 list_for_each_entry(_op, &unoptimizing_list, list) {
622 if (op == _op)
623 return true;
624 }
625
626 return false;
627}
628
629/* Optimize kprobe if p is ready to be optimized */
630static void optimize_kprobe(struct kprobe *p)
631{
632 struct optimized_kprobe *op;
633
634 /* Check if the kprobe is disabled or not ready for optimization. */
635 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
636 (kprobe_disabled(p) || kprobes_all_disarmed))
637 return;
638
639 /* kprobes with post_handler can not be optimized */
640 if (p->post_handler)
641 return;
642
643 op = container_of(p, struct optimized_kprobe, kp);
644
645 /* Check there is no other kprobes at the optimized instructions */
646 if (arch_check_optimized_kprobe(op) < 0)
647 return;
648
649 /* Check if it is already optimized. */
650 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
651 if (optprobe_queued_unopt(op)) {
652 /* This is under unoptimizing. Just dequeue the probe */
653 list_del_init(&op->list);
654 }
655 return;
656 }
657 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
658
659 /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
660 if (WARN_ON_ONCE(!list_empty(&op->list)))
661 return;
662
663 list_add(&op->list, &optimizing_list);
664 kick_kprobe_optimizer();
665}
666
667/* Short cut to direct unoptimizing */
668static void force_unoptimize_kprobe(struct optimized_kprobe *op)
669{
670 lockdep_assert_cpus_held();
671 arch_unoptimize_kprobe(op);
672 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
673 if (kprobe_disabled(&op->kp))
674 arch_disarm_kprobe(&op->kp);
675}
676
677/* Unoptimize a kprobe if p is optimized */
678static void unoptimize_kprobe(struct kprobe *p, bool force)
679{
680 struct optimized_kprobe *op;
681
682 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
683 return; /* This is not an optprobe nor optimized */
684
685 op = container_of(p, struct optimized_kprobe, kp);
686 if (!kprobe_optimized(p))
687 return;
688
689 if (!list_empty(&op->list)) {
690 if (optprobe_queued_unopt(op)) {
691 /* Queued in unoptimizing queue */
692 if (force) {
693 /*
694 * Forcibly unoptimize the kprobe here, and queue it
695 * in the freeing list for release afterwards.
696 */
697 force_unoptimize_kprobe(op);
698 list_move(&op->list, &freeing_list);
699 }
700 } else {
701 /* Dequeue from the optimizing queue */
702 list_del_init(&op->list);
703 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
704 }
705 return;
706 }
707
708 /* Optimized kprobe case */
709 if (force) {
710 /* Forcibly update the code: this is a special case */
711 force_unoptimize_kprobe(op);
712 } else {
713 list_add(&op->list, &unoptimizing_list);
714 kick_kprobe_optimizer();
715 }
716}
717
718/* Cancel unoptimizing for reusing */
719static int reuse_unused_kprobe(struct kprobe *ap)
720{
721 struct optimized_kprobe *op;
722
723 /*
724 * Unused kprobe MUST be on the way of delayed unoptimizing (means
725 * there is still a relative jump) and disabled.
726 */
727 op = container_of(ap, struct optimized_kprobe, kp);
728 WARN_ON_ONCE(list_empty(&op->list));
729 /* Enable the probe again */
730 ap->flags &= ~KPROBE_FLAG_DISABLED;
731 /* Optimize it again (remove from op->list) */
732 if (!kprobe_optready(ap))
733 return -EINVAL;
734
735 optimize_kprobe(ap);
736 return 0;
737}
738
739/* Remove optimized instructions */
740static void kill_optimized_kprobe(struct kprobe *p)
741{
742 struct optimized_kprobe *op;
743
744 op = container_of(p, struct optimized_kprobe, kp);
745 if (!list_empty(&op->list))
746 /* Dequeue from the (un)optimization queue */
747 list_del_init(&op->list);
748 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
749
750 if (kprobe_unused(p)) {
751 /* Enqueue if it is unused */
752 list_add(&op->list, &freeing_list);
753 /*
754 * Remove unused probes from the hash list. After waiting
755 * for synchronization, this probe is reclaimed.
756 * (reclaiming is done by do_free_cleaned_kprobes().)
757 */
758 hlist_del_rcu(&op->kp.hlist);
759 }
760
761 /* Don't touch the code, because it is already freed. */
762 arch_remove_optimized_kprobe(op);
763}
764
765static inline
766void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
767{
768 if (!kprobe_ftrace(p))
769 arch_prepare_optimized_kprobe(op, p);
770}
771
772/* Try to prepare optimized instructions */
773static void prepare_optimized_kprobe(struct kprobe *p)
774{
775 struct optimized_kprobe *op;
776
777 op = container_of(p, struct optimized_kprobe, kp);
778 __prepare_optimized_kprobe(op, p);
779}
780
781/* Allocate new optimized_kprobe and try to prepare optimized instructions */
782static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
783{
784 struct optimized_kprobe *op;
785
786 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
787 if (!op)
788 return NULL;
789
790 INIT_LIST_HEAD(&op->list);
791 op->kp.addr = p->addr;
792 __prepare_optimized_kprobe(op, p);
793
794 return &op->kp;
795}
796
797static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
798
799/*
800 * Prepare an optimized_kprobe and optimize it
801 * NOTE: p must be a normal registered kprobe
802 */
803static void try_to_optimize_kprobe(struct kprobe *p)
804{
805 struct kprobe *ap;
806 struct optimized_kprobe *op;
807
808 /* Impossible to optimize ftrace-based kprobe */
809 if (kprobe_ftrace(p))
810 return;
811
812 /* For preparing optimization, jump_label_text_reserved() is called */
813 cpus_read_lock();
814 jump_label_lock();
815 mutex_lock(&text_mutex);
816
817 ap = alloc_aggr_kprobe(p);
818 if (!ap)
819 goto out;
820
821 op = container_of(ap, struct optimized_kprobe, kp);
822 if (!arch_prepared_optinsn(&op->optinsn)) {
823 /* If failed to setup optimizing, fallback to kprobe */
824 arch_remove_optimized_kprobe(op);
825 kfree(op);
826 goto out;
827 }
828
829 init_aggr_kprobe(ap, p);
830 optimize_kprobe(ap); /* This just kicks optimizer thread */
831
832out:
833 mutex_unlock(&text_mutex);
834 jump_label_unlock();
835 cpus_read_unlock();
836}
837
838#ifdef CONFIG_SYSCTL
839static void optimize_all_kprobes(void)
840{
841 struct hlist_head *head;
842 struct kprobe *p;
843 unsigned int i;
844
845 mutex_lock(&kprobe_mutex);
846 /* If optimization is already allowed, just return */
847 if (kprobes_allow_optimization)
848 goto out;
849
850 cpus_read_lock();
851 kprobes_allow_optimization = true;
852 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
853 head = &kprobe_table[i];
854 hlist_for_each_entry_rcu(p, head, hlist)
855 if (!kprobe_disabled(p))
856 optimize_kprobe(p);
857 }
858 cpus_read_unlock();
859 printk(KERN_INFO "Kprobes globally optimized\n");
860out:
861 mutex_unlock(&kprobe_mutex);
862}
863
864static void unoptimize_all_kprobes(void)
865{
866 struct hlist_head *head;
867 struct kprobe *p;
868 unsigned int i;
869
870 mutex_lock(&kprobe_mutex);
871 /* If optimization is already prohibited, just return */
872 if (!kprobes_allow_optimization) {
873 mutex_unlock(&kprobe_mutex);
874 return;
875 }
876
877 cpus_read_lock();
878 kprobes_allow_optimization = false;
879 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
880 head = &kprobe_table[i];
881 hlist_for_each_entry_rcu(p, head, hlist) {
882 if (!kprobe_disabled(p))
883 unoptimize_kprobe(p, false);
884 }
885 }
886 cpus_read_unlock();
887 mutex_unlock(&kprobe_mutex);
888
889 /* Wait for unoptimizing completion */
890 wait_for_kprobe_optimizer();
891 printk(KERN_INFO "Kprobes globally unoptimized\n");
892}
893
894static DEFINE_MUTEX(kprobe_sysctl_mutex);
895int sysctl_kprobes_optimization;
896int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
897 void __user *buffer, size_t *length,
898 loff_t *ppos)
899{
900 int ret;
901
902 mutex_lock(&kprobe_sysctl_mutex);
903 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
904 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
905
906 if (sysctl_kprobes_optimization)
907 optimize_all_kprobes();
908 else
909 unoptimize_all_kprobes();
910 mutex_unlock(&kprobe_sysctl_mutex);
911
912 return ret;
913}
914#endif /* CONFIG_SYSCTL */
915
916/* Put a breakpoint for a probe. Must be called with text_mutex locked */
917static void __arm_kprobe(struct kprobe *p)
918{
919 struct kprobe *_p;
920
921 /* Check collision with other optimized kprobes */
922 _p = get_optimized_kprobe((unsigned long)p->addr);
923 if (unlikely(_p))
924 /* Fallback to unoptimized kprobe */
925 unoptimize_kprobe(_p, true);
926
927 arch_arm_kprobe(p);
928 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
929}
930
931/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
932static void __disarm_kprobe(struct kprobe *p, bool reopt)
933{
934 struct kprobe *_p;
935
936 /* Try to unoptimize */
937 unoptimize_kprobe(p, kprobes_all_disarmed);
938
939 if (!kprobe_queued(p)) {
940 arch_disarm_kprobe(p);
941 /* If another kprobe was blocked, optimize it. */
942 _p = get_optimized_kprobe((unsigned long)p->addr);
943 if (unlikely(_p) && reopt)
944 optimize_kprobe(_p);
945 }
946 /* TODO: reoptimize others after unoptimized this probe */
947}
948
949#else /* !CONFIG_OPTPROBES */
950
951#define optimize_kprobe(p) do {} while (0)
952#define unoptimize_kprobe(p, f) do {} while (0)
953#define kill_optimized_kprobe(p) do {} while (0)
954#define prepare_optimized_kprobe(p) do {} while (0)
955#define try_to_optimize_kprobe(p) do {} while (0)
956#define __arm_kprobe(p) arch_arm_kprobe(p)
957#define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
958#define kprobe_disarmed(p) kprobe_disabled(p)
959#define wait_for_kprobe_optimizer() do {} while (0)
960
961static int reuse_unused_kprobe(struct kprobe *ap)
962{
963 /*
964 * If the optimized kprobe is NOT supported, the aggr kprobe is
965 * released at the same time that the last aggregated kprobe is
966 * unregistered.
