b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 1991, 1992 Linus Torvalds |
| 4 | * |
| 5 | * This file contains the interface functions for the various time related |
| 6 | * system calls: time, stime, gettimeofday, settimeofday, adjtime |
| 7 | * |
| 8 | * Modification history: |
| 9 | * |
| 10 | * 1993-09-02 Philip Gladstone |
| 11 | * Created file with time related functions from sched/core.c and adjtimex() |
| 12 | * 1993-10-08 Torsten Duwe |
| 13 | * adjtime interface update and CMOS clock write code |
| 14 | * 1995-08-13 Torsten Duwe |
| 15 | * kernel PLL updated to 1994-12-13 specs (rfc-1589) |
| 16 | * 1999-01-16 Ulrich Windl |
| 17 | * Introduced error checking for many cases in adjtimex(). |
| 18 | * Updated NTP code according to technical memorandum Jan '96 |
| 19 | * "A Kernel Model for Precision Timekeeping" by Dave Mills |
| 20 | * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10) |
| 21 | * (Even though the technical memorandum forbids it) |
| 22 | * 2004-07-14 Christoph Lameter |
| 23 | * Added getnstimeofday to allow the posix timer functions to return |
| 24 | * with nanosecond accuracy |
| 25 | */ |
| 26 | |
| 27 | #include <linux/export.h> |
| 28 | #include <linux/kernel.h> |
| 29 | #include <linux/timex.h> |
| 30 | #include <linux/capability.h> |
| 31 | #include <linux/timekeeper_internal.h> |
| 32 | #include <linux/errno.h> |
| 33 | #include <linux/syscalls.h> |
| 34 | #include <linux/security.h> |
| 35 | #include <linux/fs.h> |
| 36 | #include <linux/math64.h> |
| 37 | #include <linux/ptrace.h> |
| 38 | |
| 39 | #include <linux/uaccess.h> |
| 40 | #include <linux/compat.h> |
| 41 | #include <asm/unistd.h> |
| 42 | |
| 43 | #include <generated/timeconst.h> |
| 44 | #include "timekeeping.h" |
| 45 | |
| 46 | /* |
| 47 | * The timezone where the local system is located. Used as a default by some |
| 48 | * programs who obtain this value by using gettimeofday. |
| 49 | */ |
| 50 | struct timezone sys_tz; |
| 51 | |
| 52 | EXPORT_SYMBOL(sys_tz); |
| 53 | |
| 54 | #ifdef __ARCH_WANT_SYS_TIME |
| 55 | |
| 56 | /* |
| 57 | * sys_time() can be implemented in user-level using |
| 58 | * sys_gettimeofday(). Is this for backwards compatibility? If so, |
| 59 | * why not move it into the appropriate arch directory (for those |
| 60 | * architectures that need it). |
| 61 | */ |
| 62 | SYSCALL_DEFINE1(time, __kernel_old_time_t __user *, tloc) |
| 63 | { |
| 64 | __kernel_old_time_t i = (__kernel_old_time_t)ktime_get_real_seconds(); |
| 65 | |
| 66 | if (tloc) { |
| 67 | if (put_user(i,tloc)) |
| 68 | return -EFAULT; |
| 69 | } |
| 70 | force_successful_syscall_return(); |
| 71 | return i; |
| 72 | } |
| 73 | |
| 74 | /* |
| 75 | * sys_stime() can be implemented in user-level using |
| 76 | * sys_settimeofday(). Is this for backwards compatibility? If so, |
| 77 | * why not move it into the appropriate arch directory (for those |
| 78 | * architectures that need it). |
| 79 | */ |
| 80 | |
| 81 | SYSCALL_DEFINE1(stime, __kernel_old_time_t __user *, tptr) |
| 82 | { |
| 83 | struct timespec64 tv; |
| 84 | int err; |
| 85 | |
| 86 | if (get_user(tv.tv_sec, tptr)) |
| 87 | return -EFAULT; |
| 88 | |
| 89 | tv.tv_nsec = 0; |
| 90 | |
| 91 | err = security_settime64(&tv, NULL); |
| 92 | if (err) |
| 93 | return err; |
| 94 | |
| 95 | do_settimeofday64(&tv); |
| 96 | return 0; |
| 97 | } |
| 98 | |
| 99 | #endif /* __ARCH_WANT_SYS_TIME */ |
| 100 | |
| 101 | #ifdef CONFIG_COMPAT_32BIT_TIME |
| 102 | #ifdef __ARCH_WANT_SYS_TIME32 |
| 103 | |
| 104 | /* old_time32_t is a 32 bit "long" and needs to get converted. */ |
| 105 | SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc) |
| 106 | { |
| 107 | old_time32_t i; |
| 108 | |
| 109 | i = (old_time32_t)ktime_get_real_seconds(); |
| 110 | |
| 111 | if (tloc) { |
| 112 | if (put_user(i,tloc)) |
| 113 | return -EFAULT; |
| 114 | } |
| 115 | force_successful_syscall_return(); |
