blob: e9d9a8c113a4ce3c8433c321f0d11c2a8c0844bc [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/compiler.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/memblock.h>
20#include <linux/sysfs.h>
21#include <linux/slab.h>
22#include <linux/mmdebug.h>
23#include <linux/sched/signal.h>
24#include <linux/rmap.h>
25#include <linux/string_helpers.h>
26#include <linux/swap.h>
27#include <linux/swapops.h>
28#include <linux/jhash.h>
29#include <linux/numa.h>
30#include <linux/llist.h>
31
32#include <asm/page.h>
33#include <asm/pgtable.h>
34#include <asm/tlb.h>
35
36#include <linux/io.h>
37#include <linux/hugetlb.h>
38#include <linux/hugetlb_cgroup.h>
39#include <linux/node.h>
40#include <linux/page_owner.h>
41#include "internal.h"
42
43int hugetlb_max_hstate __read_mostly;
44unsigned int default_hstate_idx;
45struct hstate hstates[HUGE_MAX_HSTATE];
46/*
47 * Minimum page order among possible hugepage sizes, set to a proper value
48 * at boot time.
49 */
50static unsigned int minimum_order __read_mostly = UINT_MAX;
51
52__initdata LIST_HEAD(huge_boot_pages);
53
54/* for command line parsing */
55static struct hstate * __initdata parsed_hstate;
56static unsigned long __initdata default_hstate_max_huge_pages;
57static unsigned long __initdata default_hstate_size;
58static bool __initdata parsed_valid_hugepagesz = true;
59
60/*
61 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
62 * free_huge_pages, and surplus_huge_pages.
63 */
64DEFINE_SPINLOCK(hugetlb_lock);
65
66/*
67 * Serializes faults on the same logical page. This is used to
68 * prevent spurious OOMs when the hugepage pool is fully utilized.
69 */
70static int num_fault_mutexes;
71struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
72
73static inline bool PageHugeFreed(struct page *head)
74{
75 return page_private(head + 4) == -1UL;
76}
77
78static inline void SetPageHugeFreed(struct page *head)
79{
80 set_page_private(head + 4, -1UL);
81}
82
83static inline void ClearPageHugeFreed(struct page *head)
84{
85 set_page_private(head + 4, 0);
86}
87
88/* Forward declaration */
89static int hugetlb_acct_memory(struct hstate *h, long delta);
90
91static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
92{
93 bool free = (spool->count == 0) && (spool->used_hpages == 0);
94
95 spin_unlock(&spool->lock);
96
97 /* If no pages are used, and no other handles to the subpool
98 * remain, give up any reservations mased on minimum size and
99 * free the subpool */
100 if (free) {
101 if (spool->min_hpages != -1)
102 hugetlb_acct_memory(spool->hstate,
103 -spool->min_hpages);
104 kfree(spool);
105 }
106}
107
108struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
109 long min_hpages)
110{
111 struct hugepage_subpool *spool;
112
113 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
114 if (!spool)
115 return NULL;
116
117 spin_lock_init(&spool->lock);
118 spool->count = 1;
119 spool->max_hpages = max_hpages;
120 spool->hstate = h;
121 spool->min_hpages = min_hpages;
122
123 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
124 kfree(spool);
125 return NULL;
126 }
127 spool->rsv_hpages = min_hpages;
128
129 return spool;
130}
131
132void hugepage_put_subpool(struct hugepage_subpool *spool)
133{
134 spin_lock(&spool->lock);
135 BUG_ON(!spool->count);
136 spool->count--;
137 unlock_or_release_subpool(spool);
138}
139
140/*
141 * Subpool accounting for allocating and reserving pages.
142 * Return -ENOMEM if there are not enough resources to satisfy the
143 * the request. Otherwise, return the number of pages by which the
144 * global pools must be adjusted (upward). The returned value may
145 * only be different than the passed value (delta) in the case where
146 * a subpool minimum size must be manitained.
147 */
148static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
149 long delta)
150{
151 long ret = delta;
152
153 if (!spool)
154 return ret;
155
156 spin_lock(&spool->lock);
157
158 if (spool->max_hpages != -1) { /* maximum size accounting */
159 if ((spool->used_hpages + delta) <= spool->max_hpages)
160 spool->used_hpages += delta;
161 else {
162 ret = -ENOMEM;
163 goto unlock_ret;
164 }
165 }
166
167 /* minimum size accounting */
168 if (spool->min_hpages != -1 && spool->rsv_hpages) {
169 if (delta > spool->rsv_hpages) {
170 /*
171 * Asking for more reserves than those already taken on
172 * behalf of subpool. Return difference.
173 */
174 ret = delta - spool->rsv_hpages;
175 spool->rsv_hpages = 0;
176 } else {
177 ret = 0; /* reserves already accounted for */
178 spool->rsv_hpages -= delta;
179 }
180 }
181
182unlock_ret:
183 spin_unlock(&spool->lock);
184 return ret;
185}
186
187/*
188 * Subpool accounting for freeing and unreserving pages.
189 * Return the number of global page reservations that must be dropped.
190 * The return value may only be different than the passed value (delta)
191 * in the case where a subpool minimum size must be maintained.
192 */
193static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
194 long delta)
195{
196 long ret = delta;
197
198 if (!spool)
199 return delta;
200
201 spin_lock(&spool->lock);
202
203 if (spool->max_hpages != -1) /* maximum size accounting */
204 spool->used_hpages -= delta;
205
206 /* minimum size accounting */
207 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
208 if (spool->rsv_hpages + delta <= spool->min_hpages)
209 ret = 0;
210 else
211 ret = spool->rsv_hpages + delta - spool->min_hpages;
212
213 spool->rsv_hpages += delta;
214 if (spool->rsv_hpages > spool->min_hpages)
215 spool->rsv_hpages = spool->min_hpages;
216 }
217
218 /*
219 * If hugetlbfs_put_super couldn't free spool due to an outstanding
220 * quota reference, free it now.
221 */
222 unlock_or_release_subpool(spool);
223
224 return ret;
225}
226
227static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
228{
229 return HUGETLBFS_SB(inode->i_sb)->spool;
230}
231
232static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
233{
234 return subpool_inode(file_inode(vma->vm_file));
235}
236
237/*
238 * Region tracking -- allows tracking of reservations and instantiated pages
239 * across the pages in a mapping.
240 *
241 * The region data structures are embedded into a resv_map and protected
242 * by a resv_map's lock. The set of regions within the resv_map represent
243 * reservations for huge pages, or huge pages that have already been
244 * instantiated within the map. The from and to elements are huge page
245 * indicies into the associated mapping. from indicates the starting index
246 * of the region. to represents the first index past the end of the region.
247 *
248 * For example, a file region structure with from == 0 and to == 4 represents
249 * four huge pages in a mapping. It is important to note that the to element
250 * represents the first element past the end of the region. This is used in
251 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
252 *
253 * Interval notation of the form [from, to) will be used to indicate that
254 * the endpoint from is inclusive and to is exclusive.
255 */
256struct file_region {
257 struct list_head link;
258 long from;
259 long to;
260};
261
262/*
263 * Add the huge page range represented by [f, t) to the reserve
264 * map. In the normal case, existing regions will be expanded
265 * to accommodate the specified range. Sufficient regions should
266 * exist for expansion due to the previous call to region_chg
267 * with the same range. However, it is possible that region_del
268 * could have been called after region_chg and modifed the map
269 * in such a way that no region exists to be expanded. In this
270 * case, pull a region descriptor from the cache associated with
271 * the map and use that for the new range.
272 *
273 * Return the number of new huge pages added to the map. This
274 * number is greater than or equal to zero.
275 */
276static long region_add(struct resv_map *resv, long f, long t)
277{
278 struct list_head *head = &resv->regions;
279 struct file_region *rg, *nrg, *trg;
280 long add = 0;
281
282 spin_lock(&resv->lock);
283 /* Locate the region we are either in or before. */
284 list_for_each_entry(rg, head, link)
285 if (f <= rg->to)
286 break;
287
288 /*
289 * If no region exists which can be expanded to include the
290 * specified range, the list must have been modified by an
291 * interleving call to region_del(). Pull a region descriptor
292 * from the cache and use it for this range.
293 */
294 if (&rg->link == head || t < rg->from) {
295 VM_BUG_ON(resv->region_cache_count <= 0);
296
297 resv->region_cache_count--;
298 nrg = list_first_entry(&resv->region_cache, struct file_region,
299 link);
300 list_del(&nrg->link);
301
302 nrg->from = f;
303 nrg->to = t;
304 list_add(&nrg->link, rg->link.prev);
305
306 add += t - f;
307 goto out_locked;
308 }
309
310 /* Round our left edge to the current segment if it encloses us. */
311 if (f > rg->from)
312 f = rg->from;
313
314 /* Check for and consume any regions we now overlap with. */
315 nrg = rg;
316 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
317 if (&rg->link == head)
318 break;
319 if (rg->from > t)
320 break;
321
322 /* If this area reaches higher then extend our area to
323 * include it completely. If this is not the first area
324 * which we intend to reuse, free it. */
325 if (rg->to > t)
326 t = rg->to;
327 if (rg != nrg) {
328 /* Decrement return value by the deleted range.
329 * Another range will span this area so that by
330 * end of routine add will be >= zero
331 */
332 add -= (rg->to - rg->from);
333 list_del(&rg->link);
334 kfree(rg);
335 }
336 }
337
338 add += (nrg->from - f); /* Added to beginning of region */
339 nrg->from = f;
340 add += t - nrg->to; /* Added to end of region */
341 nrg->to = t;
342
343out_locked:
344 resv->adds_in_progress--;
345 spin_unlock(&resv->lock);
346 VM_BUG_ON(add < 0);
347 return add;
348}
349
350/*
351 * Examine the existing reserve map and determine how many
352 * huge pages in the specified range [f, t) are NOT currently
353 * represented. This routine is called before a subsequent
354 * call to region_add that will actually modify the reserve
355 * map to add the specified range [f, t). region_chg does
356 * not change the number of huge pages represented by the
357 * map. However, if the existing regions in the map can not
358 * be expanded to represent the new range, a new file_region
359 * structure is added to the map as a placeholder. This is
360 * so that the subsequent region_add call will have all the
361 * regions it needs and will not fail.
362 *
363 * Upon entry, region_chg will also examine the cache of region descriptors
364 * associated with the map. If there are not enough descriptors cached, one
365 * will be allocated for the in progress add operation.
366 *
367 * Returns the number of huge pages that need to be added to the existing
368 * reservation map for the range [f, t). This number is greater or equal to
369 * zero. -ENOMEM is returned if a new file_region structure or cache entry
370 * is needed and can not be allocated.
371 */
372static long region_chg(struct resv_map *resv, long f, long t)
373{
374 struct list_head *head = &resv->regions;
375 struct file_region *rg, *nrg = NULL;
376 long chg = 0;
377
378retry:
379 spin_lock(&resv->lock);
380retry_locked:
381 resv->adds_in_progress++;
382
383 /*
384 * Check for sufficient descriptors in the cache to accommodate
385 * the number of in progress add operations.
386 */
387 if (resv->adds_in_progress > resv->region_cache_count) {
388 struct file_region *trg;
389
390 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
391 /* Must drop lock to allocate a new descriptor. */
392 resv->adds_in_progress--;
393 spin_unlock(&resv->lock);
394
395 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
396 if (!trg) {
397 kfree(nrg);
398 return -ENOMEM;
399 }
400
401 spin_lock(&resv->lock);
402 list_add(&trg->link, &resv->region_cache);
403 resv->region_cache_count++;
404 goto retry_locked;
405 }
406
407 /* Locate the region we are before or in. */
408 list_for_each_entry(rg, head, link)
409 if (f <= rg->to)
410 break;
411
412 /* If we are below the current region then a new region is required.
413 * Subtle, allocate a new region at the position but make it zero
414 * size such that we can guarantee to record the reservation. */
415 if (&rg->link == head || t < rg->from) {
416 if (!nrg) {
417 resv->adds_in_progress--;
418 spin_unlock(&resv->lock);
419 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
420 if (!nrg)
421 return -ENOMEM;
422
423 nrg->from = f;
424 nrg->to = f;
425 INIT_LIST_HEAD(&nrg->link);
426 goto retry;
427 }
428
429 list_add(&nrg->link, rg->link.prev);
430 chg = t - f;
431 goto out_nrg;
432 }
433
434 /* Round our left edge to the current segment if it encloses us. */
435 if (f > rg->from)
436 f = rg->from;
437 chg = t - f;
438
439 /* Check for and consume any regions we now overlap with. */
440 list_for_each_entry(rg, rg->link.prev, link) {
441 if (&rg->link == head)
442 break;
443 if (rg->from > t)
444 goto out;
445
446 /* We overlap with this area, if it extends further than
447 * us then we must extend ourselves. Account for its
448 * existing reservation. */
449 if (rg->to > t) {
450 chg += rg->to - t;
451 t = rg->to;
452 }
453 chg -= rg->to - rg->from;
454 }
455
456out:
457 spin_unlock(&resv->lock);
458 /* We already know we raced and no longer need the new region */
459 kfree(nrg);
460 return chg;
461out_nrg:
462 spin_unlock(&resv->lock);
463 return chg;
464}
465
466/*
467 * Abort the in progress add operation. The adds_in_progress field
468 * of the resv_map keeps track of the operations in progress between
469 * calls to region_chg and region_add. Operations are sometimes
470 * aborted after the call to region_chg. In such cases, region_abort
471 * is called to decrement the adds_in_progress counter.
472 *
473 * NOTE: The range arguments [f, t) are not needed or used in this
474 * routine. They are kept to make reading the calling code easier as
475 * arguments will match the associated region_chg call.
476 */
477static void region_abort(struct resv_map *resv, long f, long t)
478{
479 spin_lock(&resv->lock);
480 VM_BUG_ON(!resv->region_cache_count);
481 resv->adds_in_progress--;
482 spin_unlock(&resv->lock);
483}
484
485/*
486 * Delete the specified range [f, t) from the reserve map. If the
487 * t parameter is LONG_MAX, this indicates that ALL regions after f
488 * should be deleted. Locate the regions which intersect [f, t)
489 * and either trim, delete or split the existing regions.
490 *
491 * Returns the number of huge pages deleted from the reserve map.
492 * In the normal case, the return value is zero or more. In the
493 * case where a region must be split, a new region descriptor must
494 * be allocated. If the allocation fails, -ENOMEM will be returned.
495 * NOTE: If the parameter t == LONG_MAX, then we will never split
496 * a region and possibly return -ENOMEM. Callers specifying
497 * t == LONG_MAX do not need to check for -ENOMEM error.
498 */
499static long region_del(struct resv_map *resv, long f, long t)
500{
501 struct list_head *head = &resv->regions;
502 struct file_region *rg, *trg;
503 struct file_region *nrg = NULL;
504 long del = 0;
505
506retry:
507 spin_lock(&resv->lock);
508 list_for_each_entry_safe(rg, trg, head, link) {
509 /*
510 * Skip regions before the range to be deleted. file_region
511 * ranges are normally of the form [from, to). However, there
512 * may be a "placeholder" entry in the map which is of the form
513 * (from, to) with from == to. Check for placeholder entries
514 * at the beginning of the range to be deleted.
515 */
516 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
517 continue;
518
519 if (rg->from >= t)
520 break;
521
522 if (f > rg->from && t < rg->to) { /* Must split region */
523 /*
524 * Check for an entry in the cache before dropping
525 * lock and attempting allocation.
526 */
527 if (!nrg &&
528 resv->region_cache_count > resv->adds_in_progress) {
529 nrg = list_first_entry(&resv->region_cache,
530 struct file_region,
531 link);
532 list_del(&nrg->link);
533 resv->region_cache_count--;
534 }
535
536 if (!nrg) {
537 spin_unlock(&resv->lock);
538 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
539 if (!nrg)
540 return -ENOMEM;
541 goto retry;
542 }
543
544 del += t - f;
545
546 /* New entry for end of split region */
547 nrg->from = t;
548 nrg->to = rg->to;
549 INIT_LIST_HEAD(&nrg->link);
550
551 /* Original entry is trimmed */
552 rg->to = f;
553
554 list_add(&nrg->link, &rg->link);
555 nrg = NULL;
556 break;
557 }
558
559 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
560 del += rg->to - rg->from;
561 list_del(&rg->link);
562 kfree(rg);
563 continue;
564 }
565
566 if (f <= rg->from) { /* Trim beginning of region */
567 del += t - rg->from;
568 rg->from = t;
569 } else { /* Trim end of region */
570 del += rg->to - f;
571 rg->to = f;
572 }
573 }
574
575 spin_unlock(&resv->lock);
576 kfree(nrg);
577 return del;
578}
579
580/*
581 * A rare out of memory error was encountered which prevented removal of
582 * the reserve map region for a page. The huge page itself was free'ed
583 * and removed from the page cache. This routine will adjust the subpool
584 * usage count, and the global reserve count if needed. By incrementing
585 * these counts, the reserve map entry which could not be deleted will
586 * appear as a "reserved" entry instead of simply dangling with incorrect
587 * counts.
588 */
589void hugetlb_fix_reserve_counts(struct inode *inode)
590{
591 struct hugepage_subpool *spool = subpool_inode(inode);
592 long rsv_adjust;
593 bool reserved = false;
594
595 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
596 if (rsv_adjust > 0) {
597 struct hstate *h = hstate_inode(inode);
598
599 if (!hugetlb_acct_memory(h, 1))
600 reserved = true;
601 } else if (!rsv_adjust) {
602 reserved = true;
603 }
604
605 if (!reserved)
606 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
607}
608
609/*
610 * Count and return the number of huge pages in the reserve map
611 * that intersect with the range [f, t).
612 */
613static long region_count(struct resv_map *resv, long f, long t)
614{
615 struct list_head *head = &resv->regions;
616 struct file_region *rg;
617 long chg = 0;
618
619 spin_lock(&resv->lock);
620 /* Locate each segment we overlap with, and count that overlap. */
621 list_for_each_entry(rg, head, link) {
622 long seg_from;
623 long seg_to;
624
625 if (rg->to <= f)
626 continue;
627 if (rg->from >= t)
628 break;
629
630 seg_from = max(rg->from, f);
631 seg_to = min(rg->to, t);
632
633 chg += seg_to - seg_from;
634 }
635 spin_unlock(&resv->lock);
636
637 return chg;
638}
639
640/*
641 * Convert the address within this vma to the page offset within
642 * the mapping, in pagecache page units; huge pages here.
643 */
644static pgoff_t vma_hugecache_offset(struct hstate *h,
645 struct vm_area_struct *vma, unsigned long address)
646{
647 return ((address - vma->vm_start) >> huge_page_shift(h)) +
648 (vma->vm_pgoff >> huge_page_order(h));
649}
650
651pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
652 unsigned long address)
653{
654 return vma_hugecache_offset(hstate_vma(vma), vma, address);
655}
656EXPORT_SYMBOL_GPL(linear_hugepage_index);
657
658/*
659 * Return the size of the pages allocated when backing a VMA. In the majority
660 * cases this will be same size as used by the page table entries.
