blob: 4c2c04fc8d519f2126bd4c83b17d27cf9a77133b [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Kernel internal timers
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
8 *
9 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
10 * "A Kernel Model for Precision Timekeeping" by Dave Mills
11 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
12 * serialize accesses to xtime/lost_ticks).
13 * Copyright (C) 1998 Andrea Arcangeli
14 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
15 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
16 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
17 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
18 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
19 */
20
21#include <linux/kernel_stat.h>
22#include <linux/export.h>
23#include <linux/interrupt.h>
24#include <linux/percpu.h>
25#include <linux/init.h>
26#include <linux/mm.h>
27#include <linux/swap.h>
28#include <linux/pid_namespace.h>
29#include <linux/notifier.h>
30#include <linux/thread_info.h>
31#include <linux/time.h>
32#include <linux/jiffies.h>
33#include <linux/posix-timers.h>
34#include <linux/cpu.h>
35#include <linux/syscalls.h>
36#include <linux/delay.h>
37#include <linux/tick.h>
38#include <linux/kallsyms.h>
39#include <linux/irq_work.h>
40#include <linux/sched/signal.h>
41#include <linux/sched/sysctl.h>
42#include <linux/sched/nohz.h>
43#include <linux/sched/debug.h>
44#include <linux/slab.h>
45#include <linux/compat.h>
46#include <linux/random.h>
47
48#include <linux/uaccess.h>
49#include <asm/unistd.h>
50#include <asm/div64.h>
51#include <asm/timex.h>
52#include <asm/io.h>
53
54#include "tick-internal.h"
55
56#define CREATE_TRACE_POINTS
57#include <trace/events/timer.h>
58
59__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
60
61EXPORT_SYMBOL(jiffies_64);
62
63/*
64 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
65 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
66 * level has a different granularity.
67 *
68 * The level granularity is: LVL_CLK_DIV ^ lvl
69 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level)
70 *
71 * The array level of a newly armed timer depends on the relative expiry
72 * time. The farther the expiry time is away the higher the array level and
73 * therefor the granularity becomes.
74 *
75 * Contrary to the original timer wheel implementation, which aims for 'exact'
76 * expiry of the timers, this implementation removes the need for recascading
77 * the timers into the lower array levels. The previous 'classic' timer wheel
78 * implementation of the kernel already violated the 'exact' expiry by adding
79 * slack to the expiry time to provide batched expiration. The granularity
80 * levels provide implicit batching.
81 *
82 * This is an optimization of the original timer wheel implementation for the
83 * majority of the timer wheel use cases: timeouts. The vast majority of
84 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
85 * the timeout expires it indicates that normal operation is disturbed, so it
86 * does not matter much whether the timeout comes with a slight delay.
87 *
88 * The only exception to this are networking timers with a small expiry
89 * time. They rely on the granularity. Those fit into the first wheel level,
90 * which has HZ granularity.
91 *
92 * We don't have cascading anymore. timers with a expiry time above the
93 * capacity of the last wheel level are force expired at the maximum timeout
94 * value of the last wheel level. From data sampling we know that the maximum
95 * value observed is 5 days (network connection tracking), so this should not
96 * be an issue.
97 *
98 * The currently chosen array constants values are a good compromise between
99 * array size and granularity.
100 *
101 * This results in the following granularity and range levels:
102 *
103 * HZ 1000 steps
104 * Level Offset Granularity Range
105 * 0 0 1 ms 0 ms - 63 ms
106 * 1 64 8 ms 64 ms - 511 ms
107 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s)
108 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s)
109 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m)
110 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m)
111 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h)
112 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d)
113 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d)
114 *
115 * HZ 300
116 * Level Offset Granularity Range
117 * 0 0 3 ms 0 ms - 210 ms
118 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s)
119 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s)
120 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m)
121 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m)
122 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h)
123 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h)
124 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d)
125 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
126 *
127 * HZ 250
128 * Level Offset Granularity Range
129 * 0 0 4 ms 0 ms - 255 ms
130 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s)
131 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s)
132 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m)
133 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m)
134 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h)
135 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
136 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)
137 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
138 *
139 * HZ 100
140 * Level Offset Granularity Range
141 * 0 0 10 ms 0 ms - 630 ms
142 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s)
143 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s)
144 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m)
145 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m)
146 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h)
147 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d)
148 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
149 */
150
151/* Clock divisor for the next level */
152#define LVL_CLK_SHIFT 3
153#define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT)
154#define LVL_CLK_MASK (LVL_CLK_DIV - 1)
155#define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT)
156#define LVL_GRAN(n) (1UL << LVL_SHIFT(n))
157
158/*
159 * The time start value for each level to select the bucket at enqueue
160 * time.
161 */
162#define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
163
164/* Size of each clock level */
165#define LVL_BITS 6
166#define LVL_SIZE (1UL << LVL_BITS)
167#define LVL_MASK (LVL_SIZE - 1)
168#define LVL_OFFS(n) ((n) * LVL_SIZE)
169
170/* Level depth */
171#if HZ > 100
172# define LVL_DEPTH 9
173# else
174# define LVL_DEPTH 8
175#endif
176
177/* The cutoff (max. capacity of the wheel) */
178#define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH))
179#define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
180
181/*
182 * The resulting wheel size. If NOHZ is configured we allocate two
183 * wheels so we have a separate storage for the deferrable timers.
184 */
185#define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH)
186
187#ifdef CONFIG_NO_HZ_COMMON
188# define NR_BASES 2
189# define BASE_STD 0
190# define BASE_DEF 1
191#else
192# define NR_BASES 1
193# define BASE_STD 0
194# define BASE_DEF 0
195#endif
196
197struct timer_base {
198 raw_spinlock_t lock;
199 struct timer_list *running_timer;
200#ifdef CONFIG_PREEMPT_RT
201 spinlock_t expiry_lock;
202 atomic_t timer_waiters;
203#endif
204 unsigned long clk;
205 unsigned long next_expiry;
206 unsigned int cpu;
207 bool is_idle;
208 bool must_forward_clk;
209 DECLARE_BITMAP(pending_map, WHEEL_SIZE);
210 struct hlist_head vectors[WHEEL_SIZE];
211} ____cacheline_aligned;
212
213static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
214
215#ifdef CONFIG_NO_HZ_COMMON
216
217static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
218static DEFINE_MUTEX(timer_keys_mutex);
219
220static void timer_update_keys(struct work_struct *work);
221static DECLARE_WORK(timer_update_work, timer_update_keys);
222
223#ifdef CONFIG_SMP
224unsigned int sysctl_timer_migration = 1;
225
226DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
227
228static void timers_update_migration(void)
229{
230 if (sysctl_timer_migration && tick_nohz_active)
231 static_branch_enable(&timers_migration_enabled);
232 else
233 static_branch_disable(&timers_migration_enabled);
234}
235#else
236static inline void timers_update_migration(void) { }
237#endif /* !CONFIG_SMP */
238
239static void timer_update_keys(struct work_struct *work)
240{
241 mutex_lock(&timer_keys_mutex);
242 timers_update_migration();
243 static_branch_enable(&timers_nohz_active);
244 mutex_unlock(&timer_keys_mutex);
245}
246
247void timers_update_nohz(void)
248{
249 schedule_work(&timer_update_work);
250}
251
252int timer_migration_handler(struct ctl_table *table, int write,
253 void __user *buffer, size_t *lenp,
254 loff_t *ppos)
255{
256 int ret;
257
258 mutex_lock(&timer_keys_mutex);
259 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
260 if (!ret && write)
261 timers_update_migration();
262 mutex_unlock(&timer_keys_mutex);
263 return ret;
264}
265
266static inline bool is_timers_nohz_active(void)
267{
268 return static_branch_unlikely(&timers_nohz_active);
269}
270#else
271static inline bool is_timers_nohz_active(void) { return false; }
272#endif /* NO_HZ_COMMON */
273
274static unsigned long round_jiffies_common(unsigned long j, int cpu,
275 bool force_up)
276{
277 int rem;
278 unsigned long original = j;
279
280 /*
281 * We don't want all cpus firing their timers at once hitting the
282 * same lock or cachelines, so we skew each extra cpu with an extra
283 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
284 * already did this.
285 * The skew is done by adding 3*cpunr, then round, then subtract this
286 * extra offset again.
287 */
288 j += cpu * 3;
289
290 rem = j % HZ;
291
292 /*
293 * If the target jiffie is just after a whole second (which can happen
294 * due to delays of the timer irq, long irq off times etc etc) then
295 * we should round down to the whole second, not up. Use 1/4th second
296 * as cutoff for this rounding as an extreme upper bound for this.
