blob: b2dcc2405a8a24677ce8cfd9cb984eb552bc60c1 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9#include "sched.h"
10
11#include <linux/nospec.h>
12
13#include <linux/kcov.h>
14#include <linux/scs.h>
15
16#include <asm/switch_to.h>
17#include <asm/tlb.h>
18
19#include "../workqueue_internal.h"
20#include "../smpboot.h"
21
22#include "pelt.h"
23
24#define CREATE_TRACE_POINTS
25#include <trace/events/sched.h>
26
27#undef CREATE_TRACE_POINTS
28#include <trace/hooks/dtask.h>
29
30#undef CREATE_TRACE_POINTS
31#include <trace/hooks/sched.h>
32
33/*
34 * Export tracepoints that act as a bare tracehook (ie: have no trace event
35 * associated with them) to allow external modules to probe them.
36 */
37EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
38EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
39EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
40EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
41EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
42EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
43
44DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
45EXPORT_SYMBOL_GPL(runqueues);
46
47#ifdef CONFIG_SCHED_DEBUG
48/*
49 * Debugging: various feature bits
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
54 */
55#define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
57const_debug unsigned int sysctl_sched_features =
58#include "features.h"
59 0;
60#undef SCHED_FEAT
61#endif
62
63/*
64 * Number of tasks to iterate in a single balance run.
65 * Limited because this is done with IRQs disabled.
66 */
67const_debug unsigned int sysctl_sched_nr_migrate = 32;
68
69/*
70 * period over which we measure -rt task CPU usage in us.
71 * default: 1s
72 */
73unsigned int sysctl_sched_rt_period = 1000000;
74
75__read_mostly int scheduler_running;
76
77/*
78 * part of the period that we allow rt tasks to run in us.
79 * default: 0.95s
80 */
81int sysctl_sched_rt_runtime = 950000;
82
83/*
84 * __task_rq_lock - lock the rq @p resides on.
85 */
86struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
87 __acquires(rq->lock)
88{
89 struct rq *rq;
90
91 lockdep_assert_held(&p->pi_lock);
92
93 for (;;) {
94 rq = task_rq(p);
95 raw_spin_lock(&rq->lock);
96 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
97 rq_pin_lock(rq, rf);
98 return rq;
99 }
100 raw_spin_unlock(&rq->lock);
101
102 while (unlikely(task_on_rq_migrating(p)))
103 cpu_relax();
104 }
105}
106
107/*
108 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
109 */
110struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
111 __acquires(p->pi_lock)
112 __acquires(rq->lock)
113{
114 struct rq *rq;
115
116 for (;;) {
117 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
118 rq = task_rq(p);
119 raw_spin_lock(&rq->lock);
120 /*
121 * move_queued_task() task_rq_lock()
122 *
123 * ACQUIRE (rq->lock)
124 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
125 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
126 * [S] ->cpu = new_cpu [L] task_rq()
127 * [L] ->on_rq
128 * RELEASE (rq->lock)
129 *
130 * If we observe the old CPU in task_rq_lock(), the acquire of
131 * the old rq->lock will fully serialize against the stores.
132 *
133 * If we observe the new CPU in task_rq_lock(), the address
134 * dependency headed by '[L] rq = task_rq()' and the acquire
135 * will pair with the WMB to ensure we then also see migrating.
136 */
137 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
138 rq_pin_lock(rq, rf);
139 return rq;
140 }
141 raw_spin_unlock(&rq->lock);
142 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
143
144 while (unlikely(task_on_rq_migrating(p)))
145 cpu_relax();
146 }
147}
148
149/*
150 * RQ-clock updating methods:
151 */
152
153static void update_rq_clock_task(struct rq *rq, s64 delta)
154{
155/*
156 * In theory, the compile should just see 0 here, and optimize out the call
157 * to sched_rt_avg_update. But I don't trust it...
158 */
159 s64 __maybe_unused steal = 0, irq_delta = 0;
160
161#ifdef CONFIG_IRQ_TIME_ACCOUNTING
162 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
163
164 /*
165 * Since irq_time is only updated on {soft,}irq_exit, we might run into
166 * this case when a previous update_rq_clock() happened inside a
167 * {soft,}irq region.
168 *
169 * When this happens, we stop ->clock_task and only update the
170 * prev_irq_time stamp to account for the part that fit, so that a next
171 * update will consume the rest. This ensures ->clock_task is
172 * monotonic.
173 *
174 * It does however cause some slight miss-attribution of {soft,}irq
175 * time, a more accurate solution would be to update the irq_time using
176 * the current rq->clock timestamp, except that would require using
177 * atomic ops.
178 */
179 if (irq_delta > delta)
180 irq_delta = delta;
181
182 rq->prev_irq_time += irq_delta;
183 delta -= irq_delta;
184#endif
185#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
186 if (static_key_false((&paravirt_steal_rq_enabled))) {
187 steal = paravirt_steal_clock(cpu_of(rq));
188 steal -= rq->prev_steal_time_rq;
189
190 if (unlikely(steal > delta))
191 steal = delta;
192
193 rq->prev_steal_time_rq += steal;
194 delta -= steal;
195 }
196#endif
197
198 rq->clock_task += delta;
199
200#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
201 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
202 update_irq_load_avg(rq, irq_delta + steal);
203#endif
204 update_rq_clock_pelt(rq, delta);
205}
206
207void update_rq_clock(struct rq *rq)
208{
209 s64 delta;
210
211 lockdep_assert_held(&rq->lock);
212
213 if (rq->clock_update_flags & RQCF_ACT_SKIP)
214 return;
215
216#ifdef CONFIG_SCHED_DEBUG
217 if (sched_feat(WARN_DOUBLE_CLOCK))
218 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
219 rq->clock_update_flags |= RQCF_UPDATED;
220#endif
221
222 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
223 if (delta < 0)
224 return;
225 rq->clock += delta;
226 update_rq_clock_task(rq, delta);
227}
228
229
230#ifdef CONFIG_SCHED_HRTICK
231/*
232 * Use HR-timers to deliver accurate preemption points.
233 */
234
235static void hrtick_clear(struct rq *rq)
236{
237 if (hrtimer_active(&rq->hrtick_timer))
238 hrtimer_cancel(&rq->hrtick_timer);
239}
240
241/*
242 * High-resolution timer tick.
243 * Runs from hardirq context with interrupts disabled.
244 */
245static enum hrtimer_restart hrtick(struct hrtimer *timer)
246{
247 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
248 struct rq_flags rf;
249
250 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
251
252 rq_lock(rq, &rf);
253 update_rq_clock(rq);
254 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
255 rq_unlock(rq, &rf);
256
257 return HRTIMER_NORESTART;
258}
259
260#ifdef CONFIG_SMP
261
262static void __hrtick_restart(struct rq *rq)
263{
264 struct hrtimer *timer = &rq->hrtick_timer;
265 ktime_t time = rq->hrtick_time;
266
267 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
268}
269
270/*
271 * called from hardirq (IPI) context
272 */
273static void __hrtick_start(void *arg)
274{
275 struct rq *rq = arg;
276 struct rq_flags rf;
277
278 rq_lock(rq, &rf);
279 __hrtick_restart(rq);
280 rq->hrtick_csd_pending = 0;
281 rq_unlock(rq, &rf);
282}
283
284/*
285 * Called to set the hrtick timer state.
286 *
287 * called with rq->lock held and irqs disabled
288 */
289void hrtick_start(struct rq *rq, u64 delay)
290{
291 struct hrtimer *timer = &rq->hrtick_timer;
292 s64 delta;
293
294 /*
295 * Don't schedule slices shorter than 10000ns, that just
296 * doesn't make sense and can cause timer DoS.
297 */
298 delta = max_t(s64, delay, 10000LL);
299 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
300
301 if (rq == this_rq()) {
302 __hrtick_restart(rq);
303 } else if (!rq->hrtick_csd_pending) {
304 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
305 rq->hrtick_csd_pending = 1;
306 }
307}
308
309#else
310/*
311 * Called to set the hrtick timer state.
312 *
313 * called with rq->lock held and irqs disabled
314 */
315void hrtick_start(struct rq *rq, u64 delay)
316{
317 /*
318 * Don't schedule slices shorter than 10000ns, that just
319 * doesn't make sense. Rely on vruntime for fairness.
320 */
321 delay = max_t(u64, delay, 10000LL);
322 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
323 HRTIMER_MODE_REL_PINNED_HARD);
324}
325#endif /* CONFIG_SMP */
326
327static void hrtick_rq_init(struct rq *rq)
328{
329#ifdef CONFIG_SMP
330 rq->hrtick_csd_pending = 0;
331
332 rq->hrtick_csd.flags = 0;
333 rq->hrtick_csd.func = __hrtick_start;
334 rq->hrtick_csd.info = rq;
335#endif
336
337 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
338 rq->hrtick_timer.function = hrtick;
339}
340#else /* CONFIG_SCHED_HRTICK */
341static inline void hrtick_clear(struct rq *rq)
342{
343}
344
345static inline void hrtick_rq_init(struct rq *rq)
346{
347}
348#endif /* CONFIG_SCHED_HRTICK */
349
350/*
351 * cmpxchg based fetch_or, macro so it works for different integer types
352 */
353#define fetch_or(ptr, mask) \
354 ({ \
355 typeof(ptr) _ptr = (ptr); \
356 typeof(mask) _mask = (mask); \
357 typeof(*_ptr) _old, _val = *_ptr; \
358 \
359 for (;;) { \
360 _old = cmpxchg(_ptr, _val, _val | _mask); \
361 if (_old == _val) \
362 break; \
363 _val = _old; \
364 } \
365 _old; \
366})
367
368#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
369/*
370 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
371 * this avoids any races wrt polling state changes and thereby avoids
372 * spurious IPIs.
373 */
374static bool set_nr_and_not_polling(struct task_struct *p)
375{
376 struct thread_info *ti = task_thread_info(p);
377 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
378}
379
380/*
381 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
382 *
383 * If this returns true, then the idle task promises to call
384 * sched_ttwu_pending() and reschedule soon.
385 */
386static bool set_nr_if_polling(struct task_struct *p)
387{
388 struct thread_info *ti = task_thread_info(p);
389 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
390
391 for (;;) {
392 if (!(val & _TIF_POLLING_NRFLAG))
393 return false;
394 if (val & _TIF_NEED_RESCHED)
395 return true;
396 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
397 if (old == val)
398 break;
399 val = old;
400 }
401 return true;
402}
403
404#else
405static bool set_nr_and_not_polling(struct task_struct *p)
406{
407 set_tsk_need_resched(p);
408 return true;
409}
410
411#ifdef CONFIG_SMP
412static bool set_nr_if_polling(struct task_struct *p)
413{
414 return false;
415}
416#endif
417#endif
418
419static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
420{
421 struct wake_q_node *node = &task->wake_q;
422
423 /*
424 * Atomically grab the task, if ->wake_q is !nil already it means
425 * its already queued (either by us or someone else) and will get the
426 * wakeup due to that.
427 *
428 * In order to ensure that a pending wakeup will observe our pending
429 * state, even in the failed case, an explicit smp_mb() must be used.
430 */
431 smp_mb__before_atomic();
432 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
433 return false;
434
435 /*
436 * The head is context local, there can be no concurrency.
437 */
438 *head->lastp = node;
439 head->lastp = &node->next;
440 return true;
441}
442
443/**
444 * wake_q_add() - queue a wakeup for 'later' waking.
445 * @head: the wake_q_head to add @task to
446 * @task: the task to queue for 'later' wakeup
447 *
448 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
449 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
450 * instantly.
451 *
452 * This function must be used as-if it were wake_up_process(); IOW the task
453 * must be ready to be woken at this location.
454 */
455void wake_q_add(struct wake_q_head *head, struct task_struct *task)
456{
457 if (__wake_q_add(head, task))
458 get_task_struct(task);
459}
460
461/**
462 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
463 * @head: the wake_q_head to add @task to
464 * @task: the task to queue for 'later' wakeup
465 *
466 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
467 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
468 * instantly.
469 *
470 * This function must be used as-if it were wake_up_process(); IOW the task
471 * must be ready to be woken at this location.
472 *
473 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
474 * that already hold reference to @task can call the 'safe' version and trust
475 * wake_q to do the right thing depending whether or not the @task is already
476 * queued for wakeup.
477 */
478void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
479{
480 if (!__wake_q_add(head, task))
481 put_task_struct(task);
482}
483
484void wake_up_q(struct wake_q_head *head)
485{
486 struct wake_q_node *node = head->first;
487
488 while (node != WAKE_Q_TAIL) {
489 struct task_struct *task;
490
491 task = container_of(node, struct task_struct, wake_q);
492 BUG_ON(!task);
493 /* Task can safely be re-inserted now: */
494 node = node->next;
495 task->wake_q.next = NULL;
496
497 /*
498 * wake_up_process() executes a full barrier, which pairs with
499 * the queueing in wake_q_add() so as not to miss wakeups.
500 */
501 wake_up_process(task);
502 put_task_struct(task);
503 }
504}
505
506/*
507 * resched_curr - mark rq's current task 'to be rescheduled now'.
508 *
509 * On UP this means the setting of the need_resched flag, on SMP it
510 * might also involve a cross-CPU call to trigger the scheduler on
511 * the target CPU.
512 */
513void resched_curr(struct rq *rq)
514{
515 struct task_struct *curr = rq->curr;
516 int cpu;
517
518 lockdep_assert_held(&rq->lock);
519
520 if (test_tsk_need_resched(curr))
521 return;
522
523 cpu = cpu_of(rq);
524
525 if (cpu == smp_processor_id()) {
526 set_tsk_need_resched(curr);
527 set_preempt_need_resched();
528 return;
529 }
530
531 if (set_nr_and_not_polling(curr))
532 smp_send_reschedule(cpu);
533 else
534 trace_sched_wake_idle_without_ipi(cpu);
535}
536
537void resched_cpu(int cpu)
538{
539 struct rq *rq = cpu_rq(cpu);
540 unsigned long flags;
541
542 raw_spin_lock_irqsave(&rq->lock, flags);
543 if (cpu_online(cpu) || cpu == smp_processor_id())
544 resched_curr(rq);
545 raw_spin_unlock_irqrestore(&rq->lock, flags);
546}
547
548#ifdef CONFIG_SMP
549#ifdef CONFIG_NO_HZ_COMMON
550/*
551 * In the semi idle case, use the nearest busy CPU for migrating timers
552 * from an idle CPU. This is good for power-savings.
553 *
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle CPU will add more delays to the timers than intended
556 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
557 */
558int get_nohz_timer_target(void)
559{
560 int i, cpu = smp_processor_id();
561 struct sched_domain *sd;
562
563 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
564 return cpu;
565
566 rcu_read_lock();
567 for_each_domain(cpu, sd) {
568 for_each_cpu(i, sched_domain_span(sd)) {
569 if (cpu == i)
570 continue;
571
572 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
573 cpu = i;
574 goto unlock;
575 }
576 }
577 }
578
579 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
580 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
581unlock:
582 rcu_read_unlock();
583 return cpu;
584}
585
586/*
587 * When add_timer_on() enqueues a timer into the timer wheel of an
588 * idle CPU then this timer might expire before the next timer event
589 * which is scheduled to wake up that CPU. In case of a completely
590 * idle system the next event might even be infinite time into the
591 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
592 * leaves the inner idle loop so the newly added timer is taken into
593 * account when the CPU goes back to idle and evaluates the timer
594 * wheel for the next timer event.
595 */
596static void wake_up_idle_cpu(int cpu)
597{
598 struct rq *rq = cpu_rq(cpu);
599
600 if (cpu == smp_processor_id())
601 return;
602
603 if (set_nr_and_not_polling(rq->idle))
604 smp_send_reschedule(cpu);
605 else
606 trace_sched_wake_idle_without_ipi(cpu);
607}
608
609static bool wake_up_full_nohz_cpu(int cpu)
610{
611 /*
612 * We just need the target to call irq_exit() and re-evaluate
613 * the next tick. The nohz full kick at least implies that.
614 * If needed we can still optimize that later with an
615 * empty IRQ.
616 */
617 if (cpu_is_offline(cpu))
618 return true; /* Don't try to wake offline CPUs. */
619 if (tick_nohz_full_cpu(cpu)) {
620 if (cpu != smp_processor_id() ||
621 tick_nohz_tick_stopped())
622 tick_nohz_full_kick_cpu(cpu);
623 return true;
624 }
625
626 return false;
627}
628
629/*
630 * Wake up the specified CPU. If the CPU is going offline, it is the
631 * caller's responsibility to deal with the lost wakeup, for example,
632 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
633 */
634void wake_up_nohz_cpu(int cpu)
635{
636 if (!wake_up_full_nohz_cpu(cpu))
637 wake_up_idle_cpu(cpu);
638}
639
640static inline bool got_nohz_idle_kick(void)
641{
642 int cpu = smp_processor_id();
643
644 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
645 return false;
646
647 if (idle_cpu(cpu) && !need_resched())
648 return true;
649
650 /*
651 * We can't run Idle Load Balance on this CPU for this time so we
652 * cancel it and clear NOHZ_BALANCE_KICK
653 */
654 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
655 return false;
656}
657
658#else /* CONFIG_NO_HZ_COMMON */
659
660static inline bool got_nohz_idle_kick(void)
661{
662 return false;
663}
664
665#endif /* CONFIG_NO_HZ_COMMON */
666
667#ifdef CONFIG_NO_HZ_FULL
668bool sched_can_stop_tick(struct rq *rq)
669{
670 int fifo_nr_running;
671
672 /* Deadline tasks, even if single, need the tick */
673 if (rq->dl.dl_nr_running)
674 return false;
675
676 /*
677 * If there are more than one RR tasks, we need the tick to effect the
678 * actual RR behaviour.
679 */
680 if (rq->rt.rr_nr_running) {
681 if (rq->rt.rr_nr_running == 1)
682 return true;
683 else
684 return false;
685 }
686
687 /*
688 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
689 * forced preemption between FIFO tasks.
690 */
691 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
692 if (fifo_nr_running)
693 return true;
694
695 /*
696 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
697 * if there's more than one we need the tick for involuntary
698 * preemption.
699 */
700 if (rq->nr_running > 1)
701 return false;
702
703 return true;
704}
705#endif /* CONFIG_NO_HZ_FULL */
706#endif /* CONFIG_SMP */
707
708#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
709 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
710/*
711 * Iterate task_group tree rooted at *from, calling @down when first entering a
712 * node and @up when leaving it for the final time.
713 *
714 * Caller must hold rcu_lock or sufficient equivalent.
715 */
716int walk_tg_tree_from(struct task_group *from,
717 tg_visitor down, tg_visitor up, void *data)
718{
719 struct task_group *parent, *child;
720 int ret;
721
722 parent = from;
723
724down:
725 ret = (*down)(parent, data);
726 if (ret)
727 goto out;
728 list_for_each_entry_rcu(child, &parent->children, siblings) {
729 parent = child;
730 goto down;
731
732up:
733 continue;
734 }
735 ret = (*up)(parent, data);
736 if (ret || parent == from)
737 goto out;
738
739 child = parent;
740 parent = parent->parent;
741 if (parent)
742 goto up;
743out:
744 return ret;
745}
746
747int tg_nop(struct task_group *tg, void *data)
748{
749 return 0;
750}
751#endif
752
753static void set_load_weight(struct task_struct *p, bool update_load)
754{
755 int prio = p->static_prio - MAX_RT_PRIO;
756 struct load_weight *load = &p->se.load;
757
758 /*
759 * SCHED_IDLE tasks get minimal weight:
760 */
761 if (task_has_idle_policy(p)) {
762 load->weight = scale_load(WEIGHT_IDLEPRIO);
763 load->inv_weight = WMULT_IDLEPRIO;
764 p->se.runnable_weight = load->weight;
765 return;
766 }
767
768 /*
769 * SCHED_OTHER tasks have to update their load when changing their
770 * weight
771 */
772 if (update_load && p->sched_class == &fair_sched_class) {
773 reweight_task(p, prio);
774 } else {
775 load->weight = scale_load(sched_prio_to_weight[prio]);
776 load->inv_weight = sched_prio_to_wmult[prio];
777 p->se.runnable_weight = load->weight;
778 }
779}
780
781#ifdef CONFIG_UCLAMP_TASK
782/*
783 * Serializes updates of utilization clamp values
784 *
785 * The (slow-path) user-space triggers utilization clamp value updates which
786 * can require updates on (fast-path) scheduler's data structures used to
787 * support enqueue/dequeue operations.
788 * While the per-CPU rq lock protects fast-path update operations, user-space
789 * requests are serialized using a mutex to reduce the risk of conflicting
790 * updates or API abuses.
791 */
792static DEFINE_MUTEX(uclamp_mutex);
793
794/* Max allowed minimum utilization */
795unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
796
797/* Max allowed maximum utilization */
798unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
799
800/*
801 * By default RT tasks run at the maximum performance point/capacity of the
802 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
803 * SCHED_CAPACITY_SCALE.
804 *
805 * This knob allows admins to change the default behavior when uclamp is being
806 * used. In battery powered devices, particularly, running at the maximum
807 * capacity and frequency will increase energy consumption and shorten the
808 * battery life.
809 *
810 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
811 *
812 * This knob will not override the system default sched_util_clamp_min defined
813 * above.
814 */
815unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
816
817/* All clamps are required to be less or equal than these values */
818static struct uclamp_se uclamp_default[UCLAMP_CNT];
819
820/*
821 * This static key is used to reduce the uclamp overhead in the fast path. It
822 * primarily disables the call to uclamp_rq_{inc, dec}() in
823 * enqueue/dequeue_task().
824 *
825 * This allows users to continue to enable uclamp in their kernel config with
826 * minimum uclamp overhead in the fast path.
827 *
828 * As soon as userspace modifies any of the uclamp knobs, the static key is
829 * enabled, since we have an actual users that make use of uclamp
830 * functionality.
831 *
832 * The knobs that would enable this static key are:
833 *
834 * * A task modifying its uclamp value with sched_setattr().
835 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
836 * * An admin modifying the cgroup cpu.uclamp.{min, max}
837 */
838DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
839
840/* Integer rounded range for each bucket */
841#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
842
843#define for_each_clamp_id(clamp_id) \
844 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
845
846static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
847{
848 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
849}
850
851static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
852{
853 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
854}
855
856static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
857{
858 if (clamp_id == UCLAMP_MIN)
859 return 0;
860 return SCHED_CAPACITY_SCALE;
861}
862
863static inline void uclamp_se_set(struct uclamp_se *uc_se,
864 unsigned int value, bool user_defined)
865{
866 uc_se->value = value;
867 uc_se->bucket_id = uclamp_bucket_id(value);
868 uc_se->user_defined = user_defined;
869}
870
871static inline unsigned int
872uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
873 unsigned int clamp_value)
874{
875 /*
876 * Avoid blocked utilization pushing up the frequency when we go
877 * idle (which drops the max-clamp) by retaining the last known
878 * max-clamp.
879 */
880 if (clamp_id == UCLAMP_MAX) {
881 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
882 return clamp_value;
883 }
884
885 return uclamp_none(UCLAMP_MIN);
886}
887
888static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
889 unsigned int clamp_value)
890{
891 /* Reset max-clamp retention only on idle exit */
892 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
893 return;
894
895 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
896}
897
898static inline
899unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
900 unsigned int clamp_value)
901{
902 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
903 int bucket_id = UCLAMP_BUCKETS - 1;
904
905 /*
906 * Since both min and max clamps are max aggregated, find the
907 * top most bucket with tasks in.
908 */
909 for ( ; bucket_id >= 0; bucket_id--) {
910 if (!bucket[bucket_id].tasks)
911 continue;
912 return bucket[bucket_id].value;
913 }
914
915 /* No tasks -- default clamp values */
916 return uclamp_idle_value(rq, clamp_id, clamp_value);
917}
918
919static void __uclamp_update_util_min_rt_default(struct task_struct *p)
920{
921 unsigned int default_util_min;
922 struct uclamp_se *uc_se;
923
924 lockdep_assert_held(&p->pi_lock);
925
926 uc_se = &p->uclamp_req[UCLAMP_MIN];
927
928 /* Only sync if user didn't override the default */
929 if (uc_se->user_defined)
930 return;
931
932 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
933 uclamp_se_set(uc_se, default_util_min, false);
934}
935
936static void uclamp_update_util_min_rt_default(struct task_struct *p)
937{
938 struct rq_flags rf;
939 struct rq *rq;
940
941 if (!rt_task(p))
942 return;
943
944 /* Protect updates to p->uclamp_* */
945 rq = task_rq_lock(p, &rf);
946 __uclamp_update_util_min_rt_default(p);
947 task_rq_unlock(rq, p, &rf);
948}
949
950static void uclamp_sync_util_min_rt_default(void)
951{
952 struct task_struct *g, *p;
953
954 /*
955 * copy_process() sysctl_uclamp
956 * uclamp_min_rt = X;
957 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
958 * // link thread smp_mb__after_spinlock()
959 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
960 * sched_post_fork() for_each_process_thread()
961 * __uclamp_sync_rt() __uclamp_sync_rt()
962 *
963 * Ensures that either sched_post_fork() will observe the new
964 * uclamp_min_rt or for_each_process_thread() will observe the new
965 * task.
966 */
967 read_lock(&tasklist_lock);
968 smp_mb__after_spinlock();
969 read_unlock(&tasklist_lock);
970
971 rcu_read_lock();
972 for_each_process_thread(g, p)
973 uclamp_update_util_min_rt_default(p);
974 rcu_read_unlock();
975}
976
977static inline struct uclamp_se
978uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
979{
980 /* Copy by value as we could modify it */
981 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
982#ifdef CONFIG_UCLAMP_TASK_GROUP
983 unsigned int tg_min, tg_max, value;
984
985 /*
986 * Tasks in autogroups or root task group will be
987 * restricted by system defaults.
988 */
989 if (task_group_is_autogroup(task_group(p)))
990 return uc_req;
991 if (task_group(p) == &root_task_group)
992 return uc_req;
993
994 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
995 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
996 value = uc_req.value;
997 value = clamp(value, tg_min, tg_max);
998 uclamp_se_set(&uc_req, value, false);
999#endif
1000
1001 return uc_req;
1002}
1003
1004/*
1005 * The effective clamp bucket index of a task depends on, by increasing
1006 * priority:
1007 * - the task specific clamp value, when explicitly requested from userspace
1008 * - the task group effective clamp value, for tasks not either in the root
1009 * group or in an autogroup
1010 * - the system default clamp value, defined by the sysadmin
1011 */
1012static inline struct uclamp_se
1013uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1014{
1015 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1016 struct uclamp_se uc_max = uclamp_default[clamp_id];
1017
1018 /* System default restrictions always apply */
1019 if (unlikely(uc_req.value > uc_max.value))
1020 return uc_max;
1021
1022 return uc_req;
1023}
1024
1025unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1026{
1027 struct uclamp_se uc_eff;
1028
1029 /* Task currently refcounted: use back-annotated (effective) value */
1030 if (p->uclamp[clamp_id].active)
1031 return (unsigned long)p->uclamp[clamp_id].value;
1032
1033 uc_eff = uclamp_eff_get(p, clamp_id);
1034
1035 return (unsigned long)uc_eff.value;
1036}
1037
1038/*
1039 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1040 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1041 * updates the rq's clamp value if required.
1042 *
1043 * Tasks can have a task-specific value requested from user-space, track
1044 * within each bucket the maximum value for tasks refcounted in it.
1045 * This "local max aggregation" allows to track the exact "requested" value
1046 * for each bucket when all its RUNNABLE tasks require the same clamp.
1047 */
1048static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1049 enum uclamp_id clamp_id)
1050{
1051 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1052 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1053 struct uclamp_bucket *bucket;
1054
1055 lockdep_assert_held(&rq->lock);
1056
1057 /* Update task effective clamp */
1058 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1059
1060 bucket = &uc_rq->bucket[uc_se->bucket_id];
1061 bucket->tasks++;
1062 uc_se->active = true;
1063
1064 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1065
1066 /*
1067 * Local max aggregation: rq buckets always track the max
1068 * "requested" clamp value of its RUNNABLE tasks.
1069 */
1070 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1071 bucket->value = uc_se->value;
1072
1073 if (uc_se->value > READ_ONCE(uc_rq->value))
1074 WRITE_ONCE(uc_rq->value, uc_se->value);
1075}
1076
1077/*
1078 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1079 * is released. If this is the last task reference counting the rq's max
1080 * active clamp value, then the rq's clamp value is updated.
1081 *
1082 * Both refcounted tasks and rq's cached clamp values are expected to be
1083 * always valid. If it's detected they are not, as defensive programming,
1084 * enforce the expected state and warn.
1085 */
1086static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1087 enum uclamp_id clamp_id)
1088{
1089 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1090 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1091 struct uclamp_bucket *bucket;
1092 unsigned int bkt_clamp;
1093 unsigned int rq_clamp;
1094
1095 lockdep_assert_held(&rq->lock);
1096
1097 /*
1098 * If sched_uclamp_used was enabled after task @p was enqueued,
1099 * we could end up with unbalanced call to uclamp_rq_dec_id().
1100 *
1101 * In this case the uc_se->active flag should be false since no uclamp
1102 * accounting was performed at enqueue time and we can just return
1103 * here.
1104 *
1105 * Need to be careful of the following enqeueue/dequeue ordering
1106 * problem too
1107 *
1108 * enqueue(taskA)
1109 * // sched_uclamp_used gets enabled
1110 * enqueue(taskB)
1111 * dequeue(taskA)
1112 * // Must not decrement bukcet->tasks here
1113 * dequeue(taskB)
1114 *
1115 * where we could end up with stale data in uc_se and
1116 * bucket[uc_se->bucket_id].
1117 *
1118 * The following check here eliminates the possibility of such race.
1119 */
1120 if (unlikely(!uc_se->active))
1121 return;
1122
1123 bucket = &uc_rq->bucket[uc_se->bucket_id];
1124
1125 SCHED_WARN_ON(!bucket->tasks);
1126 if (likely(bucket->tasks))
1127 bucket->tasks--;
1128
1129 uc_se->active = false;
1130
1131 /*
1132 * Keep "local max aggregation" simple and accept to (possibly)
1133 * overboost some RUNNABLE tasks in the same bucket.
1134 * The rq clamp bucket value is reset to its base value whenever
1135 * there are no more RUNNABLE tasks refcounting it.
