blob: 0e9615cc4bb4c0e2fac6be6ef93538ebbc31c791 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/kernel/sys.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8#include <linux/export.h>
9#include <linux/mm.h>
10#include <linux/utsname.h>
11#include <linux/mman.h>
12#include <linux/reboot.h>
13#include <linux/prctl.h>
14#include <linux/highuid.h>
15#include <linux/fs.h>
16#include <linux/kmod.h>
17#include <linux/perf_event.h>
18#include <linux/resource.h>
19#include <linux/kernel.h>
20#include <linux/workqueue.h>
21#include <linux/capability.h>
22#include <linux/device.h>
23#include <linux/key.h>
24#include <linux/times.h>
25#include <linux/posix-timers.h>
26#include <linux/security.h>
27#include <linux/dcookies.h>
28#include <linux/suspend.h>
29#include <linux/tty.h>
30#include <linux/signal.h>
31#include <linux/cn_proc.h>
32#include <linux/getcpu.h>
33#include <linux/task_io_accounting_ops.h>
34#include <linux/seccomp.h>
35#include <linux/cpu.h>
36#include <linux/personality.h>
37#include <linux/ptrace.h>
38#include <linux/fs_struct.h>
39#include <linux/file.h>
40#include <linux/mount.h>
41#include <linux/gfp.h>
42#include <linux/syscore_ops.h>
43#include <linux/version.h>
44#include <linux/ctype.h>
45#include <linux/mm.h>
46#include <linux/mempolicy.h>
47
48#include <linux/compat.h>
49#include <linux/syscalls.h>
50#include <linux/kprobes.h>
51#include <linux/user_namespace.h>
52#include <linux/binfmts.h>
53
54#include <linux/sched.h>
55#include <linux/sched/autogroup.h>
56#include <linux/sched/loadavg.h>
57#include <linux/sched/stat.h>
58#include <linux/sched/mm.h>
59#include <linux/sched/coredump.h>
60#include <linux/sched/task.h>
61#include <linux/sched/cputime.h>
62#include <linux/rcupdate.h>
63#include <linux/uidgid.h>
64#include <linux/cred.h>
65
66#include <linux/nospec.h>
67
68#include <linux/kmsg_dump.h>
69/* Move somewhere else to avoid recompiling? */
70#include <generated/utsrelease.h>
71
72#include <linux/uaccess.h>
73#include <asm/io.h>
74#include <asm/unistd.h>
75
76#include "uid16.h"
77
78#include <trace/hooks/sys.h>
79
80#ifdef CONFIG_PXA_RAMDUMP
81#include <soc/asr/ramdump.h>
82#endif
83
84#ifndef SET_UNALIGN_CTL
85# define SET_UNALIGN_CTL(a, b) (-EINVAL)
86#endif
87#ifndef GET_UNALIGN_CTL
88# define GET_UNALIGN_CTL(a, b) (-EINVAL)
89#endif
90#ifndef SET_FPEMU_CTL
91# define SET_FPEMU_CTL(a, b) (-EINVAL)
92#endif
93#ifndef GET_FPEMU_CTL
94# define GET_FPEMU_CTL(a, b) (-EINVAL)
95#endif
96#ifndef SET_FPEXC_CTL
97# define SET_FPEXC_CTL(a, b) (-EINVAL)
98#endif
99#ifndef GET_FPEXC_CTL
100# define GET_FPEXC_CTL(a, b) (-EINVAL)
101#endif
102#ifndef GET_ENDIAN
103# define GET_ENDIAN(a, b) (-EINVAL)
104#endif
105#ifndef SET_ENDIAN
106# define SET_ENDIAN(a, b) (-EINVAL)
107#endif
108#ifndef GET_TSC_CTL
109# define GET_TSC_CTL(a) (-EINVAL)
110#endif
111#ifndef SET_TSC_CTL
112# define SET_TSC_CTL(a) (-EINVAL)
113#endif
114#ifndef GET_FP_MODE
115# define GET_FP_MODE(a) (-EINVAL)
116#endif
117#ifndef SET_FP_MODE
118# define SET_FP_MODE(a,b) (-EINVAL)
119#endif
120#ifndef SVE_SET_VL
121# define SVE_SET_VL(a) (-EINVAL)
122#endif
123#ifndef SVE_GET_VL
124# define SVE_GET_VL() (-EINVAL)
125#endif
126#ifndef PAC_RESET_KEYS
127# define PAC_RESET_KEYS(a, b) (-EINVAL)
128#endif
129#ifndef SET_TAGGED_ADDR_CTRL
130# define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
131#endif
132#ifndef GET_TAGGED_ADDR_CTRL
133# define GET_TAGGED_ADDR_CTRL() (-EINVAL)
134#endif
135
136/*
137 * this is where the system-wide overflow UID and GID are defined, for
138 * architectures that now have 32-bit UID/GID but didn't in the past
139 */
140
141int overflowuid = DEFAULT_OVERFLOWUID;
142int overflowgid = DEFAULT_OVERFLOWGID;
143
144EXPORT_SYMBOL(overflowuid);
145EXPORT_SYMBOL(overflowgid);
146
147/*
148 * the same as above, but for filesystems which can only store a 16-bit
149 * UID and GID. as such, this is needed on all architectures
150 */
151
152int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
153int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
154
155EXPORT_SYMBOL(fs_overflowuid);
156EXPORT_SYMBOL(fs_overflowgid);
157
158/*
159 * Returns true if current's euid is same as p's uid or euid,
160 * or has CAP_SYS_NICE to p's user_ns.
161 *
162 * Called with rcu_read_lock, creds are safe
163 */
164static bool set_one_prio_perm(struct task_struct *p)
165{
166 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
167
168 if (uid_eq(pcred->uid, cred->euid) ||
169 uid_eq(pcred->euid, cred->euid))
170 return true;
171 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
172 return true;
173 return false;
174}
175
176/*
177 * set the priority of a task
178 * - the caller must hold the RCU read lock
179 */
180static int set_one_prio(struct task_struct *p, int niceval, int error)
181{
182 int no_nice;
183
184 if (!set_one_prio_perm(p)) {
185 error = -EPERM;
186 goto out;
187 }
188 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
189 error = -EACCES;
190 goto out;
191 }
192 no_nice = security_task_setnice(p, niceval);
193 if (no_nice) {
194 error = no_nice;
195 goto out;
196 }
197 if (error == -ESRCH)
198 error = 0;
199 set_user_nice(p, niceval);
200out:
201 return error;
202}
203
204SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
205{
206 struct task_struct *g, *p;
207 struct user_struct *user;
208 const struct cred *cred = current_cred();
209 int error = -EINVAL;
210 struct pid *pgrp;
211 kuid_t uid;
212
213 if (which > PRIO_USER || which < PRIO_PROCESS)
214 goto out;
215
216 /* normalize: avoid signed division (rounding problems) */
217 error = -ESRCH;
218 if (niceval < MIN_NICE)
219 niceval = MIN_NICE;
220 if (niceval > MAX_NICE)
221 niceval = MAX_NICE;
222
223 rcu_read_lock();
224 read_lock(&tasklist_lock);
225 switch (which) {
226 case PRIO_PROCESS:
227 if (who)
228 p = find_task_by_vpid(who);
229 else
230 p = current;
231 if (p)
232 error = set_one_prio(p, niceval, error);
233 break;
234 case PRIO_PGRP:
235 if (who)
236 pgrp = find_vpid(who);
237 else
238 pgrp = task_pgrp(current);
239 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
240 error = set_one_prio(p, niceval, error);
241 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
242 break;
243 case PRIO_USER:
244 uid = make_kuid(cred->user_ns, who);
245 user = cred->user;
246 if (!who)
247 uid = cred->uid;
248 else if (!uid_eq(uid, cred->uid)) {
249 user = find_user(uid);
250 if (!user)
251 goto out_unlock; /* No processes for this user */
252 }
253 do_each_thread(g, p) {
254 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
255 error = set_one_prio(p, niceval, error);
256 } while_each_thread(g, p);
257 if (!uid_eq(uid, cred->uid))
258 free_uid(user); /* For find_user() */
259 break;
260 }
261out_unlock:
262 read_unlock(&tasklist_lock);
263 rcu_read_unlock();
264out:
265 return error;
266}
267
268/*
269 * Ugh. To avoid negative return values, "getpriority()" will
270 * not return the normal nice-value, but a negated value that
271 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
272 * to stay compatible.
273 */
274SYSCALL_DEFINE2(getpriority, int, which, int, who)
275{
276 struct task_struct *g, *p;
277 struct user_struct *user;
278 const struct cred *cred = current_cred();
279 long niceval, retval = -ESRCH;
280 struct pid *pgrp;
281 kuid_t uid;
282
283 if (which > PRIO_USER || which < PRIO_PROCESS)
284 return -EINVAL;
285
286 rcu_read_lock();
287 read_lock(&tasklist_lock);
288 switch (which) {
289 case PRIO_PROCESS:
290 if (who)
291 p = find_task_by_vpid(who);
292 else
293 p = current;
294 if (p) {
295 niceval = nice_to_rlimit(task_nice(p));
296 if (niceval > retval)
297 retval = niceval;
298 }
299 break;
300 case PRIO_PGRP:
301 if (who)
302 pgrp = find_vpid(who);
303 else
304 pgrp = task_pgrp(current);
305 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
306 niceval = nice_to_rlimit(task_nice(p));
307 if (niceval > retval)
308 retval = niceval;
309 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
310 break;
311 case PRIO_USER:
312 uid = make_kuid(cred->user_ns, who);
313 user = cred->user;
314 if (!who)
315 uid = cred->uid;
316 else if (!uid_eq(uid, cred->uid)) {
317 user = find_user(uid);
318 if (!user)
319 goto out_unlock; /* No processes for this user */
320 }
321 do_each_thread(g, p) {
322 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
323 niceval = nice_to_rlimit(task_nice(p));
324 if (niceval > retval)
325 retval = niceval;
326 }
327 } while_each_thread(g, p);
328 if (!uid_eq(uid, cred->uid))
329 free_uid(user); /* for find_user() */
330 break;
331 }
332out_unlock:
333 read_unlock(&tasklist_lock);
334 rcu_read_unlock();
335
336 return retval;
337}
338
339/*
340 * Unprivileged users may change the real gid to the effective gid
341 * or vice versa. (BSD-style)
342 *
343 * If you set the real gid at all, or set the effective gid to a value not
344 * equal to the real gid, then the saved gid is set to the new effective gid.
345 *
346 * This makes it possible for a setgid program to completely drop its
347 * privileges, which is often a useful assertion to make when you are doing
348 * a security audit over a program.
