blob: bf2c8b80da7f1a6dad1c4a0e1e3044864cb6287c [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic pidhash and scalable, time-bounded PID allocator
4 *
5 * (C) 2002-2003 Nadia Yvette Chambers, IBM
6 * (C) 2004 Nadia Yvette Chambers, Oracle
7 * (C) 2002-2004 Ingo Molnar, Red Hat
8 *
9 * pid-structures are backing objects for tasks sharing a given ID to chain
10 * against. There is very little to them aside from hashing them and
11 * parking tasks using given ID's on a list.
12 *
13 * The hash is always changed with the tasklist_lock write-acquired,
14 * and the hash is only accessed with the tasklist_lock at least
15 * read-acquired, so there's no additional SMP locking needed here.
16 *
17 * We have a list of bitmap pages, which bitmaps represent the PID space.
18 * Allocating and freeing PIDs is completely lockless. The worst-case
19 * allocation scenario when all but one out of 1 million PIDs possible are
20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22 *
23 * Pid namespaces:
24 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
26 * Many thanks to Oleg Nesterov for comments and help
27 *
28 */
29
30#include <linux/mm.h>
31#include <linux/export.h>
32#include <linux/slab.h>
33#include <linux/init.h>
34#include <linux/rculist.h>
35#include <linux/memblock.h>
36#include <linux/pid_namespace.h>
37#include <linux/init_task.h>
38#include <linux/syscalls.h>
39#include <linux/proc_ns.h>
40#include <linux/refcount.h>
41#include <linux/anon_inodes.h>
42#include <linux/sched/signal.h>
43#include <linux/sched/task.h>
44#include <linux/file.h>
45#include <linux/idr.h>
46
47struct pid init_struct_pid = {
48 .count = REFCOUNT_INIT(1),
49 .tasks = {
50 { .first = NULL },
51 { .first = NULL },
52 { .first = NULL },
53 },
54 .level = 0,
55 .numbers = { {
56 .nr = 0,
57 .ns = &init_pid_ns,
58 }, }
59};
60
61int pid_max = PID_MAX_DEFAULT;
62
63#define RESERVED_PIDS 300
64
65int pid_max_min = RESERVED_PIDS + 1;
66int pid_max_max = PID_MAX_LIMIT;
67
68/*
69 * PID-map pages start out as NULL, they get allocated upon
70 * first use and are never deallocated. This way a low pid_max
71 * value does not cause lots of bitmaps to be allocated, but
72 * the scheme scales to up to 4 million PIDs, runtime.
73 */
74struct pid_namespace init_pid_ns = {
75 .kref = KREF_INIT(2),
76 .idr = IDR_INIT(init_pid_ns.idr),
77 .pid_allocated = PIDNS_ADDING,
78 .level = 0,
79 .child_reaper = &init_task,
80 .user_ns = &init_user_ns,
81 .ns.inum = PROC_PID_INIT_INO,
82#ifdef CONFIG_PID_NS
83 .ns.ops = &pidns_operations,
84#endif
85};
86EXPORT_SYMBOL_GPL(init_pid_ns);
87
88/*
89 * Note: disable interrupts while the pidmap_lock is held as an
90 * interrupt might come in and do read_lock(&tasklist_lock).
91 *
92 * If we don't disable interrupts there is a nasty deadlock between
93 * detach_pid()->free_pid() and another cpu that does
94 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
95 * read_lock(&tasklist_lock);
96 *
97 * After we clean up the tasklist_lock and know there are no
98 * irq handlers that take it we can leave the interrupts enabled.
99 * For now it is easier to be safe than to prove it can't happen.