1136 */
1137 if (likely(bucket->tasks))
1138 return;
1139
1140 rq_clamp = READ_ONCE(uc_rq->value);
1141 /*
1142 * Defensive programming: this should never happen. If it happens,
1143 * e.g. due to future modification, warn and fixup the expected value.
1144 */
1145 SCHED_WARN_ON(bucket->value > rq_clamp);
1146 if (bucket->value >= rq_clamp) {
1147 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1148 WRITE_ONCE(uc_rq->value, bkt_clamp);
1149 }
1150}
1151
1152static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1153{
1154 enum uclamp_id clamp_id;
1155
1156 /*
1157 * Avoid any overhead until uclamp is actually used by the userspace.
1158 *
1159 * The condition is constructed such that a NOP is generated when
1160 * sched_uclamp_used is disabled.
1161 */
1162 if (!static_branch_unlikely(&sched_uclamp_used))
1163 return;
1164
1165 if (unlikely(!p->sched_class->uclamp_enabled))
1166 return;
1167
1168 for_each_clamp_id(clamp_id)
1169 uclamp_rq_inc_id(rq, p, clamp_id);
1170
1171 /* Reset clamp idle holding when there is one RUNNABLE task */
1172 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1173 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1174}
1175
1176static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1177{
1178 enum uclamp_id clamp_id;
1179
1180 /*
1181 * Avoid any overhead until uclamp is actually used by the userspace.
1182 *
1183 * The condition is constructed such that a NOP is generated when
1184 * sched_uclamp_used is disabled.
1185 */
1186 if (!static_branch_unlikely(&sched_uclamp_used))
1187 return;
1188
1189 if (unlikely(!p->sched_class->uclamp_enabled))
1190 return;
1191
1192 for_each_clamp_id(clamp_id)
1193 uclamp_rq_dec_id(rq, p, clamp_id);
1194}
1195
1196static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1197 enum uclamp_id clamp_id)
1198{
1199 if (!p->uclamp[clamp_id].active)
1200 return;
1201
1202 uclamp_rq_dec_id(rq, p, clamp_id);
1203 uclamp_rq_inc_id(rq, p, clamp_id);
1204
1205 /*
1206 * Make sure to clear the idle flag if we've transiently reached 0
1207 * active tasks on rq.
1208 */
1209 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1210 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1211}
1212
1213static inline void
1214uclamp_update_active(struct task_struct *p)
1215{
1216 enum uclamp_id clamp_id;
1217 struct rq_flags rf;
1218 struct rq *rq;
1219
1220 /*
1221 * Lock the task and the rq where the task is (or was) queued.
1222 *
1223 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1224 * price to pay to safely serialize util_{min,max} updates with
1225 * enqueues, dequeues and migration operations.
1226 * This is the same locking schema used by __set_cpus_allowed_ptr().
1227 */
1228 rq = task_rq_lock(p, &rf);
1229
1230 /*
1231 * Setting the clamp bucket is serialized by task_rq_lock().
1232 * If the task is not yet RUNNABLE and its task_struct is not
1233 * affecting a valid clamp bucket, the next time it's enqueued,
1234 * it will already see the updated clamp bucket value.
1235 */
1236 for_each_clamp_id(clamp_id)
1237 uclamp_rq_reinc_id(rq, p, clamp_id);
1238
1239 task_rq_unlock(rq, p, &rf);
1240}
1241
1242#ifdef CONFIG_UCLAMP_TASK_GROUP
1243static inline void
1244uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1245{
1246 struct css_task_iter it;
1247 struct task_struct *p;
1248
1249 css_task_iter_start(css, 0, &it);
1250 while ((p = css_task_iter_next(&it)))
1251 uclamp_update_active(p);
1252 css_task_iter_end(&it);
1253}
1254
1255static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1256static void uclamp_update_root_tg(void)
1257{
1258 struct task_group *tg = &root_task_group;
1259
1260 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1261 sysctl_sched_uclamp_util_min, false);
1262 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1263 sysctl_sched_uclamp_util_max, false);
1264
1265 rcu_read_lock();
1266 cpu_util_update_eff(&root_task_group.css);
1267 rcu_read_unlock();
1268}
1269#else
1270static void uclamp_update_root_tg(void) { }
1271#endif
1272
1273int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1274 void __user *buffer, size_t *lenp,
1275 loff_t *ppos)
1276{
1277 bool update_root_tg = false;
1278 int old_min, old_max, old_min_rt;
1279 int result;
1280
1281 mutex_lock(&uclamp_mutex);
1282 old_min = sysctl_sched_uclamp_util_min;
1283 old_max = sysctl_sched_uclamp_util_max;
1284 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1285
1286 result = proc_dointvec(table, write, buffer, lenp, ppos);
1287 if (result)
1288 goto undo;
1289 if (!write)
1290 goto done;
1291
1292 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1293 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1294 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1295
1296 result = -EINVAL;
1297 goto undo;
1298 }
1299
1300 if (old_min != sysctl_sched_uclamp_util_min) {
1301 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1302 sysctl_sched_uclamp_util_min, false);
1303 update_root_tg = true;
1304 }
1305 if (old_max != sysctl_sched_uclamp_util_max) {
1306 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1307 sysctl_sched_uclamp_util_max, false);
1308 update_root_tg = true;
1309 }
1310
1311 if (update_root_tg) {
1312 static_branch_enable(&sched_uclamp_used);
1313 uclamp_update_root_tg();
1314 }
1315
1316 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1317 static_branch_enable(&sched_uclamp_used);
1318 uclamp_sync_util_min_rt_default();
1319 }
1320
1321 /*
1322 * We update all RUNNABLE tasks only when task groups are in use.
1323 * Otherwise, keep it simple and do just a lazy update at each next
1324 * task enqueue time.
1325 */
1326
1327 goto done;
1328
1329undo:
1330 sysctl_sched_uclamp_util_min = old_min;
1331 sysctl_sched_uclamp_util_max = old_max;
1332 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1333done:
1334 mutex_unlock(&uclamp_mutex);
1335
1336 return result;
1337}
1338
1339static int uclamp_validate(struct task_struct *p,
1340 const struct sched_attr *attr)
1341{
1342 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1343 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1344
1345 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1346 lower_bound = attr->sched_util_min;
1347 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1348 upper_bound = attr->sched_util_max;
1349
1350 if (lower_bound > upper_bound)
1351 return -EINVAL;
1352 if (upper_bound > SCHED_CAPACITY_SCALE)
1353 return -EINVAL;
1354
1355 /*
1356 * We have valid uclamp attributes; make sure uclamp is enabled.
1357 *
1358 * We need to do that here, because enabling static branches is a
1359 * blocking operation which obviously cannot be done while holding
1360 * scheduler locks.
1361 */
1362 static_branch_enable(&sched_uclamp_used);
1363
1364 return 0;
1365}
1366
1367static void __setscheduler_uclamp(struct task_struct *p,
1368 const struct sched_attr *attr)
1369{
1370 enum uclamp_id clamp_id;
1371
1372 /*
1373 * On scheduling class change, reset to default clamps for tasks
1374 * without a task-specific value.
1375 */
1376 for_each_clamp_id(clamp_id) {
1377 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1378
1379 /* Keep using defined clamps across class changes */
1380 if (uc_se->user_defined)
1381 continue;
1382
1383 /*
1384 * RT by default have a 100% boost value that could be modified
1385 * at runtime.
1386 */
1387 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1388 __uclamp_update_util_min_rt_default(p);
1389 else
1390 uclamp_se_set(uc_se, uclamp_none(clamp_id), false);
1391
1392 }
1393
1394 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1395 return;
1396
1397 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1398 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1399 attr->sched_util_min, true);
1400 }
1401
1402 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1403 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1404 attr->sched_util_max, true);
1405 }
1406}
1407
1408static void uclamp_fork(struct task_struct *p)
1409{
1410 enum uclamp_id clamp_id;
1411
1412 /*
1413 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1414 * as the task is still at its early fork stages.
1415 */
1416 for_each_clamp_id(clamp_id)
1417 p->uclamp[clamp_id].active = false;
1418
1419 if (likely(!p->sched_reset_on_fork))
1420 return;
1421
1422 for_each_clamp_id(clamp_id) {
1423 uclamp_se_set(&p->uclamp_req[clamp_id],
1424 uclamp_none(clamp_id), false);
1425 }
1426}
1427
1428static void uclamp_post_fork(struct task_struct *p)
1429{
1430 uclamp_update_util_min_rt_default(p);
1431}
1432
1433static void __init init_uclamp_rq(struct rq *rq)
1434{
1435 enum uclamp_id clamp_id;
1436 struct uclamp_rq *uc_rq = rq->uclamp;
1437
1438 for_each_clamp_id(clamp_id) {
1439 uc_rq[clamp_id] = (struct uclamp_rq) {
1440 .value = uclamp_none(clamp_id)
1441 };
1442 }
1443
1444 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1445}
1446
1447static void __init init_uclamp(void)
1448{
1449 struct uclamp_se uc_max = {};
1450 enum uclamp_id clamp_id;
1451 int cpu;
1452
1453 mutex_init(&uclamp_mutex);
1454
1455 for_each_possible_cpu(cpu)
1456 init_uclamp_rq(cpu_rq(cpu));
1457
1458 for_each_clamp_id(clamp_id) {
1459 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1460 uclamp_none(clamp_id), false);
1461 }
1462
1463 /* System defaults allow max clamp values for both indexes */
1464 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1465 for_each_clamp_id(clamp_id) {
1466 uclamp_default[clamp_id] = uc_max;
1467#ifdef CONFIG_UCLAMP_TASK_GROUP
1468 root_task_group.uclamp_req[clamp_id] = uc_max;
1469 root_task_group.uclamp[clamp_id] = uc_max;
1470#endif
1471 }
1472}
1473
1474#else /* CONFIG_UCLAMP_TASK */
1475static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1476static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1477static inline int uclamp_validate(struct task_struct *p,
1478 const struct sched_attr *attr)
1479{
1480 return -EOPNOTSUPP;
1481}
1482static void __setscheduler_uclamp(struct task_struct *p,
1483 const struct sched_attr *attr) { }
1484static inline void uclamp_fork(struct task_struct *p) { }
1485static inline void uclamp_post_fork(struct task_struct *p) { }
1486static inline void init_uclamp(void) { }
1487#endif /* CONFIG_UCLAMP_TASK */
1488
1489static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1490{
1491 if (!(flags & ENQUEUE_NOCLOCK))
1492 update_rq_clock(rq);
1493
1494 if (!(flags & ENQUEUE_RESTORE)) {
1495 sched_info_queued(rq, p);
1496 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1497 }
1498
1499 uclamp_rq_inc(rq, p);
1500 p->sched_class->enqueue_task(rq, p, flags);
1501
1502 trace_android_rvh_enqueue_task(rq, p);
1503}
1504
1505static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1506{
1507 if (!(flags & DEQUEUE_NOCLOCK))
1508 update_rq_clock(rq);
1509
1510 if (!(flags & DEQUEUE_SAVE)) {
1511 sched_info_dequeued(rq, p);
1512 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1513 }
1514
1515 uclamp_rq_dec(rq, p);
1516 p->sched_class->dequeue_task(rq, p, flags);
1517
1518 trace_android_rvh_dequeue_task(rq, p);
1519}
1520
1521void activate_task(struct rq *rq, struct task_struct *p, int flags)
1522{
1523 if (task_on_rq_migrating(p))
1524 flags |= ENQUEUE_MIGRATED;
1525
1526 if (task_contributes_to_load(p))
1527 rq->nr_uninterruptible--;
1528
1529 enqueue_task(rq, p, flags);
1530
1531 p->on_rq = TASK_ON_RQ_QUEUED;
1532}
1533
1534void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1535{
1536 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1537
1538 if (task_contributes_to_load(p))
1539 rq->nr_uninterruptible++;
1540
1541 dequeue_task(rq, p, flags);
1542}
1543
1544/*
1545 * __normal_prio - return the priority that is based on the static prio
1546 */
1547static inline int __normal_prio(struct task_struct *p)
1548{
1549 return p->static_prio;
1550}
1551
1552/*
1553 * Calculate the expected normal priority: i.e. priority
1554 * without taking RT-inheritance into account. Might be
1555 * boosted by interactivity modifiers. Changes upon fork,
1556 * setprio syscalls, and whenever the interactivity
1557 * estimator recalculates.
1558 */
1559static inline int normal_prio(struct task_struct *p)
1560{
1561 int prio;
1562
1563 if (task_has_dl_policy(p))
1564 prio = MAX_DL_PRIO-1;
1565 else if (task_has_rt_policy(p))
1566 prio = MAX_RT_PRIO-1 - p->rt_priority;
1567 else
1568 prio = __normal_prio(p);
1569 return prio;
1570}
1571
1572/*
1573 * Calculate the current priority, i.e. the priority
1574 * taken into account by the scheduler. This value might
1575 * be boosted by RT tasks, or might be boosted by
1576 * interactivity modifiers. Will be RT if the task got
1577 * RT-boosted. If not then it returns p->normal_prio.
1578 */
1579static int effective_prio(struct task_struct *p)
1580{
1581 p->normal_prio = normal_prio(p);
1582 /*
1583 * If we are RT tasks or we were boosted to RT priority,
1584 * keep the priority unchanged. Otherwise, update priority
1585 * to the normal priority:
1586 */
1587 if (!rt_prio(p->prio))
1588 return p->normal_prio;
1589 return p->prio;
1590}
1591
1592/**
1593 * task_curr - is this task currently executing on a CPU?
1594 * @p: the task in question.
1595 *
1596 * Return: 1 if the task is currently executing. 0 otherwise.
1597 */
1598inline int task_curr(const struct task_struct *p)
1599{
1600 return cpu_curr(task_cpu(p)) == p;
1601}
1602
1603/*
1604 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1605 * use the balance_callback list if you want balancing.
1606 *
1607 * this means any call to check_class_changed() must be followed by a call to
1608 * balance_callback().
1609 */
1610static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1611 const struct sched_class *prev_class,
1612 int oldprio)
1613{
1614 if (prev_class != p->sched_class) {
1615 if (prev_class->switched_from)
1616 prev_class->switched_from(rq, p);
1617
1618 p->sched_class->switched_to(rq, p);
1619 } else if (oldprio != p->prio || dl_task(p))
1620 p->sched_class->prio_changed(rq, p, oldprio);
1621}
1622
1623void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1624{
1625 const struct sched_class *class;
1626
1627 if (p->sched_class == rq->curr->sched_class) {
1628 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1629 } else {
1630 for_each_class(class) {
1631 if (class == rq->curr->sched_class)
1632 break;
1633 if (class == p->sched_class) {
1634 resched_curr(rq);
1635 break;
1636 }
1637 }
1638 }
1639
1640 /*
1641 * A queue event has occurred, and we're going to schedule. In
1642 * this case, we can save a useless back to back clock update.
1643 */
1644 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1645 rq_clock_skip_update(rq);
1646}
1647
1648#ifdef CONFIG_SMP
1649
1650static inline bool is_per_cpu_kthread(struct task_struct *p)
1651{
1652 if (!(p->flags & PF_KTHREAD))
1653 return false;
1654
1655 if (p->nr_cpus_allowed != 1)
1656 return false;
1657
1658 return true;
1659}
1660
1661/*
1662 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1663 * __set_cpus_allowed_ptr() and select_fallback_rq().
1664 */
1665static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1666{
1667 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1668 return false;
1669
1670 if (is_per_cpu_kthread(p))
1671 return cpu_online(cpu);
1672
1673 return cpu_active(cpu);
1674}
1675
1676/*
1677 * This is how migration works:
1678 *
1679 * 1) we invoke migration_cpu_stop() on the target CPU using
1680 * stop_one_cpu().
1681 * 2) stopper starts to run (implicitly forcing the migrated thread
1682 * off the CPU)
1683 * 3) it checks whether the migrated task is still in the wrong runqueue.
1684 * 4) if it's in the wrong runqueue then the migration thread removes
1685 * it and puts it into the right queue.
1686 * 5) stopper completes and stop_one_cpu() returns and the migration
1687 * is done.
1688 */
1689
1690/*
1691 * move_queued_task - move a queued task to new rq.
1692 *
1693 * Returns (locked) new rq. Old rq's lock is released.
1694 */
1695static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1696 struct task_struct *p, int new_cpu)
1697{
1698 lockdep_assert_held(&rq->lock);
1699
1700 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1701 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1702 set_task_cpu(p, new_cpu);
1703 rq_unlock(rq, rf);
1704
1705 rq = cpu_rq(new_cpu);
1706
1707 rq_lock(rq, rf);
1708 BUG_ON(task_cpu(p) != new_cpu);
1709 enqueue_task(rq, p, 0);
1710 p->on_rq = TASK_ON_RQ_QUEUED;
1711 check_preempt_curr(rq, p, 0);
1712
1713 return rq;
1714}
1715
1716struct migration_arg {
1717 struct task_struct *task;
1718 int dest_cpu;
1719};
1720
1721/*
1722 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1723 * this because either it can't run here any more (set_cpus_allowed()
1724 * away from this CPU, or CPU going down), or because we're
1725 * attempting to rebalance this task on exec (sched_exec).
1726 *
1727 * So we race with normal scheduler movements, but that's OK, as long
1728 * as the task is no longer on this CPU.
1729 */
1730static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1731 struct task_struct *p, int dest_cpu)
1732{
1733 /* Affinity changed (again). */
1734 if (!is_cpu_allowed(p, dest_cpu))
1735 return rq;
1736
1737 update_rq_clock(rq);
1738 rq = move_queued_task(rq, rf, p, dest_cpu);
1739
1740 return rq;
1741}
1742
1743/*
1744 * migration_cpu_stop - this will be executed by a highprio stopper thread
1745 * and performs thread migration by bumping thread off CPU then
1746 * 'pushing' onto another runqueue.
1747 */
1748static int migration_cpu_stop(void *data)
1749{
1750 struct migration_arg *arg = data;
1751 struct task_struct *p = arg->task;
1752 struct rq *rq = this_rq();
1753 struct rq_flags rf;
1754
1755 /*
1756 * The original target CPU might have gone down and we might
1757 * be on another CPU but it doesn't matter.
1758 */
1759 local_irq_disable();
1760 /*
1761 * We need to explicitly wake pending tasks before running
1762 * __migrate_task() such that we will not miss enforcing cpus_ptr
1763 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1764 */
1765 sched_ttwu_pending();
1766
1767 raw_spin_lock(&p->pi_lock);
1768 rq_lock(rq, &rf);
1769 /*
1770 * If task_rq(p) != rq, it cannot be migrated here, because we're
1771 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1772 * we're holding p->pi_lock.
1773 */
1774 if (task_rq(p) == rq) {
1775 if (task_on_rq_queued(p))
1776 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1777 else
1778 p->wake_cpu = arg->dest_cpu;
1779 }
1780 rq_unlock(rq, &rf);
1781 raw_spin_unlock(&p->pi_lock);
1782
1783 local_irq_enable();
1784 return 0;
1785}
1786
1787/*
1788 * sched_class::set_cpus_allowed must do the below, but is not required to
1789 * actually call this function.
1790 */
1791void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1792{
1793 cpumask_copy(&p->cpus_mask, new_mask);
1794 p->nr_cpus_allowed = cpumask_weight(new_mask);
1795}
1796
1797void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1798{
1799 struct rq *rq = task_rq(p);
1800 bool queued, running;
1801
1802 lockdep_assert_held(&p->pi_lock);
1803
1804 queued = task_on_rq_queued(p);
1805 running = task_current(rq, p);
1806
1807 if (queued) {
1808 /*
1809 * Because __kthread_bind() calls this on blocked tasks without
1810 * holding rq->lock.
1811 */
1812 lockdep_assert_held(&rq->lock);
1813 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1814 }
1815 if (running)
1816 put_prev_task(rq, p);
1817
1818 p->sched_class->set_cpus_allowed(p, new_mask);
1819
1820 if (queued)
1821 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1822 if (running)
1823 set_next_task(rq, p);
1824}
1825
1826/*
1827 * Change a given task's CPU affinity. Migrate the thread to a
1828 * proper CPU and schedule it away if the CPU it's executing on
1829 * is removed from the allowed bitmask.
1830 *
1831 * NOTE: the caller must have a valid reference to the task, the
1832 * task must not exit() & deallocate itself prematurely. The
1833 * call is not atomic; no spinlocks may be held.
1834 */
1835static int __set_cpus_allowed_ptr(struct task_struct *p,
1836 const struct cpumask *new_mask, bool check)
1837{
1838 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1839 unsigned int dest_cpu;
1840 struct rq_flags rf;
1841 struct rq *rq;
1842 int ret = 0;
1843
1844 rq = task_rq_lock(p, &rf);
1845 update_rq_clock(rq);
1846
1847 if (p->flags & PF_KTHREAD) {
1848 /*
1849 * Kernel threads are allowed on online && !active CPUs
1850 */
1851 cpu_valid_mask = cpu_online_mask;
1852 }
1853
1854 /*
1855 * Must re-check here, to close a race against __kthread_bind(),
1856 * sched_setaffinity() is not guaranteed to observe the flag.
1857 */
1858 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1859 ret = -EINVAL;
1860 goto out;
1861 }
1862
1863 if (cpumask_equal(&p->cpus_mask, new_mask))
1864 goto out;
1865
1866 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1867 if (dest_cpu >= nr_cpu_ids) {
1868 ret = -EINVAL;
1869 goto out;
1870 }
1871
1872 do_set_cpus_allowed(p, new_mask);
1873
1874 if (p->flags & PF_KTHREAD) {
1875 /*
1876 * For kernel threads that do indeed end up on online &&
1877 * !active we want to ensure they are strict per-CPU threads.
1878 */
1879 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1880 !cpumask_intersects(new_mask, cpu_active_mask) &&
1881 p->nr_cpus_allowed != 1);
1882 }
1883
1884 /* Can the task run on the task's current CPU? If so, we're done */
1885 if (cpumask_test_cpu(task_cpu(p), new_mask))
1886 goto out;
1887
1888 if (task_running(rq, p) || p->state == TASK_WAKING) {
1889 struct migration_arg arg = { p, dest_cpu };
1890 /* Need help from migration thread: drop lock and wait. */
1891 task_rq_unlock(rq, p, &rf);
1892 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1893 return 0;
1894 } else if (task_on_rq_queued(p)) {
1895 /*
1896 * OK, since we're going to drop the lock immediately
1897 * afterwards anyway.
1898 */
1899 rq = move_queued_task(rq, &rf, p, dest_cpu);
1900 }
1901out:
1902 task_rq_unlock(rq, p, &rf);
1903
1904 return ret;
1905}
1906
1907int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1908{
1909 return __set_cpus_allowed_ptr(p, new_mask, false);
1910}
1911EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1912
1913void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1914{
1915#ifdef CONFIG_SCHED_DEBUG
1916 /*
1917 * We should never call set_task_cpu() on a blocked task,
1918 * ttwu() will sort out the placement.
1919 */
1920 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1921 !p->on_rq);
1922
1923 /*
1924 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1925 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1926 * time relying on p->on_rq.
1927 */
1928 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1929 p->sched_class == &fair_sched_class &&
1930 (p->on_rq && !task_on_rq_migrating(p)));
1931
1932#ifdef CONFIG_LOCKDEP
1933 /*
1934 * The caller should hold either p->pi_lock or rq->lock, when changing
1935 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1936 *
1937 * sched_move_task() holds both and thus holding either pins the cgroup,
1938 * see task_group().
1939 *
1940 * Furthermore, all task_rq users should acquire both locks, see
1941 * task_rq_lock().
1942 */
1943 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1944 lockdep_is_held(&task_rq(p)->lock)));
1945#endif
1946 /*
1947 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1948 */
1949 WARN_ON_ONCE(!cpu_online(new_cpu));
1950#endif
1951
1952 trace_sched_migrate_task(p, new_cpu);
1953
1954 if (task_cpu(p) != new_cpu) {
1955 if (p->sched_class->migrate_task_rq)
1956 p->sched_class->migrate_task_rq(p, new_cpu);
1957 p->se.nr_migrations++;
1958 rseq_migrate(p);
1959 perf_event_task_migrate(p);
1960 }
1961
1962 __set_task_cpu(p, new_cpu);
1963}
1964
1965#ifdef CONFIG_NUMA_BALANCING
1966static void __migrate_swap_task(struct task_struct *p, int cpu)
1967{
1968 if (task_on_rq_queued(p)) {
1969 struct rq *src_rq, *dst_rq;
1970 struct rq_flags srf, drf;
1971
1972 src_rq = task_rq(p);
1973 dst_rq = cpu_rq(cpu);
1974
1975 rq_pin_lock(src_rq, &srf);
1976 rq_pin_lock(dst_rq, &drf);
1977
1978 deactivate_task(src_rq, p, 0);
1979 set_task_cpu(p, cpu);
1980 activate_task(dst_rq, p, 0);
1981 check_preempt_curr(dst_rq, p, 0);
1982
1983 rq_unpin_lock(dst_rq, &drf);
1984 rq_unpin_lock(src_rq, &srf);
1985
1986 } else {
1987 /*
1988 * Task isn't running anymore; make it appear like we migrated
1989 * it before it went to sleep. This means on wakeup we make the
1990 * previous CPU our target instead of where it really is.
1991 */
1992 p->wake_cpu = cpu;
1993 }
1994}
1995
1996struct migration_swap_arg {
1997 struct task_struct *src_task, *dst_task;
1998 int src_cpu, dst_cpu;
1999};
2000
2001static int migrate_swap_stop(void *data)
2002{
2003 struct migration_swap_arg *arg = data;
2004 struct rq *src_rq, *dst_rq;
2005 int ret = -EAGAIN;
2006
2007 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2008 return -EAGAIN;
2009
2010 src_rq = cpu_rq(arg->src_cpu);
2011 dst_rq = cpu_rq(arg->dst_cpu);
2012
2013 double_raw_lock(&arg->src_task->pi_lock,
2014 &arg->dst_task->pi_lock);
2015 double_rq_lock(src_rq, dst_rq);
2016
2017 if (task_cpu(arg->dst_task) != arg->dst_cpu)
2018 goto unlock;
2019
2020 if (task_cpu(arg->src_task) != arg->src_cpu)
2021 goto unlock;
2022
2023 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2024 goto unlock;
2025
2026 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2027 goto unlock;
2028
2029 __migrate_swap_task(arg->src_task, arg->dst_cpu);
2030 __migrate_swap_task(arg->dst_task, arg->src_cpu);
2031
2032 ret = 0;
2033
2034unlock:
2035 double_rq_unlock(src_rq, dst_rq);
2036 raw_spin_unlock(&arg->dst_task->pi_lock);
2037 raw_spin_unlock(&arg->src_task->pi_lock);
2038
2039 return ret;
2040}
2041
2042/*
2043 * Cross migrate two tasks
2044 */
2045int migrate_swap(struct task_struct *cur, struct task_struct *p,
2046 int target_cpu, int curr_cpu)
2047{
2048 struct migration_swap_arg arg;
2049 int ret = -EINVAL;
2050
2051 arg = (struct migration_swap_arg){
2052 .src_task = cur,
2053 .src_cpu = curr_cpu,
2054 .dst_task = p,
2055 .dst_cpu = target_cpu,
2056 };
2057
2058 if (arg.src_cpu == arg.dst_cpu)
2059 goto out;
2060
2061 /*
2062 * These three tests are all lockless; this is OK since all of them
2063 * will be re-checked with proper locks held further down the line.
2064 */
2065 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2066 goto out;
2067
2068 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2069 goto out;
2070
2071 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2072 goto out;
2073
2074 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2075 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2076
2077out:
2078 return ret;
2079}
2080#endif /* CONFIG_NUMA_BALANCING */
2081
2082/*
2083 * wait_task_inactive - wait for a thread to unschedule.
2084 *
2085 * If @match_state is nonzero, it's the @p->state value just checked and
2086 * not expected to change. If it changes, i.e. @p might have woken up,
2087 * then return zero. When we succeed in waiting for @p to be off its CPU,
2088 * we return a positive number (its total switch count). If a second call
2089 * a short while later returns the same number, the caller can be sure that
2090 * @p has remained unscheduled the whole time.
2091 *
2092 * The caller must ensure that the task *will* unschedule sometime soon,
2093 * else this function might spin for a *long* time. This function can't
2094 * be called with interrupts off, or it may introduce deadlock with
2095 * smp_call_function() if an IPI is sent by the same process we are
2096 * waiting to become inactive.
2097 */
2098unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2099{
2100 int running, queued;
2101 struct rq_flags rf;
2102 unsigned long ncsw;
2103 struct rq *rq;
2104
2105 for (;;) {
2106 /*
2107 * We do the initial early heuristics without holding
2108 * any task-queue locks at all. We'll only try to get
2109 * the runqueue lock when things look like they will
2110 * work out!
2111 */
2112 rq = task_rq(p);
2113
2114 /*
2115 * If the task is actively running on another CPU
2116 * still, just relax and busy-wait without holding
2117 * any locks.
2118 *
2119 * NOTE! Since we don't hold any locks, it's not
2120 * even sure that "rq" stays as the right runqueue!
2121 * But we don't care, since "task_running()" will
2122 * return false if the runqueue has changed and p
2123 * is actually now running somewhere else!
2124 */
2125 while (task_running(rq, p)) {
2126 if (match_state && unlikely(p->state != match_state))
2127 return 0;
2128 cpu_relax();
2129 }
2130
2131 /*
2132 * Ok, time to look more closely! We need the rq
2133 * lock now, to be *sure*. If we're wrong, we'll
2134 * just go back and repeat.
2135 */
2136 rq = task_rq_lock(p, &rf);
2137 trace_sched_wait_task(p);
2138 running = task_running(rq, p);
2139 queued = task_on_rq_queued(p);
2140 ncsw = 0;
2141 if (!match_state || p->state == match_state)
2142 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2143 task_rq_unlock(rq, p, &rf);
2144
2145 /*
2146 * If it changed from the expected state, bail out now.
2147 */
2148 if (unlikely(!ncsw))
2149 break;
2150
2151 /*
2152 * Was it really running after all now that we
2153 * checked with the proper locks actually held?
2154 *
2155 * Oops. Go back and try again..
2156 */
2157 if (unlikely(running)) {
2158 cpu_relax();
2159 continue;
2160 }
2161
2162 /*
2163 * It's not enough that it's not actively running,
2164 * it must be off the runqueue _entirely_, and not
2165 * preempted!