297 * But never round down if @force_up is set.
298 */
299 if (rem < HZ/4 && !force_up) /* round down */
300 j = j - rem;
301 else /* round up */
302 j = j - rem + HZ;
303
304 /* now that we have rounded, subtract the extra skew again */
305 j -= cpu * 3;
306
307 /*
308 * Make sure j is still in the future. Otherwise return the
309 * unmodified value.
310 */
311 return time_is_after_jiffies(j) ? j : original;
312}
313
314/**
315 * __round_jiffies - function to round jiffies to a full second
316 * @j: the time in (absolute) jiffies that should be rounded
317 * @cpu: the processor number on which the timeout will happen
318 *
319 * __round_jiffies() rounds an absolute time in the future (in jiffies)
320 * up or down to (approximately) full seconds. This is useful for timers
321 * for which the exact time they fire does not matter too much, as long as
322 * they fire approximately every X seconds.
323 *
324 * By rounding these timers to whole seconds, all such timers will fire
325 * at the same time, rather than at various times spread out. The goal
326 * of this is to have the CPU wake up less, which saves power.
327 *
328 * The exact rounding is skewed for each processor to avoid all
329 * processors firing at the exact same time, which could lead
330 * to lock contention or spurious cache line bouncing.
331 *
332 * The return value is the rounded version of the @j parameter.
333 */
334unsigned long __round_jiffies(unsigned long j, int cpu)
335{
336 return round_jiffies_common(j, cpu, false);
337}
338EXPORT_SYMBOL_GPL(__round_jiffies);
339
340/**
341 * __round_jiffies_relative - function to round jiffies to a full second
342 * @j: the time in (relative) jiffies that should be rounded
343 * @cpu: the processor number on which the timeout will happen
344 *
345 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
346 * up or down to (approximately) full seconds. This is useful for timers
347 * for which the exact time they fire does not matter too much, as long as
348 * they fire approximately every X seconds.
349 *
350 * By rounding these timers to whole seconds, all such timers will fire
351 * at the same time, rather than at various times spread out. The goal
352 * of this is to have the CPU wake up less, which saves power.
353 *
354 * The exact rounding is skewed for each processor to avoid all
355 * processors firing at the exact same time, which could lead
356 * to lock contention or spurious cache line bouncing.
357 *
358 * The return value is the rounded version of the @j parameter.
359 */
360unsigned long __round_jiffies_relative(unsigned long j, int cpu)
361{
362 unsigned long j0 = jiffies;
363
364 /* Use j0 because jiffies might change while we run */
365 return round_jiffies_common(j + j0, cpu, false) - j0;
366}
367EXPORT_SYMBOL_GPL(__round_jiffies_relative);
368
369/**
370 * round_jiffies - function to round jiffies to a full second
371 * @j: the time in (absolute) jiffies that should be rounded
372 *
373 * round_jiffies() rounds an absolute time in the future (in jiffies)
374 * up or down to (approximately) full seconds. This is useful for timers
375 * for which the exact time they fire does not matter too much, as long as
376 * they fire approximately every X seconds.
377 *
378 * By rounding these timers to whole seconds, all such timers will fire
379 * at the same time, rather than at various times spread out. The goal
380 * of this is to have the CPU wake up less, which saves power.
381 *
382 * The return value is the rounded version of the @j parameter.
383 */
384unsigned long round_jiffies(unsigned long j)
385{
386 return round_jiffies_common(j, raw_smp_processor_id(), false);
387}
388EXPORT_SYMBOL_GPL(round_jiffies);
389
390/**
391 * round_jiffies_relative - function to round jiffies to a full second
392 * @j: the time in (relative) jiffies that should be rounded
393 *
394 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
395 * up or down to (approximately) full seconds. This is useful for timers
396 * for which the exact time they fire does not matter too much, as long as
397 * they fire approximately every X seconds.
398 *
399 * By rounding these timers to whole seconds, all such timers will fire
400 * at the same time, rather than at various times spread out. The goal
401 * of this is to have the CPU wake up less, which saves power.
402 *
403 * The return value is the rounded version of the @j parameter.
404 */
405unsigned long round_jiffies_relative(unsigned long j)
406{
407 return __round_jiffies_relative(j, raw_smp_processor_id());
408}
409EXPORT_SYMBOL_GPL(round_jiffies_relative);
410
411/**
412 * __round_jiffies_up - function to round jiffies up to a full second
413 * @j: the time in (absolute) jiffies that should be rounded
414 * @cpu: the processor number on which the timeout will happen
415 *
416 * This is the same as __round_jiffies() except that it will never
417 * round down. This is useful for timeouts for which the exact time
418 * of firing does not matter too much, as long as they don't fire too
419 * early.
420 */
421unsigned long __round_jiffies_up(unsigned long j, int cpu)
422{
423 return round_jiffies_common(j, cpu, true);
424}
425EXPORT_SYMBOL_GPL(__round_jiffies_up);
426
427/**
428 * __round_jiffies_up_relative - function to round jiffies up to a full second
429 * @j: the time in (relative) jiffies that should be rounded
430 * @cpu: the processor number on which the timeout will happen
431 *
432 * This is the same as __round_jiffies_relative() except that it will never
433 * round down. This is useful for timeouts for which the exact time
434 * of firing does not matter too much, as long as they don't fire too
435 * early.
436 */
437unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
438{
439 unsigned long j0 = jiffies;
440
441 /* Use j0 because jiffies might change while we run */
442 return round_jiffies_common(j + j0, cpu, true) - j0;
443}
444EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
445
446/**
447 * round_jiffies_up - function to round jiffies up to a full second
448 * @j: the time in (absolute) jiffies that should be rounded
449 *
450 * This is the same as round_jiffies() except that it will never
451 * round down. This is useful for timeouts for which the exact time
452 * of firing does not matter too much, as long as they don't fire too
453 * early.
454 */
455unsigned long round_jiffies_up(unsigned long j)
456{
457 return round_jiffies_common(j, raw_smp_processor_id(), true);
458}
459EXPORT_SYMBOL_GPL(round_jiffies_up);
460
461/**
462 * round_jiffies_up_relative - function to round jiffies up to a full second
463 * @j: the time in (relative) jiffies that should be rounded
464 *
465 * This is the same as round_jiffies_relative() except that it will never
466 * round down. This is useful for timeouts for which the exact time
467 * of firing does not matter too much, as long as they don't fire too
468 * early.
469 */
470unsigned long round_jiffies_up_relative(unsigned long j)
471{
472 return __round_jiffies_up_relative(j, raw_smp_processor_id());
473}
474EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
475
476
477static inline unsigned int timer_get_idx(struct timer_list *timer)
478{
479 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
480}
481
482static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
483{
484 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
485 idx << TIMER_ARRAYSHIFT;
486}
487
488/*
489 * Helper function to calculate the array index for a given expiry
490 * time.
491 */
492static inline unsigned calc_index(unsigned expires, unsigned lvl)
493{
494 expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
495 return LVL_OFFS(lvl) + (expires & LVL_MASK);
496}
497
498static int calc_wheel_index(unsigned long expires, unsigned long clk)
499{
500 unsigned long delta = expires - clk;
501 unsigned int idx;
502
503 if (delta < LVL_START(1)) {
504 idx = calc_index(expires, 0);
505 } else if (delta < LVL_START(2)) {
506 idx = calc_index(expires, 1);
507 } else if (delta < LVL_START(3)) {
508 idx = calc_index(expires, 2);
509 } else if (delta < LVL_START(4)) {
510 idx = calc_index(expires, 3);
511 } else if (delta < LVL_START(5)) {
512 idx = calc_index(expires, 4);
513 } else if (delta < LVL_START(6)) {
514 idx = calc_index(expires, 5);
515 } else if (delta < LVL_START(7)) {
516 idx = calc_index(expires, 6);
517 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
518 idx = calc_index(expires, 7);
519 } else if ((long) delta < 0) {
520 idx = clk & LVL_MASK;
521 } else {
522 /*
523 * Force expire obscene large timeouts to expire at the
524 * capacity limit of the wheel.
525 */
526 if (delta >= WHEEL_TIMEOUT_CUTOFF)
527 expires = clk + WHEEL_TIMEOUT_MAX;
528
529 idx = calc_index(expires, LVL_DEPTH - 1);
530 }
531 return idx;
532}
533
534/*
535 * Enqueue the timer into the hash bucket, mark it pending in
536 * the bitmap and store the index in the timer flags.