349 *
350 * The general idea is that a program which uses just setregid() will be
351 * 100% compatible with BSD. A program which uses just setgid() will be
352 * 100% compatible with POSIX with saved IDs.
353 *
354 * SMP: There are not races, the GIDs are checked only by filesystem
355 * operations (as far as semantic preservation is concerned).
356 */
357#ifdef CONFIG_MULTIUSER
358long __sys_setregid(gid_t rgid, gid_t egid)
359{
360 struct user_namespace *ns = current_user_ns();
361 const struct cred *old;
362 struct cred *new;
363 int retval;
364 kgid_t krgid, kegid;
365
366 krgid = make_kgid(ns, rgid);
367 kegid = make_kgid(ns, egid);
368
369 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
370 return -EINVAL;
371 if ((egid != (gid_t) -1) && !gid_valid(kegid))
372 return -EINVAL;
373
374 new = prepare_creds();
375 if (!new)
376 return -ENOMEM;
377 old = current_cred();
378
379 retval = -EPERM;
380 if (rgid != (gid_t) -1) {
381 if (gid_eq(old->gid, krgid) ||
382 gid_eq(old->egid, krgid) ||
383 ns_capable(old->user_ns, CAP_SETGID))
384 new->gid = krgid;
385 else
386 goto error;
387 }
388 if (egid != (gid_t) -1) {
389 if (gid_eq(old->gid, kegid) ||
390 gid_eq(old->egid, kegid) ||
391 gid_eq(old->sgid, kegid) ||
392 ns_capable(old->user_ns, CAP_SETGID))
393 new->egid = kegid;
394 else
395 goto error;
396 }
397
398 if (rgid != (gid_t) -1 ||
399 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
400 new->sgid = new->egid;
401 new->fsgid = new->egid;
402
403 return commit_creds(new);
404
405error:
406 abort_creds(new);
407 return retval;
408}
409
410SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
411{
412 return __sys_setregid(rgid, egid);
413}
414
415/*
416 * setgid() is implemented like SysV w/ SAVED_IDS
417 *
418 * SMP: Same implicit races as above.
419 */
420long __sys_setgid(gid_t gid)
421{
422 struct user_namespace *ns = current_user_ns();
423 const struct cred *old;
424 struct cred *new;
425 int retval;
426 kgid_t kgid;
427
428 kgid = make_kgid(ns, gid);
429 if (!gid_valid(kgid))
430 return -EINVAL;
431
432 new = prepare_creds();
433 if (!new)
434 return -ENOMEM;
435 old = current_cred();
436
437 retval = -EPERM;
438 if (ns_capable(old->user_ns, CAP_SETGID))
439 new->gid = new->egid = new->sgid = new->fsgid = kgid;
440 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
441 new->egid = new->fsgid = kgid;
442 else
443 goto error;
444
445 return commit_creds(new);
446
447error:
448 abort_creds(new);
449 return retval;
450}
451
452SYSCALL_DEFINE1(setgid, gid_t, gid)
453{
454 return __sys_setgid(gid);
455}
456
457/*
458 * change the user struct in a credentials set to match the new UID
459 */
460static int set_user(struct cred *new)
461{
462 struct user_struct *new_user;
463
464 new_user = alloc_uid(new->uid);
465 if (!new_user)
466 return -EAGAIN;
467
468 /*
469 * We don't fail in case of NPROC limit excess here because too many
470 * poorly written programs don't check set*uid() return code, assuming
471 * it never fails if called by root. We may still enforce NPROC limit
472 * for programs doing set*uid()+execve() by harmlessly deferring the
473 * failure to the execve() stage.
474 */
475 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
476 new_user != INIT_USER)
477 current->flags |= PF_NPROC_EXCEEDED;
478 else
479 current->flags &= ~PF_NPROC_EXCEEDED;
480
481 free_uid(new->user);
482 new->user = new_user;
483 return 0;
484}
485
486/*
487 * Unprivileged users may change the real uid to the effective uid
488 * or vice versa. (BSD-style)
489 *
490 * If you set the real uid at all, or set the effective uid to a value not
491 * equal to the real uid, then the saved uid is set to the new effective uid.
492 *
493 * This makes it possible for a setuid program to completely drop its
494 * privileges, which is often a useful assertion to make when you are doing
495 * a security audit over a program.
496 *
497 * The general idea is that a program which uses just setreuid() will be
498 * 100% compatible with BSD. A program which uses just setuid() will be
499 * 100% compatible with POSIX with saved IDs.
500 */
501long __sys_setreuid(uid_t ruid, uid_t euid)
502{
503 struct user_namespace *ns = current_user_ns();
504 const struct cred *old;
505 struct cred *new;
506 int retval;
507 kuid_t kruid, keuid;
508
509 kruid = make_kuid(ns, ruid);
510 keuid = make_kuid(ns, euid);
511
512 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
513 return -EINVAL;
514 if ((euid != (uid_t) -1) && !uid_valid(keuid))
515 return -EINVAL;
516
517 new = prepare_creds();
518 if (!new)
519 return -ENOMEM;
520 old = current_cred();
521
522 retval = -EPERM;
523 if (ruid != (uid_t) -1) {
524 new->uid = kruid;
525 if (!uid_eq(old->uid, kruid) &&
526 !uid_eq(old->euid, kruid) &&
527 !ns_capable_setid(old->user_ns, CAP_SETUID))
528 goto error;
529 }
530
531 if (euid != (uid_t) -1) {
532 new->euid = keuid;
533 if (!uid_eq(old->uid, keuid) &&
534 !uid_eq(old->euid, keuid) &&
535 !uid_eq(old->suid, keuid) &&
536 !ns_capable_setid(old->user_ns, CAP_SETUID))
537 goto error;
538 }
539
540 if (!uid_eq(new->uid, old->uid)) {
541 retval = set_user(new);
542 if (retval < 0)
543 goto error;
544 }
545 if (ruid != (uid_t) -1 ||
546 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
547 new->suid = new->euid;
548 new->fsuid = new->euid;
549
550 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
551 if (retval < 0)
552 goto error;
553
554 return commit_creds(new);
555
556error:
557 abort_creds(new);
558 return retval;
559}
560
561SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
562{
563 return __sys_setreuid(ruid, euid);
564}
565
566/*
567 * setuid() is implemented like SysV with SAVED_IDS
568 *
569 * Note that SAVED_ID's is deficient in that a setuid root program
570 * like sendmail, for example, cannot set its uid to be a normal
571 * user and then switch back, because if you're root, setuid() sets
572 * the saved uid too. If you don't like this, blame the bright people
573 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
574 * will allow a root program to temporarily drop privileges and be able to
575 * regain them by swapping the real and effective uid.
576 */
577long __sys_setuid(uid_t uid)
578{
579 struct user_namespace *ns = current_user_ns();
580 const struct cred *old;
581 struct cred *new;
582 int retval;
583 kuid_t kuid;
584
585 kuid = make_kuid(ns, uid);
586 if (!uid_valid(kuid))
587 return -EINVAL;
588
589 new = prepare_creds();
590 if (!new)
591 return -ENOMEM;
592 old = current_cred();
593
594 retval = -EPERM;
595 if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
596 new->suid = new->uid = kuid;
597 if (!uid_eq(kuid, old->uid)) {
598 retval = set_user(new);
599 if (retval < 0)
600 goto error;
601 }
602 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
603 goto error;
604 }
605
606 new->fsuid = new->euid = kuid;
607
608 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
609 if (retval < 0)
610 goto error;
611
612 return commit_creds(new);
613
614error:
615 abort_creds(new);
616 return retval;
617}
618
619SYSCALL_DEFINE1(setuid, uid_t, uid)
620{
621 return __sys_setuid(uid);
622}
623
624
625/*
626 * This function implements a generic ability to update ruid, euid,
627 * and suid. This allows you to implement the 4.4 compatible seteuid().
628 */
629long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
630{
631 struct user_namespace *ns = current_user_ns();
632 const struct cred *old;
633 struct cred *new;
634 int retval;
635 kuid_t kruid, keuid, ksuid;
636
637 kruid = make_kuid(ns, ruid);
638 keuid = make_kuid(ns, euid);
639 ksuid = make_kuid(ns, suid);
640
641 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
642 return -EINVAL;
643
644 if ((euid != (uid_t) -1) && !uid_valid(keuid))
645 return -EINVAL;
646
647 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
648 return -EINVAL;
649
650 new = prepare_creds();
651 if (!new)
652 return -ENOMEM;
653
654 old = current_cred();
655
656 retval = -EPERM;
657 if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
658 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
659 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
660 goto error;
661 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
662 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
663 goto error;
664 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
665 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
666 goto error;
667 }
668
669 if (ruid != (uid_t) -1) {
670 new->uid = kruid;
671 if (!uid_eq(kruid, old->uid)) {
672 retval = set_user(new);
673 if (retval < 0)
674 goto error;
675 }
676 }
677 if (euid != (uid_t) -1)
678 new->euid = keuid;
679 if (suid != (uid_t) -1)
680 new->suid = ksuid;
681 new->fsuid = new->euid;
682
683 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
684 if (retval < 0)
685 goto error;
686
687 return commit_creds(new);
688
689error:
690 abort_creds(new);
691 return retval;
692}
693
694SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
695{
696 return __sys_setresuid(ruid, euid, suid);
697}
698
699SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
700{
701 const struct cred *cred = current_cred();
702 int retval;
703 uid_t ruid, euid, suid;
704
705 ruid = from_kuid_munged(cred->user_ns, cred->uid);
706 euid = from_kuid_munged(cred->user_ns, cred->euid);
707 suid = from_kuid_munged(cred->user_ns, cred->suid);
708
709 retval = put_user(ruid, ruidp);
710 if (!retval) {
711 retval = put_user(euid, euidp);
712 if (!retval)
713 return put_user(suid, suidp);
714 }
715 return retval;
716}
717
718/*
719 * Same as above, but for rgid, egid, sgid.