661 */
662unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
663{
664 if (vma->vm_ops && vma->vm_ops->pagesize)
665 return vma->vm_ops->pagesize(vma);
666 return PAGE_SIZE;
667}
668EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
669
670/*
671 * Return the page size being used by the MMU to back a VMA. In the majority
672 * of cases, the page size used by the kernel matches the MMU size. On
673 * architectures where it differs, an architecture-specific 'strong'
674 * version of this symbol is required.
675 */
676__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
677{
678 return vma_kernel_pagesize(vma);
679}
680
681/*
682 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
683 * bits of the reservation map pointer, which are always clear due to
684 * alignment.
685 */
686#define HPAGE_RESV_OWNER (1UL << 0)
687#define HPAGE_RESV_UNMAPPED (1UL << 1)
688#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
689
690/*
691 * These helpers are used to track how many pages are reserved for
692 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
693 * is guaranteed to have their future faults succeed.
694 *
695 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
696 * the reserve counters are updated with the hugetlb_lock held. It is safe
697 * to reset the VMA at fork() time as it is not in use yet and there is no
698 * chance of the global counters getting corrupted as a result of the values.
699 *
700 * The private mapping reservation is represented in a subtly different
701 * manner to a shared mapping. A shared mapping has a region map associated
702 * with the underlying file, this region map represents the backing file
703 * pages which have ever had a reservation assigned which this persists even
704 * after the page is instantiated. A private mapping has a region map
705 * associated with the original mmap which is attached to all VMAs which
706 * reference it, this region map represents those offsets which have consumed
707 * reservation ie. where pages have been instantiated.
708 */
709static unsigned long get_vma_private_data(struct vm_area_struct *vma)
710{
711 return (unsigned long)vma->vm_private_data;
712}
713
714static void set_vma_private_data(struct vm_area_struct *vma,
715 unsigned long value)
716{
717 vma->vm_private_data = (void *)value;
718}
719
720struct resv_map *resv_map_alloc(void)
721{
722 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
723 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
724
725 if (!resv_map || !rg) {
726 kfree(resv_map);
727 kfree(rg);
728 return NULL;
729 }
730
731 kref_init(&resv_map->refs);
732 spin_lock_init(&resv_map->lock);
733 INIT_LIST_HEAD(&resv_map->regions);
734
735 resv_map->adds_in_progress = 0;
736
737 INIT_LIST_HEAD(&resv_map->region_cache);
738 list_add(&rg->link, &resv_map->region_cache);
739 resv_map->region_cache_count = 1;
740
741 return resv_map;
742}
743
744void resv_map_release(struct kref *ref)
745{
746 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
747 struct list_head *head = &resv_map->region_cache;
748 struct file_region *rg, *trg;
749
750 /* Clear out any active regions before we release the map. */
751 region_del(resv_map, 0, LONG_MAX);
752
753 /* ... and any entries left in the cache */
754 list_for_each_entry_safe(rg, trg, head, link) {
755 list_del(&rg->link);
756 kfree(rg);
757 }
758
759 VM_BUG_ON(resv_map->adds_in_progress);
760
761 kfree(resv_map);
762}
763
764static inline struct resv_map *inode_resv_map(struct inode *inode)
765{
766 /*
767 * At inode evict time, i_mapping may not point to the original
768 * address space within the inode. This original address space
769 * contains the pointer to the resv_map. So, always use the
770 * address space embedded within the inode.
771 * The VERY common case is inode->mapping == &inode->i_data but,
772 * this may not be true for device special inodes.
773 */
774 return (struct resv_map *)(&inode->i_data)->private_data;
775}
776
777static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
778{
779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780 if (vma->vm_flags & VM_MAYSHARE) {
781 struct address_space *mapping = vma->vm_file->f_mapping;
782 struct inode *inode = mapping->host;
783
784 return inode_resv_map(inode);
785
786 } else {
787 return (struct resv_map *)(get_vma_private_data(vma) &
788 ~HPAGE_RESV_MASK);
789 }
790}
791
792static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
793{
794 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
795 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
796
797 set_vma_private_data(vma, (get_vma_private_data(vma) &
798 HPAGE_RESV_MASK) | (unsigned long)map);
799}
800
801static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
802{
803 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
804 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
805
806 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
807}
808
809static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
810{
811 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
812
813 return (get_vma_private_data(vma) & flag) != 0;
814}
815
816/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
817void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
818{
819 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
820 if (!(vma->vm_flags & VM_MAYSHARE))
821 vma->vm_private_data = (void *)0;
822}
823
824/* Returns true if the VMA has associated reserve pages */
825static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
826{
827 if (vma->vm_flags & VM_NORESERVE) {
828 /*
829 * This address is already reserved by other process(chg == 0),
830 * so, we should decrement reserved count. Without decrementing,
831 * reserve count remains after releasing inode, because this
832 * allocated page will go into page cache and is regarded as
833 * coming from reserved pool in releasing step. Currently, we
834 * don't have any other solution to deal with this situation
835 * properly, so add work-around here.
836 */
837 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
838 return true;
839 else
840 return false;
841 }
842
843 /* Shared mappings always use reserves */
844 if (vma->vm_flags & VM_MAYSHARE) {
845 /*
846 * We know VM_NORESERVE is not set. Therefore, there SHOULD
847 * be a region map for all pages. The only situation where
848 * there is no region map is if a hole was punched via
849 * fallocate. In this case, there really are no reverves to
850 * use. This situation is indicated if chg != 0.
851 */
852 if (chg)
853 return false;
854 else
855 return true;
856 }
857
858 /*
859 * Only the process that called mmap() has reserves for
860 * private mappings.
861 */
862 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
863 /*
864 * Like the shared case above, a hole punch or truncate
865 * could have been performed on the private mapping.
866 * Examine the value of chg to determine if reserves
867 * actually exist or were previously consumed.
868 * Very Subtle - The value of chg comes from a previous
869 * call to vma_needs_reserves(). The reserve map for
870 * private mappings has different (opposite) semantics
871 * than that of shared mappings. vma_needs_reserves()
872 * has already taken this difference in semantics into
873 * account. Therefore, the meaning of chg is the same
874 * as in the shared case above. Code could easily be
875 * combined, but keeping it separate draws attention to
876 * subtle differences.
877 */
878 if (chg)
879 return false;
880 else
881 return true;
882 }
883
884 return false;
885}
886
887static void enqueue_huge_page(struct hstate *h, struct page *page)
888{
889 int nid = page_to_nid(page);
890 list_move(&page->lru, &h->hugepage_freelists[nid]);
891 h->free_huge_pages++;
892 h->free_huge_pages_node[nid]++;
893 SetPageHugeFreed(page);
894}
895
896static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
897{
898 struct page *page;
899
900 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
901 if (!PageHWPoison(page))
902 break;
903 /*
904 * if 'non-isolated free hugepage' not found on the list,
905 * the allocation fails.
906 */
907 if (&h->hugepage_freelists[nid] == &page->lru)
908 return NULL;
909 list_move(&page->lru, &h->hugepage_activelist);
910 set_page_refcounted(page);
911 ClearPageHugeFreed(page);
912 h->free_huge_pages--;
913 h->free_huge_pages_node[nid]--;
914 return page;
915}
916
917static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
918 nodemask_t *nmask)
919{
920 unsigned int cpuset_mems_cookie;
921 struct zonelist *zonelist;
922 struct zone *zone;
923 struct zoneref *z;
924 int node = NUMA_NO_NODE;
925
926 zonelist = node_zonelist(nid, gfp_mask);
927
928retry_cpuset:
929 cpuset_mems_cookie = read_mems_allowed_begin();
930 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
931 struct page *page;
932
933 if (!cpuset_zone_allowed(zone, gfp_mask))
934 continue;
935 /*
936 * no need to ask again on the same node. Pool is node rather than
937 * zone aware
938 */
939 if (zone_to_nid(zone) == node)
940 continue;
941 node = zone_to_nid(zone);
942
943 page = dequeue_huge_page_node_exact(h, node);
944 if (page)
945 return page;
946 }
947 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
948 goto retry_cpuset;
949
950 return NULL;
951}
952
953/* Movability of hugepages depends on migration support. */
954static inline gfp_t htlb_alloc_mask(struct hstate *h)
955{
956 if (hugepage_movable_supported(h))
957 return GFP_HIGHUSER_MOVABLE;
958 else
959 return GFP_HIGHUSER;
960}
961
962static struct page *dequeue_huge_page_vma(struct hstate *h,
963 struct vm_area_struct *vma,
964 unsigned long address, int avoid_reserve,
965 long chg)
966{
967 struct page *page;
968 struct mempolicy *mpol;
969 gfp_t gfp_mask;
970 nodemask_t *nodemask;
971 int nid;
972
973 /*
974 * A child process with MAP_PRIVATE mappings created by their parent
975 * have no page reserves. This check ensures that reservations are
976 * not "stolen". The child may still get SIGKILLed
977 */
978 if (!vma_has_reserves(vma, chg) &&
979 h->free_huge_pages - h->resv_huge_pages == 0)
980 goto err;
981
982 /* If reserves cannot be used, ensure enough pages are in the pool */
983 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
984 goto err;
985
986 gfp_mask = htlb_alloc_mask(h);
987 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
988 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
989 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
990 SetPagePrivate(page);
991 h->resv_huge_pages--;
992 }
993
994 mpol_cond_put(mpol);
995 return page;
996
997err:
998 return NULL;
999}
1000
1001/*
1002 * common helper functions for hstate_next_node_to_{alloc|free}.
1003 * We may have allocated or freed a huge page based on a different
1004 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1005 * be outside of *nodes_allowed. Ensure that we use an allowed
1006 * node for alloc or free.
1007 */
1008static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1009{
1010 nid = next_node_in(nid, *nodes_allowed);
1011 VM_BUG_ON(nid >= MAX_NUMNODES);
1012
1013 return nid;
1014}
1015
1016static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1017{
1018 if (!node_isset(nid, *nodes_allowed))
1019 nid = next_node_allowed(nid, nodes_allowed);
1020 return nid;
1021}
1022
1023/*
1024 * returns the previously saved node ["this node"] from which to
1025 * allocate a persistent huge page for the pool and advance the
1026 * next node from which to allocate, handling wrap at end of node
1027 * mask.
1028 */
1029static int hstate_next_node_to_alloc(struct hstate *h,
1030 nodemask_t *nodes_allowed)
1031{
1032 int nid;
1033
1034 VM_BUG_ON(!nodes_allowed);
1035
1036 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1037 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1038
1039 return nid;
1040}
1041
1042/*
1043 * helper for free_pool_huge_page() - return the previously saved
1044 * node ["this node"] from which to free a huge page. Advance the
1045 * next node id whether or not we find a free huge page to free so
1046 * that the next attempt to free addresses the next node.
1047 */
1048static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1049{
1050 int nid;
1051
1052 VM_BUG_ON(!nodes_allowed);
1053
1054 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1055 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1056
1057 return nid;
1058}
1059
1060#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1061 for (nr_nodes = nodes_weight(*mask); \
1062 nr_nodes > 0 && \
1063 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1064 nr_nodes--)
1065
1066#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1067 for (nr_nodes = nodes_weight(*mask); \
1068 nr_nodes > 0 && \
1069 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1070 nr_nodes--)
1071
1072#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1073static void destroy_compound_gigantic_page(struct page *page,
1074 unsigned int order)
1075{
1076 int i;
1077 int nr_pages = 1 << order;
1078 struct page *p = page + 1;
1079
1080 atomic_set(compound_mapcount_ptr(page), 0);
1081 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1082 clear_compound_head(p);
1083 set_page_refcounted(p);
1084 }
1085
1086 set_compound_order(page, 0);
1087 __ClearPageHead(page);
1088}
1089
1090static void free_gigantic_page(struct page *page, unsigned int order)
1091{
1092 free_contig_range(page_to_pfn(page), 1 << order);
1093}
1094
1095#ifdef CONFIG_CONTIG_ALLOC
1096static int __alloc_gigantic_page(unsigned long start_pfn,
1097 unsigned long nr_pages, gfp_t gfp_mask)
1098{
1099 unsigned long end_pfn = start_pfn + nr_pages;
1100 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1101 gfp_mask);
1102}
1103
1104static bool pfn_range_valid_gigantic(struct zone *z,
1105 unsigned long start_pfn, unsigned long nr_pages)
1106{
1107 unsigned long i, end_pfn = start_pfn + nr_pages;
1108 struct page *page;
1109
1110 for (i = start_pfn; i < end_pfn; i++) {
1111 page = pfn_to_online_page(i);
1112 if (!page)
1113 return false;
1114
1115 if (page_zone(page) != z)
1116 return false;
1117
1118 if (PageReserved(page))
1119 return false;
1120
1121 if (page_count(page) > 0)
1122 return false;
1123
1124 if (PageHuge(page))
1125 return false;
1126 }
1127
1128 return true;
1129}
1130
1131static bool zone_spans_last_pfn(const struct zone *zone,
1132 unsigned long start_pfn, unsigned long nr_pages)
1133{
1134 unsigned long last_pfn = start_pfn + nr_pages - 1;
1135 return zone_spans_pfn(zone, last_pfn);
1136}
1137
1138static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1139 int nid, nodemask_t *nodemask)
1140{
1141 unsigned int order = huge_page_order(h);
1142 unsigned long nr_pages = 1 << order;
1143 unsigned long ret, pfn, flags;
1144 struct zonelist *zonelist;
1145 struct zone *zone;
1146 struct zoneref *z;
1147
1148 zonelist = node_zonelist(nid, gfp_mask);
1149 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1150 spin_lock_irqsave(&zone->lock, flags);
1151
1152 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1153 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1154 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1155 /*
1156 * We release the zone lock here because
1157 * alloc_contig_range() will also lock the zone
1158 * at some point. If there's an allocation
1159 * spinning on this lock, it may win the race
1160 * and cause alloc_contig_range() to fail...
1161 */
1162 spin_unlock_irqrestore(&zone->lock, flags);
1163 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1164 if (!ret)
1165 return pfn_to_page(pfn);
1166 spin_lock_irqsave(&zone->lock, flags);
1167 }
1168 pfn += nr_pages;
1169 }
1170
1171 spin_unlock_irqrestore(&zone->lock, flags);
1172 }
1173
1174 return NULL;
1175}
1176
1177static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1178static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1179#else /* !CONFIG_CONTIG_ALLOC */
1180static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1181 int nid, nodemask_t *nodemask)
1182{
1183 return NULL;
1184}
1185#endif /* CONFIG_CONTIG_ALLOC */
1186
1187#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1188static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1189 int nid, nodemask_t *nodemask)
1190{
1191 return NULL;
1192}
1193static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1194static inline void destroy_compound_gigantic_page(struct page *page,
1195 unsigned int order) { }
1196#endif
1197
1198static void update_and_free_page(struct hstate *h, struct page *page)
1199{
1200 int i;
1201 struct page *subpage = page;
1202
1203 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1204 return;
1205
1206 h->nr_huge_pages--;
1207 h->nr_huge_pages_node[page_to_nid(page)]--;
1208 for (i = 0; i < pages_per_huge_page(h);
1209 i++, subpage = mem_map_next(subpage, page, i)) {
1210 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1211 1 << PG_referenced | 1 << PG_dirty |
1212 1 << PG_active | 1 << PG_private |
1213 1 << PG_writeback);
1214 }
1215 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1216 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1217 set_page_refcounted(page);
1218 if (hstate_is_gigantic(h)) {
1219 destroy_compound_gigantic_page(page, huge_page_order(h));
1220 free_gigantic_page(page, huge_page_order(h));
1221 } else {
1222 __free_pages(page, huge_page_order(h));
1223 }
1224}
1225
1226struct hstate *size_to_hstate(unsigned long size)
1227{
1228 struct hstate *h;
1229
1230 for_each_hstate(h) {
1231 if (huge_page_size(h) == size)
1232 return h;
1233 }
1234 return NULL;
1235}
1236
1237/*
1238 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1239 * to hstate->hugepage_activelist.)
1240 *
1241 * This function can be called for tail pages, but never returns true for them.
1242 */
1243bool page_huge_active(struct page *page)
1244{
1245 return PageHeadHuge(page) && PagePrivate(&page[1]);
1246}
1247
1248/* never called for tail page */
1249void set_page_huge_active(struct page *page)
1250{
1251 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1252 SetPagePrivate(&page[1]);
1253}
1254
1255static void clear_page_huge_active(struct page *page)
1256{
1257 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1258 ClearPagePrivate(&page[1]);
1259}
1260
1261/*
1262 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1263 * code
1264 */
1265static inline bool PageHugeTemporary(struct page *page)
1266{
1267 if (!PageHuge(page))
1268 return false;
1269
1270 return (unsigned long)page[2].mapping == -1U;
1271}
1272
1273static inline void SetPageHugeTemporary(struct page *page)
1274{
1275 page[2].mapping = (void *)-1U;
1276}
1277
1278static inline void ClearPageHugeTemporary(struct page *page)
1279{
1280 page[2].mapping = NULL;
1281}
1282
1283static void __free_huge_page(struct page *page)
1284{
1285 /*
1286 * Can't pass hstate in here because it is called from the
1287 * compound page destructor.
1288 */
1289 struct hstate *h = page_hstate(page);
1290 int nid = page_to_nid(page);
1291 struct hugepage_subpool *spool =
1292 (struct hugepage_subpool *)page_private(page);
1293 bool restore_reserve;
1294
1295 VM_BUG_ON_PAGE(page_count(page), page);
1296 VM_BUG_ON_PAGE(page_mapcount(page), page);
1297
1298 set_page_private(page, 0);
1299 page->mapping = NULL;
1300 restore_reserve = PagePrivate(page);
1301 ClearPagePrivate(page);
1302
1303 /*
1304 * If PagePrivate() was set on page, page allocation consumed a
1305 * reservation. If the page was associated with a subpool, there
1306 * would have been a page reserved in the subpool before allocation
1307 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1308 * reservtion, do not call hugepage_subpool_put_pages() as this will
1309 * remove the reserved page from the subpool.
1310 */
1311 if (!restore_reserve) {
1312 /*
1313 * A return code of zero implies that the subpool will be
1314 * under its minimum size if the reservation is not restored
1315 * after page is free. Therefore, force restore_reserve
1316 * operation.
1317 */
1318 if (hugepage_subpool_put_pages(spool, 1) == 0)
1319 restore_reserve = true;
1320 }
1321
1322 spin_lock(&hugetlb_lock);
1323 clear_page_huge_active(page);
1324 hugetlb_cgroup_uncharge_page(hstate_index(h),
1325 pages_per_huge_page(h), page);
1326 if (restore_reserve)
1327 h->resv_huge_pages++;
1328
1329 if (PageHugeTemporary(page)) {
1330 list_del(&page->lru);
1331 ClearPageHugeTemporary(page);
1332 update_and_free_page(h, page);
1333 } else if (h->surplus_huge_pages_node[nid]) {
1334 /* remove the page from active list */
1335 list_del(&page->lru);
1336 update_and_free_page(h, page);
1337 h->surplus_huge_pages--;
1338 h->surplus_huge_pages_node[nid]--;
1339 } else {
1340 arch_clear_hugepage_flags(page);
1341 enqueue_huge_page(h, page);
1342 }
1343 spin_unlock(&hugetlb_lock);
1344}
1345
1346/*
1347 * As free_huge_page() can be called from a non-task context, we have
1348 * to defer the actual freeing in a workqueue to prevent potential
1349 * hugetlb_lock deadlock.