967 * Thus there should be no chance to reuse unused kprobe.
968 */
969 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
970 return -EINVAL;
971}
972
973static void free_aggr_kprobe(struct kprobe *p)
974{
975 arch_remove_kprobe(p);
976 kfree(p);
977}
978
979static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
980{
981 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
982}
983#endif /* CONFIG_OPTPROBES */
984
985#ifdef CONFIG_KPROBES_ON_FTRACE
986static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
987 .func = kprobe_ftrace_handler,
988 .flags = FTRACE_OPS_FL_SAVE_REGS,
989};
990
991static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
992 .func = kprobe_ftrace_handler,
993 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
994};
995
996static int kprobe_ipmodify_enabled;
997static int kprobe_ftrace_enabled;
998
999/* Must ensure p->addr is really on ftrace */
1000static int prepare_kprobe(struct kprobe *p)
1001{
1002 if (!kprobe_ftrace(p))
1003 return arch_prepare_kprobe(p);
1004
1005 return arch_prepare_kprobe_ftrace(p);
1006}
1007
1008/* Caller must lock kprobe_mutex */
1009static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1010 int *cnt)
1011{
1012 int ret = 0;
1013
1014 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1015 if (ret) {
1016 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1017 p->addr, ret);
1018 return ret;
1019 }
1020
1021 if (*cnt == 0) {
1022 ret = register_ftrace_function(ops);
1023 if (ret) {
1024 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1025 goto err_ftrace;
1026 }
1027 }
1028
1029 (*cnt)++;
1030 return ret;
1031
1032err_ftrace:
1033 /*
1034 * At this point, sinec ops is not registered, we should be sefe from
1035 * registering empty filter.
1036 */
1037 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1038 return ret;
1039}
1040
1041static int arm_kprobe_ftrace(struct kprobe *p)
1042{
1043 bool ipmodify = (p->post_handler != NULL);
1044
1045 return __arm_kprobe_ftrace(p,
1046 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1047 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1048}
1049
1050/* Caller must lock kprobe_mutex */
1051static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1052 int *cnt)
1053{
1054 int ret = 0;
1055
1056 if (*cnt == 1) {
1057 ret = unregister_ftrace_function(ops);
1058 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1059 return ret;
1060 }
1061
1062 (*cnt)--;
1063
1064 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1065 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1066 p->addr, ret);
1067 return ret;
1068}
1069
1070static int disarm_kprobe_ftrace(struct kprobe *p)
1071{
1072 bool ipmodify = (p->post_handler != NULL);
1073
1074 return __disarm_kprobe_ftrace(p,
1075 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1076 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1077}
1078#else /* !CONFIG_KPROBES_ON_FTRACE */
1079static inline int prepare_kprobe(struct kprobe *p)
1080{
1081 return arch_prepare_kprobe(p);
1082}
1083
1084static inline int arm_kprobe_ftrace(struct kprobe *p)
1085{
1086 return -ENODEV;
1087}
1088
1089static inline int disarm_kprobe_ftrace(struct kprobe *p)
1090{
1091 return -ENODEV;
1092}
1093#endif
1094
1095/* Arm a kprobe with text_mutex */
1096static int arm_kprobe(struct kprobe *kp)
1097{
1098 if (unlikely(kprobe_ftrace(kp)))
1099 return arm_kprobe_ftrace(kp);
1100
1101 cpus_read_lock();
1102 mutex_lock(&text_mutex);
1103 __arm_kprobe(kp);
1104 mutex_unlock(&text_mutex);
1105 cpus_read_unlock();
1106
1107 return 0;
1108}
1109
1110/* Disarm a kprobe with text_mutex */
1111static int disarm_kprobe(struct kprobe *kp, bool reopt)
1112{
1113 if (unlikely(kprobe_ftrace(kp)))
1114 return disarm_kprobe_ftrace(kp);
1115
1116 cpus_read_lock();
1117 mutex_lock(&text_mutex);
1118 __disarm_kprobe(kp, reopt);
1119 mutex_unlock(&text_mutex);
1120 cpus_read_unlock();
1121
1122 return 0;
1123}
1124
1125/*
1126 * Aggregate handlers for multiple kprobes support - these handlers
1127 * take care of invoking the individual kprobe handlers on p->list
1128 */
1129static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1130{
1131 struct kprobe *kp;
1132
1133 list_for_each_entry_rcu(kp, &p->list, list) {
1134 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1135 set_kprobe_instance(kp);
1136 if (kp->pre_handler(kp, regs))
1137 return 1;
1138 }
1139 reset_kprobe_instance();
1140 }
1141 return 0;
1142}
1143NOKPROBE_SYMBOL(aggr_pre_handler);
1144
1145static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1146 unsigned long flags)
1147{
1148 struct kprobe *kp;
1149
1150 list_for_each_entry_rcu(kp, &p->list, list) {
1151 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1152 set_kprobe_instance(kp);
1153 kp->post_handler(kp, regs, flags);
1154 reset_kprobe_instance();
1155 }
1156 }
1157}
1158NOKPROBE_SYMBOL(aggr_post_handler);
1159
1160static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1161 int trapnr)
1162{
1163 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1164
1165 /*
1166 * if we faulted "during" the execution of a user specified
1167 * probe handler, invoke just that probe's fault handler
1168 */
1169 if (cur && cur->fault_handler) {
1170 if (cur->fault_handler(cur, regs, trapnr))
1171 return 1;
1172 }
1173 return 0;
1174}
1175NOKPROBE_SYMBOL(aggr_fault_handler);
1176
1177/* Walks the list and increments nmissed count for multiprobe case */
1178void kprobes_inc_nmissed_count(struct kprobe *p)
1179{
1180 struct kprobe *kp;
1181 if (!kprobe_aggrprobe(p)) {
1182 p->nmissed++;
1183 } else {
1184 list_for_each_entry_rcu(kp, &p->list, list)
1185 kp->nmissed++;
1186 }
1187 return;
1188}
1189NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1190
1191void recycle_rp_inst(struct kretprobe_instance *ri,
1192 struct hlist_head *head)
1193{
1194 struct kretprobe *rp = ri->rp;
1195
1196 /* remove rp inst off the rprobe_inst_table */
1197 hlist_del(&ri->hlist);
1198 INIT_HLIST_NODE(&ri->hlist);
1199 if (likely(rp)) {
1200 raw_spin_lock(&rp->lock);
1201 hlist_add_head(&ri->hlist, &rp->free_instances);
1202 raw_spin_unlock(&rp->lock);
1203 } else
1204 /* Unregistering */
1205 hlist_add_head(&ri->hlist, head);
1206}
1207NOKPROBE_SYMBOL(recycle_rp_inst);
1208
1209void kretprobe_hash_lock(struct task_struct *tsk,
1210 struct hlist_head **head, unsigned long *flags)
1211__acquires(hlist_lock)
1212{