| 116 | return i; |
| 117 | } |
| 118 | |
| 119 | SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr) |
| 120 | { |
| 121 | struct timespec64 tv; |
| 122 | int err; |
| 123 | |
| 124 | if (get_user(tv.tv_sec, tptr)) |
| 125 | return -EFAULT; |
| 126 | |
| 127 | tv.tv_nsec = 0; |
| 128 | |
| 129 | err = security_settime64(&tv, NULL); |
| 130 | if (err) |
| 131 | return err; |
| 132 | |
| 133 | do_settimeofday64(&tv); |
| 134 | return 0; |
| 135 | } |
| 136 | |
| 137 | #endif /* __ARCH_WANT_SYS_TIME32 */ |
| 138 | #endif |
| 139 | |
| 140 | SYSCALL_DEFINE2(gettimeofday, struct __kernel_old_timeval __user *, tv, |
| 141 | struct timezone __user *, tz) |
| 142 | { |
| 143 | if (likely(tv != NULL)) { |
| 144 | struct timespec64 ts; |
| 145 | |
| 146 | ktime_get_real_ts64(&ts); |
| 147 | if (put_user(ts.tv_sec, &tv->tv_sec) || |
| 148 | put_user(ts.tv_nsec / 1000, &tv->tv_usec)) |
| 149 | return -EFAULT; |
| 150 | } |
| 151 | if (unlikely(tz != NULL)) { |
| 152 | if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) |
| 153 | return -EFAULT; |
| 154 | } |
| 155 | return 0; |
| 156 | } |
| 157 | |
| 158 | /* |
| 159 | * In case for some reason the CMOS clock has not already been running |
| 160 | * in UTC, but in some local time: The first time we set the timezone, |
| 161 | * we will warp the clock so that it is ticking UTC time instead of |
| 162 | * local time. Presumably, if someone is setting the timezone then we |
| 163 | * are running in an environment where the programs understand about |
| 164 | * timezones. This should be done at boot time in the /etc/rc script, |
| 165 | * as soon as possible, so that the clock can be set right. Otherwise, |
| 166 | * various programs will get confused when the clock gets warped. |
| 167 | */ |
| 168 | |
| 169 | int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz) |
| 170 | { |
| 171 | static int firsttime = 1; |
| 172 | int error = 0; |
| 173 | |
| 174 | if (tv && !timespec64_valid_settod(tv)) |
| 175 | return -EINVAL; |
| 176 | |
| 177 | error = security_settime64(tv, tz); |
| 178 | if (error) |
| 179 | return error; |
| 180 | |
| 181 | if (tz) { |
| 182 | /* Verify we're witin the +-15 hrs range */ |
| 183 | if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60) |
| 184 | return -EINVAL; |
| 185 | |
| 186 | sys_tz = *tz; |
| 187 | update_vsyscall_tz(); |
| 188 | if (firsttime) { |
| 189 | firsttime = 0; |
| 190 | if (!tv) |
| 191 | timekeeping_warp_clock(); |
| 192 | } |
| 193 | } |
| 194 | if (tv) |
| 195 | return do_settimeofday64(tv); |
| 196 | return 0; |
| 197 | } |
| 198 | |
| 199 | SYSCALL_DEFINE2(settimeofday, struct __kernel_old_timeval __user *, tv, |
| 200 | struct timezone __user *, tz) |
| 201 | { |
| 202 | struct timespec64 new_ts; |
| 203 | struct timezone new_tz; |
| 204 | |
| 205 | if (tv) { |
| 206 | if (get_user(new_ts.tv_sec, &tv->tv_sec) || |
| 207 | get_user(new_ts.tv_nsec, &tv->tv_usec)) |
| 208 | return -EFAULT; |
| 209 | |
| 210 | if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0) |
| 211 | return -EINVAL; |
| 212 | |
| 213 | new_ts.tv_nsec *= NSEC_PER_USEC; |
| 214 | } |
| 215 | if (tz) { |
| 216 | if (copy_from_user(&new_tz, tz, sizeof(*tz))) |
| 217 | return -EFAULT; |
| 218 | } |
| 219 | |
| 220 | return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL); |
| 221 | } |
| 222 | |
| 223 | #ifdef CONFIG_COMPAT |
| 224 | COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv, |
| 225 | struct timezone __user *, tz) |
| 226 | { |
| 227 | if (tv) { |
| 228 | struct timespec64 ts; |
| 229 | |
| 230 | ktime_get_real_ts64(&ts); |
| 231 | if (put_user(ts.tv_sec, &tv->tv_sec) || |
| 232 | put_user(ts.tv_nsec / 1000, &tv->tv_usec)) |
| 233 | return -EFAULT; |
| 234 | } |
| 235 | if (tz) { |
| 236 | if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) |
| 237 | return -EFAULT; |
| 238 | } |
| 239 | |
| 240 | return 0; |
| 241 | } |
