blob: 0772b848c7a81df89b187c10d3ca1b5fcf138d1b [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * High-resolution kernel timers
8 *
9 * In contrast to the low-resolution timeout API, aka timer wheel,
10 * hrtimers provide finer resolution and accuracy depending on system
11 * configuration and capabilities.
12 *
13 * Started by: Thomas Gleixner and Ingo Molnar
14 *
15 * Credits:
16 * Based on the original timer wheel code
17 *
18 * Help, testing, suggestions, bugfixes, improvements were
19 * provided by:
20 *
21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22 * et. al.
23 */
24
25#include <linux/cpu.h>
26#include <linux/export.h>
27#include <linux/percpu.h>
28#include <linux/hrtimer.h>
29#include <linux/notifier.h>
30#include <linux/syscalls.h>
31#include <linux/interrupt.h>
32#include <linux/tick.h>
33#include <linux/err.h>
34#include <linux/debugobjects.h>
35#include <linux/sched/signal.h>
36#include <linux/sched/sysctl.h>
37#include <linux/sched/rt.h>
38#include <linux/sched/deadline.h>
39#include <linux/sched/nohz.h>
40#include <linux/sched/debug.h>
41#include <linux/timer.h>
42#include <linux/freezer.h>
43#include <linux/compat.h>
44
45#include <linux/uaccess.h>
46
47#include <trace/events/timer.h>
48
49#include "tick-internal.h"
50
51/*
52 * Masks for selecting the soft and hard context timers from
53 * cpu_base->active
54 */
55#define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
56#define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
57#define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
58#define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
59
60/*
61 * The timer bases:
62 *
63 * There are more clockids than hrtimer bases. Thus, we index
64 * into the timer bases by the hrtimer_base_type enum. When trying
65 * to reach a base using a clockid, hrtimer_clockid_to_base()
66 * is used to convert from clockid to the proper hrtimer_base_type.
67 */
68DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
69{
70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71 .clock_base =
72 {
73 {
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
76 .get_time = &ktime_get,
77 },
78 {
79 .index = HRTIMER_BASE_REALTIME,
80 .clockid = CLOCK_REALTIME,
81 .get_time = &ktime_get_real,
82 },
83 {
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
86 .get_time = &ktime_get_boottime,
87 },
88 {
89 .index = HRTIMER_BASE_TAI,
90 .clockid = CLOCK_TAI,
91 .get_time = &ktime_get_clocktai,
92 },
93 {
94 .index = HRTIMER_BASE_MONOTONIC_SOFT,
95 .clockid = CLOCK_MONOTONIC,
96 .get_time = &ktime_get,
97 },
98 {
99 .index = HRTIMER_BASE_REALTIME_SOFT,
100 .clockid = CLOCK_REALTIME,
101 .get_time = &ktime_get_real,
102 },
103 {
104 .index = HRTIMER_BASE_BOOTTIME_SOFT,
105 .clockid = CLOCK_BOOTTIME,
106 .get_time = &ktime_get_boottime,
107 },
108 {
109 .index = HRTIMER_BASE_TAI_SOFT,
110 .clockid = CLOCK_TAI,
111 .get_time = &ktime_get_clocktai,
112 },
113 }
114};
115
116static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
117 /* Make sure we catch unsupported clockids */
118 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
119
120 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
121 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
122 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
123 [CLOCK_TAI] = HRTIMER_BASE_TAI,
124};
125
126/*
127 * Functions and macros which are different for UP/SMP systems are kept in a
128 * single place
129 */
130#ifdef CONFIG_SMP
131
132/*
133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134 * such that hrtimer_callback_running() can unconditionally dereference
135 * timer->base->cpu_base
136 */
137static struct hrtimer_cpu_base migration_cpu_base = {
138 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
139};
140
141#define migration_base migration_cpu_base.clock_base[0]
142
143static inline bool is_migration_base(struct hrtimer_clock_base *base)
144{
145 return base == &migration_base;
146}
147
148/*
149 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
150 * means that all timers which are tied to this base via timer->base are
151 * locked, and the base itself is locked too.
152 *
153 * So __run_timers/migrate_timers can safely modify all timers which could
154 * be found on the lists/queues.
155 *
156 * When the timer's base is locked, and the timer removed from list, it is
157 * possible to set timer->base = &migration_base and drop the lock: the timer
158 * remains locked.
159 */
160static
161struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
162 unsigned long *flags)
163{
164 struct hrtimer_clock_base *base;
165
166 for (;;) {
167 base = READ_ONCE(timer->base);
168 if (likely(base != &migration_base)) {
169 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
170 if (likely(base == timer->base))
171 return base;
172 /* The timer has migrated to another CPU: */
173 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
174 }
175 cpu_relax();
176 }
177}
178
179/*
180 * We do not migrate the timer when it is expiring before the next
181 * event on the target cpu. When high resolution is enabled, we cannot
182 * reprogram the target cpu hardware and we would cause it to fire
183 * late. To keep it simple, we handle the high resolution enabled and
184 * disabled case similar.
185 *
186 * Called with cpu_base->lock of target cpu held.
187 */
188static int
189hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
190{
191 ktime_t expires;
192
193 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
194 return expires < new_base->cpu_base->expires_next;
195}
196
197static inline
198struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
199 int pinned)
200{
201#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
202 if (static_branch_likely(&timers_migration_enabled) && !pinned)
203 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
204#endif
205 return base;
206}
207
208/*
209 * We switch the timer base to a power-optimized selected CPU target,
210 * if:
211 * - NO_HZ_COMMON is enabled
212 * - timer migration is enabled
213 * - the timer callback is not running
214 * - the timer is not the first expiring timer on the new target
215 *
216 * If one of the above requirements is not fulfilled we move the timer
217 * to the current CPU or leave it on the previously assigned CPU if
218 * the timer callback is currently running.
219 */
220static inline struct hrtimer_clock_base *
221switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
222 int pinned)
223{
224 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
225 struct hrtimer_clock_base *new_base;
226 int basenum = base->index;
227
228 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
229 new_cpu_base = get_target_base(this_cpu_base, pinned);
230again:
231 new_base = &new_cpu_base->clock_base[basenum];
232
233 if (base != new_base) {
234 /*
235 * We are trying to move timer to new_base.
236 * However we can't change timer's base while it is running,
237 * so we keep it on the same CPU. No hassle vs. reprogramming
238 * the event source in the high resolution case. The softirq
239 * code will take care of this when the timer function has
240 * completed. There is no conflict as we hold the lock until
241 * the timer is enqueued.