1213 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1214 raw_spinlock_t *hlist_lock;
1215
1216 *head = &kretprobe_inst_table[hash];
1217 hlist_lock = kretprobe_table_lock_ptr(hash);
1218 raw_spin_lock_irqsave(hlist_lock, *flags);
1219}
1220NOKPROBE_SYMBOL(kretprobe_hash_lock);
1221
1222static void kretprobe_table_lock(unsigned long hash,
1223 unsigned long *flags)
1224__acquires(hlist_lock)
1225{
1226 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1227 raw_spin_lock_irqsave(hlist_lock, *flags);
1228}
1229NOKPROBE_SYMBOL(kretprobe_table_lock);
1230
1231void kretprobe_hash_unlock(struct task_struct *tsk,
1232 unsigned long *flags)
1233__releases(hlist_lock)
1234{
1235 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1236 raw_spinlock_t *hlist_lock;
1237
1238 hlist_lock = kretprobe_table_lock_ptr(hash);
1239 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1240}
1241NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1242
1243static void kretprobe_table_unlock(unsigned long hash,
1244 unsigned long *flags)
1245__releases(hlist_lock)
1246{
1247 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1248 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1249}
1250NOKPROBE_SYMBOL(kretprobe_table_unlock);
1251
1252struct kprobe kprobe_busy = {
1253 .addr = (void *) get_kprobe,
1254};
1255
1256void kprobe_busy_begin(void)
1257{
1258 struct kprobe_ctlblk *kcb;
1259
1260 preempt_disable();
1261 __this_cpu_write(current_kprobe, &kprobe_busy);
1262 kcb = get_kprobe_ctlblk();
1263 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1264}
1265
1266void kprobe_busy_end(void)
1267{
1268 __this_cpu_write(current_kprobe, NULL);
1269 preempt_enable();
1270}
1271
1272/*
1273 * This function is called from finish_task_switch when task tk becomes dead,
1274 * so that we can recycle any function-return probe instances associated
1275 * with this task. These left over instances represent probed functions
1276 * that have been called but will never return.
1277 */
1278void kprobe_flush_task(struct task_struct *tk)
1279{
1280 struct kretprobe_instance *ri;
1281 struct hlist_head *head, empty_rp;
1282 struct hlist_node *tmp;
1283 unsigned long hash, flags = 0;
1284
1285 if (unlikely(!kprobes_initialized))
1286 /* Early boot. kretprobe_table_locks not yet initialized. */
1287 return;
1288
1289 kprobe_busy_begin();
1290
1291 INIT_HLIST_HEAD(&empty_rp);
1292 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1293 head = &kretprobe_inst_table[hash];
1294 kretprobe_table_lock(hash, &flags);
1295 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1296 if (ri->task == tk)
1297 recycle_rp_inst(ri, &empty_rp);
1298 }
1299 kretprobe_table_unlock(hash, &flags);
1300 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1301 hlist_del(&ri->hlist);
1302 kfree(ri);
1303 }
1304
1305 kprobe_busy_end();
1306}
1307NOKPROBE_SYMBOL(kprobe_flush_task);
1308
1309static inline void free_rp_inst(struct kretprobe *rp)
1310{
1311 struct kretprobe_instance *ri;
1312 struct hlist_node *next;
1313
1314 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1315 hlist_del(&ri->hlist);
1316 kfree(ri);
1317 }
1318}
1319
1320static void cleanup_rp_inst(struct kretprobe *rp)
1321{
1322 unsigned long flags, hash;
1323 struct kretprobe_instance *ri;
1324 struct hlist_node *next;
1325 struct hlist_head *head;
1326
1327 /* No race here */
1328 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1329 kretprobe_table_lock(hash, &flags);
1330 head = &kretprobe_inst_table[hash];
1331 hlist_for_each_entry_safe(ri, next, head, hlist) {
1332 if (ri->rp == rp)
1333 ri->rp = NULL;
1334 }
1335 kretprobe_table_unlock(hash, &flags);
1336 }
1337 free_rp_inst(rp);
1338}
1339NOKPROBE_SYMBOL(cleanup_rp_inst);
1340
1341/* Add the new probe to ap->list */
1342static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1343{
1344 if (p->post_handler)
1345 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1346
1347 list_add_rcu(&p->list, &ap->list);
1348 if (p->post_handler && !ap->post_handler)
1349 ap->post_handler = aggr_post_handler;
1350
1351 return 0;
1352}
1353
1354/*
1355 * Fill in the required fields of the "manager kprobe". Replace the
1356 * earlier kprobe in the hlist with the manager kprobe
1357 */
1358static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1359{
1360 /* Copy p's insn slot to ap */
1361 copy_kprobe(p, ap);
1362 flush_insn_slot(ap);
1363 ap->addr = p->addr;
1364 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1365 ap->pre_handler = aggr_pre_handler;
1366 ap->fault_handler = aggr_fault_handler;
1367 /* We don't care the kprobe which has gone. */
1368 if (p->post_handler && !kprobe_gone(p))
1369 ap->post_handler = aggr_post_handler;
1370
1371 INIT_LIST_HEAD(&ap->list);
1372 INIT_HLIST_NODE(&ap->hlist);
1373
1374 list_add_rcu(&p->list, &ap->list);
1375 hlist_replace_rcu(&p->hlist, &ap->hlist);
1376}
1377
1378/*
1379 * This is the second or subsequent kprobe at the address - handle
1380 * the intricacies
1381 */
1382static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1383{
1384 int ret = 0;
1385 struct kprobe *ap = orig_p;
1386
1387 cpus_read_lock();
1388
1389 /* For preparing optimization, jump_label_text_reserved() is called */
1390 jump_label_lock();
1391 mutex_lock(&text_mutex);
1392
1393 if (!kprobe_aggrprobe(orig_p)) {
1394 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1395 ap = alloc_aggr_kprobe(orig_p);
1396 if (!ap) {
1397 ret = -ENOMEM;
1398 goto out;
1399 }
1400 init_aggr_kprobe(ap, orig_p);
1401 } else if (kprobe_unused(ap)) {
1402 /* This probe is going to die. Rescue it */
1403 ret = reuse_unused_kprobe(ap);
1404 if (ret)
1405 goto out;
1406 }
1407
1408 if (kprobe_gone(ap)) {
1409 /*
1410 * Attempting to insert new probe at the same location that
1411 * had a probe in the module vaddr area which already
1412 * freed. So, the instruction slot has already been
1413 * released. We need a new slot for the new probe.
1414 */
1415 ret = arch_prepare_kprobe(ap);
1416 if (ret)
1417 /*
1418 * Even if fail to allocate new slot, don't need to
1419 * free aggr_probe. It will be used next time, or
1420 * freed by unregister_kprobe.
1421 */
1422 goto out;
1423
1424 /* Prepare optimized instructions if possible. */
1425 prepare_optimized_kprobe(ap);
1426
1427 /*
1428 * Clear gone flag to prevent allocating new slot again, and
1429 * set disabled flag because it is not armed yet.