| 242 | |
| 243 | COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv, |
| 244 | struct timezone __user *, tz) |
| 245 | { |
| 246 | struct timespec64 new_ts; |
| 247 | struct timezone new_tz; |
| 248 | |
| 249 | if (tv) { |
| 250 | if (get_user(new_ts.tv_sec, &tv->tv_sec) || |
| 251 | get_user(new_ts.tv_nsec, &tv->tv_usec)) |
| 252 | return -EFAULT; |
| 253 | |
| 254 | if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0) |
| 255 | return -EINVAL; |
| 256 | |
| 257 | new_ts.tv_nsec *= NSEC_PER_USEC; |
| 258 | } |
| 259 | if (tz) { |
| 260 | if (copy_from_user(&new_tz, tz, sizeof(*tz))) |
| 261 | return -EFAULT; |
| 262 | } |
| 263 | |
| 264 | return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL); |
| 265 | } |
| 266 | #endif |
| 267 | |
| 268 | #ifdef CONFIG_64BIT |
| 269 | SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p) |
| 270 | { |
| 271 | struct __kernel_timex txc; /* Local copy of parameter */ |
| 272 | int ret; |
| 273 | |
| 274 | /* Copy the user data space into the kernel copy |
| 275 | * structure. But bear in mind that the structures |
| 276 | * may change |
| 277 | */ |
| 278 | if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex))) |
| 279 | return -EFAULT; |
| 280 | ret = do_adjtimex(&txc); |
| 281 | return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret; |
| 282 | } |
| 283 | #endif |
| 284 | |
| 285 | #ifdef CONFIG_COMPAT_32BIT_TIME |
| 286 | int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp) |
| 287 | { |
| 288 | struct old_timex32 tx32; |
| 289 | |
| 290 | memset(txc, 0, sizeof(struct __kernel_timex)); |
| 291 | if (copy_from_user(&tx32, utp, sizeof(struct old_timex32))) |
| 292 | return -EFAULT; |
| 293 | |
| 294 | txc->modes = tx32.modes; |
| 295 | txc->offset = tx32.offset; |
| 296 | txc->freq = tx32.freq; |
| 297 | txc->maxerror = tx32.maxerror; |
| 298 | txc->esterror = tx32.esterror; |
| 299 | txc->status = tx32.status; |
| 300 | txc->constant = tx32.constant; |
| 301 | txc->precision = tx32.precision; |
| 302 | txc->tolerance = tx32.tolerance; |
| 303 | txc->time.tv_sec = tx32.time.tv_sec; |
| 304 | txc->time.tv_usec = tx32.time.tv_usec; |
| 305 | txc->tick = tx32.tick; |
| 306 | txc->ppsfreq = tx32.ppsfreq; |
| 307 | txc->jitter = tx32.jitter; |
| 308 | txc->shift = tx32.shift; |
| 309 | txc->stabil = tx32.stabil; |
| 310 | txc->jitcnt = tx32.jitcnt; |
| 311 | txc->calcnt = tx32.calcnt; |
| 312 | txc->errcnt = tx32.errcnt; |
| 313 | txc->stbcnt = tx32.stbcnt; |
| 314 | |
| 315 | return 0; |
| 316 | } |
| 317 | |
| 318 | int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc) |
| 319 | { |
| 320 | struct old_timex32 tx32; |
| 321 | |
| 322 | memset(&tx32, 0, sizeof(struct old_timex32)); |
| 323 | tx32.modes = txc->modes; |
| 324 | tx32.offset = txc->offset; |
| 325 | tx32.freq = txc->freq; |
| 326 | tx32.maxerror = txc->maxerror; |
| 327 | tx32.esterror = txc->esterror; |
| 328 | tx32.status = txc->status; |
| 329 | tx32.constant = txc->constant; |
| 330 | tx32.precision = txc->precision; |
| 331 | tx32.tolerance = txc->tolerance; |
| 332 | tx32.time.tv_sec = txc->time.tv_sec; |
| 333 | tx32.time.tv_usec = txc->time.tv_usec; |
| 334 | tx32.tick = txc->tick; |
| 335 | tx32.ppsfreq = txc->ppsfreq; |
| 336 | tx32.jitter = txc->jitter; |
| 337 | tx32.shift = txc->shift; |
| 338 | tx32.stabil = txc->stabil; |
| 339 | tx32.jitcnt = txc->jitcnt; |
| 340 | tx32.calcnt = txc->calcnt; |
| 341 | tx32.errcnt = txc->errcnt; |
| 342 | tx32.stbcnt = txc->stbcnt; |
| 343 | tx32.tai = txc->tai; |
| 344 | if (copy_to_user(utp, &tx32, sizeof(struct old_timex32))) |
| 345 | return -EFAULT; |
| 346 | return 0; |
| 347 | } |
| 348 | |
| 349 | SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp) |
| 350 | { |
| 351 | struct __kernel_timex txc; |
| 352 | int err, ret; |
| 353 | |
| 354 | err = get_old_timex32(&txc, utp); |
| 355 | if (err) |
| 356 | return err; |
| 357 | |
