blob: 4e83cc3990f30c963c2a21badc932ccfdb92c153 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/sched/coredump.h>
11#include <linux/sched/numa_balancing.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
17#include <linux/shrinker.h>
18#include <linux/mm_inline.h>
19#include <linux/swapops.h>
20#include <linux/dax.h>
21#include <linux/khugepaged.h>
22#include <linux/freezer.h>
23#include <linux/pfn_t.h>
24#include <linux/mman.h>
25#include <linux/memremap.h>
26#include <linux/pagemap.h>
27#include <linux/debugfs.h>
28#include <linux/migrate.h>
29#include <linux/hashtable.h>
30#include <linux/userfaultfd_k.h>
31#include <linux/page_idle.h>
32#include <linux/shmem_fs.h>
33#include <linux/oom.h>
34#include <linux/numa.h>
35#include <linux/page_owner.h>
36
37#include <asm/tlb.h>
38#include <asm/pgalloc.h>
39#include "internal.h"
40
41/*
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
48 */
49unsigned long transparent_hugepage_flags __read_mostly =
50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52#endif
53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55#endif
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59
60static struct shrinker deferred_split_shrinker;
61
62static atomic_t huge_zero_refcount;
63struct page *huge_zero_page __read_mostly;
64unsigned long huge_zero_pfn __read_mostly = ~0UL;
65
66bool transparent_hugepage_enabled(struct vm_area_struct *vma)
67{
68 /* The addr is used to check if the vma size fits */
69 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
70
71 if (!transhuge_vma_suitable(vma, addr))
72 return false;
73 if (vma_is_anonymous(vma))
74 return __transparent_hugepage_enabled(vma);
75 if (vma_is_shmem(vma))
76 return shmem_huge_enabled(vma);
77
78 return false;
79}
80
81static struct page *get_huge_zero_page(void)
82{
83 struct page *zero_page;
84retry:
85 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
86 return READ_ONCE(huge_zero_page);
87
88 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
89 HPAGE_PMD_ORDER);
90 if (!zero_page) {
91 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
92 return NULL;
93 }
94 count_vm_event(THP_ZERO_PAGE_ALLOC);
95 preempt_disable();
96 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97 preempt_enable();
98 __free_pages(zero_page, compound_order(zero_page));
99 goto retry;
100 }
101 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
102
103 /* We take additional reference here. It will be put back by shrinker */
104 atomic_set(&huge_zero_refcount, 2);
105 preempt_enable();
106 return READ_ONCE(huge_zero_page);
107}
108
109static void put_huge_zero_page(void)
110{
111 /*
112 * Counter should never go to zero here. Only shrinker can put
113 * last reference.
114 */
115 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
116}
117
118struct page *mm_get_huge_zero_page(struct mm_struct *mm)
119{
120 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
121 return READ_ONCE(huge_zero_page);
122
123 if (!get_huge_zero_page())
124 return NULL;
125
126 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
127 put_huge_zero_page();
128
129 return READ_ONCE(huge_zero_page);
130}
131
132void mm_put_huge_zero_page(struct mm_struct *mm)
133{
134 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
135 put_huge_zero_page();
136}
137
138static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
139 struct shrink_control *sc)
140{
141 /* we can free zero page only if last reference remains */
142 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
143}
144
145static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
146 struct shrink_control *sc)
147{
148 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
149 struct page *zero_page = xchg(&huge_zero_page, NULL);
150 BUG_ON(zero_page == NULL);
151 WRITE_ONCE(huge_zero_pfn, ~0UL);
152 __free_pages(zero_page, compound_order(zero_page));
153 return HPAGE_PMD_NR;
154 }
155
156 return 0;
157}
158
159static struct shrinker huge_zero_page_shrinker = {
160 .count_objects = shrink_huge_zero_page_count,
161 .scan_objects = shrink_huge_zero_page_scan,
162 .seeks = DEFAULT_SEEKS,
163};
164
165#ifdef CONFIG_SYSFS
166static ssize_t enabled_show(struct kobject *kobj,
167 struct kobj_attribute *attr, char *buf)
168{
169 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
170 return sprintf(buf, "[always] madvise never\n");
171 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
172 return sprintf(buf, "always [madvise] never\n");
173 else
174 return sprintf(buf, "always madvise [never]\n");
175}
176
177static ssize_t enabled_store(struct kobject *kobj,
178 struct kobj_attribute *attr,
179 const char *buf, size_t count)
180{
181 ssize_t ret = count;
182
183 if (sysfs_streq(buf, "always")) {
184 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
185 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
186 } else if (sysfs_streq(buf, "madvise")) {
187 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
189 } else if (sysfs_streq(buf, "never")) {
190 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
191 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
192 } else
193 ret = -EINVAL;
194
195 if (ret > 0) {
196 int err = start_stop_khugepaged();
197 if (err)
198 ret = err;
199 }
200 return ret;
201}
202static struct kobj_attribute enabled_attr =
203 __ATTR(enabled, 0644, enabled_show, enabled_store);
204
205ssize_t single_hugepage_flag_show(struct kobject *kobj,
206 struct kobj_attribute *attr, char *buf,
207 enum transparent_hugepage_flag flag)
208{
209 return sprintf(buf, "%d\n",
210 !!test_bit(flag, &transparent_hugepage_flags));
211}
212
213ssize_t single_hugepage_flag_store(struct kobject *kobj,
214 struct kobj_attribute *attr,
215 const char *buf, size_t count,
216 enum transparent_hugepage_flag flag)
217{
218 unsigned long value;
219 int ret;
220
221 ret = kstrtoul(buf, 10, &value);
222 if (ret < 0)
223 return ret;
224 if (value > 1)
225 return -EINVAL;
226
227 if (value)
228 set_bit(flag, &transparent_hugepage_flags);
229 else
230 clear_bit(flag, &transparent_hugepage_flags);
231
232 return count;
233}
234
235static ssize_t defrag_show(struct kobject *kobj,
236 struct kobj_attribute *attr, char *buf)
237{
238 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
239 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
240 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
241 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
242 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
243 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
244 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
245 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
246 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
247}
248
249static ssize_t defrag_store(struct kobject *kobj,
250 struct kobj_attribute *attr,
251 const char *buf, size_t count)
252{
253 if (sysfs_streq(buf, "always")) {
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
255 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
257 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
258 } else if (sysfs_streq(buf, "defer+madvise")) {
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263 } else if (sysfs_streq(buf, "defer")) {
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
267 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
268 } else if (sysfs_streq(buf, "madvise")) {
269 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
270 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
272 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
273 } else if (sysfs_streq(buf, "never")) {
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
278 } else
279 return -EINVAL;
280
281 return count;
282}
283static struct kobj_attribute defrag_attr =
284 __ATTR(defrag, 0644, defrag_show, defrag_store);
285
286static ssize_t use_zero_page_show(struct kobject *kobj,
287 struct kobj_attribute *attr, char *buf)
288{
289 return single_hugepage_flag_show(kobj, attr, buf,
290 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
291}
292static ssize_t use_zero_page_store(struct kobject *kobj,
293 struct kobj_attribute *attr, const char *buf, size_t count)
294{
295 return single_hugepage_flag_store(kobj, attr, buf, count,
296 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
297}
298static struct kobj_attribute use_zero_page_attr =
299 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
300
301static ssize_t hpage_pmd_size_show(struct kobject *kobj,
302 struct kobj_attribute *attr, char *buf)
303{
304 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
305}
306static struct kobj_attribute hpage_pmd_size_attr =
307 __ATTR_RO(hpage_pmd_size);
308
309#ifdef CONFIG_DEBUG_VM
310static ssize_t debug_cow_show(struct kobject *kobj,
311 struct kobj_attribute *attr, char *buf)
312{
313 return single_hugepage_flag_show(kobj, attr, buf,
314 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
315}
316static ssize_t debug_cow_store(struct kobject *kobj,
317 struct kobj_attribute *attr,
318 const char *buf, size_t count)
319{
320 return single_hugepage_flag_store(kobj, attr, buf, count,
321 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
322}
323static struct kobj_attribute debug_cow_attr =
324 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
325#endif /* CONFIG_DEBUG_VM */
326
327static struct attribute *hugepage_attr[] = {
328 &enabled_attr.attr,
329 &defrag_attr.attr,
330 &use_zero_page_attr.attr,
331 &hpage_pmd_size_attr.attr,
332#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
333 &shmem_enabled_attr.attr,
334#endif
335#ifdef CONFIG_DEBUG_VM
336 &debug_cow_attr.attr,
337#endif
338 NULL,
339};
340
341static const struct attribute_group hugepage_attr_group = {
342 .attrs = hugepage_attr,
343};
344
345static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
346{
347 int err;
348
349 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
350 if (unlikely(!*hugepage_kobj)) {
351 pr_err("failed to create transparent hugepage kobject\n");
352 return -ENOMEM;
353 }
354
355 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
356 if (err) {
357 pr_err("failed to register transparent hugepage group\n");
358 goto delete_obj;
359 }
360
361 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
362 if (err) {
363 pr_err("failed to register transparent hugepage group\n");
364 goto remove_hp_group;
365 }
366
367 return 0;
368
369remove_hp_group:
370 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
371delete_obj:
372 kobject_put(*hugepage_kobj);
373 return err;
374}
375
376static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
377{
378 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
379 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
380 kobject_put(hugepage_kobj);
381}
382#else
383static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
384{
385 return 0;
386}
387
388static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
389{
390}
391#endif /* CONFIG_SYSFS */
392
393static int __init hugepage_init(void)
394{
395 int err;
396 struct kobject *hugepage_kobj;
397
398 if (!has_transparent_hugepage()) {
399 transparent_hugepage_flags = 0;
400 return -EINVAL;
401 }
402
403 /*
404 * hugepages can't be allocated by the buddy allocator
405 */
406 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
407 /*
408 * we use page->mapping and page->index in second tail page
409 * as list_head: assuming THP order >= 2
410 */
411 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
412
413 err = hugepage_init_sysfs(&hugepage_kobj);
414 if (err)
415 goto err_sysfs;
416
417 err = khugepaged_init();
418 if (err)
419 goto err_slab;
420
421 err = register_shrinker(&huge_zero_page_shrinker);
422 if (err)
423 goto err_hzp_shrinker;
424 err = register_shrinker(&deferred_split_shrinker);
425 if (err)
426 goto err_split_shrinker;
427
428 /*
429 * By default disable transparent hugepages on smaller systems,
430 * where the extra memory used could hurt more than TLB overhead
431 * is likely to save. The admin can still enable it through /sys.