720 */
721long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
722{
723 struct user_namespace *ns = current_user_ns();
724 const struct cred *old;
725 struct cred *new;
726 int retval;
727 kgid_t krgid, kegid, ksgid;
728
729 krgid = make_kgid(ns, rgid);
730 kegid = make_kgid(ns, egid);
731 ksgid = make_kgid(ns, sgid);
732
733 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
734 return -EINVAL;
735 if ((egid != (gid_t) -1) && !gid_valid(kegid))
736 return -EINVAL;
737 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
738 return -EINVAL;
739
740 new = prepare_creds();
741 if (!new)
742 return -ENOMEM;
743 old = current_cred();
744
745 retval = -EPERM;
746 if (!ns_capable(old->user_ns, CAP_SETGID)) {
747 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
748 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
749 goto error;
750 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
751 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
752 goto error;
753 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
754 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
755 goto error;
756 }
757
758 if (rgid != (gid_t) -1)
759 new->gid = krgid;
760 if (egid != (gid_t) -1)
761 new->egid = kegid;
762 if (sgid != (gid_t) -1)
763 new->sgid = ksgid;
764 new->fsgid = new->egid;
765
766 return commit_creds(new);
767
768error:
769 abort_creds(new);
770 return retval;
771}
772
773SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
774{
775 return __sys_setresgid(rgid, egid, sgid);
776}
777
778SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
779{
780 const struct cred *cred = current_cred();
781 int retval;
782 gid_t rgid, egid, sgid;
783
784 rgid = from_kgid_munged(cred->user_ns, cred->gid);
785 egid = from_kgid_munged(cred->user_ns, cred->egid);
786 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
787
788 retval = put_user(rgid, rgidp);
789 if (!retval) {
790 retval = put_user(egid, egidp);
791 if (!retval)
792 retval = put_user(sgid, sgidp);
793 }
794
795 return retval;
796}
797
798
799/*
800 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
801 * is used for "access()" and for the NFS daemon (letting nfsd stay at
802 * whatever uid it wants to). It normally shadows "euid", except when
803 * explicitly set by setfsuid() or for access..
804 */
805long __sys_setfsuid(uid_t uid)
806{
807 const struct cred *old;
808 struct cred *new;
809 uid_t old_fsuid;
810 kuid_t kuid;
811
812 old = current_cred();
813 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
814
815 kuid = make_kuid(old->user_ns, uid);
816 if (!uid_valid(kuid))
817 return old_fsuid;
818
819 new = prepare_creds();
820 if (!new)
821 return old_fsuid;
822
823 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
824 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
825 ns_capable_setid(old->user_ns, CAP_SETUID)) {
826 if (!uid_eq(kuid, old->fsuid)) {
827 new->fsuid = kuid;
828 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
829 goto change_okay;
830 }
831 }
832
833 abort_creds(new);
834 return old_fsuid;
835
836change_okay:
837 commit_creds(new);
838 return old_fsuid;
839}
840
841SYSCALL_DEFINE1(setfsuid, uid_t, uid)
842{
843 return __sys_setfsuid(uid);
844}
845
846/*
847 * Samma på svenska..
848 */
849long __sys_setfsgid(gid_t gid)
850{
851 const struct cred *old;
852 struct cred *new;
853 gid_t old_fsgid;
854 kgid_t kgid;
855
856 old = current_cred();
857 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
858
859 kgid = make_kgid(old->user_ns, gid);
860 if (!gid_valid(kgid))
861 return old_fsgid;
862
863 new = prepare_creds();
864 if (!new)
865 return old_fsgid;
866
867 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
868 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
869 ns_capable(old->user_ns, CAP_SETGID)) {
870 if (!gid_eq(kgid, old->fsgid)) {
871 new->fsgid = kgid;
872 goto change_okay;
873 }
874 }
875
876 abort_creds(new);
877 return old_fsgid;
878
879change_okay:
880 commit_creds(new);
881 return old_fsgid;
882}
883
884SYSCALL_DEFINE1(setfsgid, gid_t, gid)
885{
886 return __sys_setfsgid(gid);
887}
888#endif /* CONFIG_MULTIUSER */
889
890/**
891 * sys_getpid - return the thread group id of the current process
892 *
893 * Note, despite the name, this returns the tgid not the pid. The tgid and
894 * the pid are identical unless CLONE_THREAD was specified on clone() in
895 * which case the tgid is the same in all threads of the same group.
896 *
897 * This is SMP safe as current->tgid does not change.
898 */
899SYSCALL_DEFINE0(getpid)
900{
901 return task_tgid_vnr(current);
902}
903
904/* Thread ID - the internal kernel "pid" */
905SYSCALL_DEFINE0(gettid)
906{
907 return task_pid_vnr(current);
908}
909
910/*
911 * Accessing ->real_parent is not SMP-safe, it could
912 * change from under us. However, we can use a stale
913 * value of ->real_parent under rcu_read_lock(), see
914 * release_task()->call_rcu(delayed_put_task_struct).
915 */
916SYSCALL_DEFINE0(getppid)
917{
918 int pid;
919
920 rcu_read_lock();
921 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
922 rcu_read_unlock();
923
924 return pid;
925}
926
927SYSCALL_DEFINE0(getuid)
928{
929 /* Only we change this so SMP safe */
930 return from_kuid_munged(current_user_ns(), current_uid());
931}
932
933SYSCALL_DEFINE0(geteuid)
934{
935 /* Only we change this so SMP safe */
936 return from_kuid_munged(current_user_ns(), current_euid());
937}
938
939SYSCALL_DEFINE0(getgid)
940{
941 /* Only we change this so SMP safe */
942 return from_kgid_munged(current_user_ns(), current_gid());
943}
944
945SYSCALL_DEFINE0(getegid)
946{
947 /* Only we change this so SMP safe */
948 return from_kgid_munged(current_user_ns(), current_egid());
949}
950
951static void do_sys_times(struct tms *tms)
952{
953 u64 tgutime, tgstime, cutime, cstime;
954
955 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
956 cutime = current->signal->cutime;
957 cstime = current->signal->cstime;
958 tms->tms_utime = nsec_to_clock_t(tgutime);
959 tms->tms_stime = nsec_to_clock_t(tgstime);
960 tms->tms_cutime = nsec_to_clock_t(cutime);
961 tms->tms_cstime = nsec_to_clock_t(cstime);
962}
963
964SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
965{
966 if (tbuf) {
967 struct tms tmp;
968
969 do_sys_times(&tmp);
970 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
971 return -EFAULT;
972 }
973 force_successful_syscall_return();
974 return (long) jiffies_64_to_clock_t(get_jiffies_64());
975}
976
977#ifdef CONFIG_COMPAT
978static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
979{
980 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
981}
982
983COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
984{
985 if (tbuf) {
986 struct tms tms;
987 struct compat_tms tmp;
988
989 do_sys_times(&tms);
990 /* Convert our struct tms to the compat version. */
991 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
992 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
993 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
994 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
995 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
996 return -EFAULT;
997 }
998 force_successful_syscall_return();
999 return compat_jiffies_to_clock_t(jiffies);
1000}
1001#endif
1002
1003/*
1004 * This needs some heavy checking ...
1005 * I just haven't the stomach for it. I also don't fully
1006 * understand sessions/pgrp etc. Let somebody who does explain it.
1007 *
1008 * OK, I think I have the protection semantics right.... this is really
1009 * only important on a multi-user system anyway, to make sure one user
1010 * can't send a signal to a process owned by another. -TYT, 12/12/91
1011 *
1012 * !PF_FORKNOEXEC check to conform completely to POSIX.
1013 */
1014SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1015{
1016 struct task_struct *p;
1017 struct task_struct *group_leader = current->group_leader;
1018 struct pid *pgrp;
1019 int err;
1020
1021 if (!pid)
1022 pid = task_pid_vnr(group_leader);
1023 if (!pgid)
1024 pgid = pid;
1025 if (pgid < 0)
1026 return -EINVAL;
1027 rcu_read_lock();
1028
1029 /* From this point forward we keep holding onto the tasklist lock
1030 * so that our parent does not change from under us. -DaveM
1031 */
1032 write_lock_irq(&tasklist_lock);
1033
1034 err = -ESRCH;
1035 p = find_task_by_vpid(pid);
1036 if (!p)
1037 goto out;
1038
1039 err = -EINVAL;
1040 if (!thread_group_leader(p))
1041 goto out;
1042
1043 if (same_thread_group(p->real_parent, group_leader)) {
1044 err = -EPERM;
1045 if (task_session(p) != task_session(group_leader))
1046 goto out;
1047 err = -EACCES;
1048 if (!(p->flags & PF_FORKNOEXEC))
1049 goto out;
1050 } else {
1051 err = -ESRCH;
1052 if (p != group_leader)
1053 goto out;
1054 }
1055
1056 err = -EPERM;
1057 if (p->signal->leader)
1058 goto out;
1059
1060 pgrp = task_pid(p);
1061 if (pgid != pid) {
1062 struct task_struct *g;
1063
1064 pgrp = find_vpid(pgid);
1065 g = pid_task(pgrp, PIDTYPE_PGID);
1066 if (!g || task_session(g) != task_session(group_leader))
1067 goto out;
1068 }
1069
1070 err = security_task_setpgid(p, pgid);
1071 if (err)
1072 goto out;
1073
1074 if (task_pgrp(p) != pgrp)
1075 change_pid(p, PIDTYPE_PGID, pgrp);
1076
1077 err = 0;
1078out:
1079 /* All paths lead to here, thus we are safe. -DaveM */
1080 write_unlock_irq(&tasklist_lock);
1081 rcu_read_unlock();
1082 return err;
1083}
1084
1085static int do_getpgid(pid_t pid)
1086{
1087 struct task_struct *p;
1088 struct pid *grp;
1089 int retval;
1090
1091 rcu_read_lock();
1092 if (!pid)
1093 grp = task_pgrp(current);
1094 else {
1095 retval = -ESRCH;
1096 p = find_task_by_vpid(pid);
1097 if (!p)
1098 goto out;
1099 grp = task_pgrp(p);
1100 if (!grp)
1101 goto out;
1102
1103 retval = security_task_getpgid(p);
1104 if (retval)
1105 goto out;
1106 }
1107 retval = pid_vnr(grp);
1108out:
1109 rcu_read_unlock();
1110 return retval;
1111}
1112
1113SYSCALL_DEFINE1(getpgid, pid_t, pid)
1114{
1115 return do_getpgid(pid);
1116}
1117
1118#ifdef __ARCH_WANT_SYS_GETPGRP
1119
1120SYSCALL_DEFINE0(getpgrp)
1121{
1122 return do_getpgid(0);
1123}
1124
1125#endif
1126
1127SYSCALL_DEFINE1(getsid, pid_t, pid)
1128{
1129 struct task_struct *p;
1130 struct pid *sid;
1131 int retval;
1132
1133 rcu_read_lock();
1134 if (!pid)
1135 sid = task_session(current);
1136 else {
1137 retval = -ESRCH;
1138 p = find_task_by_vpid(pid);
1139 if (!p)
1140 goto out;
1141 sid = task_session(p);
1142 if (!sid)
1143 goto out;
1144
1145 retval = security_task_getsid(p);
1146 if (retval)
1147 goto out;
1148 }
1149 retval = pid_vnr(sid);
1150out:
1151 rcu_read_unlock();
1152 return retval;
1153}
1154
1155static void set_special_pids(struct pid *pid)
1156{
1157 struct task_struct *curr = current->group_leader;
1158
1159 if (task_session(curr) != pid)
1160 change_pid(curr, PIDTYPE_SID, pid);
1161
1162 if (task_pgrp(curr) != pid)
1163 change_pid(curr, PIDTYPE_PGID, pid);
1164}
1165
1166int ksys_setsid(void)
1167{
1168 struct task_struct *group_leader = current->group_leader;
1169 struct pid *sid = task_pid(group_leader);
1170 pid_t session = pid_vnr(sid);
1171 int err = -EPERM;
1172
1173 write_lock_irq(&tasklist_lock);
1174 /* Fail if I am already a session leader */
1175 if (group_leader->signal->leader)
1176 goto out;
1177
1178 /* Fail if a process group id already exists that equals the
1179 * proposed session id.