| 358 | ret = do_adjtimex(&txc); |
| 359 | |
| 360 | err = put_old_timex32(utp, &txc); |
| 361 | if (err) |
| 362 | return err; |
| 363 | |
| 364 | return ret; |
| 365 | } |
| 366 | #endif |
| 367 | |
| 368 | /* |
| 369 | * Convert jiffies to milliseconds and back. |
| 370 | * |
| 371 | * Avoid unnecessary multiplications/divisions in the |
| 372 | * two most common HZ cases: |
| 373 | */ |
| 374 | unsigned int jiffies_to_msecs(const unsigned long j) |
| 375 | { |
| 376 | #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) |
| 377 | return (MSEC_PER_SEC / HZ) * j; |
| 378 | #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) |
| 379 | return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC); |
| 380 | #else |
| 381 | # if BITS_PER_LONG == 32 |
| 382 | return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >> |
| 383 | HZ_TO_MSEC_SHR32; |
| 384 | # else |
| 385 | return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN); |
| 386 | # endif |
| 387 | #endif |
| 388 | } |
| 389 | EXPORT_SYMBOL(jiffies_to_msecs); |
| 390 | |
| 391 | unsigned int jiffies_to_usecs(const unsigned long j) |
| 392 | { |
| 393 | /* |
| 394 | * Hz usually doesn't go much further MSEC_PER_SEC. |
| 395 | * jiffies_to_usecs() and usecs_to_jiffies() depend on that. |
| 396 | */ |
| 397 | BUILD_BUG_ON(HZ > USEC_PER_SEC); |
| 398 | |
| 399 | #if !(USEC_PER_SEC % HZ) |
| 400 | return (USEC_PER_SEC / HZ) * j; |
| 401 | #else |
| 402 | # if BITS_PER_LONG == 32 |
| 403 | return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32; |
| 404 | # else |
| 405 | return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN; |
| 406 | # endif |
| 407 | #endif |
| 408 | } |
| 409 | EXPORT_SYMBOL(jiffies_to_usecs); |
| 410 | |
| 411 | /* |
| 412 | * mktime64 - Converts date to seconds. |
| 413 | * Converts Gregorian date to seconds since 1970-01-01 00:00:00. |
| 414 | * Assumes input in normal date format, i.e. 1980-12-31 23:59:59 |
| 415 | * => year=1980, mon=12, day=31, hour=23, min=59, sec=59. |
| 416 | * |
| 417 | * [For the Julian calendar (which was used in Russia before 1917, |
| 418 | * Britain & colonies before 1752, anywhere else before 1582, |
| 419 | * and is still in use by some communities) leave out the |
| 420 | * -year/100+year/400 terms, and add 10.] |
| 421 | * |
| 422 | * This algorithm was first published by Gauss (I think). |
| 423 | * |
| 424 | * A leap second can be indicated by calling this function with sec as |
| 425 | * 60 (allowable under ISO 8601). The leap second is treated the same |
| 426 | * as the following second since they don't exist in UNIX time. |
| 427 | * |
| 428 | * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight |
| 429 | * tomorrow - (allowable under ISO 8601) is supported. |
| 430 | */ |
| 431 | time64_t mktime64(const unsigned int year0, const unsigned int mon0, |
| 432 | const unsigned int day, const unsigned int hour, |
| 433 | const unsigned int min, const unsigned int sec) |
| 434 | { |
| 435 | unsigned int mon = mon0, year = year0; |
| 436 | |
| 437 | /* 1..12 -> 11,12,1..10 */ |
| 438 | if (0 >= (int) (mon -= 2)) { |
| 439 | mon += 12; /* Puts Feb last since it has leap day */ |
| 440 | year -= 1; |
| 441 | } |
| 442 | |
| 443 | return ((((time64_t) |
| 444 | (year/4 - year/100 + year/400 + 367*mon/12 + day) + |
| 445 | year*365 - 719499 |
| 446 | )*24 + hour /* now have hours - midnight tomorrow handled here */ |
| 447 | )*60 + min /* now have minutes */ |
| 448 | )*60 + sec; /* finally seconds */ |
| 449 | } |
| 450 | EXPORT_SYMBOL(mktime64); |
| 451 | |
| 452 | struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec) |
| 453 | { |
| 454 | struct timespec64 ts = ns_to_timespec64(nsec); |
| 455 | struct __kernel_old_timeval tv; |
| 456 | |
| 457 | tv.tv_sec = ts.tv_sec; |
| 458 | tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000; |
| 459 | |
| 460 | return tv; |
| 461 | } |