242 */
243 if (unlikely(hrtimer_callback_running(timer)))
244 return base;
245
246 /* See the comment in lock_hrtimer_base() */
247 WRITE_ONCE(timer->base, &migration_base);
248 raw_spin_unlock(&base->cpu_base->lock);
249 raw_spin_lock(&new_base->cpu_base->lock);
250
251 if (new_cpu_base != this_cpu_base &&
252 hrtimer_check_target(timer, new_base)) {
253 raw_spin_unlock(&new_base->cpu_base->lock);
254 raw_spin_lock(&base->cpu_base->lock);
255 new_cpu_base = this_cpu_base;
256 WRITE_ONCE(timer->base, base);
257 goto again;
258 }
259 WRITE_ONCE(timer->base, new_base);
260 } else {
261 if (new_cpu_base != this_cpu_base &&
262 hrtimer_check_target(timer, new_base)) {
263 new_cpu_base = this_cpu_base;
264 goto again;
265 }
266 }
267 return new_base;
268}
269
270#else /* CONFIG_SMP */
271
272static inline bool is_migration_base(struct hrtimer_clock_base *base)
273{
274 return false;
275}
276
277static inline struct hrtimer_clock_base *
278lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
279{
280 struct hrtimer_clock_base *base = timer->base;
281
282 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
283
284 return base;
285}
286
287# define switch_hrtimer_base(t, b, p) (b)
288
289#endif /* !CONFIG_SMP */
290
291/*
292 * Functions for the union type storage format of ktime_t which are
293 * too large for inlining:
294 */
295#if BITS_PER_LONG < 64
296/*
297 * Divide a ktime value by a nanosecond value
298 */
299s64 __ktime_divns(const ktime_t kt, s64 div)
300{
301 int sft = 0;
302 s64 dclc;
303 u64 tmp;
304
305 dclc = ktime_to_ns(kt);
306 tmp = dclc < 0 ? -dclc : dclc;
307
308 /* Make sure the divisor is less than 2^32: */
309 while (div >> 32) {
310 sft++;
311 div >>= 1;
312 }
313 tmp >>= sft;
314 do_div(tmp, (unsigned long) div);
315 return dclc < 0 ? -tmp : tmp;
316}
317EXPORT_SYMBOL_GPL(__ktime_divns);
318#endif /* BITS_PER_LONG >= 64 */
319
320/*
321 * Add two ktime values and do a safety check for overflow:
322 */
323ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
324{
325 ktime_t res = ktime_add_unsafe(lhs, rhs);
326
327 /*
328 * We use KTIME_SEC_MAX here, the maximum timeout which we can
329 * return to user space in a timespec:
330 */
331 if (res < 0 || res < lhs || res < rhs)
332 res = ktime_set(KTIME_SEC_MAX, 0);
333
334 return res;
335}
336
337EXPORT_SYMBOL_GPL(ktime_add_safe);
338
339#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
340
341static struct debug_obj_descr hrtimer_debug_descr;
342
343static void *hrtimer_debug_hint(void *addr)
344{
345 return ((struct hrtimer *) addr)->function;
346}
347
348/*
349 * fixup_init is called when:
350 * - an active object is initialized
351 */
352static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
353{
354 struct hrtimer *timer = addr;
355
356 switch (state) {
357 case ODEBUG_STATE_ACTIVE:
358 hrtimer_cancel(timer);
359 debug_object_init(timer, &hrtimer_debug_descr);
360 return true;
361 default:
362 return false;
363 }
364}
365
366/*
367 * fixup_activate is called when:
368 * - an active object is activated
369 * - an unknown non-static object is activated
370 */
371static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
372{
373 switch (state) {
374 case ODEBUG_STATE_ACTIVE:
375 WARN_ON(1);
376 /* fall through */
377 default:
378 return false;
379 }
380}
381
382/*
383 * fixup_free is called when:
384 * - an active object is freed
385 */
386static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
387{
388 struct hrtimer *timer = addr;
389
390 switch (state) {
391 case ODEBUG_STATE_ACTIVE:
392 hrtimer_cancel(timer);
393 debug_object_free(timer, &hrtimer_debug_descr);
394 return true;
395 default:
396 return false;
397 }
398}
399
400static struct debug_obj_descr hrtimer_debug_descr = {
401 .name = "hrtimer",
402 .debug_hint = hrtimer_debug_hint,
403 .fixup_init = hrtimer_fixup_init,
404 .fixup_activate = hrtimer_fixup_activate,
405 .fixup_free = hrtimer_fixup_free,
406};
407
408static inline void debug_hrtimer_init(struct hrtimer *timer)
409{
410 debug_object_init(timer, &hrtimer_debug_descr);
411}
412
413static inline void debug_hrtimer_activate(struct hrtimer *timer,
414 enum hrtimer_mode mode)
415{
416 debug_object_activate(timer, &hrtimer_debug_descr);
417}
418
419static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
420{
421 debug_object_deactivate(timer, &hrtimer_debug_descr);
422}
423
424static inline void debug_hrtimer_free(struct hrtimer *timer)
425{
426 debug_object_free(timer, &hrtimer_debug_descr);
427}
428
429static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
430 enum hrtimer_mode mode);
431
432void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
433 enum hrtimer_mode mode)
434{
435 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
436 __hrtimer_init(timer, clock_id, mode);
437}
438EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
439
440static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
441 clockid_t clock_id, enum hrtimer_mode mode);
442
443void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
444 clockid_t clock_id, enum hrtimer_mode mode)
445{
446 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
447 __hrtimer_init_sleeper(sl, clock_id, mode);
448}
449EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
450
451void destroy_hrtimer_on_stack(struct hrtimer *timer)
452{
453 debug_object_free(timer, &hrtimer_debug_descr);
454}
455EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
456
457#else
458
459static inline void debug_hrtimer_init(struct hrtimer *timer) { }
460static inline void debug_hrtimer_activate(struct hrtimer *timer,
461 enum hrtimer_mode mode) { }
462static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
463#endif
464
465static inline void
466debug_init(struct hrtimer *timer, clockid_t clockid,
467 enum hrtimer_mode mode)
468{
469 debug_hrtimer_init(timer);
470 trace_hrtimer_init(timer, clockid, mode);
471}
472
473static inline void debug_activate(struct hrtimer *timer,
474 enum hrtimer_mode mode)
475{
476 debug_hrtimer_activate(timer, mode);
477 trace_hrtimer_start(timer, mode);
478}
479
480static inline void debug_deactivate(struct hrtimer *timer)
481{
482 debug_hrtimer_deactivate(timer);
483 trace_hrtimer_cancel(timer);
484}
485
486static struct hrtimer_clock_base *
487__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
488{
489 unsigned int idx;
490
491 if (!*active)
492 return NULL;
493
494 idx = __ffs(*active);
495 *active &= ~(1U << idx);
496
497 return &cpu_base->clock_base[idx];
498}
499
500#define for_each_active_base(base, cpu_base, active) \
501 while ((base = __next_base((cpu_base), &(active))))
502
503static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
504 const struct hrtimer *exclude,
505 unsigned int active,
506 ktime_t expires_next)
507{
508 struct hrtimer_clock_base *base;
509 ktime_t expires;
510
511 for_each_active_base(base, cpu_base, active) {
512 struct timerqueue_node *next;
513 struct hrtimer *timer;
514
515 next = timerqueue_getnext(&base->active);
516 timer = container_of(next, struct hrtimer, node);
517 if (timer == exclude) {
518 /* Get to the next timer in the queue. */
519 next = timerqueue_iterate_next(next);
520 if (!next)
521 continue;
522
523 timer = container_of(next, struct hrtimer, node);
524 }
525 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
526 if (expires < expires_next) {
527 expires_next = expires;
528
529 /* Skip cpu_base update if a timer is being excluded. */
530 if (exclude)
531 continue;
532
533 if (timer->is_soft)
534 cpu_base->softirq_next_timer = timer;
535 else
536 cpu_base->next_timer = timer;
537 }
538 }
539 /*
540 * clock_was_set() might have changed base->offset of any of
541 * the clock bases so the result might be negative. Fix it up
542 * to prevent a false positive in clockevents_program_event().
543 */
544 if (expires_next < 0)
545 expires_next = 0;
546 return expires_next;
547}
548
549/*
550 * Recomputes cpu_base::*next_timer and returns the earliest expires_next
551 * but does not set cpu_base::*expires_next, that is done by
552 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
553 * cpu_base::*expires_next right away, reprogramming logic would no longer
554 * work.
555 *
556 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
557 * those timers will get run whenever the softirq gets handled, at the end of
558 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
559 *
560 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
561 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
562 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
563 *
564 * @active_mask must be one of:
565 * - HRTIMER_ACTIVE_ALL,
566 * - HRTIMER_ACTIVE_SOFT, or
567 * - HRTIMER_ACTIVE_HARD.
568 */
569static ktime_t
570__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
571{
572 unsigned int active;
573 struct hrtimer *next_timer = NULL;
574 ktime_t expires_next = KTIME_MAX;
575
576 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
577 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
578 cpu_base->softirq_next_timer = NULL;
579 expires_next = __hrtimer_next_event_base(cpu_base, NULL,
580 active, KTIME_MAX);
581
582 next_timer = cpu_base->softirq_next_timer;
583 }
584
585 if (active_mask & HRTIMER_ACTIVE_HARD) {
586 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
587 cpu_base->next_timer = next_timer;
588 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
589 expires_next);
590 }
591
592 return expires_next;
593}
594
595static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
596{
597 ktime_t expires_next, soft = KTIME_MAX;
598
599 /*
600 * If the soft interrupt has already been activated, ignore the
601 * soft bases. They will be handled in the already raised soft
602 * interrupt.
603 */
604 if (!cpu_base->softirq_activated) {
605 soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
606 /*
607 * Update the soft expiry time. clock_settime() might have
608 * affected it.
609 */
610 cpu_base->softirq_expires_next = soft;
611 }
612
613 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
614 /*
615 * If a softirq timer is expiring first, update cpu_base->next_timer
616 * and program the hardware with the soft expiry time.