432 */
433 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
434 transparent_hugepage_flags = 0;
435 return 0;
436 }
437
438 err = start_stop_khugepaged();
439 if (err)
440 goto err_khugepaged;
441
442 return 0;
443err_khugepaged:
444 unregister_shrinker(&deferred_split_shrinker);
445err_split_shrinker:
446 unregister_shrinker(&huge_zero_page_shrinker);
447err_hzp_shrinker:
448 khugepaged_destroy();
449err_slab:
450 hugepage_exit_sysfs(hugepage_kobj);
451err_sysfs:
452 return err;
453}
454subsys_initcall(hugepage_init);
455
456static int __init setup_transparent_hugepage(char *str)
457{
458 int ret = 0;
459 if (!str)
460 goto out;
461 if (!strcmp(str, "always")) {
462 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
463 &transparent_hugepage_flags);
464 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
465 &transparent_hugepage_flags);
466 ret = 1;
467 } else if (!strcmp(str, "madvise")) {
468 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
469 &transparent_hugepage_flags);
470 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
471 &transparent_hugepage_flags);
472 ret = 1;
473 } else if (!strcmp(str, "never")) {
474 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
475 &transparent_hugepage_flags);
476 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
477 &transparent_hugepage_flags);
478 ret = 1;
479 }
480out:
481 if (!ret)
482 pr_warn("transparent_hugepage= cannot parse, ignored\n");
483 return ret;
484}
485__setup("transparent_hugepage=", setup_transparent_hugepage);
486
487pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
488{
489 if (likely(vma->vm_flags & VM_WRITE))
490 pmd = pmd_mkwrite(pmd);
491 return pmd;
492}
493
494#ifdef CONFIG_MEMCG
495static inline struct deferred_split *get_deferred_split_queue(struct page *page)
496{
497 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
498 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
499
500 if (memcg)
501 return &memcg->deferred_split_queue;
502 else
503 return &pgdat->deferred_split_queue;
504}
505#else
506static inline struct deferred_split *get_deferred_split_queue(struct page *page)
507{
508 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
509
510 return &pgdat->deferred_split_queue;
511}
512#endif
513
514void prep_transhuge_page(struct page *page)
515{
516 /*
517 * we use page->mapping and page->indexlru in second tail page
518 * as list_head: assuming THP order >= 2
519 */
520
521 INIT_LIST_HEAD(page_deferred_list(page));
522 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
523}
524
525static unsigned long __thp_get_unmapped_area(struct file *filp,
526 unsigned long addr, unsigned long len,
527 loff_t off, unsigned long flags, unsigned long size)
528{
529 loff_t off_end = off + len;
530 loff_t off_align = round_up(off, size);
531 unsigned long len_pad, ret;
532
533 if (off_end <= off_align || (off_end - off_align) < size)
534 return 0;
535
536 len_pad = len + size;
537 if (len_pad < len || (off + len_pad) < off)
538 return 0;
539
540 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
541 off >> PAGE_SHIFT, flags);
542
543 /*
544 * The failure might be due to length padding. The caller will retry
545 * without the padding.
546 */
547 if (IS_ERR_VALUE(ret))
548 return 0;
549
550 /*
551 * Do not try to align to THP boundary if allocation at the address
552 * hint succeeds.
553 */
554 if (ret == addr)
555 return addr;
556
557 ret += (off - ret) & (size - 1);
558 return ret;
559}
560
561unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
562 unsigned long len, unsigned long pgoff, unsigned long flags)
563{
564 unsigned long ret;
565 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
566
567 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
568 goto out;
569
570 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
571 if (ret)
572 return ret;
573out:
574 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
575}
576EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
577
578static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
579 struct page *page, gfp_t gfp)
580{
581 struct vm_area_struct *vma = vmf->vma;
582 struct mem_cgroup *memcg;
583 pgtable_t pgtable;
584 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
585 vm_fault_t ret = 0;
586
587 VM_BUG_ON_PAGE(!PageCompound(page), page);
588
589 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
590 put_page(page);
591 count_vm_event(THP_FAULT_FALLBACK);
592 return VM_FAULT_FALLBACK;
593 }
594
595 pgtable = pte_alloc_one(vma->vm_mm);
596 if (unlikely(!pgtable)) {
597 ret = VM_FAULT_OOM;
598 goto release;
599 }
600
601 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
602 /*
603 * The memory barrier inside __SetPageUptodate makes sure that
604 * clear_huge_page writes become visible before the set_pmd_at()
605 * write.
606 */
607 __SetPageUptodate(page);
608
609 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
610 if (unlikely(!pmd_none(*vmf->pmd))) {
611 goto unlock_release;
612 } else {
613 pmd_t entry;
614
615 ret = check_stable_address_space(vma->vm_mm);
616 if (ret)
617 goto unlock_release;
618
619 /* Deliver the page fault to userland */
620 if (userfaultfd_missing(vma)) {
621 vm_fault_t ret2;
622
623 spin_unlock(vmf->ptl);
624 mem_cgroup_cancel_charge(page, memcg, true);
625 put_page(page);
626 pte_free(vma->vm_mm, pgtable);
627 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
628 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
629 return ret2;
630 }
631
632 entry = mk_huge_pmd(page, vma->vm_page_prot);
633 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
634 page_add_new_anon_rmap(page, vma, haddr, true);
635 mem_cgroup_commit_charge(page, memcg, false, true);
636 lru_cache_add_active_or_unevictable(page, vma);
637 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
638 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
639 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
640 mm_inc_nr_ptes(vma->vm_mm);
641 spin_unlock(vmf->ptl);
642 count_vm_event(THP_FAULT_ALLOC);
643 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
644 }
645
646 return 0;
647unlock_release:
648 spin_unlock(vmf->ptl);
649release:
650 if (pgtable)
651 pte_free(vma->vm_mm, pgtable);
652 mem_cgroup_cancel_charge(page, memcg, true);
653 put_page(page);
654 return ret;
655
656}
657
658/*
659 * always: directly stall for all thp allocations
660 * defer: wake kswapd and fail if not immediately available
661 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
662 * fail if not immediately available
663 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
664 * available
665 * never: never stall for any thp allocation
666 */
667static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
668{
669 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
670
671 /* Always do synchronous compaction */
672 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
673 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
674
675 /* Kick kcompactd and fail quickly */
676 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
677 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
678
679 /* Synchronous compaction if madvised, otherwise kick kcompactd */
680 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
681 return GFP_TRANSHUGE_LIGHT |
682 (vma_madvised ? __GFP_DIRECT_RECLAIM :
683 __GFP_KSWAPD_RECLAIM);
684
685 /* Only do synchronous compaction if madvised */
686 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
687 return GFP_TRANSHUGE_LIGHT |
688 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
689
690 return GFP_TRANSHUGE_LIGHT;
691}
692
693/* Caller must hold page table lock. */
694static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
695 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
696 struct page *zero_page)
697{
698 pmd_t entry;
699 if (!pmd_none(*pmd))
700 return false;
701 entry = mk_pmd(zero_page, vma->vm_page_prot);
702 entry = pmd_mkhuge(entry);
703 if (pgtable)
704 pgtable_trans_huge_deposit(mm, pmd, pgtable);
705 set_pmd_at(mm, haddr, pmd, entry);
706 mm_inc_nr_ptes(mm);
707 return true;
708}
709
710vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
711{
712 struct vm_area_struct *vma = vmf->vma;
713 gfp_t gfp;
714 struct page *page;
715 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
716
717 if (!transhuge_vma_suitable(vma, haddr))
718 return VM_FAULT_FALLBACK;
719 if (unlikely(anon_vma_prepare(vma)))
720 return VM_FAULT_OOM;
721 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
722 return VM_FAULT_OOM;
723 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
724 !mm_forbids_zeropage(vma->vm_mm) &&
725 transparent_hugepage_use_zero_page()) {
726 pgtable_t pgtable;
727 struct page *zero_page;
728 vm_fault_t ret;
729 pgtable = pte_alloc_one(vma->vm_mm);
730 if (unlikely(!pgtable))
731 return VM_FAULT_OOM;
732 zero_page = mm_get_huge_zero_page(vma->vm_mm);
733 if (unlikely(!zero_page)) {
734 pte_free(vma->vm_mm, pgtable);
735 count_vm_event(THP_FAULT_FALLBACK);
736 return VM_FAULT_FALLBACK;
737 }
738 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
739 ret = 0;
740 if (pmd_none(*vmf->pmd)) {
741 ret = check_stable_address_space(vma->vm_mm);
742 if (ret) {
743 spin_unlock(vmf->ptl);
744 pte_free(vma->vm_mm, pgtable);
745 } else if (userfaultfd_missing(vma)) {
746 spin_unlock(vmf->ptl);
747 pte_free(vma->vm_mm, pgtable);
748 ret = handle_userfault(vmf, VM_UFFD_MISSING);
749 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
750 } else {
751 set_huge_zero_page(pgtable, vma->vm_mm, vma,
752 haddr, vmf->pmd, zero_page);
753 spin_unlock(vmf->ptl);
754 }
755 } else {
756 spin_unlock(vmf->ptl);
757 pte_free(vma->vm_mm, pgtable);
758 }
759 return ret;
760 }
761 gfp = alloc_hugepage_direct_gfpmask(vma);
762 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
763 if (unlikely(!page)) {
764 count_vm_event(THP_FAULT_FALLBACK);
765 return VM_FAULT_FALLBACK;
766 }
767 prep_transhuge_page(page);
768 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
769}
770
771static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
772 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
773 pgtable_t pgtable)
774{
775 struct mm_struct *mm = vma->vm_mm;
776 pmd_t entry;
777 spinlock_t *ptl;
778
779 ptl = pmd_lock(mm, pmd);
780 if (!pmd_none(*pmd)) {
781 if (write) {
782 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
783 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
784 goto out_unlock;
785 }
786 entry = pmd_mkyoung(*pmd);
787 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
788 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
789 update_mmu_cache_pmd(vma, addr, pmd);
790 }
791
792 goto out_unlock;
793 }
794
795 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
796 if (pfn_t_devmap(pfn))
797 entry = pmd_mkdevmap(entry);
798 if (write) {
799 entry = pmd_mkyoung(pmd_mkdirty(entry));
800 entry = maybe_pmd_mkwrite(entry, vma);
801 }
802
803 if (pgtable) {
804 pgtable_trans_huge_deposit(mm, pmd, pgtable);
805 mm_inc_nr_ptes(mm);
806 pgtable = NULL;
807 }
808
809 set_pmd_at(mm, addr, pmd, entry);
810 update_mmu_cache_pmd(vma, addr, pmd);
811
812out_unlock:
813 spin_unlock(ptl);
814 if (pgtable)
815 pte_free(mm, pgtable);
816}
817
818vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
819{
820 unsigned long addr = vmf->address & PMD_MASK;
821 struct vm_area_struct *vma = vmf->vma;
822 pgprot_t pgprot = vma->vm_page_prot;
823 pgtable_t pgtable = NULL;
824
825 /*
826 * If we had pmd_special, we could avoid all these restrictions,
827 * but we need to be consistent with PTEs and architectures that
828 * can't support a 'special' bit.
829 */
830 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
831 !pfn_t_devmap(pfn));
832 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
833 (VM_PFNMAP|VM_MIXEDMAP));
834 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
835
836 if (addr < vma->vm_start || addr >= vma->vm_end)
837 return VM_FAULT_SIGBUS;
838
839 if (arch_needs_pgtable_deposit()) {
840 pgtable = pte_alloc_one(vma->vm_mm);
841 if (!pgtable)
842 return VM_FAULT_OOM;
843 }
844
845 track_pfn_insert(vma, &pgprot, pfn);
846
847 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
848 return VM_FAULT_NOPAGE;
849}
850EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
851
852#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
853static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
854{
855 if (likely(vma->vm_flags & VM_WRITE))
856 pud = pud_mkwrite(pud);
857 return pud;
858}
859
860static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
861 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
862{
863 struct mm_struct *mm = vma->vm_mm;
864 pud_t entry;
865 spinlock_t *ptl;
866
867 ptl = pud_lock(mm, pud);
868 if (!pud_none(*pud)) {
869 if (write) {
870 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
871 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
872 goto out_unlock;
873 }
874 entry = pud_mkyoung(*pud);
875 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
876 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
877 update_mmu_cache_pud(vma, addr, pud);
878 }
879 goto out_unlock;
880 }
881
882 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
883 if (pfn_t_devmap(pfn))
884 entry = pud_mkdevmap(entry);
885 if (write) {
886 entry = pud_mkyoung(pud_mkdirty(entry));
887 entry = maybe_pud_mkwrite(entry, vma);
888 }
889 set_pud_at(mm, addr, pud, entry);
890 update_mmu_cache_pud(vma, addr, pud);
891
892out_unlock:
893 spin_unlock(ptl);
894}
895
896vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
897{
898 unsigned long addr = vmf->address & PUD_MASK;
899 struct vm_area_struct *vma = vmf->vma;
900 pgprot_t pgprot = vma->vm_page_prot;
901
902 /*
903 * If we had pud_special, we could avoid all these restrictions,
904 * but we need to be consistent with PTEs and architectures that
905 * can't support a 'special' bit.