| 462 | EXPORT_SYMBOL(ns_to_kernel_old_timeval); |
| 463 | |
| 464 | /** |
| 465 | * set_normalized_timespec - set timespec sec and nsec parts and normalize |
| 466 | * |
| 467 | * @ts: pointer to timespec variable to be set |
| 468 | * @sec: seconds to set |
| 469 | * @nsec: nanoseconds to set |
| 470 | * |
| 471 | * Set seconds and nanoseconds field of a timespec variable and |
| 472 | * normalize to the timespec storage format |
| 473 | * |
| 474 | * Note: The tv_nsec part is always in the range of |
| 475 | * 0 <= tv_nsec < NSEC_PER_SEC |
| 476 | * For negative values only the tv_sec field is negative ! |
| 477 | */ |
| 478 | void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec) |
| 479 | { |
| 480 | while (nsec >= NSEC_PER_SEC) { |
| 481 | /* |
| 482 | * The following asm() prevents the compiler from |
| 483 | * optimising this loop into a modulo operation. See |
| 484 | * also __iter_div_u64_rem() in include/linux/time.h |
| 485 | */ |
| 486 | asm("" : "+rm"(nsec)); |
| 487 | nsec -= NSEC_PER_SEC; |
| 488 | ++sec; |
| 489 | } |
| 490 | while (nsec < 0) { |
| 491 | asm("" : "+rm"(nsec)); |
| 492 | nsec += NSEC_PER_SEC; |
| 493 | --sec; |
| 494 | } |
| 495 | ts->tv_sec = sec; |
| 496 | ts->tv_nsec = nsec; |
| 497 | } |
| 498 | EXPORT_SYMBOL(set_normalized_timespec64); |
| 499 | |
| 500 | /** |
| 501 | * ns_to_timespec64 - Convert nanoseconds to timespec64 |
| 502 | * @nsec: the nanoseconds value to be converted |
| 503 | * |
| 504 | * Returns the timespec64 representation of the nsec parameter. |
| 505 | */ |
| 506 | struct timespec64 ns_to_timespec64(const s64 nsec) |
| 507 | { |
| 508 | struct timespec64 ts = { 0, 0 }; |
| 509 | s32 rem; |
| 510 | |
| 511 | if (likely(nsec > 0)) { |
| 512 | ts.tv_sec = div_u64_rem(nsec, NSEC_PER_SEC, &rem); |
| 513 | ts.tv_nsec = rem; |
| 514 | } else if (nsec < 0) { |
| 515 | /* |
| 516 | * With negative times, tv_sec points to the earlier |
| 517 | * second, and tv_nsec counts the nanoseconds since |
| 518 | * then, so tv_nsec is always a positive number. |
| 519 | */ |
| 520 | ts.tv_sec = -div_u64_rem(-nsec - 1, NSEC_PER_SEC, &rem) - 1; |
| 521 | ts.tv_nsec = NSEC_PER_SEC - rem - 1; |
| 522 | } |
| 523 | |
| 524 | return ts; |
| 525 | } |
| 526 | EXPORT_SYMBOL(ns_to_timespec64); |
| 527 | |
| 528 | /** |
| 529 | * msecs_to_jiffies: - convert milliseconds to jiffies |
| 530 | * @m: time in milliseconds |
| 531 | * |
| 532 | * conversion is done as follows: |
| 533 | * |
| 534 | * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET) |
| 535 | * |
| 536 | * - 'too large' values [that would result in larger than |
| 537 | * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. |
| 538 | * |
| 539 | * - all other values are converted to jiffies by either multiplying |
| 540 | * the input value by a factor or dividing it with a factor and |
| 541 | * handling any 32-bit overflows. |
| 542 | * for the details see _msecs_to_jiffies() |
| 543 | * |
| 544 | * msecs_to_jiffies() checks for the passed in value being a constant |
| 545 | * via __builtin_constant_p() allowing gcc to eliminate most of the |
| 546 | * code, __msecs_to_jiffies() is called if the value passed does not |
| 547 | * allow constant folding and the actual conversion must be done at |
| 548 | * runtime. |
| 549 | * the _msecs_to_jiffies helpers are the HZ dependent conversion |
| 550 | * routines found in include/linux/jiffies.h |
| 551 | */ |
| 552 | unsigned long __msecs_to_jiffies(const unsigned int m) |
| 553 | { |
| 554 | /* |
| 555 | * Negative value, means infinite timeout: |
| 556 | */ |
| 557 | if ((int)m < 0) |
| 558 | return MAX_JIFFY_OFFSET; |
| 559 | return _msecs_to_jiffies(m); |
| 560 | } |
| 561 | EXPORT_SYMBOL(__msecs_to_jiffies); |
| 562 | |
| 563 | unsigned long __usecs_to_jiffies(const unsigned int u) |
| 564 | { |
| 565 | if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) |
| 566 | return MAX_JIFFY_OFFSET; |