617 */
618 if (expires_next > soft) {
619 cpu_base->next_timer = cpu_base->softirq_next_timer;
620 expires_next = soft;
621 }
622
623 return expires_next;
624}
625
626static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
627{
628 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
629 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
630 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
631
632 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
633 offs_real, offs_boot, offs_tai);
634
635 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
636 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
637 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
638
639 return now;
640}
641
642/*
643 * Is the high resolution mode active ?
644 */
645static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
646{
647 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
648 cpu_base->hres_active : 0;
649}
650
651static inline int hrtimer_hres_active(void)
652{
653 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
654}
655
656/*
657 * Reprogram the event source with checking both queues for the
658 * next event
659 * Called with interrupts disabled and base->lock held
660 */
661static void
662hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
663{
664 ktime_t expires_next;
665
666 expires_next = hrtimer_update_next_event(cpu_base);
667
668 if (skip_equal && expires_next == cpu_base->expires_next)
669 return;
670
671 cpu_base->expires_next = expires_next;
672
673 /*
674 * If hres is not active, hardware does not have to be
675 * reprogrammed yet.
676 *
677 * If a hang was detected in the last timer interrupt then we
678 * leave the hang delay active in the hardware. We want the
679 * system to make progress. That also prevents the following
680 * scenario:
681 * T1 expires 50ms from now
682 * T2 expires 5s from now
683 *
684 * T1 is removed, so this code is called and would reprogram
685 * the hardware to 5s from now. Any hrtimer_start after that
686 * will not reprogram the hardware due to hang_detected being
687 * set. So we'd effectivly block all timers until the T2 event
688 * fires.
689 */
690 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
691 return;
692
693 tick_program_event(cpu_base->expires_next, 1);
694}
695
696/* High resolution timer related functions */
697#ifdef CONFIG_HIGH_RES_TIMERS
698
699/*
700 * High resolution timer enabled ?
701 */
702static bool hrtimer_hres_enabled __read_mostly = true;
703unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
704EXPORT_SYMBOL_GPL(hrtimer_resolution);
705
706/*
707 * Enable / Disable high resolution mode
708 */
709static int __init setup_hrtimer_hres(char *str)
710{
711 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
712}
713
714__setup("highres=", setup_hrtimer_hres);
715
716/*
717 * hrtimer_high_res_enabled - query, if the highres mode is enabled
718 */
719static inline int hrtimer_is_hres_enabled(void)
720{
721 return hrtimer_hres_enabled;
722}
723
724/*
725 * Retrigger next event is called after clock was set
726 *
727 * Called with interrupts disabled via on_each_cpu()
728 */
729static void retrigger_next_event(void *arg)
730{
731 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
732
733 if (!__hrtimer_hres_active(base))
734 return;
735
736 raw_spin_lock(&base->lock);
737 hrtimer_update_base(base);
738 hrtimer_force_reprogram(base, 0);
739 raw_spin_unlock(&base->lock);
740}
741
742/*
743 * Switch to high resolution mode
744 */
745static void hrtimer_switch_to_hres(void)
746{
747 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
748
749 if (tick_init_highres()) {
750 pr_warn("Could not switch to high resolution mode on CPU %u\n",
751 base->cpu);
752 return;
753 }
754 base->hres_active = 1;
755 hrtimer_resolution = HIGH_RES_NSEC;
756
757 tick_setup_sched_timer();
758 /* "Retrigger" the interrupt to get things going */
759 retrigger_next_event(NULL);
760}
761
762#else
763
764static inline int hrtimer_is_hres_enabled(void) { return 0; }
765static inline void hrtimer_switch_to_hres(void) { }
766static inline void retrigger_next_event(void *arg) { }
767
768#endif /* CONFIG_HIGH_RES_TIMERS */
769
770/*
771 * When a timer is enqueued and expires earlier than the already enqueued
772 * timers, we have to check, whether it expires earlier than the timer for
773 * which the clock event device was armed.
774 *
775 * Called with interrupts disabled and base->cpu_base.lock held
776 */
777static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
778{
779 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
780 struct hrtimer_clock_base *base = timer->base;
781 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
782
783 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
784
785 /*
786 * CLOCK_REALTIME timer might be requested with an absolute
787 * expiry time which is less than base->offset. Set it to 0.
788 */
789 if (expires < 0)
790 expires = 0;
791
792 if (timer->is_soft) {
793 /*
794 * soft hrtimer could be started on a remote CPU. In this
795 * case softirq_expires_next needs to be updated on the
796 * remote CPU. The soft hrtimer will not expire before the
797 * first hard hrtimer on the remote CPU -
798 * hrtimer_check_target() prevents this case.
799 */
800 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
801
802 if (timer_cpu_base->softirq_activated)
803 return;
804
805 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
806 return;
807
808 timer_cpu_base->softirq_next_timer = timer;
809 timer_cpu_base->softirq_expires_next = expires;
810
811 if (!ktime_before(expires, timer_cpu_base->expires_next) ||
812 !reprogram)
813 return;
814 }
815
816 /*
817 * If the timer is not on the current cpu, we cannot reprogram
818 * the other cpus clock event device.
819 */
820 if (base->cpu_base != cpu_base)
821 return;
822
823 /*
824 * If the hrtimer interrupt is running, then it will
825 * reevaluate the clock bases and reprogram the clock event
826 * device. The callbacks are always executed in hard interrupt
827 * context so we don't need an extra check for a running
828 * callback.
829 */
830 if (cpu_base->in_hrtirq)
831 return;
832
833 if (expires >= cpu_base->expires_next)
834 return;
835
836 /* Update the pointer to the next expiring timer */
837 cpu_base->next_timer = timer;
838 cpu_base->expires_next = expires;
839
840 /*
841 * If hres is not active, hardware does not have to be
842 * programmed yet.
843 *
844 * If a hang was detected in the last timer interrupt then we
845 * do not schedule a timer which is earlier than the expiry
846 * which we enforced in the hang detection. We want the system
847 * to make progress.
848 */
849 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
850 return;
851
852 /*
853 * Program the timer hardware. We enforce the expiry for
854 * events which are already in the past.
855 */
856 tick_program_event(expires, 1);
857}
858
859/*
860 * Clock realtime was set
861 *
862 * Change the offset of the realtime clock vs. the monotonic
863 * clock.
864 *
865 * We might have to reprogram the high resolution timer interrupt. On
866 * SMP we call the architecture specific code to retrigger _all_ high
867 * resolution timer interrupts. On UP we just disable interrupts and
868 * call the high resolution interrupt code.
869 */
870void clock_was_set(void)
871{
872#ifdef CONFIG_HIGH_RES_TIMERS
873 /* Retrigger the CPU local events everywhere */
874 on_each_cpu(retrigger_next_event, NULL, 1);
875#endif
876 timerfd_clock_was_set();
877}
878
879static void clock_was_set_work(struct work_struct *work)
880{
881 clock_was_set();
882}
883
884static DECLARE_WORK(hrtimer_work, clock_was_set_work);
885
886/*
887 * Called from timekeeping and resume code to reprogram the hrtimer
888 * interrupt device on all cpus and to notify timerfd.
889 */
890void clock_was_set_delayed(void)
891{
892 schedule_work(&hrtimer_work);
893}
894
895/*
896 * During resume we might have to reprogram the high resolution timer
897 * interrupt on all online CPUs. However, all other CPUs will be
898 * stopped with IRQs interrupts disabled so the clock_was_set() call
899 * must be deferred.
900 */
901void hrtimers_resume(void)
902{
903 lockdep_assert_irqs_disabled();
904 /* Retrigger on the local CPU */
905 retrigger_next_event(NULL);
906 /* And schedule a retrigger for all others */
907 clock_was_set_delayed();
908}
909
910/*
911 * Counterpart to lock_hrtimer_base above:
912 */
913static inline
914void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
915{
916 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
917}
918
919/**
920 * hrtimer_forward - forward the timer expiry
921 * @timer: hrtimer to forward
922 * @now: forward past this time
923 * @interval: the interval to forward
924 *
925 * Forward the timer expiry so it will expire in the future.
926 * Returns the number of overruns.
927 *
928 * Can be safely called from the callback function of @timer. If
929 * called from other contexts @timer must neither be enqueued nor
930 * running the callback and the caller needs to take care of
931 * serialization.