537 */
538static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
539 unsigned int idx)
540{
541 hlist_add_head(&timer->entry, base->vectors + idx);
542 __set_bit(idx, base->pending_map);
543 timer_set_idx(timer, idx);
544
545 trace_timer_start(timer, timer->expires, timer->flags);
546}
547
548static void
549__internal_add_timer(struct timer_base *base, struct timer_list *timer)
550{
551 unsigned int idx;
552
553 idx = calc_wheel_index(timer->expires, base->clk);
554 enqueue_timer(base, timer, idx);
555}
556
557static void
558trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
559{
560 if (!is_timers_nohz_active())
561 return;
562
563 /*
564 * TODO: This wants some optimizing similar to the code below, but we
565 * will do that when we switch from push to pull for deferrable timers.
566 */
567 if (timer->flags & TIMER_DEFERRABLE) {
568 if (tick_nohz_full_cpu(base->cpu))
569 wake_up_nohz_cpu(base->cpu);
570 return;
571 }
572
573 /*
574 * We might have to IPI the remote CPU if the base is idle and the
575 * timer is not deferrable. If the other CPU is on the way to idle
576 * then it can't set base->is_idle as we hold the base lock:
577 */
578 if (!base->is_idle)
579 return;
580
581 /* Check whether this is the new first expiring timer: */
582 if (time_after_eq(timer->expires, base->next_expiry))
583 return;
584
585 /*
586 * Set the next expiry time and kick the CPU so it can reevaluate the
587 * wheel:
588 */
589 if (time_before(timer->expires, base->clk)) {
590 /*
591 * Prevent from forward_timer_base() moving the base->clk
592 * backward
593 */
594 base->next_expiry = base->clk;
595 } else {
596 base->next_expiry = timer->expires;
597 }
598 wake_up_nohz_cpu(base->cpu);
599}
600
601static void
602internal_add_timer(struct timer_base *base, struct timer_list *timer)
603{
604 __internal_add_timer(base, timer);
605 trigger_dyntick_cpu(base, timer);
606}
607
608#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
609
610static struct debug_obj_descr timer_debug_descr;
611
612static void *timer_debug_hint(void *addr)
613{
614 return ((struct timer_list *) addr)->function;
615}
616
617static bool timer_is_static_object(void *addr)
618{
619 struct timer_list *timer = addr;
620
621 return (timer->entry.pprev == NULL &&
622 timer->entry.next == TIMER_ENTRY_STATIC);
623}
624
625/*
626 * fixup_init is called when:
627 * - an active object is initialized
628 */
629static bool timer_fixup_init(void *addr, enum debug_obj_state state)
630{
631 struct timer_list *timer = addr;
632
633 switch (state) {
634 case ODEBUG_STATE_ACTIVE:
635 del_timer_sync(timer);
636 debug_object_init(timer, &timer_debug_descr);
637 return true;
638 default:
639 return false;
640 }
641}
642
643/* Stub timer callback for improperly used timers. */
644static void stub_timer(struct timer_list *unused)
645{
646 WARN_ON(1);
647}
648
649/*
650 * fixup_activate is called when:
651 * - an active object is activated
652 * - an unknown non-static object is activated
653 */
654static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
655{
656 struct timer_list *timer = addr;
657
658 switch (state) {
659 case ODEBUG_STATE_NOTAVAILABLE:
660 timer_setup(timer, stub_timer, 0);
661 return true;
662
663 case ODEBUG_STATE_ACTIVE:
664 WARN_ON(1);
665 /* fall through */
666 default:
667 return false;
668 }
669}
670
671/*
672 * fixup_free is called when:
673 * - an active object is freed
674 */
675static bool timer_fixup_free(void *addr, enum debug_obj_state state)
676{
677 struct timer_list *timer = addr;
678
679 switch (state) {
680 case ODEBUG_STATE_ACTIVE:
681 del_timer_sync(timer);
682 debug_object_free(timer, &timer_debug_descr);
683 return true;
684 default:
685 return false;
686 }
687}
688
689/*
690 * fixup_assert_init is called when:
691 * - an untracked/uninit-ed object is found
692 */
693static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
694{
695 struct timer_list *timer = addr;
696
697 switch (state) {
698 case ODEBUG_STATE_NOTAVAILABLE:
699 timer_setup(timer, stub_timer, 0);
700 return true;
701 default:
702 return false;
703 }
704}
705
706static struct debug_obj_descr timer_debug_descr = {
707 .name = "timer_list",
708 .debug_hint = timer_debug_hint,
709 .is_static_object = timer_is_static_object,
710 .fixup_init = timer_fixup_init,
711 .fixup_activate = timer_fixup_activate,
712 .fixup_free = timer_fixup_free,
713 .fixup_assert_init = timer_fixup_assert_init,
714};
715
716static inline void debug_timer_init(struct timer_list *timer)
717{
718 debug_object_init(timer, &timer_debug_descr);
719}
720
721static inline void debug_timer_activate(struct timer_list *timer)
722{
723 debug_object_activate(timer, &timer_debug_descr);
724}
725
726static inline void debug_timer_deactivate(struct timer_list *timer)
727{
728 debug_object_deactivate(timer, &timer_debug_descr);
729}
730
731static inline void debug_timer_free(struct timer_list *timer)
732{
733 debug_object_free(timer, &timer_debug_descr);
734}
735
736static inline void debug_timer_assert_init(struct timer_list *timer)
737{
738 debug_object_assert_init(timer, &timer_debug_descr);
739}
740
741static void do_init_timer(struct timer_list *timer,
742 void (*func)(struct timer_list *),
743 unsigned int flags,
744 const char *name, struct lock_class_key *key);
745
746void init_timer_on_stack_key(struct timer_list *timer,
747 void (*func)(struct timer_list *),
748 unsigned int flags,
749 const char *name, struct lock_class_key *key)
750{
751 debug_object_init_on_stack(timer, &timer_debug_descr);
752 do_init_timer(timer, func, flags, name, key);
753}
754EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
755
756void destroy_timer_on_stack(struct timer_list *timer)
757{
758 debug_object_free(timer, &timer_debug_descr);
759}
760EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
761
762#else
763static inline void debug_timer_init(struct timer_list *timer) { }
764static inline void debug_timer_activate(struct timer_list *timer) { }
765static inline void debug_timer_deactivate(struct timer_list *timer) { }
766static inline void debug_timer_assert_init(struct timer_list *timer) { }
767#endif
768
769static inline void debug_init(struct timer_list *timer)
770{
771 debug_timer_init(timer);
772 trace_timer_init(timer);
773}
774
775static inline void debug_deactivate(struct timer_list *timer)
776{
777 debug_timer_deactivate(timer);
778 trace_timer_cancel(timer);
779}
780
781static inline void debug_assert_init(struct timer_list *timer)
782{
783 debug_timer_assert_init(timer);
784}
785
786static void do_init_timer(struct timer_list *timer,
787 void (*func)(struct timer_list *),
788 unsigned int flags,
789 const char *name, struct lock_class_key *key)
790{
791 timer->entry.pprev = NULL;
792 timer->function = func;
793 timer->flags = flags | raw_smp_processor_id();
794 lockdep_init_map(&timer->lockdep_map, name, key, 0);
795}
796
797/**
798 * init_timer_key - initialize a timer
799 * @timer: the timer to be initialized
800 * @func: timer callback function
801 * @flags: timer flags
802 * @name: name of the timer
803 * @key: lockdep class key of the fake lock used for tracking timer
804 * sync lock dependencies
805 *
806 * init_timer_key() must be done to a timer prior calling *any* of the
807 * other timer functions.
808 */
809void init_timer_key(struct timer_list *timer,
810 void (*func)(struct timer_list *), unsigned int flags,
811 const char *name, struct lock_class_key *key)
812{
813 debug_init(timer);
814 do_init_timer(timer, func, flags, name, key);
815}
816EXPORT_SYMBOL(init_timer_key);
817
818static inline void detach_timer(struct timer_list *timer, bool clear_pending)
819{
820 struct hlist_node *entry = &timer->entry;
821
822 debug_deactivate(timer);
823
824 __hlist_del(entry);
825 if (clear_pending)
826 entry->pprev = NULL;
827 entry->next = LIST_POISON2;
828}
829
830static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
831 bool clear_pending)
832{
833 unsigned idx = timer_get_idx(timer);
834
835 if (!timer_pending(timer))
836 return 0;
837
838 if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
839 __clear_bit(idx, base->pending_map);
840
841 detach_timer(timer, clear_pending);
842 return 1;
843}
844
845static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
846{
847 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
848
849 /*
850 * If the timer is deferrable and NO_HZ_COMMON is set then we need
851 * to use the deferrable base.