906 */
907 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
908 !pfn_t_devmap(pfn));
909 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
910 (VM_PFNMAP|VM_MIXEDMAP));
911 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
912
913 if (addr < vma->vm_start || addr >= vma->vm_end)
914 return VM_FAULT_SIGBUS;
915
916 track_pfn_insert(vma, &pgprot, pfn);
917
918 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
919 return VM_FAULT_NOPAGE;
920}
921EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
922#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
923
924static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
925 pmd_t *pmd, int flags)
926{
927 pmd_t _pmd;
928
929 _pmd = pmd_mkyoung(*pmd);
930 if (flags & FOLL_WRITE)
931 _pmd = pmd_mkdirty(_pmd);
932 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
933 pmd, _pmd, flags & FOLL_WRITE))
934 update_mmu_cache_pmd(vma, addr, pmd);
935}
936
937struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
938 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
939{
940 unsigned long pfn = pmd_pfn(*pmd);
941 struct mm_struct *mm = vma->vm_mm;
942 struct page *page;
943
944 assert_spin_locked(pmd_lockptr(mm, pmd));
945
946 /*
947 * When we COW a devmap PMD entry, we split it into PTEs, so we should
948 * not be in this function with `flags & FOLL_COW` set.
949 */
950 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
951
952 if (flags & FOLL_WRITE && !pmd_write(*pmd))
953 return NULL;
954
955 if (pmd_present(*pmd) && pmd_devmap(*pmd))
956 /* pass */;
957 else
958 return NULL;
959
960 if (flags & FOLL_TOUCH)
961 touch_pmd(vma, addr, pmd, flags);
962
963 /*
964 * device mapped pages can only be returned if the
965 * caller will manage the page reference count.
966 */
967 if (!(flags & FOLL_GET))
968 return ERR_PTR(-EEXIST);
969
970 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
971 *pgmap = get_dev_pagemap(pfn, *pgmap);
972 if (!*pgmap)
973 return ERR_PTR(-EFAULT);
974 page = pfn_to_page(pfn);
975 get_page(page);
976
977 return page;
978}
979
980int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
981 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
982 struct vm_area_struct *vma)
983{
984 spinlock_t *dst_ptl, *src_ptl;
985 struct page *src_page;
986 pmd_t pmd;
987 pgtable_t pgtable = NULL;
988 int ret = -ENOMEM;
989
990 /* Skip if can be re-fill on fault */
991 if (!vma_is_anonymous(vma))
992 return 0;
993
994 pgtable = pte_alloc_one(dst_mm);
995 if (unlikely(!pgtable))
996 goto out;
997
998 dst_ptl = pmd_lock(dst_mm, dst_pmd);
999 src_ptl = pmd_lockptr(src_mm, src_pmd);
1000 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1001
1002 ret = -EAGAIN;
1003 pmd = *src_pmd;
1004
1005#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1006 if (unlikely(is_swap_pmd(pmd))) {
1007 swp_entry_t entry = pmd_to_swp_entry(pmd);
1008
1009 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1010 if (is_write_migration_entry(entry)) {
1011 make_migration_entry_read(&entry);
1012 pmd = swp_entry_to_pmd(entry);
1013 if (pmd_swp_soft_dirty(*src_pmd))
1014 pmd = pmd_swp_mksoft_dirty(pmd);
1015 set_pmd_at(src_mm, addr, src_pmd, pmd);
1016 }
1017 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1018 mm_inc_nr_ptes(dst_mm);
1019 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1020 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1021 ret = 0;
1022 goto out_unlock;
1023 }
1024#endif
1025
1026 if (unlikely(!pmd_trans_huge(pmd))) {
1027 pte_free(dst_mm, pgtable);
1028 goto out_unlock;
1029 }
1030 /*
1031 * When page table lock is held, the huge zero pmd should not be
1032 * under splitting since we don't split the page itself, only pmd to
1033 * a page table.
1034 */
1035 if (is_huge_zero_pmd(pmd)) {
1036 struct page *zero_page;
1037 /*
1038 * get_huge_zero_page() will never allocate a new page here,
1039 * since we already have a zero page to copy. It just takes a
1040 * reference.
1041 */
1042 zero_page = mm_get_huge_zero_page(dst_mm);
1043 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1044 zero_page);
1045 ret = 0;
1046 goto out_unlock;
1047 }
1048
1049 src_page = pmd_page(pmd);
1050 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1051 get_page(src_page);
1052 page_dup_rmap(src_page, true);
1053 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1054 mm_inc_nr_ptes(dst_mm);
1055 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1056
1057 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1058 pmd = pmd_mkold(pmd_wrprotect(pmd));
1059 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1060
1061 ret = 0;
1062out_unlock:
1063 spin_unlock(src_ptl);
1064 spin_unlock(dst_ptl);
1065out:
1066 return ret;
1067}
1068
1069#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1070static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1071 pud_t *pud, int flags)
1072{
1073 pud_t _pud;
1074
1075 _pud = pud_mkyoung(*pud);
1076 if (flags & FOLL_WRITE)
1077 _pud = pud_mkdirty(_pud);
1078 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1079 pud, _pud, flags & FOLL_WRITE))
1080 update_mmu_cache_pud(vma, addr, pud);
1081}
1082
1083struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1084 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1085{
1086 unsigned long pfn = pud_pfn(*pud);
1087 struct mm_struct *mm = vma->vm_mm;
1088 struct page *page;
1089
1090 assert_spin_locked(pud_lockptr(mm, pud));
1091
1092 if (flags & FOLL_WRITE && !pud_write(*pud))
1093 return NULL;
1094
1095 if (pud_present(*pud) && pud_devmap(*pud))
1096 /* pass */;
1097 else
1098 return NULL;
1099
1100 if (flags & FOLL_TOUCH)
1101 touch_pud(vma, addr, pud, flags);
1102
1103 /*
1104 * device mapped pages can only be returned if the
1105 * caller will manage the page reference count.
1106 */
1107 if (!(flags & FOLL_GET))
1108 return ERR_PTR(-EEXIST);
1109
1110 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1111 *pgmap = get_dev_pagemap(pfn, *pgmap);
1112 if (!*pgmap)
1113 return ERR_PTR(-EFAULT);
1114 page = pfn_to_page(pfn);
1115 get_page(page);
1116
1117 return page;
1118}
1119
1120int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1121 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1122 struct vm_area_struct *vma)
1123{
1124 spinlock_t *dst_ptl, *src_ptl;
1125 pud_t pud;
1126 int ret;
1127
1128 dst_ptl = pud_lock(dst_mm, dst_pud);
1129 src_ptl = pud_lockptr(src_mm, src_pud);
1130 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1131
1132 ret = -EAGAIN;
1133 pud = *src_pud;
1134 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1135 goto out_unlock;
1136
1137 /*
1138 * When page table lock is held, the huge zero pud should not be
1139 * under splitting since we don't split the page itself, only pud to
1140 * a page table.
1141 */
1142 if (is_huge_zero_pud(pud)) {
1143 /* No huge zero pud yet */
1144 }
1145
1146 pudp_set_wrprotect(src_mm, addr, src_pud);
1147 pud = pud_mkold(pud_wrprotect(pud));
1148 set_pud_at(dst_mm, addr, dst_pud, pud);
1149
1150 ret = 0;
1151out_unlock:
1152 spin_unlock(src_ptl);
1153 spin_unlock(dst_ptl);
1154 return ret;
1155}
1156
1157void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1158{
1159 pud_t entry;
1160 unsigned long haddr;
1161 bool write = vmf->flags & FAULT_FLAG_WRITE;
1162
1163 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1164 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1165 goto unlock;
1166
1167 entry = pud_mkyoung(orig_pud);
1168 if (write)
1169 entry = pud_mkdirty(entry);
1170 haddr = vmf->address & HPAGE_PUD_MASK;
1171 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1172 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1173
1174unlock:
1175 spin_unlock(vmf->ptl);
1176}
1177#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1178
1179void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1180{
1181 pmd_t entry;
1182 unsigned long haddr;
1183 bool write = vmf->flags & FAULT_FLAG_WRITE;
1184
1185 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1186 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1187 goto unlock;
1188
1189 entry = pmd_mkyoung(orig_pmd);
1190 if (write)
1191 entry = pmd_mkdirty(entry);
1192 haddr = vmf->address & HPAGE_PMD_MASK;
1193 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1194 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1195
1196unlock:
1197 spin_unlock(vmf->ptl);
1198}
1199
1200static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1201 pmd_t orig_pmd, struct page *page)
1202{
1203 struct vm_area_struct *vma = vmf->vma;
1204 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1205 struct mem_cgroup *memcg;
1206 pgtable_t pgtable;
1207 pmd_t _pmd;
1208 int i;
1209 vm_fault_t ret = 0;
1210 struct page **pages;
1211 struct mmu_notifier_range range;
1212
1213 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1214 GFP_KERNEL);
1215 if (unlikely(!pages)) {
1216 ret |= VM_FAULT_OOM;
1217 goto out;
1218 }
1219
1220 for (i = 0; i < HPAGE_PMD_NR; i++) {
1221 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1222 vmf->address, page_to_nid(page));
1223 if (unlikely(!pages[i] ||
1224 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1225 GFP_KERNEL, &memcg, false))) {
1226 if (pages[i])
1227 put_page(pages[i]);
1228 while (--i >= 0) {
1229 memcg = (void *)page_private(pages[i]);
1230 set_page_private(pages[i], 0);
1231 mem_cgroup_cancel_charge(pages[i], memcg,
1232 false);
1233 put_page(pages[i]);
1234 }
1235 kfree(pages);
1236 ret |= VM_FAULT_OOM;
1237 goto out;
1238 }
1239 set_page_private(pages[i], (unsigned long)memcg);
1240 }
1241
1242 for (i = 0; i < HPAGE_PMD_NR; i++) {
1243 copy_user_highpage(pages[i], page + i,
1244 haddr + PAGE_SIZE * i, vma);
1245 __SetPageUptodate(pages[i]);
1246 cond_resched();
1247 }
1248
1249 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1250 haddr, haddr + HPAGE_PMD_SIZE);
1251 mmu_notifier_invalidate_range_start(&range);
1252
1253 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1254 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1255 goto out_free_pages;
1256 VM_BUG_ON_PAGE(!PageHead(page), page);
1257
1258 /*
1259 * Leave pmd empty until pte is filled note we must notify here as
1260 * concurrent CPU thread might write to new page before the call to
1261 * mmu_notifier_invalidate_range_end() happens which can lead to a
1262 * device seeing memory write in different order than CPU.
1263 *
1264 * See Documentation/vm/mmu_notifier.rst
1265 */
1266 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1267
1268 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1269 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1270
1271 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1272 pte_t entry;
1273 entry = mk_pte(pages[i], vma->vm_page_prot);
1274 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1275 memcg = (void *)page_private(pages[i]);
1276 set_page_private(pages[i], 0);
1277 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1278 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1279 lru_cache_add_active_or_unevictable(pages[i], vma);
1280 vmf->pte = pte_offset_map(&_pmd, haddr);
1281 VM_BUG_ON(!pte_none(*vmf->pte));
1282 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1283 pte_unmap(vmf->pte);
1284 }
1285 kfree(pages);
1286
1287 smp_wmb(); /* make pte visible before pmd */
1288 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1289 page_remove_rmap(page, true);
1290 spin_unlock(vmf->ptl);
1291
1292 /*
1293 * No need to double call mmu_notifier->invalidate_range() callback as
1294 * the above pmdp_huge_clear_flush_notify() did already call it.
