blob: 02d96c007673c315ac602e00cb495925b683067c [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * NTP state machine interfaces and logic.
4 *
5 * This code was mainly moved from kernel/timer.c and kernel/time.c
6 * Please see those files for relevant copyright info and historical
7 * changelogs.
8 */
9#include <linux/capability.h>
10#include <linux/clocksource.h>
11#include <linux/workqueue.h>
12#include <linux/hrtimer.h>
13#include <linux/jiffies.h>
14#include <linux/math64.h>
15#include <linux/timex.h>
16#include <linux/time.h>
17#include <linux/mm.h>
18#include <linux/module.h>
19#include <linux/rtc.h>
20#include <linux/audit.h>
21
22#include "ntp_internal.h"
23#include "timekeeping_internal.h"
24
25
26/*
27 * NTP timekeeping variables:
28 *
29 * Note: All of the NTP state is protected by the timekeeping locks.
30 */
31
32
33/* USER_HZ period (usecs): */
34unsigned long tick_usec = USER_TICK_USEC;
35
36/* SHIFTED_HZ period (nsecs): */
37unsigned long tick_nsec;
38
39static u64 tick_length;
40static u64 tick_length_base;
41
42#define SECS_PER_DAY 86400
43#define MAX_TICKADJ 500LL /* usecs */
44#define MAX_TICKADJ_SCALED \
45 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
46#define MAX_TAI_OFFSET 100000
47
48/*
49 * phase-lock loop variables
50 */
51
52/*
53 * clock synchronization status
54 *
55 * (TIME_ERROR prevents overwriting the CMOS clock)
56 */
57static int time_state = TIME_OK;
58
59/* clock status bits: */
60static int time_status = STA_UNSYNC;
61
62/* time adjustment (nsecs): */
63static s64 time_offset;
64
65/* pll time constant: */
66static long time_constant = 2;
67
68/* maximum error (usecs): */
69static long time_maxerror = NTP_PHASE_LIMIT;
70
71/* estimated error (usecs): */
72static long time_esterror = NTP_PHASE_LIMIT;
73
74/* frequency offset (scaled nsecs/secs): */
75static s64 time_freq;
76
77/* time at last adjustment (secs): */
78static time64_t time_reftime;
79
80static long time_adjust;
81
82/* constant (boot-param configurable) NTP tick adjustment (upscaled) */
83static s64 ntp_tick_adj;
84
85/* second value of the next pending leapsecond, or TIME64_MAX if no leap */
86static time64_t ntp_next_leap_sec = TIME64_MAX;
87
88#ifdef CONFIG_NTP_PPS
89
90/*
91 * The following variables are used when a pulse-per-second (PPS) signal
92 * is available. They establish the engineering parameters of the clock
93 * discipline loop when controlled by the PPS signal.
94 */
95#define PPS_VALID 10 /* PPS signal watchdog max (s) */
96#define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
97#define PPS_INTMIN 2 /* min freq interval (s) (shift) */
98#define PPS_INTMAX 8 /* max freq interval (s) (shift) */
99#define PPS_INTCOUNT 4 /* number of consecutive good intervals to
100 increase pps_shift or consecutive bad
101 intervals to decrease it */
102#define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
103
104static int pps_valid; /* signal watchdog counter */
105static long pps_tf[3]; /* phase median filter */
106static long pps_jitter; /* current jitter (ns) */
107static struct timespec64 pps_fbase; /* beginning of the last freq interval */
108static int pps_shift; /* current interval duration (s) (shift) */
109static int pps_intcnt; /* interval counter */
110static s64 pps_freq; /* frequency offset (scaled ns/s) */
111static long pps_stabil; /* current stability (scaled ns/s) */
112
113/*
114 * PPS signal quality monitors
115 */
116static long pps_calcnt; /* calibration intervals */
117static long pps_jitcnt; /* jitter limit exceeded */
118static long pps_stbcnt; /* stability limit exceeded */
119static long pps_errcnt; /* calibration errors */
120
121
122/* PPS kernel consumer compensates the whole phase error immediately.
123 * Otherwise, reduce the offset by a fixed factor times the time constant.