| 567 | return _usecs_to_jiffies(u); |
| 568 | } |
| 569 | EXPORT_SYMBOL(__usecs_to_jiffies); |
| 570 | |
| 571 | /* |
| 572 | * The TICK_NSEC - 1 rounds up the value to the next resolution. Note |
| 573 | * that a remainder subtract here would not do the right thing as the |
| 574 | * resolution values don't fall on second boundries. I.e. the line: |
| 575 | * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding. |
| 576 | * Note that due to the small error in the multiplier here, this |
| 577 | * rounding is incorrect for sufficiently large values of tv_nsec, but |
| 578 | * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're |
| 579 | * OK. |
| 580 | * |
| 581 | * Rather, we just shift the bits off the right. |
| 582 | * |
| 583 | * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec |
| 584 | * value to a scaled second value. |
| 585 | */ |
| 586 | |
| 587 | unsigned long |
| 588 | timespec64_to_jiffies(const struct timespec64 *value) |
| 589 | { |
| 590 | u64 sec = value->tv_sec; |
| 591 | long nsec = value->tv_nsec + TICK_NSEC - 1; |
| 592 | |
| 593 | if (sec >= MAX_SEC_IN_JIFFIES){ |
| 594 | sec = MAX_SEC_IN_JIFFIES; |
| 595 | nsec = 0; |
| 596 | } |
| 597 | return ((sec * SEC_CONVERSION) + |
| 598 | (((u64)nsec * NSEC_CONVERSION) >> |
| 599 | (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; |
| 600 | |
| 601 | } |
| 602 | EXPORT_SYMBOL(timespec64_to_jiffies); |
| 603 | |
| 604 | void |
| 605 | jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value) |
| 606 | { |
| 607 | /* |
| 608 | * Convert jiffies to nanoseconds and separate with |
| 609 | * one divide. |
| 610 | */ |
| 611 | u32 rem; |
| 612 | value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC, |
| 613 | NSEC_PER_SEC, &rem); |
| 614 | value->tv_nsec = rem; |
| 615 | } |
| 616 | EXPORT_SYMBOL(jiffies_to_timespec64); |
| 617 | |
| 618 | /* |
| 619 | * Convert jiffies/jiffies_64 to clock_t and back. |
| 620 | */ |
| 621 | clock_t jiffies_to_clock_t(unsigned long x) |
| 622 | { |
| 623 | #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 |
| 624 | # if HZ < USER_HZ |
| 625 | return x * (USER_HZ / HZ); |
| 626 | # else |
| 627 | return x / (HZ / USER_HZ); |
| 628 | # endif |
| 629 | #else |
| 630 | return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ); |
| 631 | #endif |
| 632 | } |
| 633 | EXPORT_SYMBOL(jiffies_to_clock_t); |
| 634 | |
| 635 | unsigned long clock_t_to_jiffies(unsigned long x) |
| 636 | { |
| 637 | #if (HZ % USER_HZ)==0 |
| 638 | if (x >= ~0UL / (HZ / USER_HZ)) |
| 639 | return ~0UL; |
| 640 | return x * (HZ / USER_HZ); |
| 641 | #else |
| 642 | /* Don't worry about loss of precision here .. */ |
| 643 | if (x >= ~0UL / HZ * USER_HZ) |
| 644 | return ~0UL; |
| 645 | |
| 646 | /* .. but do try to contain it here */ |
| 647 | return div_u64((u64)x * HZ, USER_HZ); |
| 648 | #endif |
| 649 | } |
| 650 | EXPORT_SYMBOL(clock_t_to_jiffies); |
| 651 | |
| 652 | u64 jiffies_64_to_clock_t(u64 x) |
| 653 | { |
| 654 | #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 |
| 655 | # if HZ < USER_HZ |
| 656 | x = div_u64(x * USER_HZ, HZ); |
| 657 | # elif HZ > USER_HZ |
| 658 | x = div_u64(x, HZ / USER_HZ); |
| 659 | # else |
| 660 | /* Nothing to do */ |
| 661 | # endif |
| 662 | #else |
| 663 | /* |
| 664 | * There are better ways that don't overflow early, |
| 665 | * but even this doesn't overflow in hundreds of years |
| 666 | * in 64 bits, so.. |
| 667 | */ |
| 668 | x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ)); |
| 669 | #endif |
| 670 | return x; |
| 671 | } |
| 672 | EXPORT_SYMBOL(jiffies_64_to_clock_t); |
| 673 | |
| 674 | u64 nsec_to_clock_t(u64 x) |
| 675 | { |
| 676 | #if (NSEC_PER_SEC % USER_HZ) == 0 |
| 677 | return div_u64(x, NSEC_PER_SEC / USER_HZ); |
| 678 | #elif (USER_HZ % 512) == 0 |
| 679 | return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512); |
| 680 | #else |
| 681 | /* |