1350 *
1351 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1352 * be freed and frees them one-by-one. As the page->mapping pointer is
1353 * going to be cleared in __free_huge_page() anyway, it is reused as the
1354 * llist_node structure of a lockless linked list of huge pages to be freed.
1355 */
1356static LLIST_HEAD(hpage_freelist);
1357
1358static void free_hpage_workfn(struct work_struct *work)
1359{
1360 struct llist_node *node;
1361 struct page *page;
1362
1363 node = llist_del_all(&hpage_freelist);
1364
1365 while (node) {
1366 page = container_of((struct address_space **)node,
1367 struct page, mapping);
1368 node = node->next;
1369 __free_huge_page(page);
1370 }
1371}
1372static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1373
1374void free_huge_page(struct page *page)
1375{
1376 /*
1377 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1378 */
1379 if (!in_task()) {
1380 /*
1381 * Only call schedule_work() if hpage_freelist is previously
1382 * empty. Otherwise, schedule_work() had been called but the
1383 * workfn hasn't retrieved the list yet.
1384 */
1385 if (llist_add((struct llist_node *)&page->mapping,
1386 &hpage_freelist))
1387 schedule_work(&free_hpage_work);
1388 return;
1389 }
1390
1391 __free_huge_page(page);
1392}
1393
1394static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1395{
1396 INIT_LIST_HEAD(&page->lru);
1397 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1398 spin_lock(&hugetlb_lock);
1399 set_hugetlb_cgroup(page, NULL);
1400 h->nr_huge_pages++;
1401 h->nr_huge_pages_node[nid]++;
1402 ClearPageHugeFreed(page);
1403 spin_unlock(&hugetlb_lock);
1404}
1405
1406static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1407{
1408 int i;
1409 int nr_pages = 1 << order;
1410 struct page *p = page + 1;
1411
1412 /* we rely on prep_new_huge_page to set the destructor */
1413 set_compound_order(page, order);
1414 __ClearPageReserved(page);
1415 __SetPageHead(page);
1416 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1417 /*
1418 * For gigantic hugepages allocated through bootmem at
1419 * boot, it's safer to be consistent with the not-gigantic
1420 * hugepages and clear the PG_reserved bit from all tail pages
1421 * too. Otherwse drivers using get_user_pages() to access tail
1422 * pages may get the reference counting wrong if they see
1423 * PG_reserved set on a tail page (despite the head page not
1424 * having PG_reserved set). Enforcing this consistency between
1425 * head and tail pages allows drivers to optimize away a check
1426 * on the head page when they need know if put_page() is needed
1427 * after get_user_pages().
1428 */
1429 __ClearPageReserved(p);
1430 set_page_count(p, 0);
1431 set_compound_head(p, page);
1432 }
1433 atomic_set(compound_mapcount_ptr(page), -1);
1434}
1435
1436/*
1437 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1438 * transparent huge pages. See the PageTransHuge() documentation for more
1439 * details.
1440 */
1441int PageHuge(struct page *page)
1442{
1443 if (!PageCompound(page))
1444 return 0;
1445
1446 page = compound_head(page);
1447 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1448}
1449EXPORT_SYMBOL_GPL(PageHuge);
1450
1451/*
1452 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1453 * normal or transparent huge pages.
1454 */
1455int PageHeadHuge(struct page *page_head)
1456{
1457 if (!PageHead(page_head))
1458 return 0;
1459
1460 return get_compound_page_dtor(page_head) == free_huge_page;
1461}
1462
1463pgoff_t hugetlb_basepage_index(struct page *page)
1464{
1465 struct page *page_head = compound_head(page);
1466 pgoff_t index = page_index(page_head);
1467 unsigned long compound_idx;
1468
1469 if (compound_order(page_head) >= MAX_ORDER)
1470 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1471 else
1472 compound_idx = page - page_head;
1473
1474 return (index << compound_order(page_head)) + compound_idx;
1475}
1476
1477static struct page *alloc_buddy_huge_page(struct hstate *h,
1478 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1479 nodemask_t *node_alloc_noretry)
1480{
1481 int order = huge_page_order(h);
1482 struct page *page;
1483 bool alloc_try_hard = true;
1484
1485 /*
1486 * By default we always try hard to allocate the page with
1487 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1488 * a loop (to adjust global huge page counts) and previous allocation
1489 * failed, do not continue to try hard on the same node. Use the
1490 * node_alloc_noretry bitmap to manage this state information.
1491 */
1492 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1493 alloc_try_hard = false;
1494 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1495 if (alloc_try_hard)
1496 gfp_mask |= __GFP_RETRY_MAYFAIL;
1497 if (nid == NUMA_NO_NODE)
1498 nid = numa_mem_id();
1499 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1500 if (page)
1501 __count_vm_event(HTLB_BUDDY_PGALLOC);
1502 else
1503 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1504
1505 /*
1506 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1507 * indicates an overall state change. Clear bit so that we resume
1508 * normal 'try hard' allocations.
1509 */
1510 if (node_alloc_noretry && page && !alloc_try_hard)
1511 node_clear(nid, *node_alloc_noretry);
1512
1513 /*
1514 * If we tried hard to get a page but failed, set bit so that
1515 * subsequent attempts will not try as hard until there is an
1516 * overall state change.
1517 */
1518 if (node_alloc_noretry && !page && alloc_try_hard)
1519 node_set(nid, *node_alloc_noretry);
1520
1521 return page;
1522}
1523
1524/*
1525 * Common helper to allocate a fresh hugetlb page. All specific allocators
1526 * should use this function to get new hugetlb pages
1527 */
1528static struct page *alloc_fresh_huge_page(struct hstate *h,
1529 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1530 nodemask_t *node_alloc_noretry)
1531{
1532 struct page *page;
1533
1534 if (hstate_is_gigantic(h))
1535 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1536 else
1537 page = alloc_buddy_huge_page(h, gfp_mask,
1538 nid, nmask, node_alloc_noretry);
1539 if (!page)
1540 return NULL;
1541
1542 if (hstate_is_gigantic(h))
1543 prep_compound_gigantic_page(page, huge_page_order(h));
1544 prep_new_huge_page(h, page, page_to_nid(page));
1545
1546 return page;
1547}
1548
1549/*
1550 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1551 * manner.
1552 */
1553static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1554 nodemask_t *node_alloc_noretry)
1555{
1556 struct page *page;
1557 int nr_nodes, node;
1558 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1559
1560 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1561 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1562 node_alloc_noretry);
1563 if (page)
1564 break;
1565 }
1566
1567 if (!page)
1568 return 0;
1569
1570 put_page(page); /* free it into the hugepage allocator */
1571
1572 return 1;
1573}
1574
1575/*
1576 * Free huge page from pool from next node to free.
1577 * Attempt to keep persistent huge pages more or less
1578 * balanced over allowed nodes.
1579 * Called with hugetlb_lock locked.
1580 */
1581static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1582 bool acct_surplus)
1583{
1584 int nr_nodes, node;
1585 int ret = 0;
1586
1587 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1588 /*
1589 * If we're returning unused surplus pages, only examine
1590 * nodes with surplus pages.
1591 */
1592 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1593 !list_empty(&h->hugepage_freelists[node])) {
1594 struct page *page =
1595 list_entry(h->hugepage_freelists[node].next,
1596 struct page, lru);
1597 list_del(&page->lru);
1598 h->free_huge_pages--;
1599 h->free_huge_pages_node[node]--;
1600 if (acct_surplus) {
1601 h->surplus_huge_pages--;
1602 h->surplus_huge_pages_node[node]--;
1603 }
1604 update_and_free_page(h, page);
1605 ret = 1;
1606 break;
1607 }
1608 }
1609
1610 return ret;
1611}
1612
1613/*
1614 * Dissolve a given free hugepage into free buddy pages. This function does
1615 * nothing for in-use hugepages and non-hugepages.
1616 * This function returns values like below:
1617 *
1618 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1619 * (allocated or reserved.)
1620 * 0: successfully dissolved free hugepages or the page is not a
1621 * hugepage (considered as already dissolved)
1622 */
1623int dissolve_free_huge_page(struct page *page)
1624{
1625 int rc = -EBUSY;
1626
1627retry:
1628 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1629 if (!PageHuge(page))
1630 return 0;
1631
1632 spin_lock(&hugetlb_lock);
1633 if (!PageHuge(page)) {
1634 rc = 0;
1635 goto out;
1636 }
1637
1638 if (!page_count(page)) {
1639 struct page *head = compound_head(page);
1640 struct hstate *h = page_hstate(head);
1641 int nid = page_to_nid(head);
1642 if (h->free_huge_pages - h->resv_huge_pages == 0)
1643 goto out;
1644
1645 /*
1646 * We should make sure that the page is already on the free list
1647 * when it is dissolved.
1648 */
1649 if (unlikely(!PageHugeFreed(head))) {
1650 spin_unlock(&hugetlb_lock);
1651 cond_resched();
1652
1653 /*
1654 * Theoretically, we should return -EBUSY when we
1655 * encounter this race. In fact, we have a chance
1656 * to successfully dissolve the page if we do a
1657 * retry. Because the race window is quite small.
1658 * If we seize this opportunity, it is an optimization
1659 * for increasing the success rate of dissolving page.
1660 */
1661 goto retry;
1662 }
1663
1664 /*
1665 * Move PageHWPoison flag from head page to the raw error page,
1666 * which makes any subpages rather than the error page reusable.
1667 */
1668 if (PageHWPoison(head) && page != head) {
1669 SetPageHWPoison(page);
1670 ClearPageHWPoison(head);
1671 }
1672 list_del(&head->lru);
1673 h->free_huge_pages--;
1674 h->free_huge_pages_node[nid]--;
1675 h->max_huge_pages--;
1676 update_and_free_page(h, head);
1677 rc = 0;
1678 }
1679out:
1680 spin_unlock(&hugetlb_lock);
1681 return rc;
1682}
1683
1684/*
1685 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1686 * make specified memory blocks removable from the system.
1687 * Note that this will dissolve a free gigantic hugepage completely, if any
1688 * part of it lies within the given range.
1689 * Also note that if dissolve_free_huge_page() returns with an error, all
1690 * free hugepages that were dissolved before that error are lost.
1691 */
1692int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1693{
1694 unsigned long pfn;
1695 struct page *page;
1696 int rc = 0;
1697
1698 if (!hugepages_supported())
1699 return rc;
1700
1701 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1702 page = pfn_to_page(pfn);
1703 rc = dissolve_free_huge_page(page);
1704 if (rc)
1705 break;
1706 }
1707
1708 return rc;
1709}
1710
1711/*
1712 * Allocates a fresh surplus page from the page allocator.
1713 */
1714static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1715 int nid, nodemask_t *nmask)
1716{
1717 struct page *page = NULL;
1718
1719 if (hstate_is_gigantic(h))
1720 return NULL;
1721
1722 spin_lock(&hugetlb_lock);
1723 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1724 goto out_unlock;
1725 spin_unlock(&hugetlb_lock);
1726
1727 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1728 if (!page)
1729 return NULL;
1730
1731 spin_lock(&hugetlb_lock);
1732 /*
1733 * We could have raced with the pool size change.
1734 * Double check that and simply deallocate the new page
1735 * if we would end up overcommiting the surpluses. Abuse
1736 * temporary page to workaround the nasty free_huge_page
1737 * codeflow
1738 */
1739 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1740 SetPageHugeTemporary(page);
1741 spin_unlock(&hugetlb_lock);
1742 put_page(page);
1743 return NULL;
1744 } else {
1745 h->surplus_huge_pages++;
1746 h->surplus_huge_pages_node[page_to_nid(page)]++;
1747 }
1748
1749out_unlock:
1750 spin_unlock(&hugetlb_lock);
1751
1752 return page;
1753}
1754
1755struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1756 int nid, nodemask_t *nmask)
1757{
1758 struct page *page;
1759
1760 if (hstate_is_gigantic(h))
1761 return NULL;
1762
1763 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1764 if (!page)
1765 return NULL;
1766
1767 /*
1768 * We do not account these pages as surplus because they are only
1769 * temporary and will be released properly on the last reference
1770 */
1771 SetPageHugeTemporary(page);
1772
1773 return page;
1774}
1775
1776/*
1777 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1778 */
1779static
1780struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1781 struct vm_area_struct *vma, unsigned long addr)
1782{
1783 struct page *page;
1784 struct mempolicy *mpol;
1785 gfp_t gfp_mask = htlb_alloc_mask(h);
1786 int nid;
1787 nodemask_t *nodemask;
1788
1789 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1790 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1791 mpol_cond_put(mpol);
1792
1793 return page;
1794}
1795
1796/* page migration callback function */
1797struct page *alloc_huge_page_node(struct hstate *h, int nid)
1798{
1799 gfp_t gfp_mask = htlb_alloc_mask(h);
1800 struct page *page = NULL;
1801
1802 if (nid != NUMA_NO_NODE)
1803 gfp_mask |= __GFP_THISNODE;
1804
1805 spin_lock(&hugetlb_lock);
1806 if (h->free_huge_pages - h->resv_huge_pages > 0)
1807 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1808 spin_unlock(&hugetlb_lock);
1809
1810 if (!page)
1811 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1812
1813 return page;
1814}
1815
1816/* page migration callback function */
1817struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1818 nodemask_t *nmask)
1819{
1820 gfp_t gfp_mask = htlb_alloc_mask(h);
1821
1822 spin_lock(&hugetlb_lock);
1823 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1824 struct page *page;
1825
1826 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1827 if (page) {
1828 spin_unlock(&hugetlb_lock);
1829 return page;
1830 }
1831 }
1832 spin_unlock(&hugetlb_lock);
1833
1834 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1835}
1836
1837/* mempolicy aware migration callback */
1838struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1839 unsigned long address)
1840{
1841 struct mempolicy *mpol;
1842 nodemask_t *nodemask;
1843 struct page *page;
1844 gfp_t gfp_mask;
1845 int node;
1846
1847 gfp_mask = htlb_alloc_mask(h);
1848 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1849 page = alloc_huge_page_nodemask(h, node, nodemask);
1850 mpol_cond_put(mpol);
1851
1852 return page;
1853}
1854
1855/*
1856 * Increase the hugetlb pool such that it can accommodate a reservation
1857 * of size 'delta'.
1858 */
1859static int gather_surplus_pages(struct hstate *h, int delta)
1860{
1861 struct list_head surplus_list;
1862 struct page *page, *tmp;
1863 int ret, i;
1864 int needed, allocated;
1865 bool alloc_ok = true;
1866
1867 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1868 if (needed <= 0) {
1869 h->resv_huge_pages += delta;
1870 return 0;
1871 }
1872
1873 allocated = 0;
1874 INIT_LIST_HEAD(&surplus_list);
1875
1876 ret = -ENOMEM;
1877retry:
1878 spin_unlock(&hugetlb_lock);
1879 for (i = 0; i < needed; i++) {
1880 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1881 NUMA_NO_NODE, NULL);
1882 if (!page) {
1883 alloc_ok = false;
1884 break;
1885 }
1886 list_add(&page->lru, &surplus_list);
1887 cond_resched();
1888 }
1889 allocated += i;
1890
1891 /*
1892 * After retaking hugetlb_lock, we need to recalculate 'needed'
1893 * because either resv_huge_pages or free_huge_pages may have changed.
1894 */
1895 spin_lock(&hugetlb_lock);
1896 needed = (h->resv_huge_pages + delta) -
1897 (h->free_huge_pages + allocated);
1898 if (needed > 0) {
1899 if (alloc_ok)
1900 goto retry;
1901 /*
1902 * We were not able to allocate enough pages to
1903 * satisfy the entire reservation so we free what
1904 * we've allocated so far.
1905 */
1906 goto free;
1907 }
1908 /*
1909 * The surplus_list now contains _at_least_ the number of extra pages
1910 * needed to accommodate the reservation. Add the appropriate number
1911 * of pages to the hugetlb pool and free the extras back to the buddy
1912 * allocator. Commit the entire reservation here to prevent another
1913 * process from stealing the pages as they are added to the pool but
1914 * before they are reserved.
1915 */
1916 needed += allocated;
1917 h->resv_huge_pages += delta;
1918 ret = 0;
1919
1920 /* Free the needed pages to the hugetlb pool */
1921 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1922 if ((--needed) < 0)
1923 break;
1924 /*
1925 * This page is now managed by the hugetlb allocator and has
1926 * no users -- drop the buddy allocator's reference.
1927 */
1928 put_page_testzero(page);
1929 VM_BUG_ON_PAGE(page_count(page), page);
1930 enqueue_huge_page(h, page);
1931 }
1932free:
1933 spin_unlock(&hugetlb_lock);
1934
1935 /* Free unnecessary surplus pages to the buddy allocator */
1936 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1937 put_page(page);
1938 spin_lock(&hugetlb_lock);
1939
1940 return ret;
1941}
1942
1943/*
1944 * This routine has two main purposes:
1945 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1946 * in unused_resv_pages. This corresponds to the prior adjustments made
1947 * to the associated reservation map.
1948 * 2) Free any unused surplus pages that may have been allocated to satisfy
1949 * the reservation. As many as unused_resv_pages may be freed.
1950 *
1951 * Called with hugetlb_lock held. However, the lock could be dropped (and
1952 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1953 * we must make sure nobody else can claim pages we are in the process of
1954 * freeing. Do this by ensuring resv_huge_page always is greater than the
1955 * number of huge pages we plan to free when dropping the lock.
1956 */
1957static void return_unused_surplus_pages(struct hstate *h,
1958 unsigned long unused_resv_pages)
1959{
1960 unsigned long nr_pages;
1961
1962 /* Cannot return gigantic pages currently */
1963 if (hstate_is_gigantic(h))
1964 goto out;
1965
1966 /*
1967 * Part (or even all) of the reservation could have been backed
1968 * by pre-allocated pages. Only free surplus pages.
1969 */
1970 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1971
1972 /*
1973 * We want to release as many surplus pages as possible, spread
1974 * evenly across all nodes with memory. Iterate across these nodes
1975 * until we can no longer free unreserved surplus pages. This occurs
1976 * when the nodes with surplus pages have no free pages.
1977 * free_pool_huge_page() will balance the the freed pages across the
1978 * on-line nodes with memory and will handle the hstate accounting.
1979 *
1980 * Note that we decrement resv_huge_pages as we free the pages. If
1981 * we drop the lock, resv_huge_pages will still be sufficiently large
1982 * to cover subsequent pages we may free.
1983 */
1984 while (nr_pages--) {
1985 h->resv_huge_pages--;
1986 unused_resv_pages--;
1987 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1988 goto out;
1989 cond_resched_lock(&hugetlb_lock);
1990 }
1991
1992out:
1993 /* Fully uncommit the reservation */
1994 h->resv_huge_pages -= unused_resv_pages;
1995}
1996
1997
1998/*
1999 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2000 * are used by the huge page allocation routines to manage reservations.