124 */
125static inline s64 ntp_offset_chunk(s64 offset)
126{
127 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
128 return offset;
129 else
130 return shift_right(offset, SHIFT_PLL + time_constant);
131}
132
133static inline void pps_reset_freq_interval(void)
134{
135 /* the PPS calibration interval may end
136 surprisingly early */
137 pps_shift = PPS_INTMIN;
138 pps_intcnt = 0;
139}
140
141/**
142 * pps_clear - Clears the PPS state variables
143 */
144static inline void pps_clear(void)
145{
146 pps_reset_freq_interval();
147 pps_tf[0] = 0;
148 pps_tf[1] = 0;
149 pps_tf[2] = 0;
150 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
151 pps_freq = 0;
152}
153
154/* Decrease pps_valid to indicate that another second has passed since
155 * the last PPS signal. When it reaches 0, indicate that PPS signal is
156 * missing.
157 */
158static inline void pps_dec_valid(void)
159{
160 if (pps_valid > 0)
161 pps_valid--;
162 else {
163 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
164 STA_PPSWANDER | STA_PPSERROR);
165 pps_clear();
166 }
167}
168
169static inline void pps_set_freq(s64 freq)
170{
171 pps_freq = freq;
172}
173
174static inline int is_error_status(int status)
175{
176 return (status & (STA_UNSYNC|STA_CLOCKERR))
177 /* PPS signal lost when either PPS time or
178 * PPS frequency synchronization requested
179 */
180 || ((status & (STA_PPSFREQ|STA_PPSTIME))
181 && !(status & STA_PPSSIGNAL))
182 /* PPS jitter exceeded when
183 * PPS time synchronization requested */
184 || ((status & (STA_PPSTIME|STA_PPSJITTER))
185 == (STA_PPSTIME|STA_PPSJITTER))
186 /* PPS wander exceeded or calibration error when
187 * PPS frequency synchronization requested
188 */
189 || ((status & STA_PPSFREQ)
190 && (status & (STA_PPSWANDER|STA_PPSERROR)));
191}
192
193static inline void pps_fill_timex(struct __kernel_timex *txc)
194{
195 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
196 PPM_SCALE_INV, NTP_SCALE_SHIFT);
197 txc->jitter = pps_jitter;
198 if (!(time_status & STA_NANO))
199 txc->jitter = pps_jitter / NSEC_PER_USEC;
200 txc->shift = pps_shift;
201 txc->stabil = pps_stabil;
202 txc->jitcnt = pps_jitcnt;
203 txc->calcnt = pps_calcnt;
204 txc->errcnt = pps_errcnt;
205 txc->stbcnt = pps_stbcnt;
206}
207
208#else /* !CONFIG_NTP_PPS */
209
210static inline s64 ntp_offset_chunk(s64 offset)
211{
212 return shift_right(offset, SHIFT_PLL + time_constant);
213}
214
215static inline void pps_reset_freq_interval(void) {}
216static inline void pps_clear(void) {}
217static inline void pps_dec_valid(void) {}
218static inline void pps_set_freq(s64 freq) {}
219
220static inline int is_error_status(int status)
221{
222 return status & (STA_UNSYNC|STA_CLOCKERR);
223}
224
225static inline void pps_fill_timex(struct __kernel_timex *txc)
226{
227 /* PPS is not implemented, so these are zero */
228 txc->ppsfreq = 0;
229 txc->jitter = 0;
230 txc->shift = 0;
231 txc->stabil = 0;
232 txc->jitcnt = 0;
233 txc->calcnt = 0;
234 txc->errcnt = 0;
235 txc->stbcnt = 0;
236}
237
238#endif /* CONFIG_NTP_PPS */
239
240
241/**
242 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
243 *
244 */
245static inline int ntp_synced(void)
246{
247 return !(time_status & STA_UNSYNC);
248}
249
250
251/*
252 * NTP methods:
253 */
254
255/*
256 * Update (tick_length, tick_length_base, tick_nsec), based
257 * on (tick_usec, ntp_tick_adj, time_freq):
258 */
259static void ntp_update_frequency(void)
260{
261 u64 second_length;
262 u64 new_base;
263
264 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
265 << NTP_SCALE_SHIFT;
266
267 second_length += ntp_tick_adj;
268 second_length += time_freq;
269
270 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
271 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
272
273 /*
274 * Don't wait for the next second_overflow, apply
275 * the change to the tick length immediately:
276 */
277 tick_length += new_base - tick_length_base;
278 tick_length_base = new_base;
279}
280
281static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
282{
283 time_status &= ~STA_MODE;
284
285 if (secs < MINSEC)
286 return 0;
287
288 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
289 return 0;
290
291 time_status |= STA_MODE;
292
293 return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
294}
295
296static void ntp_update_offset(long offset)
297{
298 s64 freq_adj;
299 s64 offset64;
300 long secs;
301
302 if (!(time_status & STA_PLL))
303 return;
304
305 if (!(time_status & STA_NANO)) {
306 /* Make sure the multiplication below won't overflow */
307 offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
308 offset *= NSEC_PER_USEC;
309 }
310
311 /*
312 * Scale the phase adjustment and
313 * clamp to the operating range.