1430 */
1431 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1432 | KPROBE_FLAG_DISABLED;
1433 }
1434
1435 /* Copy ap's insn slot to p */
1436 copy_kprobe(ap, p);
1437 ret = add_new_kprobe(ap, p);
1438
1439out:
1440 mutex_unlock(&text_mutex);
1441 jump_label_unlock();
1442 cpus_read_unlock();
1443
1444 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1445 ap->flags &= ~KPROBE_FLAG_DISABLED;
1446 if (!kprobes_all_disarmed) {
1447 /* Arm the breakpoint again. */
1448 ret = arm_kprobe(ap);
1449 if (ret) {
1450 ap->flags |= KPROBE_FLAG_DISABLED;
1451 list_del_rcu(&p->list);
1452 synchronize_rcu();
1453 }
1454 }
1455 }
1456 return ret;
1457}
1458
1459bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1460{
1461 /* The __kprobes marked functions and entry code must not be probed */
1462 return addr >= (unsigned long)__kprobes_text_start &&
1463 addr < (unsigned long)__kprobes_text_end;
1464}
1465
1466static bool __within_kprobe_blacklist(unsigned long addr)
1467{
1468 struct kprobe_blacklist_entry *ent;
1469
1470 if (arch_within_kprobe_blacklist(addr))
1471 return true;
1472 /*
1473 * If there exists a kprobe_blacklist, verify and
1474 * fail any probe registration in the prohibited area
1475 */
1476 list_for_each_entry(ent, &kprobe_blacklist, list) {
1477 if (addr >= ent->start_addr && addr < ent->end_addr)
1478 return true;
1479 }
1480 return false;
1481}
1482
1483bool within_kprobe_blacklist(unsigned long addr)
1484{
1485 char symname[KSYM_NAME_LEN], *p;
1486
1487 if (__within_kprobe_blacklist(addr))
1488 return true;
1489
1490 /* Check if the address is on a suffixed-symbol */
1491 if (!lookup_symbol_name(addr, symname)) {
1492 p = strchr(symname, '.');
1493 if (!p)
1494 return false;
1495 *p = '\0';
1496 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1497 if (addr)
1498 return __within_kprobe_blacklist(addr);
1499 }
1500 return false;
1501}
1502
1503/*
1504 * If we have a symbol_name argument, look it up and add the offset field
1505 * to it. This way, we can specify a relative address to a symbol.
1506 * This returns encoded errors if it fails to look up symbol or invalid
1507 * combination of parameters.
1508 */
1509static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1510 const char *symbol_name, unsigned int offset)
1511{
1512 if ((symbol_name && addr) || (!symbol_name && !addr))
1513 goto invalid;
1514
1515 if (symbol_name) {
1516 addr = kprobe_lookup_name(symbol_name, offset);
1517 if (!addr)
1518 return ERR_PTR(-ENOENT);
1519 }
1520
1521 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1522 if (addr)
1523 return addr;
1524
1525invalid:
1526 return ERR_PTR(-EINVAL);
1527}
1528
1529static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1530{
1531 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1532}
1533
1534/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1535static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1536{
1537 struct kprobe *ap, *list_p;
1538
1539 ap = get_kprobe(p->addr);
1540 if (unlikely(!ap))
1541 return NULL;
1542
1543 if (p != ap) {
1544 list_for_each_entry_rcu(list_p, &ap->list, list)
1545 if (list_p == p)
1546 /* kprobe p is a valid probe */
1547 goto valid;
1548 return NULL;
1549 }
1550valid:
1551 return ap;
1552}
1553
1554/* Return error if the kprobe is being re-registered */
1555static inline int check_kprobe_rereg(struct kprobe *p)
1556{
1557 int ret = 0;
1558
1559 mutex_lock(&kprobe_mutex);
1560 if (__get_valid_kprobe(p))
1561 ret = -EINVAL;
1562 mutex_unlock(&kprobe_mutex);
1563
1564 return ret;
1565}
1566
1567int __weak arch_check_ftrace_location(struct kprobe *p)
1568{
1569 unsigned long ftrace_addr;
1570
1571 ftrace_addr = ftrace_location((unsigned long)p->addr);
1572 if (ftrace_addr) {
1573#ifdef CONFIG_KPROBES_ON_FTRACE
1574 /* Given address is not on the instruction boundary */
1575 if ((unsigned long)p->addr != ftrace_addr)
1576 return -EILSEQ;
1577 p->flags |= KPROBE_FLAG_FTRACE;
1578#else /* !CONFIG_KPROBES_ON_FTRACE */
1579 return -EINVAL;
1580#endif
1581 }
1582 return 0;
1583}
1584
1585static int check_kprobe_address_safe(struct kprobe *p,
1586 struct module **probed_mod)
1587{
1588 int ret;
1589
1590 ret = arch_check_ftrace_location(p);
1591 if (ret)
1592 return ret;
1593 jump_label_lock();
1594 preempt_disable();
1595
1596 /* Ensure the address is in a text area, and find a module if exists. */
1597 *probed_mod = NULL;
1598 if (!core_kernel_text((unsigned long) p->addr)) {
1599 *probed_mod = __module_text_address((unsigned long) p->addr);
1600 if (!(*probed_mod)) {
1601 ret = -EINVAL;
1602 goto out;
1603 }
1604 }
1605 /* Ensure it is not in reserved area. */
1606 if (in_gate_area_no_mm((unsigned long) p->addr) ||
1607 within_kprobe_blacklist((unsigned long) p->addr) ||
1608 jump_label_text_reserved(p->addr, p->addr) ||
1609 find_bug((unsigned long)p->addr)) {
1610 ret = -EINVAL;
1611 goto out;
1612 }
1613
1614 /* Get module refcount and reject __init functions for loaded modules. */
1615 if (*probed_mod) {
1616 /*
1617 * We must hold a refcount of the probed module while updating
1618 * its code to prohibit unexpected unloading.
1619 */
1620 if (unlikely(!try_module_get(*probed_mod))) {
1621 ret = -ENOENT;
1622 goto out;
1623 }
1624
1625 /*
1626 * If the module freed .init.text, we couldn't insert
1627 * kprobes in there.
1628 */
1629 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1630 (*probed_mod)->state != MODULE_STATE_COMING) {
1631 module_put(*probed_mod);
1632 *probed_mod = NULL;
1633 ret = -ENOENT;
1634 }
1635 }
1636out:
1637 preempt_enable();
1638 jump_label_unlock();
1639
1640 return ret;
1641}
1642
1643int register_kprobe(struct kprobe *p)
1644{
1645 int ret;
1646 struct kprobe *old_p;
1647 struct module *probed_mod;
1648 kprobe_opcode_t *addr;
1649
1650 /* Adjust probe address from symbol */
1651 addr = kprobe_addr(p);
1652 if (IS_ERR(addr))
1653 return PTR_ERR(addr);
1654 p->addr = addr;
1655
1656 ret = check_kprobe_rereg(p);
1657 if (ret)
1658 return ret;
1659
1660 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1661 p->flags &= KPROBE_FLAG_DISABLED;
1662 p->nmissed = 0;
1663 INIT_LIST_HEAD(&p->list);
1664
1665 ret = check_kprobe_address_safe(p, &probed_mod);
1666 if (ret)
1667 return ret;
1668
1669 mutex_lock(&kprobe_mutex);
1670
1671 old_p = get_kprobe(p->addr);
1672 if (old_p) {
1673 /* Since this may unoptimize old_p, locking text_mutex. */
1674 ret = register_aggr_kprobe(old_p, p);
1675 goto out;
1676 }
1677
1678 cpus_read_lock();
1679 /* Prevent text modification */
1680 mutex_lock(&text_mutex);
1681 ret = prepare_kprobe(p);
1682 mutex_unlock(&text_mutex);
1683 cpus_read_unlock();
1684 if (ret)
1685 goto out;
1686
1687 INIT_HLIST_NODE(&p->hlist);
1688 hlist_add_head_rcu(&p->hlist,
1689 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1690
1691 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1692 ret = arm_kprobe(p);
1693 if (ret) {
1694 hlist_del_rcu(&p->hlist);
1695 synchronize_rcu();
1696 goto out;
1697 }
1698 }
1699
1700 /* Try to optimize kprobe */
1701 try_to_optimize_kprobe(p);
1702out:
1703 mutex_unlock(&kprobe_mutex);
1704
1705 if (probed_mod)
1706 module_put(probed_mod);
1707
1708 return ret;
1709}
1710EXPORT_SYMBOL_GPL(register_kprobe);
1711
1712/* Check if all probes on the aggrprobe are disabled */
1713static int aggr_kprobe_disabled(struct kprobe *ap)
1714{
1715 struct kprobe *kp;
1716
1717 list_for_each_entry_rcu(kp, &ap->list, list)
1718 if (!kprobe_disabled(kp))
1719 /*
1720 * There is an active probe on the list.