2166 *
2167 * So if it was still runnable (but just not actively
2168 * running right now), it's preempted, and we should
2169 * yield - it could be a while.
2170 */
2171 if (unlikely(queued)) {
2172 ktime_t to = NSEC_PER_SEC / HZ;
2173
2174 set_current_state(TASK_UNINTERRUPTIBLE);
2175 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2176 continue;
2177 }
2178
2179 /*
2180 * Ahh, all good. It wasn't running, and it wasn't
2181 * runnable, which means that it will never become
2182 * running in the future either. We're all done!
2183 */
2184 break;
2185 }
2186
2187 return ncsw;
2188}
2189
2190/***
2191 * kick_process - kick a running thread to enter/exit the kernel
2192 * @p: the to-be-kicked thread
2193 *
2194 * Cause a process which is running on another CPU to enter
2195 * kernel-mode, without any delay. (to get signals handled.)
2196 *
2197 * NOTE: this function doesn't have to take the runqueue lock,
2198 * because all it wants to ensure is that the remote task enters
2199 * the kernel. If the IPI races and the task has been migrated
2200 * to another CPU then no harm is done and the purpose has been
2201 * achieved as well.
2202 */
2203void kick_process(struct task_struct *p)
2204{
2205 int cpu;
2206
2207 preempt_disable();
2208 cpu = task_cpu(p);
2209 if ((cpu != smp_processor_id()) && task_curr(p))
2210 smp_send_reschedule(cpu);
2211 preempt_enable();
2212}
2213EXPORT_SYMBOL_GPL(kick_process);
2214
2215/*
2216 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2217 *
2218 * A few notes on cpu_active vs cpu_online:
2219 *
2220 * - cpu_active must be a subset of cpu_online
2221 *
2222 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2223 * see __set_cpus_allowed_ptr(). At this point the newly online
2224 * CPU isn't yet part of the sched domains, and balancing will not
2225 * see it.
2226 *
2227 * - on CPU-down we clear cpu_active() to mask the sched domains and
2228 * avoid the load balancer to place new tasks on the to be removed
2229 * CPU. Existing tasks will remain running there and will be taken
2230 * off.
2231 *
2232 * This means that fallback selection must not select !active CPUs.
2233 * And can assume that any active CPU must be online. Conversely
2234 * select_task_rq() below may allow selection of !active CPUs in order
2235 * to satisfy the above rules.
2236 */
2237static int select_fallback_rq(int cpu, struct task_struct *p)
2238{
2239 int nid = cpu_to_node(cpu);
2240 const struct cpumask *nodemask = NULL;
2241 enum { cpuset, possible, fail } state = cpuset;
2242 int dest_cpu = -1;
2243
2244 trace_android_rvh_select_fallback_rq(cpu, p, &dest_cpu);
2245 if (dest_cpu >= 0)
2246 return dest_cpu;
2247
2248 /*
2249 * If the node that the CPU is on has been offlined, cpu_to_node()
2250 * will return -1. There is no CPU on the node, and we should
2251 * select the CPU on the other node.
2252 */
2253 if (nid != -1) {
2254 nodemask = cpumask_of_node(nid);
2255
2256 /* Look for allowed, online CPU in same node. */
2257 for_each_cpu(dest_cpu, nodemask) {
2258 if (!cpu_active(dest_cpu))
2259 continue;
2260 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2261 return dest_cpu;
2262 }
2263 }
2264
2265 for (;;) {
2266 /* Any allowed, online CPU? */
2267 for_each_cpu(dest_cpu, p->cpus_ptr) {
2268 if (!is_cpu_allowed(p, dest_cpu))
2269 continue;
2270
2271 goto out;
2272 }
2273
2274 /* No more Mr. Nice Guy. */
2275 switch (state) {
2276 case cpuset:
2277 if (IS_ENABLED(CONFIG_CPUSETS)) {
2278 cpuset_cpus_allowed_fallback(p);
2279 state = possible;
2280 break;
2281 }
2282 /* Fall-through */
2283 case possible:
2284 do_set_cpus_allowed(p, cpu_possible_mask);
2285 state = fail;
2286 break;
2287
2288 case fail:
2289 BUG();
2290 break;
2291 }
2292 }
2293
2294out:
2295 if (state != cpuset) {
2296 /*
2297 * Don't tell them about moving exiting tasks or
2298 * kernel threads (both mm NULL), since they never
2299 * leave kernel.
2300 */
2301 if (p->mm && printk_ratelimit()) {
2302 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2303 task_pid_nr(p), p->comm, cpu);
2304 }
2305 }
2306
2307 return dest_cpu;
2308}
2309
2310/*
2311 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2312 */
2313static inline
2314int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2315{
2316 lockdep_assert_held(&p->pi_lock);
2317
2318 if (p->nr_cpus_allowed > 1)
2319 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2320 else
2321 cpu = cpumask_any(p->cpus_ptr);
2322
2323 /*
2324 * In order not to call set_task_cpu() on a blocking task we need
2325 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2326 * CPU.
2327 *
2328 * Since this is common to all placement strategies, this lives here.
2329 *
2330 * [ this allows ->select_task() to simply return task_cpu(p) and
2331 * not worry about this generic constraint ]
2332 */
2333 if (unlikely(!is_cpu_allowed(p, cpu)))
2334 cpu = select_fallback_rq(task_cpu(p), p);
2335
2336 return cpu;
2337}
2338
2339static void update_avg(u64 *avg, u64 sample)
2340{
2341 s64 diff = sample - *avg;
2342 *avg += diff >> 3;
2343}
2344
2345void sched_set_stop_task(int cpu, struct task_struct *stop)
2346{
2347 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2348 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2349
2350 if (stop) {
2351 /*
2352 * Make it appear like a SCHED_FIFO task, its something
2353 * userspace knows about and won't get confused about.
2354 *
2355 * Also, it will make PI more or less work without too
2356 * much confusion -- but then, stop work should not
2357 * rely on PI working anyway.
2358 */
2359 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2360
2361 stop->sched_class = &stop_sched_class;
2362 }
2363
2364 cpu_rq(cpu)->stop = stop;
2365
2366 if (old_stop) {
2367 /*
2368 * Reset it back to a normal scheduling class so that
2369 * it can die in pieces.
2370 */
2371 old_stop->sched_class = &rt_sched_class;
2372 }
2373}
2374
2375#else
2376
2377static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2378 const struct cpumask *new_mask, bool check)
2379{
2380 return set_cpus_allowed_ptr(p, new_mask);
2381}
2382
2383#endif /* CONFIG_SMP */
2384
2385static void
2386ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2387{
2388 struct rq *rq;
2389
2390 if (!schedstat_enabled())
2391 return;
2392
2393 rq = this_rq();
2394
2395#ifdef CONFIG_SMP
2396 if (cpu == rq->cpu) {
2397 __schedstat_inc(rq->ttwu_local);
2398 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2399 } else {
2400 struct sched_domain *sd;
2401
2402 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2403 rcu_read_lock();
2404 for_each_domain(rq->cpu, sd) {
2405 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2406 __schedstat_inc(sd->ttwu_wake_remote);
2407 break;
2408 }
2409 }
2410 rcu_read_unlock();
2411 }
2412
2413 if (wake_flags & WF_MIGRATED)
2414 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2415#endif /* CONFIG_SMP */
2416
2417 __schedstat_inc(rq->ttwu_count);
2418 __schedstat_inc(p->se.statistics.nr_wakeups);
2419
2420 if (wake_flags & WF_SYNC)
2421 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2422}
2423
2424/*
2425 * Mark the task runnable and perform wakeup-preemption.
2426 */
2427static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2428 struct rq_flags *rf)
2429{
2430 check_preempt_curr(rq, p, wake_flags);
2431 p->state = TASK_RUNNING;
2432 trace_sched_wakeup(p);
2433
2434#ifdef CONFIG_SMP
2435 if (p->sched_class->task_woken) {
2436 /*
2437 * Our task @p is fully woken up and running; so its safe to
2438 * drop the rq->lock, hereafter rq is only used for statistics.
2439 */
2440 rq_unpin_lock(rq, rf);
2441 p->sched_class->task_woken(rq, p);
2442 rq_repin_lock(rq, rf);
2443 }
2444
2445 if (rq->idle_stamp) {
2446 u64 delta = rq_clock(rq) - rq->idle_stamp;
2447 u64 max = 2*rq->max_idle_balance_cost;
2448
2449 update_avg(&rq->avg_idle, delta);
2450
2451 if (rq->avg_idle > max)
2452 rq->avg_idle = max;
2453
2454 rq->idle_stamp = 0;
2455 }
2456#endif
2457}
2458
2459static void
2460ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2461 struct rq_flags *rf)
2462{
2463 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2464
2465 lockdep_assert_held(&rq->lock);
2466
2467#ifdef CONFIG_SMP
2468 if (p->sched_contributes_to_load)
2469 rq->nr_uninterruptible--;
2470
2471 if (wake_flags & WF_MIGRATED)
2472 en_flags |= ENQUEUE_MIGRATED;
2473#endif
2474
2475 activate_task(rq, p, en_flags);
2476 ttwu_do_wakeup(rq, p, wake_flags, rf);
2477}
2478
2479/*
2480 * Called in case the task @p isn't fully descheduled from its runqueue,
2481 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2482 * since all we need to do is flip p->state to TASK_RUNNING, since
2483 * the task is still ->on_rq.
2484 */
2485static int ttwu_remote(struct task_struct *p, int wake_flags)
2486{
2487 struct rq_flags rf;
2488 struct rq *rq;
2489 int ret = 0;
2490
2491 rq = __task_rq_lock(p, &rf);
2492 if (task_on_rq_queued(p)) {
2493 /* check_preempt_curr() may use rq clock */
2494 update_rq_clock(rq);
2495 ttwu_do_wakeup(rq, p, wake_flags, &rf);
2496 ret = 1;
2497 }
2498 __task_rq_unlock(rq, &rf);
2499
2500 return ret;
2501}
2502
2503#ifdef CONFIG_SMP
2504void sched_ttwu_pending(void)
2505{
2506 struct rq *rq = this_rq();
2507 struct llist_node *llist = llist_del_all(&rq->wake_list);
2508 struct task_struct *p, *t;
2509 struct rq_flags rf;
2510
2511 if (!llist)
2512 return;
2513
2514 rq_lock_irqsave(rq, &rf);
2515 update_rq_clock(rq);
2516
2517 llist_for_each_entry_safe(p, t, llist, wake_entry)
2518 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2519
2520 rq_unlock_irqrestore(rq, &rf);
2521}
2522
2523void scheduler_ipi(void)
2524{
2525 /*
2526 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2527 * TIF_NEED_RESCHED remotely (for the first time) will also send
2528 * this IPI.
2529 */
2530 preempt_fold_need_resched();
2531
2532 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2533 return;
2534
2535 /*
2536 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2537 * traditionally all their work was done from the interrupt return
2538 * path. Now that we actually do some work, we need to make sure
2539 * we do call them.
2540 *
2541 * Some archs already do call them, luckily irq_enter/exit nest
2542 * properly.
2543 *
2544 * Arguably we should visit all archs and update all handlers,
2545 * however a fair share of IPIs are still resched only so this would
2546 * somewhat pessimize the simple resched case.
2547 */
2548 irq_enter();
2549 sched_ttwu_pending();
2550
2551 /*
2552 * Check if someone kicked us for doing the nohz idle load balance.
2553 */
2554 if (unlikely(got_nohz_idle_kick())) {
2555 this_rq()->idle_balance = 1;
2556 raise_softirq_irqoff(SCHED_SOFTIRQ);
2557 }
2558 irq_exit();
2559}
2560
2561static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
2562{
2563 struct rq *rq = cpu_rq(cpu);
2564
2565 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2566
2567 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2568 if (!set_nr_if_polling(rq->idle))
2569 smp_send_reschedule(cpu);
2570 else
2571 trace_sched_wake_idle_without_ipi(cpu);
2572 }
2573}
2574
2575void wake_up_if_idle(int cpu)
2576{
2577 struct rq *rq = cpu_rq(cpu);
2578 struct rq_flags rf;
2579
2580 rcu_read_lock();
2581
2582 if (!is_idle_task(rcu_dereference(rq->curr)))
2583 goto out;
2584
2585 if (set_nr_if_polling(rq->idle)) {
2586 trace_sched_wake_idle_without_ipi(cpu);
2587 } else {
2588 rq_lock_irqsave(rq, &rf);
2589 if (is_idle_task(rq->curr))
2590 smp_send_reschedule(cpu);
2591 /* Else CPU is not idle, do nothing here: */
2592 rq_unlock_irqrestore(rq, &rf);
2593 }
2594
2595out:
2596 rcu_read_unlock();
2597}
2598
2599bool cpus_share_cache(int this_cpu, int that_cpu)
2600{
2601 if (this_cpu == that_cpu)
2602 return true;
2603
2604 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2605}
2606#endif /* CONFIG_SMP */
2607
2608static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2609{
2610 struct rq *rq = cpu_rq(cpu);
2611 struct rq_flags rf;
2612
2613#if defined(CONFIG_SMP)
2614 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
2615 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2616 ttwu_queue_remote(p, cpu, wake_flags);
2617 return;
2618 }
2619#endif
2620
2621 rq_lock(rq, &rf);
2622 update_rq_clock(rq);
2623 ttwu_do_activate(rq, p, wake_flags, &rf);
2624 rq_unlock(rq, &rf);
2625}
2626
2627/*
2628 * Notes on Program-Order guarantees on SMP systems.
2629 *
2630 * MIGRATION
2631 *
2632 * The basic program-order guarantee on SMP systems is that when a task [t]
2633 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2634 * execution on its new CPU [c1].
2635 *
2636 * For migration (of runnable tasks) this is provided by the following means:
2637 *
2638 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2639 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2640 * rq(c1)->lock (if not at the same time, then in that order).
2641 * C) LOCK of the rq(c1)->lock scheduling in task
2642 *
2643 * Release/acquire chaining guarantees that B happens after A and C after B.
2644 * Note: the CPU doing B need not be c0 or c1
2645 *
2646 * Example:
2647 *
2648 * CPU0 CPU1 CPU2
2649 *
2650 * LOCK rq(0)->lock
2651 * sched-out X
2652 * sched-in Y
2653 * UNLOCK rq(0)->lock
2654 *
2655 * LOCK rq(0)->lock // orders against CPU0
2656 * dequeue X
2657 * UNLOCK rq(0)->lock
2658 *
2659 * LOCK rq(1)->lock
2660 * enqueue X
2661 * UNLOCK rq(1)->lock
2662 *
2663 * LOCK rq(1)->lock // orders against CPU2
2664 * sched-out Z
2665 * sched-in X
2666 * UNLOCK rq(1)->lock
2667 *
2668 *
2669 * BLOCKING -- aka. SLEEP + WAKEUP
2670 *
2671 * For blocking we (obviously) need to provide the same guarantee as for
2672 * migration. However the means are completely different as there is no lock
2673 * chain to provide order. Instead we do:
2674 *
2675 * 1) smp_store_release(X->on_cpu, 0)
2676 * 2) smp_cond_load_acquire(!X->on_cpu)
2677 *
2678 * Example:
2679 *
2680 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2681 *
2682 * LOCK rq(0)->lock LOCK X->pi_lock
2683 * dequeue X
2684 * sched-out X
2685 * smp_store_release(X->on_cpu, 0);
2686 *
2687 * smp_cond_load_acquire(&X->on_cpu, !VAL);
2688 * X->state = WAKING
2689 * set_task_cpu(X,2)
2690 *
2691 * LOCK rq(2)->lock
2692 * enqueue X
2693 * X->state = RUNNING
2694 * UNLOCK rq(2)->lock
2695 *
2696 * LOCK rq(2)->lock // orders against CPU1
2697 * sched-out Z
2698 * sched-in X
2699 * UNLOCK rq(2)->lock
2700 *
2701 * UNLOCK X->pi_lock
2702 * UNLOCK rq(0)->lock
2703 *
2704 *
2705 * However, for wakeups there is a second guarantee we must provide, namely we
2706 * must ensure that CONDITION=1 done by the caller can not be reordered with
2707 * accesses to the task state; see try_to_wake_up() and set_current_state().
2708 */
2709
2710/**
2711 * try_to_wake_up - wake up a thread
2712 * @p: the thread to be awakened
2713 * @state: the mask of task states that can be woken
2714 * @wake_flags: wake modifier flags (WF_*)
2715 *
2716 * If (@state & @p->state) @p->state = TASK_RUNNING.
2717 *
2718 * If the task was not queued/runnable, also place it back on a runqueue.
2719 *
2720 * Atomic against schedule() which would dequeue a task, also see
2721 * set_current_state().
2722 *
2723 * This function executes a full memory barrier before accessing the task
2724 * state; see set_current_state().
2725 *
2726 * Return: %true if @p->state changes (an actual wakeup was done),
2727 * %false otherwise.
2728 */
2729static int
2730try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2731{
2732 unsigned long flags;
2733 int cpu, success = 0;
2734
2735 preempt_disable();
2736 if (p == current) {
2737 /*
2738 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2739 * == smp_processor_id()'. Together this means we can special
2740 * case the whole 'p->on_rq && ttwu_remote()' case below
2741 * without taking any locks.
2742 *
2743 * In particular:
2744 * - we rely on Program-Order guarantees for all the ordering,
2745 * - we're serialized against set_special_state() by virtue of
2746 * it disabling IRQs (this allows not taking ->pi_lock).
2747 */
2748 if (!(p->state & state))
2749 goto out;
2750
2751 success = 1;
2752 cpu = task_cpu(p);
2753 trace_sched_waking(p);
2754 p->state = TASK_RUNNING;
2755 trace_sched_wakeup(p);
2756 goto out;
2757 }
2758
2759 /*
2760 * If we are going to wake up a thread waiting for CONDITION we
2761 * need to ensure that CONDITION=1 done by the caller can not be
2762 * reordered with p->state check below. This pairs with mb() in
2763 * set_current_state() the waiting thread does.
2764 */
2765 raw_spin_lock_irqsave(&p->pi_lock, flags);
2766 smp_mb__after_spinlock();
2767 if (!(p->state & state))
2768 goto unlock;
2769
2770 trace_sched_waking(p);
2771
2772 /* We're going to change ->state: */
2773 success = 1;
2774 cpu = task_cpu(p);
2775
2776 /*
2777 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2778 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2779 * in smp_cond_load_acquire() below.
2780 *
2781 * sched_ttwu_pending() try_to_wake_up()
2782 * STORE p->on_rq = 1 LOAD p->state
2783 * UNLOCK rq->lock
2784 *
2785 * __schedule() (switch to task 'p')
2786 * LOCK rq->lock smp_rmb();
2787 * smp_mb__after_spinlock();
2788 * UNLOCK rq->lock
2789 *
2790 * [task p]
2791 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
2792 *
2793 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2794 * __schedule(). See the comment for smp_mb__after_spinlock().
2795 */
2796 smp_rmb();
2797 if (p->on_rq && ttwu_remote(p, wake_flags))
2798 goto unlock;
2799
2800#ifdef CONFIG_SMP
2801 /*
2802 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2803 * possible to, falsely, observe p->on_cpu == 0.
2804 *
2805 * One must be running (->on_cpu == 1) in order to remove oneself
2806 * from the runqueue.
2807 *
2808 * __schedule() (switch to task 'p') try_to_wake_up()
2809 * STORE p->on_cpu = 1 LOAD p->on_rq
2810 * UNLOCK rq->lock
2811 *
2812 * __schedule() (put 'p' to sleep)
2813 * LOCK rq->lock smp_rmb();
2814 * smp_mb__after_spinlock();
2815 * STORE p->on_rq = 0 LOAD p->on_cpu
2816 *
2817 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2818 * __schedule(). See the comment for smp_mb__after_spinlock().
2819 */
2820 smp_rmb();
2821
2822 /*
2823 * If the owning (remote) CPU is still in the middle of schedule() with
2824 * this task as prev, wait until its done referencing the task.
2825 *
2826 * Pairs with the smp_store_release() in finish_task().
2827 *
2828 * This ensures that tasks getting woken will be fully ordered against
2829 * their previous state and preserve Program Order.
2830 */
2831 smp_cond_load_acquire(&p->on_cpu, !VAL);
2832
2833 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2834 p->state = TASK_WAKING;
2835
2836 if (p->in_iowait) {
2837 delayacct_blkio_end(p);
2838 atomic_dec(&task_rq(p)->nr_iowait);
2839 }
2840
2841 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2842 if (task_cpu(p) != cpu) {
2843 wake_flags |= WF_MIGRATED;
2844 psi_ttwu_dequeue(p);
2845 set_task_cpu(p, cpu);
2846 }
2847
2848#else /* CONFIG_SMP */
2849
2850 if (p->in_iowait) {
2851 delayacct_blkio_end(p);
2852 atomic_dec(&task_rq(p)->nr_iowait);
2853 }
2854
2855#endif /* CONFIG_SMP */
2856
2857 ttwu_queue(p, cpu, wake_flags);
2858unlock:
2859 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2860out:
2861 if (success)
2862 ttwu_stat(p, cpu, wake_flags);
2863 preempt_enable();
2864
2865 return success;
2866}
2867
2868/**
2869 * wake_up_process - Wake up a specific process
2870 * @p: The process to be woken up.
2871 *
2872 * Attempt to wake up the nominated process and move it to the set of runnable
2873 * processes.
2874 *
2875 * Return: 1 if the process was woken up, 0 if it was already running.
2876 *
2877 * This function executes a full memory barrier before accessing the task state.
2878 */
2879int wake_up_process(struct task_struct *p)
2880{
2881 return try_to_wake_up(p, TASK_NORMAL, 0);
2882}
2883EXPORT_SYMBOL(wake_up_process);
2884
2885int wake_up_state(struct task_struct *p, unsigned int state)
2886{
2887 return try_to_wake_up(p, state, 0);
2888}
2889EXPORT_SYMBOL_GPL(wake_up_state);
2890
2891/*
2892 * Perform scheduler related setup for a newly forked process p.
2893 * p is forked by current.
2894 *
2895 * __sched_fork() is basic setup used by init_idle() too:
2896 */
2897static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2898{
2899 p->on_rq = 0;
2900
2901 p->se.on_rq = 0;
2902 p->se.exec_start = 0;
2903 p->se.sum_exec_runtime = 0;
2904 p->se.prev_sum_exec_runtime = 0;
2905 p->se.nr_migrations = 0;
2906 p->se.vruntime = 0;
2907 INIT_LIST_HEAD(&p->se.group_node);
2908
2909#ifdef CONFIG_FAIR_GROUP_SCHED
2910 p->se.cfs_rq = NULL;
2911#endif
2912
2913#ifdef CONFIG_SCHEDSTATS
2914 /* Even if schedstat is disabled, there should not be garbage */
2915 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2916#endif
2917
2918 RB_CLEAR_NODE(&p->dl.rb_node);
2919 init_dl_task_timer(&p->dl);
2920 init_dl_inactive_task_timer(&p->dl);
2921 __dl_clear_params(p);
2922
2923 INIT_LIST_HEAD(&p->rt.run_list);
2924 p->rt.timeout = 0;
2925 p->rt.time_slice = sched_rr_timeslice;
2926 p->rt.on_rq = 0;
2927 p->rt.on_list = 0;
2928
2929#ifdef CONFIG_PREEMPT_NOTIFIERS
2930 INIT_HLIST_HEAD(&p->preempt_notifiers);
2931#endif
2932
2933#ifdef CONFIG_COMPACTION
2934 p->capture_control = NULL;
2935#endif
2936 init_numa_balancing(clone_flags, p);
2937}
2938
2939DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2940
2941#ifdef CONFIG_NUMA_BALANCING
2942
2943void set_numabalancing_state(bool enabled)
2944{
2945 if (enabled)
2946 static_branch_enable(&sched_numa_balancing);
2947 else
2948 static_branch_disable(&sched_numa_balancing);
2949}
2950
2951#ifdef CONFIG_PROC_SYSCTL
2952int sysctl_numa_balancing(struct ctl_table *table, int write,
2953 void __user *buffer, size_t *lenp, loff_t *ppos)
2954{
2955 struct ctl_table t;
2956 int err;
2957 int state = static_branch_likely(&sched_numa_balancing);
2958
2959 if (write && !capable(CAP_SYS_ADMIN))
2960 return -EPERM;
2961
2962 t = *table;
2963 t.data = &state;
2964 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2965 if (err < 0)
2966 return err;
2967 if (write)
2968 set_numabalancing_state(state);
2969 return err;
2970}
2971#endif
2972#endif
2973
2974#ifdef CONFIG_SCHEDSTATS
2975
2976DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2977static bool __initdata __sched_schedstats = false;
2978
2979static void set_schedstats(bool enabled)
2980{
2981 if (enabled)
2982 static_branch_enable(&sched_schedstats);
2983 else
2984 static_branch_disable(&sched_schedstats);
2985}
2986
2987void force_schedstat_enabled(void)
2988{
2989 if (!schedstat_enabled()) {
2990 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2991 static_branch_enable(&sched_schedstats);
2992 }
2993}
2994
2995static int __init setup_schedstats(char *str)
2996{
2997 int ret = 0;
2998 if (!str)
2999 goto out;
3000
3001 /*
3002 * This code is called before jump labels have been set up, so we can't
3003 * change the static branch directly just yet. Instead set a temporary
3004 * variable so init_schedstats() can do it later.
3005 */
3006 if (!strcmp(str, "enable")) {
3007 __sched_schedstats = true;
3008 ret = 1;
3009 } else if (!strcmp(str, "disable")) {
3010 __sched_schedstats = false;
3011 ret = 1;
3012 }
3013out:
3014 if (!ret)
3015 pr_warn("Unable to parse schedstats=\n");
3016
3017 return ret;
3018}
3019__setup("schedstats=", setup_schedstats);
3020
3021static void __init init_schedstats(void)
3022{
3023 set_schedstats(__sched_schedstats);
3024}
3025
3026#ifdef CONFIG_PROC_SYSCTL
3027int sysctl_schedstats(struct ctl_table *table, int write,
3028 void __user *buffer, size_t *lenp, loff_t *ppos)
3029{
3030 struct ctl_table t;
3031 int err;
3032 int state = static_branch_likely(&sched_schedstats);
3033
3034 if (write && !capable(CAP_SYS_ADMIN))
3035 return -EPERM;
3036
3037 t = *table;
3038 t.data = &state;
3039 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3040 if (err < 0)
3041 return err;
3042 if (write)
3043 set_schedstats(state);
3044 return err;
3045}
3046#endif /* CONFIG_PROC_SYSCTL */
3047#else /* !CONFIG_SCHEDSTATS */
3048static inline void init_schedstats(void) {}
3049#endif /* CONFIG_SCHEDSTATS */
3050
3051/*
3052 * fork()/clone()-time setup:
3053 */
3054int sched_fork(unsigned long clone_flags, struct task_struct *p)
3055{
3056 unsigned long flags;
3057
3058 __sched_fork(clone_flags, p);
3059 /*
3060 * We mark the process as NEW here. This guarantees that
3061 * nobody will actually run it, and a signal or other external
3062 * event cannot wake it up and insert it on the runqueue either.
3063 */
3064 p->state = TASK_NEW;
3065
3066 /*
3067 * Make sure we do not leak PI boosting priority to the child.
3068 */
3069 p->prio = current->normal_prio;
3070 trace_android_rvh_prepare_prio_fork(p);
3071
3072 uclamp_fork(p);
3073
3074 /*
3075 * Revert to default priority/policy on fork if requested.
3076 */
3077 if (unlikely(p->sched_reset_on_fork)) {
3078 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3079 p->policy = SCHED_NORMAL;
3080 p->static_prio = NICE_TO_PRIO(0);
3081 p->rt_priority = 0;
3082 } else if (PRIO_TO_NICE(p->static_prio) < 0)
3083 p->static_prio = NICE_TO_PRIO(0);
3084
3085 p->prio = p->normal_prio = __normal_prio(p);
3086 set_load_weight(p, false);
3087
3088 /*
3089 * We don't need the reset flag anymore after the fork. It has
3090 * fulfilled its duty:
3091 */
3092 p->sched_reset_on_fork = 0;
3093 }
3094
3095 if (dl_prio(p->prio))
3096 return -EAGAIN;
3097 else if (rt_prio(p->prio))
3098 p->sched_class = &rt_sched_class;
3099 else
3100 p->sched_class = &fair_sched_class;
3101
3102 init_entity_runnable_average(&p->se);
3103 trace_android_rvh_finish_prio_fork(p);
3104
3105 /*
3106 * The child is not yet in the pid-hash so no cgroup attach races,
3107 * and the cgroup is pinned to this child due to cgroup_fork()
3108 * is ran before sched_fork().
3109 *
3110 * Silence PROVE_RCU.
3111 */
3112 raw_spin_lock_irqsave(&p->pi_lock, flags);
3113 rseq_migrate(p);
3114 /*
3115 * We're setting the CPU for the first time, we don't migrate,
3116 * so use __set_task_cpu().
3117 */
3118 __set_task_cpu(p, smp_processor_id());
3119 if (p->sched_class->task_fork)
3120 p->sched_class->task_fork(p);
3121 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3122
3123#ifdef CONFIG_SCHED_INFO
3124 if (likely(sched_info_on()))
3125 memset(&p->sched_info, 0, sizeof(p->sched_info));
3126#endif
3127#if defined(CONFIG_SMP)
3128 p->on_cpu = 0;
3129#endif
3130 init_task_preempt_count(p);
3131#ifdef CONFIG_SMP
3132 plist_node_init(&p->pushable_tasks, MAX_PRIO);
3133 RB_CLEAR_NODE(&p->pushable_dl_tasks);
3134#endif
3135 return 0;
3136}
3137
3138void sched_post_fork(struct task_struct *p)
3139{
3140 uclamp_post_fork(p);
3141}
3142
3143unsigned long to_ratio(u64 period, u64 runtime)
3144{
3145 if (runtime == RUNTIME_INF)
3146 return BW_UNIT;
3147
3148 /*
3149 * Doing this here saves a lot of checks in all
3150 * the calling paths, and returning zero seems
3151 * safe for them anyway.
3152 */
3153 if (period == 0)
3154 return 0;
3155
3156 return div64_u64(runtime << BW_SHIFT, period);
3157}
3158
3159/*
3160 * wake_up_new_task - wake up a newly created task for the first time.