1295 */
1296 mmu_notifier_invalidate_range_only_end(&range);
1297
1298 ret |= VM_FAULT_WRITE;
1299 put_page(page);
1300
1301out:
1302 return ret;
1303
1304out_free_pages:
1305 spin_unlock(vmf->ptl);
1306 mmu_notifier_invalidate_range_end(&range);
1307 for (i = 0; i < HPAGE_PMD_NR; i++) {
1308 memcg = (void *)page_private(pages[i]);
1309 set_page_private(pages[i], 0);
1310 mem_cgroup_cancel_charge(pages[i], memcg, false);
1311 put_page(pages[i]);
1312 }
1313 kfree(pages);
1314 goto out;
1315}
1316
1317vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1318{
1319 struct vm_area_struct *vma = vmf->vma;
1320 struct page *page = NULL, *new_page;
1321 struct mem_cgroup *memcg;
1322 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1323 struct mmu_notifier_range range;
1324 gfp_t huge_gfp; /* for allocation and charge */
1325 vm_fault_t ret = 0;
1326
1327 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1328 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1329 if (is_huge_zero_pmd(orig_pmd))
1330 goto alloc;
1331 spin_lock(vmf->ptl);
1332 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1333 goto out_unlock;
1334
1335 page = pmd_page(orig_pmd);
1336 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1337 /*
1338 * We can only reuse the page if nobody else maps the huge page or it's
1339 * part.
1340 */
1341 if (!trylock_page(page)) {
1342 get_page(page);
1343 spin_unlock(vmf->ptl);
1344 lock_page(page);
1345 spin_lock(vmf->ptl);
1346 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1347 unlock_page(page);
1348 put_page(page);
1349 goto out_unlock;
1350 }
1351 put_page(page);
1352 }
1353 if (reuse_swap_page(page, NULL)) {
1354 pmd_t entry;
1355 entry = pmd_mkyoung(orig_pmd);
1356 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1357 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1358 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1359 ret |= VM_FAULT_WRITE;
1360 unlock_page(page);
1361 goto out_unlock;
1362 }
1363 unlock_page(page);
1364 get_page(page);
1365 spin_unlock(vmf->ptl);
1366alloc:
1367 if (__transparent_hugepage_enabled(vma) &&
1368 !transparent_hugepage_debug_cow()) {
1369 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1370 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1371 } else
1372 new_page = NULL;
1373
1374 if (likely(new_page)) {
1375 prep_transhuge_page(new_page);
1376 } else {
1377 if (!page) {
1378 split_huge_pmd(vma, vmf->pmd, vmf->address);
1379 ret |= VM_FAULT_FALLBACK;
1380 } else {
1381 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1382 if (ret & VM_FAULT_OOM) {
1383 split_huge_pmd(vma, vmf->pmd, vmf->address);
1384 ret |= VM_FAULT_FALLBACK;
1385 }
1386 put_page(page);
1387 }
1388 count_vm_event(THP_FAULT_FALLBACK);
1389 goto out;
1390 }
1391
1392 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1393 huge_gfp, &memcg, true))) {
1394 put_page(new_page);
1395 split_huge_pmd(vma, vmf->pmd, vmf->address);
1396 if (page)
1397 put_page(page);
1398 ret |= VM_FAULT_FALLBACK;
1399 count_vm_event(THP_FAULT_FALLBACK);
1400 goto out;
1401 }
1402
1403 count_vm_event(THP_FAULT_ALLOC);
1404 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1405
1406 if (!page)
1407 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1408 else
1409 copy_user_huge_page(new_page, page, vmf->address,
1410 vma, HPAGE_PMD_NR);
1411 __SetPageUptodate(new_page);
1412
1413 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1414 haddr, haddr + HPAGE_PMD_SIZE);
1415 mmu_notifier_invalidate_range_start(&range);
1416
1417 spin_lock(vmf->ptl);
1418 if (page)
1419 put_page(page);
1420 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1421 spin_unlock(vmf->ptl);
1422 mem_cgroup_cancel_charge(new_page, memcg, true);
1423 put_page(new_page);
1424 goto out_mn;
1425 } else {
1426 pmd_t entry;
1427 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1428 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1429 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1430 page_add_new_anon_rmap(new_page, vma, haddr, true);
1431 mem_cgroup_commit_charge(new_page, memcg, false, true);
1432 lru_cache_add_active_or_unevictable(new_page, vma);
1433 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1434 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1435 if (!page) {
1436 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1437 } else {
1438 VM_BUG_ON_PAGE(!PageHead(page), page);
1439 page_remove_rmap(page, true);
1440 put_page(page);
1441 }
1442 ret |= VM_FAULT_WRITE;
1443 }
1444 spin_unlock(vmf->ptl);
1445out_mn:
1446 /*
1447 * No need to double call mmu_notifier->invalidate_range() callback as
1448 * the above pmdp_huge_clear_flush_notify() did already call it.
1449 */
1450 mmu_notifier_invalidate_range_only_end(&range);
1451out:
1452 return ret;
1453out_unlock:
1454 spin_unlock(vmf->ptl);
1455 return ret;
1456}
1457
1458/*
1459 * FOLL_FORCE can write to even unwritable pmd's, but only
1460 * after we've gone through a COW cycle and they are dirty.
1461 */
1462static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1463{
1464 return pmd_write(pmd) ||
1465 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1466}
1467
1468struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1469 unsigned long addr,
1470 pmd_t *pmd,
1471 unsigned int flags)
1472{
1473 struct mm_struct *mm = vma->vm_mm;
1474 struct page *page = NULL;
1475
1476 assert_spin_locked(pmd_lockptr(mm, pmd));
1477
1478 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1479 goto out;
1480
1481 /* Avoid dumping huge zero page */
1482 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1483 return ERR_PTR(-EFAULT);
1484
1485 /* Full NUMA hinting faults to serialise migration in fault paths */
1486 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1487 goto out;
1488
1489 page = pmd_page(*pmd);
1490 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1491 if (flags & FOLL_TOUCH)
1492 touch_pmd(vma, addr, pmd, flags);
1493 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1494 /*
1495 * We don't mlock() pte-mapped THPs. This way we can avoid
1496 * leaking mlocked pages into non-VM_LOCKED VMAs.
1497 *
1498 * For anon THP:
1499 *
1500 * In most cases the pmd is the only mapping of the page as we
1501 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1502 * writable private mappings in populate_vma_page_range().
1503 *
1504 * The only scenario when we have the page shared here is if we
1505 * mlocking read-only mapping shared over fork(). We skip
1506 * mlocking such pages.
1507 *
1508 * For file THP:
1509 *
1510 * We can expect PageDoubleMap() to be stable under page lock:
1511 * for file pages we set it in page_add_file_rmap(), which
1512 * requires page to be locked.
1513 */
1514
1515 if (PageAnon(page) && compound_mapcount(page) != 1)
1516 goto skip_mlock;
1517 if (PageDoubleMap(page) || !page->mapping)
1518 goto skip_mlock;
1519 if (!trylock_page(page))
1520 goto skip_mlock;
1521 lru_add_drain();
1522 if (page->mapping && !PageDoubleMap(page))
1523 mlock_vma_page(page);
1524 unlock_page(page);
1525 }
1526skip_mlock:
1527 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1528 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1529 if (flags & FOLL_GET)
1530 get_page(page);
1531
1532out:
1533 return page;
1534}
1535
1536/* NUMA hinting page fault entry point for trans huge pmds */
1537vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1538{
1539 struct vm_area_struct *vma = vmf->vma;
1540 struct anon_vma *anon_vma = NULL;
1541 struct page *page;
1542 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1543 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1544 int target_nid, last_cpupid = -1;
1545 bool page_locked;
1546 bool migrated = false;
1547 bool was_writable;
1548 int flags = 0;
1549
1550 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1551 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1552 goto out_unlock;
1553
1554 /*
1555 * If there are potential migrations, wait for completion and retry
1556 * without disrupting NUMA hinting information. Do not relock and
1557 * check_same as the page may no longer be mapped.
1558 */
1559 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1560 page = pmd_page(*vmf->pmd);
1561 if (!get_page_unless_zero(page))
1562 goto out_unlock;
1563 spin_unlock(vmf->ptl);
1564 put_and_wait_on_page_locked(page);
1565 goto out;
1566 }
1567
1568 page = pmd_page(pmd);
1569 BUG_ON(is_huge_zero_page(page));
1570 page_nid = page_to_nid(page);
1571 last_cpupid = page_cpupid_last(page);
1572 count_vm_numa_event(NUMA_HINT_FAULTS);
1573 if (page_nid == this_nid) {
1574 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1575 flags |= TNF_FAULT_LOCAL;
1576 }
1577
1578 /* See similar comment in do_numa_page for explanation */
1579 if (!pmd_savedwrite(pmd))
1580 flags |= TNF_NO_GROUP;
1581
1582 /*
1583 * Acquire the page lock to serialise THP migrations but avoid dropping
1584 * page_table_lock if at all possible
1585 */
1586 page_locked = trylock_page(page);
1587 target_nid = mpol_misplaced(page, vma, haddr);
1588 if (target_nid == NUMA_NO_NODE) {
1589 /* If the page was locked, there are no parallel migrations */
1590 if (page_locked)
1591 goto clear_pmdnuma;
1592 }
1593
1594 /* Migration could have started since the pmd_trans_migrating check */
1595 if (!page_locked) {
1596 page_nid = NUMA_NO_NODE;
1597 if (!get_page_unless_zero(page))
1598 goto out_unlock;
1599 spin_unlock(vmf->ptl);
1600 put_and_wait_on_page_locked(page);
1601 goto out;
1602 }
1603
1604 /*
1605 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1606 * to serialises splits
1607 */
1608 get_page(page);
1609 spin_unlock(vmf->ptl);
1610 anon_vma = page_lock_anon_vma_read(page);
1611
1612 /* Confirm the PMD did not change while page_table_lock was released */
1613 spin_lock(vmf->ptl);
1614 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1615 unlock_page(page);
1616 put_page(page);
1617 page_nid = NUMA_NO_NODE;
1618 goto out_unlock;
1619 }
1620
1621 /* Bail if we fail to protect against THP splits for any reason */
1622 if (unlikely(!anon_vma)) {
1623 put_page(page);
1624 page_nid = NUMA_NO_NODE;
1625 goto clear_pmdnuma;
1626 }
1627
1628 /*
1629 * Since we took the NUMA fault, we must have observed the !accessible
1630 * bit. Make sure all other CPUs agree with that, to avoid them
1631 * modifying the page we're about to migrate.
1632 *
1633 * Must be done under PTL such that we'll observe the relevant
1634 * inc_tlb_flush_pending().
1635 *
1636 * We are not sure a pending tlb flush here is for a huge page
1637 * mapping or not. Hence use the tlb range variant
1638 */
1639 if (mm_tlb_flush_pending(vma->vm_mm)) {
1640 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1641 /*
1642 * change_huge_pmd() released the pmd lock before
1643 * invalidating the secondary MMUs sharing the primary
1644 * MMU pagetables (with ->invalidate_range()). The
1645 * mmu_notifier_invalidate_range_end() (which
1646 * internally calls ->invalidate_range()) in
1647 * change_pmd_range() will run after us, so we can't
1648 * rely on it here and we need an explicit invalidate.
1649 */
1650 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1651 haddr + HPAGE_PMD_SIZE);
1652 }
1653
1654 /*
1655 * Migrate the THP to the requested node, returns with page unlocked
1656 * and access rights restored.