1721 * We can't disable this ap.
1722 */
1723 return 0;
1724
1725 return 1;
1726}
1727
1728/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1729static struct kprobe *__disable_kprobe(struct kprobe *p)
1730{
1731 struct kprobe *orig_p;
1732 int ret;
1733
1734 /* Get an original kprobe for return */
1735 orig_p = __get_valid_kprobe(p);
1736 if (unlikely(orig_p == NULL))
1737 return ERR_PTR(-EINVAL);
1738
1739 if (!kprobe_disabled(p)) {
1740 /* Disable probe if it is a child probe */
1741 if (p != orig_p)
1742 p->flags |= KPROBE_FLAG_DISABLED;
1743
1744 /* Try to disarm and disable this/parent probe */
1745 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1746 /*
1747 * Don't be lazy here. Even if 'kprobes_all_disarmed'
1748 * is false, 'orig_p' might not have been armed yet.
1749 * Note arm_all_kprobes() __tries__ to arm all kprobes
1750 * on the best effort basis.
1751 */
1752 if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1753 ret = disarm_kprobe(orig_p, true);
1754 if (ret) {
1755 p->flags &= ~KPROBE_FLAG_DISABLED;
1756 return ERR_PTR(ret);
1757 }
1758 }
1759 orig_p->flags |= KPROBE_FLAG_DISABLED;
1760 }
1761 }
1762
1763 return orig_p;
1764}
1765
1766/*
1767 * Unregister a kprobe without a scheduler synchronization.
1768 */
1769static int __unregister_kprobe_top(struct kprobe *p)
1770{
1771 struct kprobe *ap, *list_p;
1772
1773 /* Disable kprobe. This will disarm it if needed. */
1774 ap = __disable_kprobe(p);
1775 if (IS_ERR(ap))
1776 return PTR_ERR(ap);
1777
1778 if (ap == p)
1779 /*
1780 * This probe is an independent(and non-optimized) kprobe
1781 * (not an aggrprobe). Remove from the hash list.
1782 */
1783 goto disarmed;
1784
1785 /* Following process expects this probe is an aggrprobe */
1786 WARN_ON(!kprobe_aggrprobe(ap));
1787
1788 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1789 /*
1790 * !disarmed could be happen if the probe is under delayed
1791 * unoptimizing.
1792 */
1793 goto disarmed;
1794 else {
1795 /* If disabling probe has special handlers, update aggrprobe */
1796 if (p->post_handler && !kprobe_gone(p)) {
1797 list_for_each_entry_rcu(list_p, &ap->list, list) {
1798 if ((list_p != p) && (list_p->post_handler))
1799 goto noclean;
1800 }
1801 /*
1802 * For the kprobe-on-ftrace case, we keep the
1803 * post_handler setting to identify this aggrprobe
1804 * armed with kprobe_ipmodify_ops.
1805 */
1806 if (!kprobe_ftrace(ap))
1807 ap->post_handler = NULL;
1808 }
1809noclean:
1810 /*
1811 * Remove from the aggrprobe: this path will do nothing in
1812 * __unregister_kprobe_bottom().
1813 */
1814 list_del_rcu(&p->list);
1815 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1816 /*
1817 * Try to optimize this probe again, because post
1818 * handler may have been changed.
1819 */
1820 optimize_kprobe(ap);
1821 }
1822 return 0;
1823
1824disarmed:
1825 hlist_del_rcu(&ap->hlist);
1826 return 0;
1827}
1828
1829static void __unregister_kprobe_bottom(struct kprobe *p)
1830{
1831 struct kprobe *ap;
1832
1833 if (list_empty(&p->list))
1834 /* This is an independent kprobe */
1835 arch_remove_kprobe(p);
1836 else if (list_is_singular(&p->list)) {
1837 /* This is the last child of an aggrprobe */
1838 ap = list_entry(p->list.next, struct kprobe, list);
1839 list_del(&p->list);
1840 free_aggr_kprobe(ap);
1841 }
1842 /* Otherwise, do nothing. */
1843}
1844
1845int register_kprobes(struct kprobe **kps, int num)
1846{
1847 int i, ret = 0;
1848
1849 if (num <= 0)
1850 return -EINVAL;
1851 for (i = 0; i < num; i++) {
1852 ret = register_kprobe(kps[i]);
1853 if (ret < 0) {
1854 if (i > 0)
1855 unregister_kprobes(kps, i);
1856 break;
1857 }
1858 }
1859 return ret;
1860}
1861EXPORT_SYMBOL_GPL(register_kprobes);
1862
1863void unregister_kprobe(struct kprobe *p)
1864{
1865 unregister_kprobes(&p, 1);
1866}
1867EXPORT_SYMBOL_GPL(unregister_kprobe);
1868
1869void unregister_kprobes(struct kprobe **kps, int num)
1870{
1871 int i;
1872
1873 if (num <= 0)
1874 return;
1875 mutex_lock(&kprobe_mutex);
1876 for (i = 0; i < num; i++)
1877 if (__unregister_kprobe_top(kps[i]) < 0)
1878 kps[i]->addr = NULL;
1879 mutex_unlock(&kprobe_mutex);
1880
1881 synchronize_rcu();
1882 for (i = 0; i < num; i++)
1883 if (kps[i]->addr)
1884 __unregister_kprobe_bottom(kps[i]);
1885}
1886EXPORT_SYMBOL_GPL(unregister_kprobes);
1887
1888int __weak kprobe_exceptions_notify(struct notifier_block *self,
1889 unsigned long val, void *data)
1890{
1891 return NOTIFY_DONE;
1892}
1893NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1894
1895static struct notifier_block kprobe_exceptions_nb = {
1896 .notifier_call = kprobe_exceptions_notify,
1897 .priority = 0x7fffffff /* we need to be notified first */
1898};
1899
1900unsigned long __weak arch_deref_entry_point(void *entry)
1901{
1902 return (unsigned long)entry;
1903}
1904
1905#ifdef CONFIG_KRETPROBES
1906/*
1907 * This kprobe pre_handler is registered with every kretprobe. When probe
1908 * hits it will set up the return probe.
1909 */
1910static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1911{
1912 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1913 unsigned long hash, flags = 0;
1914 struct kretprobe_instance *ri;
1915
1916 /*
1917 * To avoid deadlocks, prohibit return probing in NMI contexts,
1918 * just skip the probe and increase the (inexact) 'nmissed'
1919 * statistical counter, so that the user is informed that
1920 * something happened:
1921 */
1922 if (unlikely(in_nmi())) {
1923 rp->nmissed++;
1924 return 0;
1925 }
1926
1927 /* TODO: consider to only swap the RA after the last pre_handler fired */
1928 hash = hash_ptr(current, KPROBE_HASH_BITS);
1929 raw_spin_lock_irqsave(&rp->lock, flags);
1930 if (!hlist_empty(&rp->free_instances)) {
1931 ri = hlist_entry(rp->free_instances.first,
1932 struct kretprobe_instance, hlist);
1933 hlist_del(&ri->hlist);
1934 raw_spin_unlock_irqrestore(&rp->lock, flags);
1935
1936 ri->rp = rp;
1937 ri->task = current;
1938
1939 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1940 raw_spin_lock_irqsave(&rp->lock, flags);
1941 hlist_add_head(&ri->hlist, &rp->free_instances);
1942 raw_spin_unlock_irqrestore(&rp->lock, flags);
1943 return 0;
1944 }
1945
1946 arch_prepare_kretprobe(ri, regs);
1947
1948 /* XXX(hch): why is there no hlist_move_head? */
1949 INIT_HLIST_NODE(&ri->hlist);
1950 kretprobe_table_lock(hash, &flags);
1951 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1952 kretprobe_table_unlock(hash, &flags);
1953 } else {
1954 rp->nmissed++;
1955 raw_spin_unlock_irqrestore(&rp->lock, flags);
1956 }
1957 return 0;
1958}
1959NOKPROBE_SYMBOL(pre_handler_kretprobe);
1960
1961bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1962{
1963 return !offset;
1964}
1965
1966/**
1967 * kprobe_on_func_entry() -- check whether given address is function entry
1968 * @addr: Target address
1969 * @sym: Target symbol name
1970 * @offset: The offset from the symbol or the address
1971 *
1972 * This checks whether the given @addr+@offset or @sym+@offset is on the
1973 * function entry address or not.