2001 *
2002 * vma_needs_reservation is called to determine if the huge page at addr
2003 * within the vma has an associated reservation. If a reservation is
2004 * needed, the value 1 is returned. The caller is then responsible for
2005 * managing the global reservation and subpool usage counts. After
2006 * the huge page has been allocated, vma_commit_reservation is called
2007 * to add the page to the reservation map. If the page allocation fails,
2008 * the reservation must be ended instead of committed. vma_end_reservation
2009 * is called in such cases.
2010 *
2011 * In the normal case, vma_commit_reservation returns the same value
2012 * as the preceding vma_needs_reservation call. The only time this
2013 * is not the case is if a reserve map was changed between calls. It
2014 * is the responsibility of the caller to notice the difference and
2015 * take appropriate action.
2016 *
2017 * vma_add_reservation is used in error paths where a reservation must
2018 * be restored when a newly allocated huge page must be freed. It is
2019 * to be called after calling vma_needs_reservation to determine if a
2020 * reservation exists.
2021 */
2022enum vma_resv_mode {
2023 VMA_NEEDS_RESV,
2024 VMA_COMMIT_RESV,
2025 VMA_END_RESV,
2026 VMA_ADD_RESV,
2027};
2028static long __vma_reservation_common(struct hstate *h,
2029 struct vm_area_struct *vma, unsigned long addr,
2030 enum vma_resv_mode mode)
2031{
2032 struct resv_map *resv;
2033 pgoff_t idx;
2034 long ret;
2035
2036 resv = vma_resv_map(vma);
2037 if (!resv)
2038 return 1;
2039
2040 idx = vma_hugecache_offset(h, vma, addr);
2041 switch (mode) {
2042 case VMA_NEEDS_RESV:
2043 ret = region_chg(resv, idx, idx + 1);
2044 break;
2045 case VMA_COMMIT_RESV:
2046 ret = region_add(resv, idx, idx + 1);
2047 break;
2048 case VMA_END_RESV:
2049 region_abort(resv, idx, idx + 1);
2050 ret = 0;
2051 break;
2052 case VMA_ADD_RESV:
2053 if (vma->vm_flags & VM_MAYSHARE)
2054 ret = region_add(resv, idx, idx + 1);
2055 else {
2056 region_abort(resv, idx, idx + 1);
2057 ret = region_del(resv, idx, idx + 1);
2058 }
2059 break;
2060 default:
2061 BUG();
2062 }
2063
2064 if (vma->vm_flags & VM_MAYSHARE)
2065 return ret;
2066 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2067 /*
2068 * In most cases, reserves always exist for private mappings.
2069 * However, a file associated with mapping could have been
2070 * hole punched or truncated after reserves were consumed.
2071 * As subsequent fault on such a range will not use reserves.
2072 * Subtle - The reserve map for private mappings has the
2073 * opposite meaning than that of shared mappings. If NO
2074 * entry is in the reserve map, it means a reservation exists.
2075 * If an entry exists in the reserve map, it means the
2076 * reservation has already been consumed. As a result, the
2077 * return value of this routine is the opposite of the
2078 * value returned from reserve map manipulation routines above.
2079 */
2080 if (ret)
2081 return 0;
2082 else
2083 return 1;
2084 }
2085 else
2086 return ret < 0 ? ret : 0;
2087}
2088
2089static long vma_needs_reservation(struct hstate *h,
2090 struct vm_area_struct *vma, unsigned long addr)
2091{
2092 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2093}
2094
2095static long vma_commit_reservation(struct hstate *h,
2096 struct vm_area_struct *vma, unsigned long addr)
2097{
2098 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2099}
2100
2101static void vma_end_reservation(struct hstate *h,
2102 struct vm_area_struct *vma, unsigned long addr)
2103{
2104 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2105}
2106
2107static long vma_add_reservation(struct hstate *h,
2108 struct vm_area_struct *vma, unsigned long addr)
2109{
2110 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2111}
2112
2113/*
2114 * This routine is called to restore a reservation on error paths. In the
2115 * specific error paths, a huge page was allocated (via alloc_huge_page)
2116 * and is about to be freed. If a reservation for the page existed,
2117 * alloc_huge_page would have consumed the reservation and set PagePrivate
2118 * in the newly allocated page. When the page is freed via free_huge_page,
2119 * the global reservation count will be incremented if PagePrivate is set.
2120 * However, free_huge_page can not adjust the reserve map. Adjust the
2121 * reserve map here to be consistent with global reserve count adjustments
2122 * to be made by free_huge_page.
2123 */
2124static void restore_reserve_on_error(struct hstate *h,
2125 struct vm_area_struct *vma, unsigned long address,
2126 struct page *page)
2127{
2128 if (unlikely(PagePrivate(page))) {
2129 long rc = vma_needs_reservation(h, vma, address);
2130
2131 if (unlikely(rc < 0)) {
2132 /*
2133 * Rare out of memory condition in reserve map
2134 * manipulation. Clear PagePrivate so that
2135 * global reserve count will not be incremented
2136 * by free_huge_page. This will make it appear
2137 * as though the reservation for this page was
2138 * consumed. This may prevent the task from
2139 * faulting in the page at a later time. This
2140 * is better than inconsistent global huge page
2141 * accounting of reserve counts.
2142 */
2143 ClearPagePrivate(page);
2144 } else if (rc) {
2145 rc = vma_add_reservation(h, vma, address);
2146 if (unlikely(rc < 0))
2147 /*
2148 * See above comment about rare out of
2149 * memory condition.
2150 */
2151 ClearPagePrivate(page);
2152 } else
2153 vma_end_reservation(h, vma, address);
2154 }
2155}
2156
2157struct page *alloc_huge_page(struct vm_area_struct *vma,
2158 unsigned long addr, int avoid_reserve)
2159{
2160 struct hugepage_subpool *spool = subpool_vma(vma);
2161 struct hstate *h = hstate_vma(vma);
2162 struct page *page;
2163 long map_chg, map_commit;
2164 long gbl_chg;
2165 int ret, idx;
2166 struct hugetlb_cgroup *h_cg;
2167
2168 idx = hstate_index(h);
2169 /*
2170 * Examine the region/reserve map to determine if the process
2171 * has a reservation for the page to be allocated. A return
2172 * code of zero indicates a reservation exists (no change).
2173 */
2174 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2175 if (map_chg < 0)
2176 return ERR_PTR(-ENOMEM);
2177
2178 /*
2179 * Processes that did not create the mapping will have no
2180 * reserves as indicated by the region/reserve map. Check
2181 * that the allocation will not exceed the subpool limit.
2182 * Allocations for MAP_NORESERVE mappings also need to be
2183 * checked against any subpool limit.
2184 */
2185 if (map_chg || avoid_reserve) {
2186 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2187 if (gbl_chg < 0) {
2188 vma_end_reservation(h, vma, addr);
2189 return ERR_PTR(-ENOSPC);
2190 }
2191
2192 /*
2193 * Even though there was no reservation in the region/reserve
2194 * map, there could be reservations associated with the
2195 * subpool that can be used. This would be indicated if the
2196 * return value of hugepage_subpool_get_pages() is zero.
2197 * However, if avoid_reserve is specified we still avoid even
2198 * the subpool reservations.
2199 */
2200 if (avoid_reserve)
2201 gbl_chg = 1;
2202 }
2203
2204 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2205 if (ret)
2206 goto out_subpool_put;
2207
2208 spin_lock(&hugetlb_lock);
2209 /*
2210 * glb_chg is passed to indicate whether or not a page must be taken
2211 * from the global free pool (global change). gbl_chg == 0 indicates
2212 * a reservation exists for the allocation.
2213 */
2214 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2215 if (!page) {
2216 spin_unlock(&hugetlb_lock);
2217 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2218 if (!page)
2219 goto out_uncharge_cgroup;
2220 spin_lock(&hugetlb_lock);
2221 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2222 SetPagePrivate(page);
2223 h->resv_huge_pages--;
2224 }
2225 list_move(&page->lru, &h->hugepage_activelist);
2226 /* Fall through */
2227 }
2228 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2229 spin_unlock(&hugetlb_lock);
2230
2231 set_page_private(page, (unsigned long)spool);
2232
2233 map_commit = vma_commit_reservation(h, vma, addr);
2234 if (unlikely(map_chg > map_commit)) {
2235 /*
2236 * The page was added to the reservation map between
2237 * vma_needs_reservation and vma_commit_reservation.
2238 * This indicates a race with hugetlb_reserve_pages.
2239 * Adjust for the subpool count incremented above AND
2240 * in hugetlb_reserve_pages for the same page. Also,
2241 * the reservation count added in hugetlb_reserve_pages
2242 * no longer applies.
2243 */
2244 long rsv_adjust;
2245
2246 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2247 hugetlb_acct_memory(h, -rsv_adjust);
2248 }
2249 return page;
2250
2251out_uncharge_cgroup:
2252 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2253out_subpool_put:
2254 if (map_chg || avoid_reserve)
2255 hugepage_subpool_put_pages(spool, 1);
2256 vma_end_reservation(h, vma, addr);
2257 return ERR_PTR(-ENOSPC);
2258}
2259
2260int alloc_bootmem_huge_page(struct hstate *h)
2261 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2262int __alloc_bootmem_huge_page(struct hstate *h)
2263{
2264 struct huge_bootmem_page *m;
2265 int nr_nodes, node;
2266
2267 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2268 void *addr;
2269
2270 addr = memblock_alloc_try_nid_raw(
2271 huge_page_size(h), huge_page_size(h),
2272 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2273 if (addr) {
2274 /*
2275 * Use the beginning of the huge page to store the
2276 * huge_bootmem_page struct (until gather_bootmem
2277 * puts them into the mem_map).
2278 */
2279 m = addr;
2280 goto found;
2281 }
2282 }
2283 return 0;
2284
2285found:
2286 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2287 /* Put them into a private list first because mem_map is not up yet */
2288 INIT_LIST_HEAD(&m->list);
2289 list_add(&m->list, &huge_boot_pages);
2290 m->hstate = h;
2291 return 1;
2292}
2293
2294static void __init prep_compound_huge_page(struct page *page,
2295 unsigned int order)
2296{
2297 if (unlikely(order > (MAX_ORDER - 1)))
2298 prep_compound_gigantic_page(page, order);
2299 else
2300 prep_compound_page(page, order);
2301}
2302
2303/* Put bootmem huge pages into the standard lists after mem_map is up */
2304static void __init gather_bootmem_prealloc(void)
2305{
2306 struct huge_bootmem_page *m;
2307
2308 list_for_each_entry(m, &huge_boot_pages, list) {
2309 struct page *page = virt_to_page(m);
2310 struct hstate *h = m->hstate;
2311
2312 WARN_ON(page_count(page) != 1);
2313 prep_compound_huge_page(page, h->order);
2314 WARN_ON(PageReserved(page));
2315 prep_new_huge_page(h, page, page_to_nid(page));
2316 put_page(page); /* free it into the hugepage allocator */
2317
2318 /*
2319 * If we had gigantic hugepages allocated at boot time, we need
2320 * to restore the 'stolen' pages to totalram_pages in order to
2321 * fix confusing memory reports from free(1) and another
2322 * side-effects, like CommitLimit going negative.
2323 */
2324 if (hstate_is_gigantic(h))
2325 adjust_managed_page_count(page, 1 << h->order);
2326 cond_resched();
2327 }
2328}
2329
2330static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2331{
2332 unsigned long i;
2333 nodemask_t *node_alloc_noretry;
2334
2335 if (!hstate_is_gigantic(h)) {
2336 /*
2337 * Bit mask controlling how hard we retry per-node allocations.
2338 * Ignore errors as lower level routines can deal with
2339 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2340 * time, we are likely in bigger trouble.
2341 */
2342 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2343 GFP_KERNEL);
2344 } else {
2345 /* allocations done at boot time */
2346 node_alloc_noretry = NULL;
2347 }
2348
2349 /* bit mask controlling how hard we retry per-node allocations */
2350 if (node_alloc_noretry)
2351 nodes_clear(*node_alloc_noretry);
2352
2353 for (i = 0; i < h->max_huge_pages; ++i) {
2354 if (hstate_is_gigantic(h)) {
2355 if (!alloc_bootmem_huge_page(h))
2356 break;
2357 } else if (!alloc_pool_huge_page(h,
2358 &node_states[N_MEMORY],
2359 node_alloc_noretry))
2360 break;
2361 cond_resched();
2362 }
2363 if (i < h->max_huge_pages) {
2364 char buf[32];
2365
2366 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2367 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2368 h->max_huge_pages, buf, i);
2369 h->max_huge_pages = i;
2370 }
2371
2372 kfree(node_alloc_noretry);
2373}
2374
2375static void __init hugetlb_init_hstates(void)
2376{
2377 struct hstate *h;
2378
2379 for_each_hstate(h) {
2380 if (minimum_order > huge_page_order(h))
2381 minimum_order = huge_page_order(h);
2382
2383 /* oversize hugepages were init'ed in early boot */
2384 if (!hstate_is_gigantic(h))
2385 hugetlb_hstate_alloc_pages(h);
2386 }
2387 VM_BUG_ON(minimum_order == UINT_MAX);
2388}
2389
2390static void __init report_hugepages(void)
2391{
2392 struct hstate *h;
2393
2394 for_each_hstate(h) {
2395 char buf[32];
2396
2397 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2398 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2399 buf, h->free_huge_pages);
2400 }
2401}
2402
2403#ifdef CONFIG_HIGHMEM
2404static void try_to_free_low(struct hstate *h, unsigned long count,
2405 nodemask_t *nodes_allowed)
2406{
2407 int i;
2408
2409 if (hstate_is_gigantic(h))
2410 return;
2411
2412 for_each_node_mask(i, *nodes_allowed) {
2413 struct page *page, *next;
2414 struct list_head *freel = &h->hugepage_freelists[i];
2415 list_for_each_entry_safe(page, next, freel, lru) {
2416 if (count >= h->nr_huge_pages)
2417 return;
2418 if (PageHighMem(page))
2419 continue;
2420 list_del(&page->lru);
2421 update_and_free_page(h, page);
2422 h->free_huge_pages--;
2423 h->free_huge_pages_node[page_to_nid(page)]--;
2424 }
2425 }
2426}
2427#else
2428static inline void try_to_free_low(struct hstate *h, unsigned long count,
2429 nodemask_t *nodes_allowed)
2430{
2431}
2432#endif
2433
2434/*
2435 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2436 * balanced by operating on them in a round-robin fashion.
2437 * Returns 1 if an adjustment was made.
2438 */
2439static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2440 int delta)
2441{
2442 int nr_nodes, node;
2443
2444 VM_BUG_ON(delta != -1 && delta != 1);
2445
2446 if (delta < 0) {
2447 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2448 if (h->surplus_huge_pages_node[node])
2449 goto found;
2450 }
2451 } else {
2452 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2453 if (h->surplus_huge_pages_node[node] <
2454 h->nr_huge_pages_node[node])
2455 goto found;
2456 }
2457 }
2458 return 0;
2459
2460found:
2461 h->surplus_huge_pages += delta;
2462 h->surplus_huge_pages_node[node] += delta;
2463 return 1;
2464}
2465
2466#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2467static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2468 nodemask_t *nodes_allowed)
2469{
2470 unsigned long min_count, ret;
2471 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2472
2473 /*
2474 * Bit mask controlling how hard we retry per-node allocations.
2475 * If we can not allocate the bit mask, do not attempt to allocate
2476 * the requested huge pages.
2477 */
2478 if (node_alloc_noretry)
2479 nodes_clear(*node_alloc_noretry);
2480 else
2481 return -ENOMEM;
2482
2483 spin_lock(&hugetlb_lock);
2484
2485 /*
2486 * Check for a node specific request.
2487 * Changing node specific huge page count may require a corresponding
2488 * change to the global count. In any case, the passed node mask
2489 * (nodes_allowed) will restrict alloc/free to the specified node.
2490 */
2491 if (nid != NUMA_NO_NODE) {
2492 unsigned long old_count = count;
2493
2494 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2495 /*
2496 * User may have specified a large count value which caused the
2497 * above calculation to overflow. In this case, they wanted
2498 * to allocate as many huge pages as possible. Set count to
2499 * largest possible value to align with their intention.
2500 */
2501 if (count < old_count)
2502 count = ULONG_MAX;
2503 }
2504
2505 /*
2506 * Gigantic pages runtime allocation depend on the capability for large
2507 * page range allocation.
2508 * If the system does not provide this feature, return an error when
2509 * the user tries to allocate gigantic pages but let the user free the
2510 * boottime allocated gigantic pages.
2511 */
2512 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2513 if (count > persistent_huge_pages(h)) {
2514 spin_unlock(&hugetlb_lock);
2515 NODEMASK_FREE(node_alloc_noretry);
2516 return -EINVAL;
2517 }
2518 /* Fall through to decrease pool */
2519 }
2520
2521 /*
2522 * Increase the pool size
2523 * First take pages out of surplus state. Then make up the
2524 * remaining difference by allocating fresh huge pages.
2525 *
2526 * We might race with alloc_surplus_huge_page() here and be unable
2527 * to convert a surplus huge page to a normal huge page. That is
2528 * not critical, though, it just means the overall size of the
2529 * pool might be one hugepage larger than it needs to be, but
2530 * within all the constraints specified by the sysctls.
2531 */
2532 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2533 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2534 break;
2535 }
2536
2537 while (count > persistent_huge_pages(h)) {
2538 /*
2539 * If this allocation races such that we no longer need the
2540 * page, free_huge_page will handle it by freeing the page
2541 * and reducing the surplus.
2542 */
2543 spin_unlock(&hugetlb_lock);
2544
2545 /* yield cpu to avoid soft lockup */
2546 cond_resched();
2547
2548 ret = alloc_pool_huge_page(h, nodes_allowed,
2549 node_alloc_noretry);
2550 spin_lock(&hugetlb_lock);
2551 if (!ret)
2552 goto out;
2553
2554 /* Bail for signals. Probably ctrl-c from user */
2555 if (signal_pending(current))
2556 goto out;
2557 }
2558
2559 /*
2560 * Decrease the pool size
2561 * First return free pages to the buddy allocator (being careful
2562 * to keep enough around to satisfy reservations). Then place
2563 * pages into surplus state as needed so the pool will shrink
2564 * to the desired size as pages become free.
2565 *
2566 * By placing pages into the surplus state independent of the
2567 * overcommit value, we are allowing the surplus pool size to
2568 * exceed overcommit. There are few sane options here. Since
2569 * alloc_surplus_huge_page() is checking the global counter,
2570 * though, we'll note that we're not allowed to exceed surplus
2571 * and won't grow the pool anywhere else. Not until one of the
2572 * sysctls are changed, or the surplus pages go out of use.