314 */
315 offset = clamp(offset, -MAXPHASE, MAXPHASE);
316
317 /*
318 * Select how the frequency is to be controlled
319 * and in which mode (PLL or FLL).
320 */
321 secs = (long)(__ktime_get_real_seconds() - time_reftime);
322 if (unlikely(time_status & STA_FREQHOLD))
323 secs = 0;
324
325 time_reftime = __ktime_get_real_seconds();
326
327 offset64 = offset;
328 freq_adj = ntp_update_offset_fll(offset64, secs);
329
330 /*
331 * Clamp update interval to reduce PLL gain with low
332 * sampling rate (e.g. intermittent network connection)
333 * to avoid instability.
334 */
335 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
336 secs = 1 << (SHIFT_PLL + 1 + time_constant);
337
338 freq_adj += (offset64 * secs) <<
339 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
340
341 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
342
343 time_freq = max(freq_adj, -MAXFREQ_SCALED);
344
345 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
346}
347
348/**
349 * ntp_clear - Clears the NTP state variables
350 */
351void ntp_clear(void)
352{
353 time_adjust = 0; /* stop active adjtime() */
354 time_status |= STA_UNSYNC;
355 time_maxerror = NTP_PHASE_LIMIT;
356 time_esterror = NTP_PHASE_LIMIT;
357
358 ntp_update_frequency();
359
360 tick_length = tick_length_base;
361 time_offset = 0;
362
363 ntp_next_leap_sec = TIME64_MAX;
364 /* Clear PPS state variables */
365 pps_clear();
366}
367
368
369u64 ntp_tick_length(void)
370{
371 return tick_length;
372}
373
374/**
375 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
376 *
377 * Provides the time of the next leapsecond against CLOCK_REALTIME in
378 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
379 */
380ktime_t ntp_get_next_leap(void)
381{
382 ktime_t ret;
383
384 if ((time_state == TIME_INS) && (time_status & STA_INS))
385 return ktime_set(ntp_next_leap_sec, 0);
386 ret = KTIME_MAX;
387 return ret;
388}
389
390/*
391 * this routine handles the overflow of the microsecond field
392 *
393 * The tricky bits of code to handle the accurate clock support
394 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
395 * They were originally developed for SUN and DEC kernels.
396 * All the kudos should go to Dave for this stuff.
397 *
398 * Also handles leap second processing, and returns leap offset
399 */
400int second_overflow(time64_t secs)
401{
402 s64 delta;
403 int leap = 0;
404 s32 rem;
405
406 /*
407 * Leap second processing. If in leap-insert state at the end of the
408 * day, the system clock is set back one second; if in leap-delete
409 * state, the system clock is set ahead one second.