1974 * This returns 0 if it is the function entry, or -EINVAL if it is not.
1975 * And also it returns -ENOENT if it fails the symbol or address lookup.
1976 * Caller must pass @addr or @sym (either one must be NULL), or this
1977 * returns -EINVAL.
1978 */
1979int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1980{
1981 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1982
1983 if (IS_ERR(kp_addr))
1984 return PTR_ERR(kp_addr);
1985
1986 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
1987 return -ENOENT;
1988
1989 if (!arch_kprobe_on_func_entry(offset))
1990 return -EINVAL;
1991
1992 return 0;
1993}
1994
1995int register_kretprobe(struct kretprobe *rp)
1996{
1997 int ret;
1998 struct kretprobe_instance *inst;
1999 int i;
2000 void *addr;
2001
2002 ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2003 if (ret)
2004 return ret;
2005
2006 /* If only rp->kp.addr is specified, check reregistering kprobes */
2007 if (rp->kp.addr && check_kprobe_rereg(&rp->kp))
2008 return -EINVAL;
2009
2010 if (kretprobe_blacklist_size) {
2011 addr = kprobe_addr(&rp->kp);
2012 if (IS_ERR(addr))
2013 return PTR_ERR(addr);
2014
2015 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2016 if (kretprobe_blacklist[i].addr == addr)
2017 return -EINVAL;
2018 }
2019 }
2020
2021 if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2022 return -E2BIG;
2023
2024 rp->kp.pre_handler = pre_handler_kretprobe;
2025 rp->kp.post_handler = NULL;
2026 rp->kp.fault_handler = NULL;
2027
2028 /* Pre-allocate memory for max kretprobe instances */
2029 if (rp->maxactive <= 0) {
2030#ifdef CONFIG_PREEMPTION
2031 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2032#else
2033 rp->maxactive = num_possible_cpus();
2034#endif
2035 }
2036 raw_spin_lock_init(&rp->lock);
2037 INIT_HLIST_HEAD(&rp->free_instances);
2038 for (i = 0; i < rp->maxactive; i++) {
2039 inst = kmalloc(sizeof(struct kretprobe_instance) +
2040 rp->data_size, GFP_KERNEL);
2041 if (inst == NULL) {
2042 free_rp_inst(rp);
2043 return -ENOMEM;
2044 }
2045 INIT_HLIST_NODE(&inst->hlist);
2046 hlist_add_head(&inst->hlist, &rp->free_instances);
2047 }
2048
2049 rp->nmissed = 0;
2050 /* Establish function entry probe point */
2051 ret = register_kprobe(&rp->kp);
2052 if (ret != 0)
2053 free_rp_inst(rp);
2054 return ret;
2055}
2056EXPORT_SYMBOL_GPL(register_kretprobe);
2057
2058int register_kretprobes(struct kretprobe **rps, int num)
2059{
2060 int ret = 0, i;
2061
2062 if (num <= 0)
2063 return -EINVAL;
2064 for (i = 0; i < num; i++) {
2065 ret = register_kretprobe(rps[i]);
2066 if (ret < 0) {
2067 if (i > 0)
2068 unregister_kretprobes(rps, i);
2069 break;
2070 }
2071 }
2072 return ret;
2073}
2074EXPORT_SYMBOL_GPL(register_kretprobes);
2075
2076void unregister_kretprobe(struct kretprobe *rp)
2077{
2078 unregister_kretprobes(&rp, 1);
2079}
2080EXPORT_SYMBOL_GPL(unregister_kretprobe);
2081
2082void unregister_kretprobes(struct kretprobe **rps, int num)
2083{
2084 int i;
2085
2086 if (num <= 0)
2087 return;
2088 mutex_lock(&kprobe_mutex);
2089 for (i = 0; i < num; i++)
2090 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2091 rps[i]->kp.addr = NULL;
2092 mutex_unlock(&kprobe_mutex);
2093
2094 synchronize_rcu();
2095 for (i = 0; i < num; i++) {
2096 if (rps[i]->kp.addr) {
2097 __unregister_kprobe_bottom(&rps[i]->kp);
2098 cleanup_rp_inst(rps[i]);
2099 }
2100 }
2101}
2102EXPORT_SYMBOL_GPL(unregister_kretprobes);
2103
2104#else /* CONFIG_KRETPROBES */
2105int register_kretprobe(struct kretprobe *rp)
2106{
2107 return -ENOSYS;
2108}
2109EXPORT_SYMBOL_GPL(register_kretprobe);
2110
2111int register_kretprobes(struct kretprobe **rps, int num)
2112{
2113 return -ENOSYS;
2114}
2115EXPORT_SYMBOL_GPL(register_kretprobes);
2116
2117void unregister_kretprobe(struct kretprobe *rp)
2118{
2119}
2120EXPORT_SYMBOL_GPL(unregister_kretprobe);
2121
2122void unregister_kretprobes(struct kretprobe **rps, int num)
2123{
2124}
2125EXPORT_SYMBOL_GPL(unregister_kretprobes);
2126
2127static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2128{
2129 return 0;
2130}
2131NOKPROBE_SYMBOL(pre_handler_kretprobe);
2132
2133#endif /* CONFIG_KRETPROBES */
2134
2135/* Set the kprobe gone and remove its instruction buffer. */
2136static void kill_kprobe(struct kprobe *p)
2137{
2138 struct kprobe *kp;
2139
2140 if (WARN_ON_ONCE(kprobe_gone(p)))
2141 return;
2142
2143 p->flags |= KPROBE_FLAG_GONE;
2144 if (kprobe_aggrprobe(p)) {
2145 /*
2146 * If this is an aggr_kprobe, we have to list all the
2147 * chained probes and mark them GONE.
2148 */
2149 list_for_each_entry_rcu(kp, &p->list, list)
2150 kp->flags |= KPROBE_FLAG_GONE;
2151 p->post_handler = NULL;
2152 kill_optimized_kprobe(p);
2153 }
2154 /*
2155 * Here, we can remove insn_slot safely, because no thread calls
2156 * the original probed function (which will be freed soon) any more.
2157 */
2158 arch_remove_kprobe(p);
2159
2160 /*
2161 * The module is going away. We should disarm the kprobe which
2162 * is using ftrace, because ftrace framework is still available at
2163 * MODULE_STATE_GOING notification.