1180 */
1181 if (pid_task(sid, PIDTYPE_PGID))
1182 goto out;
1183
1184 group_leader->signal->leader = 1;
1185 set_special_pids(sid);
1186
1187 proc_clear_tty(group_leader);
1188
1189 err = session;
1190out:
1191 write_unlock_irq(&tasklist_lock);
1192 if (err > 0) {
1193 proc_sid_connector(group_leader);
1194 sched_autogroup_create_attach(group_leader);
1195 }
1196 return err;
1197}
1198
1199SYSCALL_DEFINE0(setsid)
1200{
1201 return ksys_setsid();
1202}
1203
1204DECLARE_RWSEM(uts_sem);
1205
1206#ifdef COMPAT_UTS_MACHINE
1207#define override_architecture(name) \
1208 (personality(current->personality) == PER_LINUX32 && \
1209 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1210 sizeof(COMPAT_UTS_MACHINE)))
1211#else
1212#define override_architecture(name) 0
1213#endif
1214
1215/*
1216 * Work around broken programs that cannot handle "Linux 3.0".
1217 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1218 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1219 * 2.6.60.
1220 */
1221static int override_release(char __user *release, size_t len)
1222{
1223 int ret = 0;
1224
1225 if (current->personality & UNAME26) {
1226 const char *rest = UTS_RELEASE;
1227 char buf[65] = { 0 };
1228 int ndots = 0;
1229 unsigned v;
1230 size_t copy;
1231
1232 while (*rest) {
1233 if (*rest == '.' && ++ndots >= 3)
1234 break;
1235 if (!isdigit(*rest) && *rest != '.')
1236 break;
1237 rest++;
1238 }
1239 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1240 copy = clamp_t(size_t, len, 1, sizeof(buf));
1241 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1242 ret = copy_to_user(release, buf, copy + 1);
1243 }
1244 return ret;
1245}
1246
1247SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1248{
1249 struct new_utsname tmp;
1250
1251 down_read(&uts_sem);
1252 memcpy(&tmp, utsname(), sizeof(tmp));
1253 up_read(&uts_sem);
1254 if (copy_to_user(name, &tmp, sizeof(tmp)))
1255 return -EFAULT;
1256
1257 if (override_release(name->release, sizeof(name->release)))
1258 return -EFAULT;
1259 if (override_architecture(name))
1260 return -EFAULT;
1261 return 0;
1262}
1263
1264#ifdef __ARCH_WANT_SYS_OLD_UNAME
1265/*
1266 * Old cruft
1267 */
1268SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1269{
1270 struct old_utsname tmp;
1271
1272 if (!name)
1273 return -EFAULT;
1274
1275 down_read(&uts_sem);
1276 memcpy(&tmp, utsname(), sizeof(tmp));
1277 up_read(&uts_sem);
1278 if (copy_to_user(name, &tmp, sizeof(tmp)))
1279 return -EFAULT;
1280
1281 if (override_release(name->release, sizeof(name->release)))
1282 return -EFAULT;
1283 if (override_architecture(name))
1284 return -EFAULT;
1285 return 0;
1286}
1287
1288SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1289{
1290 struct oldold_utsname tmp;
1291
1292 if (!name)
1293 return -EFAULT;
1294
1295 memset(&tmp, 0, sizeof(tmp));
1296
1297 down_read(&uts_sem);
1298 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1299 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1300 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1301 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1302 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1303 up_read(&uts_sem);
1304 if (copy_to_user(name, &tmp, sizeof(tmp)))
1305 return -EFAULT;
1306
1307 if (override_architecture(name))
1308 return -EFAULT;
1309 if (override_release(name->release, sizeof(name->release)))
1310 return -EFAULT;
1311 return 0;
1312}
1313#endif
1314
1315SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1316{
1317 int errno;
1318 char tmp[__NEW_UTS_LEN];
1319
1320 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1321 return -EPERM;
1322
1323 if (len < 0 || len > __NEW_UTS_LEN)
1324 return -EINVAL;
1325 errno = -EFAULT;
1326 if (!copy_from_user(tmp, name, len)) {
1327 struct new_utsname *u;
1328
1329 down_write(&uts_sem);
1330 u = utsname();
1331 memcpy(u->nodename, tmp, len);
1332 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1333 errno = 0;
1334 uts_proc_notify(UTS_PROC_HOSTNAME);
1335 up_write(&uts_sem);
1336 }
1337 return errno;
1338}
1339
1340#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1341
1342SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1343{
1344 int i;
1345 struct new_utsname *u;
1346 char tmp[__NEW_UTS_LEN + 1];
1347
1348 if (len < 0)
1349 return -EINVAL;
1350 down_read(&uts_sem);
1351 u = utsname();
1352 i = 1 + strlen(u->nodename);
1353 if (i > len)
1354 i = len;
1355 memcpy(tmp, u->nodename, i);
1356 up_read(&uts_sem);
1357 if (copy_to_user(name, tmp, i))
1358 return -EFAULT;
1359 return 0;
1360}
1361
1362#endif
1363
1364/*
1365 * Only setdomainname; getdomainname can be implemented by calling
1366 * uname()
1367 */
1368SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1369{
1370 int errno;
1371 char tmp[__NEW_UTS_LEN];
1372
1373 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1374 return -EPERM;
1375 if (len < 0 || len > __NEW_UTS_LEN)
1376 return -EINVAL;
1377
1378 errno = -EFAULT;
1379 if (!copy_from_user(tmp, name, len)) {
1380 struct new_utsname *u;
1381
1382 down_write(&uts_sem);
1383 u = utsname();
1384 memcpy(u->domainname, tmp, len);
1385 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1386 errno = 0;
1387 uts_proc_notify(UTS_PROC_DOMAINNAME);
1388 up_write(&uts_sem);
1389 }
1390 return errno;
1391}
1392
1393SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1394{
1395 struct rlimit value;
1396 int ret;
1397
1398 ret = do_prlimit(current, resource, NULL, &value);
1399 if (!ret)
1400 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1401
1402 return ret;
1403}
1404
1405#ifdef CONFIG_COMPAT
1406
1407COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1408 struct compat_rlimit __user *, rlim)
1409{
1410 struct rlimit r;
1411 struct compat_rlimit r32;
1412
1413 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1414 return -EFAULT;
1415
1416 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1417 r.rlim_cur = RLIM_INFINITY;
1418 else
1419 r.rlim_cur = r32.rlim_cur;
1420 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1421 r.rlim_max = RLIM_INFINITY;
1422 else
1423 r.rlim_max = r32.rlim_max;
1424 return do_prlimit(current, resource, &r, NULL);
1425}
1426
1427COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1428 struct compat_rlimit __user *, rlim)
1429{
1430 struct rlimit r;
1431 int ret;
1432
1433 ret = do_prlimit(current, resource, NULL, &r);
1434 if (!ret) {
1435 struct compat_rlimit r32;
1436 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1437 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1438 else
1439 r32.rlim_cur = r.rlim_cur;
1440 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1441 r32.rlim_max = COMPAT_RLIM_INFINITY;
1442 else
1443 r32.rlim_max = r.rlim_max;
1444
1445 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1446 return -EFAULT;
1447 }
1448 return ret;
1449}
1450
1451#endif
1452
1453#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1454
1455/*
1456 * Back compatibility for getrlimit. Needed for some apps.
1457 */
1458SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1459 struct rlimit __user *, rlim)
1460{
1461 struct rlimit x;
1462 if (resource >= RLIM_NLIMITS)
1463 return -EINVAL;
1464
1465 resource = array_index_nospec(resource, RLIM_NLIMITS);
1466 task_lock(current->group_leader);
1467 x = current->signal->rlim[resource];
1468 task_unlock(current->group_leader);
1469 if (x.rlim_cur > 0x7FFFFFFF)
1470 x.rlim_cur = 0x7FFFFFFF;
1471 if (x.rlim_max > 0x7FFFFFFF)
1472 x.rlim_max = 0x7FFFFFFF;
1473 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1474}
1475
1476#ifdef CONFIG_COMPAT
1477COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1478 struct compat_rlimit __user *, rlim)
1479{
1480 struct rlimit r;
1481
1482 if (resource >= RLIM_NLIMITS)
1483 return -EINVAL;
1484
1485 resource = array_index_nospec(resource, RLIM_NLIMITS);
1486 task_lock(current->group_leader);
1487 r = current->signal->rlim[resource];
1488 task_unlock(current->group_leader);
1489 if (r.rlim_cur > 0x7FFFFFFF)
1490 r.rlim_cur = 0x7FFFFFFF;
1491 if (r.rlim_max > 0x7FFFFFFF)
1492 r.rlim_max = 0x7FFFFFFF;
1493
1494 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1495 put_user(r.rlim_max, &rlim->rlim_max))
1496 return -EFAULT;
1497 return 0;
1498}
1499#endif
1500
1501#endif
1502
1503static inline bool rlim64_is_infinity(__u64 rlim64)
1504{
1505#if BITS_PER_LONG < 64
1506 return rlim64 >= ULONG_MAX;
1507#else
1508 return rlim64 == RLIM64_INFINITY;
1509#endif
1510}
1511
1512static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1513{
1514 if (rlim->rlim_cur == RLIM_INFINITY)
1515 rlim64->rlim_cur = RLIM64_INFINITY;
1516 else
1517 rlim64->rlim_cur = rlim->rlim_cur;
1518 if (rlim->rlim_max == RLIM_INFINITY)
1519 rlim64->rlim_max = RLIM64_INFINITY;
1520 else
1521 rlim64->rlim_max = rlim->rlim_max;
1522}
1523
1524static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1525{
1526 if (rlim64_is_infinity(rlim64->rlim_cur))
1527 rlim->rlim_cur = RLIM_INFINITY;
1528 else
1529 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1530 if (rlim64_is_infinity(rlim64->rlim_max))
1531 rlim->rlim_max = RLIM_INFINITY;
1532 else
1533 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1534}
1535
1536/* make sure you are allowed to change @tsk limits before calling this */
1537int do_prlimit(struct task_struct *tsk, unsigned int resource,
1538 struct rlimit *new_rlim, struct rlimit *old_rlim)
1539{
1540 struct rlimit *rlim;
1541 int retval = 0;
1542
1543 if (resource >= RLIM_NLIMITS)
1544 return -EINVAL;
1545 resource = array_index_nospec(resource, RLIM_NLIMITS);
1546
1547 if (new_rlim) {
1548 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1549 return -EINVAL;
1550 if (resource == RLIMIT_NOFILE &&
1551 new_rlim->rlim_max > sysctl_nr_open)
1552 return -EPERM;
1553 }
1554
1555 /* protect tsk->signal and tsk->sighand from disappearing */
1556 read_lock(&tasklist_lock);
1557 if (!tsk->sighand) {
1558 retval = -ESRCH;
1559 goto out;
1560 }
1561
1562 rlim = tsk->signal->rlim + resource;
1563 task_lock(tsk->group_leader);
1564 if (new_rlim) {
1565 /* Keep the capable check against init_user_ns until
1566 cgroups can contain all limits */
1567 if (new_rlim->rlim_max > rlim->rlim_max &&
1568 !capable(CAP_SYS_RESOURCE))
1569 retval = -EPERM;
1570 if (!retval)
1571 retval = security_task_setrlimit(tsk, resource, new_rlim);
1572 }
1573 if (!retval) {
1574 if (old_rlim)
1575 *old_rlim = *rlim;
1576 if (new_rlim)
1577 *rlim = *new_rlim;
1578 }
1579 task_unlock(tsk->group_leader);
1580
1581 /*
1582 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1583 * infite. In case of RLIM_INFINITY the posix CPU timer code
1584 * ignores the rlimit.