3161 *
3162 * This function will do some initial scheduler statistics housekeeping
3163 * that must be done for every newly created context, then puts the task
3164 * on the runqueue and wakes it.
3165 */
3166void wake_up_new_task(struct task_struct *p)
3167{
3168 struct rq_flags rf;
3169 struct rq *rq;
3170
3171 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3172 p->state = TASK_RUNNING;
3173#ifdef CONFIG_SMP
3174 /*
3175 * Fork balancing, do it here and not earlier because:
3176 * - cpus_ptr can change in the fork path
3177 * - any previously selected CPU might disappear through hotplug
3178 *
3179 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3180 * as we're not fully set-up yet.
3181 */
3182 p->recent_used_cpu = task_cpu(p);
3183 rseq_migrate(p);
3184 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
3185#endif
3186 rq = __task_rq_lock(p, &rf);
3187 update_rq_clock(rq);
3188 post_init_entity_util_avg(p);
3189
3190 activate_task(rq, p, ENQUEUE_NOCLOCK);
3191 trace_sched_wakeup_new(p);
3192 check_preempt_curr(rq, p, WF_FORK);
3193#ifdef CONFIG_SMP
3194 if (p->sched_class->task_woken) {
3195 /*
3196 * Nothing relies on rq->lock after this, so its fine to
3197 * drop it.
3198 */
3199 rq_unpin_lock(rq, &rf);
3200 p->sched_class->task_woken(rq, p);
3201 rq_repin_lock(rq, &rf);
3202 }
3203#endif
3204 task_rq_unlock(rq, p, &rf);
3205}
3206
3207#ifdef CONFIG_PREEMPT_NOTIFIERS
3208
3209static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3210
3211void preempt_notifier_inc(void)
3212{
3213 static_branch_inc(&preempt_notifier_key);
3214}
3215EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3216
3217void preempt_notifier_dec(void)
3218{
3219 static_branch_dec(&preempt_notifier_key);
3220}
3221EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3222
3223/**
3224 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3225 * @notifier: notifier struct to register
3226 */
3227void preempt_notifier_register(struct preempt_notifier *notifier)
3228{
3229 if (!static_branch_unlikely(&preempt_notifier_key))
3230 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3231
3232 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3233}
3234EXPORT_SYMBOL_GPL(preempt_notifier_register);
3235
3236/**
3237 * preempt_notifier_unregister - no longer interested in preemption notifications
3238 * @notifier: notifier struct to unregister
3239 *
3240 * This is *not* safe to call from within a preemption notifier.
3241 */
3242void preempt_notifier_unregister(struct preempt_notifier *notifier)
3243{
3244 hlist_del(&notifier->link);
3245}
3246EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3247
3248static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3249{
3250 struct preempt_notifier *notifier;
3251
3252 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3253 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3254}
3255
3256static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3257{
3258 if (static_branch_unlikely(&preempt_notifier_key))
3259 __fire_sched_in_preempt_notifiers(curr);
3260}
3261
3262static void
3263__fire_sched_out_preempt_notifiers(struct task_struct *curr,
3264 struct task_struct *next)
3265{
3266 struct preempt_notifier *notifier;
3267
3268 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3269 notifier->ops->sched_out(notifier, next);
3270}
3271
3272static __always_inline void
3273fire_sched_out_preempt_notifiers(struct task_struct *curr,
3274 struct task_struct *next)
3275{
3276 if (static_branch_unlikely(&preempt_notifier_key))
3277 __fire_sched_out_preempt_notifiers(curr, next);
3278}
3279
3280#else /* !CONFIG_PREEMPT_NOTIFIERS */
3281
3282static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3283{
3284}
3285
3286static inline void
3287fire_sched_out_preempt_notifiers(struct task_struct *curr,
3288 struct task_struct *next)
3289{
3290}
3291
3292#endif /* CONFIG_PREEMPT_NOTIFIERS */
3293
3294static inline void prepare_task(struct task_struct *next)
3295{
3296#ifdef CONFIG_SMP
3297 /*
3298 * Claim the task as running, we do this before switching to it
3299 * such that any running task will have this set.
3300 */
3301 next->on_cpu = 1;
3302#endif
3303}
3304
3305static inline void finish_task(struct task_struct *prev)
3306{
3307#ifdef CONFIG_SMP
3308 /*
3309 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3310 * We must ensure this doesn't happen until the switch is completely
3311 * finished.
3312 *
3313 * In particular, the load of prev->state in finish_task_switch() must
3314 * happen before this.
3315 *
3316 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3317 */
3318 smp_store_release(&prev->on_cpu, 0);
3319#endif
3320}
3321
3322static inline void
3323prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3324{
3325 /*
3326 * Since the runqueue lock will be released by the next
3327 * task (which is an invalid locking op but in the case
3328 * of the scheduler it's an obvious special-case), so we
3329 * do an early lockdep release here:
3330 */
3331 rq_unpin_lock(rq, rf);
3332 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3333#ifdef CONFIG_DEBUG_SPINLOCK
3334 /* this is a valid case when another task releases the spinlock */
3335 rq->lock.owner = next;
3336#endif
3337}
3338
3339static inline void finish_lock_switch(struct rq *rq)
3340{
3341 /*
3342 * If we are tracking spinlock dependencies then we have to
3343 * fix up the runqueue lock - which gets 'carried over' from
3344 * prev into current:
3345 */
3346 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3347 raw_spin_unlock_irq(&rq->lock);
3348}
3349
3350/*
3351 * NOP if the arch has not defined these:
3352 */
3353
3354#ifndef prepare_arch_switch
3355# define prepare_arch_switch(next) do { } while (0)
3356#endif
3357
3358#ifndef finish_arch_post_lock_switch
3359# define finish_arch_post_lock_switch() do { } while (0)
3360#endif
3361
3362/**
3363 * prepare_task_switch - prepare to switch tasks
3364 * @rq: the runqueue preparing to switch
3365 * @prev: the current task that is being switched out
3366 * @next: the task we are going to switch to.
3367 *
3368 * This is called with the rq lock held and interrupts off. It must
3369 * be paired with a subsequent finish_task_switch after the context
3370 * switch.
3371 *
3372 * prepare_task_switch sets up locking and calls architecture specific
3373 * hooks.
3374 */
3375static inline void
3376prepare_task_switch(struct rq *rq, struct task_struct *prev,
3377 struct task_struct *next)
3378{
3379 kcov_prepare_switch(prev);
3380 sched_info_switch(rq, prev, next);
3381 perf_event_task_sched_out(prev, next);
3382 rseq_preempt(prev);
3383 fire_sched_out_preempt_notifiers(prev, next);
3384 prepare_task(next);
3385 prepare_arch_switch(next);
3386}
3387
3388/**
3389 * finish_task_switch - clean up after a task-switch
3390 * @prev: the thread we just switched away from.
3391 *
3392 * finish_task_switch must be called after the context switch, paired
3393 * with a prepare_task_switch call before the context switch.
3394 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3395 * and do any other architecture-specific cleanup actions.
3396 *
3397 * Note that we may have delayed dropping an mm in context_switch(). If
3398 * so, we finish that here outside of the runqueue lock. (Doing it
3399 * with the lock held can cause deadlocks; see schedule() for
3400 * details.)
3401 *
3402 * The context switch have flipped the stack from under us and restored the
3403 * local variables which were saved when this task called schedule() in the
3404 * past. prev == current is still correct but we need to recalculate this_rq
3405 * because prev may have moved to another CPU.
3406 */
3407static struct rq *finish_task_switch(struct task_struct *prev)
3408 __releases(rq->lock)
3409{
3410 struct rq *rq = this_rq();
3411 struct mm_struct *mm = rq->prev_mm;
3412 long prev_state;
3413
3414 /*
3415 * The previous task will have left us with a preempt_count of 2
3416 * because it left us after:
3417 *
3418 * schedule()
3419 * preempt_disable(); // 1
3420 * __schedule()
3421 * raw_spin_lock_irq(&rq->lock) // 2
3422 *
3423 * Also, see FORK_PREEMPT_COUNT.
3424 */
3425 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3426 "corrupted preempt_count: %s/%d/0x%x\n",
3427 current->comm, current->pid, preempt_count()))
3428 preempt_count_set(FORK_PREEMPT_COUNT);
3429
3430 rq->prev_mm = NULL;
3431
3432 /*
3433 * A task struct has one reference for the use as "current".
3434 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3435 * schedule one last time. The schedule call will never return, and
3436 * the scheduled task must drop that reference.
3437 *
3438 * We must observe prev->state before clearing prev->on_cpu (in
3439 * finish_task), otherwise a concurrent wakeup can get prev
3440 * running on another CPU and we could rave with its RUNNING -> DEAD
3441 * transition, resulting in a double drop.
3442 */
3443 prev_state = prev->state;
3444 vtime_task_switch(prev);
3445 perf_event_task_sched_in(prev, current);
3446 finish_task(prev);
3447 finish_lock_switch(rq);
3448 finish_arch_post_lock_switch();
3449 kcov_finish_switch(current);
3450
3451 fire_sched_in_preempt_notifiers(current);
3452 /*
3453 * When switching through a kernel thread, the loop in
3454 * membarrier_{private,global}_expedited() may have observed that
3455 * kernel thread and not issued an IPI. It is therefore possible to
3456 * schedule between user->kernel->user threads without passing though
3457 * switch_mm(). Membarrier requires a barrier after storing to
3458 * rq->curr, before returning to userspace, so provide them here:
3459 *
3460 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3461 * provided by mmdrop(),
3462 * - a sync_core for SYNC_CORE.
3463 */
3464 if (mm) {
3465 membarrier_mm_sync_core_before_usermode(mm);
3466 mmdrop(mm);
3467 }
3468 if (unlikely(prev_state == TASK_DEAD)) {
3469 if (prev->sched_class->task_dead)
3470 prev->sched_class->task_dead(prev);
3471
3472 /*
3473 * Remove function-return probe instances associated with this
3474 * task and put them back on the free list.
3475 */
3476 kprobe_flush_task(prev);
3477
3478 /* Task is done with its stack. */
3479 put_task_stack(prev);
3480
3481 put_task_struct_rcu_user(prev);
3482 }
3483
3484 tick_nohz_task_switch();
3485 return rq;
3486}
3487
3488#ifdef CONFIG_SMP
3489
3490/* rq->lock is NOT held, but preemption is disabled */
3491static void __balance_callback(struct rq *rq)
3492{
3493 struct callback_head *head, *next;
3494 void (*func)(struct rq *rq);
3495 unsigned long flags;
3496
3497 raw_spin_lock_irqsave(&rq->lock, flags);
3498 head = rq->balance_callback;
3499 rq->balance_callback = NULL;
3500 while (head) {
3501 func = (void (*)(struct rq *))head->func;
3502 next = head->next;
3503 head->next = NULL;
3504 head = next;
3505
3506 func(rq);
3507 }
3508 raw_spin_unlock_irqrestore(&rq->lock, flags);
3509}
3510
3511static inline void balance_callback(struct rq *rq)
3512{
3513 if (unlikely(rq->balance_callback))
3514 __balance_callback(rq);
3515}
3516
3517#else
3518
3519static inline void balance_callback(struct rq *rq)
3520{
3521}
3522
3523#endif
3524
3525/**
3526 * schedule_tail - first thing a freshly forked thread must call.
3527 * @prev: the thread we just switched away from.
3528 */
3529asmlinkage __visible void schedule_tail(struct task_struct *prev)
3530 __releases(rq->lock)
3531{
3532 struct rq *rq;
3533
3534 /*
3535 * New tasks start with FORK_PREEMPT_COUNT, see there and
3536 * finish_task_switch() for details.
3537 *
3538 * finish_task_switch() will drop rq->lock() and lower preempt_count
3539 * and the preempt_enable() will end up enabling preemption (on
3540 * PREEMPT_COUNT kernels).
3541 */
3542
3543 rq = finish_task_switch(prev);
3544 balance_callback(rq);
3545 preempt_enable();
3546
3547 if (current->set_child_tid)
3548 put_user(task_pid_vnr(current), current->set_child_tid);
3549
3550 calculate_sigpending();
3551}
3552
3553/*
3554 * context_switch - switch to the new MM and the new thread's register state.
3555 */
3556static __always_inline struct rq *
3557context_switch(struct rq *rq, struct task_struct *prev,
3558 struct task_struct *next, struct rq_flags *rf)
3559{
3560 prepare_task_switch(rq, prev, next);
3561
3562 /*
3563 * For paravirt, this is coupled with an exit in switch_to to
3564 * combine the page table reload and the switch backend into
3565 * one hypercall.
3566 */
3567 arch_start_context_switch(prev);
3568
3569 /*
3570 * kernel -> kernel lazy + transfer active
3571 * user -> kernel lazy + mmgrab() active
3572 *
3573 * kernel -> user switch + mmdrop() active
3574 * user -> user switch
3575 */
3576 if (!next->mm) { // to kernel
3577 enter_lazy_tlb(prev->active_mm, next);
3578
3579 next->active_mm = prev->active_mm;
3580 if (prev->mm) // from user
3581 mmgrab(prev->active_mm);
3582 else
3583 prev->active_mm = NULL;
3584 } else { // to user
3585 membarrier_switch_mm(rq, prev->active_mm, next->mm);
3586 /*
3587 * sys_membarrier() requires an smp_mb() between setting
3588 * rq->curr / membarrier_switch_mm() and returning to userspace.
3589 *
3590 * The below provides this either through switch_mm(), or in
3591 * case 'prev->active_mm == next->mm' through
3592 * finish_task_switch()'s mmdrop().
3593 */
3594 switch_mm_irqs_off(prev->active_mm, next->mm, next);
3595
3596 if (!prev->mm) { // from kernel
3597 /* will mmdrop() in finish_task_switch(). */
3598 rq->prev_mm = prev->active_mm;
3599 prev->active_mm = NULL;
3600 }
3601 }
3602
3603 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3604
3605 prepare_lock_switch(rq, next, rf);
3606
3607 /* Here we just switch the register state and the stack. */
3608 switch_to(prev, next, prev);
3609 barrier();
3610
3611#ifdef CONFIG_CPU_ASR1901
3612 prev->last_irq_trace = prev->cur_irq_trace;
3613 prev->cur_irq_trace = 0;
3614#endif
3615 return finish_task_switch(prev);
3616}
3617
3618#ifdef CONFIG_CPU_ASR1901
3619void write_one_irq_trace(u32 fun_ptr)
3620{
3621 struct task_struct *task = current;
3622 task->irq_trace[task->cur_irq_trace % NR_IRQ_TRACE] = fun_ptr;
3623 task->cur_irq_trace++;
3624}
3625#endif
3626
3627/*
3628 * nr_running and nr_context_switches:
3629 *
3630 * externally visible scheduler statistics: current number of runnable
3631 * threads, total number of context switches performed since bootup.
3632 */
3633unsigned long nr_running(void)
3634{
3635 unsigned long i, sum = 0;
3636
3637 for_each_online_cpu(i)
3638 sum += cpu_rq(i)->nr_running;
3639
3640 return sum;
3641}
3642
3643/*
3644 * Check if only the current task is running on the CPU.
3645 *
3646 * Caution: this function does not check that the caller has disabled
3647 * preemption, thus the result might have a time-of-check-to-time-of-use
3648 * race. The caller is responsible to use it correctly, for example:
3649 *
3650 * - from a non-preemptible section (of course)
3651 *
3652 * - from a thread that is bound to a single CPU
3653 *
3654 * - in a loop with very short iterations (e.g. a polling loop)
3655 */
3656bool single_task_running(void)
3657{
3658 return raw_rq()->nr_running == 1;
3659}
3660EXPORT_SYMBOL(single_task_running);
3661
3662unsigned long long nr_context_switches(void)
3663{
3664 int i;
3665 unsigned long long sum = 0;
3666
3667 for_each_possible_cpu(i)
3668 sum += cpu_rq(i)->nr_switches;
3669
3670 return sum;
3671}
3672
3673/*
3674 * Consumers of these two interfaces, like for example the cpuidle menu
3675 * governor, are using nonsensical data. Preferring shallow idle state selection
3676 * for a CPU that has IO-wait which might not even end up running the task when
3677 * it does become runnable.
3678 */
3679
3680unsigned long nr_iowait_cpu(int cpu)
3681{
3682 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3683}
3684
3685/*
3686 * IO-wait accounting, and how its mostly bollocks (on SMP).
3687 *
3688 * The idea behind IO-wait account is to account the idle time that we could
3689 * have spend running if it were not for IO. That is, if we were to improve the
3690 * storage performance, we'd have a proportional reduction in IO-wait time.
3691 *
3692 * This all works nicely on UP, where, when a task blocks on IO, we account
3693 * idle time as IO-wait, because if the storage were faster, it could've been
3694 * running and we'd not be idle.
3695 *
3696 * This has been extended to SMP, by doing the same for each CPU. This however
3697 * is broken.
3698 *
3699 * Imagine for instance the case where two tasks block on one CPU, only the one
3700 * CPU will have IO-wait accounted, while the other has regular idle. Even
3701 * though, if the storage were faster, both could've ran at the same time,
3702 * utilising both CPUs.
3703 *
3704 * This means, that when looking globally, the current IO-wait accounting on
3705 * SMP is a lower bound, by reason of under accounting.
3706 *
3707 * Worse, since the numbers are provided per CPU, they are sometimes
3708 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3709 * associated with any one particular CPU, it can wake to another CPU than it
3710 * blocked on. This means the per CPU IO-wait number is meaningless.
3711 *
3712 * Task CPU affinities can make all that even more 'interesting'.
3713 */
3714
3715unsigned long nr_iowait(void)
3716{
3717 unsigned long i, sum = 0;
3718
3719 for_each_possible_cpu(i)
3720 sum += nr_iowait_cpu(i);
3721
3722 return sum;
3723}
3724
3725#ifdef CONFIG_SMP
3726
3727/*
3728 * sched_exec - execve() is a valuable balancing opportunity, because at
3729 * this point the task has the smallest effective memory and cache footprint.
3730 */
3731void sched_exec(void)
3732{
3733 struct task_struct *p = current;
3734 unsigned long flags;
3735 int dest_cpu;
3736
3737 raw_spin_lock_irqsave(&p->pi_lock, flags);
3738 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3739 if (dest_cpu == smp_processor_id())
3740 goto unlock;
3741
3742 if (likely(cpu_active(dest_cpu))) {
3743 struct migration_arg arg = { p, dest_cpu };
3744
3745 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3746 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3747 return;
3748 }
3749unlock:
3750 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3751}
3752
3753#endif
3754
3755DEFINE_PER_CPU(struct kernel_stat, kstat);
3756DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3757
3758EXPORT_PER_CPU_SYMBOL(kstat);
3759EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3760
3761/*
3762 * The function fair_sched_class.update_curr accesses the struct curr
3763 * and its field curr->exec_start; when called from task_sched_runtime(),
3764 * we observe a high rate of cache misses in practice.
3765 * Prefetching this data results in improved performance.
3766 */
3767static inline void prefetch_curr_exec_start(struct task_struct *p)
3768{
3769#ifdef CONFIG_FAIR_GROUP_SCHED
3770 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3771#else
3772 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3773#endif
3774 prefetch(curr);
3775 prefetch(&curr->exec_start);
3776}
3777
3778/*
3779 * Return accounted runtime for the task.
3780 * In case the task is currently running, return the runtime plus current's
3781 * pending runtime that have not been accounted yet.
3782 */
3783unsigned long long task_sched_runtime(struct task_struct *p)
3784{
3785 struct rq_flags rf;
3786 struct rq *rq;
3787 u64 ns;
3788
3789#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3790 /*
3791 * 64-bit doesn't need locks to atomically read a 64-bit value.
3792 * So we have a optimization chance when the task's delta_exec is 0.
3793 * Reading ->on_cpu is racy, but this is ok.
3794 *
3795 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3796 * If we race with it entering CPU, unaccounted time is 0. This is
3797 * indistinguishable from the read occurring a few cycles earlier.
3798 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3799 * been accounted, so we're correct here as well.
3800 */
3801 if (!p->on_cpu || !task_on_rq_queued(p))
3802 return p->se.sum_exec_runtime;
3803#endif
3804
3805 rq = task_rq_lock(p, &rf);
3806 /*
3807 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3808 * project cycles that may never be accounted to this
3809 * thread, breaking clock_gettime().
3810 */
3811 if (task_current(rq, p) && task_on_rq_queued(p)) {
3812 prefetch_curr_exec_start(p);
3813 update_rq_clock(rq);
3814 p->sched_class->update_curr(rq);
3815 }
3816 ns = p->se.sum_exec_runtime;
3817 task_rq_unlock(rq, p, &rf);
3818
3819 return ns;
3820}
3821EXPORT_SYMBOL_GPL(task_sched_runtime);
3822
3823/*
3824 * This function gets called by the timer code, with HZ frequency.
3825 * We call it with interrupts disabled.
3826 */
3827void scheduler_tick(void)
3828{
3829 int cpu = smp_processor_id();
3830 struct rq *rq = cpu_rq(cpu);
3831 struct task_struct *curr = rq->curr;
3832 struct rq_flags rf;
3833
3834 sched_clock_tick();
3835
3836 rq_lock(rq, &rf);
3837
3838 update_rq_clock(rq);
3839 curr->sched_class->task_tick(rq, curr, 0);
3840 calc_global_load_tick(rq);
3841 psi_task_tick(rq);
3842
3843 rq_unlock(rq, &rf);
3844
3845 perf_event_task_tick();
3846
3847#ifdef CONFIG_SMP
3848 rq->idle_balance = idle_cpu(cpu);
3849 trigger_load_balance(rq);
3850#endif
3851
3852 trace_android_vh_scheduler_tick(rq);
3853}
3854
3855#ifdef CONFIG_NO_HZ_FULL
3856
3857struct tick_work {
3858 int cpu;
3859 atomic_t state;
3860 struct delayed_work work;
3861};
3862/* Values for ->state, see diagram below. */
3863#define TICK_SCHED_REMOTE_OFFLINE 0
3864#define TICK_SCHED_REMOTE_OFFLINING 1
3865#define TICK_SCHED_REMOTE_RUNNING 2
3866
3867/*
3868 * State diagram for ->state:
3869 *
3870 *
3871 * TICK_SCHED_REMOTE_OFFLINE
3872 * | ^
3873 * | |
3874 * | | sched_tick_remote()
3875 * | |
3876 * | |
3877 * +--TICK_SCHED_REMOTE_OFFLINING
3878 * | ^
3879 * | |
3880 * sched_tick_start() | | sched_tick_stop()
3881 * | |
3882 * V |
3883 * TICK_SCHED_REMOTE_RUNNING
3884 *
3885 *
3886 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3887 * and sched_tick_start() are happy to leave the state in RUNNING.
3888 */
3889
3890static struct tick_work __percpu *tick_work_cpu;
3891
3892static void sched_tick_remote(struct work_struct *work)
3893{
3894 struct delayed_work *dwork = to_delayed_work(work);
3895 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3896 int cpu = twork->cpu;
3897 struct rq *rq = cpu_rq(cpu);
3898 struct task_struct *curr;
3899 struct rq_flags rf;
3900 u64 delta;
3901 int os;
3902
3903 /*
3904 * Handle the tick only if it appears the remote CPU is running in full
3905 * dynticks mode. The check is racy by nature, but missing a tick or
3906 * having one too much is no big deal because the scheduler tick updates
3907 * statistics and checks timeslices in a time-independent way, regardless
3908 * of when exactly it is running.
3909 */
3910 if (!tick_nohz_tick_stopped_cpu(cpu))
3911 goto out_requeue;
3912
3913 rq_lock_irq(rq, &rf);
3914 curr = rq->curr;
3915 if (cpu_is_offline(cpu))
3916 goto out_unlock;
3917
3918 update_rq_clock(rq);
3919
3920 if (!is_idle_task(curr)) {
3921 /*
3922 * Make sure the next tick runs within a reasonable
3923 * amount of time.
3924 */
3925 delta = rq_clock_task(rq) - curr->se.exec_start;
3926 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3927 }
3928 curr->sched_class->task_tick(rq, curr, 0);
3929
3930 calc_load_nohz_remote(rq);
3931out_unlock:
3932 rq_unlock_irq(rq, &rf);
3933out_requeue:
3934
3935 /*
3936 * Run the remote tick once per second (1Hz). This arbitrary
3937 * frequency is large enough to avoid overload but short enough
3938 * to keep scheduler internal stats reasonably up to date. But
3939 * first update state to reflect hotplug activity if required.
3940 */
3941 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3942 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3943 if (os == TICK_SCHED_REMOTE_RUNNING)
3944 queue_delayed_work(system_unbound_wq, dwork, HZ);
3945}
3946
3947static void sched_tick_start(int cpu)
3948{
3949 int os;
3950 struct tick_work *twork;
3951
3952 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3953 return;
3954
3955 WARN_ON_ONCE(!tick_work_cpu);
3956
3957 twork = per_cpu_ptr(tick_work_cpu, cpu);
3958 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3959 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3960 if (os == TICK_SCHED_REMOTE_OFFLINE) {
3961 twork->cpu = cpu;
3962 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3963 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3964 }
3965}
3966
3967#ifdef CONFIG_HOTPLUG_CPU
3968static void sched_tick_stop(int cpu)
3969{
3970 struct tick_work *twork;
3971 int os;
3972
3973 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3974 return;
3975
3976 WARN_ON_ONCE(!tick_work_cpu);
3977
3978 twork = per_cpu_ptr(tick_work_cpu, cpu);
3979 /* There cannot be competing actions, but don't rely on stop-machine. */
3980 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3981 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3982 /* Don't cancel, as this would mess up the state machine. */
3983}
3984#endif /* CONFIG_HOTPLUG_CPU */
3985
3986int __init sched_tick_offload_init(void)
3987{
3988 tick_work_cpu = alloc_percpu(struct tick_work);
3989 BUG_ON(!tick_work_cpu);
3990 return 0;
3991}
3992
3993#else /* !CONFIG_NO_HZ_FULL */
3994static inline void sched_tick_start(int cpu) { }
3995static inline void sched_tick_stop(int cpu) { }
3996#endif
3997
3998#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3999 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4000/*
4001 * If the value passed in is equal to the current preempt count
4002 * then we just disabled preemption. Start timing the latency.
4003 */
4004static inline void preempt_latency_start(int val)
4005{
4006 if (preempt_count() == val) {
4007 unsigned long ip = get_lock_parent_ip();
4008#ifdef CONFIG_DEBUG_PREEMPT
4009 current->preempt_disable_ip = ip;
4010#endif
4011 trace_preempt_off(CALLER_ADDR0, ip);
4012 }
4013}
4014
4015void preempt_count_add(int val)
4016{
4017#ifdef CONFIG_DEBUG_PREEMPT
4018 /*
4019 * Underflow?
4020 */
4021 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4022 return;
4023#endif
4024 __preempt_count_add(val);
4025#ifdef CONFIG_DEBUG_PREEMPT
4026 /*
4027 * Spinlock count overflowing soon?
4028 */
4029 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4030 PREEMPT_MASK - 10);
4031#endif
4032 preempt_latency_start(val);
4033}
4034EXPORT_SYMBOL(preempt_count_add);
4035NOKPROBE_SYMBOL(preempt_count_add);
4036
4037/*
4038 * If the value passed in equals to the current preempt count
4039 * then we just enabled preemption. Stop timing the latency.
4040 */
4041static inline void preempt_latency_stop(int val)
4042{
4043 if (preempt_count() == val)
4044 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4045}
4046
4047void preempt_count_sub(int val)
4048{
4049#ifdef CONFIG_DEBUG_PREEMPT
4050 /*
4051 * Underflow?
4052 */
4053 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4054 return;
4055 /*
4056 * Is the spinlock portion underflowing?
4057 */
4058 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4059 !(preempt_count() & PREEMPT_MASK)))
4060 return;
4061#endif
4062
4063 preempt_latency_stop(val);
4064 __preempt_count_sub(val);
4065}
4066EXPORT_SYMBOL(preempt_count_sub);
4067NOKPROBE_SYMBOL(preempt_count_sub);
4068
4069#else
4070static inline void preempt_latency_start(int val) { }
4071static inline void preempt_latency_stop(int val) { }
4072#endif
4073
4074static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4075{
4076#ifdef CONFIG_DEBUG_PREEMPT
4077 return p->preempt_disable_ip;
4078#else
4079 return 0;
4080#endif
4081}
4082
4083/*
4084 * Print scheduling while atomic bug:
4085 */
4086static noinline void __schedule_bug(struct task_struct *prev)
4087{
4088 /* Save this before calling printk(), since that will clobber it */
4089 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4090
4091 if (oops_in_progress)
4092 return;
4093
4094 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4095 prev->comm, prev->pid, preempt_count());
4096
4097 debug_show_held_locks(prev);
4098 print_modules();
4099 if (irqs_disabled())
4100 print_irqtrace_events(prev);
4101 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4102 && in_atomic_preempt_off()) {
4103 pr_err("Preemption disabled at:");
4104 print_ip_sym(preempt_disable_ip);
4105 pr_cont("\n");
4106 }
4107 check_panic_on_warn("scheduling while atomic");
4108
4109 dump_stack();
4110 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4111}
4112
4113/*
4114 * Various schedule()-time debugging checks and statistics:
4115 */
4116static inline void schedule_debug(struct task_struct *prev, bool preempt)
4117{
4118#ifdef CONFIG_SCHED_STACK_END_CHECK
4119 if (task_stack_end_corrupted(prev))
4120 panic("corrupted stack end detected inside scheduler\n");
4121#endif
4122
4123#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4124 if (!preempt && prev->state && prev->non_block_count) {
4125 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4126 prev->comm, prev->pid, prev->non_block_count);
4127 dump_stack();
4128 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4129 }
4130#endif
4131
4132 if (unlikely(in_atomic_preempt_off())) {
4133 __schedule_bug(prev);
4134 preempt_count_set(PREEMPT_DISABLED);
4135 }
4136 rcu_sleep_check();
4137
4138 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4139
4140 schedstat_inc(this_rq()->sched_count);
4141}
4142
4143/*
4144 * Pick up the highest-prio task:
4145 */
4146static inline struct task_struct *
4147pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4148{
4149 const struct sched_class *class;
4150 struct task_struct *p;
4151
4152 /*
4153 * Optimization: we know that if all tasks are in the fair class we can
4154 * call that function directly, but only if the @prev task wasn't of a
4155 * higher scheduling class, because otherwise those loose the
4156 * opportunity to pull in more work from other CPUs.