100 */
101
102static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
103
104void put_pid(struct pid *pid)
105{
106 struct pid_namespace *ns;
107
108 if (!pid)
109 return;
110
111 ns = pid->numbers[pid->level].ns;
112 if (refcount_dec_and_test(&pid->count)) {
113 kmem_cache_free(ns->pid_cachep, pid);
114 put_pid_ns(ns);
115 }
116}
117EXPORT_SYMBOL_GPL(put_pid);
118
119static void delayed_put_pid(struct rcu_head *rhp)
120{
121 struct pid *pid = container_of(rhp, struct pid, rcu);
122 put_pid(pid);
123}
124
125void free_pid(struct pid *pid)
126{
127 /* We can be called with write_lock_irq(&tasklist_lock) held */
128 int i;
129 unsigned long flags;
130
131 spin_lock_irqsave(&pidmap_lock, flags);
132 for (i = 0; i <= pid->level; i++) {
133 struct upid *upid = pid->numbers + i;
134 struct pid_namespace *ns = upid->ns;
135 switch (--ns->pid_allocated) {
136 case 2:
137 case 1:
138 /* When all that is left in the pid namespace
139 * is the reaper wake up the reaper. The reaper
140 * may be sleeping in zap_pid_ns_processes().
141 */
142 wake_up_process(ns->child_reaper);
143 break;
144 case PIDNS_ADDING:
145 /* Handle a fork failure of the first process */
146 WARN_ON(ns->child_reaper);
147 ns->pid_allocated = 0;
148 /* fall through */
149 case 0:
150 schedule_work(&ns->proc_work);
151 break;
152 }
153
154 idr_remove(&ns->idr, upid->nr);
155 }
156 spin_unlock_irqrestore(&pidmap_lock, flags);
157
158 call_rcu(&pid->rcu, delayed_put_pid);
159}
160
161struct pid *alloc_pid(struct pid_namespace *ns)
162{
163 struct pid *pid;
164 enum pid_type type;
165 int i, nr;
166 struct pid_namespace *tmp;
167 struct upid *upid;
168 int retval = -ENOMEM;
169
170 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
171 if (!pid)
172 return ERR_PTR(retval);
173
174 tmp = ns;
175 pid->level = ns->level;
176
177 for (i = ns->level; i >= 0; i--) {
178 int pid_min = 1;
179
180 idr_preload(GFP_KERNEL);
181 spin_lock_irq(&pidmap_lock);
182
183 /*
184 * init really needs pid 1, but after reaching the maximum
185 * wrap back to RESERVED_PIDS
186 */
187 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
188 pid_min = RESERVED_PIDS;
189
190 /*
191 * Store a null pointer so find_pid_ns does not find
192 * a partially initialized PID (see below).
193 */
194 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
195 pid_max, GFP_ATOMIC);
196 spin_unlock_irq(&pidmap_lock);
197 idr_preload_end();
198
199 if (nr < 0) {
200 retval = (nr == -ENOSPC) ? -EAGAIN : nr;
201 goto out_free;
202 }
203
204 pid->numbers[i].nr = nr;
205 pid->numbers[i].ns = tmp;
206 tmp = tmp->parent;
207 }
208
209 if (unlikely(is_child_reaper(pid))) {
210 if (pid_ns_prepare_proc(ns))
211 goto out_free;
212 }
213
214 get_pid_ns(ns);
215 refcount_set(&pid->count, 1);
216 for (type = 0; type < PIDTYPE_MAX; ++type)
217 INIT_HLIST_HEAD(&pid->tasks[type]);
218
219 init_waitqueue_head(&pid->wait_pidfd);
220
221 upid = pid->numbers + ns->level;
222 spin_lock_irq(&pidmap_lock);
223 if (!(ns->pid_allocated & PIDNS_ADDING))
224 goto out_unlock;
225 for ( ; upid >= pid->numbers; --upid) {
226 /* Make the PID visible to find_pid_ns. */
227 idr_replace(&upid->ns->idr, pid, upid->nr);
228 upid->ns->pid_allocated++;
229 }
230 spin_unlock_irq(&pidmap_lock);
231
232 return pid;
233
234out_unlock:
235 spin_unlock_irq(&pidmap_lock);
236 put_pid_ns(ns);
237
238out_free:
239 spin_lock_irq(&pidmap_lock);
240 while (++i <= ns->level) {
241 upid = pid->numbers + i;
242 idr_remove(&upid->ns->idr, upid->nr);
243 }
244
245 /* On failure to allocate the first pid, reset the state */
246 if (ns->pid_allocated == PIDNS_ADDING)
247 idr_set_cursor(&ns->idr, 0);
248
249 spin_unlock_irq(&pidmap_lock);
250
251 kmem_cache_free(ns->pid_cachep, pid);
252 return ERR_PTR(retval);
253}
254
255void disable_pid_allocation(struct pid_namespace *ns)
256{
257 spin_lock_irq(&pidmap_lock);
258 ns->pid_allocated &= ~PIDNS_ADDING;
259 spin_unlock_irq(&pidmap_lock);
260}
261
262struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
263{
264 return idr_find(&ns->idr, nr);
265}
266EXPORT_SYMBOL_GPL(find_pid_ns);
267
268struct pid *find_vpid(int nr)
269{
270 return find_pid_ns(nr, task_active_pid_ns(current));
271}
272EXPORT_SYMBOL_GPL(find_vpid);
273
274static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
275{
276 return (type == PIDTYPE_PID) ?