410 */
411 switch (time_state) {
412 case TIME_OK:
413 if (time_status & STA_INS) {
414 time_state = TIME_INS;
415 div_s64_rem(secs, SECS_PER_DAY, &rem);
416 ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
417 } else if (time_status & STA_DEL) {
418 time_state = TIME_DEL;
419 div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
420 ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
421 }
422 break;
423 case TIME_INS:
424 if (!(time_status & STA_INS)) {
425 ntp_next_leap_sec = TIME64_MAX;
426 time_state = TIME_OK;
427 } else if (secs == ntp_next_leap_sec) {
428 leap = -1;
429 time_state = TIME_OOP;
430 printk(KERN_NOTICE
431 "Clock: inserting leap second 23:59:60 UTC\n");
432 }
433 break;
434 case TIME_DEL:
435 if (!(time_status & STA_DEL)) {
436 ntp_next_leap_sec = TIME64_MAX;
437 time_state = TIME_OK;
438 } else if (secs == ntp_next_leap_sec) {
439 leap = 1;
440 ntp_next_leap_sec = TIME64_MAX;
441 time_state = TIME_WAIT;
442 printk(KERN_NOTICE
443 "Clock: deleting leap second 23:59:59 UTC\n");
444 }
445 break;
446 case TIME_OOP:
447 ntp_next_leap_sec = TIME64_MAX;
448 time_state = TIME_WAIT;
449 break;
450 case TIME_WAIT:
451 if (!(time_status & (STA_INS | STA_DEL)))
452 time_state = TIME_OK;
453 break;
454 }
455
456
457 /* Bump the maxerror field */
458 time_maxerror += MAXFREQ / NSEC_PER_USEC;
459 if (time_maxerror > NTP_PHASE_LIMIT) {
460 time_maxerror = NTP_PHASE_LIMIT;
461 time_status |= STA_UNSYNC;
462 }
463
464 /* Compute the phase adjustment for the next second */
465 tick_length = tick_length_base;
466
467 delta = ntp_offset_chunk(time_offset);
468 time_offset -= delta;
469 tick_length += delta;
470
471 /* Check PPS signal */
472 pps_dec_valid();
473
474 if (!time_adjust)
475 goto out;
476
477 if (time_adjust > MAX_TICKADJ) {
478 time_adjust -= MAX_TICKADJ;
479 tick_length += MAX_TICKADJ_SCALED;
480 goto out;
481 }
482
483 if (time_adjust < -MAX_TICKADJ) {
484 time_adjust += MAX_TICKADJ;
485 tick_length -= MAX_TICKADJ_SCALED;
486 goto out;
487 }
488
489 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
490 << NTP_SCALE_SHIFT;
491 time_adjust = 0;
492
493out:
494 return leap;
495}
496
497static void sync_hw_clock(struct work_struct *work);
498static DECLARE_DELAYED_WORK(sync_work, sync_hw_clock);
499
500static void sched_sync_hw_clock(struct timespec64 now,
501 unsigned long target_nsec, bool fail)
502
503{
504 struct timespec64 next;
505
506 ktime_get_real_ts64(&next);
507 if (!fail)
508 next.tv_sec = 659;
509 else {
510 /*
511 * Try again as soon as possible. Delaying long periods
512 * decreases the accuracy of the work queue timer. Due to this
513 * the algorithm is very likely to require a short-sleep retry
514 * after the above long sleep to synchronize ts_nsec.
515 */
516 next.tv_sec = 0;
517 }
518
519 /* Compute the needed delay that will get to tv_nsec == target_nsec */
520 next.tv_nsec = target_nsec - next.tv_nsec;
521 if (next.tv_nsec <= 0)
522 next.tv_nsec += NSEC_PER_SEC;
523 if (next.tv_nsec >= NSEC_PER_SEC) {
524 next.tv_sec++;
525 next.tv_nsec -= NSEC_PER_SEC;
526 }
527
528 queue_delayed_work(system_power_efficient_wq, &sync_work,
529 timespec64_to_jiffies(&next));
530}
531
532static void sync_rtc_clock(void)
533{
534 unsigned long target_nsec;
535 struct timespec64 adjust, now;
536 int rc;
537
538 if (!IS_ENABLED(CONFIG_RTC_SYSTOHC))
539 return;
540
541 ktime_get_real_ts64(&now);
542
543 adjust = now;
544 if (persistent_clock_is_local)
545 adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
546
547 /*
548 * The current RTC in use will provide the target_nsec it wants to be
549 * called at, and does rtc_tv_nsec_ok internally.