932 *
933 * Note: This only updates the timer expiry value and does not requeue
934 * the timer.
935 */
936u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
937{
938 u64 orun = 1;
939 ktime_t delta;
940
941 delta = ktime_sub(now, hrtimer_get_expires(timer));
942
943 if (delta < 0)
944 return 0;
945
946 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
947 return 0;
948
949 if (interval < hrtimer_resolution)
950 interval = hrtimer_resolution;
951
952 if (unlikely(delta >= interval)) {
953 s64 incr = ktime_to_ns(interval);
954
955 orun = ktime_divns(delta, incr);
956 hrtimer_add_expires_ns(timer, incr * orun);
957 if (hrtimer_get_expires_tv64(timer) > now)
958 return orun;
959 /*
960 * This (and the ktime_add() below) is the
961 * correction for exact:
962 */
963 orun++;
964 }
965 hrtimer_add_expires(timer, interval);
966
967 return orun;
968}
969EXPORT_SYMBOL_GPL(hrtimer_forward);
970
971/*
972 * enqueue_hrtimer - internal function to (re)start a timer
973 *
974 * The timer is inserted in expiry order. Insertion into the
975 * red black tree is O(log(n)). Must hold the base lock.
976 *
977 * Returns 1 when the new timer is the leftmost timer in the tree.
978 */
979static int enqueue_hrtimer(struct hrtimer *timer,
980 struct hrtimer_clock_base *base,
981 enum hrtimer_mode mode)
982{
983 debug_activate(timer, mode);
984 WARN_ON_ONCE(!base->cpu_base->online);
985
986 base->cpu_base->active_bases |= 1 << base->index;
987
988 /* Pairs with the lockless read in hrtimer_is_queued() */
989 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
990
991 return timerqueue_add(&base->active, &timer->node);
992}
993
994/*
995 * __remove_hrtimer - internal function to remove a timer
996 *
997 * Caller must hold the base lock.
998 *
999 * High resolution timer mode reprograms the clock event device when the
1000 * timer is the one which expires next. The caller can disable this by setting
1001 * reprogram to zero. This is useful, when the context does a reprogramming
1002 * anyway (e.g. timer interrupt)
1003 */
1004static void __remove_hrtimer(struct hrtimer *timer,
1005 struct hrtimer_clock_base *base,
1006 u8 newstate, int reprogram)
1007{
1008 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1009 u8 state = timer->state;
1010
1011 /* Pairs with the lockless read in hrtimer_is_queued() */
1012 WRITE_ONCE(timer->state, newstate);
1013 if (!(state & HRTIMER_STATE_ENQUEUED))
1014 return;
1015
1016 if (!timerqueue_del(&base->active, &timer->node))
1017 cpu_base->active_bases &= ~(1 << base->index);
1018
1019 /*
1020 * Note: If reprogram is false we do not update
1021 * cpu_base->next_timer. This happens when we remove the first
1022 * timer on a remote cpu. No harm as we never dereference
1023 * cpu_base->next_timer. So the worst thing what can happen is
1024 * an superflous call to hrtimer_force_reprogram() on the
1025 * remote cpu later on if the same timer gets enqueued again.
1026 */
1027 if (reprogram && timer == cpu_base->next_timer)
1028 hrtimer_force_reprogram(cpu_base, 1);
1029}
1030
1031/*
1032 * remove hrtimer, called with base lock held
1033 */
1034static inline int
1035remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1036 bool restart, bool keep_local)
1037{
1038 u8 state = timer->state;
1039
1040 if (state & HRTIMER_STATE_ENQUEUED) {
1041 bool reprogram;
1042
1043 /*
1044 * Remove the timer and force reprogramming when high
1045 * resolution mode is active and the timer is on the current
1046 * CPU. If we remove a timer on another CPU, reprogramming is
1047 * skipped. The interrupt event on this CPU is fired and
1048 * reprogramming happens in the interrupt handler. This is a
1049 * rare case and less expensive than a smp call.
1050 */
1051 debug_deactivate(timer);
1052 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1053
1054 /*
1055 * If the timer is not restarted then reprogramming is
1056 * required if the timer is local. If it is local and about
1057 * to be restarted, avoid programming it twice (on removal
1058 * and a moment later when it's requeued).
1059 */
1060 if (!restart)
1061 state = HRTIMER_STATE_INACTIVE;
1062 else
1063 reprogram &= !keep_local;
1064
1065 __remove_hrtimer(timer, base, state, reprogram);
1066 return 1;
1067 }
1068 return 0;
1069}
1070
1071static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1072 const enum hrtimer_mode mode)
1073{
1074#ifdef CONFIG_TIME_LOW_RES
1075 /*
1076 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1077 * granular time values. For relative timers we add hrtimer_resolution
1078 * (i.e. one jiffie) to prevent short timeouts.
1079 */
1080 timer->is_rel = mode & HRTIMER_MODE_REL;
1081 if (timer->is_rel)
1082 tim = ktime_add_safe(tim, hrtimer_resolution);
1083#endif
1084 return tim;
1085}
1086
1087static void
1088hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1089{
1090 ktime_t expires;
1091
1092 /*
1093 * Find the next SOFT expiration.
1094 */
1095 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1096
1097 /*
1098 * reprogramming needs to be triggered, even if the next soft
1099 * hrtimer expires at the same time than the next hard
1100 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1101 */
1102 if (expires == KTIME_MAX)
1103 return;
1104
1105 /*
1106 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1107 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1108 */
1109 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1110}
1111
1112static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1113 u64 delta_ns, const enum hrtimer_mode mode,
1114 struct hrtimer_clock_base *base)
1115{
1116 struct hrtimer_clock_base *new_base;
1117 bool force_local, first;
1118
1119 /*
1120 * If the timer is on the local cpu base and is the first expiring
1121 * timer then this might end up reprogramming the hardware twice
1122 * (on removal and on enqueue). To avoid that by prevent the
1123 * reprogram on removal, keep the timer local to the current CPU
1124 * and enforce reprogramming after it is queued no matter whether
1125 * it is the new first expiring timer again or not.
1126 */
1127 force_local = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1128 force_local &= base->cpu_base->next_timer == timer;
1129
1130 /*
1131 * Remove an active timer from the queue. In case it is not queued
1132 * on the current CPU, make sure that remove_hrtimer() updates the
1133 * remote data correctly.
1134 *
1135 * If it's on the current CPU and the first expiring timer, then
1136 * skip reprogramming, keep the timer local and enforce
1137 * reprogramming later if it was the first expiring timer. This
1138 * avoids programming the underlying clock event twice (once at
1139 * removal and once after enqueue).
1140 */
1141 remove_hrtimer(timer, base, true, force_local);
1142
1143 if (mode & HRTIMER_MODE_REL)
1144 tim = ktime_add_safe(tim, base->get_time());
1145
1146 tim = hrtimer_update_lowres(timer, tim, mode);
1147
1148 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1149
1150 /* Switch the timer base, if necessary: */
1151 if (!force_local) {
1152 new_base = switch_hrtimer_base(timer, base,
1153 mode & HRTIMER_MODE_PINNED);
1154 } else {
1155 new_base = base;
1156 }
1157
1158 first = enqueue_hrtimer(timer, new_base, mode);
1159 if (!force_local)
1160 return first;
1161
1162 /*
1163 * Timer was forced to stay on the current CPU to avoid
1164 * reprogramming on removal and enqueue. Force reprogram the
1165 * hardware by evaluating the new first expiring timer.
1166 */
1167 hrtimer_force_reprogram(new_base->cpu_base, 1);
1168 return 0;
1169}
1170
1171/**
1172 * hrtimer_start_range_ns - (re)start an hrtimer
1173 * @timer: the timer to be added
1174 * @tim: expiry time
1175 * @delta_ns: "slack" range for the timer
1176 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
1177 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1178 * softirq based mode is considered for debug purpose only!
1179 */
1180void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1181 u64 delta_ns, const enum hrtimer_mode mode)
1182{
1183 struct hrtimer_clock_base *base;
1184 unsigned long flags;
1185
1186 if (WARN_ON_ONCE(!timer->function))
1187 return;
1188 /*
1189 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1190 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1191 * expiry mode because unmarked timers are moved to softirq expiry.