1585 */
1586 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1587 new_rlim->rlim_cur != RLIM_INFINITY &&
1588 IS_ENABLED(CONFIG_POSIX_TIMERS))
1589 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1590out:
1591 read_unlock(&tasklist_lock);
1592 return retval;
1593}
1594
1595/* rcu lock must be held */
1596static int check_prlimit_permission(struct task_struct *task,
1597 unsigned int flags)
1598{
1599 const struct cred *cred = current_cred(), *tcred;
1600 bool id_match;
1601
1602 if (current == task)
1603 return 0;
1604
1605 tcred = __task_cred(task);
1606 id_match = (uid_eq(cred->uid, tcred->euid) &&
1607 uid_eq(cred->uid, tcred->suid) &&
1608 uid_eq(cred->uid, tcred->uid) &&
1609 gid_eq(cred->gid, tcred->egid) &&
1610 gid_eq(cred->gid, tcred->sgid) &&
1611 gid_eq(cred->gid, tcred->gid));
1612 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1613 return -EPERM;
1614
1615 return security_task_prlimit(cred, tcred, flags);
1616}
1617
1618SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1619 const struct rlimit64 __user *, new_rlim,
1620 struct rlimit64 __user *, old_rlim)
1621{
1622 struct rlimit64 old64, new64;
1623 struct rlimit old, new;
1624 struct task_struct *tsk;
1625 unsigned int checkflags = 0;
1626 int ret;
1627
1628 if (old_rlim)
1629 checkflags |= LSM_PRLIMIT_READ;
1630
1631 if (new_rlim) {
1632 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1633 return -EFAULT;
1634 rlim64_to_rlim(&new64, &new);
1635 checkflags |= LSM_PRLIMIT_WRITE;
1636 }
1637
1638 rcu_read_lock();
1639 tsk = pid ? find_task_by_vpid(pid) : current;
1640 if (!tsk) {
1641 rcu_read_unlock();
1642 return -ESRCH;
1643 }
1644 ret = check_prlimit_permission(tsk, checkflags);
1645 if (ret) {
1646 rcu_read_unlock();
1647 return ret;
1648 }
1649 get_task_struct(tsk);
1650 rcu_read_unlock();
1651
1652 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1653 old_rlim ? &old : NULL);
1654
1655 if (!ret && old_rlim) {
1656 rlim_to_rlim64(&old, &old64);
1657 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1658 ret = -EFAULT;
1659 }
1660
1661 put_task_struct(tsk);
1662 return ret;
1663}
1664
1665SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1666{
1667 struct rlimit new_rlim;
1668
1669 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1670 return -EFAULT;
1671 return do_prlimit(current, resource, &new_rlim, NULL);
1672}
1673
1674/*
1675 * It would make sense to put struct rusage in the task_struct,
1676 * except that would make the task_struct be *really big*. After
1677 * task_struct gets moved into malloc'ed memory, it would
1678 * make sense to do this. It will make moving the rest of the information
1679 * a lot simpler! (Which we're not doing right now because we're not
1680 * measuring them yet).
1681 *
1682 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1683 * races with threads incrementing their own counters. But since word
1684 * reads are atomic, we either get new values or old values and we don't
1685 * care which for the sums. We always take the siglock to protect reading
1686 * the c* fields from p->signal from races with exit.c updating those
1687 * fields when reaping, so a sample either gets all the additions of a
1688 * given child after it's reaped, or none so this sample is before reaping.
1689 *
1690 * Locking:
1691 * We need to take the siglock for CHILDEREN, SELF and BOTH
1692 * for the cases current multithreaded, non-current single threaded
1693 * non-current multithreaded. Thread traversal is now safe with
1694 * the siglock held.
1695 * Strictly speaking, we donot need to take the siglock if we are current and
1696 * single threaded, as no one else can take our signal_struct away, no one
1697 * else can reap the children to update signal->c* counters, and no one else
1698 * can race with the signal-> fields. If we do not take any lock, the
1699 * signal-> fields could be read out of order while another thread was just
1700 * exiting. So we should place a read memory barrier when we avoid the lock.
1701 * On the writer side, write memory barrier is implied in __exit_signal
1702 * as __exit_signal releases the siglock spinlock after updating the signal->
1703 * fields. But we don't do this yet to keep things simple.
1704 *
1705 */
1706
1707static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1708{
1709 r->ru_nvcsw += t->nvcsw;
1710 r->ru_nivcsw += t->nivcsw;
1711 r->ru_minflt += t->min_flt;
1712 r->ru_majflt += t->maj_flt;
1713 r->ru_inblock += task_io_get_inblock(t);
1714 r->ru_oublock += task_io_get_oublock(t);
1715}
1716
1717void getrusage(struct task_struct *p, int who, struct rusage *r)
1718{
1719 struct task_struct *t;
1720 unsigned long flags;
1721 u64 tgutime, tgstime, utime, stime;
1722 unsigned long maxrss;
1723 struct mm_struct *mm;
1724 struct signal_struct *sig = p->signal;
1725 unsigned int seq = 0;
1726
1727retry:
1728 memset(r, 0, sizeof(*r));
1729 utime = stime = 0;
1730 maxrss = 0;
1731
1732 if (who == RUSAGE_THREAD) {
1733 task_cputime_adjusted(current, &utime, &stime);
1734 accumulate_thread_rusage(p, r);
1735 maxrss = sig->maxrss;
1736 goto out_thread;
1737 }
1738
1739 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
1740
1741 switch (who) {
1742 case RUSAGE_BOTH:
1743 case RUSAGE_CHILDREN:
1744 utime = sig->cutime;
1745 stime = sig->cstime;
1746 r->ru_nvcsw = sig->cnvcsw;
1747 r->ru_nivcsw = sig->cnivcsw;
1748 r->ru_minflt = sig->cmin_flt;
1749 r->ru_majflt = sig->cmaj_flt;
1750 r->ru_inblock = sig->cinblock;
1751 r->ru_oublock = sig->coublock;
1752 maxrss = sig->cmaxrss;
1753
1754 if (who == RUSAGE_CHILDREN)
1755 break;
1756 /* fall through */
1757
1758 case RUSAGE_SELF:
1759 r->ru_nvcsw += sig->nvcsw;
1760 r->ru_nivcsw += sig->nivcsw;
1761 r->ru_minflt += sig->min_flt;
1762 r->ru_majflt += sig->maj_flt;
1763 r->ru_inblock += sig->inblock;
1764 r->ru_oublock += sig->oublock;
1765 if (maxrss < sig->maxrss)
1766 maxrss = sig->maxrss;
1767
1768 rcu_read_lock();
1769 __for_each_thread(sig, t)
1770 accumulate_thread_rusage(t, r);
1771 rcu_read_unlock();
1772
1773 break;
1774
1775 default:
1776 BUG();
1777 }
1778
1779 if (need_seqretry(&sig->stats_lock, seq)) {
1780 seq = 1;
1781 goto retry;
1782 }
1783 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
1784
1785 if (who == RUSAGE_CHILDREN)
1786 goto out_children;
1787
1788 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1789 utime += tgutime;
1790 stime += tgstime;
1791
1792out_thread:
1793 mm = get_task_mm(p);
1794 if (mm) {
1795 setmax_mm_hiwater_rss(&maxrss, mm);
1796 mmput(mm);
1797 }
1798
1799out_children:
1800 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1801 r->ru_utime = ns_to_kernel_old_timeval(utime);
1802 r->ru_stime = ns_to_kernel_old_timeval(stime);
1803}
1804
1805SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1806{
1807 struct rusage r;
1808
1809 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1810 who != RUSAGE_THREAD)
1811 return -EINVAL;
1812
1813 getrusage(current, who, &r);
1814 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1815}
1816
1817#ifdef CONFIG_COMPAT
1818COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1819{
1820 struct rusage r;
1821
1822 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1823 who != RUSAGE_THREAD)
1824 return -EINVAL;
1825
1826 getrusage(current, who, &r);
1827 return put_compat_rusage(&r, ru);
1828}
1829#endif
1830
1831SYSCALL_DEFINE1(umask, int, mask)
1832{
1833 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1834 return mask;
1835}
1836
1837static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1838{
1839 struct fd exe;
1840 struct file *old_exe, *exe_file;
1841 struct inode *inode;
1842 int err;
1843
1844 exe = fdget(fd);
1845 if (!exe.file)
1846 return -EBADF;
1847
1848 inode = file_inode(exe.file);
1849
1850 /*
1851 * Because the original mm->exe_file points to executable file, make
1852 * sure that this one is executable as well, to avoid breaking an
1853 * overall picture.