1657 */
1658 spin_unlock(vmf->ptl);
1659
1660 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1661 vmf->pmd, pmd, vmf->address, page, target_nid);
1662 if (migrated) {
1663 flags |= TNF_MIGRATED;
1664 page_nid = target_nid;
1665 } else
1666 flags |= TNF_MIGRATE_FAIL;
1667
1668 goto out;
1669clear_pmdnuma:
1670 BUG_ON(!PageLocked(page));
1671 was_writable = pmd_savedwrite(pmd);
1672 pmd = pmd_modify(pmd, vma->vm_page_prot);
1673 pmd = pmd_mkyoung(pmd);
1674 if (was_writable)
1675 pmd = pmd_mkwrite(pmd);
1676 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1677 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1678 unlock_page(page);
1679out_unlock:
1680 spin_unlock(vmf->ptl);
1681
1682out:
1683 if (anon_vma)
1684 page_unlock_anon_vma_read(anon_vma);
1685
1686 if (page_nid != NUMA_NO_NODE)
1687 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1688 flags);
1689
1690 return 0;
1691}
1692
1693/*
1694 * Return true if we do MADV_FREE successfully on entire pmd page.
1695 * Otherwise, return false.
1696 */
1697bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1698 pmd_t *pmd, unsigned long addr, unsigned long next)
1699{
1700 spinlock_t *ptl;
1701 pmd_t orig_pmd;
1702 struct page *page;
1703 struct mm_struct *mm = tlb->mm;
1704 bool ret = false;
1705
1706 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1707
1708 ptl = pmd_trans_huge_lock(pmd, vma);
1709 if (!ptl)
1710 goto out_unlocked;
1711
1712 orig_pmd = *pmd;
1713 if (is_huge_zero_pmd(orig_pmd))
1714 goto out;
1715
1716 if (unlikely(!pmd_present(orig_pmd))) {
1717 VM_BUG_ON(thp_migration_supported() &&
1718 !is_pmd_migration_entry(orig_pmd));
1719 goto out;
1720 }
1721
1722 page = pmd_page(orig_pmd);
1723 /*
1724 * If other processes are mapping this page, we couldn't discard
1725 * the page unless they all do MADV_FREE so let's skip the page.
1726 */
1727 if (total_mapcount(page) != 1)
1728 goto out;
1729
1730 if (!trylock_page(page))
1731 goto out;
1732
1733 /*
1734 * If user want to discard part-pages of THP, split it so MADV_FREE
1735 * will deactivate only them.
1736 */
1737 if (next - addr != HPAGE_PMD_SIZE) {
1738 get_page(page);
1739 spin_unlock(ptl);
1740 split_huge_page(page);
1741 unlock_page(page);
1742 put_page(page);
1743 goto out_unlocked;
1744 }
1745
1746 if (PageDirty(page))
1747 ClearPageDirty(page);
1748 unlock_page(page);
1749
1750 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1751 pmdp_invalidate(vma, addr, pmd);
1752 orig_pmd = pmd_mkold(orig_pmd);
1753 orig_pmd = pmd_mkclean(orig_pmd);
1754
1755 set_pmd_at(mm, addr, pmd, orig_pmd);
1756 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1757 }
1758
1759 mark_page_lazyfree(page);
1760 ret = true;
1761out:
1762 spin_unlock(ptl);
1763out_unlocked:
1764 return ret;
1765}
1766
1767static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1768{
1769 pgtable_t pgtable;
1770
1771 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1772 pte_free(mm, pgtable);
1773 mm_dec_nr_ptes(mm);
1774}
1775
1776int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1777 pmd_t *pmd, unsigned long addr)
1778{
1779 pmd_t orig_pmd;
1780 spinlock_t *ptl;
1781
1782 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1783
1784 ptl = __pmd_trans_huge_lock(pmd, vma);
1785 if (!ptl)
1786 return 0;
1787 /*
1788 * For architectures like ppc64 we look at deposited pgtable
1789 * when calling pmdp_huge_get_and_clear. So do the
1790 * pgtable_trans_huge_withdraw after finishing pmdp related
1791 * operations.
1792 */
1793 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1794 tlb->fullmm);
1795 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1796 if (vma_is_dax(vma)) {
1797 if (arch_needs_pgtable_deposit())
1798 zap_deposited_table(tlb->mm, pmd);
1799 spin_unlock(ptl);
1800 if (is_huge_zero_pmd(orig_pmd))
1801 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1802 } else if (is_huge_zero_pmd(orig_pmd)) {
1803 zap_deposited_table(tlb->mm, pmd);
1804 spin_unlock(ptl);
1805 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1806 } else {
1807 struct page *page = NULL;
1808 int flush_needed = 1;
1809
1810 if (pmd_present(orig_pmd)) {
1811 page = pmd_page(orig_pmd);
1812 page_remove_rmap(page, true);
1813 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1814 VM_BUG_ON_PAGE(!PageHead(page), page);
1815 } else if (thp_migration_supported()) {
1816 swp_entry_t entry;
1817
1818 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1819 entry = pmd_to_swp_entry(orig_pmd);
1820 page = pfn_to_page(swp_offset(entry));
1821 flush_needed = 0;
1822 } else
1823 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1824
1825 if (PageAnon(page)) {
1826 zap_deposited_table(tlb->mm, pmd);
1827 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1828 } else {
1829 if (arch_needs_pgtable_deposit())
1830 zap_deposited_table(tlb->mm, pmd);
1831 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1832 }
1833
1834 spin_unlock(ptl);
1835 if (flush_needed)
1836 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1837 }
1838 return 1;
1839}
1840
1841#ifndef pmd_move_must_withdraw
1842static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1843 spinlock_t *old_pmd_ptl,
1844 struct vm_area_struct *vma)
1845{
1846 /*
1847 * With split pmd lock we also need to move preallocated
1848 * PTE page table if new_pmd is on different PMD page table.
1849 *
1850 * We also don't deposit and withdraw tables for file pages.
1851 */
1852 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1853}
1854#endif
1855
1856static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1857{
1858#ifdef CONFIG_MEM_SOFT_DIRTY
1859 if (unlikely(is_pmd_migration_entry(pmd)))
1860 pmd = pmd_swp_mksoft_dirty(pmd);
1861 else if (pmd_present(pmd))
1862 pmd = pmd_mksoft_dirty(pmd);
1863#endif
1864 return pmd;
1865}
1866
1867bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1868 unsigned long new_addr, unsigned long old_end,
1869 pmd_t *old_pmd, pmd_t *new_pmd)
1870{
1871 spinlock_t *old_ptl, *new_ptl;
1872 pmd_t pmd;
1873 struct mm_struct *mm = vma->vm_mm;
1874 bool force_flush = false;
1875
1876 if ((old_addr & ~HPAGE_PMD_MASK) ||
1877 (new_addr & ~HPAGE_PMD_MASK) ||
1878 old_end - old_addr < HPAGE_PMD_SIZE)
1879 return false;
1880
1881 /*
1882 * The destination pmd shouldn't be established, free_pgtables()
1883 * should have release it.
1884 */
1885 if (WARN_ON(!pmd_none(*new_pmd))) {
1886 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1887 return false;
1888 }
1889
1890 /*
1891 * We don't have to worry about the ordering of src and dst
1892 * ptlocks because exclusive mmap_sem prevents deadlock.
1893 */
1894 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1895 if (old_ptl) {
1896 new_ptl = pmd_lockptr(mm, new_pmd);
1897 if (new_ptl != old_ptl)
1898 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1899 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1900 if (pmd_present(pmd))
1901 force_flush = true;
1902 VM_BUG_ON(!pmd_none(*new_pmd));
1903
1904 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1905 pgtable_t pgtable;
1906 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1907 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1908 }
1909 pmd = move_soft_dirty_pmd(pmd);
1910 set_pmd_at(mm, new_addr, new_pmd, pmd);
1911 if (force_flush)
1912 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1913 if (new_ptl != old_ptl)
1914 spin_unlock(new_ptl);
1915 spin_unlock(old_ptl);
1916 return true;
1917 }
1918 return false;
1919}
1920
1921/*
1922 * Returns
1923 * - 0 if PMD could not be locked
1924 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1925 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1926 */
1927int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1928 unsigned long addr, pgprot_t newprot, int prot_numa)
1929{
1930 struct mm_struct *mm = vma->vm_mm;
1931 spinlock_t *ptl;
1932 pmd_t entry;
1933 bool preserve_write;
1934 int ret;
1935
1936 ptl = __pmd_trans_huge_lock(pmd, vma);
1937 if (!ptl)
1938 return 0;
1939
1940 preserve_write = prot_numa && pmd_write(*pmd);
1941 ret = 1;
1942
1943#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1944 if (is_swap_pmd(*pmd)) {
1945 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1946
1947 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1948 if (is_write_migration_entry(entry)) {
1949 pmd_t newpmd;
1950 /*
1951 * A protection check is difficult so
1952 * just be safe and disable write
1953 */
1954 make_migration_entry_read(&entry);
1955 newpmd = swp_entry_to_pmd(entry);
1956 if (pmd_swp_soft_dirty(*pmd))
1957 newpmd = pmd_swp_mksoft_dirty(newpmd);
1958 set_pmd_at(mm, addr, pmd, newpmd);
1959 }
1960 goto unlock;
1961 }
1962#endif
1963
1964 /*
1965 * Avoid trapping faults against the zero page. The read-only
1966 * data is likely to be read-cached on the local CPU and
1967 * local/remote hits to the zero page are not interesting.
1968 */
1969 if (prot_numa && is_huge_zero_pmd(*pmd))
1970 goto unlock;
1971
1972 if (prot_numa && pmd_protnone(*pmd))
1973 goto unlock;
1974
1975 /*
1976 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1977 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1978 * which is also under down_read(mmap_sem):
1979 *
1980 * CPU0: CPU1:
1981 * change_huge_pmd(prot_numa=1)
1982 * pmdp_huge_get_and_clear_notify()
1983 * madvise_dontneed()
1984 * zap_pmd_range()
1985 * pmd_trans_huge(*pmd) == 0 (without ptl)
1986 * // skip the pmd
1987 * set_pmd_at();
1988 * // pmd is re-established
1989 *
1990 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1991 * which may break userspace.
1992 *
1993 * pmdp_invalidate() is required to make sure we don't miss
1994 * dirty/young flags set by hardware.
1995 */
1996 entry = pmdp_invalidate(vma, addr, pmd);
1997
1998 entry = pmd_modify(entry, newprot);
1999 if (preserve_write)
2000 entry = pmd_mk_savedwrite(entry);
2001 ret = HPAGE_PMD_NR;
2002 set_pmd_at(mm, addr, pmd, entry);
2003 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
2004unlock:
2005 spin_unlock(ptl);
2006 return ret;
2007}
2008
2009/*
2010 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2011 *
2012 * Note that if it returns page table lock pointer, this routine returns without
2013 * unlocking page table lock. So callers must unlock it.
2014 */
2015spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2016{
2017 spinlock_t *ptl;
2018 ptl = pmd_lock(vma->vm_mm, pmd);
2019 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2020 pmd_devmap(*pmd)))
2021 return ptl;
2022 spin_unlock(ptl);
2023 return NULL;
2024}
2025
2026/*
2027 * Returns true if a given pud maps a thp, false otherwise.
2028 *
2029 * Note that if it returns true, this routine returns without unlocking page
2030 * table lock. So callers must unlock it.