852 */
853 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
854 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
855 return base;
856}
857
858static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
859{
860 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
861
862 /*
863 * If the timer is deferrable and NO_HZ_COMMON is set then we need
864 * to use the deferrable base.
865 */
866 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
867 base = this_cpu_ptr(&timer_bases[BASE_DEF]);
868 return base;
869}
870
871static inline struct timer_base *get_timer_base(u32 tflags)
872{
873 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
874}
875
876static inline struct timer_base *
877get_target_base(struct timer_base *base, unsigned tflags)
878{
879#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
880 if (static_branch_likely(&timers_migration_enabled) &&
881 !(tflags & TIMER_PINNED))
882 return get_timer_cpu_base(tflags, get_nohz_timer_target());
883#endif
884 return get_timer_this_cpu_base(tflags);
885}
886
887static inline void forward_timer_base(struct timer_base *base)
888{
889#ifdef CONFIG_NO_HZ_COMMON
890 unsigned long jnow;
891
892 /*
893 * We only forward the base when we are idle or have just come out of
894 * idle (must_forward_clk logic), and have a delta between base clock
895 * and jiffies. In the common case, run_timers will take care of it.
896 */
897 if (likely(!base->must_forward_clk))
898 return;
899
900 jnow = READ_ONCE(jiffies);
901 base->must_forward_clk = base->is_idle;
902 if ((long)(jnow - base->clk) < 2)
903 return;
904
905 /*
906 * If the next expiry value is > jiffies, then we fast forward to
907 * jiffies otherwise we forward to the next expiry value.
908 */
909 if (time_after(base->next_expiry, jnow)) {
910 base->clk = jnow;
911 } else {
912 if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
913 return;
914 base->clk = base->next_expiry;
915 }
916#endif
917}
918
919
920/*
921 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
922 * that all timers which are tied to this base are locked, and the base itself
923 * is locked too.
924 *
925 * So __run_timers/migrate_timers can safely modify all timers which could
926 * be found in the base->vectors array.
927 *
928 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
929 * to wait until the migration is done.
930 */
931static struct timer_base *lock_timer_base(struct timer_list *timer,
932 unsigned long *flags)
933 __acquires(timer->base->lock)
934{
935 for (;;) {
936 struct timer_base *base;
937 u32 tf;
938
939 /*
940 * We need to use READ_ONCE() here, otherwise the compiler
941 * might re-read @tf between the check for TIMER_MIGRATING
942 * and spin_lock().
943 */
944 tf = READ_ONCE(timer->flags);
945
946 if (!(tf & TIMER_MIGRATING)) {
947 base = get_timer_base(tf);
948 raw_spin_lock_irqsave(&base->lock, *flags);
949 if (timer->flags == tf)
950 return base;
951 raw_spin_unlock_irqrestore(&base->lock, *flags);
952 }
953 cpu_relax();
954 }
955}
956
957#define MOD_TIMER_PENDING_ONLY 0x01
958#define MOD_TIMER_REDUCE 0x02
959
960static inline int
961__mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
962{
963 struct timer_base *base, *new_base;
964 unsigned int idx = UINT_MAX;
965 unsigned long clk = 0, flags;
966 int ret = 0;
967
968 BUG_ON(!timer->function);
969
970 /*
971 * This is a common optimization triggered by the networking code - if
972 * the timer is re-modified to have the same timeout or ends up in the
973 * same array bucket then just return:
974 */
975 if (timer_pending(timer)) {
976 /*
977 * The downside of this optimization is that it can result in
978 * larger granularity than you would get from adding a new
979 * timer with this expiry.
980 */
981 long diff = timer->expires - expires;
982
983 if (!diff)
984 return 1;
985 if (options & MOD_TIMER_REDUCE && diff <= 0)
986 return 1;
987
988 /*
989 * We lock timer base and calculate the bucket index right
990 * here. If the timer ends up in the same bucket, then we
991 * just update the expiry time and avoid the whole
992 * dequeue/enqueue dance.
993 */
994 base = lock_timer_base(timer, &flags);
995 forward_timer_base(base);
996
997 if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
998 time_before_eq(timer->expires, expires)) {
999 ret = 1;
1000 goto out_unlock;
1001 }
1002
1003 clk = base->clk;
1004 idx = calc_wheel_index(expires, clk);
1005
1006 /*
1007 * Retrieve and compare the array index of the pending
1008 * timer. If it matches set the expiry to the new value so a
1009 * subsequent call will exit in the expires check above.
1010 */
1011 if (idx == timer_get_idx(timer)) {
1012 if (!(options & MOD_TIMER_REDUCE))
1013 timer->expires = expires;
1014 else if (time_after(timer->expires, expires))
1015 timer->expires = expires;
1016 ret = 1;
1017 goto out_unlock;
1018 }
1019 } else {
1020 base = lock_timer_base(timer, &flags);
1021 forward_timer_base(base);
1022 }
1023
1024 ret = detach_if_pending(timer, base, false);
1025 if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1026 goto out_unlock;
1027
1028 new_base = get_target_base(base, timer->flags);
1029
1030 if (base != new_base) {
1031 /*
1032 * We are trying to schedule the timer on the new base.
1033 * However we can't change timer's base while it is running,
1034 * otherwise timer_delete_sync() can't detect that the timer's
1035 * handler yet has not finished. This also guarantees that the
1036 * timer is serialized wrt itself.
1037 */
1038 if (likely(base->running_timer != timer)) {
1039 /* See the comment in lock_timer_base() */
1040 timer->flags |= TIMER_MIGRATING;
1041
1042 raw_spin_unlock(&base->lock);
1043 base = new_base;
1044 raw_spin_lock(&base->lock);
1045 WRITE_ONCE(timer->flags,
1046 (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1047 forward_timer_base(base);
1048 }
1049 }
1050
1051 debug_timer_activate(timer);
1052
1053 timer->expires = expires;
1054 /*
1055 * If 'idx' was calculated above and the base time did not advance
1056 * between calculating 'idx' and possibly switching the base, only
1057 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1058 * we need to (re)calculate the wheel index via
1059 * internal_add_timer().
1060 */
1061 if (idx != UINT_MAX && clk == base->clk) {
1062 enqueue_timer(base, timer, idx);
1063 trigger_dyntick_cpu(base, timer);
1064 } else {
1065 internal_add_timer(base, timer);
1066 }
1067
1068out_unlock:
1069 raw_spin_unlock_irqrestore(&base->lock, flags);
1070
1071 return ret;
1072}
1073
1074/**
1075 * mod_timer_pending - Modify a pending timer's timeout
1076 * @timer: The pending timer to be modified
1077 * @expires: New absolute timeout in jiffies
1078 *
1079 * mod_timer_pending() is the same for pending timers as mod_timer(), but
1080 * will not activate inactive timers.
1081 *
1082 * Return:
1083 * * %0 - The timer was inactive and not modified
1084 * * %1 - The timer was active and requeued to expire at @expires
1085 */
1086int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1087{
1088 return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1089}
1090EXPORT_SYMBOL(mod_timer_pending);
1091
1092/**
1093 * mod_timer - Modify a timer's timeout
1094 * @timer: The timer to be modified
1095 * @expires: New absolute timeout in jiffies
1096 *
1097 * mod_timer(timer, expires) is equivalent to:
1098 *
1099 * del_timer(timer); timer->expires = expires; add_timer(timer);
1100 *
1101 * mod_timer() is more efficient than the above open coded sequence. In
1102 * case that the timer is inactive, the del_timer() part is a NOP. The
1103 * timer is in any case activated with the new expiry time @expires.
1104 *
1105 * Note that if there are multiple unserialized concurrent users of the
1106 * same timer, then mod_timer() is the only safe way to modify the timeout,
1107 * since add_timer() cannot modify an already running timer.
1108 *
1109 * Return:
1110 * * %0 - The timer was inactive and started
1111 * * %1 - The timer was active and requeued to expire at @expires or
1112 * the timer was active and not modified because @expires did
1113 * not change the effective expiry time
1114 */
1115int mod_timer(struct timer_list *timer, unsigned long expires)
1116{
1117 return __mod_timer(timer, expires, 0);
1118}
1119EXPORT_SYMBOL(mod_timer);
1120
1121/**
1122 * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1123 * @timer: The timer to be modified
1124 * @expires: New absolute timeout in jiffies
1125 *
1126 * timer_reduce() is very similar to mod_timer(), except that it will only
1127 * modify an enqueued timer if that would reduce the expiration time. If
1128 * @timer is not enqueued it starts the timer.