1854 */
1855 err = -EACCES;
1856 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1857 goto exit;
1858
1859 err = inode_permission(inode, MAY_EXEC);
1860 if (err)
1861 goto exit;
1862
1863 /*
1864 * Forbid mm->exe_file change if old file still mapped.
1865 */
1866 exe_file = get_mm_exe_file(mm);
1867 err = -EBUSY;
1868 if (exe_file) {
1869 struct vm_area_struct *vma;
1870
1871 down_read(&mm->mmap_sem);
1872 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1873 if (!vma->vm_file)
1874 continue;
1875 if (path_equal(&vma->vm_file->f_path,
1876 &exe_file->f_path))
1877 goto exit_err;
1878 }
1879
1880 up_read(&mm->mmap_sem);
1881 fput(exe_file);
1882 }
1883
1884 err = 0;
1885 /* set the new file, lockless */
1886 get_file(exe.file);
1887 old_exe = xchg(&mm->exe_file, exe.file);
1888 if (old_exe)
1889 fput(old_exe);
1890exit:
1891 fdput(exe);
1892 return err;
1893exit_err:
1894 up_read(&mm->mmap_sem);
1895 fput(exe_file);
1896 goto exit;
1897}
1898
1899/*
1900 * Check arithmetic relations of passed addresses.
1901 *
1902 * WARNING: we don't require any capability here so be very careful
1903 * in what is allowed for modification from userspace.
1904 */
1905static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1906{
1907 unsigned long mmap_max_addr = TASK_SIZE;
1908 int error = -EINVAL, i;
1909
1910 static const unsigned char offsets[] = {
1911 offsetof(struct prctl_mm_map, start_code),
1912 offsetof(struct prctl_mm_map, end_code),
1913 offsetof(struct prctl_mm_map, start_data),
1914 offsetof(struct prctl_mm_map, end_data),
1915 offsetof(struct prctl_mm_map, start_brk),
1916 offsetof(struct prctl_mm_map, brk),
1917 offsetof(struct prctl_mm_map, start_stack),
1918 offsetof(struct prctl_mm_map, arg_start),
1919 offsetof(struct prctl_mm_map, arg_end),
1920 offsetof(struct prctl_mm_map, env_start),
1921 offsetof(struct prctl_mm_map, env_end),
1922 };
1923
1924 /*
1925 * Make sure the members are not somewhere outside
1926 * of allowed address space.
1927 */
1928 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1929 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1930
1931 if ((unsigned long)val >= mmap_max_addr ||
1932 (unsigned long)val < mmap_min_addr)
1933 goto out;
1934 }
1935
1936 /*
1937 * Make sure the pairs are ordered.
1938 */
1939#define __prctl_check_order(__m1, __op, __m2) \
1940 ((unsigned long)prctl_map->__m1 __op \
1941 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1942 error = __prctl_check_order(start_code, <, end_code);
1943 error |= __prctl_check_order(start_data,<=, end_data);
1944 error |= __prctl_check_order(start_brk, <=, brk);
1945 error |= __prctl_check_order(arg_start, <=, arg_end);
1946 error |= __prctl_check_order(env_start, <=, env_end);
1947 if (error)
1948 goto out;
1949#undef __prctl_check_order
1950
1951 error = -EINVAL;
1952
1953 /*
1954 * Neither we should allow to override limits if they set.
1955 */
1956 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1957 prctl_map->start_brk, prctl_map->end_data,
1958 prctl_map->start_data))
1959 goto out;
1960
1961 error = 0;
1962out:
1963 return error;
1964}
1965
1966#ifdef CONFIG_CHECKPOINT_RESTORE
1967static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1968{
1969 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1970 unsigned long user_auxv[AT_VECTOR_SIZE];
1971 struct mm_struct *mm = current->mm;
1972 int error;
1973
1974 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1975 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1976
1977 if (opt == PR_SET_MM_MAP_SIZE)
1978 return put_user((unsigned int)sizeof(prctl_map),
1979 (unsigned int __user *)addr);
1980
1981 if (data_size != sizeof(prctl_map))
1982 return -EINVAL;
1983
1984 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1985 return -EFAULT;
1986
1987 error = validate_prctl_map_addr(&prctl_map);
1988 if (error)
1989 return error;
1990
1991 if (prctl_map.auxv_size) {
1992 /*
1993 * Someone is trying to cheat the auxv vector.
1994 */
1995 if (!prctl_map.auxv ||
1996 prctl_map.auxv_size > sizeof(mm->saved_auxv))
1997 return -EINVAL;
1998
1999 memset(user_auxv, 0, sizeof(user_auxv));
2000 if (copy_from_user(user_auxv,
2001 (const void __user *)prctl_map.auxv,
2002 prctl_map.auxv_size))
2003 return -EFAULT;
2004
2005 /* Last entry must be AT_NULL as specification requires */
2006 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2007 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2008 }
2009
2010 if (prctl_map.exe_fd != (u32)-1) {
2011 /*
2012 * Make sure the caller has the rights to
2013 * change /proc/pid/exe link: only local sys admin should
2014 * be allowed to.
2015 */
2016 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN))
2017 return -EINVAL;
2018
2019 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2020 if (error)
2021 return error;
2022 }
2023
2024 /*
2025 * arg_lock protects concurent updates but we still need mmap_sem for
2026 * read to exclude races with sys_brk.
2027 */
2028 down_read(&mm->mmap_sem);
2029
2030 /*
2031 * We don't validate if these members are pointing to
2032 * real present VMAs because application may have correspond
2033 * VMAs already unmapped and kernel uses these members for statistics
2034 * output in procfs mostly, except
2035 *
2036 * - @start_brk/@brk which are used in do_brk but kernel lookups
2037 * for VMAs when updating these memvers so anything wrong written
2038 * here cause kernel to swear at userspace program but won't lead
2039 * to any problem in kernel itself
2040 */
2041
2042 spin_lock(&mm->arg_lock);
2043 mm->start_code = prctl_map.start_code;
2044 mm->end_code = prctl_map.end_code;
2045 mm->start_data = prctl_map.start_data;
2046 mm->end_data = prctl_map.end_data;
2047 mm->start_brk = prctl_map.start_brk;
2048 mm->brk = prctl_map.brk;
2049 mm->start_stack = prctl_map.start_stack;
2050 mm->arg_start = prctl_map.arg_start;
2051 mm->arg_end = prctl_map.arg_end;
2052 mm->env_start = prctl_map.env_start;
2053 mm->env_end = prctl_map.env_end;
2054 spin_unlock(&mm->arg_lock);
2055
2056 /*
2057 * Note this update of @saved_auxv is lockless thus
2058 * if someone reads this member in procfs while we're
2059 * updating -- it may get partly updated results. It's
2060 * known and acceptable trade off: we leave it as is to
2061 * not introduce additional locks here making the kernel
2062 * more complex.
2063 */
2064 if (prctl_map.auxv_size)
2065 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2066
2067 up_read(&mm->mmap_sem);
2068 return 0;
2069}
2070#endif /* CONFIG_CHECKPOINT_RESTORE */
2071
2072static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2073 unsigned long len)
2074{
2075 /*
2076 * This doesn't move the auxiliary vector itself since it's pinned to
2077 * mm_struct, but it permits filling the vector with new values. It's
2078 * up to the caller to provide sane values here, otherwise userspace
2079 * tools which use this vector might be unhappy.
2080 */
2081 unsigned long user_auxv[AT_VECTOR_SIZE];
2082
2083 if (len > sizeof(user_auxv))
2084 return -EINVAL;
2085
2086 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2087 return -EFAULT;
2088
2089 /* Make sure the last entry is always AT_NULL */
2090 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2091 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2092
2093 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2094
2095 task_lock(current);
2096 memcpy(mm->saved_auxv, user_auxv, len);
2097 task_unlock(current);
2098
2099 return 0;
2100}
2101
2102static int prctl_set_mm(int opt, unsigned long addr,
2103 unsigned long arg4, unsigned long arg5)
2104{
2105 struct mm_struct *mm = current->mm;
2106 struct prctl_mm_map prctl_map = {
2107 .auxv = NULL,
2108 .auxv_size = 0,
2109 .exe_fd = -1,
2110 };
2111 struct vm_area_struct *vma;
2112 int error;
2113
2114 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2115 opt != PR_SET_MM_MAP &&
2116 opt != PR_SET_MM_MAP_SIZE)))
2117 return -EINVAL;
2118
2119#ifdef CONFIG_CHECKPOINT_RESTORE
2120 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2121 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2122#endif
2123
2124 if (!capable(CAP_SYS_RESOURCE))
2125 return -EPERM;
2126
2127 if (opt == PR_SET_MM_EXE_FILE)
2128 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2129
2130 if (opt == PR_SET_MM_AUXV)
2131 return prctl_set_auxv(mm, addr, arg4);
2132
2133 if (addr >= TASK_SIZE || addr < mmap_min_addr)
2134 return -EINVAL;
2135
2136 error = -EINVAL;
2137
2138 /*
2139 * arg_lock protects concurent updates of arg boundaries, we need
2140 * mmap_sem for a) concurrent sys_brk, b) finding VMA for addr
2141 * validation.
2142 */
2143 down_read(&mm->mmap_sem);
2144 vma = find_vma(mm, addr);
2145
2146 spin_lock(&mm->arg_lock);
2147 prctl_map.start_code = mm->start_code;
2148 prctl_map.end_code = mm->end_code;
2149 prctl_map.start_data = mm->start_data;
2150 prctl_map.end_data = mm->end_data;
2151 prctl_map.start_brk = mm->start_brk;
2152 prctl_map.brk = mm->brk;
2153 prctl_map.start_stack = mm->start_stack;
2154 prctl_map.arg_start = mm->arg_start;
2155 prctl_map.arg_end = mm->arg_end;
2156 prctl_map.env_start = mm->env_start;
2157 prctl_map.env_end = mm->env_end;
2158
2159 switch (opt) {
2160 case PR_SET_MM_START_CODE:
2161 prctl_map.start_code = addr;
2162 break;
2163 case PR_SET_MM_END_CODE:
2164 prctl_map.end_code = addr;
2165 break;
2166 case PR_SET_MM_START_DATA:
2167 prctl_map.start_data = addr;
2168 break;
2169 case PR_SET_MM_END_DATA:
2170 prctl_map.end_data = addr;
2171 break;
2172 case PR_SET_MM_START_STACK:
2173 prctl_map.start_stack = addr;
2174 break;
2175 case PR_SET_MM_START_BRK:
2176 prctl_map.start_brk = addr;
2177 break;
2178 case PR_SET_MM_BRK:
2179 prctl_map.brk = addr;
2180 break;
2181 case PR_SET_MM_ARG_START:
2182 prctl_map.arg_start = addr;
2183 break;
2184 case PR_SET_MM_ARG_END:
2185 prctl_map.arg_end = addr;
2186 break;
2187 case PR_SET_MM_ENV_START:
2188 prctl_map.env_start = addr;
2189 break;
2190 case PR_SET_MM_ENV_END:
2191 prctl_map.env_end = addr;
2192 break;
2193 default:
2194 goto out;
2195 }
2196
2197 error = validate_prctl_map_addr(&prctl_map);
2198 if (error)
2199 goto out;
2200
2201 switch (opt) {
2202 /*
2203 * If command line arguments and environment
2204 * are placed somewhere else on stack, we can
2205 * set them up here, ARG_START/END to setup
2206 * command line argumets and ENV_START/END
2207 * for environment.