| 682 | * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024, |
| 683 | * overflow after 64.99 years. |
| 684 | * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ... |
| 685 | */ |
| 686 | return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ); |
| 687 | #endif |
| 688 | } |
| 689 | EXPORT_SYMBOL_GPL(nsec_to_clock_t); |
| 690 | |
| 691 | u64 jiffies64_to_nsecs(u64 j) |
| 692 | { |
| 693 | #if !(NSEC_PER_SEC % HZ) |
| 694 | return (NSEC_PER_SEC / HZ) * j; |
| 695 | # else |
| 696 | return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN); |
| 697 | #endif |
| 698 | } |
| 699 | EXPORT_SYMBOL(jiffies64_to_nsecs); |
| 700 | |
| 701 | u64 jiffies64_to_msecs(const u64 j) |
| 702 | { |
| 703 | #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) |
| 704 | return (MSEC_PER_SEC / HZ) * j; |
| 705 | #else |
| 706 | return div_u64(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN); |
| 707 | #endif |
| 708 | } |
| 709 | EXPORT_SYMBOL(jiffies64_to_msecs); |
| 710 | |
| 711 | /** |
| 712 | * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64 |
| 713 | * |
| 714 | * @n: nsecs in u64 |
| 715 | * |
| 716 | * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64. |
| 717 | * And this doesn't return MAX_JIFFY_OFFSET since this function is designed |
| 718 | * for scheduler, not for use in device drivers to calculate timeout value. |
| 719 | * |
| 720 | * note: |
| 721 | * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512) |
| 722 | * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years |
| 723 | */ |
| 724 | u64 nsecs_to_jiffies64(u64 n) |
| 725 | { |
| 726 | #if (NSEC_PER_SEC % HZ) == 0 |
| 727 | /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */ |
| 728 | return div_u64(n, NSEC_PER_SEC / HZ); |
| 729 | #elif (HZ % 512) == 0 |
| 730 | /* overflow after 292 years if HZ = 1024 */ |
| 731 | return div_u64(n * HZ / 512, NSEC_PER_SEC / 512); |
| 732 | #else |
| 733 | /* |
| 734 | * Generic case - optimized for cases where HZ is a multiple of 3. |
| 735 | * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc. |
| 736 | */ |
| 737 | return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ); |
| 738 | #endif |
| 739 | } |
| 740 | EXPORT_SYMBOL(nsecs_to_jiffies64); |
| 741 | |
| 742 | /** |
| 743 | * nsecs_to_jiffies - Convert nsecs in u64 to jiffies |
| 744 | * |
| 745 | * @n: nsecs in u64 |
| 746 | * |
| 747 | * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64. |
| 748 | * And this doesn't return MAX_JIFFY_OFFSET since this function is designed |
| 749 | * for scheduler, not for use in device drivers to calculate timeout value. |
| 750 | * |
| 751 | * note: |
| 752 | * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512) |
| 753 | * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years |
| 754 | */ |
| 755 | unsigned long nsecs_to_jiffies(u64 n) |
| 756 | { |
| 757 | return (unsigned long)nsecs_to_jiffies64(n); |
| 758 | } |
| 759 | EXPORT_SYMBOL_GPL(nsecs_to_jiffies); |
| 760 | |
| 761 | /* |
| 762 | * Add two timespec64 values and do a safety check for overflow. |
| 763 | * It's assumed that both values are valid (>= 0). |
| 764 | * And, each timespec64 is in normalized form. |
| 765 | */ |
| 766 | struct timespec64 timespec64_add_safe(const struct timespec64 lhs, |
| 767 | const struct timespec64 rhs) |
| 768 | { |
| 769 | struct timespec64 res; |
| 770 | |
| 771 | set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec, |
| 772 | lhs.tv_nsec + rhs.tv_nsec); |
| 773 | |
| 774 | if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) { |
| 775 | res.tv_sec = TIME64_MAX; |
| 776 | res.tv_nsec = 0; |
| 777 | } |
| 778 | |
| 779 | return res; |
| 780 | } |
| 781 | |
| 782 | int get_timespec64(struct timespec64 *ts, |
| 783 | const struct __kernel_timespec __user *uts) |
| 784 | { |
| 785 | struct __kernel_timespec kts; |
| 786 | int ret; |
| 787 | |
| 788 | ret = copy_from_user(&kts, uts, sizeof(kts)); |