1129 *
1130 * Return:
1131 * * %0 - The timer was inactive and started
1132 * * %1 - The timer was active and requeued to expire at @expires or
1133 * the timer was active and not modified because @expires
1134 * did not change the effective expiry time such that the
1135 * timer would expire earlier than already scheduled
1136 */
1137int timer_reduce(struct timer_list *timer, unsigned long expires)
1138{
1139 return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1140}
1141EXPORT_SYMBOL(timer_reduce);
1142
1143/**
1144 * add_timer - Start a timer
1145 * @timer: The timer to be started
1146 *
1147 * Start @timer to expire at @timer->expires in the future. @timer->expires
1148 * is the absolute expiry time measured in 'jiffies'. When the timer expires
1149 * timer->function(timer) will be invoked from soft interrupt context.
1150 *
1151 * The @timer->expires and @timer->function fields must be set prior
1152 * to calling this function.
1153 *
1154 * If @timer->expires is already in the past @timer will be queued to
1155 * expire at the next timer tick.
1156 *
1157 * This can only operate on an inactive timer. Attempts to invoke this on
1158 * an active timer are rejected with a warning.
1159 */
1160void add_timer(struct timer_list *timer)
1161{
1162 BUG_ON(timer_pending(timer));
1163 mod_timer(timer, timer->expires);
1164}
1165EXPORT_SYMBOL(add_timer);
1166
1167/**
1168 * add_timer_on - Start a timer on a particular CPU
1169 * @timer: The timer to be started
1170 * @cpu: The CPU to start it on
1171 *
1172 * Same as add_timer() except that it starts the timer on the given CPU.
1173 *
1174 * See add_timer() for further details.
1175 */
1176void add_timer_on(struct timer_list *timer, int cpu)
1177{
1178 struct timer_base *new_base, *base;
1179 unsigned long flags;
1180
1181 BUG_ON(timer_pending(timer) || !timer->function);
1182
1183 new_base = get_timer_cpu_base(timer->flags, cpu);
1184
1185 /*
1186 * If @timer was on a different CPU, it should be migrated with the
1187 * old base locked to prevent other operations proceeding with the
1188 * wrong base locked. See lock_timer_base().
1189 */
1190 base = lock_timer_base(timer, &flags);
1191 if (base != new_base) {
1192 timer->flags |= TIMER_MIGRATING;
1193
1194 raw_spin_unlock(&base->lock);
1195 base = new_base;
1196 raw_spin_lock(&base->lock);
1197 WRITE_ONCE(timer->flags,
1198 (timer->flags & ~TIMER_BASEMASK) | cpu);
1199 }
1200 forward_timer_base(base);
1201
1202 debug_timer_activate(timer);
1203 internal_add_timer(base, timer);
1204 raw_spin_unlock_irqrestore(&base->lock, flags);
1205}
1206EXPORT_SYMBOL_GPL(add_timer_on);
1207
1208/**
1209 * del_timer - Deactivate a timer.
1210 * @timer: The timer to be deactivated
1211 *
1212 * The function only deactivates a pending timer, but contrary to
1213 * timer_delete_sync() it does not take into account whether the timer's
1214 * callback function is concurrently executed on a different CPU or not.
1215 * It neither prevents rearming of the timer. If @timer can be rearmed
1216 * concurrently then the return value of this function is meaningless.
1217 *
1218 * Return:
1219 * * %0 - The timer was not pending
1220 * * %1 - The timer was pending and deactivated
1221 */
1222int del_timer(struct timer_list *timer)
1223{
1224 struct timer_base *base;
1225 unsigned long flags;
1226 int ret = 0;
1227
1228 debug_assert_init(timer);
1229
1230 if (timer_pending(timer)) {
1231 base = lock_timer_base(timer, &flags);
1232 ret = detach_if_pending(timer, base, true);
1233 raw_spin_unlock_irqrestore(&base->lock, flags);
1234 }
1235
1236 return ret;
1237}
1238EXPORT_SYMBOL(del_timer);
1239
1240/**
1241 * try_to_del_timer_sync - Try to deactivate a timer
1242 * @timer: Timer to deactivate
1243 *
1244 * This function tries to deactivate a timer. On success the timer is not
1245 * queued and the timer callback function is not running on any CPU.
1246 *
1247 * This function does not guarantee that the timer cannot be rearmed right
1248 * after dropping the base lock. That needs to be prevented by the calling
1249 * code if necessary.
1250 *
1251 * Return:
1252 * * %0 - The timer was not pending
1253 * * %1 - The timer was pending and deactivated
1254 * * %-1 - The timer callback function is running on a different CPU
1255 */
1256int try_to_del_timer_sync(struct timer_list *timer)
1257{
1258 struct timer_base *base;
1259 unsigned long flags;
1260 int ret = -1;
1261
1262 debug_assert_init(timer);
1263
1264 base = lock_timer_base(timer, &flags);
1265
1266 if (base->running_timer != timer)
1267 ret = detach_if_pending(timer, base, true);
1268
1269 raw_spin_unlock_irqrestore(&base->lock, flags);
1270
1271 return ret;
1272}
1273EXPORT_SYMBOL(try_to_del_timer_sync);
1274
1275#ifdef CONFIG_PREEMPT_RT
1276static __init void timer_base_init_expiry_lock(struct timer_base *base)
1277{
1278 spin_lock_init(&base->expiry_lock);
1279}
1280
1281static inline void timer_base_lock_expiry(struct timer_base *base)
1282{
1283 spin_lock(&base->expiry_lock);
1284}
1285
1286static inline void timer_base_unlock_expiry(struct timer_base *base)
1287{
1288 spin_unlock(&base->expiry_lock);
1289}
1290
1291/*
1292 * The counterpart to del_timer_wait_running().
1293 *
1294 * If there is a waiter for base->expiry_lock, then it was waiting for the
1295 * timer callback to finish. Drop expiry_lock and reaquire it. That allows
1296 * the waiter to acquire the lock and make progress.
1297 */
1298static void timer_sync_wait_running(struct timer_base *base)
1299{
1300 if (atomic_read(&base->timer_waiters)) {
1301 raw_spin_unlock_irq(&base->lock);
1302 spin_unlock(&base->expiry_lock);
1303 spin_lock(&base->expiry_lock);
1304 raw_spin_lock_irq(&base->lock);
1305 }
1306}
1307
1308/*
1309 * This function is called on PREEMPT_RT kernels when the fast path
1310 * deletion of a timer failed because the timer callback function was
1311 * running.
1312 *
1313 * This prevents priority inversion, if the softirq thread on a remote CPU
1314 * got preempted, and it prevents a life lock when the task which tries to
1315 * delete a timer preempted the softirq thread running the timer callback
1316 * function.
1317 */
1318static void del_timer_wait_running(struct timer_list *timer)
1319{
1320 u32 tf;
1321
1322 tf = READ_ONCE(timer->flags);
1323 if (!(tf & TIMER_MIGRATING)) {
1324 struct timer_base *base = get_timer_base(tf);
1325
1326 /*
1327 * Mark the base as contended and grab the expiry lock,
1328 * which is held by the softirq across the timer
1329 * callback. Drop the lock immediately so the softirq can
1330 * expire the next timer. In theory the timer could already
1331 * be running again, but that's more than unlikely and just
1332 * causes another wait loop.
1333 */
1334 atomic_inc(&base->timer_waiters);
1335 spin_lock_bh(&base->expiry_lock);
1336 atomic_dec(&base->timer_waiters);
1337 spin_unlock_bh(&base->expiry_lock);
1338 }
1339}
1340#else
1341static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1342static inline void timer_base_lock_expiry(struct timer_base *base) { }
1343static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1344static inline void timer_sync_wait_running(struct timer_base *base) { }
1345static inline void del_timer_wait_running(struct timer_list *timer) { }
1346#endif
1347
1348/**
1349 * timer_delete_sync - Deactivate a timer and wait for the handler to finish.
1350 * @timer: The timer to be deactivated
1351 *
1352 * Synchronization rules: Callers must prevent restarting of the timer,
1353 * otherwise this function is meaningless. It must not be called from
1354 * interrupt contexts unless the timer is an irqsafe one. The caller must
1355 * not hold locks which would prevent completion of the timer's callback
1356 * function. The timer's handler must not call add_timer_on(). Upon exit
1357 * the timer is not queued and the handler is not running on any CPU.