4157 */
4158 if (likely((prev->sched_class == &idle_sched_class ||
4159 prev->sched_class == &fair_sched_class) &&
4160 rq->nr_running == rq->cfs.h_nr_running)) {
4161
4162 p = fair_sched_class.pick_next_task(rq, prev, rf);
4163 if (unlikely(p == RETRY_TASK))
4164 goto restart;
4165
4166 /* Assumes fair_sched_class->next == idle_sched_class */
4167 if (unlikely(!p))
4168 p = idle_sched_class.pick_next_task(rq, prev, rf);
4169
4170 return p;
4171 }
4172
4173restart:
4174#ifdef CONFIG_SMP
4175 /*
4176 * We must do the balancing pass before put_next_task(), such
4177 * that when we release the rq->lock the task is in the same
4178 * state as before we took rq->lock.
4179 *
4180 * We can terminate the balance pass as soon as we know there is
4181 * a runnable task of @class priority or higher.
4182 */
4183 for_class_range(class, prev->sched_class, &idle_sched_class) {
4184 if (class->balance(rq, prev, rf))
4185 break;
4186 }
4187#endif
4188
4189 put_prev_task(rq, prev);
4190
4191 for_each_class(class) {
4192 p = class->pick_next_task(rq, NULL, NULL);
4193 if (p)
4194 return p;
4195 }
4196
4197 /* The idle class should always have a runnable task: */
4198 BUG();
4199}
4200
4201/*
4202 * __schedule() is the main scheduler function.
4203 *
4204 * The main means of driving the scheduler and thus entering this function are:
4205 *
4206 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4207 *
4208 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4209 * paths. For example, see arch/x86/entry_64.S.
4210 *
4211 * To drive preemption between tasks, the scheduler sets the flag in timer
4212 * interrupt handler scheduler_tick().
4213 *
4214 * 3. Wakeups don't really cause entry into schedule(). They add a
4215 * task to the run-queue and that's it.
4216 *
4217 * Now, if the new task added to the run-queue preempts the current
4218 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4219 * called on the nearest possible occasion:
4220 *
4221 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4222 *
4223 * - in syscall or exception context, at the next outmost
4224 * preempt_enable(). (this might be as soon as the wake_up()'s
4225 * spin_unlock()!)
4226 *
4227 * - in IRQ context, return from interrupt-handler to
4228 * preemptible context
4229 *
4230 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4231 * then at the next:
4232 *
4233 * - cond_resched() call
4234 * - explicit schedule() call
4235 * - return from syscall or exception to user-space
4236 * - return from interrupt-handler to user-space
4237 *
4238 * WARNING: must be called with preemption disabled!
4239 */
4240static void __sched notrace __schedule(bool preempt)
4241{
4242 struct task_struct *prev, *next;
4243 unsigned long *switch_count;
4244 struct rq_flags rf;
4245 struct rq *rq;
4246 int cpu;
4247
4248 cpu = smp_processor_id();
4249 rq = cpu_rq(cpu);
4250 prev = rq->curr;
4251
4252 schedule_debug(prev, preempt);
4253
4254 if (sched_feat(HRTICK))
4255 hrtick_clear(rq);
4256
4257 local_irq_disable();
4258 rcu_note_context_switch(preempt);
4259
4260 /*
4261 * Make sure that signal_pending_state()->signal_pending() below
4262 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4263 * done by the caller to avoid the race with signal_wake_up().
4264 *
4265 * The membarrier system call requires a full memory barrier
4266 * after coming from user-space, before storing to rq->curr.
4267 */
4268 rq_lock(rq, &rf);
4269 smp_mb__after_spinlock();
4270
4271 /* Promote REQ to ACT */
4272 rq->clock_update_flags <<= 1;
4273 update_rq_clock(rq);
4274
4275 switch_count = &prev->nivcsw;
4276 if (!preempt && prev->state) {
4277 if (signal_pending_state(prev->state, prev)) {
4278 prev->state = TASK_RUNNING;
4279 } else {
4280 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4281
4282 if (prev->in_iowait) {
4283 atomic_inc(&rq->nr_iowait);
4284 delayacct_blkio_start();
4285 }
4286 }
4287 switch_count = &prev->nvcsw;
4288 }
4289
4290 next = pick_next_task(rq, prev, &rf);
4291 clear_tsk_need_resched(prev);
4292 clear_preempt_need_resched();
4293
4294 if (likely(prev != next)) {
4295 rq->nr_switches++;
4296 /*
4297 * RCU users of rcu_dereference(rq->curr) may not see
4298 * changes to task_struct made by pick_next_task().
4299 */
4300 RCU_INIT_POINTER(rq->curr, next);
4301 /*
4302 * The membarrier system call requires each architecture
4303 * to have a full memory barrier after updating
4304 * rq->curr, before returning to user-space.
4305 *
4306 * Here are the schemes providing that barrier on the
4307 * various architectures:
4308 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4309 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4310 * - finish_lock_switch() for weakly-ordered
4311 * architectures where spin_unlock is a full barrier,
4312 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4313 * is a RELEASE barrier),
4314 */
4315 ++*switch_count;
4316
4317 trace_sched_switch(preempt, prev, next);
4318
4319 /* Also unlocks the rq: */
4320 rq = context_switch(rq, prev, next, &rf);
4321 } else {
4322 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4323 rq_unlock_irq(rq, &rf);
4324 }
4325
4326 balance_callback(rq);
4327}
4328
4329void __noreturn do_task_dead(void)
4330{
4331 /* Causes final put_task_struct in finish_task_switch(): */
4332 set_special_state(TASK_DEAD);
4333
4334 /* Tell freezer to ignore us: */
4335 current->flags |= PF_NOFREEZE;
4336
4337 __schedule(false);
4338 BUG();
4339
4340 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4341 for (;;)
4342 cpu_relax();
4343}
4344
4345static inline void sched_submit_work(struct task_struct *tsk)
4346{
4347 if (!tsk->state)
4348 return;
4349
4350 /*
4351 * If a worker went to sleep, notify and ask workqueue whether
4352 * it wants to wake up a task to maintain concurrency.
4353 * As this function is called inside the schedule() context,
4354 * we disable preemption to avoid it calling schedule() again
4355 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4356 * requires it.
4357 */
4358 if (tsk->flags & PF_WQ_WORKER) {
4359 preempt_disable();
4360 wq_worker_sleeping(tsk);
4361 preempt_enable_no_resched();
4362 }
4363
4364 if (tsk_is_pi_blocked(tsk))
4365 return;
4366
4367 /*
4368 * If we are going to sleep and we have plugged IO queued,
4369 * make sure to submit it to avoid deadlocks.
4370 */
4371 if (blk_needs_flush_plug(tsk))
4372 blk_schedule_flush_plug(tsk);
4373}
4374
4375static void sched_update_worker(struct task_struct *tsk)
4376{
4377 if (tsk->flags & PF_WQ_WORKER)
4378 wq_worker_running(tsk);
4379}
4380
4381asmlinkage __visible void __sched schedule(void)
4382{
4383 struct task_struct *tsk = current;
4384
4385 sched_submit_work(tsk);
4386 do {
4387 preempt_disable();
4388 __schedule(false);
4389 sched_preempt_enable_no_resched();
4390 } while (need_resched());
4391 sched_update_worker(tsk);
4392}
4393EXPORT_SYMBOL(schedule);
4394
4395/*
4396 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4397 * state (have scheduled out non-voluntarily) by making sure that all
4398 * tasks have either left the run queue or have gone into user space.
4399 * As idle tasks do not do either, they must not ever be preempted
4400 * (schedule out non-voluntarily).
4401 *
4402 * schedule_idle() is similar to schedule_preempt_disable() except that it
4403 * never enables preemption because it does not call sched_submit_work().
4404 */
4405void __sched schedule_idle(void)
4406{
4407 /*
4408 * As this skips calling sched_submit_work(), which the idle task does
4409 * regardless because that function is a nop when the task is in a
4410 * TASK_RUNNING state, make sure this isn't used someplace that the
4411 * current task can be in any other state. Note, idle is always in the
4412 * TASK_RUNNING state.
4413 */
4414 WARN_ON_ONCE(current->state);
4415 do {
4416 __schedule(false);
4417 } while (need_resched());
4418}
4419
4420#ifdef CONFIG_CONTEXT_TRACKING
4421asmlinkage __visible void __sched schedule_user(void)
4422{
4423 /*
4424 * If we come here after a random call to set_need_resched(),
4425 * or we have been woken up remotely but the IPI has not yet arrived,
4426 * we haven't yet exited the RCU idle mode. Do it here manually until
4427 * we find a better solution.
4428 *
4429 * NB: There are buggy callers of this function. Ideally we
4430 * should warn if prev_state != CONTEXT_USER, but that will trigger
4431 * too frequently to make sense yet.
4432 */
4433 enum ctx_state prev_state = exception_enter();
4434 schedule();
4435 exception_exit(prev_state);
4436}
4437#endif
4438
4439/**
4440 * schedule_preempt_disabled - called with preemption disabled
4441 *
4442 * Returns with preemption disabled. Note: preempt_count must be 1
4443 */
4444void __sched schedule_preempt_disabled(void)
4445{
4446 sched_preempt_enable_no_resched();
4447 schedule();
4448 preempt_disable();
4449}
4450
4451static void __sched notrace preempt_schedule_common(void)
4452{
4453 do {
4454 /*
4455 * Because the function tracer can trace preempt_count_sub()
4456 * and it also uses preempt_enable/disable_notrace(), if
4457 * NEED_RESCHED is set, the preempt_enable_notrace() called
4458 * by the function tracer will call this function again and
4459 * cause infinite recursion.
4460 *
4461 * Preemption must be disabled here before the function
4462 * tracer can trace. Break up preempt_disable() into two
4463 * calls. One to disable preemption without fear of being
4464 * traced. The other to still record the preemption latency,
4465 * which can also be traced by the function tracer.
4466 */
4467 preempt_disable_notrace();
4468 preempt_latency_start(1);
4469 __schedule(true);
4470 preempt_latency_stop(1);
4471 preempt_enable_no_resched_notrace();
4472
4473 /*
4474 * Check again in case we missed a preemption opportunity
4475 * between schedule and now.
4476 */
4477 } while (need_resched());
4478}
4479
4480#ifdef CONFIG_PREEMPTION
4481/*
4482 * This is the entry point to schedule() from in-kernel preemption
4483 * off of preempt_enable.
4484 */
4485asmlinkage __visible void __sched notrace preempt_schedule(void)
4486{
4487 /*
4488 * If there is a non-zero preempt_count or interrupts are disabled,
4489 * we do not want to preempt the current task. Just return..
4490 */
4491 if (likely(!preemptible()))
4492 return;
4493
4494 preempt_schedule_common();
4495}
4496NOKPROBE_SYMBOL(preempt_schedule);
4497EXPORT_SYMBOL(preempt_schedule);
4498
4499/**
4500 * preempt_schedule_notrace - preempt_schedule called by tracing
4501 *
4502 * The tracing infrastructure uses preempt_enable_notrace to prevent
4503 * recursion and tracing preempt enabling caused by the tracing
4504 * infrastructure itself. But as tracing can happen in areas coming
4505 * from userspace or just about to enter userspace, a preempt enable
4506 * can occur before user_exit() is called. This will cause the scheduler
4507 * to be called when the system is still in usermode.
4508 *
4509 * To prevent this, the preempt_enable_notrace will use this function
4510 * instead of preempt_schedule() to exit user context if needed before
4511 * calling the scheduler.
4512 */
4513asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4514{
4515 enum ctx_state prev_ctx;
4516
4517 if (likely(!preemptible()))
4518 return;
4519
4520 do {
4521 /*
4522 * Because the function tracer can trace preempt_count_sub()
4523 * and it also uses preempt_enable/disable_notrace(), if
4524 * NEED_RESCHED is set, the preempt_enable_notrace() called
4525 * by the function tracer will call this function again and
4526 * cause infinite recursion.
4527 *
4528 * Preemption must be disabled here before the function
4529 * tracer can trace. Break up preempt_disable() into two
4530 * calls. One to disable preemption without fear of being
4531 * traced. The other to still record the preemption latency,
4532 * which can also be traced by the function tracer.
4533 */
4534 preempt_disable_notrace();
4535 preempt_latency_start(1);
4536 /*
4537 * Needs preempt disabled in case user_exit() is traced
4538 * and the tracer calls preempt_enable_notrace() causing
4539 * an infinite recursion.
4540 */
4541 prev_ctx = exception_enter();
4542 __schedule(true);
4543 exception_exit(prev_ctx);
4544
4545 preempt_latency_stop(1);
4546 preempt_enable_no_resched_notrace();
4547 } while (need_resched());
4548}
4549EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4550
4551#endif /* CONFIG_PREEMPTION */
4552
4553/*
4554 * This is the entry point to schedule() from kernel preemption
4555 * off of irq context.
4556 * Note, that this is called and return with irqs disabled. This will
4557 * protect us against recursive calling from irq.
4558 */
4559asmlinkage __visible void __sched preempt_schedule_irq(void)
4560{
4561 enum ctx_state prev_state;
4562
4563 /* Catch callers which need to be fixed */
4564 BUG_ON(preempt_count() || !irqs_disabled());
4565
4566 prev_state = exception_enter();
4567
4568 do {
4569 preempt_disable();
4570 local_irq_enable();
4571 __schedule(true);
4572 local_irq_disable();
4573 sched_preempt_enable_no_resched();
4574 } while (need_resched());
4575
4576 exception_exit(prev_state);
4577}
4578
4579int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4580 void *key)
4581{
4582 return try_to_wake_up(curr->private, mode, wake_flags);
4583}
4584EXPORT_SYMBOL(default_wake_function);
4585
4586#ifdef CONFIG_RT_MUTEXES
4587
4588static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4589{
4590 if (pi_task)
4591 prio = min(prio, pi_task->prio);
4592
4593 return prio;
4594}
4595
4596static inline int rt_effective_prio(struct task_struct *p, int prio)
4597{
4598 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4599
4600 return __rt_effective_prio(pi_task, prio);
4601}
4602
4603/*
4604 * rt_mutex_setprio - set the current priority of a task
4605 * @p: task to boost
4606 * @pi_task: donor task
4607 *
4608 * This function changes the 'effective' priority of a task. It does
4609 * not touch ->normal_prio like __setscheduler().
4610 *
4611 * Used by the rt_mutex code to implement priority inheritance
4612 * logic. Call site only calls if the priority of the task changed.
4613 */
4614void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4615{
4616 int prio, oldprio, queued, running, queue_flag =
4617 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4618 const struct sched_class *prev_class;
4619 struct rq_flags rf;
4620 struct rq *rq;
4621
4622 trace_android_rvh_rtmutex_prepare_setprio(p, pi_task);
4623 /* XXX used to be waiter->prio, not waiter->task->prio */
4624 prio = __rt_effective_prio(pi_task, p->normal_prio);
4625
4626 /*
4627 * If nothing changed; bail early.
4628 */
4629 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4630 return;
4631
4632 rq = __task_rq_lock(p, &rf);
4633 update_rq_clock(rq);
4634 /*
4635 * Set under pi_lock && rq->lock, such that the value can be used under
4636 * either lock.
4637 *
4638 * Note that there is loads of tricky to make this pointer cache work
4639 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4640 * ensure a task is de-boosted (pi_task is set to NULL) before the
4641 * task is allowed to run again (and can exit). This ensures the pointer
4642 * points to a blocked task -- which guaratees the task is present.
4643 */
4644 p->pi_top_task = pi_task;
4645
4646 /*
4647 * For FIFO/RR we only need to set prio, if that matches we're done.
4648 */
4649 if (prio == p->prio && !dl_prio(prio))
4650 goto out_unlock;
4651
4652 /*
4653 * Idle task boosting is a nono in general. There is one
4654 * exception, when PREEMPT_RT and NOHZ is active:
4655 *
4656 * The idle task calls get_next_timer_interrupt() and holds
4657 * the timer wheel base->lock on the CPU and another CPU wants
4658 * to access the timer (probably to cancel it). We can safely
4659 * ignore the boosting request, as the idle CPU runs this code
4660 * with interrupts disabled and will complete the lock
4661 * protected section without being interrupted. So there is no
4662 * real need to boost.
4663 */
4664 if (unlikely(p == rq->idle)) {
4665 WARN_ON(p != rq->curr);
4666 WARN_ON(p->pi_blocked_on);
4667 goto out_unlock;
4668 }
4669
4670 trace_sched_pi_setprio(p, pi_task);
4671 oldprio = p->prio;
4672
4673 if (oldprio == prio)
4674 queue_flag &= ~DEQUEUE_MOVE;
4675
4676 prev_class = p->sched_class;
4677 queued = task_on_rq_queued(p);
4678 running = task_current(rq, p);
4679 if (queued)
4680 dequeue_task(rq, p, queue_flag);
4681 if (running)
4682 put_prev_task(rq, p);
4683
4684 /*
4685 * Boosting condition are:
4686 * 1. -rt task is running and holds mutex A
4687 * --> -dl task blocks on mutex A
4688 *
4689 * 2. -dl task is running and holds mutex A
4690 * --> -dl task blocks on mutex A and could preempt the
4691 * running task
4692 */
4693 if (dl_prio(prio)) {
4694 if (!dl_prio(p->normal_prio) ||
4695 (pi_task && dl_prio(pi_task->prio) &&
4696 dl_entity_preempt(&pi_task->dl, &p->dl))) {
4697 p->dl.pi_se = pi_task->dl.pi_se;
4698 queue_flag |= ENQUEUE_REPLENISH;
4699 } else {
4700 p->dl.pi_se = &p->dl;
4701 }
4702 p->sched_class = &dl_sched_class;
4703 } else if (rt_prio(prio)) {
4704 if (dl_prio(oldprio))
4705 p->dl.pi_se = &p->dl;
4706 if (oldprio < prio)
4707 queue_flag |= ENQUEUE_HEAD;
4708 p->sched_class = &rt_sched_class;
4709 } else {
4710 if (dl_prio(oldprio))
4711 p->dl.pi_se = &p->dl;
4712 if (rt_prio(oldprio))
4713 p->rt.timeout = 0;
4714 p->sched_class = &fair_sched_class;
4715 }
4716
4717 p->prio = prio;
4718
4719 if (queued)
4720 enqueue_task(rq, p, queue_flag);
4721 if (running)
4722 set_next_task(rq, p);
4723
4724 check_class_changed(rq, p, prev_class, oldprio);
4725out_unlock:
4726 /* Avoid rq from going away on us: */
4727 preempt_disable();
4728 __task_rq_unlock(rq, &rf);
4729
4730 balance_callback(rq);
4731 preempt_enable();
4732}
4733#else
4734static inline int rt_effective_prio(struct task_struct *p, int prio)
4735{
4736 return prio;
4737}
4738#endif
4739
4740void set_user_nice(struct task_struct *p, long nice)
4741{
4742 bool queued, running, allowed = false;
4743 int old_prio, delta;
4744 struct rq_flags rf;
4745 struct rq *rq;
4746
4747 trace_android_rvh_set_user_nice(p, &nice, &allowed);
4748 if ((task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) && !allowed)
4749 return;
4750 /*
4751 * We have to be careful, if called from sys_setpriority(),
4752 * the task might be in the middle of scheduling on another CPU.
4753 */
4754 rq = task_rq_lock(p, &rf);
4755 update_rq_clock(rq);
4756
4757 /*
4758 * The RT priorities are set via sched_setscheduler(), but we still
4759 * allow the 'normal' nice value to be set - but as expected
4760 * it wont have any effect on scheduling until the task is
4761 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4762 */
4763 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4764 p->static_prio = NICE_TO_PRIO(nice);
4765 goto out_unlock;
4766 }
4767 queued = task_on_rq_queued(p);
4768 running = task_current(rq, p);
4769 if (queued)
4770 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4771 if (running)
4772 put_prev_task(rq, p);
4773
4774 p->static_prio = NICE_TO_PRIO(nice);
4775 set_load_weight(p, true);
4776 old_prio = p->prio;
4777 p->prio = effective_prio(p);
4778 delta = p->prio - old_prio;
4779
4780 if (queued) {
4781 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4782 /*
4783 * If the task increased its priority or is running and
4784 * lowered its priority, then reschedule its CPU:
4785 */
4786 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4787 resched_curr(rq);
4788 }
4789 if (running)
4790 set_next_task(rq, p);
4791out_unlock:
4792 task_rq_unlock(rq, p, &rf);
4793}
4794EXPORT_SYMBOL(set_user_nice);
4795
4796/*
4797 * can_nice - check if a task can reduce its nice value
4798 * @p: task
4799 * @nice: nice value
4800 */
4801int can_nice(const struct task_struct *p, const int nice)
4802{
4803 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
4804 int nice_rlim = nice_to_rlimit(nice);
4805
4806 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4807 capable(CAP_SYS_NICE));
4808}
4809
4810#ifdef __ARCH_WANT_SYS_NICE
4811
4812/*
4813 * sys_nice - change the priority of the current process.
4814 * @increment: priority increment
4815 *
4816 * sys_setpriority is a more generic, but much slower function that
4817 * does similar things.
4818 */
4819SYSCALL_DEFINE1(nice, int, increment)
4820{
4821 long nice, retval;
4822
4823 /*
4824 * Setpriority might change our priority at the same moment.
4825 * We don't have to worry. Conceptually one call occurs first
4826 * and we have a single winner.
4827 */
4828 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4829 nice = task_nice(current) + increment;
4830
4831 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4832 if (increment < 0 && !can_nice(current, nice))
4833 return -EPERM;
4834
4835 retval = security_task_setnice(current, nice);
4836 if (retval)
4837 return retval;
4838
4839 set_user_nice(current, nice);
4840 return 0;
4841}
4842
4843#endif
4844
4845/**
4846 * task_prio - return the priority value of a given task.
4847 * @p: the task in question.
4848 *
4849 * Return: The priority value as seen by users in /proc.
4850 * RT tasks are offset by -200. Normal tasks are centered
4851 * around 0, value goes from -16 to +15.
4852 */
4853int task_prio(const struct task_struct *p)
4854{
4855 return p->prio - MAX_RT_PRIO;
4856}
4857
4858/**
4859 * idle_cpu - is a given CPU idle currently?
4860 * @cpu: the processor in question.
4861 *
4862 * Return: 1 if the CPU is currently idle. 0 otherwise.
4863 */
4864int idle_cpu(int cpu)
4865{
4866 struct rq *rq = cpu_rq(cpu);
4867
4868 if (rq->curr != rq->idle)
4869 return 0;
4870
4871 if (rq->nr_running)
4872 return 0;
4873
4874#ifdef CONFIG_SMP
4875 if (!llist_empty(&rq->wake_list))
4876 return 0;
4877#endif
4878
4879 return 1;
4880}
4881
4882/**
4883 * available_idle_cpu - is a given CPU idle for enqueuing work.
4884 * @cpu: the CPU in question.
4885 *
4886 * Return: 1 if the CPU is currently idle. 0 otherwise.
4887 */
4888int available_idle_cpu(int cpu)
4889{
4890 if (!idle_cpu(cpu))
4891 return 0;
4892
4893 if (vcpu_is_preempted(cpu))
4894 return 0;
4895
4896 return 1;
4897}
4898
4899/**
4900 * idle_task - return the idle task for a given CPU.
4901 * @cpu: the processor in question.
4902 *
4903 * Return: The idle task for the CPU @cpu.
4904 */
4905struct task_struct *idle_task(int cpu)
4906{
4907 return cpu_rq(cpu)->idle;
4908}
4909
4910/**
4911 * find_process_by_pid - find a process with a matching PID value.
4912 * @pid: the pid in question.
4913 *
4914 * The task of @pid, if found. %NULL otherwise.
4915 */
4916static struct task_struct *find_process_by_pid(pid_t pid)
4917{
4918 return pid ? find_task_by_vpid(pid) : current;
4919}
4920
4921/*
4922 * sched_setparam() passes in -1 for its policy, to let the functions
4923 * it calls know not to change it.
4924 */
4925#define SETPARAM_POLICY -1
4926
4927static void __setscheduler_params(struct task_struct *p,
4928 const struct sched_attr *attr)
4929{
4930 int policy = attr->sched_policy;
4931
4932 if (policy == SETPARAM_POLICY)
4933 policy = p->policy;
4934
4935 p->policy = policy;
4936
4937 if (dl_policy(policy))
4938 __setparam_dl(p, attr);
4939 else if (fair_policy(policy))
4940 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4941
4942 /*
4943 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4944 * !rt_policy. Always setting this ensures that things like
4945 * getparam()/getattr() don't report silly values for !rt tasks.
4946 */
4947 p->rt_priority = attr->sched_priority;
4948 p->normal_prio = normal_prio(p);
4949 set_load_weight(p, true);
4950}
4951
4952/* Actually do priority change: must hold pi & rq lock. */
4953static void __setscheduler(struct rq *rq, struct task_struct *p,
4954 const struct sched_attr *attr, bool keep_boost)
4955{
4956 /*
4957 * If params can't change scheduling class changes aren't allowed
4958 * either.
4959 */
4960 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4961 return;
4962
4963 __setscheduler_params(p, attr);
4964
4965 /*
4966 * Keep a potential priority boosting if called from
4967 * sched_setscheduler().
4968 */
4969 p->prio = normal_prio(p);
4970 if (keep_boost)
4971 p->prio = rt_effective_prio(p, p->prio);
4972
4973 if (dl_prio(p->prio))
4974 p->sched_class = &dl_sched_class;
4975 else if (rt_prio(p->prio))
4976 p->sched_class = &rt_sched_class;
4977 else
4978 p->sched_class = &fair_sched_class;
4979
4980 trace_android_rvh_setscheduler(p);
4981}
4982
4983/*
4984 * Check the target process has a UID that matches the current process's:
4985 */
4986static bool check_same_owner(struct task_struct *p)
4987{
4988 const struct cred *cred = current_cred(), *pcred;
4989 bool match;
4990
4991 rcu_read_lock();
4992 pcred = __task_cred(p);
4993 match = (uid_eq(cred->euid, pcred->euid) ||
4994 uid_eq(cred->euid, pcred->uid));
4995 rcu_read_unlock();
4996 return match;
4997}
4998
4999static int __sched_setscheduler(struct task_struct *p,
5000 const struct sched_attr *attr,
5001 bool user, bool pi)
5002{
5003 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
5004 MAX_RT_PRIO - 1 - attr->sched_priority;
5005 int retval, oldprio, oldpolicy = -1, queued, running;
5006 int new_effective_prio, policy = attr->sched_policy;
5007 const struct sched_class *prev_class;
5008 struct rq_flags rf;
5009 int reset_on_fork;
5010 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5011 struct rq *rq;
5012
5013 /* The pi code expects interrupts enabled */
5014 BUG_ON(pi && in_interrupt());
5015recheck:
5016 /* Double check policy once rq lock held: */
5017 if (policy < 0) {
5018 reset_on_fork = p->sched_reset_on_fork;
5019 policy = oldpolicy = p->policy;
5020 } else {
5021 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
5022
5023 if (!valid_policy(policy))
5024 return -EINVAL;
5025 }
5026
5027 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
5028 return -EINVAL;
5029
5030 /*
5031 * Valid priorities for SCHED_FIFO and SCHED_RR are
5032 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5033 * SCHED_BATCH and SCHED_IDLE is 0.
5034 */
5035 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
5036 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
5037 return -EINVAL;
5038 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5039 (rt_policy(policy) != (attr->sched_priority != 0)))
5040 return -EINVAL;
5041
5042 /*
5043 * Allow unprivileged RT tasks to decrease priority:
5044 */
5045 if (user && !capable(CAP_SYS_NICE)) {
5046 if (fair_policy(policy)) {
5047 if (attr->sched_nice < task_nice(p) &&
5048 !can_nice(p, attr->sched_nice))
5049 return -EPERM;
5050 }
5051
5052 if (rt_policy(policy)) {
5053 unsigned long rlim_rtprio =
5054 task_rlimit(p, RLIMIT_RTPRIO);
5055
5056 /* Can't set/change the rt policy: */
5057 if (policy != p->policy && !rlim_rtprio)
5058 return -EPERM;
5059
5060 /* Can't increase priority: */
5061 if (attr->sched_priority > p->rt_priority &&
5062 attr->sched_priority > rlim_rtprio)
5063 return -EPERM;
5064 }
5065
5066 /*
5067 * Can't set/change SCHED_DEADLINE policy at all for now
5068 * (safest behavior); in the future we would like to allow
5069 * unprivileged DL tasks to increase their relative deadline
5070 * or reduce their runtime (both ways reducing utilization)
5071 */
5072 if (dl_policy(policy))
5073 return -EPERM;
5074
5075 /*
5076 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5077 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5078 */
5079 if (task_has_idle_policy(p) && !idle_policy(policy)) {
5080 if (!can_nice(p, task_nice(p)))
5081 return -EPERM;
5082 }
5083
5084 /* Can't change other user's priorities: */
5085 if (!check_same_owner(p))
5086 return -EPERM;
5087
5088 /* Normal users shall not reset the sched_reset_on_fork flag: */
5089 if (p->sched_reset_on_fork && !reset_on_fork)
5090 return -EPERM;
5091 }
5092
5093 if (user) {
5094 if (attr->sched_flags & SCHED_FLAG_SUGOV)
5095 return -EINVAL;
5096
5097 retval = security_task_setscheduler(p);
5098 if (retval)
5099 return retval;
5100 }
5101
5102 /* Update task specific "requested" clamps */
5103 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5104 retval = uclamp_validate(p, attr);
5105 if (retval)
5106 return retval;
5107 }
5108
5109 /*
5110 * Make sure no PI-waiters arrive (or leave) while we are
5111 * changing the priority of the task:
5112 *
5113 * To be able to change p->policy safely, the appropriate
5114 * runqueue lock must be held.
5115 */
5116 rq = task_rq_lock(p, &rf);
5117 update_rq_clock(rq);
5118
5119 /*
5120 * Changing the policy of the stop threads its a very bad idea:
5121 */
5122 if (p == rq->stop) {
5123 retval = -EINVAL;
5124 goto unlock;
5125 }
5126
5127 /*
5128 * If not changing anything there's no need to proceed further,
5129 * but store a possible modification of reset_on_fork.