| 789 | if (ret) |
| 790 | return -EFAULT; |
| 791 | |
| 792 | ts->tv_sec = kts.tv_sec; |
| 793 | |
| 794 | /* Zero out the padding for 32 bit systems or in compat mode */ |
| 795 | if (in_compat_syscall()) |
| 796 | kts.tv_nsec &= 0xFFFFFFFFUL; |
| 797 | |
| 798 | ts->tv_nsec = kts.tv_nsec; |
| 799 | |
| 800 | return 0; |
| 801 | } |
| 802 | EXPORT_SYMBOL_GPL(get_timespec64); |
| 803 | |
| 804 | int put_timespec64(const struct timespec64 *ts, |
| 805 | struct __kernel_timespec __user *uts) |
| 806 | { |
| 807 | struct __kernel_timespec kts = { |
| 808 | .tv_sec = ts->tv_sec, |
| 809 | .tv_nsec = ts->tv_nsec |
| 810 | }; |
| 811 | |
| 812 | return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0; |
| 813 | } |
| 814 | EXPORT_SYMBOL_GPL(put_timespec64); |
| 815 | |
| 816 | static int __get_old_timespec32(struct timespec64 *ts64, |
| 817 | const struct old_timespec32 __user *cts) |
| 818 | { |
| 819 | struct old_timespec32 ts; |
| 820 | int ret; |
| 821 | |
| 822 | ret = copy_from_user(&ts, cts, sizeof(ts)); |
| 823 | if (ret) |
| 824 | return -EFAULT; |
| 825 | |
| 826 | ts64->tv_sec = ts.tv_sec; |
| 827 | ts64->tv_nsec = ts.tv_nsec; |
| 828 | |
| 829 | return 0; |
| 830 | } |
| 831 | |
| 832 | static int __put_old_timespec32(const struct timespec64 *ts64, |
| 833 | struct old_timespec32 __user *cts) |
| 834 | { |
| 835 | struct old_timespec32 ts = { |
| 836 | .tv_sec = ts64->tv_sec, |
| 837 | .tv_nsec = ts64->tv_nsec |
| 838 | }; |
| 839 | return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0; |
| 840 | } |
| 841 | |
| 842 | int get_old_timespec32(struct timespec64 *ts, const void __user *uts) |
| 843 | { |
| 844 | if (COMPAT_USE_64BIT_TIME) |
| 845 | return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0; |
| 846 | else |
| 847 | return __get_old_timespec32(ts, uts); |
| 848 | } |
| 849 | EXPORT_SYMBOL_GPL(get_old_timespec32); |
| 850 | |
| 851 | int put_old_timespec32(const struct timespec64 *ts, void __user *uts) |
| 852 | { |
| 853 | if (COMPAT_USE_64BIT_TIME) |
| 854 | return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0; |
| 855 | else |
| 856 | return __put_old_timespec32(ts, uts); |
| 857 | } |
| 858 | EXPORT_SYMBOL_GPL(put_old_timespec32); |
| 859 | |
| 860 | int get_itimerspec64(struct itimerspec64 *it, |
| 861 | const struct __kernel_itimerspec __user *uit) |
| 862 | { |
| 863 | int ret; |
| 864 | |
| 865 | ret = get_timespec64(&it->it_interval, &uit->it_interval); |
| 866 | if (ret) |
| 867 | return ret; |
| 868 | |
| 869 | ret = get_timespec64(&it->it_value, &uit->it_value); |
| 870 | |
| 871 | return ret; |
| 872 | } |
| 873 | EXPORT_SYMBOL_GPL(get_itimerspec64); |
| 874 | |
| 875 | int put_itimerspec64(const struct itimerspec64 *it, |
| 876 | struct __kernel_itimerspec __user *uit) |
| 877 | { |
| 878 | int ret; |
| 879 | |
| 880 | ret = put_timespec64(&it->it_interval, &uit->it_interval); |
| 881 | if (ret) |
| 882 | return ret; |
| 883 | |
| 884 | ret = put_timespec64(&it->it_value, &uit->it_value); |
| 885 | |
| 886 | return ret; |
| 887 | } |
| 888 | EXPORT_SYMBOL_GPL(put_itimerspec64); |
| 889 | |
| 890 | int get_old_itimerspec32(struct itimerspec64 *its, |
| 891 | const struct old_itimerspec32 __user *uits) |
| 892 | { |
| 893 | |
| 894 | if (__get_old_timespec32(&its->it_interval, &uits->it_interval) || |
| 895 | __get_old_timespec32(&its->it_value, &uits->it_value)) |
| 896 | return -EFAULT; |
| 897 | return 0; |
| 898 | } |
| 899 | EXPORT_SYMBOL_GPL(get_old_itimerspec32); |
| 900 | |
| 901 | int put_old_itimerspec32(const struct itimerspec64 *its, |
| 902 | struct old_itimerspec32 __user *uits) |
| 903 | { |
| 904 | if (__put_old_timespec32(&its->it_interval, &uits->it_interval) || |
| 905 | __put_old_timespec32(&its->it_value, &uits->it_value)) |
| 906 | return -EFAULT; |
| 907 | return 0; |
| 908 | } |
| 909 | EXPORT_SYMBOL_GPL(put_old_itimerspec32); |