1358 *
1359 * For !irqsafe timers, the caller must not hold locks that are held in
1360 * interrupt context. Even if the lock has nothing to do with the timer in
1361 * question. Here's why::
1362 *
1363 * CPU0 CPU1
1364 * ---- ----
1365 * <SOFTIRQ>
1366 * call_timer_fn();
1367 * base->running_timer = mytimer;
1368 * spin_lock_irq(somelock);
1369 * <IRQ>
1370 * spin_lock(somelock);
1371 * timer_delete_sync(mytimer);
1372 * while (base->running_timer == mytimer);
1373 *
1374 * Now timer_delete_sync() will never return and never release somelock.
1375 * The interrupt on the other CPU is waiting to grab somelock but it has
1376 * interrupted the softirq that CPU0 is waiting to finish.
1377 *
1378 * This function cannot guarantee that the timer is not rearmed again by
1379 * some concurrent or preempting code, right after it dropped the base
1380 * lock. If there is the possibility of a concurrent rearm then the return
1381 * value of the function is meaningless.
1382 *
1383 * Return:
1384 * * %0 - The timer was not pending
1385 * * %1 - The timer was pending and deactivated
1386 */
1387int timer_delete_sync(struct timer_list *timer)
1388{
1389 int ret;
1390
1391#ifdef CONFIG_LOCKDEP
1392 unsigned long flags;
1393
1394 /*
1395 * If lockdep gives a backtrace here, please reference
1396 * the synchronization rules above.
1397 */
1398 local_irq_save(flags);
1399 lock_map_acquire(&timer->lockdep_map);
1400 lock_map_release(&timer->lockdep_map);
1401 local_irq_restore(flags);
1402#endif
1403 /*
1404 * don't use it in hardirq context, because it
1405 * could lead to deadlock.
1406 */
1407 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1408
1409 do {
1410 ret = try_to_del_timer_sync(timer);
1411
1412 if (unlikely(ret < 0)) {
1413 del_timer_wait_running(timer);
1414 cpu_relax();
1415 }
1416 } while (ret < 0);
1417
1418 return ret;
1419}
1420EXPORT_SYMBOL(timer_delete_sync);
1421
1422static void call_timer_fn(struct timer_list *timer,
1423 void (*fn)(struct timer_list *),
1424 unsigned long baseclk)
1425{
1426 int count = preempt_count();
1427
1428#ifdef CONFIG_LOCKDEP
1429 /*
1430 * It is permissible to free the timer from inside the
1431 * function that is called from it, this we need to take into
1432 * account for lockdep too. To avoid bogus "held lock freed"
1433 * warnings as well as problems when looking into
1434 * timer->lockdep_map, make a copy and use that here.
1435 */
1436 struct lockdep_map lockdep_map;
1437
1438 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1439#endif
1440 /*
1441 * Couple the lock chain with the lock chain at
1442 * timer_delete_sync() by acquiring the lock_map around the fn()
1443 * call here and in timer_delete_sync().
1444 */
1445 lock_map_acquire(&lockdep_map);
1446
1447 trace_timer_expire_entry(timer, baseclk);
1448 fn(timer);
1449 trace_timer_expire_exit(timer);
1450
1451 lock_map_release(&lockdep_map);
1452
1453 if (count != preempt_count()) {
1454 WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1455 fn, count, preempt_count());
1456 /*
1457 * Restore the preempt count. That gives us a decent
1458 * chance to survive and extract information. If the
1459 * callback kept a lock held, bad luck, but not worse
1460 * than the BUG() we had.
1461 */
1462 preempt_count_set(count);
1463 }
1464}
1465
1466static void expire_timers(struct timer_base *base, struct hlist_head *head)
1467{
1468 /*
1469 * This value is required only for tracing. base->clk was
1470 * incremented directly before expire_timers was called. But expiry
1471 * is related to the old base->clk value.
1472 */
1473 unsigned long baseclk = base->clk - 1;
1474
1475 while (!hlist_empty(head)) {
1476 struct timer_list *timer;
1477 void (*fn)(struct timer_list *);
1478
1479 timer = hlist_entry(head->first, struct timer_list, entry);
1480
1481 base->running_timer = timer;
1482 detach_timer(timer, true);
1483
1484 fn = timer->function;
1485
1486 if (timer->flags & TIMER_IRQSAFE) {
1487 raw_spin_unlock(&base->lock);
1488 call_timer_fn(timer, fn, baseclk);
1489 raw_spin_lock(&base->lock);
1490 base->running_timer = NULL;
1491 } else {
1492 raw_spin_unlock_irq(&base->lock);
1493 call_timer_fn(timer, fn, baseclk);
1494 raw_spin_lock_irq(&base->lock);
1495 base->running_timer = NULL;
1496 timer_sync_wait_running(base);
1497 }
1498 }
1499}
1500
1501static int __collect_expired_timers(struct timer_base *base,
1502 struct hlist_head *heads)
1503{
1504 unsigned long clk = base->clk;
1505 struct hlist_head *vec;
1506 int i, levels = 0;
1507 unsigned int idx;
1508
1509 for (i = 0; i < LVL_DEPTH; i++) {
1510 idx = (clk & LVL_MASK) + i * LVL_SIZE;
1511
1512 if (__test_and_clear_bit(idx, base->pending_map)) {
1513 vec = base->vectors + idx;
1514 hlist_move_list(vec, heads++);
1515 levels++;
1516 }
1517 /* Is it time to look at the next level? */
1518 if (clk & LVL_CLK_MASK)
1519 break;
1520 /* Shift clock for the next level granularity */
1521 clk >>= LVL_CLK_SHIFT;
1522 }
1523 return levels;
1524}
1525
1526#ifdef CONFIG_NO_HZ_COMMON
1527/*
1528 * Find the next pending bucket of a level. Search from level start (@offset)
1529 * + @clk upwards and if nothing there, search from start of the level
1530 * (@offset) up to @offset + clk.
1531 */
1532static int next_pending_bucket(struct timer_base *base, unsigned offset,
1533 unsigned clk)
1534{
1535 unsigned pos, start = offset + clk;
1536 unsigned end = offset + LVL_SIZE;
1537
1538 pos = find_next_bit(base->pending_map, end, start);
1539 if (pos < end)
1540 return pos - start;
1541
1542 pos = find_next_bit(base->pending_map, start, offset);
1543 return pos < start ? pos + LVL_SIZE - start : -1;
1544}
1545
1546/*
1547 * Search the first expiring timer in the various clock levels. Caller must
1548 * hold base->lock.
1549 */
1550static unsigned long __next_timer_interrupt(struct timer_base *base)
1551{
1552 unsigned long clk, next, adj;
1553 unsigned lvl, offset = 0;
1554
1555 next = base->clk + NEXT_TIMER_MAX_DELTA;
1556 clk = base->clk;
1557 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1558 int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1559
1560 if (pos >= 0) {
1561 unsigned long tmp = clk + (unsigned long) pos;
1562
1563 tmp <<= LVL_SHIFT(lvl);
1564 if (time_before(tmp, next))
1565 next = tmp;
1566 }
1567 /*
1568 * Clock for the next level. If the current level clock lower
1569 * bits are zero, we look at the next level as is. If not we
1570 * need to advance it by one because that's going to be the
1571 * next expiring bucket in that level. base->clk is the next
1572 * expiring jiffie. So in case of:
1573 *
1574 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1575 * 0 0 0 0 0 0
1576 *
1577 * we have to look at all levels @index 0. With
1578 *
1579 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1580 * 0 0 0 0 0 2
1581 *
1582 * LVL0 has the next expiring bucket @index 2. The upper
1583 * levels have the next expiring bucket @index 1.
1584 *
1585 * In case that the propagation wraps the next level the same
1586 * rules apply:
1587 *
1588 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1589 * 0 0 0 0 F 2
1590 *
1591 * So after looking at LVL0 we get:
1592 *
1593 * LVL5 LVL4 LVL3 LVL2 LVL1
1594 * 0 0 0 1 0
1595 *
1596 * So no propagation from LVL1 to LVL2 because that happened
1597 * with the add already, but then we need to propagate further
1598 * from LVL2 to LVL3.
1599 *
1600 * So the simple check whether the lower bits of the current
1601 * level are 0 or not is sufficient for all cases.
1602 */
1603 adj = clk & LVL_CLK_MASK ? 1 : 0;
1604 clk >>= LVL_CLK_SHIFT;
1605 clk += adj;
1606 }
1607 return next;
1608}
1609
1610/*
1611 * Check, if the next hrtimer event is before the next timer wheel
1612 * event:
1613 */
1614static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1615{
1616 u64 nextevt = hrtimer_get_next_event();
1617
1618 /*
1619 * If high resolution timers are enabled
1620 * hrtimer_get_next_event() returns KTIME_MAX.