5130 */
5131 if (unlikely(policy == p->policy)) {
5132 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
5133 goto change;
5134 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5135 goto change;
5136 if (dl_policy(policy) && dl_param_changed(p, attr))
5137 goto change;
5138 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5139 goto change;
5140
5141 p->sched_reset_on_fork = reset_on_fork;
5142 retval = 0;
5143 goto unlock;
5144 }
5145change:
5146
5147 if (user) {
5148#ifdef CONFIG_RT_GROUP_SCHED
5149 /*
5150 * Do not allow realtime tasks into groups that have no runtime
5151 * assigned.
5152 */
5153 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5154 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5155 !task_group_is_autogroup(task_group(p))) {
5156 retval = -EPERM;
5157 goto unlock;
5158 }
5159#endif
5160#ifdef CONFIG_SMP
5161 if (dl_bandwidth_enabled() && dl_policy(policy) &&
5162 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5163 cpumask_t *span = rq->rd->span;
5164
5165 /*
5166 * Don't allow tasks with an affinity mask smaller than
5167 * the entire root_domain to become SCHED_DEADLINE. We
5168 * will also fail if there's no bandwidth available.
5169 */
5170 if (!cpumask_subset(span, p->cpus_ptr) ||
5171 rq->rd->dl_bw.bw == 0) {
5172 retval = -EPERM;
5173 goto unlock;
5174 }
5175 }
5176#endif
5177 }
5178
5179 /* Re-check policy now with rq lock held: */
5180 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5181 policy = oldpolicy = -1;
5182 task_rq_unlock(rq, p, &rf);
5183 goto recheck;
5184 }
5185
5186 /*
5187 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5188 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5189 * is available.
5190 */
5191 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5192 retval = -EBUSY;
5193 goto unlock;
5194 }
5195
5196 p->sched_reset_on_fork = reset_on_fork;
5197 oldprio = p->prio;
5198
5199 if (pi) {
5200 /*
5201 * Take priority boosted tasks into account. If the new
5202 * effective priority is unchanged, we just store the new
5203 * normal parameters and do not touch the scheduler class and
5204 * the runqueue. This will be done when the task deboost
5205 * itself.
5206 */
5207 new_effective_prio = rt_effective_prio(p, newprio);
5208 if (new_effective_prio == oldprio)
5209 queue_flags &= ~DEQUEUE_MOVE;
5210 }
5211
5212 queued = task_on_rq_queued(p);
5213 running = task_current(rq, p);
5214 if (queued)
5215 dequeue_task(rq, p, queue_flags);
5216 if (running)
5217 put_prev_task(rq, p);
5218
5219 prev_class = p->sched_class;
5220
5221 __setscheduler(rq, p, attr, pi);
5222 __setscheduler_uclamp(p, attr);
5223
5224 if (queued) {
5225 /*
5226 * We enqueue to tail when the priority of a task is
5227 * increased (user space view).
5228 */
5229 if (oldprio < p->prio)
5230 queue_flags |= ENQUEUE_HEAD;
5231
5232 enqueue_task(rq, p, queue_flags);
5233 }
5234 if (running)
5235 set_next_task(rq, p);
5236
5237 check_class_changed(rq, p, prev_class, oldprio);
5238
5239 /* Avoid rq from going away on us: */
5240 preempt_disable();
5241 task_rq_unlock(rq, p, &rf);
5242
5243 if (pi)
5244 rt_mutex_adjust_pi(p);
5245
5246 /* Run balance callbacks after we've adjusted the PI chain: */
5247 balance_callback(rq);
5248 preempt_enable();
5249
5250 return 0;
5251
5252unlock:
5253 task_rq_unlock(rq, p, &rf);
5254 return retval;
5255}
5256
5257static int _sched_setscheduler(struct task_struct *p, int policy,
5258 const struct sched_param *param, bool check)
5259{
5260 struct sched_attr attr = {
5261 .sched_policy = policy,
5262 .sched_priority = param->sched_priority,
5263 .sched_nice = PRIO_TO_NICE(p->static_prio),
5264 };
5265
5266 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5267 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5268 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5269 policy &= ~SCHED_RESET_ON_FORK;
5270 attr.sched_policy = policy;
5271 }
5272
5273 return __sched_setscheduler(p, &attr, check, true);
5274}
5275/**
5276 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5277 * @p: the task in question.
5278 * @policy: new policy.
5279 * @param: structure containing the new RT priority.
5280 *
5281 * Return: 0 on success. An error code otherwise.
5282 *
5283 * NOTE that the task may be already dead.
5284 */
5285int sched_setscheduler(struct task_struct *p, int policy,
5286 const struct sched_param *param)
5287{
5288 return _sched_setscheduler(p, policy, param, true);
5289}
5290EXPORT_SYMBOL_GPL(sched_setscheduler);
5291
5292int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5293{
5294 return __sched_setscheduler(p, attr, true, true);
5295}
5296EXPORT_SYMBOL_GPL(sched_setattr);
5297
5298int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5299{
5300 return __sched_setscheduler(p, attr, false, true);
5301}
5302EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
5303
5304/**
5305 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5306 * @p: the task in question.
5307 * @policy: new policy.
5308 * @param: structure containing the new RT priority.
5309 *
5310 * Just like sched_setscheduler, only don't bother checking if the
5311 * current context has permission. For example, this is needed in
5312 * stop_machine(): we create temporary high priority worker threads,
5313 * but our caller might not have that capability.
5314 *
5315 * Return: 0 on success. An error code otherwise.
5316 */
5317int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5318 const struct sched_param *param)
5319{
5320 return _sched_setscheduler(p, policy, param, false);
5321}
5322EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5323
5324static int
5325do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5326{
5327 struct sched_param lparam;
5328 struct task_struct *p;
5329 int retval;
5330
5331 if (!param || pid < 0)
5332 return -EINVAL;
5333 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5334 return -EFAULT;
5335
5336 rcu_read_lock();
5337 retval = -ESRCH;
5338 p = find_process_by_pid(pid);
5339 if (p != NULL)
5340 retval = sched_setscheduler(p, policy, &lparam);
5341 rcu_read_unlock();
5342
5343 return retval;
5344}
5345
5346/*
5347 * Mimics kernel/events/core.c perf_copy_attr().
5348 */
5349static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5350{
5351 u32 size;
5352 int ret;
5353
5354 /* Zero the full structure, so that a short copy will be nice: */
5355 memset(attr, 0, sizeof(*attr));
5356
5357 ret = get_user(size, &uattr->size);
5358 if (ret)
5359 return ret;
5360
5361 /* ABI compatibility quirk: */
5362 if (!size)
5363 size = SCHED_ATTR_SIZE_VER0;
5364 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5365 goto err_size;
5366
5367 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5368 if (ret) {
5369 if (ret == -E2BIG)
5370 goto err_size;
5371 return ret;
5372 }
5373
5374 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5375 size < SCHED_ATTR_SIZE_VER1)
5376 return -EINVAL;
5377
5378 /*
5379 * XXX: Do we want to be lenient like existing syscalls; or do we want
5380 * to be strict and return an error on out-of-bounds values?
5381 */
5382 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5383
5384 return 0;
5385
5386err_size:
5387 put_user(sizeof(*attr), &uattr->size);
5388 return -E2BIG;
5389}
5390
5391/**
5392 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5393 * @pid: the pid in question.
5394 * @policy: new policy.
5395 * @param: structure containing the new RT priority.
5396 *
5397 * Return: 0 on success. An error code otherwise.
5398 */
5399SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5400{
5401 if (policy < 0)
5402 return -EINVAL;
5403
5404 return do_sched_setscheduler(pid, policy, param);
5405}
5406
5407/**
5408 * sys_sched_setparam - set/change the RT priority of a thread
5409 * @pid: the pid in question.
5410 * @param: structure containing the new RT priority.
5411 *
5412 * Return: 0 on success. An error code otherwise.
5413 */
5414SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5415{
5416 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5417}
5418
5419/**
5420 * sys_sched_setattr - same as above, but with extended sched_attr
5421 * @pid: the pid in question.
5422 * @uattr: structure containing the extended parameters.
5423 * @flags: for future extension.
5424 */
5425SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5426 unsigned int, flags)
5427{
5428 struct sched_attr attr;
5429 struct task_struct *p;
5430 int retval;
5431
5432 if (!uattr || pid < 0 || flags)
5433 return -EINVAL;
5434
5435 retval = sched_copy_attr(uattr, &attr);
5436 if (retval)
5437 return retval;
5438
5439 if ((int)attr.sched_policy < 0)
5440 return -EINVAL;
5441 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5442 attr.sched_policy = SETPARAM_POLICY;
5443
5444 rcu_read_lock();
5445 retval = -ESRCH;
5446 p = find_process_by_pid(pid);
5447 if (likely(p))
5448 get_task_struct(p);
5449 rcu_read_unlock();
5450
5451 if (likely(p)) {
5452 retval = sched_setattr(p, &attr);
5453 put_task_struct(p);
5454 }
5455
5456 return retval;
5457}
5458
5459/**
5460 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5461 * @pid: the pid in question.
5462 *
5463 * Return: On success, the policy of the thread. Otherwise, a negative error
5464 * code.
5465 */
5466SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5467{
5468 struct task_struct *p;
5469 int retval;
5470
5471 if (pid < 0)
5472 return -EINVAL;
5473
5474 retval = -ESRCH;
5475 rcu_read_lock();
5476 p = find_process_by_pid(pid);
5477 if (p) {
5478 retval = security_task_getscheduler(p);
5479 if (!retval)
5480 retval = p->policy
5481 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5482 }
5483 rcu_read_unlock();
5484 return retval;
5485}
5486
5487/**
5488 * sys_sched_getparam - get the RT priority of a thread
5489 * @pid: the pid in question.
5490 * @param: structure containing the RT priority.
5491 *
5492 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5493 * code.
5494 */
5495SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5496{
5497 struct sched_param lp = { .sched_priority = 0 };
5498 struct task_struct *p;
5499 int retval;
5500
5501 if (!param || pid < 0)
5502 return -EINVAL;
5503
5504 rcu_read_lock();
5505 p = find_process_by_pid(pid);
5506 retval = -ESRCH;
5507 if (!p)
5508 goto out_unlock;
5509
5510 retval = security_task_getscheduler(p);
5511 if (retval)
5512 goto out_unlock;
5513
5514 if (task_has_rt_policy(p))
5515 lp.sched_priority = p->rt_priority;
5516 rcu_read_unlock();
5517
5518 /*
5519 * This one might sleep, we cannot do it with a spinlock held ...
5520 */
5521 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5522
5523 return retval;
5524
5525out_unlock:
5526 rcu_read_unlock();
5527 return retval;
5528}
5529
5530/*
5531 * Copy the kernel size attribute structure (which might be larger
5532 * than what user-space knows about) to user-space.
5533 *
5534 * Note that all cases are valid: user-space buffer can be larger or
5535 * smaller than the kernel-space buffer. The usual case is that both
5536 * have the same size.
5537 */
5538static int
5539sched_attr_copy_to_user(struct sched_attr __user *uattr,
5540 struct sched_attr *kattr,
5541 unsigned int usize)
5542{
5543 unsigned int ksize = sizeof(*kattr);
5544
5545 if (!access_ok(uattr, usize))
5546 return -EFAULT;
5547
5548 /*
5549 * sched_getattr() ABI forwards and backwards compatibility:
5550 *
5551 * If usize == ksize then we just copy everything to user-space and all is good.
5552 *
5553 * If usize < ksize then we only copy as much as user-space has space for,
5554 * this keeps ABI compatibility as well. We skip the rest.
5555 *
5556 * If usize > ksize then user-space is using a newer version of the ABI,
5557 * which part the kernel doesn't know about. Just ignore it - tooling can
5558 * detect the kernel's knowledge of attributes from the attr->size value
5559 * which is set to ksize in this case.
5560 */
5561 kattr->size = min(usize, ksize);
5562
5563 if (copy_to_user(uattr, kattr, kattr->size))
5564 return -EFAULT;
5565
5566 return 0;
5567}
5568
5569/**
5570 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5571 * @pid: the pid in question.
5572 * @uattr: structure containing the extended parameters.
5573 * @usize: sizeof(attr) for fwd/bwd comp.
5574 * @flags: for future extension.
5575 */
5576SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5577 unsigned int, usize, unsigned int, flags)
5578{
5579 struct sched_attr kattr = { };
5580 struct task_struct *p;
5581 int retval;
5582
5583 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5584 usize < SCHED_ATTR_SIZE_VER0 || flags)
5585 return -EINVAL;
5586
5587 rcu_read_lock();
5588 p = find_process_by_pid(pid);
5589 retval = -ESRCH;
5590 if (!p)
5591 goto out_unlock;
5592
5593 retval = security_task_getscheduler(p);
5594 if (retval)
5595 goto out_unlock;
5596
5597 kattr.sched_policy = p->policy;
5598 if (p->sched_reset_on_fork)
5599 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5600 if (task_has_dl_policy(p))
5601 __getparam_dl(p, &kattr);
5602 else if (task_has_rt_policy(p))
5603 kattr.sched_priority = p->rt_priority;
5604 else
5605 kattr.sched_nice = task_nice(p);
5606
5607#ifdef CONFIG_UCLAMP_TASK
5608 /*
5609 * This could race with another potential updater, but this is fine
5610 * because it'll correctly read the old or the new value. We don't need
5611 * to guarantee who wins the race as long as it doesn't return garbage.
5612 */
5613 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5614 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5615#endif
5616
5617 rcu_read_unlock();
5618
5619 return sched_attr_copy_to_user(uattr, &kattr, usize);
5620
5621out_unlock:
5622 rcu_read_unlock();
5623 return retval;
5624}
5625
5626long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5627{
5628 cpumask_var_t cpus_allowed, new_mask;
5629 struct task_struct *p;
5630 int retval;
5631
5632 rcu_read_lock();
5633
5634 p = find_process_by_pid(pid);
5635 if (!p) {
5636 rcu_read_unlock();
5637 return -ESRCH;
5638 }
5639
5640 /* Prevent p going away */
5641 get_task_struct(p);
5642 rcu_read_unlock();
5643
5644 if (p->flags & PF_NO_SETAFFINITY) {
5645 retval = -EINVAL;
5646 goto out_put_task;
5647 }
5648 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5649 retval = -ENOMEM;
5650 goto out_put_task;
5651 }
5652 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5653 retval = -ENOMEM;
5654 goto out_free_cpus_allowed;
5655 }
5656 retval = -EPERM;
5657 if (!check_same_owner(p)) {
5658 rcu_read_lock();
5659 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5660 rcu_read_unlock();
5661 goto out_free_new_mask;
5662 }
5663 rcu_read_unlock();
5664 }
5665
5666 retval = security_task_setscheduler(p);
5667 if (retval)
5668 goto out_free_new_mask;
5669
5670
5671 cpuset_cpus_allowed(p, cpus_allowed);
5672 cpumask_and(new_mask, in_mask, cpus_allowed);
5673
5674 /*
5675 * Since bandwidth control happens on root_domain basis,
5676 * if admission test is enabled, we only admit -deadline
5677 * tasks allowed to run on all the CPUs in the task's
5678 * root_domain.
5679 */
5680#ifdef CONFIG_SMP
5681 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5682 rcu_read_lock();
5683 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5684 retval = -EBUSY;
5685 rcu_read_unlock();
5686 goto out_free_new_mask;
5687 }
5688 rcu_read_unlock();
5689 }
5690#endif
5691again:
5692 retval = __set_cpus_allowed_ptr(p, new_mask, true);
5693
5694 if (!retval) {
5695 cpuset_cpus_allowed(p, cpus_allowed);
5696 if (!cpumask_subset(new_mask, cpus_allowed)) {
5697 /*
5698 * We must have raced with a concurrent cpuset
5699 * update. Just reset the cpus_allowed to the
5700 * cpuset's cpus_allowed
5701 */
5702 cpumask_copy(new_mask, cpus_allowed);
5703 goto again;
5704 }
5705 }
5706out_free_new_mask:
5707 free_cpumask_var(new_mask);
5708out_free_cpus_allowed:
5709 free_cpumask_var(cpus_allowed);
5710out_put_task:
5711 put_task_struct(p);
5712 return retval;
5713}
5714
5715static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5716 struct cpumask *new_mask)
5717{
5718 if (len < cpumask_size())
5719 cpumask_clear(new_mask);
5720 else if (len > cpumask_size())
5721 len = cpumask_size();
5722
5723 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5724}
5725
5726/**
5727 * sys_sched_setaffinity - set the CPU affinity of a process
5728 * @pid: pid of the process
5729 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5730 * @user_mask_ptr: user-space pointer to the new CPU mask
5731 *
5732 * Return: 0 on success. An error code otherwise.
5733 */
5734SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5735 unsigned long __user *, user_mask_ptr)
5736{
5737 cpumask_var_t new_mask;
5738 int retval;
5739
5740 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5741 return -ENOMEM;
5742
5743 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5744 if (retval == 0)
5745 retval = sched_setaffinity(pid, new_mask);
5746 free_cpumask_var(new_mask);
5747 return retval;
5748}
5749
5750long sched_getaffinity(pid_t pid, struct cpumask *mask)
5751{
5752 struct task_struct *p;
5753 unsigned long flags;
5754 int retval;
5755
5756 rcu_read_lock();
5757
5758 retval = -ESRCH;
5759 p = find_process_by_pid(pid);
5760 if (!p)
5761 goto out_unlock;
5762
5763 retval = security_task_getscheduler(p);
5764 if (retval)
5765 goto out_unlock;
5766
5767 raw_spin_lock_irqsave(&p->pi_lock, flags);
5768 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5769 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5770
5771out_unlock:
5772 rcu_read_unlock();
5773
5774 return retval;
5775}
5776
5777/**
5778 * sys_sched_getaffinity - get the CPU affinity of a process
5779 * @pid: pid of the process
5780 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5781 * @user_mask_ptr: user-space pointer to hold the current CPU mask
5782 *
5783 * Return: size of CPU mask copied to user_mask_ptr on success. An
5784 * error code otherwise.
5785 */
5786SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5787 unsigned long __user *, user_mask_ptr)
5788{
5789 int ret;
5790 cpumask_var_t mask;
5791
5792 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5793 return -EINVAL;
5794 if (len & (sizeof(unsigned long)-1))
5795 return -EINVAL;
5796
5797 if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
5798 return -ENOMEM;
5799
5800 ret = sched_getaffinity(pid, mask);
5801 if (ret == 0) {
5802 unsigned int retlen = min(len, cpumask_size());
5803
5804 if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
5805 ret = -EFAULT;
5806 else
5807 ret = retlen;
5808 }
5809 free_cpumask_var(mask);
5810
5811 return ret;
5812}
5813
5814/**
5815 * sys_sched_yield - yield the current processor to other threads.
5816 *
5817 * This function yields the current CPU to other tasks. If there are no
5818 * other threads running on this CPU then this function will return.
5819 *
5820 * Return: 0.
5821 */
5822static void do_sched_yield(void)
5823{
5824 struct rq_flags rf;
5825 struct rq *rq;
5826
5827 rq = this_rq_lock_irq(&rf);
5828
5829 schedstat_inc(rq->yld_count);
5830 current->sched_class->yield_task(rq);
5831
5832 preempt_disable();
5833 rq_unlock_irq(rq, &rf);
5834 sched_preempt_enable_no_resched();
5835
5836 schedule();
5837}
5838
5839SYSCALL_DEFINE0(sched_yield)
5840{
5841 do_sched_yield();
5842 return 0;
5843}
5844
5845#ifndef CONFIG_PREEMPTION
5846int __sched _cond_resched(void)
5847{
5848 if (should_resched(0)) {
5849 preempt_schedule_common();
5850 return 1;
5851 }
5852 rcu_all_qs();
5853 return 0;
5854}
5855EXPORT_SYMBOL(_cond_resched);
5856#endif
5857
5858/*
5859 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5860 * call schedule, and on return reacquire the lock.
5861 *
5862 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5863 * operations here to prevent schedule() from being called twice (once via
5864 * spin_unlock(), once by hand).
5865 */
5866int __cond_resched_lock(spinlock_t *lock)
5867{
5868 int resched = should_resched(PREEMPT_LOCK_OFFSET);
5869 int ret = 0;
5870
5871 lockdep_assert_held(lock);
5872
5873 if (spin_needbreak(lock) || resched) {
5874 spin_unlock(lock);
5875 if (resched)
5876 preempt_schedule_common();
5877 else
5878 cpu_relax();
5879 ret = 1;
5880 spin_lock(lock);
5881 }
5882 return ret;
5883}
5884EXPORT_SYMBOL(__cond_resched_lock);
5885
5886/**
5887 * yield - yield the current processor to other threads.
5888 *
5889 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5890 *
5891 * The scheduler is at all times free to pick the calling task as the most
5892 * eligible task to run, if removing the yield() call from your code breaks
5893 * it, its already broken.
5894 *
5895 * Typical broken usage is:
5896 *
5897 * while (!event)
5898 * yield();
5899 *
5900 * where one assumes that yield() will let 'the other' process run that will
5901 * make event true. If the current task is a SCHED_FIFO task that will never
5902 * happen. Never use yield() as a progress guarantee!!
5903 *
5904 * If you want to use yield() to wait for something, use wait_event().
5905 * If you want to use yield() to be 'nice' for others, use cond_resched().
5906 * If you still want to use yield(), do not!
5907 */
5908void __sched yield(void)
5909{
5910 set_current_state(TASK_RUNNING);
5911 do_sched_yield();
5912}
5913EXPORT_SYMBOL(yield);
5914
5915/**
5916 * yield_to - yield the current processor to another thread in
5917 * your thread group, or accelerate that thread toward the
5918 * processor it's on.
5919 * @p: target task
5920 * @preempt: whether task preemption is allowed or not
5921 *
5922 * It's the caller's job to ensure that the target task struct
5923 * can't go away on us before we can do any checks.
5924 *
5925 * Return:
5926 * true (>0) if we indeed boosted the target task.
5927 * false (0) if we failed to boost the target.
5928 * -ESRCH if there's no task to yield to.
5929 */
5930int __sched yield_to(struct task_struct *p, bool preempt)
5931{
5932 struct task_struct *curr = current;
5933 struct rq *rq, *p_rq;
5934 unsigned long flags;
5935 int yielded = 0;
5936
5937 local_irq_save(flags);
5938 rq = this_rq();
5939
5940again:
5941 p_rq = task_rq(p);
5942 /*
5943 * If we're the only runnable task on the rq and target rq also
5944 * has only one task, there's absolutely no point in yielding.
5945 */
5946 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5947 yielded = -ESRCH;
5948 goto out_irq;
5949 }
5950
5951 double_rq_lock(rq, p_rq);
5952 if (task_rq(p) != p_rq) {
5953 double_rq_unlock(rq, p_rq);
5954 goto again;
5955 }
5956
5957 if (!curr->sched_class->yield_to_task)
5958 goto out_unlock;
5959
5960 if (curr->sched_class != p->sched_class)
5961 goto out_unlock;
5962
5963 if (task_running(p_rq, p) || p->state)
5964 goto out_unlock;
5965
5966 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5967 if (yielded) {
5968 schedstat_inc(rq->yld_count);
5969 /*
5970 * Make p's CPU reschedule; pick_next_entity takes care of
5971 * fairness.
5972 */
5973 if (preempt && rq != p_rq)
5974 resched_curr(p_rq);
5975 }
5976
5977out_unlock:
5978 double_rq_unlock(rq, p_rq);
5979out_irq:
5980 local_irq_restore(flags);
5981
5982 if (yielded > 0)
5983 schedule();
5984
5985 return yielded;
5986}
5987EXPORT_SYMBOL_GPL(yield_to);
5988
5989int io_schedule_prepare(void)
5990{
5991 int old_iowait = current->in_iowait;
5992
5993 current->in_iowait = 1;
5994 blk_schedule_flush_plug(current);
5995
5996 return old_iowait;
5997}
5998
5999void io_schedule_finish(int token)
6000{
6001 current->in_iowait = token;
6002}
6003
6004/*
6005 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6006 * that process accounting knows that this is a task in IO wait state.
6007 */
6008long __sched io_schedule_timeout(long timeout)
6009{
6010 int token;
6011 long ret;
6012
6013 token = io_schedule_prepare();
6014 ret = schedule_timeout(timeout);
6015 io_schedule_finish(token);
6016
6017 return ret;
6018}
6019EXPORT_SYMBOL(io_schedule_timeout);
6020
6021void __sched io_schedule(void)
6022{
6023 int token;
6024
6025 token = io_schedule_prepare();
6026 schedule();
6027 io_schedule_finish(token);
6028}
6029EXPORT_SYMBOL(io_schedule);
6030
6031/**
6032 * sys_sched_get_priority_max - return maximum RT priority.
6033 * @policy: scheduling class.
6034 *
6035 * Return: On success, this syscall returns the maximum
6036 * rt_priority that can be used by a given scheduling class.
6037 * On failure, a negative error code is returned.
6038 */
6039SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6040{
6041 int ret = -EINVAL;
6042
6043 switch (policy) {
6044 case SCHED_FIFO:
6045 case SCHED_RR:
6046 ret = MAX_USER_RT_PRIO-1;
6047 break;
6048 case SCHED_DEADLINE:
6049 case SCHED_NORMAL:
6050 case SCHED_BATCH:
6051 case SCHED_IDLE:
6052 ret = 0;
6053 break;
6054 }
6055 return ret;
6056}
6057
6058/**
6059 * sys_sched_get_priority_min - return minimum RT priority.
6060 * @policy: scheduling class.
6061 *
6062 * Return: On success, this syscall returns the minimum
6063 * rt_priority that can be used by a given scheduling class.
6064 * On failure, a negative error code is returned.
6065 */
6066SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6067{
6068 int ret = -EINVAL;
6069
6070 switch (policy) {
6071 case SCHED_FIFO:
6072 case SCHED_RR:
6073 ret = 1;
6074 break;
6075 case SCHED_DEADLINE:
6076 case SCHED_NORMAL:
6077 case SCHED_BATCH:
6078 case SCHED_IDLE:
6079 ret = 0;
6080 }
6081 return ret;
6082}
6083
6084static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
6085{
6086 struct task_struct *p;
6087 unsigned int time_slice;
6088 struct rq_flags rf;
6089 struct rq *rq;
6090 int retval;
6091
6092 if (pid < 0)
6093 return -EINVAL;
6094
6095 retval = -ESRCH;
6096 rcu_read_lock();
6097 p = find_process_by_pid(pid);
6098 if (!p)
6099 goto out_unlock;
6100
6101 retval = security_task_getscheduler(p);
6102 if (retval)
6103 goto out_unlock;
6104
6105 rq = task_rq_lock(p, &rf);
6106 time_slice = 0;
6107 if (p->sched_class->get_rr_interval)
6108 time_slice = p->sched_class->get_rr_interval(rq, p);
6109 task_rq_unlock(rq, p, &rf);
6110
6111 rcu_read_unlock();
6112 jiffies_to_timespec64(time_slice, t);
6113 return 0;
6114
6115out_unlock:
6116 rcu_read_unlock();
6117 return retval;
6118}
6119
6120/**
6121 * sys_sched_rr_get_interval - return the default timeslice of a process.
6122 * @pid: pid of the process.
6123 * @interval: userspace pointer to the timeslice value.
6124 *
6125 * this syscall writes the default timeslice value of a given process
6126 * into the user-space timespec buffer. A value of '0' means infinity.
6127 *
6128 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6129 * an error code.
6130 */
6131SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6132 struct __kernel_timespec __user *, interval)
6133{
6134 struct timespec64 t;
6135 int retval = sched_rr_get_interval(pid, &t);
6136
6137 if (retval == 0)
6138 retval = put_timespec64(&t, interval);
6139
6140 return retval;
6141}
6142
6143#ifdef CONFIG_COMPAT_32BIT_TIME
6144SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6145 struct old_timespec32 __user *, interval)
6146{
6147 struct timespec64 t;
6148 int retval = sched_rr_get_interval(pid, &t);
6149
6150 if (retval == 0)
6151 retval = put_old_timespec32(&t, interval);
6152 return retval;
6153}
6154#endif
6155
6156void sched_show_task(struct task_struct *p)
6157{
6158 unsigned long free = 0;
6159 int ppid;
6160
6161 if (!try_get_task_stack(p))
6162 return;
6163
6164 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
6165
6166 if (p->state == TASK_RUNNING)
6167 printk(KERN_CONT " running task ");
6168#ifdef CONFIG_DEBUG_STACK_USAGE
6169 free = stack_not_used(p);
6170#endif
6171 ppid = 0;
6172 rcu_read_lock();
6173 if (pid_alive(p))
6174 ppid = task_pid_nr(rcu_dereference(p->real_parent));
6175 rcu_read_unlock();
6176 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6177 task_pid_nr(p), ppid,
6178 (unsigned long)task_thread_info(p)->flags);
6179
6180 print_worker_info(KERN_INFO, p);
6181 trace_android_vh_sched_show_task(p);
6182 show_stack(p, NULL);
6183 put_task_stack(p);
6184}
6185EXPORT_SYMBOL_GPL(sched_show_task);
6186
6187static inline bool
6188state_filter_match(unsigned long state_filter, struct task_struct *p)
6189{
6190 /* no filter, everything matches */
6191 if (!state_filter)
6192 return true;
6193
6194 /* filter, but doesn't match */
6195 if (!(p->state & state_filter))
6196 return false;
6197
6198 /*
6199 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6200 * TASK_KILLABLE).
6201 */
6202 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6203 return false;
6204
6205 return true;
6206}
6207
6208
6209void show_state_filter(unsigned long state_filter)
6210{
6211 struct task_struct *g, *p;
6212
6213#if BITS_PER_LONG == 32
6214 printk(KERN_INFO
6215 " task PC stack pid father\n");
6216#else
6217 printk(KERN_INFO
6218 " task PC stack pid father\n");
6219#endif
6220 rcu_read_lock();
6221 for_each_process_thread(g, p) {
6222 /*
6223 * reset the NMI-timeout, listing all files on a slow
6224 * console might take a lot of time:
6225 * Also, reset softlockup watchdogs on all CPUs, because
6226 * another CPU might be blocked waiting for us to process
6227 * an IPI.