2573 */
2574 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2575 min_count = max(count, min_count);
2576 try_to_free_low(h, min_count, nodes_allowed);
2577 while (min_count < persistent_huge_pages(h)) {
2578 if (!free_pool_huge_page(h, nodes_allowed, 0))
2579 break;
2580 cond_resched_lock(&hugetlb_lock);
2581 }
2582 while (count < persistent_huge_pages(h)) {
2583 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2584 break;
2585 }
2586out:
2587 h->max_huge_pages = persistent_huge_pages(h);
2588 spin_unlock(&hugetlb_lock);
2589
2590 NODEMASK_FREE(node_alloc_noretry);
2591
2592 return 0;
2593}
2594
2595#define HSTATE_ATTR_RO(_name) \
2596 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2597
2598#define HSTATE_ATTR(_name) \
2599 static struct kobj_attribute _name##_attr = \
2600 __ATTR(_name, 0644, _name##_show, _name##_store)
2601
2602static struct kobject *hugepages_kobj;
2603static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2604
2605static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2606
2607static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2608{
2609 int i;
2610
2611 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2612 if (hstate_kobjs[i] == kobj) {
2613 if (nidp)
2614 *nidp = NUMA_NO_NODE;
2615 return &hstates[i];
2616 }
2617
2618 return kobj_to_node_hstate(kobj, nidp);
2619}
2620
2621static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2622 struct kobj_attribute *attr, char *buf)
2623{
2624 struct hstate *h;
2625 unsigned long nr_huge_pages;
2626 int nid;
2627
2628 h = kobj_to_hstate(kobj, &nid);
2629 if (nid == NUMA_NO_NODE)
2630 nr_huge_pages = h->nr_huge_pages;
2631 else
2632 nr_huge_pages = h->nr_huge_pages_node[nid];
2633
2634 return sprintf(buf, "%lu\n", nr_huge_pages);
2635}
2636
2637static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2638 struct hstate *h, int nid,
2639 unsigned long count, size_t len)
2640{
2641 int err;
2642 nodemask_t nodes_allowed, *n_mask;
2643
2644 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2645 return -EINVAL;
2646
2647 if (nid == NUMA_NO_NODE) {
2648 /*
2649 * global hstate attribute
2650 */
2651 if (!(obey_mempolicy &&
2652 init_nodemask_of_mempolicy(&nodes_allowed)))
2653 n_mask = &node_states[N_MEMORY];
2654 else
2655 n_mask = &nodes_allowed;
2656 } else {
2657 /*
2658 * Node specific request. count adjustment happens in
2659 * set_max_huge_pages() after acquiring hugetlb_lock.
2660 */
2661 init_nodemask_of_node(&nodes_allowed, nid);
2662 n_mask = &nodes_allowed;
2663 }
2664
2665 err = set_max_huge_pages(h, count, nid, n_mask);
2666
2667 return err ? err : len;
2668}
2669
2670static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2671 struct kobject *kobj, const char *buf,
2672 size_t len)
2673{
2674 struct hstate *h;
2675 unsigned long count;
2676 int nid;
2677 int err;
2678
2679 err = kstrtoul(buf, 10, &count);
2680 if (err)
2681 return err;
2682
2683 h = kobj_to_hstate(kobj, &nid);
2684 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2685}
2686
2687static ssize_t nr_hugepages_show(struct kobject *kobj,
2688 struct kobj_attribute *attr, char *buf)
2689{
2690 return nr_hugepages_show_common(kobj, attr, buf);
2691}
2692
2693static ssize_t nr_hugepages_store(struct kobject *kobj,
2694 struct kobj_attribute *attr, const char *buf, size_t len)
2695{
2696 return nr_hugepages_store_common(false, kobj, buf, len);
2697}
2698HSTATE_ATTR(nr_hugepages);
2699
2700#ifdef CONFIG_NUMA
2701
2702/*
2703 * hstate attribute for optionally mempolicy-based constraint on persistent
2704 * huge page alloc/free.
2705 */
2706static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2707 struct kobj_attribute *attr, char *buf)
2708{
2709 return nr_hugepages_show_common(kobj, attr, buf);
2710}
2711
2712static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2713 struct kobj_attribute *attr, const char *buf, size_t len)
2714{
2715 return nr_hugepages_store_common(true, kobj, buf, len);
2716}
2717HSTATE_ATTR(nr_hugepages_mempolicy);
2718#endif
2719
2720
2721static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2722 struct kobj_attribute *attr, char *buf)
2723{
2724 struct hstate *h = kobj_to_hstate(kobj, NULL);
2725 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2726}
2727
2728static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2729 struct kobj_attribute *attr, const char *buf, size_t count)
2730{
2731 int err;
2732 unsigned long input;
2733 struct hstate *h = kobj_to_hstate(kobj, NULL);
2734
2735 if (hstate_is_gigantic(h))
2736 return -EINVAL;
2737
2738 err = kstrtoul(buf, 10, &input);
2739 if (err)
2740 return err;
2741
2742 spin_lock(&hugetlb_lock);
2743 h->nr_overcommit_huge_pages = input;
2744 spin_unlock(&hugetlb_lock);
2745
2746 return count;
2747}
2748HSTATE_ATTR(nr_overcommit_hugepages);
2749
2750static ssize_t free_hugepages_show(struct kobject *kobj,
2751 struct kobj_attribute *attr, char *buf)
2752{
2753 struct hstate *h;
2754 unsigned long free_huge_pages;
2755 int nid;
2756
2757 h = kobj_to_hstate(kobj, &nid);
2758 if (nid == NUMA_NO_NODE)
2759 free_huge_pages = h->free_huge_pages;
2760 else
2761 free_huge_pages = h->free_huge_pages_node[nid];
2762
2763 return sprintf(buf, "%lu\n", free_huge_pages);
2764}
2765HSTATE_ATTR_RO(free_hugepages);
2766
2767static ssize_t resv_hugepages_show(struct kobject *kobj,
2768 struct kobj_attribute *attr, char *buf)
2769{
2770 struct hstate *h = kobj_to_hstate(kobj, NULL);
2771 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2772}
2773HSTATE_ATTR_RO(resv_hugepages);
2774
2775static ssize_t surplus_hugepages_show(struct kobject *kobj,
2776 struct kobj_attribute *attr, char *buf)
2777{
2778 struct hstate *h;
2779 unsigned long surplus_huge_pages;
2780 int nid;
2781
2782 h = kobj_to_hstate(kobj, &nid);
2783 if (nid == NUMA_NO_NODE)
2784 surplus_huge_pages = h->surplus_huge_pages;
2785 else
2786 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2787
2788 return sprintf(buf, "%lu\n", surplus_huge_pages);
2789}
2790HSTATE_ATTR_RO(surplus_hugepages);
2791
2792static struct attribute *hstate_attrs[] = {
2793 &nr_hugepages_attr.attr,
2794 &nr_overcommit_hugepages_attr.attr,
2795 &free_hugepages_attr.attr,
2796 &resv_hugepages_attr.attr,
2797 &surplus_hugepages_attr.attr,
2798#ifdef CONFIG_NUMA
2799 &nr_hugepages_mempolicy_attr.attr,
2800#endif
2801 NULL,
2802};
2803
2804static const struct attribute_group hstate_attr_group = {
2805 .attrs = hstate_attrs,
2806};
2807
2808static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2809 struct kobject **hstate_kobjs,
2810 const struct attribute_group *hstate_attr_group)
2811{
2812 int retval;
2813 int hi = hstate_index(h);
2814
2815 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2816 if (!hstate_kobjs[hi])
2817 return -ENOMEM;
2818
2819 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2820 if (retval) {
2821 kobject_put(hstate_kobjs[hi]);
2822 hstate_kobjs[hi] = NULL;
2823 }
2824
2825 return retval;
2826}
2827
2828static void __init hugetlb_sysfs_init(void)
2829{
2830 struct hstate *h;
2831 int err;
2832
2833 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2834 if (!hugepages_kobj)
2835 return;
2836
2837 for_each_hstate(h) {
2838 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2839 hstate_kobjs, &hstate_attr_group);
2840 if (err)
2841 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2842 }
2843}
2844
2845#ifdef CONFIG_NUMA
2846
2847/*
2848 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2849 * with node devices in node_devices[] using a parallel array. The array
2850 * index of a node device or _hstate == node id.
2851 * This is here to avoid any static dependency of the node device driver, in
2852 * the base kernel, on the hugetlb module.
2853 */
2854struct node_hstate {
2855 struct kobject *hugepages_kobj;
2856 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2857};
2858static struct node_hstate node_hstates[MAX_NUMNODES];
2859
2860/*
2861 * A subset of global hstate attributes for node devices
2862 */
2863static struct attribute *per_node_hstate_attrs[] = {
2864 &nr_hugepages_attr.attr,
2865 &free_hugepages_attr.attr,
2866 &surplus_hugepages_attr.attr,
2867 NULL,
2868};
2869
2870static const struct attribute_group per_node_hstate_attr_group = {
2871 .attrs = per_node_hstate_attrs,
2872};
2873
2874/*
2875 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2876 * Returns node id via non-NULL nidp.
2877 */
2878static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2879{
2880 int nid;
2881
2882 for (nid = 0; nid < nr_node_ids; nid++) {
2883 struct node_hstate *nhs = &node_hstates[nid];
2884 int i;
2885 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2886 if (nhs->hstate_kobjs[i] == kobj) {
2887 if (nidp)
2888 *nidp = nid;
2889 return &hstates[i];
2890 }
2891 }
2892
2893 BUG();
2894 return NULL;
2895}
2896
2897/*
2898 * Unregister hstate attributes from a single node device.
2899 * No-op if no hstate attributes attached.
2900 */
2901static void hugetlb_unregister_node(struct node *node)
2902{
2903 struct hstate *h;
2904 struct node_hstate *nhs = &node_hstates[node->dev.id];
2905
2906 if (!nhs->hugepages_kobj)
2907 return; /* no hstate attributes */
2908
2909 for_each_hstate(h) {
2910 int idx = hstate_index(h);
2911 if (nhs->hstate_kobjs[idx]) {
2912 kobject_put(nhs->hstate_kobjs[idx]);
2913 nhs->hstate_kobjs[idx] = NULL;
2914 }
2915 }
2916
2917 kobject_put(nhs->hugepages_kobj);
2918 nhs->hugepages_kobj = NULL;
2919}
2920
2921
2922/*
2923 * Register hstate attributes for a single node device.
2924 * No-op if attributes already registered.
2925 */
2926static void hugetlb_register_node(struct node *node)
2927{
2928 struct hstate *h;
2929 struct node_hstate *nhs = &node_hstates[node->dev.id];
2930 int err;
2931
2932 if (nhs->hugepages_kobj)
2933 return; /* already allocated */
2934
2935 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2936 &node->dev.kobj);
2937 if (!nhs->hugepages_kobj)
2938 return;
2939
2940 for_each_hstate(h) {
2941 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2942 nhs->hstate_kobjs,
2943 &per_node_hstate_attr_group);
2944 if (err) {
2945 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2946 h->name, node->dev.id);
2947 hugetlb_unregister_node(node);
2948 break;
2949 }
2950 }
2951}
2952
2953/*
2954 * hugetlb init time: register hstate attributes for all registered node
2955 * devices of nodes that have memory. All on-line nodes should have
2956 * registered their associated device by this time.
2957 */
2958static void __init hugetlb_register_all_nodes(void)
2959{
2960 int nid;
2961
2962 for_each_node_state(nid, N_MEMORY) {
2963 struct node *node = node_devices[nid];
2964 if (node->dev.id == nid)
2965 hugetlb_register_node(node);
2966 }
2967
2968 /*
2969 * Let the node device driver know we're here so it can
2970 * [un]register hstate attributes on node hotplug.
2971 */
2972 register_hugetlbfs_with_node(hugetlb_register_node,
2973 hugetlb_unregister_node);
2974}
2975#else /* !CONFIG_NUMA */
2976
2977static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2978{
2979 BUG();
2980 if (nidp)
2981 *nidp = -1;
2982 return NULL;
2983}
2984
2985static void hugetlb_register_all_nodes(void) { }
2986
2987#endif
2988
2989static int __init hugetlb_init(void)
2990{
2991 int i;
2992
2993 if (!hugepages_supported())
2994 return 0;
2995
2996 if (!size_to_hstate(default_hstate_size)) {
2997 if (default_hstate_size != 0) {
2998 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2999 default_hstate_size, HPAGE_SIZE);
3000 }
3001
3002 default_hstate_size = HPAGE_SIZE;
3003 if (!size_to_hstate(default_hstate_size))
3004 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3005 }
3006 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
3007 if (default_hstate_max_huge_pages) {
3008 if (!default_hstate.max_huge_pages)
3009 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3010 }
3011
3012 hugetlb_init_hstates();
3013 gather_bootmem_prealloc();
3014 report_hugepages();
3015
3016 hugetlb_sysfs_init();
3017 hugetlb_register_all_nodes();
3018 hugetlb_cgroup_file_init();
3019
3020#ifdef CONFIG_SMP
3021 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3022#else
3023 num_fault_mutexes = 1;
3024#endif
3025 hugetlb_fault_mutex_table =
3026 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3027 GFP_KERNEL);
3028 BUG_ON(!hugetlb_fault_mutex_table);
3029
3030 for (i = 0; i < num_fault_mutexes; i++)
3031 mutex_init(&hugetlb_fault_mutex_table[i]);
3032 return 0;
3033}
3034subsys_initcall(hugetlb_init);
3035
3036/* Should be called on processing a hugepagesz=... option */
3037void __init hugetlb_bad_size(void)
3038{
3039 parsed_valid_hugepagesz = false;
3040}
3041
3042void __init hugetlb_add_hstate(unsigned int order)
3043{
3044 struct hstate *h;
3045 unsigned long i;
3046
3047 if (size_to_hstate(PAGE_SIZE << order)) {
3048 pr_warn("hugepagesz= specified twice, ignoring\n");
3049 return;
3050 }
3051 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3052 BUG_ON(order == 0);
3053 h = &hstates[hugetlb_max_hstate++];
3054 h->order = order;
3055 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3056 h->nr_huge_pages = 0;
3057 h->free_huge_pages = 0;
3058 for (i = 0; i < MAX_NUMNODES; ++i)
3059 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3060 INIT_LIST_HEAD(&h->hugepage_activelist);
3061 h->next_nid_to_alloc = first_memory_node;
3062 h->next_nid_to_free = first_memory_node;
3063 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3064 huge_page_size(h)/1024);
3065
3066 parsed_hstate = h;
3067}
3068
3069static int __init hugetlb_nrpages_setup(char *s)
3070{
3071 unsigned long *mhp;
3072 static unsigned long *last_mhp;
3073
3074 if (!parsed_valid_hugepagesz) {
3075 pr_warn("hugepages = %s preceded by "
3076 "an unsupported hugepagesz, ignoring\n", s);
3077 parsed_valid_hugepagesz = true;
3078 return 1;
3079 }
3080 /*
3081 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
3082 * so this hugepages= parameter goes to the "default hstate".
3083 */
3084 else if (!hugetlb_max_hstate)
3085 mhp = &default_hstate_max_huge_pages;
3086 else
3087 mhp = &parsed_hstate->max_huge_pages;
3088
3089 if (mhp == last_mhp) {
3090 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
3091 return 1;
3092 }
3093
3094 if (sscanf(s, "%lu", mhp) <= 0)
3095 *mhp = 0;
3096
3097 /*
3098 * Global state is always initialized later in hugetlb_init.
3099 * But we need to allocate >= MAX_ORDER hstates here early to still
3100 * use the bootmem allocator.
3101 */
3102 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3103 hugetlb_hstate_alloc_pages(parsed_hstate);
3104
3105 last_mhp = mhp;
3106
3107 return 1;
3108}
3109__setup("hugepages=", hugetlb_nrpages_setup);
3110
3111static int __init hugetlb_default_setup(char *s)
3112{
3113 default_hstate_size = memparse(s, &s);
3114 return 1;
3115}
3116__setup("default_hugepagesz=", hugetlb_default_setup);
3117
3118static unsigned int cpuset_mems_nr(unsigned int *array)
3119{
3120 int node;
3121 unsigned int nr = 0;
3122
3123 for_each_node_mask(node, cpuset_current_mems_allowed)
3124 nr += array[node];
3125
3126 return nr;
3127}
3128
3129#ifdef CONFIG_SYSCTL
3130static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3131 void *buffer, size_t *length,
3132 loff_t *ppos, unsigned long *out)
3133{
3134 struct ctl_table dup_table;
3135
3136 /*
3137 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3138 * can duplicate the @table and alter the duplicate of it.
3139 */
3140 dup_table = *table;
3141 dup_table.data = out;
3142
3143 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3144}
3145
3146static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3147 struct ctl_table *table, int write,
3148 void __user *buffer, size_t *length, loff_t *ppos)
3149{
3150 struct hstate *h = &default_hstate;
3151 unsigned long tmp = h->max_huge_pages;
3152 int ret;
3153
3154 if (!hugepages_supported())
3155 return -EOPNOTSUPP;
3156
3157 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3158 &tmp);
3159 if (ret)
3160 goto out;
3161
3162 if (write)
3163 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3164 NUMA_NO_NODE, tmp, *length);
3165out:
3166 return ret;
3167}
3168
3169int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3170 void __user *buffer, size_t *length, loff_t *ppos)
3171{
3172
3173 return hugetlb_sysctl_handler_common(false, table, write,
3174 buffer, length, ppos);
3175}
3176
3177#ifdef CONFIG_NUMA
3178int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3179 void __user *buffer, size_t *length, loff_t *ppos)
3180{
3181 return hugetlb_sysctl_handler_common(true, table, write,
3182 buffer, length, ppos);
3183}
3184#endif /* CONFIG_NUMA */
3185
3186int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3187 void __user *buffer,
3188 size_t *length, loff_t *ppos)
3189{
3190 struct hstate *h = &default_hstate;
3191 unsigned long tmp;
3192 int ret;
3193
3194 if (!hugepages_supported())
3195 return -EOPNOTSUPP;
3196
3197 tmp = h->nr_overcommit_huge_pages;
3198
3199 if (write && hstate_is_gigantic(h))
3200 return -EINVAL;
3201
3202 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3203 &tmp);
3204 if (ret)
3205 goto out;
3206
3207 if (write) {
3208 spin_lock(&hugetlb_lock);
3209 h->nr_overcommit_huge_pages = tmp;
3210 spin_unlock(&hugetlb_lock);
3211 }
3212out:
3213 return ret;
3214}
3215
3216#endif /* CONFIG_SYSCTL */
3217
3218void hugetlb_report_meminfo(struct seq_file *m)
3219{
3220 struct hstate *h;
3221 unsigned long total = 0;
3222
3223 if (!hugepages_supported())
3224 return;
3225
3226 for_each_hstate(h) {
3227 unsigned long count = h->nr_huge_pages;
3228
3229 total += (PAGE_SIZE << huge_page_order(h)) * count;
3230
3231 if (h == &default_hstate)
3232 seq_printf(m,
3233 "HugePages_Total: %5lu\n"
3234 "HugePages_Free: %5lu\n"
3235 "HugePages_Rsvd: %5lu\n"
3236 "HugePages_Surp: %5lu\n"
3237 "Hugepagesize: %8lu kB\n",
3238 count,
3239 h->free_huge_pages,
3240 h->resv_huge_pages,
3241 h->surplus_huge_pages,
3242 (PAGE_SIZE << huge_page_order(h)) / 1024);
3243 }
3244
3245 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3246}
3247
3248int hugetlb_report_node_meminfo(int nid, char *buf)
3249{
3250 struct hstate *h = &default_hstate;
3251 if (!hugepages_supported())
3252 return 0;
3253 return sprintf(buf,
3254 "Node %d HugePages_Total: %5u\n"
3255 "Node %d HugePages_Free: %5u\n"
3256 "Node %d HugePages_Surp: %5u\n",
3257 nid, h->nr_huge_pages_node[nid],
3258 nid, h->free_huge_pages_node[nid],
3259 nid, h->surplus_huge_pages_node[nid]);
3260}
3261
3262void hugetlb_show_meminfo(void)
3263{
3264 struct hstate *h;
3265 int nid;
3266
3267 if (!hugepages_supported())
3268 return;
3269
3270 for_each_node_state(nid, N_MEMORY)
3271 for_each_hstate(h)
3272 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3273 nid,
3274 h->nr_huge_pages_node[nid],
3275 h->free_huge_pages_node[nid],
3276 h->surplus_huge_pages_node[nid],
3277 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3278}
3279
3280void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3281{
3282 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3283 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3284}
3285
3286/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3287unsigned long hugetlb_total_pages(void)
3288{
3289 struct hstate *h;
3290 unsigned long nr_total_pages = 0;
3291
3292 for_each_hstate(h)
3293 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3294 return nr_total_pages;
3295}
3296
3297static int hugetlb_acct_memory(struct hstate *h, long delta)
3298{
3299 int ret = -ENOMEM;
3300
3301 spin_lock(&hugetlb_lock);
3302 /*
3303 * When cpuset is configured, it breaks the strict hugetlb page
3304 * reservation as the accounting is done on a global variable. Such
3305 * reservation is completely rubbish in the presence of cpuset because
3306 * the reservation is not checked against page availability for the
3307 * current cpuset. Application can still potentially OOM'ed by kernel
3308 * with lack of free htlb page in cpuset that the task is in.