2031 */
2032spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2033{
2034 spinlock_t *ptl;
2035
2036 ptl = pud_lock(vma->vm_mm, pud);
2037 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2038 return ptl;
2039 spin_unlock(ptl);
2040 return NULL;
2041}
2042
2043#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2044int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2045 pud_t *pud, unsigned long addr)
2046{
2047 spinlock_t *ptl;
2048
2049 ptl = __pud_trans_huge_lock(pud, vma);
2050 if (!ptl)
2051 return 0;
2052 /*
2053 * For architectures like ppc64 we look at deposited pgtable
2054 * when calling pudp_huge_get_and_clear. So do the
2055 * pgtable_trans_huge_withdraw after finishing pudp related
2056 * operations.
2057 */
2058 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
2059 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2060 if (vma_is_dax(vma)) {
2061 spin_unlock(ptl);
2062 /* No zero page support yet */
2063 } else {
2064 /* No support for anonymous PUD pages yet */
2065 BUG();
2066 }
2067 return 1;
2068}
2069
2070static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2071 unsigned long haddr)
2072{
2073 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2074 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2075 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2076 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2077
2078 count_vm_event(THP_SPLIT_PUD);
2079
2080 pudp_huge_clear_flush_notify(vma, haddr, pud);
2081}
2082
2083void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2084 unsigned long address)
2085{
2086 spinlock_t *ptl;
2087 struct mmu_notifier_range range;
2088
2089 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2090 address & HPAGE_PUD_MASK,
2091 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2092 mmu_notifier_invalidate_range_start(&range);
2093 ptl = pud_lock(vma->vm_mm, pud);
2094 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2095 goto out;
2096 __split_huge_pud_locked(vma, pud, range.start);
2097
2098out:
2099 spin_unlock(ptl);
2100 /*
2101 * No need to double call mmu_notifier->invalidate_range() callback as
2102 * the above pudp_huge_clear_flush_notify() did already call it.
2103 */
2104 mmu_notifier_invalidate_range_only_end(&range);
2105}
2106#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2107
2108static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2109 unsigned long haddr, pmd_t *pmd)
2110{
2111 struct mm_struct *mm = vma->vm_mm;
2112 pgtable_t pgtable;
2113 pmd_t _pmd;
2114 int i;
2115
2116 /*
2117 * Leave pmd empty until pte is filled note that it is fine to delay
2118 * notification until mmu_notifier_invalidate_range_end() as we are
2119 * replacing a zero pmd write protected page with a zero pte write
2120 * protected page.
2121 *
2122 * See Documentation/vm/mmu_notifier.rst
2123 */
2124 pmdp_huge_clear_flush(vma, haddr, pmd);
2125
2126 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2127 pmd_populate(mm, &_pmd, pgtable);
2128
2129 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2130 pte_t *pte, entry;
2131 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2132 entry = pte_mkspecial(entry);
2133 pte = pte_offset_map(&_pmd, haddr);
2134 VM_BUG_ON(!pte_none(*pte));
2135 set_pte_at(mm, haddr, pte, entry);
2136 pte_unmap(pte);
2137 }
2138 smp_wmb(); /* make pte visible before pmd */
2139 pmd_populate(mm, pmd, pgtable);
2140}
2141
2142static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2143 unsigned long haddr, bool freeze)
2144{
2145 struct mm_struct *mm = vma->vm_mm;
2146 struct page *page;
2147 pgtable_t pgtable;
2148 pmd_t old_pmd, _pmd;
2149 bool young, write, soft_dirty, pmd_migration = false;
2150 unsigned long addr;
2151 int i;
2152
2153 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2154 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2155 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2156 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2157 && !pmd_devmap(*pmd));
2158
2159 count_vm_event(THP_SPLIT_PMD);
2160
2161 if (!vma_is_anonymous(vma)) {
2162 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2163 /*
2164 * We are going to unmap this huge page. So
2165 * just go ahead and zap it
2166 */
2167 if (arch_needs_pgtable_deposit())
2168 zap_deposited_table(mm, pmd);
2169 if (vma_is_dax(vma))
2170 return;
2171 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2172 swp_entry_t entry;
2173
2174 entry = pmd_to_swp_entry(old_pmd);
2175 page = migration_entry_to_page(entry);
2176 } else {
2177 page = pmd_page(old_pmd);
2178 if (!PageDirty(page) && pmd_dirty(old_pmd))
2179 set_page_dirty(page);
2180 if (!PageReferenced(page) && pmd_young(old_pmd))
2181 SetPageReferenced(page);
2182 page_remove_rmap(page, true);
2183 put_page(page);
2184 }
2185 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2186 return;
2187 }
2188
2189 if (is_huge_zero_pmd(*pmd)) {
2190 /*
2191 * FIXME: Do we want to invalidate secondary mmu by calling
2192 * mmu_notifier_invalidate_range() see comments below inside
2193 * __split_huge_pmd() ?
2194 *
2195 * We are going from a zero huge page write protected to zero
2196 * small page also write protected so it does not seems useful
2197 * to invalidate secondary mmu at this time.
2198 */
2199 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2200 }
2201
2202 /*
2203 * Up to this point the pmd is present and huge and userland has the
2204 * whole access to the hugepage during the split (which happens in
2205 * place). If we overwrite the pmd with the not-huge version pointing
2206 * to the pte here (which of course we could if all CPUs were bug
2207 * free), userland could trigger a small page size TLB miss on the
2208 * small sized TLB while the hugepage TLB entry is still established in
2209 * the huge TLB. Some CPU doesn't like that.
2210 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2211 * 383 on page 93. Intel should be safe but is also warns that it's
2212 * only safe if the permission and cache attributes of the two entries
2213 * loaded in the two TLB is identical (which should be the case here).
2214 * But it is generally safer to never allow small and huge TLB entries
2215 * for the same virtual address to be loaded simultaneously. So instead
2216 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2217 * current pmd notpresent (atomically because here the pmd_trans_huge
2218 * must remain set at all times on the pmd until the split is complete
2219 * for this pmd), then we flush the SMP TLB and finally we write the
2220 * non-huge version of the pmd entry with pmd_populate.
2221 */
2222 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2223
2224 pmd_migration = is_pmd_migration_entry(old_pmd);
2225 if (unlikely(pmd_migration)) {
2226 swp_entry_t entry;
2227
2228 entry = pmd_to_swp_entry(old_pmd);
2229 page = pfn_to_page(swp_offset(entry));
2230 write = is_write_migration_entry(entry);
2231 young = false;
2232 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2233 } else {
2234 page = pmd_page(old_pmd);
2235 if (pmd_dirty(old_pmd))
2236 SetPageDirty(page);
2237 write = pmd_write(old_pmd);
2238 young = pmd_young(old_pmd);
2239 soft_dirty = pmd_soft_dirty(old_pmd);
2240 }
2241 VM_BUG_ON_PAGE(!page_count(page), page);
2242 page_ref_add(page, HPAGE_PMD_NR - 1);
2243
2244 /*
2245 * Withdraw the table only after we mark the pmd entry invalid.
2246 * This's critical for some architectures (Power).
2247 */
2248 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2249 pmd_populate(mm, &_pmd, pgtable);
2250
2251 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2252 pte_t entry, *pte;
2253 /*
2254 * Note that NUMA hinting access restrictions are not
2255 * transferred to avoid any possibility of altering
2256 * permissions across VMAs.
2257 */
2258 if (freeze || pmd_migration) {
2259 swp_entry_t swp_entry;
2260 swp_entry = make_migration_entry(page + i, write);
2261 entry = swp_entry_to_pte(swp_entry);
2262 if (soft_dirty)
2263 entry = pte_swp_mksoft_dirty(entry);
2264 } else {
2265 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2266 entry = maybe_mkwrite(entry, vma);
2267 if (!write)
2268 entry = pte_wrprotect(entry);
2269 if (!young)
2270 entry = pte_mkold(entry);
2271 if (soft_dirty)
2272 entry = pte_mksoft_dirty(entry);
2273 }
2274 pte = pte_offset_map(&_pmd, addr);
2275 BUG_ON(!pte_none(*pte));
2276 set_pte_at(mm, addr, pte, entry);
2277 if (!pmd_migration)
2278 atomic_inc(&page[i]._mapcount);
2279 pte_unmap(pte);
2280 }
2281
2282 if (!pmd_migration) {
2283 /*
2284 * Set PG_double_map before dropping compound_mapcount to avoid
2285 * false-negative page_mapped().
2286 */
2287 if (compound_mapcount(page) > 1 &&
2288 !TestSetPageDoubleMap(page)) {
2289 for (i = 0; i < HPAGE_PMD_NR; i++)
2290 atomic_inc(&page[i]._mapcount);
2291 }
2292
2293 lock_page_memcg(page);
2294 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2295 /* Last compound_mapcount is gone. */
2296 __dec_lruvec_page_state(page, NR_ANON_THPS);
2297 if (TestClearPageDoubleMap(page)) {
2298 /* No need in mapcount reference anymore */
2299 for (i = 0; i < HPAGE_PMD_NR; i++)
2300 atomic_dec(&page[i]._mapcount);
2301 }
2302 }
2303 unlock_page_memcg(page);
2304 }
2305
2306 smp_wmb(); /* make pte visible before pmd */
2307 pmd_populate(mm, pmd, pgtable);
2308
2309 if (freeze) {
2310 for (i = 0; i < HPAGE_PMD_NR; i++) {
2311 page_remove_rmap(page + i, false);
2312 put_page(page + i);
2313 }
2314 }
2315}
2316
2317void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2318 unsigned long address, bool freeze, struct page *page)
2319{
2320 spinlock_t *ptl;
2321 struct mmu_notifier_range range;
2322 bool do_unlock_page = false;
2323 pmd_t _pmd;
2324
2325 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2326 address & HPAGE_PMD_MASK,
2327 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2328 mmu_notifier_invalidate_range_start(&range);
2329 ptl = pmd_lock(vma->vm_mm, pmd);
2330
2331 /*
2332 * If caller asks to setup a migration entries, we need a page to check
2333 * pmd against. Otherwise we can end up replacing wrong page.
2334 */
2335 VM_BUG_ON(freeze && !page);
2336 if (page) {
2337 VM_WARN_ON_ONCE(!PageLocked(page));
2338 if (page != pmd_page(*pmd))
2339 goto out;
2340 }
2341
2342repeat:
2343 if (pmd_trans_huge(*pmd)) {
2344 if (!page) {
2345 page = pmd_page(*pmd);
2346 /*
2347 * An anonymous page must be locked, to ensure that a
2348 * concurrent reuse_swap_page() sees stable mapcount;
2349 * but reuse_swap_page() is not used on shmem or file,
2350 * and page lock must not be taken when zap_pmd_range()
2351 * calls __split_huge_pmd() while i_mmap_lock is held.
2352 */
2353 if (PageAnon(page)) {
2354 if (unlikely(!trylock_page(page))) {
2355 get_page(page);
2356 _pmd = *pmd;
2357 spin_unlock(ptl);
2358 lock_page(page);
2359 spin_lock(ptl);
2360 if (unlikely(!pmd_same(*pmd, _pmd))) {
2361 unlock_page(page);
2362 put_page(page);
2363 page = NULL;
2364 goto repeat;
2365 }
2366 put_page(page);
2367 }
2368 do_unlock_page = true;
2369 }
2370 }
2371 if (PageMlocked(page))
2372 clear_page_mlock(page);
2373 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2374 goto out;
2375 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2376out:
2377 spin_unlock(ptl);
2378 if (do_unlock_page)
2379 unlock_page(page);
2380 /*
2381 * No need to double call mmu_notifier->invalidate_range() callback.
2382 * They are 3 cases to consider inside __split_huge_pmd_locked():
2383 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2384 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2385 * fault will trigger a flush_notify before pointing to a new page
2386 * (it is fine if the secondary mmu keeps pointing to the old zero
2387 * page in the meantime)
2388 * 3) Split a huge pmd into pte pointing to the same page. No need
2389 * to invalidate secondary tlb entry they are all still valid.