2208 */
2209 case PR_SET_MM_START_STACK:
2210 case PR_SET_MM_ARG_START:
2211 case PR_SET_MM_ARG_END:
2212 case PR_SET_MM_ENV_START:
2213 case PR_SET_MM_ENV_END:
2214 if (!vma) {
2215 error = -EFAULT;
2216 goto out;
2217 }
2218 }
2219
2220 mm->start_code = prctl_map.start_code;
2221 mm->end_code = prctl_map.end_code;
2222 mm->start_data = prctl_map.start_data;
2223 mm->end_data = prctl_map.end_data;
2224 mm->start_brk = prctl_map.start_brk;
2225 mm->brk = prctl_map.brk;
2226 mm->start_stack = prctl_map.start_stack;
2227 mm->arg_start = prctl_map.arg_start;
2228 mm->arg_end = prctl_map.arg_end;
2229 mm->env_start = prctl_map.env_start;
2230 mm->env_end = prctl_map.env_end;
2231
2232 error = 0;
2233out:
2234 spin_unlock(&mm->arg_lock);
2235 up_read(&mm->mmap_sem);
2236 return error;
2237}
2238
2239#ifdef CONFIG_CHECKPOINT_RESTORE
2240static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2241{
2242 return put_user(me->clear_child_tid, tid_addr);
2243}
2244#else
2245static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2246{
2247 return -EINVAL;
2248}
2249#endif
2250
2251static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2252{
2253 /*
2254 * If task has has_child_subreaper - all its decendants
2255 * already have these flag too and new decendants will
2256 * inherit it on fork, skip them.
2257 *
2258 * If we've found child_reaper - skip descendants in
2259 * it's subtree as they will never get out pidns.
2260 */
2261 if (p->signal->has_child_subreaper ||
2262 is_child_reaper(task_pid(p)))
2263 return 0;
2264
2265 p->signal->has_child_subreaper = 1;
2266 return 1;
2267}
2268
2269int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2270{
2271 return -EINVAL;
2272}
2273
2274int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2275 unsigned long ctrl)
2276{
2277 return -EINVAL;
2278}
2279
2280#ifdef CONFIG_MMU
2281static int prctl_update_vma_anon_name(struct vm_area_struct *vma,
2282 struct vm_area_struct **prev,
2283 unsigned long start, unsigned long end,
2284 const char __user *name_addr)
2285{
2286 struct mm_struct *mm = vma->vm_mm;
2287 int error = 0;
2288 pgoff_t pgoff;
2289
2290 if (name_addr == vma_get_anon_name(vma)) {
2291 *prev = vma;
2292 goto out;
2293 }
2294
2295 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2296 *prev = vma_merge(mm, *prev, start, end, vma->vm_flags, vma->anon_vma,
2297 vma->vm_file, pgoff, vma_policy(vma),
2298 vma->vm_userfaultfd_ctx, name_addr);
2299 if (*prev) {
2300 vma = *prev;
2301 goto success;
2302 }
2303
2304 *prev = vma;
2305
2306 if (start != vma->vm_start) {
2307 error = split_vma(mm, vma, start, 1);
2308 if (error)
2309 goto out;
2310 }
2311
2312 if (end != vma->vm_end) {
2313 error = split_vma(mm, vma, end, 0);
2314 if (error)
2315 goto out;
2316 }
2317
2318success:
2319 if (!vma->vm_file)
2320 vma->anon_name = name_addr;
2321
2322out:
2323 if (error == -ENOMEM)
2324 error = -EAGAIN;
2325 return error;
2326}
2327
2328static int prctl_set_vma_anon_name(unsigned long start, unsigned long end,
2329 unsigned long arg)
2330{
2331 unsigned long tmp;
2332 struct vm_area_struct *vma, *prev;
2333 int unmapped_error = 0;
2334 int error = -EINVAL;
2335
2336 /*
2337 * If the interval [start,end) covers some unmapped address
2338 * ranges, just ignore them, but return -ENOMEM at the end.
2339 * - this matches the handling in madvise.
2340 */
2341 vma = find_vma_prev(current->mm, start, &prev);
2342 if (vma && start > vma->vm_start)
2343 prev = vma;
2344
2345 for (;;) {
2346 /* Still start < end. */
2347 error = -ENOMEM;
2348 if (!vma)
2349 return error;
2350
2351 /* Here start < (end|vma->vm_end). */
2352 if (start < vma->vm_start) {
2353 unmapped_error = -ENOMEM;
2354 start = vma->vm_start;
2355 if (start >= end)
2356 return error;
2357 }
2358
2359 /* Here vma->vm_start <= start < (end|vma->vm_end) */
2360 tmp = vma->vm_end;
2361 if (end < tmp)
2362 tmp = end;
2363
2364 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
2365 error = prctl_update_vma_anon_name(vma, &prev, start, tmp,
2366 (const char __user *)arg);
2367 if (error)
2368 return error;
2369 start = tmp;
2370 if (prev && start < prev->vm_end)
2371 start = prev->vm_end;
2372 error = unmapped_error;
2373 if (start >= end)
2374 return error;
2375 if (prev)
2376 vma = prev->vm_next;
2377 else /* madvise_remove dropped mmap_sem */
2378 vma = find_vma(current->mm, start);
2379 }
2380}
2381
2382static int prctl_set_vma(unsigned long opt, unsigned long start,
2383 unsigned long len_in, unsigned long arg)
2384{
2385 struct mm_struct *mm = current->mm;
2386 int error;
2387 unsigned long len;
2388 unsigned long end;
2389
2390 if (start & ~PAGE_MASK)
2391 return -EINVAL;
2392 len = (len_in + ~PAGE_MASK) & PAGE_MASK;
2393
2394 /* Check to see whether len was rounded up from small -ve to zero */
2395 if (len_in && !len)
2396 return -EINVAL;
2397
2398 end = start + len;
2399 if (end < start)
2400 return -EINVAL;
2401
2402 if (end == start)
2403 return 0;
2404
2405 down_write(&mm->mmap_sem);
2406
2407 switch (opt) {
2408 case PR_SET_VMA_ANON_NAME:
2409 error = prctl_set_vma_anon_name(start, end, arg);
2410 break;
2411 default:
2412 error = -EINVAL;
2413 }
2414
2415 up_write(&mm->mmap_sem);
2416
2417 return error;
2418}
2419#else /* CONFIG_MMU */
2420static int prctl_set_vma(unsigned long opt, unsigned long start,
2421 unsigned long len_in, unsigned long arg)
2422{
2423 return -EINVAL;
2424}
2425#endif
2426
2427SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2428 unsigned long, arg4, unsigned long, arg5)
2429{
2430 struct task_struct *me = current;
2431 unsigned char comm[sizeof(me->comm)];
2432 long error;
2433
2434 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2435 if (error != -ENOSYS)
2436 return error;
2437
2438 error = 0;
2439 switch (option) {
2440 case PR_SET_PDEATHSIG:
2441 if (!valid_signal(arg2)) {
2442 error = -EINVAL;
2443 break;
2444 }
2445 me->pdeath_signal = arg2;
2446 break;
2447 case PR_GET_PDEATHSIG:
2448 error = put_user(me->pdeath_signal, (int __user *)arg2);
2449 break;
2450 case PR_GET_DUMPABLE:
2451 error = get_dumpable(me->mm);
2452 break;
2453 case PR_SET_DUMPABLE:
2454 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2455 error = -EINVAL;
2456 break;
2457 }
2458 set_dumpable(me->mm, arg2);
2459 break;
2460
2461 case PR_SET_UNALIGN:
2462 error = SET_UNALIGN_CTL(me, arg2);
2463 break;
2464 case PR_GET_UNALIGN:
2465 error = GET_UNALIGN_CTL(me, arg2);
2466 break;
2467 case PR_SET_FPEMU:
2468 error = SET_FPEMU_CTL(me, arg2);
2469 break;
2470 case PR_GET_FPEMU:
2471 error = GET_FPEMU_CTL(me, arg2);
2472 break;
2473 case PR_SET_FPEXC:
2474 error = SET_FPEXC_CTL(me, arg2);
2475 break;
2476 case PR_GET_FPEXC:
2477 error = GET_FPEXC_CTL(me, arg2);
2478 break;
2479 case PR_GET_TIMING:
2480 error = PR_TIMING_STATISTICAL;
2481 break;
2482 case PR_SET_TIMING:
2483 if (arg2 != PR_TIMING_STATISTICAL)
2484 error = -EINVAL;
2485 break;
2486 case PR_SET_NAME:
2487 comm[sizeof(me->comm) - 1] = 0;
2488 if (strncpy_from_user(comm, (char __user *)arg2,
2489 sizeof(me->comm) - 1) < 0)
2490 return -EFAULT;
2491 set_task_comm(me, comm);
2492 proc_comm_connector(me);
2493 break;
2494 case PR_GET_NAME:
2495 get_task_comm(comm, me);
2496 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2497 return -EFAULT;
2498 break;
2499 case PR_GET_ENDIAN:
2500 error = GET_ENDIAN(me, arg2);
2501 break;
2502 case PR_SET_ENDIAN:
2503 error = SET_ENDIAN(me, arg2);
2504 break;
2505 case PR_GET_SECCOMP:
2506 error = prctl_get_seccomp();
2507 break;
2508 case PR_SET_SECCOMP:
2509 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2510 break;
2511 case PR_GET_TSC:
2512 error = GET_TSC_CTL(arg2);
2513 break;
2514 case PR_SET_TSC:
2515 error = SET_TSC_CTL(arg2);
2516 break;
2517 case PR_TASK_PERF_EVENTS_DISABLE:
2518 error = perf_event_task_disable();
2519 break;
2520 case PR_TASK_PERF_EVENTS_ENABLE:
2521 error = perf_event_task_enable();
2522 break;
2523 case PR_GET_TIMERSLACK:
2524 if (current->timer_slack_ns > ULONG_MAX)
2525 error = ULONG_MAX;
2526 else
2527 error = current->timer_slack_ns;
2528 break;
2529 case PR_SET_TIMERSLACK:
2530 if (arg2 <= 0)
2531 current->timer_slack_ns =
2532 current->default_timer_slack_ns;
2533 else
2534 current->timer_slack_ns = arg2;
2535 break;
2536 case PR_MCE_KILL:
2537 if (arg4 | arg5)
2538 return -EINVAL;
2539 switch (arg2) {
2540 case PR_MCE_KILL_CLEAR:
2541 if (arg3 != 0)
2542 return -EINVAL;
2543 current->flags &= ~PF_MCE_PROCESS;
2544 break;
2545 case PR_MCE_KILL_SET:
2546 current->flags |= PF_MCE_PROCESS;
2547 if (arg3 == PR_MCE_KILL_EARLY)
2548 current->flags |= PF_MCE_EARLY;
2549 else if (arg3 == PR_MCE_KILL_LATE)
2550 current->flags &= ~PF_MCE_EARLY;
2551 else if (arg3 == PR_MCE_KILL_DEFAULT)
2552 current->flags &=
2553 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2554 else
2555 return -EINVAL;
2556 break;
2557 default:
2558 return -EINVAL;
2559 }
2560 break;
2561 case PR_MCE_KILL_GET:
2562 if (arg2 | arg3 | arg4 | arg5)
2563 return -EINVAL;
2564 if (current->flags & PF_MCE_PROCESS)
2565 error = (current->flags & PF_MCE_EARLY) ?