550 */
551 rc = rtc_set_ntp_time(adjust, &target_nsec);
552 if (rc == -ENODEV)
553 return;
554
555 sched_sync_hw_clock(now, target_nsec, rc);
556}
557
558#ifdef CONFIG_GENERIC_CMOS_UPDATE
559int __weak update_persistent_clock64(struct timespec64 now64)
560{
561 return -ENODEV;
562}
563#endif
564
565static bool sync_cmos_clock(void)
566{
567 static bool no_cmos;
568 struct timespec64 now;
569 struct timespec64 adjust;
570 int rc = -EPROTO;
571 long target_nsec = NSEC_PER_SEC / 2;
572
573 if (!IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE))
574 return false;
575
576 if (no_cmos)
577 return false;
578
579 /*
580 * Historically update_persistent_clock64() has followed x86
581 * semantics, which match the MC146818A/etc RTC. This RTC will store
582 * 'adjust' and then in .5s it will advance once second.
583 *
584 * Architectures are strongly encouraged to use rtclib and not
585 * implement this legacy API.
586 */
587 ktime_get_real_ts64(&now);
588 if (rtc_tv_nsec_ok(-1 * target_nsec, &adjust, &now)) {
589 if (persistent_clock_is_local)
590 adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
591 rc = update_persistent_clock64(adjust);
592 /*
593 * The machine does not support update_persistent_clock64 even
594 * though it defines CONFIG_GENERIC_CMOS_UPDATE.
595 */
596 if (rc == -ENODEV) {
597 no_cmos = true;
598 return false;
599 }
600 }
601
602 sched_sync_hw_clock(now, target_nsec, rc);
603 return true;
604}
605
606/*
607 * If we have an externally synchronized Linux clock, then update RTC clock
608 * accordingly every ~11 minutes. Generally RTCs can only store second
609 * precision, but many RTCs will adjust the phase of their second tick to
610 * match the moment of update. This infrastructure arranges to call to the RTC
611 * set at the correct moment to phase synchronize the RTC second tick over
612 * with the kernel clock.
613 */
614static void sync_hw_clock(struct work_struct *work)
615{
616 if (!ntp_synced())
617 return;
618
619 if (sync_cmos_clock())
620 return;
621
622 sync_rtc_clock();
623}
624
625void ntp_notify_cmos_timer(void)
626{
627 if (!ntp_synced())
628 return;
629
630 if (IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE) ||
631 IS_ENABLED(CONFIG_RTC_SYSTOHC))
632 queue_delayed_work(system_power_efficient_wq, &sync_work, 0);
633}
634
635/*
636 * Propagate a new txc->status value into the NTP state:
637 */
638static inline void process_adj_status(const struct __kernel_timex *txc)
639{
640 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
641 time_state = TIME_OK;
642 time_status = STA_UNSYNC;
643 ntp_next_leap_sec = TIME64_MAX;
644 /* restart PPS frequency calibration */
645 pps_reset_freq_interval();
646 }
647
648 /*
649 * If we turn on PLL adjustments then reset the
650 * reference time to current time.