2164 */
2165 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2166 disarm_kprobe_ftrace(p);
2167}
2168
2169/* Disable one kprobe */
2170int disable_kprobe(struct kprobe *kp)
2171{
2172 int ret = 0;
2173 struct kprobe *p;
2174
2175 mutex_lock(&kprobe_mutex);
2176
2177 /* Disable this kprobe */
2178 p = __disable_kprobe(kp);
2179 if (IS_ERR(p))
2180 ret = PTR_ERR(p);
2181
2182 mutex_unlock(&kprobe_mutex);
2183 return ret;
2184}
2185EXPORT_SYMBOL_GPL(disable_kprobe);
2186
2187/* Enable one kprobe */
2188int enable_kprobe(struct kprobe *kp)
2189{
2190 int ret = 0;
2191 struct kprobe *p;
2192
2193 mutex_lock(&kprobe_mutex);
2194
2195 /* Check whether specified probe is valid. */
2196 p = __get_valid_kprobe(kp);
2197 if (unlikely(p == NULL)) {
2198 ret = -EINVAL;
2199 goto out;
2200 }
2201
2202 if (kprobe_gone(kp)) {
2203 /* This kprobe has gone, we couldn't enable it. */
2204 ret = -EINVAL;
2205 goto out;
2206 }
2207
2208 if (p != kp)
2209 kp->flags &= ~KPROBE_FLAG_DISABLED;
2210
2211 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2212 p->flags &= ~KPROBE_FLAG_DISABLED;
2213 ret = arm_kprobe(p);
2214 if (ret) {
2215 p->flags |= KPROBE_FLAG_DISABLED;
2216 if (p != kp)
2217 kp->flags |= KPROBE_FLAG_DISABLED;
2218 }
2219 }
2220out:
2221 mutex_unlock(&kprobe_mutex);
2222 return ret;
2223}
2224EXPORT_SYMBOL_GPL(enable_kprobe);
2225
2226/* Caller must NOT call this in usual path. This is only for critical case */
2227void dump_kprobe(struct kprobe *kp)
2228{
2229 pr_err("Dumping kprobe:\n");
2230 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2231 kp->symbol_name, kp->offset, kp->addr);
2232}
2233NOKPROBE_SYMBOL(dump_kprobe);
2234
2235int kprobe_add_ksym_blacklist(unsigned long entry)
2236{
2237 struct kprobe_blacklist_entry *ent;
2238 unsigned long offset = 0, size = 0;
2239
2240 if (!kernel_text_address(entry) ||
2241 !kallsyms_lookup_size_offset(entry, &size, &offset))
2242 return -EINVAL;
2243
2244 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2245 if (!ent)
2246 return -ENOMEM;
2247 ent->start_addr = entry;
2248 ent->end_addr = entry + size;
2249 INIT_LIST_HEAD(&ent->list);
2250 list_add_tail(&ent->list, &kprobe_blacklist);
2251
2252 return (int)size;
2253}
2254
2255/* Add all symbols in given area into kprobe blacklist */
2256int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2257{
2258 unsigned long entry;
2259 int ret = 0;
2260
2261 for (entry = start; entry < end; entry += ret) {
2262 ret = kprobe_add_ksym_blacklist(entry);
2263 if (ret < 0)
2264 return ret;
2265 if (ret == 0) /* In case of alias symbol */
2266 ret = 1;
2267 }
2268 return 0;
2269}
2270
2271int __init __weak arch_populate_kprobe_blacklist(void)
2272{
2273 return 0;
2274}
2275
2276/*
2277 * Lookup and populate the kprobe_blacklist.
2278 *
2279 * Unlike the kretprobe blacklist, we'll need to determine
2280 * the range of addresses that belong to the said functions,
2281 * since a kprobe need not necessarily be at the beginning
2282 * of a function.
2283 */
2284static int __init populate_kprobe_blacklist(unsigned long *start,
2285 unsigned long *end)
2286{
2287 unsigned long entry;
2288 unsigned long *iter;
2289 int ret;
2290
2291 for (iter = start; iter < end; iter++) {
2292 entry = arch_deref_entry_point((void *)*iter);
2293 ret = kprobe_add_ksym_blacklist(entry);
2294 if (ret == -EINVAL)
2295 continue;
2296 if (ret < 0)
2297 return ret;
2298 }
2299
2300 /* Symbols in __kprobes_text are blacklisted */
2301 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2302 (unsigned long)__kprobes_text_end);
2303
2304 return ret ? : arch_populate_kprobe_blacklist();
2305}
2306
2307/* Module notifier call back, checking kprobes on the module */
2308static int kprobes_module_callback(struct notifier_block *nb,
2309 unsigned long val, void *data)
2310{
2311 struct module *mod = data;
2312 struct hlist_head *head;
2313 struct kprobe *p;
2314 unsigned int i;
2315 int checkcore = (val == MODULE_STATE_GOING);
2316
2317 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2318 return NOTIFY_DONE;
2319
2320 /*
2321 * When MODULE_STATE_GOING was notified, both of module .text and
2322 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2323 * notified, only .init.text section would be freed. We need to
2324 * disable kprobes which have been inserted in the sections.
2325 */
2326 mutex_lock(&kprobe_mutex);
2327 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2328 head = &kprobe_table[i];
2329 hlist_for_each_entry_rcu(p, head, hlist) {
2330 if (kprobe_gone(p))
2331 continue;
2332
2333 if (within_module_init((unsigned long)p->addr, mod) ||
2334 (checkcore &&
2335 within_module_core((unsigned long)p->addr, mod))) {
2336 /*
2337 * The vaddr this probe is installed will soon
2338 * be vfreed buy not synced to disk. Hence,
2339 * disarming the breakpoint isn't needed.
2340 *
2341 * Note, this will also move any optimized probes
2342 * that are pending to be removed from their
2343 * corresponding lists to the freeing_list and
2344 * will not be touched by the delayed
2345 * kprobe_optimizer work handler.
2346 */
2347 kill_kprobe(p);
2348 }
2349 }
2350 }
2351 mutex_unlock(&kprobe_mutex);
2352 return NOTIFY_DONE;
2353}
2354
2355static struct notifier_block kprobe_module_nb = {
2356 .notifier_call = kprobes_module_callback,
2357 .priority = 0
2358};
2359
2360/* Markers of _kprobe_blacklist section */
2361extern unsigned long __start_kprobe_blacklist[];
2362extern unsigned long __stop_kprobe_blacklist[];
2363
2364void kprobe_free_init_mem(void)
2365{
2366 void *start = (void *)(&__init_begin);
2367 void *end = (void *)(&__init_end);
2368 struct hlist_head *head;
2369 struct kprobe *p;
2370 int i;
2371
2372 mutex_lock(&kprobe_mutex);
2373
2374 /* Kill all kprobes on initmem */
2375 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2376 head = &kprobe_table[i];
2377 hlist_for_each_entry(p, head, hlist) {
2378 if (start <= (void *)p->addr && (void *)p->addr < end)
2379 kill_kprobe(p);
2380 }
2381 }
2382
2383 mutex_unlock(&kprobe_mutex);
2384}
2385
2386static int __init init_kprobes(void)
2387{
2388 int i, err = 0;
2389
2390 /* FIXME allocate the probe table, currently defined statically */
2391 /* initialize all list heads */
2392 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2393 INIT_HLIST_HEAD(&kprobe_table[i]);
2394 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2395 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2396 }
2397
2398 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2399 __stop_kprobe_blacklist);
2400 if (err) {
2401 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2402 pr_err("Please take care of using kprobes.\n");
2403 }
2404
2405 if (kretprobe_blacklist_size) {
2406 /* lookup the function address from its name */
2407 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2408 kretprobe_blacklist[i].addr =
2409 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2410 if (!kretprobe_blacklist[i].addr)
2411 printk("kretprobe: lookup failed: %s\n",
2412 kretprobe_blacklist[i].name);
2413 }
2414 }
2415
2416#if defined(CONFIG_OPTPROBES)
2417#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2418 /* Init kprobe_optinsn_slots */
2419 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2420#endif
2421 /* By default, kprobes can be optimized */
2422 kprobes_allow_optimization = true;
2423#endif
2424
2425 /* By default, kprobes are armed */
2426 kprobes_all_disarmed = false;
2427
2428 err = arch_init_kprobes();
2429 if (!err)
2430 err = register_die_notifier(&kprobe_exceptions_nb);
2431 if (!err)
2432 err = register_module_notifier(&kprobe_module_nb);
2433
2434 kprobes_initialized = (err == 0);
2435
2436 if (!err)
2437 init_test_probes();
2438 return err;
2439}
2440subsys_initcall(init_kprobes);
2441
2442#ifdef CONFIG_DEBUG_FS
2443static void report_probe(struct seq_file *pi, struct kprobe *p,
2444 const char *sym, int offset, char *modname, struct kprobe *pp)
2445{