1192 */
1193 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1194 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1195 else
1196 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1197
1198 base = lock_hrtimer_base(timer, &flags);
1199
1200 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1201 hrtimer_reprogram(timer, true);
1202
1203 unlock_hrtimer_base(timer, &flags);
1204}
1205EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1206
1207/**
1208 * hrtimer_try_to_cancel - try to deactivate a timer
1209 * @timer: hrtimer to stop
1210 *
1211 * Returns:
1212 *
1213 * * 0 when the timer was not active
1214 * * 1 when the timer was active
1215 * * -1 when the timer is currently executing the callback function and
1216 * cannot be stopped
1217 */
1218int hrtimer_try_to_cancel(struct hrtimer *timer)
1219{
1220 struct hrtimer_clock_base *base;
1221 unsigned long flags;
1222 int ret = -1;
1223
1224 /*
1225 * Check lockless first. If the timer is not active (neither
1226 * enqueued nor running the callback, nothing to do here. The
1227 * base lock does not serialize against a concurrent enqueue,
1228 * so we can avoid taking it.
1229 */
1230 if (!hrtimer_active(timer))
1231 return 0;
1232
1233 base = lock_hrtimer_base(timer, &flags);
1234
1235 if (!hrtimer_callback_running(timer))
1236 ret = remove_hrtimer(timer, base, false, false);
1237
1238 unlock_hrtimer_base(timer, &flags);
1239
1240 return ret;
1241
1242}
1243EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1244
1245#ifdef CONFIG_PREEMPT_RT
1246static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1247{
1248 spin_lock_init(&base->softirq_expiry_lock);
1249}
1250
1251static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1252{
1253 spin_lock(&base->softirq_expiry_lock);
1254}
1255
1256static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1257{
1258 spin_unlock(&base->softirq_expiry_lock);
1259}
1260
1261/*
1262 * The counterpart to hrtimer_cancel_wait_running().
1263 *
1264 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1265 * the timer callback to finish. Drop expiry_lock and reaquire it. That
1266 * allows the waiter to acquire the lock and make progress.
1267 */
1268static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1269 unsigned long flags)
1270{
1271 if (atomic_read(&cpu_base->timer_waiters)) {
1272 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1273 spin_unlock(&cpu_base->softirq_expiry_lock);
1274 spin_lock(&cpu_base->softirq_expiry_lock);
1275 raw_spin_lock_irq(&cpu_base->lock);
1276 }
1277}
1278
1279/*
1280 * This function is called on PREEMPT_RT kernels when the fast path
1281 * deletion of a timer failed because the timer callback function was
1282 * running.
1283 *
1284 * This prevents priority inversion: if the soft irq thread is preempted
1285 * in the middle of a timer callback, then calling del_timer_sync() can
1286 * lead to two issues:
1287 *
1288 * - If the caller is on a remote CPU then it has to spin wait for the timer
1289 * handler to complete. This can result in unbound priority inversion.
1290 *
1291 * - If the caller originates from the task which preempted the timer
1292 * handler on the same CPU, then spin waiting for the timer handler to
1293 * complete is never going to end.
1294 */
1295void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1296{
1297 /* Lockless read. Prevent the compiler from reloading it below */
1298 struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1299
1300 /*
1301 * Just relax if the timer expires in hard interrupt context or if
1302 * it is currently on the migration base.
1303 */
1304 if (!timer->is_soft || is_migration_base(base)) {
1305 cpu_relax();
1306 return;
1307 }
1308
1309 /*
1310 * Mark the base as contended and grab the expiry lock, which is
1311 * held by the softirq across the timer callback. Drop the lock
1312 * immediately so the softirq can expire the next timer. In theory
1313 * the timer could already be running again, but that's more than
1314 * unlikely and just causes another wait loop.
1315 */
1316 atomic_inc(&base->cpu_base->timer_waiters);
1317 spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1318 atomic_dec(&base->cpu_base->timer_waiters);
1319 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1320}
1321#else
1322static inline void
1323hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1324static inline void
1325hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1326static inline void
1327hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
1328static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1329 unsigned long flags) { }
1330#endif
1331
1332/**
1333 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1334 * @timer: the timer to be cancelled
1335 *
1336 * Returns:
1337 * 0 when the timer was not active
1338 * 1 when the timer was active
1339 */
1340int hrtimer_cancel(struct hrtimer *timer)
1341{
1342 int ret;
1343
1344 do {
1345 ret = hrtimer_try_to_cancel(timer);
1346
1347 if (ret < 0)
1348 hrtimer_cancel_wait_running(timer);
1349 } while (ret < 0);
1350 return ret;
1351}
1352EXPORT_SYMBOL_GPL(hrtimer_cancel);
1353
1354/**
1355 * hrtimer_get_remaining - get remaining time for the timer
1356 * @timer: the timer to read
1357 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1358 */
1359ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1360{
1361 unsigned long flags;
1362 ktime_t rem;
1363
1364 lock_hrtimer_base(timer, &flags);
1365 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1366 rem = hrtimer_expires_remaining_adjusted(timer);
1367 else
1368 rem = hrtimer_expires_remaining(timer);
1369 unlock_hrtimer_base(timer, &flags);
1370
1371 return rem;
1372}
1373EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1374
1375#ifdef CONFIG_NO_HZ_COMMON
1376/**
1377 * hrtimer_get_next_event - get the time until next expiry event
1378 *
1379 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1380 */
1381u64 hrtimer_get_next_event(void)
1382{
1383 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1384 u64 expires = KTIME_MAX;
1385 unsigned long flags;
1386
1387 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1388
1389 if (!__hrtimer_hres_active(cpu_base))
1390 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1391
1392 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1393
1394 return expires;
1395}
1396
1397/**
1398 * hrtimer_next_event_without - time until next expiry event w/o one timer
1399 * @exclude: timer to exclude
1400 *
1401 * Returns the next expiry time over all timers except for the @exclude one or
1402 * KTIME_MAX if none of them is pending.
1403 */
1404u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1405{
1406 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1407 u64 expires = KTIME_MAX;
1408 unsigned long flags;
1409
1410 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1411
1412 if (__hrtimer_hres_active(cpu_base)) {
1413 unsigned int active;
1414
1415 if (!cpu_base->softirq_activated) {
1416 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1417 expires = __hrtimer_next_event_base(cpu_base, exclude,
1418 active, KTIME_MAX);
1419 }
1420 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1421 expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1422 expires);
1423 }
1424
1425 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1426
1427 return expires;
1428}
1429#endif
1430
1431static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1432{
1433 if (likely(clock_id < MAX_CLOCKS)) {
1434 int base = hrtimer_clock_to_base_table[clock_id];
1435
1436 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1437 return base;
1438 }
1439 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1440 return HRTIMER_BASE_MONOTONIC;
1441}
1442
1443static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1444 enum hrtimer_mode mode)
1445{
1446 bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1447 struct hrtimer_cpu_base *cpu_base;
1448 int base;
1449
1450 /*
1451 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1452 * marked for hard interrupt expiry mode are moved into soft
1453 * interrupt context for latency reasons and because the callbacks
1454 * can invoke functions which might sleep on RT, e.g. spin_lock().
1455 */
1456 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1457 softtimer = true;
1458
1459 memset(timer, 0, sizeof(struct hrtimer));
1460
1461 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1462
1463 /*
1464 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1465 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1466 * ensure POSIX compliance.
1467 */
1468 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1469 clock_id = CLOCK_MONOTONIC;
1470
1471 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1472 base += hrtimer_clockid_to_base(clock_id);
1473 timer->is_soft = softtimer;
1474 timer->is_hard = !softtimer;
1475 timer->base = &cpu_base->clock_base[base];
1476 timerqueue_init(&timer->node);
1477}
1478
1479/**
1480 * hrtimer_init - initialize a timer to the given clock
1481 * @timer: the timer to be initialized
1482 * @clock_id: the clock to be used
1483 * @mode: The modes which are relevant for intitialization:
1484 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1485 * HRTIMER_MODE_REL_SOFT
1486 *
1487 * The PINNED variants of the above can be handed in,
1488 * but the PINNED bit is ignored as pinning happens
1489 * when the hrtimer is started
1490 */
1491void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1492 enum hrtimer_mode mode)
1493{
1494 debug_init(timer, clock_id, mode);
1495 __hrtimer_init(timer, clock_id, mode);
1496}
1497EXPORT_SYMBOL_GPL(hrtimer_init);
1498
1499/*
1500 * A timer is active, when it is enqueued into the rbtree or the
1501 * callback function is running or it's in the state of being migrated
1502 * to another cpu.