277 &task->thread_pid :
278 &task->signal->pids[type];
279}
280
281/*
282 * attach_pid() must be called with the tasklist_lock write-held.
283 */
284void attach_pid(struct task_struct *task, enum pid_type type)
285{
286 struct pid *pid = *task_pid_ptr(task, type);
287 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
288}
289
290static void __change_pid(struct task_struct *task, enum pid_type type,
291 struct pid *new)
292{
293 struct pid **pid_ptr = task_pid_ptr(task, type);
294 struct pid *pid;
295 int tmp;
296
297 pid = *pid_ptr;
298
299 hlist_del_rcu(&task->pid_links[type]);
300 *pid_ptr = new;
301
302 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
303 if (!hlist_empty(&pid->tasks[tmp]))
304 return;
305
306 free_pid(pid);
307}
308
309void detach_pid(struct task_struct *task, enum pid_type type)
310{
311 __change_pid(task, type, NULL);
312}
313
314void change_pid(struct task_struct *task, enum pid_type type,
315 struct pid *pid)
316{
317 __change_pid(task, type, pid);
318 attach_pid(task, type);
319}
320
321/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
322void transfer_pid(struct task_struct *old, struct task_struct *new,
323 enum pid_type type)
324{
325 if (type == PIDTYPE_PID)
326 new->thread_pid = old->thread_pid;
327 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
328}
329
330struct task_struct *pid_task(struct pid *pid, enum pid_type type)
331{
332 struct task_struct *result = NULL;
333 if (pid) {
334 struct hlist_node *first;
335 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
336 lockdep_tasklist_lock_is_held());
337 if (first)
338 result = hlist_entry(first, struct task_struct, pid_links[(type)]);
339 }
340 return result;
341}
342EXPORT_SYMBOL(pid_task);
343
344/*
345 * Must be called under rcu_read_lock().
346 */
347struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
348{
349 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
350 "find_task_by_pid_ns() needs rcu_read_lock() protection");
351 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
352}
353
354struct task_struct *find_task_by_vpid(pid_t vnr)
355{
356 return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
357}
358EXPORT_SYMBOL_GPL(find_task_by_vpid);
359
360struct task_struct *find_get_task_by_vpid(pid_t nr)
361{
362 struct task_struct *task;
363
364 rcu_read_lock();
365 task = find_task_by_vpid(nr);
366 if (task)
367 get_task_struct(task);
368 rcu_read_unlock();
369
370 return task;
371}
372
373struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
374{
375 struct pid *pid;
376 rcu_read_lock();
377 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
378 rcu_read_unlock();
379 return pid;
380}
381EXPORT_SYMBOL_GPL(get_task_pid);
382
383struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
384{
385 struct task_struct *result;
386 rcu_read_lock();
387 result = pid_task(pid, type);
388 if (result)
389 get_task_struct(result);
390 rcu_read_unlock();
391 return result;
392}
393EXPORT_SYMBOL_GPL(get_pid_task);
394
395struct pid *find_get_pid(pid_t nr)
396{
397 struct pid *pid;
398
399 rcu_read_lock();
400 pid = get_pid(find_vpid(nr));
401 rcu_read_unlock();
402
403 return pid;
404}
405EXPORT_SYMBOL_GPL(find_get_pid);
406
407pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
408{
409 struct upid *upid;
410 pid_t nr = 0;
411
412 if (pid && ns->level <= pid->level) {
413 upid = &pid->numbers[ns->level];
414 if (upid->ns == ns)
415 nr = upid->nr;
416 }
417 return nr;
418}
419EXPORT_SYMBOL_GPL(pid_nr_ns);
420
421pid_t pid_vnr(struct pid *pid)
422{
423 return pid_nr_ns(pid, task_active_pid_ns(current));
424}
425EXPORT_SYMBOL_GPL(pid_vnr);
426
427pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
428 struct pid_namespace *ns)
429{
430 pid_t nr = 0;
431
432 rcu_read_lock();
433 if (!ns)
434 ns = task_active_pid_ns(current);
435 if (likely(pid_alive(task)))
436 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
437 rcu_read_unlock();
438
439 return nr;
440}
441EXPORT_SYMBOL(__task_pid_nr_ns);
442
443struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
444{
445 return ns_of_pid(task_pid(tsk));
446}
447EXPORT_SYMBOL_GPL(task_active_pid_ns);
448
449/*
450 * Used by proc to find the first pid that is greater than or equal to nr.