1621 */
1622 if (expires <= nextevt)
1623 return expires;
1624
1625 /*
1626 * If the next timer is already expired, return the tick base
1627 * time so the tick is fired immediately.
1628 */
1629 if (nextevt <= basem)
1630 return basem;
1631
1632 /*
1633 * Round up to the next jiffie. High resolution timers are
1634 * off, so the hrtimers are expired in the tick and we need to
1635 * make sure that this tick really expires the timer to avoid
1636 * a ping pong of the nohz stop code.
1637 *
1638 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1639 */
1640 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1641}
1642
1643/**
1644 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1645 * @basej: base time jiffies
1646 * @basem: base time clock monotonic
1647 *
1648 * Returns the tick aligned clock monotonic time of the next pending
1649 * timer or KTIME_MAX if no timer is pending.
1650 */
1651u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1652{
1653 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1654 u64 expires = KTIME_MAX;
1655 unsigned long nextevt;
1656 bool is_max_delta;
1657
1658 /*
1659 * Pretend that there is no timer pending if the cpu is offline.
1660 * Possible pending timers will be migrated later to an active cpu.
1661 */
1662 if (cpu_is_offline(smp_processor_id()))
1663 return expires;
1664
1665 raw_spin_lock(&base->lock);
1666 nextevt = __next_timer_interrupt(base);
1667 is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1668 base->next_expiry = nextevt;
1669 /*
1670 * We have a fresh next event. Check whether we can forward the
1671 * base. We can only do that when @basej is past base->clk
1672 * otherwise we might rewind base->clk.
1673 */
1674 if (time_after(basej, base->clk)) {
1675 if (time_after(nextevt, basej))
1676 base->clk = basej;
1677 else if (time_after(nextevt, base->clk))
1678 base->clk = nextevt;
1679 }
1680
1681 if (time_before_eq(nextevt, basej)) {
1682 expires = basem;
1683 base->is_idle = false;
1684 } else {
1685 if (!is_max_delta)
1686 expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1687 /*
1688 * If we expect to sleep more than a tick, mark the base idle.
1689 * Also the tick is stopped so any added timer must forward
1690 * the base clk itself to keep granularity small. This idle
1691 * logic is only maintained for the BASE_STD base, deferrable
1692 * timers may still see large granularity skew (by design).
1693 */
1694 if ((expires - basem) > TICK_NSEC) {
1695 base->must_forward_clk = true;
1696 base->is_idle = true;
1697 }
1698 }
1699 raw_spin_unlock(&base->lock);
1700
1701 return cmp_next_hrtimer_event(basem, expires);
1702}
1703
1704/**
1705 * timer_clear_idle - Clear the idle state of the timer base
1706 *
1707 * Called with interrupts disabled
1708 */
1709void timer_clear_idle(void)
1710{
1711 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1712
1713 /*
1714 * We do this unlocked. The worst outcome is a remote enqueue sending
1715 * a pointless IPI, but taking the lock would just make the window for
1716 * sending the IPI a few instructions smaller for the cost of taking
1717 * the lock in the exit from idle path.
1718 */
1719 base->is_idle = false;
1720}
1721
1722static int collect_expired_timers(struct timer_base *base,
1723 struct hlist_head *heads)
1724{
1725 unsigned long now = READ_ONCE(jiffies);
1726
1727 /*
1728 * NOHZ optimization. After a long idle sleep we need to forward the
1729 * base to current jiffies. Avoid a loop by searching the bitfield for
1730 * the next expiring timer.
1731 */
1732 if ((long)(now - base->clk) > 2) {
1733 unsigned long next = __next_timer_interrupt(base);
1734
1735 /*
1736 * If the next timer is ahead of time forward to current
1737 * jiffies, otherwise forward to the next expiry time:
1738 */
1739 if (time_after(next, now)) {
1740 /*
1741 * The call site will increment base->clk and then
1742 * terminate the expiry loop immediately.
1743 */
1744 base->clk = now;
1745 return 0;
1746 }
1747 base->clk = next;
1748 }
1749 return __collect_expired_timers(base, heads);
1750}
1751#else
1752static inline int collect_expired_timers(struct timer_base *base,
1753 struct hlist_head *heads)
1754{
1755 return __collect_expired_timers(base, heads);
1756}
1757#endif
1758
1759/*
1760 * Called from the timer interrupt handler to charge one tick to the current
1761 * process. user_tick is 1 if the tick is user time, 0 for system.
1762 */
1763void update_process_times(int user_tick)
1764{
1765 struct task_struct *p = current;
1766 struct pt_regs *regs;
1767 static pid_t pre_pid = 0;
1768 static u32 timer_cnt = 0;
1769
1770 /* exclude idle task */
1771 if (pre_pid == current->pid && pre_pid != 0x0) {
1772 timer_cnt++;
1773 } else {
1774 timer_cnt = 0;
1775 pre_pid = current->pid;
1776 }
1777
1778 if (unlikely(timer_cnt == (10 * HZ))){
1779 timer_cnt = 0;
1780 printk("suspected lockup task = %s, pid: %d\n", current->comm, current->pid);
1781#ifdef CONFIG_ARM
1782 regs = task_pt_regs(current);
1783 printk("pc = 0x%lx\n",regs->ARM_pc);
1784#endif
1785 }
1786
1787 /* Note: this timer irq context must be accounted for as well. */
1788 account_process_tick(p, user_tick);
1789 run_local_timers();
1790 rcu_sched_clock_irq(user_tick);
1791#ifdef CONFIG_IRQ_WORK
1792 if (in_irq())
1793 irq_work_tick();
1794#endif
1795 scheduler_tick();
1796 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1797 run_posix_cpu_timers();
1798}
1799
1800/**
1801 * __run_timers - run all expired timers (if any) on this CPU.
1802 * @base: the timer vector to be processed.
1803 */
1804static inline void __run_timers(struct timer_base *base)
1805{
1806 struct hlist_head heads[LVL_DEPTH];
1807 int levels;
1808
1809 if (!time_after_eq(jiffies, base->clk))
1810 return;
1811
1812 timer_base_lock_expiry(base);
1813 raw_spin_lock_irq(&base->lock);
1814
1815 /*
1816 * timer_base::must_forward_clk must be cleared before running
1817 * timers so that any timer functions that call mod_timer() will
1818 * not try to forward the base. Idle tracking / clock forwarding
1819 * logic is only used with BASE_STD timers.
1820 *
1821 * The must_forward_clk flag is cleared unconditionally also for
1822 * the deferrable base. The deferrable base is not affected by idle
1823 * tracking and never forwarded, so clearing the flag is a NOOP.
1824 *
1825 * The fact that the deferrable base is never forwarded can cause
1826 * large variations in granularity for deferrable timers, but they
1827 * can be deferred for long periods due to idle anyway.
1828 */
1829 base->must_forward_clk = false;
1830
1831 while (time_after_eq(jiffies, base->clk)) {
1832
1833 levels = collect_expired_timers(base, heads);
1834 base->clk++;
1835
1836 while (levels--)
1837 expire_timers(base, heads + levels);
1838 }
1839 raw_spin_unlock_irq(&base->lock);
1840 timer_base_unlock_expiry(base);
1841}
1842
1843/*
1844 * This function runs timers and the timer-tq in bottom half context.
1845 */
1846static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1847{
1848 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1849
1850 __run_timers(base);
1851 if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1852 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1853}
1854
1855/*
1856 * Called by the local, per-CPU timer interrupt on SMP.
1857 */
1858void run_local_timers(void)
1859{
1860 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1861
1862 hrtimer_run_queues();
1863 /* Raise the softirq only if required. */
1864 if (time_before(jiffies, base->clk)) {
1865 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
1866 return;
1867 /* CPU is awake, so check the deferrable base. */
1868 base++;
1869 if (time_before(jiffies, base->clk))
1870 return;
1871 }
1872 raise_softirq(TIMER_SOFTIRQ);
1873}
1874
1875/*
1876 * Since schedule_timeout()'s timer is defined on the stack, it must store
1877 * the target task on the stack as well.