1503 *
1504 * It is important for this function to not return a false negative.
1505 */
1506bool hrtimer_active(const struct hrtimer *timer)
1507{
1508 struct hrtimer_clock_base *base;
1509 unsigned int seq;
1510
1511 do {
1512 base = READ_ONCE(timer->base);
1513 seq = raw_read_seqcount_begin(&base->seq);
1514
1515 if (timer->state != HRTIMER_STATE_INACTIVE ||
1516 base->running == timer)
1517 return true;
1518
1519 } while (read_seqcount_retry(&base->seq, seq) ||
1520 base != READ_ONCE(timer->base));
1521
1522 return false;
1523}
1524EXPORT_SYMBOL_GPL(hrtimer_active);
1525
1526/*
1527 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1528 * distinct sections:
1529 *
1530 * - queued: the timer is queued
1531 * - callback: the timer is being ran
1532 * - post: the timer is inactive or (re)queued
1533 *
1534 * On the read side we ensure we observe timer->state and cpu_base->running
1535 * from the same section, if anything changed while we looked at it, we retry.
1536 * This includes timer->base changing because sequence numbers alone are
1537 * insufficient for that.
1538 *
1539 * The sequence numbers are required because otherwise we could still observe
1540 * a false negative if the read side got smeared over multiple consequtive
1541 * __run_hrtimer() invocations.
1542 */
1543
1544static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1545 struct hrtimer_clock_base *base,
1546 struct hrtimer *timer, ktime_t *now,
1547 unsigned long flags)
1548{
1549 enum hrtimer_restart (*fn)(struct hrtimer *);
1550 int restart;
1551
1552 lockdep_assert_held(&cpu_base->lock);
1553
1554 debug_deactivate(timer);
1555 base->running = timer;
1556
1557 /*
1558 * Separate the ->running assignment from the ->state assignment.
1559 *
1560 * As with a regular write barrier, this ensures the read side in
1561 * hrtimer_active() cannot observe base->running == NULL &&
1562 * timer->state == INACTIVE.
1563 */
1564 raw_write_seqcount_barrier(&base->seq);
1565
1566 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1567 fn = timer->function;
1568
1569 /*
1570 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1571 * timer is restarted with a period then it becomes an absolute
1572 * timer. If its not restarted it does not matter.
1573 */
1574 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1575 timer->is_rel = false;
1576
1577 /*
1578 * The timer is marked as running in the CPU base, so it is
1579 * protected against migration to a different CPU even if the lock
1580 * is dropped.
1581 */
1582 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1583 trace_hrtimer_expire_entry(timer, now);
1584 restart = fn(timer);
1585 trace_hrtimer_expire_exit(timer);
1586 raw_spin_lock_irq(&cpu_base->lock);
1587
1588 /*
1589 * Note: We clear the running state after enqueue_hrtimer and
1590 * we do not reprogram the event hardware. Happens either in
1591 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1592 *
1593 * Note: Because we dropped the cpu_base->lock above,
1594 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1595 * for us already.
1596 */
1597 if (restart != HRTIMER_NORESTART &&
1598 !(timer->state & HRTIMER_STATE_ENQUEUED))
1599 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1600
1601 /*
1602 * Separate the ->running assignment from the ->state assignment.
1603 *
1604 * As with a regular write barrier, this ensures the read side in
1605 * hrtimer_active() cannot observe base->running.timer == NULL &&
1606 * timer->state == INACTIVE.
1607 */
1608 raw_write_seqcount_barrier(&base->seq);
1609
1610 WARN_ON_ONCE(base->running != timer);
1611 base->running = NULL;
1612}
1613
1614static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1615 unsigned long flags, unsigned int active_mask)
1616{
1617 struct hrtimer_clock_base *base;
1618 unsigned int active = cpu_base->active_bases & active_mask;
1619
1620 for_each_active_base(base, cpu_base, active) {
1621 struct timerqueue_node *node;
1622 ktime_t basenow;
1623
1624 basenow = ktime_add(now, base->offset);
1625
1626 while ((node = timerqueue_getnext(&base->active))) {
1627 struct hrtimer *timer;
1628
1629 timer = container_of(node, struct hrtimer, node);
1630
1631 /*
1632 * The immediate goal for using the softexpires is
1633 * minimizing wakeups, not running timers at the
1634 * earliest interrupt after their soft expiration.
1635 * This allows us to avoid using a Priority Search
1636 * Tree, which can answer a stabbing querry for
1637 * overlapping intervals and instead use the simple
1638 * BST we already have.
1639 * We don't add extra wakeups by delaying timers that
1640 * are right-of a not yet expired timer, because that
1641 * timer will have to trigger a wakeup anyway.
1642 */
1643 if (basenow < hrtimer_get_softexpires_tv64(timer))
1644 break;
1645
1646 __run_hrtimer(cpu_base, base, timer, &basenow, flags);
1647 if (active_mask == HRTIMER_ACTIVE_SOFT)
1648 hrtimer_sync_wait_running(cpu_base, flags);
1649 }
1650 }
1651}
1652
1653static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1654{
1655 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1656 unsigned long flags;
1657 ktime_t now;
1658
1659 hrtimer_cpu_base_lock_expiry(cpu_base);
1660 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1661
1662 now = hrtimer_update_base(cpu_base);
1663 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1664
1665 cpu_base->softirq_activated = 0;
1666 hrtimer_update_softirq_timer(cpu_base, true);
1667
1668 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1669 hrtimer_cpu_base_unlock_expiry(cpu_base);
1670}
1671
1672#ifdef CONFIG_HIGH_RES_TIMERS
1673
1674/*
1675 * High resolution timer interrupt
1676 * Called with interrupts disabled
1677 */
1678void hrtimer_interrupt(struct clock_event_device *dev)
1679{
1680 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1681 ktime_t expires_next, now, entry_time, delta;
1682 unsigned long flags;
1683 int retries = 0;
1684
1685 BUG_ON(!cpu_base->hres_active);
1686 cpu_base->nr_events++;
1687 dev->next_event = KTIME_MAX;
1688
1689 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1690 entry_time = now = hrtimer_update_base(cpu_base);
1691retry:
1692 cpu_base->in_hrtirq = 1;
1693 /*
1694 * We set expires_next to KTIME_MAX here with cpu_base->lock
1695 * held to prevent that a timer is enqueued in our queue via
1696 * the migration code. This does not affect enqueueing of
1697 * timers which run their callback and need to be requeued on
1698 * this CPU.
1699 */
1700 cpu_base->expires_next = KTIME_MAX;
1701
1702 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1703 cpu_base->softirq_expires_next = KTIME_MAX;
1704 cpu_base->softirq_activated = 1;
1705 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1706 }
1707
1708 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1709
1710 /* Reevaluate the clock bases for the [soft] next expiry */
1711 expires_next = hrtimer_update_next_event(cpu_base);
1712 /*
1713 * Store the new expiry value so the migration code can verify
1714 * against it.
1715 */
1716 cpu_base->expires_next = expires_next;
1717 cpu_base->in_hrtirq = 0;
1718 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1719
1720 /* Reprogramming necessary ? */
1721 if (!tick_program_event(expires_next, 0)) {
1722 cpu_base->hang_detected = 0;
1723 return;
1724 }
1725
1726 /*
1727 * The next timer was already expired due to:
1728 * - tracing
1729 * - long lasting callbacks
1730 * - being scheduled away when running in a VM
1731 *
1732 * We need to prevent that we loop forever in the hrtimer
1733 * interrupt routine. We give it 3 attempts to avoid
1734 * overreacting on some spurious event.
1735 *
1736 * Acquire base lock for updating the offsets and retrieving
1737 * the current time.
1738 */
1739 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1740 now = hrtimer_update_base(cpu_base);
1741 cpu_base->nr_retries++;
1742 if (++retries < 3)
1743 goto retry;
1744 /*
1745 * Give the system a chance to do something else than looping
1746 * here. We stored the entry time, so we know exactly how long
1747 * we spent here. We schedule the next event this amount of
1748 * time away.