451 *
452 * If there is a pid at nr this function is exactly the same as find_pid_ns.
453 */
454struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
455{
456 return idr_get_next(&ns->idr, &nr);
457}
458
459struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
460{
461 struct fd f;
462 struct pid *pid;
463
464 f = fdget(fd);
465 if (!f.file)
466 return ERR_PTR(-EBADF);
467
468 pid = pidfd_pid(f.file);
469 if (!IS_ERR(pid)) {
470 get_pid(pid);
471 *flags = f.file->f_flags;
472 }
473
474 fdput(f);
475 return pid;
476}
477
478/**
479 * pidfd_create() - Create a new pid file descriptor.
480 *
481 * @pid: struct pid that the pidfd will reference
482 *
483 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
484 *
485 * Note, that this function can only be called after the fd table has
486 * been unshared to avoid leaking the pidfd to the new process.
487 *
488 * Return: On success, a cloexec pidfd is returned.
489 * On error, a negative errno number will be returned.
490 */
491static int pidfd_create(struct pid *pid)
492{
493 int fd;
494
495 fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
496 O_RDWR | O_CLOEXEC);
497 if (fd < 0)
498 put_pid(pid);
499
500 return fd;
501}
502
503/**
504 * pidfd_open() - Open new pid file descriptor.
505 *
506 * @pid: pid for which to retrieve a pidfd
507 * @flags: flags to pass
508 *
509 * This creates a new pid file descriptor with the O_CLOEXEC flag set for
510 * the process identified by @pid. Currently, the process identified by
511 * @pid must be a thread-group leader. This restriction currently exists
512 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
513 * be used with CLONE_THREAD) and pidfd polling (only supports thread group
514 * leaders).
515 *
516 * Return: On success, a cloexec pidfd is returned.
517 * On error, a negative errno number will be returned.
518 */
519SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
520{
521 int fd, ret;
522 struct pid *p;
523
524 if (flags)
525 return -EINVAL;
526
527 if (pid <= 0)
528 return -EINVAL;
529
530 p = find_get_pid(pid);
531 if (!p)
532 return -ESRCH;
533
534 ret = 0;
535 rcu_read_lock();
536 if (!pid_task(p, PIDTYPE_TGID))
537 ret = -EINVAL;
538 rcu_read_unlock();
539
540 fd = ret ?: pidfd_create(p);
541 put_pid(p);
542 return fd;
543}
544
545void __init pid_idr_init(void)
546{
547 /* Verify no one has done anything silly: */
548 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
549
550 /* bump default and minimum pid_max based on number of cpus */
551 pid_max = min(pid_max_max, max_t(int, pid_max,
552 PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
553 pid_max_min = max_t(int, pid_max_min,
554 PIDS_PER_CPU_MIN * num_possible_cpus());
555 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
556
557 idr_init(&init_pid_ns.idr);
558
559 init_pid_ns.pid_cachep = KMEM_CACHE(pid,
560 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
561}