3309 * Attempt to enforce strict accounting with cpuset is almost
3310 * impossible (or too ugly) because cpuset is too fluid that
3311 * task or memory node can be dynamically moved between cpusets.
3312 *
3313 * The change of semantics for shared hugetlb mapping with cpuset is
3314 * undesirable. However, in order to preserve some of the semantics,
3315 * we fall back to check against current free page availability as
3316 * a best attempt and hopefully to minimize the impact of changing
3317 * semantics that cpuset has.
3318 */
3319 if (delta > 0) {
3320 if (gather_surplus_pages(h, delta) < 0)
3321 goto out;
3322
3323 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3324 return_unused_surplus_pages(h, delta);
3325 goto out;
3326 }
3327 }
3328
3329 ret = 0;
3330 if (delta < 0)
3331 return_unused_surplus_pages(h, (unsigned long) -delta);
3332
3333out:
3334 spin_unlock(&hugetlb_lock);
3335 return ret;
3336}
3337
3338static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3339{
3340 struct resv_map *resv = vma_resv_map(vma);
3341
3342 /*
3343 * This new VMA should share its siblings reservation map if present.
3344 * The VMA will only ever have a valid reservation map pointer where
3345 * it is being copied for another still existing VMA. As that VMA
3346 * has a reference to the reservation map it cannot disappear until
3347 * after this open call completes. It is therefore safe to take a
3348 * new reference here without additional locking.
3349 */
3350 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3351 kref_get(&resv->refs);
3352}
3353
3354static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3355{
3356 struct hstate *h = hstate_vma(vma);
3357 struct resv_map *resv = vma_resv_map(vma);
3358 struct hugepage_subpool *spool = subpool_vma(vma);
3359 unsigned long reserve, start, end;
3360 long gbl_reserve;
3361
3362 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3363 return;
3364
3365 start = vma_hugecache_offset(h, vma, vma->vm_start);
3366 end = vma_hugecache_offset(h, vma, vma->vm_end);
3367
3368 reserve = (end - start) - region_count(resv, start, end);
3369
3370 kref_put(&resv->refs, resv_map_release);
3371
3372 if (reserve) {
3373 /*
3374 * Decrement reserve counts. The global reserve count may be
3375 * adjusted if the subpool has a minimum size.
3376 */
3377 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3378 hugetlb_acct_memory(h, -gbl_reserve);
3379 }
3380}
3381
3382static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3383{
3384 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3385 return -EINVAL;
3386 return 0;
3387}
3388
3389static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3390{
3391 struct hstate *hstate = hstate_vma(vma);
3392
3393 return 1UL << huge_page_shift(hstate);
3394}
3395
3396/*
3397 * We cannot handle pagefaults against hugetlb pages at all. They cause
3398 * handle_mm_fault() to try to instantiate regular-sized pages in the
3399 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3400 * this far.
3401 */
3402static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3403{
3404 BUG();
3405 return 0;
3406}
3407
3408/*
3409 * When a new function is introduced to vm_operations_struct and added
3410 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3411 * This is because under System V memory model, mappings created via
3412 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3413 * their original vm_ops are overwritten with shm_vm_ops.
3414 */
3415const struct vm_operations_struct hugetlb_vm_ops = {
3416 .fault = hugetlb_vm_op_fault,
3417 .open = hugetlb_vm_op_open,
3418 .close = hugetlb_vm_op_close,
3419 .split = hugetlb_vm_op_split,
3420 .pagesize = hugetlb_vm_op_pagesize,
3421};
3422
3423static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3424 int writable)
3425{
3426 pte_t entry;
3427
3428 if (writable) {
3429 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3430 vma->vm_page_prot)));
3431 } else {
3432 entry = huge_pte_wrprotect(mk_huge_pte(page,
3433 vma->vm_page_prot));
3434 }
3435 entry = pte_mkyoung(entry);
3436 entry = pte_mkhuge(entry);
3437 entry = arch_make_huge_pte(entry, vma, page, writable);
3438
3439 return entry;
3440}
3441
3442static void set_huge_ptep_writable(struct vm_area_struct *vma,
3443 unsigned long address, pte_t *ptep)
3444{
3445 pte_t entry;
3446
3447 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3448 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3449 update_mmu_cache(vma, address, ptep);
3450}
3451
3452bool is_hugetlb_entry_migration(pte_t pte)
3453{
3454 swp_entry_t swp;
3455
3456 if (huge_pte_none(pte) || pte_present(pte))
3457 return false;
3458 swp = pte_to_swp_entry(pte);
3459 if (non_swap_entry(swp) && is_migration_entry(swp))
3460 return true;
3461 else
3462 return false;
3463}
3464
3465static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3466{
3467 swp_entry_t swp;
3468
3469 if (huge_pte_none(pte) || pte_present(pte))
3470 return 0;
3471 swp = pte_to_swp_entry(pte);
3472 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3473 return 1;
3474 else
3475 return 0;
3476}
3477
3478int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3479 struct vm_area_struct *vma)
3480{
3481 pte_t *src_pte, *dst_pte, entry, dst_entry;
3482 struct page *ptepage;
3483 unsigned long addr;
3484 int cow;
3485 struct hstate *h = hstate_vma(vma);
3486 unsigned long sz = huge_page_size(h);
3487 struct mmu_notifier_range range;
3488 int ret = 0;
3489
3490 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3491
3492 if (cow) {
3493 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3494 vma->vm_start,
3495 vma->vm_end);
3496 mmu_notifier_invalidate_range_start(&range);
3497 }
3498
3499 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3500 spinlock_t *src_ptl, *dst_ptl;
3501 src_pte = huge_pte_offset(src, addr, sz);
3502 if (!src_pte)
3503 continue;
3504 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
3505 if (!dst_pte) {
3506 ret = -ENOMEM;
3507 break;
3508 }
3509
3510 /*
3511 * If the pagetables are shared don't copy or take references.
3512 * dst_pte == src_pte is the common case of src/dest sharing.
3513 *
3514 * However, src could have 'unshared' and dst shares with
3515 * another vma. If dst_pte !none, this implies sharing.
3516 * Check here before taking page table lock, and once again
3517 * after taking the lock below.
3518 */
3519 dst_entry = huge_ptep_get(dst_pte);
3520 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3521 continue;
3522
3523 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3524 src_ptl = huge_pte_lockptr(h, src, src_pte);
3525 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3526 entry = huge_ptep_get(src_pte);
3527 dst_entry = huge_ptep_get(dst_pte);
3528 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3529 /*
3530 * Skip if src entry none. Also, skip in the
3531 * unlikely case dst entry !none as this implies
3532 * sharing with another vma.
3533 */
3534 ;
3535 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3536 is_hugetlb_entry_hwpoisoned(entry))) {
3537 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3538
3539 if (is_write_migration_entry(swp_entry) && cow) {
3540 /*
3541 * COW mappings require pages in both
3542 * parent and child to be set to read.
3543 */
3544 make_migration_entry_read(&swp_entry);
3545 entry = swp_entry_to_pte(swp_entry);
3546 set_huge_swap_pte_at(src, addr, src_pte,
3547 entry, sz);
3548 }
3549 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3550 } else {
3551 if (cow) {
3552 /*
3553 * No need to notify as we are downgrading page
3554 * table protection not changing it to point
3555 * to a new page.
3556 *
3557 * See Documentation/vm/mmu_notifier.rst
3558 */
3559 huge_ptep_set_wrprotect(src, addr, src_pte);
3560 }
3561 entry = huge_ptep_get(src_pte);
3562 ptepage = pte_page(entry);
3563 get_page(ptepage);
3564 page_dup_rmap(ptepage, true);
3565 set_huge_pte_at(dst, addr, dst_pte, entry);
3566 hugetlb_count_add(pages_per_huge_page(h), dst);
3567 }
3568 spin_unlock(src_ptl);
3569 spin_unlock(dst_ptl);
3570 }
3571
3572 if (cow)
3573 mmu_notifier_invalidate_range_end(&range);
3574
3575 return ret;
3576}
3577
3578void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3579 unsigned long start, unsigned long end,
3580 struct page *ref_page)
3581{
3582 struct mm_struct *mm = vma->vm_mm;
3583 unsigned long address;
3584 pte_t *ptep;
3585 pte_t pte;
3586 spinlock_t *ptl;
3587 struct page *page;
3588 struct hstate *h = hstate_vma(vma);
3589 unsigned long sz = huge_page_size(h);
3590 struct mmu_notifier_range range;
3591 bool force_flush = false;
3592
3593 WARN_ON(!is_vm_hugetlb_page(vma));
3594 BUG_ON(start & ~huge_page_mask(h));
3595 BUG_ON(end & ~huge_page_mask(h));
3596
3597 /*
3598 * This is a hugetlb vma, all the pte entries should point
3599 * to huge page.
3600 */
3601 tlb_change_page_size(tlb, sz);
3602 tlb_start_vma(tlb, vma);
3603
3604 /*
3605 * If sharing possible, alert mmu notifiers of worst case.
3606 */
3607 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3608 end);
3609 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3610 mmu_notifier_invalidate_range_start(&range);
3611 address = start;
3612 for (; address < end; address += sz) {
3613 ptep = huge_pte_offset(mm, address, sz);
3614 if (!ptep)
3615 continue;
3616
3617 ptl = huge_pte_lock(h, mm, ptep);
3618 if (huge_pmd_unshare(mm, &address, ptep)) {
3619 spin_unlock(ptl);
3620 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
3621 force_flush = true;
3622 continue;
3623 }
3624
3625 pte = huge_ptep_get(ptep);
3626 if (huge_pte_none(pte)) {
3627 spin_unlock(ptl);
3628 continue;
3629 }
3630
3631 /*
3632 * Migrating hugepage or HWPoisoned hugepage is already
3633 * unmapped and its refcount is dropped, so just clear pte here.
3634 */
3635 if (unlikely(!pte_present(pte))) {
3636 huge_pte_clear(mm, address, ptep, sz);
3637 spin_unlock(ptl);
3638 continue;
3639 }
3640
3641 page = pte_page(pte);
3642 /*
3643 * If a reference page is supplied, it is because a specific
3644 * page is being unmapped, not a range. Ensure the page we
3645 * are about to unmap is the actual page of interest.
3646 */
3647 if (ref_page) {
3648 if (page != ref_page) {
3649 spin_unlock(ptl);
3650 continue;
3651 }
3652 /*
3653 * Mark the VMA as having unmapped its page so that
3654 * future faults in this VMA will fail rather than
3655 * looking like data was lost
3656 */
3657 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3658 }
3659
3660 pte = huge_ptep_get_and_clear(mm, address, ptep);
3661 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3662 if (huge_pte_dirty(pte))
3663 set_page_dirty(page);
3664
3665 hugetlb_count_sub(pages_per_huge_page(h), mm);
3666 page_remove_rmap(page, true);
3667
3668 spin_unlock(ptl);
3669 tlb_remove_page_size(tlb, page, huge_page_size(h));
3670 /*
3671 * Bail out after unmapping reference page if supplied
3672 */
3673 if (ref_page)
3674 break;
3675 }
3676 mmu_notifier_invalidate_range_end(&range);
3677 tlb_end_vma(tlb, vma);
3678
3679 /*
3680 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
3681 * could defer the flush until now, since by holding i_mmap_rwsem we
3682 * guaranteed that the last refernece would not be dropped. But we must
3683 * do the flushing before we return, as otherwise i_mmap_rwsem will be
3684 * dropped and the last reference to the shared PMDs page might be
3685 * dropped as well.
3686 *
3687 * In theory we could defer the freeing of the PMD pages as well, but
3688 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
3689 * detect sharing, so we cannot defer the release of the page either.
3690 * Instead, do flush now.
3691 */
3692 if (force_flush)
3693 tlb_flush_mmu_tlbonly(tlb);
3694}
3695
3696void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3697 struct vm_area_struct *vma, unsigned long start,
3698 unsigned long end, struct page *ref_page)
3699{
3700 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3701
3702 /*
3703 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3704 * test will fail on a vma being torn down, and not grab a page table
3705 * on its way out. We're lucky that the flag has such an appropriate
3706 * name, and can in fact be safely cleared here. We could clear it
3707 * before the __unmap_hugepage_range above, but all that's necessary
3708 * is to clear it before releasing the i_mmap_rwsem. This works
3709 * because in the context this is called, the VMA is about to be
3710 * destroyed and the i_mmap_rwsem is held.
3711 */
3712 vma->vm_flags &= ~VM_MAYSHARE;
3713}
3714
3715void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3716 unsigned long end, struct page *ref_page)
3717{
3718 struct mm_struct *mm;
3719 struct mmu_gather tlb;
3720 unsigned long tlb_start = start;
3721 unsigned long tlb_end = end;
3722
3723 /*
3724 * If shared PMDs were possibly used within this vma range, adjust
3725 * start/end for worst case tlb flushing.
3726 * Note that we can not be sure if PMDs are shared until we try to
3727 * unmap pages. However, we want to make sure TLB flushing covers
3728 * the largest possible range.
3729 */
3730 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3731
3732 mm = vma->vm_mm;
3733
3734 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3735 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3736 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3737}
3738
3739/*
3740 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3741 * mappping it owns the reserve page for. The intention is to unmap the page
3742 * from other VMAs and let the children be SIGKILLed if they are faulting the
3743 * same region.
3744 */
3745static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3746 struct page *page, unsigned long address)
3747{
3748 struct hstate *h = hstate_vma(vma);
3749 struct vm_area_struct *iter_vma;
3750 struct address_space *mapping;
3751 pgoff_t pgoff;
3752
3753 /*
3754 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3755 * from page cache lookup which is in HPAGE_SIZE units.
3756 */
3757 address = address & huge_page_mask(h);
3758 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3759 vma->vm_pgoff;
3760 mapping = vma->vm_file->f_mapping;
3761
3762 /*
3763 * Take the mapping lock for the duration of the table walk. As
3764 * this mapping should be shared between all the VMAs,
3765 * __unmap_hugepage_range() is called as the lock is already held
3766 */
3767 i_mmap_lock_write(mapping);
3768 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3769 /* Do not unmap the current VMA */
3770 if (iter_vma == vma)
3771 continue;
3772
3773 /*
3774 * Shared VMAs have their own reserves and do not affect
3775 * MAP_PRIVATE accounting but it is possible that a shared
3776 * VMA is using the same page so check and skip such VMAs.
3777 */
3778 if (iter_vma->vm_flags & VM_MAYSHARE)
3779 continue;
3780
3781 /*
3782 * Unmap the page from other VMAs without their own reserves.
3783 * They get marked to be SIGKILLed if they fault in these
3784 * areas. This is because a future no-page fault on this VMA
3785 * could insert a zeroed page instead of the data existing
3786 * from the time of fork. This would look like data corruption
3787 */
3788 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3789 unmap_hugepage_range(iter_vma, address,
3790 address + huge_page_size(h), page);
3791 }
3792 i_mmap_unlock_write(mapping);
3793}
3794
3795/*
3796 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3797 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3798 * cannot race with other handlers or page migration.
3799 * Keep the pte_same checks anyway to make transition from the mutex easier.
3800 */
3801static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3802 unsigned long address, pte_t *ptep,
3803 struct page *pagecache_page, spinlock_t *ptl)
3804{
3805 pte_t pte;
3806 struct hstate *h = hstate_vma(vma);
3807 struct page *old_page, *new_page;
3808 int outside_reserve = 0;
3809 vm_fault_t ret = 0;
3810 unsigned long haddr = address & huge_page_mask(h);
3811 struct mmu_notifier_range range;
3812
3813 pte = huge_ptep_get(ptep);
3814 old_page = pte_page(pte);
3815
3816retry_avoidcopy:
3817 /* If no-one else is actually using this page, avoid the copy
3818 * and just make the page writable */
3819 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3820 page_move_anon_rmap(old_page, vma);
3821 set_huge_ptep_writable(vma, haddr, ptep);
3822 return 0;
3823 }
3824
3825 /*
3826 * If the process that created a MAP_PRIVATE mapping is about to
3827 * perform a COW due to a shared page count, attempt to satisfy
3828 * the allocation without using the existing reserves. The pagecache
3829 * page is used to determine if the reserve at this address was
3830 * consumed or not. If reserves were used, a partial faulted mapping
3831 * at the time of fork() could consume its reserves on COW instead
3832 * of the full address range.
3833 */
3834 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3835 old_page != pagecache_page)
3836 outside_reserve = 1;
3837
3838 get_page(old_page);
3839
3840 /*
3841 * Drop page table lock as buddy allocator may be called. It will
3842 * be acquired again before returning to the caller, as expected.
3843 */
3844 spin_unlock(ptl);
3845 new_page = alloc_huge_page(vma, haddr, outside_reserve);
3846
3847 if (IS_ERR(new_page)) {
3848 /*
3849 * If a process owning a MAP_PRIVATE mapping fails to COW,
3850 * it is due to references held by a child and an insufficient
3851 * huge page pool. To guarantee the original mappers
3852 * reliability, unmap the page from child processes. The child
3853 * may get SIGKILLed if it later faults.
3854 */
3855 if (outside_reserve) {
3856 put_page(old_page);
3857 BUG_ON(huge_pte_none(pte));
3858 unmap_ref_private(mm, vma, old_page, haddr);
3859 BUG_ON(huge_pte_none(pte));
3860 spin_lock(ptl);
3861 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3862 if (likely(ptep &&
3863 pte_same(huge_ptep_get(ptep), pte)))
3864 goto retry_avoidcopy;
3865 /*
3866 * race occurs while re-acquiring page table
3867 * lock, and our job is done.