2390 * any further changes to individual pte will notify. So no need
2391 * to call mmu_notifier->invalidate_range()
2392 */
2393 mmu_notifier_invalidate_range_only_end(&range);
2394}
2395
2396void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2397 bool freeze, struct page *page)
2398{
2399 pgd_t *pgd;
2400 p4d_t *p4d;
2401 pud_t *pud;
2402 pmd_t *pmd;
2403
2404 pgd = pgd_offset(vma->vm_mm, address);
2405 if (!pgd_present(*pgd))
2406 return;
2407
2408 p4d = p4d_offset(pgd, address);
2409 if (!p4d_present(*p4d))
2410 return;
2411
2412 pud = pud_offset(p4d, address);
2413 if (!pud_present(*pud))
2414 return;
2415
2416 pmd = pmd_offset(pud, address);
2417
2418 __split_huge_pmd(vma, pmd, address, freeze, page);
2419}
2420
2421void vma_adjust_trans_huge(struct vm_area_struct *vma,
2422 unsigned long start,
2423 unsigned long end,
2424 long adjust_next)
2425{
2426 /*
2427 * If the new start address isn't hpage aligned and it could
2428 * previously contain an hugepage: check if we need to split
2429 * an huge pmd.
2430 */
2431 if (start & ~HPAGE_PMD_MASK &&
2432 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2433 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2434 split_huge_pmd_address(vma, start, false, NULL);
2435
2436 /*
2437 * If the new end address isn't hpage aligned and it could
2438 * previously contain an hugepage: check if we need to split
2439 * an huge pmd.
2440 */
2441 if (end & ~HPAGE_PMD_MASK &&
2442 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2443 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2444 split_huge_pmd_address(vma, end, false, NULL);
2445
2446 /*
2447 * If we're also updating the vma->vm_next->vm_start, if the new
2448 * vm_next->vm_start isn't page aligned and it could previously
2449 * contain an hugepage: check if we need to split an huge pmd.
2450 */
2451 if (adjust_next > 0) {
2452 struct vm_area_struct *next = vma->vm_next;
2453 unsigned long nstart = next->vm_start;
2454 nstart += adjust_next << PAGE_SHIFT;
2455 if (nstart & ~HPAGE_PMD_MASK &&
2456 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2457 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2458 split_huge_pmd_address(next, nstart, false, NULL);
2459 }
2460}
2461
2462static void unmap_page(struct page *page)
2463{
2464 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2465 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | TTU_SYNC;
2466
2467 VM_BUG_ON_PAGE(!PageHead(page), page);
2468
2469 if (PageAnon(page))
2470 ttu_flags |= TTU_SPLIT_FREEZE;
2471
2472 try_to_unmap(page, ttu_flags);
2473
2474 VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
2475}
2476
2477static void remap_page(struct page *page)
2478{
2479 int i;
2480 if (PageTransHuge(page)) {
2481 remove_migration_ptes(page, page, true);
2482 } else {
2483 for (i = 0; i < HPAGE_PMD_NR; i++)
2484 remove_migration_ptes(page + i, page + i, true);
2485 }
2486}
2487
2488static void __split_huge_page_tail(struct page *head, int tail,
2489 struct lruvec *lruvec, struct list_head *list)
2490{
2491 struct page *page_tail = head + tail;
2492
2493 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2494
2495 /*
2496 * Clone page flags before unfreezing refcount.
2497 *
2498 * After successful get_page_unless_zero() might follow flags change,
2499 * for exmaple lock_page() which set PG_waiters.
2500 */
2501 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2502 page_tail->flags |= (head->flags &
2503 ((1L << PG_referenced) |
2504 (1L << PG_swapbacked) |
2505 (1L << PG_swapcache) |
2506 (1L << PG_mlocked) |
2507 (1L << PG_uptodate) |
2508 (1L << PG_active) |
2509 (1L << PG_workingset) |
2510 (1L << PG_locked) |
2511 (1L << PG_unevictable) |
2512 (1L << PG_dirty)));
2513
2514 /* ->mapping in first tail page is compound_mapcount */
2515 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2516 page_tail);
2517 page_tail->mapping = head->mapping;
2518 page_tail->index = head->index + tail;
2519
2520 /* Page flags must be visible before we make the page non-compound. */
2521 smp_wmb();
2522
2523 /*
2524 * Clear PageTail before unfreezing page refcount.
2525 *
2526 * After successful get_page_unless_zero() might follow put_page()
2527 * which needs correct compound_head().
2528 */
2529 clear_compound_head(page_tail);
2530
2531 /* Finally unfreeze refcount. Additional reference from page cache. */
2532 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2533 PageSwapCache(head)));
2534
2535 if (page_is_young(head))
2536 set_page_young(page_tail);
2537 if (page_is_idle(head))
2538 set_page_idle(page_tail);
2539
2540 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2541
2542 /*
2543 * always add to the tail because some iterators expect new
2544 * pages to show after the currently processed elements - e.g.
2545 * migrate_pages
2546 */
2547 lru_add_page_tail(head, page_tail, lruvec, list);
2548}
2549
2550static void __split_huge_page(struct page *page, struct list_head *list,
2551 pgoff_t end, unsigned long flags)
2552{
2553 struct page *head = compound_head(page);
2554 pg_data_t *pgdat = page_pgdat(head);
2555 struct lruvec *lruvec;
2556 struct address_space *swap_cache = NULL;
2557 unsigned long offset = 0;
2558 int i;
2559
2560 lruvec = mem_cgroup_page_lruvec(head, pgdat);
2561
2562 /* complete memcg works before add pages to LRU */
2563 mem_cgroup_split_huge_fixup(head);
2564
2565 if (PageAnon(head) && PageSwapCache(head)) {
2566 swp_entry_t entry = { .val = page_private(head) };
2567
2568 offset = swp_offset(entry);
2569 swap_cache = swap_address_space(entry);
2570 xa_lock(&swap_cache->i_pages);
2571 }
2572
2573 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2574 __split_huge_page_tail(head, i, lruvec, list);
2575 /* Some pages can be beyond i_size: drop them from page cache */
2576 if (head[i].index >= end) {
2577 ClearPageDirty(head + i);
2578 __delete_from_page_cache(head + i, NULL);
2579 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2580 shmem_uncharge(head->mapping->host, 1);
2581 put_page(head + i);
2582 } else if (!PageAnon(page)) {
2583 __xa_store(&head->mapping->i_pages, head[i].index,
2584 head + i, 0);
2585 } else if (swap_cache) {
2586 __xa_store(&swap_cache->i_pages, offset + i,
2587 head + i, 0);
2588 }
2589 }
2590
2591 ClearPageCompound(head);
2592
2593 split_page_owner(head, HPAGE_PMD_NR);
2594
2595 /* See comment in __split_huge_page_tail() */
2596 if (PageAnon(head)) {
2597 /* Additional pin to swap cache */
2598 if (PageSwapCache(head)) {
2599 page_ref_add(head, 2);
2600 xa_unlock(&swap_cache->i_pages);
2601 } else {
2602 page_ref_inc(head);
2603 }
2604 } else {
2605 /* Additional pin to page cache */
2606 page_ref_add(head, 2);
2607 xa_unlock(&head->mapping->i_pages);
2608 }
2609
2610 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2611
2612 remap_page(head);
2613
2614 for (i = 0; i < HPAGE_PMD_NR; i++) {
2615 struct page *subpage = head + i;
2616 if (subpage == page)
2617 continue;
2618 unlock_page(subpage);
2619
2620 /*
2621 * Subpages may be freed if there wasn't any mapping
2622 * like if add_to_swap() is running on a lru page that
2623 * had its mapping zapped. And freeing these pages
2624 * requires taking the lru_lock so we do the put_page
2625 * of the tail pages after the split is complete.
2626 */
2627 put_page(subpage);
2628 }
2629}
2630
2631int total_mapcount(struct page *page)
2632{
2633 int i, compound, ret;
2634
2635 VM_BUG_ON_PAGE(PageTail(page), page);
2636
2637 if (likely(!PageCompound(page)))
2638 return atomic_read(&page->_mapcount) + 1;
2639
2640 compound = compound_mapcount(page);
2641 if (PageHuge(page))
2642 return compound;
2643 ret = compound;
2644 for (i = 0; i < HPAGE_PMD_NR; i++)
2645 ret += atomic_read(&page[i]._mapcount) + 1;
2646 /* File pages has compound_mapcount included in _mapcount */
2647 if (!PageAnon(page))
2648 return ret - compound * HPAGE_PMD_NR;
2649 if (PageDoubleMap(page))
2650 ret -= HPAGE_PMD_NR;
2651 return ret;
2652}
2653
2654/*
2655 * This calculates accurately how many mappings a transparent hugepage
2656 * has (unlike page_mapcount() which isn't fully accurate). This full
2657 * accuracy is primarily needed to know if copy-on-write faults can
2658 * reuse the page and change the mapping to read-write instead of
2659 * copying them. At the same time this returns the total_mapcount too.
2660 *
2661 * The function returns the highest mapcount any one of the subpages
2662 * has. If the return value is one, even if different processes are
2663 * mapping different subpages of the transparent hugepage, they can
2664 * all reuse it, because each process is reusing a different subpage.
2665 *
2666 * The total_mapcount is instead counting all virtual mappings of the
2667 * subpages. If the total_mapcount is equal to "one", it tells the
2668 * caller all mappings belong to the same "mm" and in turn the
2669 * anon_vma of the transparent hugepage can become the vma->anon_vma
2670 * local one as no other process may be mapping any of the subpages.
2671 *
2672 * It would be more accurate to replace page_mapcount() with
2673 * page_trans_huge_mapcount(), however we only use
2674 * page_trans_huge_mapcount() in the copy-on-write faults where we
2675 * need full accuracy to avoid breaking page pinning, because
2676 * page_trans_huge_mapcount() is slower than page_mapcount().
2677 */
2678int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2679{
2680 int i, ret, _total_mapcount, mapcount;
2681
2682 /* hugetlbfs shouldn't call it */
2683 VM_BUG_ON_PAGE(PageHuge(page), page);
2684
2685 if (likely(!PageTransCompound(page))) {
2686 mapcount = atomic_read(&page->_mapcount) + 1;
2687 if (total_mapcount)
2688 *total_mapcount = mapcount;
2689 return mapcount;
2690 }
2691
2692 page = compound_head(page);
2693
2694 _total_mapcount = ret = 0;
2695 for (i = 0; i < HPAGE_PMD_NR; i++) {
2696 mapcount = atomic_read(&page[i]._mapcount) + 1;
2697 ret = max(ret, mapcount);
2698 _total_mapcount += mapcount;
2699 }
2700 if (PageDoubleMap(page)) {
2701 ret -= 1;
2702 _total_mapcount -= HPAGE_PMD_NR;
2703 }
2704 mapcount = compound_mapcount(page);
2705 ret += mapcount;
2706 _total_mapcount += mapcount;
2707 if (total_mapcount)
2708 *total_mapcount = _total_mapcount;
2709 return ret;
2710}
2711
2712/* Racy check whether the huge page can be split */
2713bool can_split_huge_page(struct page *page, int *pextra_pins)
2714{
2715 int extra_pins;
2716
2717 /* Additional pins from page cache */
2718 if (PageAnon(page))
2719 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2720 else
2721 extra_pins = HPAGE_PMD_NR;
2722 if (pextra_pins)
2723 *pextra_pins = extra_pins;
2724 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2725}
2726
2727/*
2728 * This function splits huge page into normal pages. @page can point to any
2729 * subpage of huge page to split. Split doesn't change the position of @page.