6228 */
6229 touch_nmi_watchdog();
6230 touch_all_softlockup_watchdogs();
6231 if (state_filter_match(state_filter, p))
6232 sched_show_task(p);
6233 }
6234
6235#ifdef CONFIG_SCHED_DEBUG
6236 if (!state_filter)
6237 sysrq_sched_debug_show();
6238#endif
6239 rcu_read_unlock();
6240 /*
6241 * Only show locks if all tasks are dumped:
6242 */
6243 if (!state_filter)
6244 debug_show_all_locks();
6245}
6246
6247/**
6248 * init_idle - set up an idle thread for a given CPU
6249 * @idle: task in question
6250 * @cpu: CPU the idle task belongs to
6251 *
6252 * NOTE: this function does not set the idle thread's NEED_RESCHED
6253 * flag, to make booting more robust.
6254 */
6255void init_idle(struct task_struct *idle, int cpu)
6256{
6257 struct rq *rq = cpu_rq(cpu);
6258 unsigned long flags;
6259
6260 __sched_fork(0, idle);
6261
6262 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6263 raw_spin_lock(&rq->lock);
6264
6265 idle->state = TASK_RUNNING;
6266 idle->se.exec_start = sched_clock();
6267 idle->flags |= PF_IDLE;
6268
6269 scs_task_reset(idle);
6270 kasan_unpoison_task_stack(idle);
6271
6272#ifdef CONFIG_SMP
6273 /*
6274 * Its possible that init_idle() gets called multiple times on a task,
6275 * in that case do_set_cpus_allowed() will not do the right thing.
6276 *
6277 * And since this is boot we can forgo the serialization.
6278 */
6279 set_cpus_allowed_common(idle, cpumask_of(cpu));
6280#endif
6281 /*
6282 * We're having a chicken and egg problem, even though we are
6283 * holding rq->lock, the CPU isn't yet set to this CPU so the
6284 * lockdep check in task_group() will fail.
6285 *
6286 * Similar case to sched_fork(). / Alternatively we could
6287 * use task_rq_lock() here and obtain the other rq->lock.
6288 *
6289 * Silence PROVE_RCU
6290 */
6291 rcu_read_lock();
6292 __set_task_cpu(idle, cpu);
6293 rcu_read_unlock();
6294
6295 rq->idle = idle;
6296 rcu_assign_pointer(rq->curr, idle);
6297 idle->on_rq = TASK_ON_RQ_QUEUED;
6298#ifdef CONFIG_SMP
6299 idle->on_cpu = 1;
6300#endif
6301 raw_spin_unlock(&rq->lock);
6302 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6303
6304 /* Set the preempt count _outside_ the spinlocks! */
6305 init_idle_preempt_count(idle, cpu);
6306
6307 /*
6308 * The idle tasks have their own, simple scheduling class:
6309 */
6310 idle->sched_class = &idle_sched_class;
6311 ftrace_graph_init_idle_task(idle, cpu);
6312 vtime_init_idle(idle, cpu);
6313#ifdef CONFIG_SMP
6314 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6315#endif
6316}
6317
6318#ifdef CONFIG_SMP
6319
6320int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6321 const struct cpumask *trial)
6322{
6323 int ret = 1;
6324
6325 if (!cpumask_weight(cur))
6326 return ret;
6327
6328 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6329
6330 return ret;
6331}
6332
6333int task_can_attach(struct task_struct *p,
6334 const struct cpumask *cs_cpus_allowed)
6335{
6336 int ret = 0;
6337
6338 /*
6339 * Kthreads which disallow setaffinity shouldn't be moved
6340 * to a new cpuset; we don't want to change their CPU
6341 * affinity and isolating such threads by their set of
6342 * allowed nodes is unnecessary. Thus, cpusets are not
6343 * applicable for such threads. This prevents checking for
6344 * success of set_cpus_allowed_ptr() on all attached tasks
6345 * before cpus_mask may be changed.
6346 */
6347 if (p->flags & PF_NO_SETAFFINITY) {
6348 ret = -EINVAL;
6349 goto out;
6350 }
6351
6352 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6353 cs_cpus_allowed))
6354 ret = dl_task_can_attach(p, cs_cpus_allowed);
6355
6356out:
6357 return ret;
6358}
6359
6360bool sched_smp_initialized __read_mostly;
6361
6362#ifdef CONFIG_NUMA_BALANCING
6363/* Migrate current task p to target_cpu */
6364int migrate_task_to(struct task_struct *p, int target_cpu)
6365{
6366 struct migration_arg arg = { p, target_cpu };
6367 int curr_cpu = task_cpu(p);
6368
6369 if (curr_cpu == target_cpu)
6370 return 0;
6371
6372 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6373 return -EINVAL;
6374
6375 /* TODO: This is not properly updating schedstats */
6376
6377 trace_sched_move_numa(p, curr_cpu, target_cpu);
6378 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6379}
6380
6381/*
6382 * Requeue a task on a given node and accurately track the number of NUMA
6383 * tasks on the runqueues
6384 */
6385void sched_setnuma(struct task_struct *p, int nid)
6386{
6387 bool queued, running;
6388 struct rq_flags rf;
6389 struct rq *rq;
6390
6391 rq = task_rq_lock(p, &rf);
6392 queued = task_on_rq_queued(p);
6393 running = task_current(rq, p);
6394
6395 if (queued)
6396 dequeue_task(rq, p, DEQUEUE_SAVE);
6397 if (running)
6398 put_prev_task(rq, p);
6399
6400 p->numa_preferred_nid = nid;
6401
6402 if (queued)
6403 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6404 if (running)
6405 set_next_task(rq, p);
6406 task_rq_unlock(rq, p, &rf);
6407}
6408#endif /* CONFIG_NUMA_BALANCING */
6409
6410#ifdef CONFIG_HOTPLUG_CPU
6411/*
6412 * Ensure that the idle task is using init_mm right before its CPU goes
6413 * offline.
6414 */
6415void idle_task_exit(void)
6416{
6417 struct mm_struct *mm = current->active_mm;
6418
6419 BUG_ON(cpu_online(smp_processor_id()));
6420 BUG_ON(current != this_rq()->idle);
6421
6422 if (mm != &init_mm) {
6423 switch_mm(mm, &init_mm, current);
6424 finish_arch_post_lock_switch();
6425 }
6426
6427 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6428}
6429
6430/*
6431 * Since this CPU is going 'away' for a while, fold any nr_active delta
6432 * we might have. Assumes we're called after migrate_tasks() so that the
6433 * nr_active count is stable. We need to take the teardown thread which
6434 * is calling this into account, so we hand in adjust = 1 to the load
6435 * calculation.
6436 *
6437 * Also see the comment "Global load-average calculations".
6438 */
6439static void calc_load_migrate(struct rq *rq)
6440{
6441 long delta = calc_load_fold_active(rq, 1);
6442 if (delta)
6443 atomic_long_add(delta, &calc_load_tasks);
6444}
6445
6446static struct task_struct *__pick_migrate_task(struct rq *rq)
6447{
6448 const struct sched_class *class;
6449 struct task_struct *next;
6450
6451 for_each_class(class) {
6452 next = class->pick_next_task(rq, NULL, NULL);
6453 if (next) {
6454 next->sched_class->put_prev_task(rq, next);
6455 return next;
6456 }
6457 }
6458
6459 /* The idle class should always have a runnable task */
6460 BUG();
6461}
6462
6463/*
6464 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6465 * try_to_wake_up()->select_task_rq().
6466 *
6467 * Called with rq->lock held even though we'er in stop_machine() and
6468 * there's no concurrency possible, we hold the required locks anyway
6469 * because of lock validation efforts.
6470 */
6471static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6472{
6473 struct rq *rq = dead_rq;
6474 struct task_struct *next, *stop = rq->stop;
6475 struct rq_flags orf = *rf;
6476 int dest_cpu;
6477
6478 /*
6479 * Fudge the rq selection such that the below task selection loop
6480 * doesn't get stuck on the currently eligible stop task.
6481 *
6482 * We're currently inside stop_machine() and the rq is either stuck
6483 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6484 * either way we should never end up calling schedule() until we're
6485 * done here.
6486 */
6487 rq->stop = NULL;
6488
6489 /*
6490 * put_prev_task() and pick_next_task() sched
6491 * class method both need to have an up-to-date
6492 * value of rq->clock[_task]
6493 */
6494 update_rq_clock(rq);
6495
6496 for (;;) {
6497 /*
6498 * There's this thread running, bail when that's the only
6499 * remaining thread:
6500 */
6501 if (rq->nr_running == 1)
6502 break;
6503
6504 next = __pick_migrate_task(rq);
6505
6506 /*
6507 * Rules for changing task_struct::cpus_mask are holding
6508 * both pi_lock and rq->lock, such that holding either
6509 * stabilizes the mask.
6510 *
6511 * Drop rq->lock is not quite as disastrous as it usually is
6512 * because !cpu_active at this point, which means load-balance
6513 * will not interfere. Also, stop-machine.
6514 */
6515 rq_unlock(rq, rf);
6516 raw_spin_lock(&next->pi_lock);
6517 rq_relock(rq, rf);
6518
6519 /*
6520 * Since we're inside stop-machine, _nothing_ should have
6521 * changed the task, WARN if weird stuff happened, because in
6522 * that case the above rq->lock drop is a fail too.
6523 */
6524 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6525 raw_spin_unlock(&next->pi_lock);
6526 continue;
6527 }
6528
6529 /* Find suitable destination for @next, with force if needed. */
6530 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6531 rq = __migrate_task(rq, rf, next, dest_cpu);
6532 if (rq != dead_rq) {
6533 rq_unlock(rq, rf);
6534 rq = dead_rq;
6535 *rf = orf;
6536 rq_relock(rq, rf);
6537 }
6538 raw_spin_unlock(&next->pi_lock);
6539 }
6540
6541 rq->stop = stop;
6542}
6543#endif /* CONFIG_HOTPLUG_CPU */
6544
6545void set_rq_online(struct rq *rq)
6546{
6547 if (!rq->online) {
6548 const struct sched_class *class;
6549
6550 cpumask_set_cpu(rq->cpu, rq->rd->online);
6551 rq->online = 1;
6552
6553 for_each_class(class) {
6554 if (class->rq_online)
6555 class->rq_online(rq);
6556 }
6557 }
6558}
6559
6560void set_rq_offline(struct rq *rq)
6561{
6562 if (rq->online) {
6563 const struct sched_class *class;
6564
6565 for_each_class(class) {
6566 if (class->rq_offline)
6567 class->rq_offline(rq);
6568 }
6569
6570 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6571 rq->online = 0;
6572 }
6573}
6574
6575/*
6576 * used to mark begin/end of suspend/resume:
6577 */
6578static int num_cpus_frozen;
6579
6580/*
6581 * Update cpusets according to cpu_active mask. If cpusets are
6582 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6583 * around partition_sched_domains().
6584 *
6585 * If we come here as part of a suspend/resume, don't touch cpusets because we
6586 * want to restore it back to its original state upon resume anyway.
6587 */
6588static void cpuset_cpu_active(void)
6589{
6590 if (cpuhp_tasks_frozen) {
6591 /*
6592 * num_cpus_frozen tracks how many CPUs are involved in suspend
6593 * resume sequence. As long as this is not the last online
6594 * operation in the resume sequence, just build a single sched
6595 * domain, ignoring cpusets.
6596 */
6597 partition_sched_domains(1, NULL, NULL);
6598 if (--num_cpus_frozen)
6599 return;
6600 /*
6601 * This is the last CPU online operation. So fall through and
6602 * restore the original sched domains by considering the
6603 * cpuset configurations.
6604 */
6605 cpuset_force_rebuild();
6606 }
6607 cpuset_update_active_cpus();
6608}
6609
6610static int cpuset_cpu_inactive(unsigned int cpu)
6611{
6612 if (!cpuhp_tasks_frozen) {
6613 if (dl_cpu_busy(cpu))
6614 return -EBUSY;
6615 cpuset_update_active_cpus();
6616 } else {
6617 num_cpus_frozen++;
6618 partition_sched_domains(1, NULL, NULL);
6619 }
6620 return 0;
6621}
6622
6623int sched_cpu_activate(unsigned int cpu)
6624{
6625 struct rq *rq = cpu_rq(cpu);
6626 struct rq_flags rf;
6627
6628#ifdef CONFIG_SCHED_SMT
6629 /*
6630 * When going up, increment the number of cores with SMT present.
6631 */
6632 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6633 static_branch_inc_cpuslocked(&sched_smt_present);
6634#endif
6635 set_cpu_active(cpu, true);
6636
6637 if (sched_smp_initialized) {
6638 sched_domains_numa_masks_set(cpu);
6639 cpuset_cpu_active();
6640 }
6641
6642 /*
6643 * Put the rq online, if not already. This happens:
6644 *
6645 * 1) In the early boot process, because we build the real domains
6646 * after all CPUs have been brought up.
6647 *
6648 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6649 * domains.
6650 */
6651 rq_lock_irqsave(rq, &rf);
6652 if (rq->rd) {
6653 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6654 set_rq_online(rq);
6655 }
6656 rq_unlock_irqrestore(rq, &rf);
6657
6658 return 0;
6659}
6660
6661int sched_cpu_deactivate(unsigned int cpu)
6662{
6663 int ret;
6664
6665 set_cpu_active(cpu, false);
6666 /*
6667 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6668 * users of this state to go away such that all new such users will
6669 * observe it.
6670 *
6671 * Do sync before park smpboot threads to take care the rcu boost case.
6672 */
6673 synchronize_rcu();
6674
6675#ifdef CONFIG_SCHED_SMT
6676 /*
6677 * When going down, decrement the number of cores with SMT present.
6678 */
6679 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6680 static_branch_dec_cpuslocked(&sched_smt_present);
6681#endif
6682
6683 if (!sched_smp_initialized)
6684 return 0;
6685
6686 ret = cpuset_cpu_inactive(cpu);
6687 if (ret) {
6688 set_cpu_active(cpu, true);
6689 return ret;
6690 }
6691 sched_domains_numa_masks_clear(cpu);
6692 return 0;
6693}
6694
6695static void sched_rq_cpu_starting(unsigned int cpu)
6696{
6697 struct rq *rq = cpu_rq(cpu);
6698
6699 rq->calc_load_update = calc_load_update;
6700 update_max_interval();
6701}
6702
6703int sched_cpu_starting(unsigned int cpu)
6704{
6705 sched_rq_cpu_starting(cpu);
6706 sched_tick_start(cpu);
6707 return 0;
6708}
6709
6710#ifdef CONFIG_HOTPLUG_CPU
6711int sched_cpu_dying(unsigned int cpu)
6712{
6713 struct rq *rq = cpu_rq(cpu);
6714 struct rq_flags rf;
6715
6716 /* Handle pending wakeups and then migrate everything off */
6717 sched_ttwu_pending();
6718 sched_tick_stop(cpu);
6719
6720 rq_lock_irqsave(rq, &rf);
6721 if (rq->rd) {
6722 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6723 set_rq_offline(rq);
6724 }
6725 migrate_tasks(rq, &rf);
6726 BUG_ON(rq->nr_running != 1);
6727 rq_unlock_irqrestore(rq, &rf);
6728
6729 calc_load_migrate(rq);
6730 update_max_interval();
6731 nohz_balance_exit_idle(rq);
6732 hrtick_clear(rq);
6733 return 0;
6734}
6735#endif
6736
6737void __init sched_init_smp(void)
6738{
6739 sched_init_numa();
6740
6741 /*
6742 * There's no userspace yet to cause hotplug operations; hence all the
6743 * CPU masks are stable and all blatant races in the below code cannot
6744 * happen.
6745 */
6746 mutex_lock(&sched_domains_mutex);
6747 sched_init_domains(cpu_active_mask);
6748 mutex_unlock(&sched_domains_mutex);
6749
6750 /* Move init over to a non-isolated CPU */
6751 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6752 BUG();
6753 sched_init_granularity();
6754
6755 init_sched_rt_class();
6756 init_sched_dl_class();
6757
6758 sched_smp_initialized = true;
6759}
6760
6761static int __init migration_init(void)
6762{
6763 sched_cpu_starting(smp_processor_id());
6764 return 0;
6765}
6766early_initcall(migration_init);
6767
6768#else
6769void __init sched_init_smp(void)
6770{
6771 sched_init_granularity();
6772}
6773#endif /* CONFIG_SMP */
6774
6775int in_sched_functions(unsigned long addr)
6776{
6777 return in_lock_functions(addr) ||
6778 (addr >= (unsigned long)__sched_text_start
6779 && addr < (unsigned long)__sched_text_end);
6780}
6781
6782#ifdef CONFIG_CGROUP_SCHED
6783/*
6784 * Default task group.
6785 * Every task in system belongs to this group at bootup.
6786 */
6787struct task_group root_task_group;
6788LIST_HEAD(task_groups);
6789
6790/* Cacheline aligned slab cache for task_group */
6791static struct kmem_cache *task_group_cache __read_mostly;
6792#endif
6793
6794DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6795DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6796
6797void __init sched_init(void)
6798{
6799 unsigned long ptr = 0;
6800 int i;
6801
6802 wait_bit_init();
6803
6804#ifdef CONFIG_FAIR_GROUP_SCHED
6805 ptr += 2 * nr_cpu_ids * sizeof(void **);
6806#endif
6807#ifdef CONFIG_RT_GROUP_SCHED
6808 ptr += 2 * nr_cpu_ids * sizeof(void **);
6809#endif
6810 if (ptr) {
6811 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6812
6813#ifdef CONFIG_FAIR_GROUP_SCHED
6814 root_task_group.se = (struct sched_entity **)ptr;
6815 ptr += nr_cpu_ids * sizeof(void **);
6816
6817 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6818 ptr += nr_cpu_ids * sizeof(void **);
6819
6820#endif /* CONFIG_FAIR_GROUP_SCHED */
6821#ifdef CONFIG_RT_GROUP_SCHED
6822 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6823 ptr += nr_cpu_ids * sizeof(void **);
6824
6825 root_task_group.rt_rq = (struct rt_rq **)ptr;
6826 ptr += nr_cpu_ids * sizeof(void **);
6827
6828#endif /* CONFIG_RT_GROUP_SCHED */
6829 }
6830#ifdef CONFIG_CPUMASK_OFFSTACK
6831 for_each_possible_cpu(i) {
6832 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6833 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6834 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6835 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6836 }
6837#endif /* CONFIG_CPUMASK_OFFSTACK */
6838
6839 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6840 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6841
6842#ifdef CONFIG_SMP
6843 init_defrootdomain();
6844#endif
6845
6846#ifdef CONFIG_RT_GROUP_SCHED
6847 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6848 global_rt_period(), global_rt_runtime());
6849#endif /* CONFIG_RT_GROUP_SCHED */
6850
6851#ifdef CONFIG_CGROUP_SCHED
6852 task_group_cache = KMEM_CACHE(task_group, 0);
6853
6854 list_add(&root_task_group.list, &task_groups);
6855 INIT_LIST_HEAD(&root_task_group.children);
6856 INIT_LIST_HEAD(&root_task_group.siblings);
6857 autogroup_init(&init_task);
6858#endif /* CONFIG_CGROUP_SCHED */
6859
6860 for_each_possible_cpu(i) {
6861 struct rq *rq;
6862
6863 rq = cpu_rq(i);
6864 raw_spin_lock_init(&rq->lock);
6865 rq->nr_running = 0;
6866 rq->calc_load_active = 0;
6867 rq->calc_load_update = jiffies + LOAD_FREQ;
6868 init_cfs_rq(&rq->cfs);
6869 init_rt_rq(&rq->rt);
6870 init_dl_rq(&rq->dl);
6871#ifdef CONFIG_FAIR_GROUP_SCHED
6872 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6873 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6874 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6875 /*
6876 * How much CPU bandwidth does root_task_group get?
6877 *
6878 * In case of task-groups formed thr' the cgroup filesystem, it
6879 * gets 100% of the CPU resources in the system. This overall
6880 * system CPU resource is divided among the tasks of
6881 * root_task_group and its child task-groups in a fair manner,
6882 * based on each entity's (task or task-group's) weight
6883 * (se->load.weight).
6884 *
6885 * In other words, if root_task_group has 10 tasks of weight
6886 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6887 * then A0's share of the CPU resource is:
6888 *
6889 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6890 *
6891 * We achieve this by letting root_task_group's tasks sit
6892 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6893 */
6894 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6895 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6896#endif /* CONFIG_FAIR_GROUP_SCHED */
6897
6898 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6899#ifdef CONFIG_RT_GROUP_SCHED
6900 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6901#endif
6902#ifdef CONFIG_SMP
6903 rq->sd = NULL;
6904 rq->rd = NULL;
6905 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6906 rq->balance_callback = NULL;
6907 rq->active_balance = 0;
6908 rq->next_balance = jiffies;
6909 rq->push_cpu = 0;
6910 rq->cpu = i;
6911 rq->online = 0;
6912 rq->idle_stamp = 0;
6913 rq->avg_idle = 2*sysctl_sched_migration_cost;
6914 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6915
6916 INIT_LIST_HEAD(&rq->cfs_tasks);
6917
6918 rq_attach_root(rq, &def_root_domain);
6919#ifdef CONFIG_NO_HZ_COMMON
6920 rq->last_load_update_tick = jiffies;
6921 rq->last_blocked_load_update_tick = jiffies;
6922 atomic_set(&rq->nohz_flags, 0);
6923#endif
6924#endif /* CONFIG_SMP */
6925 hrtick_rq_init(rq);
6926 atomic_set(&rq->nr_iowait, 0);
6927 }
6928
6929 set_load_weight(&init_task, false);
6930
6931 /*
6932 * The boot idle thread does lazy MMU switching as well:
6933 */
6934 mmgrab(&init_mm);
6935 enter_lazy_tlb(&init_mm, current);
6936
6937 /*
6938 * Make us the idle thread. Technically, schedule() should not be
6939 * called from this thread, however somewhere below it might be,
6940 * but because we are the idle thread, we just pick up running again
6941 * when this runqueue becomes "idle".
6942 */
6943 init_idle(current, smp_processor_id());
6944
6945 calc_load_update = jiffies + LOAD_FREQ;
6946
6947#ifdef CONFIG_SMP
6948 idle_thread_set_boot_cpu();
6949#endif
6950 init_sched_fair_class();
6951
6952 init_schedstats();
6953
6954 psi_init();
6955
6956 init_uclamp();
6957
6958 scheduler_running = 1;
6959}
6960
6961#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6962static inline int preempt_count_equals(int preempt_offset)
6963{
6964 int nested = preempt_count() + rcu_preempt_depth();
6965
6966 return (nested == preempt_offset);
6967}
6968
6969void __might_sleep(const char *file, int line, int preempt_offset)
6970{
6971 /*
6972 * Blocking primitives will set (and therefore destroy) current->state,
6973 * since we will exit with TASK_RUNNING make sure we enter with it,
6974 * otherwise we will destroy state.
6975 */
6976 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6977 "do not call blocking ops when !TASK_RUNNING; "
6978 "state=%lx set at [<%p>] %pS\n",
6979 current->state,
6980 (void *)current->task_state_change,
6981 (void *)current->task_state_change);
6982
6983 ___might_sleep(file, line, preempt_offset);
6984}
6985EXPORT_SYMBOL(__might_sleep);
6986
6987void ___might_sleep(const char *file, int line, int preempt_offset)
6988{
6989 /* Ratelimiting timestamp: */
6990 static unsigned long prev_jiffy;
6991
6992 unsigned long preempt_disable_ip;
6993
6994 /* WARN_ON_ONCE() by default, no rate limit required: */
6995 rcu_sleep_check();
6996
6997 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6998 !is_idle_task(current) && !current->non_block_count) ||
6999 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
7000 oops_in_progress)
7001 return;
7002
7003 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7004 return;
7005 prev_jiffy = jiffies;
7006
7007 /* Save this before calling printk(), since that will clobber it: */
7008 preempt_disable_ip = get_preempt_disable_ip(current);
7009
7010 printk(KERN_ERR
7011 "BUG: sleeping function called from invalid context at %s:%d\n",
7012 file, line);
7013 printk(KERN_ERR
7014 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7015 in_atomic(), irqs_disabled(), current->non_block_count,
7016 current->pid, current->comm);
7017
7018 if (task_stack_end_corrupted(current))
7019 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7020
7021 debug_show_held_locks(current);
7022 if (irqs_disabled())
7023 print_irqtrace_events(current);
7024 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7025 && !preempt_count_equals(preempt_offset)) {
7026 pr_err("Preemption disabled at:");
7027 print_ip_sym(preempt_disable_ip);
7028 pr_cont("\n");
7029 }
7030 dump_stack();
7031 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7032}
7033EXPORT_SYMBOL(___might_sleep);
7034
7035void __cant_sleep(const char *file, int line, int preempt_offset)
7036{
7037 static unsigned long prev_jiffy;
7038
7039 if (irqs_disabled())
7040 return;
7041
7042 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7043 return;
7044
7045 if (preempt_count() > preempt_offset)
7046 return;
7047
7048 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7049 return;
7050 prev_jiffy = jiffies;
7051
7052 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
7053 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7054 in_atomic(), irqs_disabled(),
7055 current->pid, current->comm);
7056
7057 debug_show_held_locks(current);
7058 dump_stack();
7059 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7060}
7061EXPORT_SYMBOL_GPL(__cant_sleep);
7062#endif
7063
7064#ifdef CONFIG_MAGIC_SYSRQ
7065void normalize_rt_tasks(void)
7066{
7067 struct task_struct *g, *p;
7068 struct sched_attr attr = {
7069 .sched_policy = SCHED_NORMAL,
7070 };
7071
7072 read_lock(&tasklist_lock);
7073 for_each_process_thread(g, p) {
7074 /*
7075 * Only normalize user tasks:
7076 */
7077 if (p->flags & PF_KTHREAD)
7078 continue;
7079
7080 p->se.exec_start = 0;
7081 schedstat_set(p->se.statistics.wait_start, 0);
7082 schedstat_set(p->se.statistics.sleep_start, 0);
7083 schedstat_set(p->se.statistics.block_start, 0);
7084
7085 if (!dl_task(p) && !rt_task(p)) {
7086 /*
7087 * Renice negative nice level userspace
7088 * tasks back to 0:
7089 */
7090 if (task_nice(p) < 0)
7091 set_user_nice(p, 0);
7092 continue;
7093 }
7094
7095 __sched_setscheduler(p, &attr, false, false);
7096 }
7097 read_unlock(&tasklist_lock);
7098}
7099
7100#endif /* CONFIG_MAGIC_SYSRQ */
7101
7102#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7103/*
7104 * These functions are only useful for the IA64 MCA handling, or kdb.
7105 *
7106 * They can only be called when the whole system has been
7107 * stopped - every CPU needs to be quiescent, and no scheduling
7108 * activity can take place. Using them for anything else would
7109 * be a serious bug, and as a result, they aren't even visible
7110 * under any other configuration.
7111 */
7112
7113/**
7114 * curr_task - return the current task for a given CPU.
7115 * @cpu: the processor in question.
7116 *
7117 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7118 *
7119 * Return: The current task for @cpu.
7120 */
7121struct task_struct *curr_task(int cpu)
7122{
7123 return cpu_curr(cpu);
7124}
7125
7126#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7127
7128#ifdef CONFIG_IA64
7129/**
7130 * ia64_set_curr_task - set the current task for a given CPU.
7131 * @cpu: the processor in question.
7132 * @p: the task pointer to set.
7133 *
7134 * Description: This function must only be used when non-maskable interrupts
7135 * are serviced on a separate stack. It allows the architecture to switch the
7136 * notion of the current task on a CPU in a non-blocking manner. This function
7137 * must be called with all CPU's synchronized, and interrupts disabled, the
7138 * and caller must save the original value of the current task (see
7139 * curr_task() above) and restore that value before reenabling interrupts and
7140 * re-starting the system.
7141 *
7142 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7143 */
7144void ia64_set_curr_task(int cpu, struct task_struct *p)
7145{
7146 cpu_curr(cpu) = p;
7147}
7148
7149#endif
7150
7151#ifdef CONFIG_CGROUP_SCHED
7152/* task_group_lock serializes the addition/removal of task groups */
7153static DEFINE_SPINLOCK(task_group_lock);
7154
7155static inline void alloc_uclamp_sched_group(struct task_group *tg,
7156 struct task_group *parent)
7157{
7158#ifdef CONFIG_UCLAMP_TASK_GROUP
7159 enum uclamp_id clamp_id;
7160
7161 for_each_clamp_id(clamp_id) {
7162 uclamp_se_set(&tg->uclamp_req[clamp_id],
7163 uclamp_none(clamp_id), false);
7164 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
7165 }
7166#endif
7167}
7168
7169static void sched_free_group(struct task_group *tg)
7170{
7171 free_fair_sched_group(tg);
7172 free_rt_sched_group(tg);
7173 autogroup_free(tg);
7174 kmem_cache_free(task_group_cache, tg);
7175}
7176
7177/* allocate runqueue etc for a new task group */
7178struct task_group *sched_create_group(struct task_group *parent)
7179{
7180 struct task_group *tg;
7181
7182 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7183 if (!tg)
7184 return ERR_PTR(-ENOMEM);
7185
7186 if (!alloc_fair_sched_group(tg, parent))
7187 goto err;
7188
7189 if (!alloc_rt_sched_group(tg, parent))
7190 goto err;
7191
7192 alloc_uclamp_sched_group(tg, parent);
7193
7194 return tg;
7195
7196err:
7197 sched_free_group(tg);
7198 return ERR_PTR(-ENOMEM);
7199}
7200
7201void sched_online_group(struct task_group *tg, struct task_group *parent)
7202{
7203 unsigned long flags;
7204
7205 spin_lock_irqsave(&task_group_lock, flags);
7206 list_add_rcu(&tg->list, &task_groups);
7207
7208 /* Root should already exist: */
7209 WARN_ON(!parent);
7210
7211 tg->parent = parent;
7212 INIT_LIST_HEAD(&tg->children);
7213 list_add_rcu(&tg->siblings, &parent->children);
7214 spin_unlock_irqrestore(&task_group_lock, flags);
7215
7216 online_fair_sched_group(tg);
7217}
7218
7219/* rcu callback to free various structures associated with a task group */
7220static void sched_free_group_rcu(struct rcu_head *rhp)
7221{
7222 /* Now it should be safe to free those cfs_rqs: */
7223 sched_free_group(container_of(rhp, struct task_group, rcu));
7224}
7225
7226void sched_destroy_group(struct task_group *tg)
7227{
7228 /* Wait for possible concurrent references to cfs_rqs complete: */
7229 call_rcu(&tg->rcu, sched_free_group_rcu);
7230}
7231
7232void sched_offline_group(struct task_group *tg)
7233{
7234 unsigned long flags;
7235
7236 /* End participation in shares distribution: */
7237 unregister_fair_sched_group(tg);
7238
7239 spin_lock_irqsave(&task_group_lock, flags);
7240 list_del_rcu(&tg->list);
7241 list_del_rcu(&tg->siblings);
7242 spin_unlock_irqrestore(&task_group_lock, flags);
7243}
7244
7245static void sched_change_group(struct task_struct *tsk, int type)
7246{
7247 struct task_group *tg;
7248
7249 /*
7250 * All callers are synchronized by task_rq_lock(); we do not use RCU
7251 * which is pointless here. Thus, we pass "true" to task_css_check()
7252 * to prevent lockdep warnings.