3868 */
3869 return 0;
3870 }
3871
3872 ret = vmf_error(PTR_ERR(new_page));
3873 goto out_release_old;
3874 }
3875
3876 /*
3877 * When the original hugepage is shared one, it does not have
3878 * anon_vma prepared.
3879 */
3880 if (unlikely(anon_vma_prepare(vma))) {
3881 ret = VM_FAULT_OOM;
3882 goto out_release_all;
3883 }
3884
3885 copy_user_huge_page(new_page, old_page, address, vma,
3886 pages_per_huge_page(h));
3887 __SetPageUptodate(new_page);
3888
3889 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
3890 haddr + huge_page_size(h));
3891 mmu_notifier_invalidate_range_start(&range);
3892
3893 /*
3894 * Retake the page table lock to check for racing updates
3895 * before the page tables are altered
3896 */
3897 spin_lock(ptl);
3898 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3899 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3900 ClearPagePrivate(new_page);
3901
3902 /* Break COW */
3903 huge_ptep_clear_flush(vma, haddr, ptep);
3904 mmu_notifier_invalidate_range(mm, range.start, range.end);
3905 set_huge_pte_at(mm, haddr, ptep,
3906 make_huge_pte(vma, new_page, 1));
3907 page_remove_rmap(old_page, true);
3908 hugepage_add_new_anon_rmap(new_page, vma, haddr);
3909 set_page_huge_active(new_page);
3910 /* Make the old page be freed below */
3911 new_page = old_page;
3912 }
3913 spin_unlock(ptl);
3914 mmu_notifier_invalidate_range_end(&range);
3915out_release_all:
3916 restore_reserve_on_error(h, vma, haddr, new_page);
3917 put_page(new_page);
3918out_release_old:
3919 put_page(old_page);
3920
3921 spin_lock(ptl); /* Caller expects lock to be held */
3922 return ret;
3923}
3924
3925/* Return the pagecache page at a given address within a VMA */
3926static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3927 struct vm_area_struct *vma, unsigned long address)
3928{
3929 struct address_space *mapping;
3930 pgoff_t idx;
3931
3932 mapping = vma->vm_file->f_mapping;
3933 idx = vma_hugecache_offset(h, vma, address);
3934
3935 return find_lock_page(mapping, idx);
3936}
3937
3938/*
3939 * Return whether there is a pagecache page to back given address within VMA.
3940 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3941 */
3942static bool hugetlbfs_pagecache_present(struct hstate *h,
3943 struct vm_area_struct *vma, unsigned long address)
3944{
3945 struct address_space *mapping;
3946 pgoff_t idx;
3947 struct page *page;
3948
3949 mapping = vma->vm_file->f_mapping;
3950 idx = vma_hugecache_offset(h, vma, address);
3951
3952 page = find_get_page(mapping, idx);
3953 if (page)
3954 put_page(page);
3955 return page != NULL;
3956}
3957
3958int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3959 pgoff_t idx)
3960{
3961 struct inode *inode = mapping->host;
3962 struct hstate *h = hstate_inode(inode);
3963 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3964
3965 if (err)
3966 return err;
3967 ClearPagePrivate(page);
3968
3969 /*
3970 * set page dirty so that it will not be removed from cache/file
3971 * by non-hugetlbfs specific code paths.
3972 */
3973 set_page_dirty(page);
3974
3975 spin_lock(&inode->i_lock);
3976 inode->i_blocks += blocks_per_huge_page(h);
3977 spin_unlock(&inode->i_lock);
3978 return 0;
3979}
3980
3981static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
3982 struct address_space *mapping,
3983 struct hstate *h,
3984 pgoff_t idx,
3985 unsigned int flags,
3986 unsigned long haddr,
3987 unsigned long reason)
3988{
3989 vm_fault_t ret;
3990 u32 hash;
3991 struct vm_fault vmf = {
3992 .vma = vma,
3993 .address = haddr,
3994 .flags = flags,
3995
3996 /*
3997 * Hard to debug if it ends up being
3998 * used by a callee that assumes
3999 * something about the other
4000 * uninitialized fields... same as in
4001 * memory.c
4002 */
4003 };
4004
4005 /*
4006 * hugetlb_fault_mutex and i_mmap_rwsem must be
4007 * dropped before handling userfault. Reacquire
4008 * after handling fault to make calling code simpler.
4009 */
4010 hash = hugetlb_fault_mutex_hash(h, mapping, idx);
4011 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4012 ret = handle_userfault(&vmf, reason);
4013 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4014
4015 return ret;
4016}
4017
4018static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4019 struct vm_area_struct *vma,
4020 struct address_space *mapping, pgoff_t idx,
4021 unsigned long address, pte_t *ptep, unsigned int flags)
4022{
4023 struct hstate *h = hstate_vma(vma);
4024 vm_fault_t ret = VM_FAULT_SIGBUS;
4025 int anon_rmap = 0;
4026 unsigned long size;
4027 struct page *page;
4028 pte_t new_pte;
4029 spinlock_t *ptl;
4030 unsigned long haddr = address & huge_page_mask(h);
4031 bool new_page = false;
4032
4033 /*
4034 * Currently, we are forced to kill the process in the event the
4035 * original mapper has unmapped pages from the child due to a failed
4036 * COW. Warn that such a situation has occurred as it may not be obvious
4037 */
4038 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4039 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4040 current->pid);
4041 return ret;
4042 }
4043
4044 /*
4045 * Use page lock to guard against racing truncation
4046 * before we get page_table_lock.
4047 */
4048retry:
4049 page = find_lock_page(mapping, idx);
4050 if (!page) {
4051 size = i_size_read(mapping->host) >> huge_page_shift(h);
4052 if (idx >= size)
4053 goto out;
4054
4055 /* Check for page in userfault range */
4056 if (userfaultfd_missing(vma)) {
4057 ret = hugetlb_handle_userfault(vma, mapping, h,
4058 idx, flags, haddr,
4059 VM_UFFD_MISSING);
4060 goto out;
4061 }
4062
4063 page = alloc_huge_page(vma, haddr, 0);
4064 if (IS_ERR(page)) {
4065 /*
4066 * Returning error will result in faulting task being
4067 * sent SIGBUS. The hugetlb fault mutex prevents two
4068 * tasks from racing to fault in the same page which
4069 * could result in false unable to allocate errors.
4070 * Page migration does not take the fault mutex, but
4071 * does a clear then write of pte's under page table
4072 * lock. Page fault code could race with migration,
4073 * notice the clear pte and try to allocate a page
4074 * here. Before returning error, get ptl and make
4075 * sure there really is no pte entry.
4076 */
4077 ptl = huge_pte_lock(h, mm, ptep);
4078 if (!huge_pte_none(huge_ptep_get(ptep))) {
4079 ret = 0;
4080 spin_unlock(ptl);
4081 goto out;
4082 }
4083 spin_unlock(ptl);
4084 ret = vmf_error(PTR_ERR(page));
4085 goto out;
4086 }
4087 clear_huge_page(page, address, pages_per_huge_page(h));
4088 __SetPageUptodate(page);
4089 new_page = true;
4090
4091 if (vma->vm_flags & VM_MAYSHARE) {
4092 int err = huge_add_to_page_cache(page, mapping, idx);
4093 if (err) {
4094 put_page(page);
4095 if (err == -EEXIST)
4096 goto retry;
4097 goto out;
4098 }
4099 } else {
4100 lock_page(page);
4101 if (unlikely(anon_vma_prepare(vma))) {
4102 ret = VM_FAULT_OOM;
4103 goto backout_unlocked;
4104 }
4105 anon_rmap = 1;
4106 }
4107 } else {
4108 /*
4109 * If memory error occurs between mmap() and fault, some process
4110 * don't have hwpoisoned swap entry for errored virtual address.
4111 * So we need to block hugepage fault by PG_hwpoison bit check.
4112 */
4113 if (unlikely(PageHWPoison(page))) {
4114 ret = VM_FAULT_HWPOISON_LARGE |
4115 VM_FAULT_SET_HINDEX(hstate_index(h));
4116 goto backout_unlocked;
4117 }
4118
4119 /* Check for page in userfault range. */
4120 if (userfaultfd_minor(vma)) {
4121 unlock_page(page);
4122 put_page(page);
4123 ret = hugetlb_handle_userfault(vma, mapping, h,
4124 idx, flags, haddr,
4125 VM_UFFD_MINOR);
4126 goto out;
4127 }
4128 }
4129
4130 /*
4131 * If we are going to COW a private mapping later, we examine the
4132 * pending reservations for this page now. This will ensure that
4133 * any allocations necessary to record that reservation occur outside
4134 * the spinlock.
4135 */
4136 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4137 if (vma_needs_reservation(h, vma, haddr) < 0) {
4138 ret = VM_FAULT_OOM;
4139 goto backout_unlocked;
4140 }
4141 /* Just decrements count, does not deallocate */
4142 vma_end_reservation(h, vma, haddr);
4143 }
4144
4145 ptl = huge_pte_lock(h, mm, ptep);
4146 size = i_size_read(mapping->host) >> huge_page_shift(h);
4147 if (idx >= size)
4148 goto backout;
4149
4150 ret = 0;
4151 if (!huge_pte_none(huge_ptep_get(ptep)))
4152 goto backout;
4153
4154 if (anon_rmap) {
4155 ClearPagePrivate(page);
4156 hugepage_add_new_anon_rmap(page, vma, haddr);
4157 } else
4158 page_dup_rmap(page, true);
4159 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4160 && (vma->vm_flags & VM_SHARED)));
4161 set_huge_pte_at(mm, haddr, ptep, new_pte);
4162
4163 hugetlb_count_add(pages_per_huge_page(h), mm);
4164 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4165 /* Optimization, do the COW without a second fault */
4166 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4167 }
4168
4169 spin_unlock(ptl);
4170
4171 /*
4172 * Only make newly allocated pages active. Existing pages found
4173 * in the pagecache could be !page_huge_active() if they have been
4174 * isolated for migration.
4175 */
4176 if (new_page)
4177 set_page_huge_active(page);
4178
4179 unlock_page(page);
4180out:
4181 return ret;
4182
4183backout:
4184 spin_unlock(ptl);
4185backout_unlocked:
4186 unlock_page(page);
4187 restore_reserve_on_error(h, vma, haddr, page);
4188 put_page(page);
4189 goto out;
4190}
4191
4192#ifdef CONFIG_SMP
4193u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
4194 pgoff_t idx)
4195{
4196 unsigned long key[2];
4197 u32 hash;
4198
4199 key[0] = (unsigned long) mapping;
4200 key[1] = idx;
4201
4202 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4203
4204 return hash & (num_fault_mutexes - 1);
4205}
4206#else
4207/*
4208 * For uniprocesor systems we always use a single mutex, so just
4209 * return 0 and avoid the hashing overhead.
4210 */
4211u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
4212 pgoff_t idx)
4213{
4214 return 0;
4215}
4216#endif
4217
4218vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4219 unsigned long address, unsigned int flags)
4220{
4221 pte_t *ptep, entry;
4222 spinlock_t *ptl;
4223 vm_fault_t ret;
4224 u32 hash;
4225 pgoff_t idx;
4226 struct page *page = NULL;
4227 struct page *pagecache_page = NULL;
4228 struct hstate *h = hstate_vma(vma);
4229 struct address_space *mapping;
4230 int need_wait_lock = 0;
4231 unsigned long haddr = address & huge_page_mask(h);
4232
4233 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4234 if (ptep) {
4235 entry = huge_ptep_get(ptep);
4236 if (unlikely(is_hugetlb_entry_migration(entry))) {
4237 migration_entry_wait_huge(vma, mm, ptep);
4238 return 0;
4239 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4240 return VM_FAULT_HWPOISON_LARGE |
4241 VM_FAULT_SET_HINDEX(hstate_index(h));
4242 } else {
4243 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
4244 if (!ptep)
4245 return VM_FAULT_OOM;
4246 }
4247
4248 mapping = vma->vm_file->f_mapping;
4249 idx = vma_hugecache_offset(h, vma, haddr);
4250
4251 /*
4252 * Serialize hugepage allocation and instantiation, so that we don't
4253 * get spurious allocation failures if two CPUs race to instantiate
4254 * the same page in the page cache.
4255 */
4256 hash = hugetlb_fault_mutex_hash(h, mapping, idx);
4257 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4258
4259 entry = huge_ptep_get(ptep);
4260 if (huge_pte_none(entry)) {
4261 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4262 goto out_mutex;
4263 }
4264
4265 ret = 0;
4266
4267 /*
4268 * entry could be a migration/hwpoison entry at this point, so this
4269 * check prevents the kernel from going below assuming that we have
4270 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4271 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4272 * handle it.
4273 */
4274 if (!pte_present(entry))
4275 goto out_mutex;
4276
4277 /*
4278 * If we are going to COW the mapping later, we examine the pending
4279 * reservations for this page now. This will ensure that any
4280 * allocations necessary to record that reservation occur outside the
4281 * spinlock. For private mappings, we also lookup the pagecache
4282 * page now as it is used to determine if a reservation has been
4283 * consumed.
4284 */
4285 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4286 if (vma_needs_reservation(h, vma, haddr) < 0) {
4287 ret = VM_FAULT_OOM;
4288 goto out_mutex;
4289 }
4290 /* Just decrements count, does not deallocate */
4291 vma_end_reservation(h, vma, haddr);
4292
4293 if (!(vma->vm_flags & VM_MAYSHARE))
4294 pagecache_page = hugetlbfs_pagecache_page(h,
4295 vma, haddr);
4296 }
4297
4298 ptl = huge_pte_lock(h, mm, ptep);
4299
4300 /* Check for a racing update before calling hugetlb_cow */
4301 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4302 goto out_ptl;
4303
4304 /*
4305 * hugetlb_cow() requires page locks of pte_page(entry) and
4306 * pagecache_page, so here we need take the former one
4307 * when page != pagecache_page or !pagecache_page.
4308 */
4309 page = pte_page(entry);
4310 if (page != pagecache_page)
4311 if (!trylock_page(page)) {
4312 need_wait_lock = 1;
4313 goto out_ptl;
4314 }
4315
4316 get_page(page);
4317
4318 if (flags & FAULT_FLAG_WRITE) {
4319 if (!huge_pte_write(entry)) {
4320 ret = hugetlb_cow(mm, vma, address, ptep,
4321 pagecache_page, ptl);
4322 goto out_put_page;
4323 }
4324 entry = huge_pte_mkdirty(entry);
4325 }
4326 entry = pte_mkyoung(entry);
4327 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4328 flags & FAULT_FLAG_WRITE))
4329 update_mmu_cache(vma, haddr, ptep);
4330out_put_page:
4331 if (page != pagecache_page)
4332 unlock_page(page);
4333 put_page(page);
4334out_ptl:
4335 spin_unlock(ptl);
4336
4337 if (pagecache_page) {
4338 unlock_page(pagecache_page);
4339 put_page(pagecache_page);
4340 }
4341out_mutex:
4342 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4343 /*
4344 * Generally it's safe to hold refcount during waiting page lock. But
4345 * here we just wait to defer the next page fault to avoid busy loop and
4346 * the page is not used after unlocked before returning from the current
4347 * page fault. So we are safe from accessing freed page, even if we wait
4348 * here without taking refcount.
4349 */
4350 if (need_wait_lock)
4351 wait_on_page_locked(page);
4352 return ret;
4353}
4354
4355#ifdef CONFIG_USERFAULTFD
4356/*
4357 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4358 * modifications for huge pages.
4359 */
4360int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4361 pte_t *dst_pte,
4362 struct vm_area_struct *dst_vma,
4363 unsigned long dst_addr,
4364 unsigned long src_addr,
4365 enum mcopy_atomic_mode mode,
4366 struct page **pagep)
4367{
4368 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
4369 struct address_space *mapping;
4370 pgoff_t idx;
4371 unsigned long size;
4372 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4373 struct hstate *h = hstate_vma(dst_vma);
4374 pte_t _dst_pte;
4375 spinlock_t *ptl;
4376 int ret;
4377 struct page *page;
4378 int writable;
4379
4380 mapping = dst_vma->vm_file->f_mapping;
4381 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4382
4383 if (is_continue) {
4384 ret = -EFAULT;
4385 page = find_lock_page(mapping, idx);
4386 if (!page)
4387 goto out;
4388 } else if (!*pagep) {
4389 /* If a page already exists, then it's UFFDIO_COPY for
4390 * a non-missing case. Return -EEXIST.
4391 */
4392 if (vm_shared &&
4393 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
4394 ret = -EEXIST;
4395 goto out;
4396 }
4397
4398 page = alloc_huge_page(dst_vma, dst_addr, 0);
4399 if (IS_ERR(page)) {
4400 ret = -ENOMEM;
4401 goto out;
4402 }
4403
4404 ret = copy_huge_page_from_user(page,
4405 (const void __user *) src_addr,
4406 pages_per_huge_page(h), false);
4407
4408 /* fallback to copy_from_user outside mmap_sem */
4409 if (unlikely(ret)) {
4410 ret = -ENOENT;
4411 *pagep = page;
4412 /* don't free the page */
4413 goto out;
4414 }
4415 } else {
4416 page = *pagep;
4417 *pagep = NULL;
4418 }
4419
4420 /*
4421 * The memory barrier inside __SetPageUptodate makes sure that
4422 * preceding stores to the page contents become visible before
4423 * the set_pte_at() write.
4424 */
4425 __SetPageUptodate(page);
4426
4427 /* Add shared, newly allocated pages to the page cache. */
4428 if (vm_shared && !is_continue) {
4429 size = i_size_read(mapping->host) >> huge_page_shift(h);
4430 ret = -EFAULT;
4431 if (idx >= size)
4432 goto out_release_nounlock;
4433
4434 /*
4435 * Serialization between remove_inode_hugepages() and
4436 * huge_add_to_page_cache() below happens through the
4437 * hugetlb_fault_mutex_table that here must be hold by
4438 * the caller.
4439 */
4440 ret = huge_add_to_page_cache(page, mapping, idx);
4441 if (ret)
4442 goto out_release_nounlock;
4443 }
4444
4445 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4446 spin_lock(ptl);
4447
4448 /*
4449 * Recheck the i_size after holding PT lock to make sure not
4450 * to leave any page mapped (as page_mapped()) beyond the end
4451 * of the i_size (remove_inode_hugepages() is strict about
4452 * enforcing that). If we bail out here, we'll also leave a
4453 * page in the radix tree in the vm_shared case beyond the end
4454 * of the i_size, but remove_inode_hugepages() will take care
4455 * of it as soon as we drop the hugetlb_fault_mutex_table.