2566 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2567 else
2568 error = PR_MCE_KILL_DEFAULT;
2569 break;
2570 case PR_SET_MM:
2571 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2572 break;
2573 case PR_GET_TID_ADDRESS:
2574 error = prctl_get_tid_address(me, (int __user **)arg2);
2575 break;
2576 case PR_SET_CHILD_SUBREAPER:
2577 me->signal->is_child_subreaper = !!arg2;
2578 if (!arg2)
2579 break;
2580
2581 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2582 break;
2583 case PR_GET_CHILD_SUBREAPER:
2584 error = put_user(me->signal->is_child_subreaper,
2585 (int __user *)arg2);
2586 break;
2587 case PR_SET_NO_NEW_PRIVS:
2588 if (arg2 != 1 || arg3 || arg4 || arg5)
2589 return -EINVAL;
2590
2591 task_set_no_new_privs(current);
2592 break;
2593 case PR_GET_NO_NEW_PRIVS:
2594 if (arg2 || arg3 || arg4 || arg5)
2595 return -EINVAL;
2596 return task_no_new_privs(current) ? 1 : 0;
2597 case PR_GET_THP_DISABLE:
2598 if (arg2 || arg3 || arg4 || arg5)
2599 return -EINVAL;
2600 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2601 break;
2602 case PR_SET_THP_DISABLE:
2603 if (arg3 || arg4 || arg5)
2604 return -EINVAL;
2605 if (down_write_killable(&me->mm->mmap_sem))
2606 return -EINTR;
2607 if (arg2)
2608 set_bit(MMF_DISABLE_THP, &me->mm->flags);
2609 else
2610 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2611 up_write(&me->mm->mmap_sem);
2612 break;
2613 case PR_MPX_ENABLE_MANAGEMENT:
2614 case PR_MPX_DISABLE_MANAGEMENT:
2615 /* No longer implemented: */
2616 return -EINVAL;
2617 case PR_SET_FP_MODE:
2618 error = SET_FP_MODE(me, arg2);
2619 break;
2620 case PR_GET_FP_MODE:
2621 error = GET_FP_MODE(me);
2622 break;
2623 case PR_SVE_SET_VL:
2624 error = SVE_SET_VL(arg2);
2625 break;
2626 case PR_SVE_GET_VL:
2627 error = SVE_GET_VL();
2628 break;
2629 case PR_GET_SPECULATION_CTRL:
2630 if (arg3 || arg4 || arg5)
2631 return -EINVAL;
2632 error = arch_prctl_spec_ctrl_get(me, arg2);
2633 break;
2634 case PR_SET_SPECULATION_CTRL:
2635 if (arg4 || arg5)
2636 return -EINVAL;
2637 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2638 break;
2639 case PR_SET_VMA:
2640 error = prctl_set_vma(arg2, arg3, arg4, arg5);
2641 break;
2642 case PR_PAC_RESET_KEYS:
2643 if (arg3 || arg4 || arg5)
2644 return -EINVAL;
2645 error = PAC_RESET_KEYS(me, arg2);
2646 break;
2647 case PR_SET_TAGGED_ADDR_CTRL:
2648 if (arg3 || arg4 || arg5)
2649 return -EINVAL;
2650 error = SET_TAGGED_ADDR_CTRL(arg2);
2651 break;
2652 case PR_GET_TAGGED_ADDR_CTRL:
2653 if (arg2 || arg3 || arg4 || arg5)
2654 return -EINVAL;
2655 error = GET_TAGGED_ADDR_CTRL();
2656 break;
2657 default:
2658 error = -EINVAL;
2659 break;
2660 }
2661 trace_android_vh_syscall_prctl_finished(option, me);
2662 return error;
2663}
2664
2665SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2666 struct getcpu_cache __user *, unused)
2667{
2668 int err = 0;
2669 int cpu = raw_smp_processor_id();
2670
2671 if (cpup)
2672 err |= put_user(cpu, cpup);
2673 if (nodep)
2674 err |= put_user(cpu_to_node(cpu), nodep);
2675 return err ? -EFAULT : 0;
2676}
2677
2678/**
2679 * do_sysinfo - fill in sysinfo struct
2680 * @info: pointer to buffer to fill
2681 */
2682static int do_sysinfo(struct sysinfo *info)
2683{
2684 unsigned long mem_total, sav_total;
2685 unsigned int mem_unit, bitcount;
2686 struct timespec64 tp;
2687
2688 memset(info, 0, sizeof(struct sysinfo));
2689
2690 ktime_get_boottime_ts64(&tp);
2691 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2692
2693 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2694
2695 info->procs = nr_threads;
2696
2697 si_meminfo(info);
2698 si_swapinfo(info);
2699
2700 /*
2701 * If the sum of all the available memory (i.e. ram + swap)
2702 * is less than can be stored in a 32 bit unsigned long then
2703 * we can be binary compatible with 2.2.x kernels. If not,
2704 * well, in that case 2.2.x was broken anyways...
2705 *
2706 * -Erik Andersen <andersee@debian.org>
2707 */
2708
2709 mem_total = info->totalram + info->totalswap;
2710 if (mem_total < info->totalram || mem_total < info->totalswap)
2711 goto out;
2712 bitcount = 0;
2713 mem_unit = info->mem_unit;
2714 while (mem_unit > 1) {
2715 bitcount++;
2716 mem_unit >>= 1;
2717 sav_total = mem_total;
2718 mem_total <<= 1;
2719 if (mem_total < sav_total)
2720 goto out;
2721 }
2722
2723 /*
2724 * If mem_total did not overflow, multiply all memory values by
2725 * info->mem_unit and set it to 1. This leaves things compatible
2726 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2727 * kernels...
2728 */
2729
2730 info->mem_unit = 1;
2731 info->totalram <<= bitcount;
2732 info->freeram <<= bitcount;
2733 info->sharedram <<= bitcount;
2734 info->bufferram <<= bitcount;
2735 info->totalswap <<= bitcount;
2736 info->freeswap <<= bitcount;
2737 info->totalhigh <<= bitcount;
2738 info->freehigh <<= bitcount;
2739
2740out:
2741 return 0;
2742}
2743
2744SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2745{
2746 struct sysinfo val;
2747
2748 do_sysinfo(&val);
2749
2750 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2751 return -EFAULT;
2752
2753 return 0;
2754}
2755
2756#ifdef CONFIG_COMPAT
2757struct compat_sysinfo {
2758 s32 uptime;
2759 u32 loads[3];
2760 u32 totalram;
2761 u32 freeram;
2762 u32 sharedram;
2763 u32 bufferram;
2764 u32 totalswap;
2765 u32 freeswap;
2766 u16 procs;
2767 u16 pad;
2768 u32 totalhigh;
2769 u32 freehigh;
2770 u32 mem_unit;
2771 char _f[20-2*sizeof(u32)-sizeof(int)];
2772};
2773
2774COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2775{
2776 struct sysinfo s;
2777
2778 do_sysinfo(&s);
2779
2780 /* Check to see if any memory value is too large for 32-bit and scale
2781 * down if needed
2782 */
2783 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2784 int bitcount = 0;
2785
2786 while (s.mem_unit < PAGE_SIZE) {
2787 s.mem_unit <<= 1;
2788 bitcount++;
2789 }
2790
2791 s.totalram >>= bitcount;
2792 s.freeram >>= bitcount;
2793 s.sharedram >>= bitcount;
2794 s.bufferram >>= bitcount;
2795 s.totalswap >>= bitcount;
2796 s.freeswap >>= bitcount;
2797 s.totalhigh >>= bitcount;
2798 s.freehigh >>= bitcount;
2799 }
2800
2801 if (!access_ok(info, sizeof(struct compat_sysinfo)) ||
2802 __put_user(s.uptime, &info->uptime) ||
2803 __put_user(s.loads[0], &info->loads[0]) ||
2804 __put_user(s.loads[1], &info->loads[1]) ||
2805 __put_user(s.loads[2], &info->loads[2]) ||
2806 __put_user(s.totalram, &info->totalram) ||
2807 __put_user(s.freeram, &info->freeram) ||
2808 __put_user(s.sharedram, &info->sharedram) ||
2809 __put_user(s.bufferram, &info->bufferram) ||
2810 __put_user(s.totalswap, &info->totalswap) ||
2811 __put_user(s.freeswap, &info->freeswap) ||
2812 __put_user(s.procs, &info->procs) ||
2813 __put_user(s.totalhigh, &info->totalhigh) ||
2814 __put_user(s.freehigh, &info->freehigh) ||
2815 __put_user(s.mem_unit, &info->mem_unit))
2816 return -EFAULT;
2817
2818 return 0;
2819}
2820#endif /* CONFIG_COMPAT */