1749 */
1750 cpu_base->nr_hangs++;
1751 cpu_base->hang_detected = 1;
1752 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1753
1754 delta = ktime_sub(now, entry_time);
1755 if ((unsigned int)delta > cpu_base->max_hang_time)
1756 cpu_base->max_hang_time = (unsigned int) delta;
1757 /*
1758 * Limit it to a sensible value as we enforce a longer
1759 * delay. Give the CPU at least 100ms to catch up.
1760 */
1761 if (delta > 100 * NSEC_PER_MSEC)
1762 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1763 else
1764 expires_next = ktime_add(now, delta);
1765 tick_program_event(expires_next, 1);
1766 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1767}
1768
1769/* called with interrupts disabled */
1770static inline void __hrtimer_peek_ahead_timers(void)
1771{
1772 struct tick_device *td;
1773
1774 if (!hrtimer_hres_active())
1775 return;
1776
1777 td = this_cpu_ptr(&tick_cpu_device);
1778 if (td && td->evtdev)
1779 hrtimer_interrupt(td->evtdev);
1780}
1781
1782#else /* CONFIG_HIGH_RES_TIMERS */
1783
1784static inline void __hrtimer_peek_ahead_timers(void) { }
1785
1786#endif /* !CONFIG_HIGH_RES_TIMERS */
1787
1788/*
1789 * Called from run_local_timers in hardirq context every jiffy
1790 */
1791void hrtimer_run_queues(void)
1792{
1793 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1794 unsigned long flags;
1795 ktime_t now;
1796
1797 if (__hrtimer_hres_active(cpu_base))
1798 return;
1799
1800 /*
1801 * This _is_ ugly: We have to check periodically, whether we
1802 * can switch to highres and / or nohz mode. The clocksource
1803 * switch happens with xtime_lock held. Notification from
1804 * there only sets the check bit in the tick_oneshot code,
1805 * otherwise we might deadlock vs. xtime_lock.
1806 */
1807 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1808 hrtimer_switch_to_hres();
1809 return;
1810 }
1811
1812 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1813 now = hrtimer_update_base(cpu_base);
1814
1815 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1816 cpu_base->softirq_expires_next = KTIME_MAX;
1817 cpu_base->softirq_activated = 1;
1818 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1819 }
1820
1821 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1822 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1823}
1824
1825/*
1826 * Sleep related functions:
1827 */
1828static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1829{
1830 struct hrtimer_sleeper *t =
1831 container_of(timer, struct hrtimer_sleeper, timer);
1832 struct task_struct *task = t->task;
1833
1834 t->task = NULL;
1835 if (task)
1836 wake_up_process(task);
1837
1838 return HRTIMER_NORESTART;
1839}
1840
1841/**
1842 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1843 * @sl: sleeper to be started
1844 * @mode: timer mode abs/rel
1845 *
1846 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1847 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1848 */
1849void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1850 enum hrtimer_mode mode)
1851{
1852 /*
1853 * Make the enqueue delivery mode check work on RT. If the sleeper
1854 * was initialized for hard interrupt delivery, force the mode bit.
1855 * This is a special case for hrtimer_sleepers because
1856 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1857 * fiddling with this decision is avoided at the call sites.
1858 */
1859 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1860 mode |= HRTIMER_MODE_HARD;
1861
1862 hrtimer_start_expires(&sl->timer, mode);
1863}
1864EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1865
1866static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1867 clockid_t clock_id, enum hrtimer_mode mode)
1868{
1869 /*
1870 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1871 * marked for hard interrupt expiry mode are moved into soft
1872 * interrupt context either for latency reasons or because the
1873 * hrtimer callback takes regular spinlocks or invokes other
1874 * functions which are not suitable for hard interrupt context on
1875 * PREEMPT_RT.
1876 *
1877 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1878 * context, but there is a latency concern: Untrusted userspace can
1879 * spawn many threads which arm timers for the same expiry time on
1880 * the same CPU. That causes a latency spike due to the wakeup of
1881 * a gazillion threads.
1882 *
1883 * OTOH, priviledged real-time user space applications rely on the
1884 * low latency of hard interrupt wakeups. If the current task is in
1885 * a real-time scheduling class, mark the mode for hard interrupt
1886 * expiry.
1887 */
1888 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1889 if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1890 mode |= HRTIMER_MODE_HARD;
1891 }
1892
1893 __hrtimer_init(&sl->timer, clock_id, mode);
1894 sl->timer.function = hrtimer_wakeup;
1895 sl->task = current;
1896}
1897
1898/**
1899 * hrtimer_init_sleeper - initialize sleeper to the given clock
1900 * @sl: sleeper to be initialized
1901 * @clock_id: the clock to be used
1902 * @mode: timer mode abs/rel
1903 */
1904void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1905 enum hrtimer_mode mode)
1906{
1907 debug_init(&sl->timer, clock_id, mode);
1908 __hrtimer_init_sleeper(sl, clock_id, mode);
1909
1910}
1911EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1912
1913int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1914{
1915 switch(restart->nanosleep.type) {
1916#ifdef CONFIG_COMPAT_32BIT_TIME
1917 case TT_COMPAT:
1918 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
1919 return -EFAULT;
1920 break;
1921#endif
1922 case TT_NATIVE:
1923 if (put_timespec64(ts, restart->nanosleep.rmtp))
1924 return -EFAULT;
1925 break;
1926 default:
1927 BUG();
1928 }
1929 return -ERESTART_RESTARTBLOCK;
1930}
1931
1932static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1933{
1934 struct restart_block *restart;
1935
1936 do {
1937 set_current_state(TASK_INTERRUPTIBLE);
1938 hrtimer_sleeper_start_expires(t, mode);
1939
1940 if (likely(t->task))
1941 freezable_schedule();
1942
1943 hrtimer_cancel(&t->timer);
1944 mode = HRTIMER_MODE_ABS;
1945
1946 } while (t->task && !signal_pending(current));
1947
1948 __set_current_state(TASK_RUNNING);
1949
1950 if (!t->task)
1951 return 0;
1952
1953 restart = &current->restart_block;
1954 if (restart->nanosleep.type != TT_NONE) {
1955 ktime_t rem = hrtimer_expires_remaining(&t->timer);
1956 struct timespec64 rmt;
1957
1958 if (rem <= 0)
1959 return 0;
1960 rmt = ktime_to_timespec64(rem);
1961
1962 return nanosleep_copyout(restart, &rmt);
1963 }
1964 return -ERESTART_RESTARTBLOCK;
1965}
1966
1967static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1968{
1969 struct hrtimer_sleeper t;
1970 int ret;
1971
1972 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
1973 HRTIMER_MODE_ABS);
1974 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1975 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1976 destroy_hrtimer_on_stack(&t.timer);
1977 return ret;
1978}
1979
1980long hrtimer_nanosleep(const struct timespec64 *rqtp,
1981 const enum hrtimer_mode mode, const clockid_t clockid)
1982{
1983 struct restart_block *restart;
1984 struct hrtimer_sleeper t;
1985 int ret = 0;
1986 u64 slack;
1987
1988 slack = current->timer_slack_ns;
1989 if (dl_task(current) || rt_task(current))
1990 slack = 0;
1991
1992 hrtimer_init_sleeper_on_stack(&t, clockid, mode);
1993 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1994 ret = do_nanosleep(&t, mode);
1995 if (ret != -ERESTART_RESTARTBLOCK)
1996 goto out;
1997
1998 /* Absolute timers do not update the rmtp value and restart: */
1999 if (mode == HRTIMER_MODE_ABS) {
2000 ret = -ERESTARTNOHAND;
2001 goto out;
2002 }
2003
2004 restart = &current->restart_block;
2005 restart->nanosleep.clockid = t.timer.base->clockid;
2006 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
2007 set_restart_fn(restart, hrtimer_nanosleep_restart);
2008out:
2009 destroy_hrtimer_on_stack(&t.timer);
2010 return ret;
2011}
2012
2013#ifdef CONFIG_64BIT
2014
2015SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
2016 struct __kernel_timespec __user *, rmtp)
2017{
2018 struct timespec64 tu;
2019
2020 if (get_timespec64(&tu, rqtp))
2021 return -EFAULT;
2022
2023 if (!timespec64_valid(&tu))