651 */
652 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
653 time_reftime = __ktime_get_real_seconds();
654
655 /* only set allowed bits */
656 time_status &= STA_RONLY;
657 time_status |= txc->status & ~STA_RONLY;
658}
659
660
661static inline void process_adjtimex_modes(const struct __kernel_timex *txc,
662 s32 *time_tai)
663{
664 if (txc->modes & ADJ_STATUS)
665 process_adj_status(txc);
666
667 if (txc->modes & ADJ_NANO)
668 time_status |= STA_NANO;
669
670 if (txc->modes & ADJ_MICRO)
671 time_status &= ~STA_NANO;
672
673 if (txc->modes & ADJ_FREQUENCY) {
674 time_freq = txc->freq * PPM_SCALE;
675 time_freq = min(time_freq, MAXFREQ_SCALED);
676 time_freq = max(time_freq, -MAXFREQ_SCALED);
677 /* update pps_freq */
678 pps_set_freq(time_freq);
679 }
680
681 if (txc->modes & ADJ_MAXERROR)
682 time_maxerror = clamp(txc->maxerror, (long long)0, (long long)NTP_PHASE_LIMIT);
683
684 if (txc->modes & ADJ_ESTERROR)
685 time_esterror = clamp(txc->esterror, (long long)0, (long long)NTP_PHASE_LIMIT);
686
687 if (txc->modes & ADJ_TIMECONST) {
688 time_constant = clamp(txc->constant, (long long)0, (long long)MAXTC);
689 if (!(time_status & STA_NANO))
690 time_constant += 4;
691 time_constant = clamp(time_constant, (long)0, (long)MAXTC);
692 }
693
694 if (txc->modes & ADJ_TAI &&
695 txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
696 *time_tai = txc->constant;
697
698 if (txc->modes & ADJ_OFFSET)
699 ntp_update_offset(txc->offset);
700
701 if (txc->modes & ADJ_TICK)
702 tick_usec = txc->tick;
703
704 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
705 ntp_update_frequency();
706}
707
708
709/*
710 * adjtimex mainly allows reading (and writing, if superuser) of
711 * kernel time-keeping variables. used by xntpd.
712 */
713int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
714 s32 *time_tai, struct audit_ntp_data *ad)
715{
716 int result;
717
718 if (txc->modes & ADJ_ADJTIME) {
719 long save_adjust = time_adjust;
720
721 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
722 /* adjtime() is independent from ntp_adjtime() */
723 time_adjust = txc->offset;
724 ntp_update_frequency();
725
726 audit_ntp_set_old(ad, AUDIT_NTP_ADJUST, save_adjust);
727 audit_ntp_set_new(ad, AUDIT_NTP_ADJUST, time_adjust);
728 }
729 txc->offset = save_adjust;
730 } else {
731 /* If there are input parameters, then process them: */
732 if (txc->modes) {
733 audit_ntp_set_old(ad, AUDIT_NTP_OFFSET, time_offset);
734 audit_ntp_set_old(ad, AUDIT_NTP_FREQ, time_freq);
735 audit_ntp_set_old(ad, AUDIT_NTP_STATUS, time_status);
736 audit_ntp_set_old(ad, AUDIT_NTP_TAI, *time_tai);
737 audit_ntp_set_old(ad, AUDIT_NTP_TICK, tick_usec);
738
739 process_adjtimex_modes(txc, time_tai);
740
741 audit_ntp_set_new(ad, AUDIT_NTP_OFFSET, time_offset);
742 audit_ntp_set_new(ad, AUDIT_NTP_FREQ, time_freq);
743 audit_ntp_set_new(ad, AUDIT_NTP_STATUS, time_status);
744 audit_ntp_set_new(ad, AUDIT_NTP_TAI, *time_tai);
745 audit_ntp_set_new(ad, AUDIT_NTP_TICK, tick_usec);
746 }
747
748 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
749 NTP_SCALE_SHIFT);
750 if (!(time_status & STA_NANO))
751 txc->offset = (u32)txc->offset / NSEC_PER_USEC;
752 }
753
754 result = time_state; /* mostly `TIME_OK' */
755 /* check for errors */
756 if (is_error_status(time_status))
757 result = TIME_ERROR;
758
759 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
760 PPM_SCALE_INV, NTP_SCALE_SHIFT);
761 txc->maxerror = time_maxerror;
762 txc->esterror = time_esterror;
763 txc->status = time_status;
764 txc->constant = time_constant;
765 txc->precision = 1;
766 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
767 txc->tick = tick_usec;
768 txc->tai = *time_tai;
769