2730 *
2731 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2732 * The huge page must be locked.
2733 *
2734 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2735 *
2736 * Both head page and tail pages will inherit mapping, flags, and so on from
2737 * the hugepage.
2738 *
2739 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2740 * they are not mapped.
2741 *
2742 * Returns 0 if the hugepage is split successfully.
2743 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2744 * us.
2745 */
2746int split_huge_page_to_list(struct page *page, struct list_head *list)
2747{
2748 struct page *head = compound_head(page);
2749 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2750 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2751 struct anon_vma *anon_vma = NULL;
2752 struct address_space *mapping = NULL;
2753 int extra_pins, ret;
2754 bool mlocked;
2755 unsigned long flags;
2756 pgoff_t end;
2757
2758 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2759 VM_BUG_ON_PAGE(!PageLocked(page), page);
2760 VM_BUG_ON_PAGE(!PageCompound(page), page);
2761
2762 if (PageWriteback(page))
2763 return -EBUSY;
2764
2765 if (PageAnon(head)) {
2766 /*
2767 * The caller does not necessarily hold an mmap_sem that would
2768 * prevent the anon_vma disappearing so we first we take a
2769 * reference to it and then lock the anon_vma for write. This
2770 * is similar to page_lock_anon_vma_read except the write lock
2771 * is taken to serialise against parallel split or collapse
2772 * operations.
2773 */
2774 anon_vma = page_get_anon_vma(head);
2775 if (!anon_vma) {
2776 ret = -EBUSY;
2777 goto out;
2778 }
2779 end = -1;
2780 mapping = NULL;
2781 anon_vma_lock_write(anon_vma);
2782 } else {
2783 mapping = head->mapping;
2784
2785 /* Truncated ? */
2786 if (!mapping) {
2787 ret = -EBUSY;
2788 goto out;
2789 }
2790
2791 anon_vma = NULL;
2792 i_mmap_lock_read(mapping);
2793
2794 /*
2795 *__split_huge_page() may need to trim off pages beyond EOF:
2796 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2797 * which cannot be nested inside the page tree lock. So note
2798 * end now: i_size itself may be changed at any moment, but
2799 * head page lock is good enough to serialize the trimming.
2800 */
2801 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2802 }
2803
2804 /*
2805 * Racy check if we can split the page, before unmap_page() will
2806 * split PMDs
2807 */
2808 if (!can_split_huge_page(head, &extra_pins)) {
2809 ret = -EBUSY;
2810 goto out_unlock;
2811 }
2812
2813 mlocked = PageMlocked(page);
2814 unmap_page(head);
2815
2816 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2817 if (mlocked)
2818 lru_add_drain();
2819
2820 /* prevent PageLRU to go away from under us, and freeze lru stats */
2821 spin_lock_irqsave(&pgdata->lru_lock, flags);
2822
2823 if (mapping) {
2824 XA_STATE(xas, &mapping->i_pages, page_index(head));
2825
2826 /*
2827 * Check if the head page is present in page cache.
2828 * We assume all tail are present too, if head is there.
2829 */
2830 xa_lock(&mapping->i_pages);
2831 if (xas_load(&xas) != head)
2832 goto fail;
2833 }
2834
2835 /* Prevent deferred_split_scan() touching ->_refcount */
2836 spin_lock(&ds_queue->split_queue_lock);
2837 if (page_ref_freeze(head, 1 + extra_pins)) {
2838 if (!list_empty(page_deferred_list(head))) {
2839 ds_queue->split_queue_len--;
2840 list_del(page_deferred_list(head));
2841 }
2842 if (mapping) {
2843 if (PageSwapBacked(page))
2844 __dec_node_page_state(page, NR_SHMEM_THPS);
2845 else
2846 __dec_node_page_state(page, NR_FILE_THPS);
2847 }
2848
2849 spin_unlock(&ds_queue->split_queue_lock);
2850 __split_huge_page(page, list, end, flags);
2851 if (PageSwapCache(head)) {
2852 swp_entry_t entry = { .val = page_private(head) };
2853
2854 ret = split_swap_cluster(entry);
2855 } else
2856 ret = 0;
2857 } else {
2858 spin_unlock(&ds_queue->split_queue_lock);
2859fail:
2860 if (mapping)
2861 xa_unlock(&mapping->i_pages);
2862 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2863 remap_page(head);
2864 ret = -EBUSY;
2865 }
2866
2867out_unlock:
2868 if (anon_vma) {
2869 anon_vma_unlock_write(anon_vma);
2870 put_anon_vma(anon_vma);
2871 }
2872 if (mapping)
2873 i_mmap_unlock_read(mapping);
2874out:
2875 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2876 return ret;
2877}
2878
2879void free_transhuge_page(struct page *page)
2880{
2881 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2882 unsigned long flags;
2883
2884 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2885 if (!list_empty(page_deferred_list(page))) {
2886 ds_queue->split_queue_len--;
2887 list_del(page_deferred_list(page));
2888 }
2889 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2890 free_compound_page(page);
2891}
2892
2893void deferred_split_huge_page(struct page *page)
2894{
2895 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2896#ifdef CONFIG_MEMCG
2897 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2898#endif
2899 unsigned long flags;
2900
2901 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2902
2903 /*
2904 * The try_to_unmap() in page reclaim path might reach here too,
2905 * this may cause a race condition to corrupt deferred split queue.
2906 * And, if page reclaim is already handling the same page, it is
2907 * unnecessary to handle it again in shrinker.
2908 *
2909 * Check PageSwapCache to determine if the page is being
2910 * handled by page reclaim since THP swap would add the page into
2911 * swap cache before calling try_to_unmap().
2912 */
2913 if (PageSwapCache(page))
2914 return;
2915
2916 if (!list_empty(page_deferred_list(page)))
2917 return;
2918
2919 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2920 if (list_empty(page_deferred_list(page))) {
2921 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2922 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2923 ds_queue->split_queue_len++;
2924#ifdef CONFIG_MEMCG
2925 if (memcg)
2926 memcg_set_shrinker_bit(memcg, page_to_nid(page),
2927 deferred_split_shrinker.id);
2928#endif
2929 }
2930 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2931}
2932
2933static unsigned long deferred_split_count(struct shrinker *shrink,
2934 struct shrink_control *sc)
2935{
2936 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2937 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2938
2939#ifdef CONFIG_MEMCG
2940 if (sc->memcg)
2941 ds_queue = &sc->memcg->deferred_split_queue;
2942#endif
2943 return READ_ONCE(ds_queue->split_queue_len);
2944}
2945
2946static unsigned long deferred_split_scan(struct shrinker *shrink,
2947 struct shrink_control *sc)
2948{
2949 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2950 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2951 unsigned long flags;
2952 LIST_HEAD(list), *pos, *next;
2953 struct page *page;
2954 int split = 0;
2955
2956#ifdef CONFIG_MEMCG
2957 if (sc->memcg)
2958 ds_queue = &sc->memcg->deferred_split_queue;
2959#endif
2960
2961 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2962 /* Take pin on all head pages to avoid freeing them under us */
2963 list_for_each_safe(pos, next, &ds_queue->split_queue) {
2964 page = list_entry((void *)pos, struct page, mapping);
2965 page = compound_head(page);
2966 if (get_page_unless_zero(page)) {
2967 list_move(page_deferred_list(page), &list);
2968 } else {
2969 /* We lost race with put_compound_page() */
2970 list_del_init(page_deferred_list(page));
2971 ds_queue->split_queue_len--;
2972 }
2973 if (!--sc->nr_to_scan)
2974 break;
2975 }
2976 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2977
2978 list_for_each_safe(pos, next, &list) {
2979 page = list_entry((void *)pos, struct page, mapping);
2980 if (!trylock_page(page))
2981 goto next;
2982 /* split_huge_page() removes page from list on success */
2983 if (!split_huge_page(page))
2984 split++;
2985 unlock_page(page);
2986next:
2987 put_page(page);
2988 }
2989
2990 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2991 list_splice_tail(&list, &ds_queue->split_queue);
2992 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2993
2994 /*
2995 * Stop shrinker if we didn't split any page, but the queue is empty.
2996 * This can happen if pages were freed under us.
2997 */
2998 if (!split && list_empty(&ds_queue->split_queue))
2999 return SHRINK_STOP;
3000 return split;
3001}
3002
3003static struct shrinker deferred_split_shrinker = {
3004 .count_objects = deferred_split_count,
3005 .scan_objects = deferred_split_scan,
3006 .seeks = DEFAULT_SEEKS,
3007 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
3008 SHRINKER_NONSLAB,
3009};
3010
3011#ifdef CONFIG_DEBUG_FS
3012static int split_huge_pages_set(void *data, u64 val)
3013{
3014 struct zone *zone;
3015 struct page *page;
3016 unsigned long pfn, max_zone_pfn;
3017 unsigned long total = 0, split = 0;
3018
3019 if (val != 1)
3020 return -EINVAL;
3021
3022 for_each_populated_zone(zone) {
3023 max_zone_pfn = zone_end_pfn(zone);
3024 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3025 if (!pfn_valid(pfn))
3026 continue;
3027
3028 page = pfn_to_page(pfn);
3029 if (!get_page_unless_zero(page))
3030 continue;
3031
3032 if (zone != page_zone(page))
3033 goto next;
3034
3035 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
3036 goto next;
3037
3038 total++;
3039 lock_page(page);
3040 if (!split_huge_page(page))
3041 split++;
3042 unlock_page(page);
3043next:
3044 put_page(page);
3045 }
3046 }
3047
3048 pr_info("%lu of %lu THP split\n", split, total);
3049
3050 return 0;
3051}
3052DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3053 "%llu\n");
3054
3055static int __init split_huge_pages_debugfs(void)
3056{
3057 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3058 &split_huge_pages_fops);
3059 return 0;
3060}
3061late_initcall(split_huge_pages_debugfs);
3062#endif
3063
3064#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3065void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3066 struct page *page)
3067{
3068 struct vm_area_struct *vma = pvmw->vma;
3069 struct mm_struct *mm = vma->vm_mm;
3070 unsigned long address = pvmw->address;
3071 pmd_t pmdval;
3072 swp_entry_t entry;
3073 pmd_t pmdswp;
3074
3075 if (!(pvmw->pmd && !pvmw->pte))
3076 return;
3077
3078 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3079 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3080 if (pmd_dirty(pmdval))
3081 set_page_dirty(page);
3082 entry = make_migration_entry(page, pmd_write(pmdval));
3083 pmdswp = swp_entry_to_pmd(entry);
3084 if (pmd_soft_dirty(pmdval))
3085 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3086 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3087 page_remove_rmap(page, true);
3088 put_page(page);
3089}
3090
3091void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3092{
3093 struct vm_area_struct *vma = pvmw->vma;
3094 struct mm_struct *mm = vma->vm_mm;
3095 unsigned long address = pvmw->address;
3096 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3097 pmd_t pmde;
3098 swp_entry_t entry;
3099
3100 if (!(pvmw->pmd && !pvmw->pte))
3101 return;
3102
3103 entry = pmd_to_swp_entry(*pvmw->pmd);
3104 get_page(new);
3105 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3106 if (pmd_swp_soft_dirty(*pvmw->pmd))
3107 pmde = pmd_mksoft_dirty(pmde);
3108 if (is_write_migration_entry(entry))
3109 pmde = maybe_pmd_mkwrite(pmde, vma);
3110
3111 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3112 if (PageAnon(new))
3113 page_add_anon_rmap(new, vma, mmun_start, true);
3114 else
3115 page_add_file_rmap(new, true);
3116 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3117 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3118 mlock_vma_page(new);
3119 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3120}
3121#endif