2024 return -EINVAL;
2025
2026 current->restart_block.fn = do_no_restart_syscall;
2027 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
2028 current->restart_block.nanosleep.rmtp = rmtp;
2029 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
2030}
2031
2032#endif
2033
2034#ifdef CONFIG_COMPAT_32BIT_TIME
2035
2036SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
2037 struct old_timespec32 __user *, rmtp)
2038{
2039 struct timespec64 tu;
2040
2041 if (get_old_timespec32(&tu, rqtp))
2042 return -EFAULT;
2043
2044 if (!timespec64_valid(&tu))
2045 return -EINVAL;
2046
2047 current->restart_block.fn = do_no_restart_syscall;
2048 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
2049 current->restart_block.nanosleep.compat_rmtp = rmtp;
2050 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
2051}
2052#endif
2053
2054/*
2055 * Functions related to boot-time initialization:
2056 */
2057int hrtimers_prepare_cpu(unsigned int cpu)
2058{
2059 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2060 int i;
2061
2062 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2063 cpu_base->clock_base[i].cpu_base = cpu_base;
2064 timerqueue_init_head(&cpu_base->clock_base[i].active);
2065 }
2066
2067 cpu_base->cpu = cpu;
2068 hrtimer_cpu_base_init_expiry_lock(cpu_base);
2069 return 0;
2070}
2071
2072int hrtimers_cpu_starting(unsigned int cpu)
2073{
2074 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
2075
2076 /* Clear out any left over state from a CPU down operation */
2077 cpu_base->active_bases = 0;
2078 cpu_base->hres_active = 0;
2079 cpu_base->hang_detected = 0;
2080 cpu_base->next_timer = NULL;
2081 cpu_base->softirq_next_timer = NULL;
2082 cpu_base->expires_next = KTIME_MAX;
2083 cpu_base->softirq_expires_next = KTIME_MAX;
2084 cpu_base->online = 1;
2085 return 0;
2086}
2087
2088#ifdef CONFIG_HOTPLUG_CPU
2089
2090static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2091 struct hrtimer_clock_base *new_base)
2092{
2093 struct hrtimer *timer;
2094 struct timerqueue_node *node;
2095
2096 while ((node = timerqueue_getnext(&old_base->active))) {
2097 timer = container_of(node, struct hrtimer, node);
2098 BUG_ON(hrtimer_callback_running(timer));
2099 debug_deactivate(timer);
2100
2101 /*
2102 * Mark it as ENQUEUED not INACTIVE otherwise the
2103 * timer could be seen as !active and just vanish away
2104 * under us on another CPU
2105 */
2106 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2107 timer->base = new_base;
2108 /*
2109 * Enqueue the timers on the new cpu. This does not
2110 * reprogram the event device in case the timer
2111 * expires before the earliest on this CPU, but we run
2112 * hrtimer_interrupt after we migrated everything to
2113 * sort out already expired timers and reprogram the
2114 * event device.
2115 */
2116 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2117 }
2118}
2119
2120int hrtimers_cpu_dying(unsigned int dying_cpu)
2121{
2122 struct hrtimer_cpu_base *old_base, *new_base;
2123 int i, ncpu = cpumask_first(cpu_active_mask);
2124
2125 tick_cancel_sched_timer(dying_cpu);
2126
2127 old_base = this_cpu_ptr(&hrtimer_bases);
2128 new_base = &per_cpu(hrtimer_bases, ncpu);
2129
2130 /*
2131 * The caller is globally serialized and nobody else
2132 * takes two locks at once, deadlock is not possible.
2133 */
2134 raw_spin_lock(&old_base->lock);
2135 raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING);
2136
2137 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2138 migrate_hrtimer_list(&old_base->clock_base[i],
2139 &new_base->clock_base[i]);
2140 }
2141
2142 /*
2143 * The migration might have changed the first expiring softirq
2144 * timer on this CPU. Update it.
2145 */
2146 __hrtimer_get_next_event(new_base, HRTIMER_ACTIVE_SOFT);
2147 /* Tell the other CPU to retrigger the next event */
2148 smp_call_function_single(ncpu, retrigger_next_event, NULL, 0);
2149
2150 raw_spin_unlock(&new_base->lock);
2151 old_base->online = 0;
2152 raw_spin_unlock(&old_base->lock);
2153
2154 return 0;
2155}
2156
2157#endif /* CONFIG_HOTPLUG_CPU */
2158
2159void __init hrtimers_init(void)
2160{
2161 hrtimers_prepare_cpu(smp_processor_id());
2162 hrtimers_cpu_starting(smp_processor_id());
2163 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2164}
2165
2166/**
2167 * schedule_hrtimeout_range_clock - sleep until timeout
2168 * @expires: timeout value (ktime_t)
2169 * @delta: slack in expires timeout (ktime_t)
2170 * @mode: timer mode
2171 * @clock_id: timer clock to be used
2172 */
2173int __sched
2174schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2175 const enum hrtimer_mode mode, clockid_t clock_id)
2176{
2177 struct hrtimer_sleeper t;
2178
2179 /*
2180 * Optimize when a zero timeout value is given. It does not
2181 * matter whether this is an absolute or a relative time.
2182 */
2183 if (expires && *expires == 0) {
2184 __set_current_state(TASK_RUNNING);
2185 return 0;
2186 }
2187
2188 /*
2189 * A NULL parameter means "infinite"
2190 */
2191 if (!expires) {
2192 schedule();
2193 return -EINTR;
2194 }
2195
2196 hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2197 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2198 hrtimer_sleeper_start_expires(&t, mode);
2199
2200 if (likely(t.task))
2201 schedule();
2202
2203 hrtimer_cancel(&t.timer);
2204 destroy_hrtimer_on_stack(&t.timer);
2205
2206 __set_current_state(TASK_RUNNING);
2207
2208 return !t.task ? 0 : -EINTR;
2209}
2210
2211/**
2212 * schedule_hrtimeout_range - sleep until timeout
2213 * @expires: timeout value (ktime_t)
2214 * @delta: slack in expires timeout (ktime_t)
2215 * @mode: timer mode
2216 *
2217 * Make the current task sleep until the given expiry time has
2218 * elapsed. The routine will return immediately unless
2219 * the current task state has been set (see set_current_state()).
2220 *
2221 * The @delta argument gives the kernel the freedom to schedule the
2222 * actual wakeup to a time that is both power and performance friendly.
2223 * The kernel give the normal best effort behavior for "@expires+@delta",
2224 * but may decide to fire the timer earlier, but no earlier than @expires.
2225 *
2226 * You can set the task state as follows -
2227 *
2228 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2229 * pass before the routine returns unless the current task is explicitly
2230 * woken up, (e.g. by wake_up_process()).
2231 *
2232 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2233 * delivered to the current task or the current task is explicitly woken
2234 * up.
2235 *
2236 * The current task state is guaranteed to be TASK_RUNNING when this
2237 * routine returns.
2238 *
2239 * Returns 0 when the timer has expired. If the task was woken before the
2240 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2241 * by an explicit wakeup, it returns -EINTR.
2242 */
2243int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2244 const enum hrtimer_mode mode)
2245{
2246 return schedule_hrtimeout_range_clock(expires, delta, mode,
2247 CLOCK_MONOTONIC);
2248}
2249EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2250
2251/**
2252 * schedule_hrtimeout - sleep until timeout
2253 * @expires: timeout value (ktime_t)
2254 * @mode: timer mode
2255 *
2256 * Make the current task sleep until the given expiry time has
2257 * elapsed. The routine will return immediately unless
2258 * the current task state has been set (see set_current_state()).
2259 *
2260 * You can set the task state as follows -
2261 *
2262 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2263 * pass before the routine returns unless the current task is explicitly
2264 * woken up, (e.g. by wake_up_process()).
2265 *
2266 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2267 * delivered to the current task or the current task is explicitly woken
2268 * up.
2269 *
2270 * The current task state is guaranteed to be TASK_RUNNING when this
2271 * routine returns.
2272 *
2273 * Returns 0 when the timer has expired. If the task was woken before the
2274 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2275 * by an explicit wakeup, it returns -EINTR.
2276 */
2277int __sched schedule_hrtimeout(ktime_t *expires,
2278 const enum hrtimer_mode mode)
2279{
2280 return schedule_hrtimeout_range(expires, 0, mode);
2281}
2282EXPORT_SYMBOL_GPL(schedule_hrtimeout);