770 /* fill PPS status fields */
771 pps_fill_timex(txc);
772
773 txc->time.tv_sec = ts->tv_sec;
774 txc->time.tv_usec = ts->tv_nsec;
775 if (!(time_status & STA_NANO))
776 txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC;
777
778 /* Handle leapsec adjustments */
779 if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
780 if ((time_state == TIME_INS) && (time_status & STA_INS)) {
781 result = TIME_OOP;
782 txc->tai++;
783 txc->time.tv_sec--;
784 }
785 if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
786 result = TIME_WAIT;
787 txc->tai--;
788 txc->time.tv_sec++;
789 }
790 if ((time_state == TIME_OOP) &&
791 (ts->tv_sec == ntp_next_leap_sec)) {
792 result = TIME_WAIT;
793 }
794 }
795
796 return result;
797}
798
799#ifdef CONFIG_NTP_PPS
800
801/* actually struct pps_normtime is good old struct timespec, but it is
802 * semantically different (and it is the reason why it was invented):
803 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
804 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
805struct pps_normtime {
806 s64 sec; /* seconds */
807 long nsec; /* nanoseconds */
808};
809
810/* normalize the timestamp so that nsec is in the
811 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
812static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
813{
814 struct pps_normtime norm = {
815 .sec = ts.tv_sec,
816 .nsec = ts.tv_nsec
817 };
818
819 if (norm.nsec > (NSEC_PER_SEC >> 1)) {
820 norm.nsec -= NSEC_PER_SEC;
821 norm.sec++;
822 }
823
824 return norm;
825}
826
827/* get current phase correction and jitter */
828static inline long pps_phase_filter_get(long *jitter)
829{
830 *jitter = pps_tf[0] - pps_tf[1];
831 if (*jitter < 0)
832 *jitter = -*jitter;
833
834 /* TODO: test various filters */
835 return pps_tf[0];
836}
837
838/* add the sample to the phase filter */
839static inline void pps_phase_filter_add(long err)
840{
841 pps_tf[2] = pps_tf[1];
842 pps_tf[1] = pps_tf[0];
843 pps_tf[0] = err;
844}
845
846/* decrease frequency calibration interval length.
847 * It is halved after four consecutive unstable intervals.
848 */
849static inline void pps_dec_freq_interval(void)
850{
851 if (--pps_intcnt <= -PPS_INTCOUNT) {
852 pps_intcnt = -PPS_INTCOUNT;
853 if (pps_shift > PPS_INTMIN) {
854 pps_shift--;
855 pps_intcnt = 0;
856 }
857 }
858}
859
860/* increase frequency calibration interval length.
861 * It is doubled after four consecutive stable intervals.
862 */
863static inline void pps_inc_freq_interval(void)
864{
865 if (++pps_intcnt >= PPS_INTCOUNT) {
866 pps_intcnt = PPS_INTCOUNT;
867 if (pps_shift < PPS_INTMAX) {
868 pps_shift++;
869 pps_intcnt = 0;
870 }
871 }
872}
873
874/* update clock frequency based on MONOTONIC_RAW clock PPS signal
875 * timestamps
876 *
877 * At the end of the calibration interval the difference between the
878 * first and last MONOTONIC_RAW clock timestamps divided by the length
879 * of the interval becomes the frequency update. If the interval was
880 * too long, the data are discarded.
881 * Returns the difference between old and new frequency values.
882 */
883static long hardpps_update_freq(struct pps_normtime freq_norm)
884{
885 long delta, delta_mod;
886 s64 ftemp;
887
888 /* check if the frequency interval was too long */
889 if (freq_norm.sec > (2 << pps_shift)) {
890 time_status |= STA_PPSERROR;
891 pps_errcnt++;
892 pps_dec_freq_interval();
893 printk_deferred(KERN_ERR
894 "hardpps: PPSERROR: interval too long - %lld s\n",
895 freq_norm.sec);
896 return 0;
897 }
898
899 /* here the raw frequency offset and wander (stability) is
900 * calculated. If the wander is less than the wander threshold
901 * the interval is increased; otherwise it is decreased.