2446 char *kprobe_type;
2447 void *addr = p->addr;
2448
2449 if (p->pre_handler == pre_handler_kretprobe)
2450 kprobe_type = "r";
2451 else
2452 kprobe_type = "k";
2453
2454 if (!kallsyms_show_value(pi->file->f_cred))
2455 addr = NULL;
2456
2457 if (sym)
2458 seq_printf(pi, "%px %s %s+0x%x %s ",
2459 addr, kprobe_type, sym, offset,
2460 (modname ? modname : " "));
2461 else /* try to use %pS */
2462 seq_printf(pi, "%px %s %pS ",
2463 addr, kprobe_type, p->addr);
2464
2465 if (!pp)
2466 pp = p;
2467 seq_printf(pi, "%s%s%s%s\n",
2468 (kprobe_gone(p) ? "[GONE]" : ""),
2469 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2470 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2471 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2472}
2473
2474static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2475{
2476 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2477}
2478
2479static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2480{
2481 (*pos)++;
2482 if (*pos >= KPROBE_TABLE_SIZE)
2483 return NULL;
2484 return pos;
2485}
2486
2487static void kprobe_seq_stop(struct seq_file *f, void *v)
2488{
2489 /* Nothing to do */
2490}
2491
2492static int show_kprobe_addr(struct seq_file *pi, void *v)
2493{
2494 struct hlist_head *head;
2495 struct kprobe *p, *kp;
2496 const char *sym = NULL;
2497 unsigned int i = *(loff_t *) v;
2498 unsigned long offset = 0;
2499 char *modname, namebuf[KSYM_NAME_LEN];
2500
2501 head = &kprobe_table[i];
2502 preempt_disable();
2503 hlist_for_each_entry_rcu(p, head, hlist) {
2504 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2505 &offset, &modname, namebuf);
2506 if (kprobe_aggrprobe(p)) {
2507 list_for_each_entry_rcu(kp, &p->list, list)
2508 report_probe(pi, kp, sym, offset, modname, p);
2509 } else
2510 report_probe(pi, p, sym, offset, modname, NULL);
2511 }
2512 preempt_enable();
2513 return 0;
2514}
2515
2516static const struct seq_operations kprobes_seq_ops = {
2517 .start = kprobe_seq_start,
2518 .next = kprobe_seq_next,
2519 .stop = kprobe_seq_stop,
2520 .show = show_kprobe_addr
2521};
2522
2523static int kprobes_open(struct inode *inode, struct file *filp)
2524{
2525 return seq_open(filp, &kprobes_seq_ops);
2526}
2527
2528static const struct file_operations debugfs_kprobes_operations = {
2529 .open = kprobes_open,
2530 .read = seq_read,
2531 .llseek = seq_lseek,
2532 .release = seq_release,
2533};
2534
2535/* kprobes/blacklist -- shows which functions can not be probed */
2536static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2537{
2538 return seq_list_start(&kprobe_blacklist, *pos);
2539}
2540
2541static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2542{
2543 return seq_list_next(v, &kprobe_blacklist, pos);
2544}
2545
2546static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2547{
2548 struct kprobe_blacklist_entry *ent =
2549 list_entry(v, struct kprobe_blacklist_entry, list);
2550
2551 /*
2552 * If /proc/kallsyms is not showing kernel address, we won't
2553 * show them here either.
2554 */
2555 if (!kallsyms_show_value(m->file->f_cred))
2556 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2557 (void *)ent->start_addr);
2558 else
2559 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2560 (void *)ent->end_addr, (void *)ent->start_addr);
2561 return 0;
2562}
2563
2564static const struct seq_operations kprobe_blacklist_seq_ops = {
2565 .start = kprobe_blacklist_seq_start,
2566 .next = kprobe_blacklist_seq_next,
2567 .stop = kprobe_seq_stop, /* Reuse void function */
2568 .show = kprobe_blacklist_seq_show,
2569};
2570
2571static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2572{
2573 return seq_open(filp, &kprobe_blacklist_seq_ops);
2574}
2575
2576static const struct file_operations debugfs_kprobe_blacklist_ops = {
2577 .open = kprobe_blacklist_open,
2578 .read = seq_read,
2579 .llseek = seq_lseek,
2580 .release = seq_release,
2581};
2582
2583static int arm_all_kprobes(void)
2584{
2585 struct hlist_head *head;
2586 struct kprobe *p;
2587 unsigned int i, total = 0, errors = 0;
2588 int err, ret = 0;
2589
2590 mutex_lock(&kprobe_mutex);
2591
2592 /* If kprobes are armed, just return */
2593 if (!kprobes_all_disarmed)
2594 goto already_enabled;
2595
2596 /*
2597 * optimize_kprobe() called by arm_kprobe() checks
2598 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2599 * arm_kprobe.
2600 */
2601 kprobes_all_disarmed = false;
2602 /* Arming kprobes doesn't optimize kprobe itself */
2603 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2604 head = &kprobe_table[i];
2605 /* Arm all kprobes on a best-effort basis */
2606 hlist_for_each_entry_rcu(p, head, hlist) {
2607 if (!kprobe_disabled(p)) {
2608 err = arm_kprobe(p);
2609 if (err) {
2610 errors++;
2611 ret = err;
2612 }
2613 total++;
2614 }
2615 }
2616 }
2617
2618 if (errors)
2619 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2620 errors, total);
2621 else
2622 pr_info("Kprobes globally enabled\n");
2623
2624already_enabled:
2625 mutex_unlock(&kprobe_mutex);
2626 return ret;
2627}
2628
2629static int disarm_all_kprobes(void)
2630{
2631 struct hlist_head *head;
2632 struct kprobe *p;
2633 unsigned int i, total = 0, errors = 0;
2634 int err, ret = 0;
2635
2636 mutex_lock(&kprobe_mutex);
2637
2638 /* If kprobes are already disarmed, just return */
2639 if (kprobes_all_disarmed) {
2640 mutex_unlock(&kprobe_mutex);
2641 return 0;
2642 }
2643
2644 kprobes_all_disarmed = true;
2645
2646 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2647 head = &kprobe_table[i];
2648 /* Disarm all kprobes on a best-effort basis */
2649 hlist_for_each_entry_rcu(p, head, hlist) {
2650 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2651 err = disarm_kprobe(p, false);
2652 if (err) {
2653 errors++;
2654 ret = err;
2655 }
2656 total++;
2657 }
2658 }
2659 }
2660
2661 if (errors)
2662 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2663 errors, total);
2664 else
2665 pr_info("Kprobes globally disabled\n");
2666
2667 mutex_unlock(&kprobe_mutex);
2668
2669 /* Wait for disarming all kprobes by optimizer */
2670 wait_for_kprobe_optimizer();
2671
2672 return ret;
2673}
2674
2675/*
2676 * XXX: The debugfs bool file interface doesn't allow for callbacks
2677 * when the bool state is switched. We can reuse that facility when
2678 * available
2679 */
2680static ssize_t read_enabled_file_bool(struct file *file,
2681 char __user *user_buf, size_t count, loff_t *ppos)
2682{
2683 char buf[3];
2684
2685 if (!kprobes_all_disarmed)
2686 buf[0] = '1';
2687 else
2688 buf[0] = '0';
2689 buf[1] = '\n';
2690 buf[2] = 0x00;
2691 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2692}
2693
2694static ssize_t write_enabled_file_bool(struct file *file,
2695 const char __user *user_buf, size_t count, loff_t *ppos)
2696{
2697 char buf[32];
2698 size_t buf_size;
2699 int ret = 0;
2700
2701 buf_size = min(count, (sizeof(buf)-1));
2702 if (copy_from_user(buf, user_buf, buf_size))
2703 return -EFAULT;
2704
2705 buf[buf_size] = '\0';
2706 switch (buf[0]) {
2707 case 'y':
2708 case 'Y':
2709 case '1':
2710 ret = arm_all_kprobes();
2711 break;
2712 case 'n':
2713 case 'N':
2714 case '0':
2715 ret = disarm_all_kprobes();
2716 break;
2717 default:
2718 return -EINVAL;
2719 }
2720
2721 if (ret)
2722 return ret;
2723
2724 return count;
2725}
2726
2727static const struct file_operations fops_kp = {
2728 .read = read_enabled_file_bool,
2729 .write = write_enabled_file_bool,
2730 .llseek = default_llseek,
2731};
2732
2733static int __init debugfs_kprobe_init(void)
2734{
2735 struct dentry *dir;
2736
2737 dir = debugfs_create_dir("kprobes", NULL);
2738
2739 debugfs_create_file("list", 0400, dir, NULL,
2740 &debugfs_kprobes_operations);
2741
2742 debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
2743
2744 debugfs_create_file("blacklist", 0400, dir, NULL,
2745 &debugfs_kprobe_blacklist_ops);
2746
2747 return 0;
2748}
2749
2750late_initcall(debugfs_kprobe_init);
2751#endif /* CONFIG_DEBUG_FS */