7253 */
7254 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7255 struct task_group, css);
7256 tg = autogroup_task_group(tsk, tg);
7257 tsk->sched_task_group = tg;
7258
7259#ifdef CONFIG_FAIR_GROUP_SCHED
7260 if (tsk->sched_class->task_change_group)
7261 tsk->sched_class->task_change_group(tsk, type);
7262 else
7263#endif
7264 set_task_rq(tsk, task_cpu(tsk));
7265}
7266
7267/*
7268 * Change task's runqueue when it moves between groups.
7269 *
7270 * The caller of this function should have put the task in its new group by
7271 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7272 * its new group.
7273 */
7274void sched_move_task(struct task_struct *tsk)
7275{
7276 int queued, running, queue_flags =
7277 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7278 struct rq_flags rf;
7279 struct rq *rq;
7280
7281 rq = task_rq_lock(tsk, &rf);
7282 update_rq_clock(rq);
7283
7284 running = task_current(rq, tsk);
7285 queued = task_on_rq_queued(tsk);
7286
7287 if (queued)
7288 dequeue_task(rq, tsk, queue_flags);
7289 if (running)
7290 put_prev_task(rq, tsk);
7291
7292 sched_change_group(tsk, TASK_MOVE_GROUP);
7293
7294 if (queued)
7295 enqueue_task(rq, tsk, queue_flags);
7296 if (running) {
7297 set_next_task(rq, tsk);
7298 /*
7299 * After changing group, the running task may have joined a
7300 * throttled one but it's still the running task. Trigger a
7301 * resched to make sure that task can still run.
7302 */
7303 resched_curr(rq);
7304 }
7305
7306 task_rq_unlock(rq, tsk, &rf);
7307}
7308
7309static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7310{
7311 return css ? container_of(css, struct task_group, css) : NULL;
7312}
7313
7314static struct cgroup_subsys_state *
7315cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7316{
7317 struct task_group *parent = css_tg(parent_css);
7318 struct task_group *tg;
7319
7320 if (!parent) {
7321 /* This is early initialization for the top cgroup */
7322 return &root_task_group.css;
7323 }
7324
7325 tg = sched_create_group(parent);
7326 if (IS_ERR(tg))
7327 return ERR_PTR(-ENOMEM);
7328
7329 return &tg->css;
7330}
7331
7332/* Expose task group only after completing cgroup initialization */
7333static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7334{
7335 struct task_group *tg = css_tg(css);
7336 struct task_group *parent = css_tg(css->parent);
7337
7338 if (parent)
7339 sched_online_group(tg, parent);
7340
7341#ifdef CONFIG_UCLAMP_TASK_GROUP
7342 /* Propagate the effective uclamp value for the new group */
7343 mutex_lock(&uclamp_mutex);
7344 rcu_read_lock();
7345 cpu_util_update_eff(css);
7346 rcu_read_unlock();
7347 mutex_unlock(&uclamp_mutex);
7348#endif
7349
7350 return 0;
7351}
7352
7353static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7354{
7355 struct task_group *tg = css_tg(css);
7356
7357 sched_offline_group(tg);
7358}
7359
7360static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7361{
7362 struct task_group *tg = css_tg(css);
7363
7364 /*
7365 * Relies on the RCU grace period between css_released() and this.
7366 */
7367 sched_free_group(tg);
7368}
7369
7370/*
7371 * This is called before wake_up_new_task(), therefore we really only
7372 * have to set its group bits, all the other stuff does not apply.
7373 */
7374static void cpu_cgroup_fork(struct task_struct *task)
7375{
7376 struct rq_flags rf;
7377 struct rq *rq;
7378
7379 rq = task_rq_lock(task, &rf);
7380
7381 update_rq_clock(rq);
7382 sched_change_group(task, TASK_SET_GROUP);
7383
7384 task_rq_unlock(rq, task, &rf);
7385}
7386
7387static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7388{
7389 struct task_struct *task;
7390 struct cgroup_subsys_state *css;
7391 int ret = 0;
7392
7393 cgroup_taskset_for_each(task, css, tset) {
7394#ifdef CONFIG_RT_GROUP_SCHED
7395 if (!sched_rt_can_attach(css_tg(css), task))
7396 return -EINVAL;
7397#endif
7398 /*
7399 * Serialize against wake_up_new_task() such that if its
7400 * running, we're sure to observe its full state.
7401 */
7402 raw_spin_lock_irq(&task->pi_lock);
7403 /*
7404 * Avoid calling sched_move_task() before wake_up_new_task()
7405 * has happened. This would lead to problems with PELT, due to
7406 * move wanting to detach+attach while we're not attached yet.
7407 */
7408 if (task->state == TASK_NEW)
7409 ret = -EINVAL;
7410 raw_spin_unlock_irq(&task->pi_lock);
7411
7412 if (ret)
7413 break;
7414 }
7415 return ret;
7416}
7417
7418static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7419{
7420 struct task_struct *task;
7421 struct cgroup_subsys_state *css;
7422
7423 cgroup_taskset_for_each(task, css, tset)
7424 sched_move_task(task);
7425}
7426
7427#ifdef CONFIG_UCLAMP_TASK_GROUP
7428static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7429{
7430 struct cgroup_subsys_state *top_css = css;
7431 struct uclamp_se *uc_parent = NULL;
7432 struct uclamp_se *uc_se = NULL;
7433 unsigned int eff[UCLAMP_CNT];
7434 enum uclamp_id clamp_id;
7435 unsigned int clamps;
7436
7437 lockdep_assert_held(&uclamp_mutex);
7438 SCHED_WARN_ON(!rcu_read_lock_held());
7439
7440 css_for_each_descendant_pre(css, top_css) {
7441 uc_parent = css_tg(css)->parent
7442 ? css_tg(css)->parent->uclamp : NULL;
7443
7444 for_each_clamp_id(clamp_id) {
7445 /* Assume effective clamps matches requested clamps */
7446 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7447 /* Cap effective clamps with parent's effective clamps */
7448 if (uc_parent &&
7449 eff[clamp_id] > uc_parent[clamp_id].value) {
7450 eff[clamp_id] = uc_parent[clamp_id].value;
7451 }
7452 }
7453 /* Ensure protection is always capped by limit */
7454 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7455
7456 /* Propagate most restrictive effective clamps */
7457 clamps = 0x0;
7458 uc_se = css_tg(css)->uclamp;
7459 for_each_clamp_id(clamp_id) {
7460 if (eff[clamp_id] == uc_se[clamp_id].value)
7461 continue;
7462 uc_se[clamp_id].value = eff[clamp_id];
7463 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7464 clamps |= (0x1 << clamp_id);
7465 }
7466 if (!clamps) {
7467 css = css_rightmost_descendant(css);
7468 continue;
7469 }
7470
7471 /* Immediately update descendants RUNNABLE tasks */
7472 uclamp_update_active_tasks(css);
7473 }
7474}
7475
7476/*
7477 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7478 * C expression. Since there is no way to convert a macro argument (N) into a
7479 * character constant, use two levels of macros.
7480 */
7481#define _POW10(exp) ((unsigned int)1e##exp)
7482#define POW10(exp) _POW10(exp)
7483
7484struct uclamp_request {
7485#define UCLAMP_PERCENT_SHIFT 2
7486#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7487 s64 percent;
7488 u64 util;
7489 int ret;
7490};
7491
7492static inline struct uclamp_request
7493capacity_from_percent(char *buf)
7494{
7495 struct uclamp_request req = {
7496 .percent = UCLAMP_PERCENT_SCALE,
7497 .util = SCHED_CAPACITY_SCALE,
7498 .ret = 0,
7499 };
7500
7501 buf = strim(buf);
7502 if (strcmp(buf, "max")) {
7503 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7504 &req.percent);
7505 if (req.ret)
7506 return req;
7507 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7508 req.ret = -ERANGE;
7509 return req;
7510 }
7511
7512 req.util = req.percent << SCHED_CAPACITY_SHIFT;
7513 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7514 }
7515
7516 return req;
7517}
7518
7519static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7520 size_t nbytes, loff_t off,
7521 enum uclamp_id clamp_id)
7522{
7523 struct uclamp_request req;
7524 struct task_group *tg;
7525
7526 req = capacity_from_percent(buf);
7527 if (req.ret)
7528 return req.ret;
7529
7530 static_branch_enable(&sched_uclamp_used);
7531
7532 mutex_lock(&uclamp_mutex);
7533 rcu_read_lock();
7534
7535 tg = css_tg(of_css(of));
7536 if (tg->uclamp_req[clamp_id].value != req.util)
7537 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7538
7539 /*
7540 * Because of not recoverable conversion rounding we keep track of the
7541 * exact requested value
7542 */
7543 tg->uclamp_pct[clamp_id] = req.percent;
7544
7545 /* Update effective clamps to track the most restrictive value */
7546 cpu_util_update_eff(of_css(of));
7547
7548 rcu_read_unlock();
7549 mutex_unlock(&uclamp_mutex);
7550
7551 return nbytes;
7552}
7553
7554static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7555 char *buf, size_t nbytes,
7556 loff_t off)
7557{
7558 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7559}
7560
7561static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7562 char *buf, size_t nbytes,
7563 loff_t off)
7564{
7565 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7566}
7567
7568static inline void cpu_uclamp_print(struct seq_file *sf,
7569 enum uclamp_id clamp_id)
7570{
7571 struct task_group *tg;
7572 u64 util_clamp;
7573 u64 percent;
7574 u32 rem;
7575
7576 rcu_read_lock();
7577 tg = css_tg(seq_css(sf));
7578 util_clamp = tg->uclamp_req[clamp_id].value;
7579 rcu_read_unlock();
7580
7581 if (util_clamp == SCHED_CAPACITY_SCALE) {
7582 seq_puts(sf, "max\n");
7583 return;
7584 }
7585
7586 percent = tg->uclamp_pct[clamp_id];
7587 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7588 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7589}
7590
7591static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7592{
7593 cpu_uclamp_print(sf, UCLAMP_MIN);
7594 return 0;
7595}
7596
7597static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7598{
7599 cpu_uclamp_print(sf, UCLAMP_MAX);
7600 return 0;
7601}
7602
7603static int cpu_uclamp_ls_write_u64(struct cgroup_subsys_state *css,
7604 struct cftype *cftype, u64 ls)
7605{
7606 struct task_group *tg;
7607
7608 if (ls > 1)
7609 return -EINVAL;
7610 tg = css_tg(css);
7611 tg->latency_sensitive = (unsigned int) ls;
7612
7613 return 0;
7614}
7615
7616static u64 cpu_uclamp_ls_read_u64(struct cgroup_subsys_state *css,
7617 struct cftype *cft)
7618{
7619 struct task_group *tg = css_tg(css);
7620
7621 return (u64) tg->latency_sensitive;
7622}
7623#endif /* CONFIG_UCLAMP_TASK_GROUP */
7624
7625#ifdef CONFIG_FAIR_GROUP_SCHED
7626static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7627 struct cftype *cftype, u64 shareval)
7628{
7629 if (shareval > scale_load_down(ULONG_MAX))
7630 shareval = MAX_SHARES;
7631 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7632}
7633
7634static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7635 struct cftype *cft)
7636{
7637 struct task_group *tg = css_tg(css);
7638
7639 return (u64) scale_load_down(tg->shares);
7640}
7641
7642#ifdef CONFIG_CFS_BANDWIDTH
7643static DEFINE_MUTEX(cfs_constraints_mutex);
7644
7645const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7646static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7647/* More than 203 days if BW_SHIFT equals 20. */
7648static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
7649
7650static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7651
7652static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7653{
7654 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7655 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7656
7657 if (tg == &root_task_group)
7658 return -EINVAL;
7659
7660 /*
7661 * Ensure we have at some amount of bandwidth every period. This is
7662 * to prevent reaching a state of large arrears when throttled via
7663 * entity_tick() resulting in prolonged exit starvation.
7664 */
7665 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7666 return -EINVAL;
7667
7668 /*
7669 * Likewise, bound things on the otherside by preventing insane quota
7670 * periods. This also allows us to normalize in computing quota
7671 * feasibility.
7672 */
7673 if (period > max_cfs_quota_period)
7674 return -EINVAL;
7675
7676 /*
7677 * Bound quota to defend quota against overflow during bandwidth shift.
7678 */
7679 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
7680 return -EINVAL;
7681
7682 /*
7683 * Prevent race between setting of cfs_rq->runtime_enabled and
7684 * unthrottle_offline_cfs_rqs().
7685 */
7686 get_online_cpus();
7687 mutex_lock(&cfs_constraints_mutex);
7688 ret = __cfs_schedulable(tg, period, quota);
7689 if (ret)
7690 goto out_unlock;
7691
7692 runtime_enabled = quota != RUNTIME_INF;
7693 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7694 /*
7695 * If we need to toggle cfs_bandwidth_used, off->on must occur
7696 * before making related changes, and on->off must occur afterwards
7697 */
7698 if (runtime_enabled && !runtime_was_enabled)
7699 cfs_bandwidth_usage_inc();
7700 raw_spin_lock_irq(&cfs_b->lock);
7701 cfs_b->period = ns_to_ktime(period);
7702 cfs_b->quota = quota;
7703
7704 __refill_cfs_bandwidth_runtime(cfs_b);
7705
7706 /* Restart the period timer (if active) to handle new period expiry: */
7707 if (runtime_enabled)
7708 start_cfs_bandwidth(cfs_b);
7709
7710 raw_spin_unlock_irq(&cfs_b->lock);
7711
7712 for_each_online_cpu(i) {
7713 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7714 struct rq *rq = cfs_rq->rq;
7715 struct rq_flags rf;
7716
7717 rq_lock_irq(rq, &rf);
7718 cfs_rq->runtime_enabled = runtime_enabled;
7719 cfs_rq->runtime_remaining = 0;
7720
7721 if (cfs_rq->throttled)
7722 unthrottle_cfs_rq(cfs_rq);
7723 rq_unlock_irq(rq, &rf);
7724 }
7725 if (runtime_was_enabled && !runtime_enabled)
7726 cfs_bandwidth_usage_dec();
7727out_unlock:
7728 mutex_unlock(&cfs_constraints_mutex);
7729 put_online_cpus();
7730
7731 return ret;
7732}
7733
7734static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7735{
7736 u64 quota, period;
7737
7738 period = ktime_to_ns(tg->cfs_bandwidth.period);
7739 if (cfs_quota_us < 0)
7740 quota = RUNTIME_INF;
7741 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7742 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7743 else
7744 return -EINVAL;
7745
7746 return tg_set_cfs_bandwidth(tg, period, quota);
7747}
7748
7749static long tg_get_cfs_quota(struct task_group *tg)
7750{
7751 u64 quota_us;
7752
7753 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7754 return -1;
7755
7756 quota_us = tg->cfs_bandwidth.quota;
7757 do_div(quota_us, NSEC_PER_USEC);
7758
7759 return quota_us;
7760}
7761
7762static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7763{
7764 u64 quota, period;
7765
7766 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7767 return -EINVAL;
7768
7769 period = (u64)cfs_period_us * NSEC_PER_USEC;
7770 quota = tg->cfs_bandwidth.quota;
7771
7772 return tg_set_cfs_bandwidth(tg, period, quota);
7773}
7774
7775static long tg_get_cfs_period(struct task_group *tg)
7776{
7777 u64 cfs_period_us;
7778
7779 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7780 do_div(cfs_period_us, NSEC_PER_USEC);
7781
7782 return cfs_period_us;
7783}
7784
7785static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7786 struct cftype *cft)
7787{
7788 return tg_get_cfs_quota(css_tg(css));
7789}
7790
7791static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7792 struct cftype *cftype, s64 cfs_quota_us)
7793{
7794 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7795}
7796
7797static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7798 struct cftype *cft)
7799{
7800 return tg_get_cfs_period(css_tg(css));
7801}
7802
7803static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7804 struct cftype *cftype, u64 cfs_period_us)
7805{
7806 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7807}
7808
7809struct cfs_schedulable_data {
7810 struct task_group *tg;
7811 u64 period, quota;
7812};
7813
7814/*
7815 * normalize group quota/period to be quota/max_period
7816 * note: units are usecs
7817 */
7818static u64 normalize_cfs_quota(struct task_group *tg,
7819 struct cfs_schedulable_data *d)
7820{
7821 u64 quota, period;
7822
7823 if (tg == d->tg) {
7824 period = d->period;
7825 quota = d->quota;
7826 } else {
7827 period = tg_get_cfs_period(tg);
7828 quota = tg_get_cfs_quota(tg);
7829 }
7830
7831 /* note: these should typically be equivalent */
7832 if (quota == RUNTIME_INF || quota == -1)
7833 return RUNTIME_INF;
7834
7835 return to_ratio(period, quota);
7836}
7837
7838static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7839{
7840 struct cfs_schedulable_data *d = data;
7841 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7842 s64 quota = 0, parent_quota = -1;
7843
7844 if (!tg->parent) {
7845 quota = RUNTIME_INF;
7846 } else {
7847 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7848
7849 quota = normalize_cfs_quota(tg, d);
7850 parent_quota = parent_b->hierarchical_quota;
7851
7852 /*
7853 * Ensure max(child_quota) <= parent_quota. On cgroup2,
7854 * always take the min. On cgroup1, only inherit when no
7855 * limit is set:
7856 */
7857 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7858 quota = min(quota, parent_quota);
7859 } else {
7860 if (quota == RUNTIME_INF)
7861 quota = parent_quota;
7862 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7863 return -EINVAL;
7864 }
7865 }
7866 cfs_b->hierarchical_quota = quota;
7867
7868 return 0;
7869}
7870
7871static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7872{
7873 int ret;
7874 struct cfs_schedulable_data data = {
7875 .tg = tg,
7876 .period = period,
7877 .quota = quota,
7878 };
7879
7880 if (quota != RUNTIME_INF) {
7881 do_div(data.period, NSEC_PER_USEC);
7882 do_div(data.quota, NSEC_PER_USEC);
7883 }
7884
7885 rcu_read_lock();
7886 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7887 rcu_read_unlock();
7888
7889 return ret;
7890}
7891
7892static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7893{
7894 struct task_group *tg = css_tg(seq_css(sf));
7895 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7896
7897 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7898 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7899 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7900
7901 if (schedstat_enabled() && tg != &root_task_group) {
7902 u64 ws = 0;
7903 int i;
7904
7905 for_each_possible_cpu(i)
7906 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7907
7908 seq_printf(sf, "wait_sum %llu\n", ws);
7909 }
7910
7911 return 0;
7912}
7913#endif /* CONFIG_CFS_BANDWIDTH */
7914#endif /* CONFIG_FAIR_GROUP_SCHED */
7915
7916#ifdef CONFIG_RT_GROUP_SCHED
7917static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7918 struct cftype *cft, s64 val)
7919{
7920 return sched_group_set_rt_runtime(css_tg(css), val);
7921}
7922
7923static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7924 struct cftype *cft)
7925{
7926 return sched_group_rt_runtime(css_tg(css));
7927}
7928
7929static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7930 struct cftype *cftype, u64 rt_period_us)
7931{
7932 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7933}
7934
7935static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7936 struct cftype *cft)
7937{
7938 return sched_group_rt_period(css_tg(css));
7939}
7940#endif /* CONFIG_RT_GROUP_SCHED */
7941
7942static struct cftype cpu_legacy_files[] = {
7943#ifdef CONFIG_FAIR_GROUP_SCHED
7944 {
7945 .name = "shares",
7946 .read_u64 = cpu_shares_read_u64,
7947 .write_u64 = cpu_shares_write_u64,
7948 },
7949#endif
7950#ifdef CONFIG_CFS_BANDWIDTH
7951 {
7952 .name = "cfs_quota_us",
7953 .read_s64 = cpu_cfs_quota_read_s64,
7954 .write_s64 = cpu_cfs_quota_write_s64,
7955 },
7956 {
7957 .name = "cfs_period_us",
7958 .read_u64 = cpu_cfs_period_read_u64,
7959 .write_u64 = cpu_cfs_period_write_u64,
7960 },
7961 {
7962 .name = "stat",
7963 .seq_show = cpu_cfs_stat_show,
7964 },
7965#endif
7966#ifdef CONFIG_RT_GROUP_SCHED
7967 {
7968 .name = "rt_runtime_us",
7969 .read_s64 = cpu_rt_runtime_read,
7970 .write_s64 = cpu_rt_runtime_write,
7971 },
7972 {
7973 .name = "rt_period_us",
7974 .read_u64 = cpu_rt_period_read_uint,
7975 .write_u64 = cpu_rt_period_write_uint,
7976 },
7977#endif
7978#ifdef CONFIG_UCLAMP_TASK_GROUP
7979 {
7980 .name = "uclamp.min",
7981 .flags = CFTYPE_NOT_ON_ROOT,
7982 .seq_show = cpu_uclamp_min_show,
7983 .write = cpu_uclamp_min_write,
7984 },
7985 {
7986 .name = "uclamp.max",
7987 .flags = CFTYPE_NOT_ON_ROOT,
7988 .seq_show = cpu_uclamp_max_show,
7989 .write = cpu_uclamp_max_write,
7990 },
7991 {
7992 .name = "uclamp.latency_sensitive",
7993 .flags = CFTYPE_NOT_ON_ROOT,
7994 .read_u64 = cpu_uclamp_ls_read_u64,
7995 .write_u64 = cpu_uclamp_ls_write_u64,
7996 },
7997#endif
7998 { } /* Terminate */
7999};
8000
8001static int cpu_extra_stat_show(struct seq_file *sf,
8002 struct cgroup_subsys_state *css)
8003{
8004#ifdef CONFIG_CFS_BANDWIDTH
8005 {
8006 struct task_group *tg = css_tg(css);
8007 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8008 u64 throttled_usec;
8009
8010 throttled_usec = cfs_b->throttled_time;
8011 do_div(throttled_usec, NSEC_PER_USEC);
8012
8013 seq_printf(sf, "nr_periods %d\n"
8014 "nr_throttled %d\n"
8015 "throttled_usec %llu\n",
8016 cfs_b->nr_periods, cfs_b->nr_throttled,
8017 throttled_usec);
8018 }
8019#endif
8020 return 0;
8021}
8022
8023#ifdef CONFIG_FAIR_GROUP_SCHED
8024static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
8025 struct cftype *cft)
8026{
8027 struct task_group *tg = css_tg(css);
8028 u64 weight = scale_load_down(tg->shares);
8029
8030 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
8031}
8032
8033static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
8034 struct cftype *cft, u64 weight)
8035{
8036 /*
8037 * cgroup weight knobs should use the common MIN, DFL and MAX
8038 * values which are 1, 100 and 10000 respectively. While it loses
8039 * a bit of range on both ends, it maps pretty well onto the shares
8040 * value used by scheduler and the round-trip conversions preserve
8041 * the original value over the entire range.
8042 */
8043 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
8044 return -ERANGE;
8045
8046 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
8047
8048 return sched_group_set_shares(css_tg(css), scale_load(weight));
8049}
8050
8051static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
8052 struct cftype *cft)
8053{
8054 unsigned long weight = scale_load_down(css_tg(css)->shares);
8055 int last_delta = INT_MAX;
8056 int prio, delta;
8057
8058 /* find the closest nice value to the current weight */
8059 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
8060 delta = abs(sched_prio_to_weight[prio] - weight);
8061 if (delta >= last_delta)
8062 break;
8063 last_delta = delta;
8064 }
8065
8066 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
8067}
8068
8069static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
8070 struct cftype *cft, s64 nice)
8071{
8072 unsigned long weight;
8073 int idx;
8074
8075 if (nice < MIN_NICE || nice > MAX_NICE)
8076 return -ERANGE;
8077
8078 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
8079 idx = array_index_nospec(idx, 40);
8080 weight = sched_prio_to_weight[idx];
8081
8082 return sched_group_set_shares(css_tg(css), scale_load(weight));
8083}
8084#endif
8085
8086static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
8087 long period, long quota)
8088{
8089 if (quota < 0)
8090 seq_puts(sf, "max");
8091 else
8092 seq_printf(sf, "%ld", quota);
8093
8094 seq_printf(sf, " %ld\n", period);
8095}
8096
8097/* caller should put the current value in *@periodp before calling */
8098static int __maybe_unused cpu_period_quota_parse(char *buf,
8099 u64 *periodp, u64 *quotap)
8100{
8101 char tok[21]; /* U64_MAX */
8102
8103 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
8104 return -EINVAL;
8105
8106 *periodp *= NSEC_PER_USEC;
8107
8108 if (sscanf(tok, "%llu", quotap))
8109 *quotap *= NSEC_PER_USEC;
8110 else if (!strcmp(tok, "max"))
8111 *quotap = RUNTIME_INF;
8112 else
8113 return -EINVAL;
8114
8115 return 0;
8116}
8117
8118#ifdef CONFIG_CFS_BANDWIDTH
8119static int cpu_max_show(struct seq_file *sf, void *v)
8120{
8121 struct task_group *tg = css_tg(seq_css(sf));
8122
8123 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
8124 return 0;
8125}
8126
8127static ssize_t cpu_max_write(struct kernfs_open_file *of,
8128 char *buf, size_t nbytes, loff_t off)
8129{
8130 struct task_group *tg = css_tg(of_css(of));
8131 u64 period = tg_get_cfs_period(tg);
8132 u64 quota;
8133 int ret;
8134
8135 ret = cpu_period_quota_parse(buf, &period, &quota);
8136 if (!ret)
8137 ret = tg_set_cfs_bandwidth(tg, period, quota);
8138 return ret ?: nbytes;
8139}
8140#endif
8141
8142static struct cftype cpu_files[] = {
8143#ifdef CONFIG_FAIR_GROUP_SCHED
8144 {
8145 .name = "weight",
8146 .flags = CFTYPE_NOT_ON_ROOT,
8147 .read_u64 = cpu_weight_read_u64,
8148 .write_u64 = cpu_weight_write_u64,
8149 },
8150 {
8151 .name = "weight.nice",
8152 .flags = CFTYPE_NOT_ON_ROOT,
8153 .read_s64 = cpu_weight_nice_read_s64,
8154 .write_s64 = cpu_weight_nice_write_s64,
8155 },
8156#endif
8157#ifdef CONFIG_CFS_BANDWIDTH
8158 {
8159 .name = "max",
8160 .flags = CFTYPE_NOT_ON_ROOT,
8161 .seq_show = cpu_max_show,
8162 .write = cpu_max_write,
8163 },
8164#endif
8165#ifdef CONFIG_UCLAMP_TASK_GROUP
8166 {
8167 .name = "uclamp.min",
8168 .flags = CFTYPE_NOT_ON_ROOT,
8169 .seq_show = cpu_uclamp_min_show,
8170 .write = cpu_uclamp_min_write,
8171 },
8172 {
8173 .name = "uclamp.max",
8174 .flags = CFTYPE_NOT_ON_ROOT,
8175 .seq_show = cpu_uclamp_max_show,
8176 .write = cpu_uclamp_max_write,
8177 },
8178 {
8179 .name = "uclamp.latency_sensitive",
8180 .flags = CFTYPE_NOT_ON_ROOT,
8181 .read_u64 = cpu_uclamp_ls_read_u64,
8182 .write_u64 = cpu_uclamp_ls_write_u64,
8183 },
8184#endif
8185 { } /* terminate */
8186};
8187
8188struct cgroup_subsys cpu_cgrp_subsys = {
8189 .css_alloc = cpu_cgroup_css_alloc,
8190 .css_online = cpu_cgroup_css_online,
8191 .css_released = cpu_cgroup_css_released,
8192 .css_free = cpu_cgroup_css_free,
8193 .css_extra_stat_show = cpu_extra_stat_show,
8194 .fork = cpu_cgroup_fork,
8195 .can_attach = cpu_cgroup_can_attach,
8196 .attach = cpu_cgroup_attach,
8197 .legacy_cftypes = cpu_legacy_files,
8198 .dfl_cftypes = cpu_files,
8199 .early_init = true,
8200 .threaded = true,
8201};
8202
8203#endif /* CONFIG_CGROUP_SCHED */
8204
8205void dump_cpu_task(int cpu)
8206{
8207 pr_info("Task dump for CPU %d:\n", cpu);
8208 sched_show_task(cpu_curr(cpu));
8209}
8210
8211/*
8212 * Nice levels are multiplicative, with a gentle 10% change for every
8213 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8214 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8215 * that remained on nice 0.
8216 *
8217 * The "10% effect" is relative and cumulative: from _any_ nice level,
8218 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8219 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8220 * If a task goes up by ~10% and another task goes down by ~10% then
8221 * the relative distance between them is ~25%.)
8222 */
8223const int sched_prio_to_weight[40] = {
8224 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8225 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8226 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8227 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8228 /* 0 */ 1024, 820, 655, 526, 423,
8229 /* 5 */ 335, 272, 215, 172, 137,
8230 /* 10 */ 110, 87, 70, 56, 45,
8231 /* 15 */ 36, 29, 23, 18, 15,
8232};
8233
8234/*
8235 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8236 *
8237 * In cases where the weight does not change often, we can use the
8238 * precalculated inverse to speed up arithmetics by turning divisions
8239 * into multiplications:
8240 */
8241const u32 sched_prio_to_wmult[40] = {
8242 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8243 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8244 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8245 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8246 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8247 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8248 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8249 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8250};
8251
8252#undef CREATE_TRACE_POINTS