902 */
903 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
904 freq_norm.sec);
905 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
906 pps_freq = ftemp;
907 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
908 printk_deferred(KERN_WARNING
909 "hardpps: PPSWANDER: change=%ld\n", delta);
910 time_status |= STA_PPSWANDER;
911 pps_stbcnt++;
912 pps_dec_freq_interval();
913 } else { /* good sample */
914 pps_inc_freq_interval();
915 }
916
917 /* the stability metric is calculated as the average of recent
918 * frequency changes, but is used only for performance
919 * monitoring
920 */
921 delta_mod = delta;
922 if (delta_mod < 0)
923 delta_mod = -delta_mod;
924 pps_stabil += (div_s64(((s64)delta_mod) <<
925 (NTP_SCALE_SHIFT - SHIFT_USEC),
926 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
927
928 /* if enabled, the system clock frequency is updated */
929 if ((time_status & STA_PPSFREQ) != 0 &&
930 (time_status & STA_FREQHOLD) == 0) {
931 time_freq = pps_freq;
932 ntp_update_frequency();
933 }
934
935 return delta;
936}
937
938/* correct REALTIME clock phase error against PPS signal */
939static void hardpps_update_phase(long error)
940{
941 long correction = -error;
942 long jitter;
943
944 /* add the sample to the median filter */
945 pps_phase_filter_add(correction);
946 correction = pps_phase_filter_get(&jitter);
947
948 /* Nominal jitter is due to PPS signal noise. If it exceeds the
949 * threshold, the sample is discarded; otherwise, if so enabled,
950 * the time offset is updated.
951 */
952 if (jitter > (pps_jitter << PPS_POPCORN)) {
953 printk_deferred(KERN_WARNING
954 "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
955 jitter, (pps_jitter << PPS_POPCORN));
956 time_status |= STA_PPSJITTER;
957 pps_jitcnt++;
958 } else if (time_status & STA_PPSTIME) {
959 /* correct the time using the phase offset */
960 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
961 NTP_INTERVAL_FREQ);
962 /* cancel running adjtime() */
963 time_adjust = 0;
964 }
965 /* update jitter */
966 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
967}
968
969/*
970 * __hardpps() - discipline CPU clock oscillator to external PPS signal
971 *
972 * This routine is called at each PPS signal arrival in order to
973 * discipline the CPU clock oscillator to the PPS signal. It takes two
974 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
975 * is used to correct clock phase error and the latter is used to
976 * correct the frequency.
977 *
978 * This code is based on David Mills's reference nanokernel
979 * implementation. It was mostly rewritten but keeps the same idea.
980 */
981void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
982{
983 struct pps_normtime pts_norm, freq_norm;
984
985 pts_norm = pps_normalize_ts(*phase_ts);
986
987 /* clear the error bits, they will be set again if needed */
988 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
989
990 /* indicate signal presence */
991 time_status |= STA_PPSSIGNAL;
992 pps_valid = PPS_VALID;
993
994 /* when called for the first time,
995 * just start the frequency interval */
996 if (unlikely(pps_fbase.tv_sec == 0)) {
997 pps_fbase = *raw_ts;
998 return;
999 }
1000
1001 /* ok, now we have a base for frequency calculation */
1002 freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
1003
1004 /* check that the signal is in the range
1005 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
1006 if ((freq_norm.sec == 0) ||
1007 (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
1008 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
1009 time_status |= STA_PPSJITTER;
1010 /* restart the frequency calibration interval */
1011 pps_fbase = *raw_ts;
1012 printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
1013 return;
1014 }
1015
1016 /* signal is ok */
1017
1018 /* check if the current frequency interval is finished */
1019 if (freq_norm.sec >= (1 << pps_shift)) {
1020 pps_calcnt++;
1021 /* restart the frequency calibration interval */
1022 pps_fbase = *raw_ts;
1023 hardpps_update_freq(freq_norm);
1024 }
1025
1026 hardpps_update_phase(pts_norm.nsec);
1027
1028}
1029#endif /* CONFIG_NTP_PPS */
1030
1031static int __init ntp_tick_adj_setup(char *str)
1032{
1033 int rc = kstrtos64(str, 0, &ntp_tick_adj);
1034 if (rc)
1035 return rc;
1036
1037 ntp_tick_adj <<= NTP_SCALE_SHIFT;
1038 return 1;
1039}
1040
1041__setup("ntp_tick_adj=", ntp_tick_adj_setup);
1042
1043void __init ntp_init(void)
1044{
1045 ntp_clear();
1046}