1878 */
1879struct process_timer {
1880 struct timer_list timer;
1881 struct task_struct *task;
1882};
1883
1884static void process_timeout(struct timer_list *t)
1885{
1886 struct process_timer *timeout = from_timer(timeout, t, timer);
1887
1888 wake_up_process(timeout->task);
1889}
1890
1891/**
1892 * schedule_timeout - sleep until timeout
1893 * @timeout: timeout value in jiffies
1894 *
1895 * Make the current task sleep until @timeout jiffies have
1896 * elapsed. The routine will return immediately unless
1897 * the current task state has been set (see set_current_state()).
1898 *
1899 * You can set the task state as follows -
1900 *
1901 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1902 * pass before the routine returns unless the current task is explicitly
1903 * woken up, (e.g. by wake_up_process())".
1904 *
1905 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1906 * delivered to the current task or the current task is explicitly woken
1907 * up.
1908 *
1909 * The current task state is guaranteed to be TASK_RUNNING when this
1910 * routine returns.
1911 *
1912 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1913 * the CPU away without a bound on the timeout. In this case the return
1914 * value will be %MAX_SCHEDULE_TIMEOUT.
1915 *
1916 * Returns 0 when the timer has expired otherwise the remaining time in
1917 * jiffies will be returned. In all cases the return value is guaranteed
1918 * to be non-negative.
1919 */
1920signed long __sched schedule_timeout(signed long timeout)
1921{
1922 struct process_timer timer;
1923 unsigned long expire;
1924
1925 switch (timeout)
1926 {
1927 case MAX_SCHEDULE_TIMEOUT:
1928 /*
1929 * These two special cases are useful to be comfortable
1930 * in the caller. Nothing more. We could take
1931 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1932 * but I' d like to return a valid offset (>=0) to allow
1933 * the caller to do everything it want with the retval.
1934 */
1935 schedule();
1936 goto out;
1937 default:
1938 /*
1939 * Another bit of PARANOID. Note that the retval will be
1940 * 0 since no piece of kernel is supposed to do a check
1941 * for a negative retval of schedule_timeout() (since it
1942 * should never happens anyway). You just have the printk()
1943 * that will tell you if something is gone wrong and where.
1944 */
1945 if (timeout < 0) {
1946 printk(KERN_ERR "schedule_timeout: wrong timeout "
1947 "value %lx\n", timeout);
1948 dump_stack();
1949 current->state = TASK_RUNNING;
1950 goto out;
1951 }
1952 }
1953
1954 expire = timeout + jiffies;
1955
1956 timer.task = current;
1957 timer_setup_on_stack(&timer.timer, process_timeout, 0);
1958 __mod_timer(&timer.timer, expire, 0);
1959 schedule();
1960 del_singleshot_timer_sync(&timer.timer);
1961
1962 /* Remove the timer from the object tracker */
1963 destroy_timer_on_stack(&timer.timer);
1964
1965 timeout = expire - jiffies;
1966
1967 out:
1968 return timeout < 0 ? 0 : timeout;
1969}
1970EXPORT_SYMBOL(schedule_timeout);
1971
1972/*
1973 * We can use __set_current_state() here because schedule_timeout() calls
1974 * schedule() unconditionally.
1975 */
1976signed long __sched schedule_timeout_interruptible(signed long timeout)
1977{
1978 __set_current_state(TASK_INTERRUPTIBLE);
1979 return schedule_timeout(timeout);
1980}
1981EXPORT_SYMBOL(schedule_timeout_interruptible);
1982
1983signed long __sched schedule_timeout_killable(signed long timeout)
1984{
1985 __set_current_state(TASK_KILLABLE);
1986 return schedule_timeout(timeout);
1987}
1988EXPORT_SYMBOL(schedule_timeout_killable);
1989
1990signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1991{
1992 __set_current_state(TASK_UNINTERRUPTIBLE);
1993 return schedule_timeout(timeout);
1994}
1995EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1996
1997/*
1998 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1999 * to load average.
2000 */
2001signed long __sched schedule_timeout_idle(signed long timeout)
2002{
2003 __set_current_state(TASK_IDLE);
2004 return schedule_timeout(timeout);
2005}
2006EXPORT_SYMBOL(schedule_timeout_idle);
2007
2008#ifdef CONFIG_HOTPLUG_CPU
2009static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
2010{
2011 struct timer_list *timer;
2012 int cpu = new_base->cpu;
2013
2014 while (!hlist_empty(head)) {
2015 timer = hlist_entry(head->first, struct timer_list, entry);
2016 detach_timer(timer, false);
2017 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
2018 internal_add_timer(new_base, timer);
2019 }
2020}
2021
2022int timers_prepare_cpu(unsigned int cpu)
2023{
2024 struct timer_base *base;
2025 int b;
2026
2027 for (b = 0; b < NR_BASES; b++) {
2028 base = per_cpu_ptr(&timer_bases[b], cpu);
2029 base->clk = jiffies;
2030 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2031 base->is_idle = false;
2032 base->must_forward_clk = true;
2033 }
2034 return 0;
2035}
2036
2037int timers_dead_cpu(unsigned int cpu)
2038{
2039 struct timer_base *old_base;
2040 struct timer_base *new_base;
2041 int b, i;
2042
2043 BUG_ON(cpu_online(cpu));
2044
2045 for (b = 0; b < NR_BASES; b++) {
2046 old_base = per_cpu_ptr(&timer_bases[b], cpu);
2047 new_base = get_cpu_ptr(&timer_bases[b]);
2048 /*
2049 * The caller is globally serialized and nobody else
2050 * takes two locks at once, deadlock is not possible.
2051 */
2052 raw_spin_lock_irq(&new_base->lock);
2053 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2054
2055 /*
2056 * The current CPUs base clock might be stale. Update it
2057 * before moving the timers over.
2058 */
2059 forward_timer_base(new_base);
2060
2061 BUG_ON(old_base->running_timer);
2062
2063 for (i = 0; i < WHEEL_SIZE; i++)
2064 migrate_timer_list(new_base, old_base->vectors + i);
2065
2066 raw_spin_unlock(&old_base->lock);
2067 raw_spin_unlock_irq(&new_base->lock);
2068 put_cpu_ptr(&timer_bases);
2069 }
2070 return 0;
2071}
2072
2073#endif /* CONFIG_HOTPLUG_CPU */
2074
2075static void __init init_timer_cpu(int cpu)
2076{
2077 struct timer_base *base;
2078 int i;
2079
2080 for (i = 0; i < NR_BASES; i++) {
2081 base = per_cpu_ptr(&timer_bases[i], cpu);
2082 base->cpu = cpu;
2083 raw_spin_lock_init(&base->lock);
2084 base->clk = jiffies;
2085 timer_base_init_expiry_lock(base);
2086 }
2087}
2088
2089static void __init init_timer_cpus(void)
2090{
2091 int cpu;
2092
2093 for_each_possible_cpu(cpu)
2094 init_timer_cpu(cpu);
2095}
2096
2097void __init init_timers(void)
2098{
2099 init_timer_cpus();
2100 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2101}
2102
2103/**
2104 * msleep - sleep safely even with waitqueue interruptions
2105 * @msecs: Time in milliseconds to sleep for
2106 */
2107void msleep(unsigned int msecs)
2108{
2109 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2110
2111 while (timeout)
2112 timeout = schedule_timeout_uninterruptible(timeout);
2113}
2114
2115EXPORT_SYMBOL(msleep);
2116
2117/**
2118 * msleep_interruptible - sleep waiting for signals
2119 * @msecs: Time in milliseconds to sleep for
2120 */
2121unsigned long msleep_interruptible(unsigned int msecs)
2122{
2123 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2124
2125 while (timeout && !signal_pending(current))
2126 timeout = schedule_timeout_interruptible(timeout);
2127 return jiffies_to_msecs(timeout);
2128}
2129
2130EXPORT_SYMBOL(msleep_interruptible);
2131
2132/**
2133 * usleep_range - Sleep for an approximate time
2134 * @min: Minimum time in usecs to sleep
2135 * @max: Maximum time in usecs to sleep
2136 *
2137 * In non-atomic context where the exact wakeup time is flexible, use
2138 * usleep_range() instead of udelay(). The sleep improves responsiveness
2139 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2140 * power usage by allowing hrtimers to take advantage of an already-
2141 * scheduled interrupt instead of scheduling a new one just for this sleep.
2142 */
2143void __sched usleep_range(unsigned long min, unsigned long max)
2144{
2145 ktime_t exp = ktime_add_us(ktime_get(), min);
2146 u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2147
2148 for (;;) {
2149 __set_current_state(TASK_UNINTERRUPTIBLE);
2150 /* Do not return before the requested sleep time has elapsed */
2151 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2152 break;
2153 }
2154}
2155EXPORT_SYMBOL(usleep_range);