4456 */
4457 size = i_size_read(mapping->host) >> huge_page_shift(h);
4458 ret = -EFAULT;
4459 if (idx >= size)
4460 goto out_release_unlock;
4461
4462 ret = -EEXIST;
4463 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4464 goto out_release_unlock;
4465
4466 if (vm_shared) {
4467 page_dup_rmap(page, true);
4468 } else {
4469 ClearPagePrivate(page);
4470 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4471 }
4472
4473 /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
4474 if (is_continue && !vm_shared)
4475 writable = 0;
4476 else
4477 writable = dst_vma->vm_flags & VM_WRITE;
4478
4479 _dst_pte = make_huge_pte(dst_vma, page, writable);
4480 if (writable)
4481 _dst_pte = huge_pte_mkdirty(_dst_pte);
4482 _dst_pte = pte_mkyoung(_dst_pte);
4483
4484 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4485
4486 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4487 dst_vma->vm_flags & VM_WRITE);
4488 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4489
4490 /* No need to invalidate - it was non-present before */
4491 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4492
4493 spin_unlock(ptl);
4494 if (!is_continue)
4495 set_page_huge_active(page);
4496 if (vm_shared || is_continue)
4497 unlock_page(page);
4498 ret = 0;
4499out:
4500 return ret;
4501out_release_unlock:
4502 spin_unlock(ptl);
4503 if (vm_shared || is_continue)
4504 unlock_page(page);
4505out_release_nounlock:
4506 put_page(page);
4507 goto out;
4508}
4509#endif /* CONFIG_USERFAULTFD */
4510
4511long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4512 struct page **pages, struct vm_area_struct **vmas,
4513 unsigned long *position, unsigned long *nr_pages,
4514 long i, unsigned int flags, int *locked)
4515{
4516 unsigned long pfn_offset;
4517 unsigned long vaddr = *position;
4518 unsigned long remainder = *nr_pages;
4519 struct hstate *h = hstate_vma(vma);
4520 int err = -EFAULT;
4521
4522 while (vaddr < vma->vm_end && remainder) {
4523 pte_t *pte;
4524 spinlock_t *ptl = NULL;
4525 int absent;
4526 struct page *page;
4527
4528 /*
4529 * If we have a pending SIGKILL, don't keep faulting pages and
4530 * potentially allocating memory.
4531 */
4532 if (fatal_signal_pending(current)) {
4533 remainder = 0;
4534 break;
4535 }
4536
4537 /*
4538 * Some archs (sparc64, sh*) have multiple pte_ts to
4539 * each hugepage. We have to make sure we get the
4540 * first, for the page indexing below to work.
4541 *
4542 * Note that page table lock is not held when pte is null.
4543 */
4544 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4545 huge_page_size(h));
4546 if (pte)
4547 ptl = huge_pte_lock(h, mm, pte);
4548 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4549
4550 /*
4551 * When coredumping, it suits get_dump_page if we just return
4552 * an error where there's an empty slot with no huge pagecache
4553 * to back it. This way, we avoid allocating a hugepage, and
4554 * the sparse dumpfile avoids allocating disk blocks, but its
4555 * huge holes still show up with zeroes where they need to be.
4556 */
4557 if (absent && (flags & FOLL_DUMP) &&
4558 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4559 if (pte)
4560 spin_unlock(ptl);
4561 remainder = 0;
4562 break;
4563 }
4564
4565 /*
4566 * We need call hugetlb_fault for both hugepages under migration
4567 * (in which case hugetlb_fault waits for the migration,) and
4568 * hwpoisoned hugepages (in which case we need to prevent the
4569 * caller from accessing to them.) In order to do this, we use
4570 * here is_swap_pte instead of is_hugetlb_entry_migration and
4571 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4572 * both cases, and because we can't follow correct pages
4573 * directly from any kind of swap entries.
4574 */
4575 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4576 ((flags & FOLL_WRITE) &&
4577 !huge_pte_write(huge_ptep_get(pte)))) {
4578 vm_fault_t ret;
4579 unsigned int fault_flags = 0;
4580
4581 if (pte)
4582 spin_unlock(ptl);
4583 if (flags & FOLL_WRITE)
4584 fault_flags |= FAULT_FLAG_WRITE;
4585 if (locked)
4586 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4587 FAULT_FLAG_KILLABLE;
4588 if (flags & FOLL_NOWAIT)
4589 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4590 FAULT_FLAG_RETRY_NOWAIT;
4591 if (flags & FOLL_TRIED) {
4592 /*
4593 * Note: FAULT_FLAG_ALLOW_RETRY and
4594 * FAULT_FLAG_TRIED can co-exist
4595 */
4596 fault_flags |= FAULT_FLAG_TRIED;
4597 }
4598 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4599 if (ret & VM_FAULT_ERROR) {
4600 err = vm_fault_to_errno(ret, flags);
4601 remainder = 0;
4602 break;
4603 }
4604 if (ret & VM_FAULT_RETRY) {
4605 if (locked &&
4606 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4607 *locked = 0;
4608 *nr_pages = 0;
4609 /*
4610 * VM_FAULT_RETRY must not return an
4611 * error, it will return zero
4612 * instead.
4613 *
4614 * No need to update "position" as the
4615 * caller will not check it after
4616 * *nr_pages is set to 0.
4617 */
4618 return i;
4619 }
4620 continue;
4621 }
4622
4623 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4624 page = pte_page(huge_ptep_get(pte));
4625
4626 /*
4627 * Instead of doing 'try_get_page()' below in the same_page
4628 * loop, just check the count once here.
4629 */
4630 if (unlikely(page_count(page) <= 0)) {
4631 if (pages) {
4632 spin_unlock(ptl);
4633 remainder = 0;
4634 err = -ENOMEM;
4635 break;
4636 }
4637 }
4638same_page:
4639 if (pages) {
4640 pages[i] = mem_map_offset(page, pfn_offset);
4641 get_page(pages[i]);
4642 }
4643
4644 if (vmas)
4645 vmas[i] = vma;
4646
4647 vaddr += PAGE_SIZE;
4648 ++pfn_offset;
4649 --remainder;
4650 ++i;
4651 if (vaddr < vma->vm_end && remainder &&
4652 pfn_offset < pages_per_huge_page(h)) {
4653 /*
4654 * We use pfn_offset to avoid touching the pageframes
4655 * of this compound page.
4656 */
4657 goto same_page;
4658 }
4659 spin_unlock(ptl);
4660 }
4661 *nr_pages = remainder;
4662 /*
4663 * setting position is actually required only if remainder is
4664 * not zero but it's faster not to add a "if (remainder)"
4665 * branch.
4666 */
4667 *position = vaddr;
4668
4669 return i ? i : err;
4670}
4671
4672unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4673 unsigned long address, unsigned long end, pgprot_t newprot)
4674{
4675 struct mm_struct *mm = vma->vm_mm;
4676 unsigned long start = address;
4677 pte_t *ptep;
4678 pte_t pte;
4679 struct hstate *h = hstate_vma(vma);
4680 unsigned long pages = 0;
4681 bool shared_pmd = false;
4682 struct mmu_notifier_range range;
4683
4684 /*
4685 * In the case of shared PMDs, the area to flush could be beyond
4686 * start/end. Set range.start/range.end to cover the maximum possible
4687 * range if PMD sharing is possible.
4688 */
4689 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4690 0, vma, mm, start, end);
4691 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4692
4693 BUG_ON(address >= end);
4694 flush_cache_range(vma, range.start, range.end);
4695
4696 mmu_notifier_invalidate_range_start(&range);
4697 i_mmap_lock_write(vma->vm_file->f_mapping);
4698 for (; address < end; address += huge_page_size(h)) {
4699 spinlock_t *ptl;
4700 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4701 if (!ptep)
4702 continue;
4703 ptl = huge_pte_lock(h, mm, ptep);
4704 if (huge_pmd_unshare(mm, &address, ptep)) {
4705 pages++;
4706 spin_unlock(ptl);
4707 shared_pmd = true;
4708 continue;
4709 }
4710 pte = huge_ptep_get(ptep);
4711 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4712 spin_unlock(ptl);
4713 continue;
4714 }
4715 if (unlikely(is_hugetlb_entry_migration(pte))) {
4716 swp_entry_t entry = pte_to_swp_entry(pte);
4717
4718 if (is_write_migration_entry(entry)) {
4719 pte_t newpte;
4720
4721 make_migration_entry_read(&entry);
4722 newpte = swp_entry_to_pte(entry);
4723 set_huge_swap_pte_at(mm, address, ptep,
4724 newpte, huge_page_size(h));
4725 pages++;
4726 }
4727 spin_unlock(ptl);
4728 continue;
4729 }
4730 if (!huge_pte_none(pte)) {
4731 pte_t old_pte;
4732
4733 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4734 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4735 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4736 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4737 pages++;
4738 }
4739 spin_unlock(ptl);
4740 }
4741 /*
4742 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4743 * may have cleared our pud entry and done put_page on the page table:
4744 * once we release i_mmap_rwsem, another task can do the final put_page
4745 * and that page table be reused and filled with junk. If we actually
4746 * did unshare a page of pmds, flush the range corresponding to the pud.
4747 */
4748 if (shared_pmd)
4749 flush_hugetlb_tlb_range(vma, range.start, range.end);
4750 else
4751 flush_hugetlb_tlb_range(vma, start, end);
4752 /*
4753 * No need to call mmu_notifier_invalidate_range() we are downgrading
4754 * page table protection not changing it to point to a new page.
4755 *
4756 * See Documentation/vm/mmu_notifier.rst
4757 */
4758 i_mmap_unlock_write(vma->vm_file->f_mapping);
4759 mmu_notifier_invalidate_range_end(&range);
4760
4761 return pages << h->order;
4762}
4763
4764int hugetlb_reserve_pages(struct inode *inode,
4765 long from, long to,
4766 struct vm_area_struct *vma,
4767 vm_flags_t vm_flags)
4768{
4769 long ret, chg;
4770 struct hstate *h = hstate_inode(inode);
4771 struct hugepage_subpool *spool = subpool_inode(inode);
4772 struct resv_map *resv_map;
4773 long gbl_reserve;
4774
4775 /* This should never happen */
4776 if (from > to) {
4777 VM_WARN(1, "%s called with a negative range\n", __func__);
4778 return -EINVAL;
4779 }
4780
4781 /*
4782 * Only apply hugepage reservation if asked. At fault time, an
4783 * attempt will be made for VM_NORESERVE to allocate a page
4784 * without using reserves
4785 */
4786 if (vm_flags & VM_NORESERVE)
4787 return 0;
4788
4789 /*
4790 * Shared mappings base their reservation on the number of pages that
4791 * are already allocated on behalf of the file. Private mappings need
4792 * to reserve the full area even if read-only as mprotect() may be
4793 * called to make the mapping read-write. Assume !vma is a shm mapping
4794 */
4795 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4796 /*
4797 * resv_map can not be NULL as hugetlb_reserve_pages is only
4798 * called for inodes for which resv_maps were created (see
4799 * hugetlbfs_get_inode).
4800 */
4801 resv_map = inode_resv_map(inode);
4802
4803 chg = region_chg(resv_map, from, to);
4804
4805 } else {
4806 resv_map = resv_map_alloc();
4807 if (!resv_map)
4808 return -ENOMEM;
4809
4810 chg = to - from;
4811
4812 set_vma_resv_map(vma, resv_map);
4813 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4814 }
4815
4816 if (chg < 0) {
4817 ret = chg;
4818 goto out_err;
4819 }
4820
4821 /*
4822 * There must be enough pages in the subpool for the mapping. If
4823 * the subpool has a minimum size, there may be some global
4824 * reservations already in place (gbl_reserve).
4825 */
4826 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4827 if (gbl_reserve < 0) {
4828 ret = -ENOSPC;
4829 goto out_err;
4830 }
4831
4832 /*
4833 * Check enough hugepages are available for the reservation.
4834 * Hand the pages back to the subpool if there are not
4835 */
4836 ret = hugetlb_acct_memory(h, gbl_reserve);
4837 if (ret < 0) {
4838 /* put back original number of pages, chg */
4839 (void)hugepage_subpool_put_pages(spool, chg);
4840 goto out_err;
4841 }
4842
4843 /*
4844 * Account for the reservations made. Shared mappings record regions
4845 * that have reservations as they are shared by multiple VMAs.
4846 * When the last VMA disappears, the region map says how much
4847 * the reservation was and the page cache tells how much of
4848 * the reservation was consumed. Private mappings are per-VMA and
4849 * only the consumed reservations are tracked. When the VMA
4850 * disappears, the original reservation is the VMA size and the
4851 * consumed reservations are stored in the map. Hence, nothing
4852 * else has to be done for private mappings here
4853 */
4854 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4855 long add = region_add(resv_map, from, to);
4856
4857 if (unlikely(chg > add)) {
4858 /*
4859 * pages in this range were added to the reserve
4860 * map between region_chg and region_add. This
4861 * indicates a race with alloc_huge_page. Adjust
4862 * the subpool and reserve counts modified above
4863 * based on the difference.
4864 */
4865 long rsv_adjust;
4866
4867 rsv_adjust = hugepage_subpool_put_pages(spool,
4868 chg - add);
4869 hugetlb_acct_memory(h, -rsv_adjust);
4870 }
4871 }
4872 return 0;
4873out_err:
4874 if (!vma || vma->vm_flags & VM_MAYSHARE)
4875 /* Don't call region_abort if region_chg failed */
4876 if (chg >= 0)
4877 region_abort(resv_map, from, to);
4878 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4879 kref_put(&resv_map->refs, resv_map_release);
4880 return ret;
4881}
4882
4883long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4884 long freed)
4885{
4886 struct hstate *h = hstate_inode(inode);
4887 struct resv_map *resv_map = inode_resv_map(inode);
4888 long chg = 0;
4889 struct hugepage_subpool *spool = subpool_inode(inode);
4890 long gbl_reserve;
4891
4892 /*
4893 * Since this routine can be called in the evict inode path for all
4894 * hugetlbfs inodes, resv_map could be NULL.
4895 */
4896 if (resv_map) {
4897 chg = region_del(resv_map, start, end);
4898 /*
4899 * region_del() can fail in the rare case where a region
4900 * must be split and another region descriptor can not be
4901 * allocated. If end == LONG_MAX, it will not fail.
4902 */
4903 if (chg < 0)
4904 return chg;
4905 }
4906
4907 spin_lock(&inode->i_lock);
4908 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4909 spin_unlock(&inode->i_lock);
4910
4911 /*
4912 * If the subpool has a minimum size, the number of global
4913 * reservations to be released may be adjusted.
4914 */
4915 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4916 hugetlb_acct_memory(h, -gbl_reserve);
4917
4918 return 0;
4919}
4920
4921#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4922static unsigned long page_table_shareable(struct vm_area_struct *svma,
4923 struct vm_area_struct *vma,
4924 unsigned long addr, pgoff_t idx)
4925{
4926 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4927 svma->vm_start;
4928 unsigned long sbase = saddr & PUD_MASK;
4929 unsigned long s_end = sbase + PUD_SIZE;
4930
4931 /* Allow segments to share if only one is marked locked */
4932 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4933 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4934
4935 /*
4936 * match the virtual addresses, permission and the alignment of the
4937 * page table page.
4938 */
4939 if (pmd_index(addr) != pmd_index(saddr) ||
4940 vm_flags != svm_flags ||
4941 sbase < svma->vm_start || svma->vm_end < s_end)
4942 return 0;
4943
4944 return saddr;
4945}
4946
4947static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4948{
4949 unsigned long base = addr & PUD_MASK;
4950 unsigned long end = base + PUD_SIZE;
4951
4952 /*
4953 * check on proper vm_flags and page table alignment
4954 */
4955 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4956 return true;
4957 return false;
4958}
4959
4960bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
4961{
4962#ifdef CONFIG_USERFAULTFD
4963 if (uffd_disable_huge_pmd_share(vma))
4964 return false;
4965#endif
4966 return vma_shareable(vma, addr);
4967}
4968
4969/*
4970 * Determine if start,end range within vma could be mapped by shared pmd.
4971 * If yes, adjust start and end to cover range associated with possible
4972 * shared pmd mappings.
4973 */
4974void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4975 unsigned long *start, unsigned long *end)
4976{
4977 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
4978 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
4979
4980 /*
4981 * vma need span at least one aligned PUD size and the start,end range
4982 * must at least partialy within it.
4983 */
4984 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
4985 (*end <= v_start) || (*start >= v_end))
4986 return;
4987
4988 /* Extend the range to be PUD aligned for a worst case scenario */
4989 if (*start > v_start)
4990 *start = ALIGN_DOWN(*start, PUD_SIZE);
4991
4992 if (*end < v_end)
4993 *end = ALIGN(*end, PUD_SIZE);
4994}
4995
4996/*
4997 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4998 * and returns the corresponding pte. While this is not necessary for the
4999 * !shared pmd case because we can allocate the pmd later as well, it makes the
5000 * code much cleaner. pmd allocation is essential for the shared case because
5001 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
5002 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
5003 * bad pmd for sharing.
5004 */
5005pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5006 unsigned long addr, pud_t *pud)
5007{
5008 struct address_space *mapping = vma->vm_file->f_mapping;
5009 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5010 vma->vm_pgoff;
5011 struct vm_area_struct *svma;
5012 unsigned long saddr;
5013 pte_t *spte = NULL;
5014 pte_t *pte;
5015 spinlock_t *ptl;
5016
5017 i_mmap_lock_write(mapping);
5018 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5019 if (svma == vma)
5020 continue;
5021
5022 saddr = page_table_shareable(svma, vma, addr, idx);
5023 if (saddr) {
5024 spte = huge_pte_offset(svma->vm_mm, saddr,
5025 vma_mmu_pagesize(svma));
5026 if (spte) {
5027 get_page(virt_to_page(spte));
5028 break;
5029 }
5030 }
5031 }
5032
5033 if (!spte)
5034 goto out;
5035
5036 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5037 if (pud_none(*pud)) {
5038 pud_populate(mm, pud,
5039 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5040 mm_inc_nr_pmds(mm);
5041 } else {
5042 put_page(virt_to_page(spte));
5043 }
5044 spin_unlock(ptl);
5045out:
5046 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5047 i_mmap_unlock_write(mapping);
5048 return pte;
5049}
5050
5051/*
5052 * unmap huge page backed by shared pte.
5053 *
5054 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5055 * indicated by page_count > 1, unmap is achieved by clearing pud and
5056 * decrementing the ref count. If count == 1, the pte page is not shared.
5057 *
5058 * called with page table lock held.
5059 *
5060 * returns: 1 successfully unmapped a shared pte page
5061 * 0 the underlying pte page is not shared, or it is the last user
5062 */
5063int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5064{
5065 pgd_t *pgd = pgd_offset(mm, *addr);
5066 p4d_t *p4d = p4d_offset(pgd, *addr);
5067 pud_t *pud = pud_offset(p4d, *addr);
5068
5069 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5070 if (page_count(virt_to_page(ptep)) == 1)
5071 return 0;
5072
5073 pud_clear(pud);
5074 put_page(virt_to_page(ptep));
5075 mm_dec_nr_pmds(mm);
5076 /*
5077 * This update of passed address optimizes loops sequentially
5078 * processing addresses in increments of huge page size (PMD_SIZE
5079 * in this case). By clearing the pud, a PUD_SIZE area is unmapped.
5080 * Update address to the 'last page' in the cleared area so that
5081 * calling loop can move to first page past this area.
5082 */
5083 *addr |= PUD_SIZE - PMD_SIZE;
5084 return 1;
5085}
5086
5087#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5088pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5089 unsigned long addr, pud_t *pud)
5090{
5091 return NULL;
5092}
5093
5094int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5095{
5096 return 0;
5097}
5098
5099void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5100 unsigned long *start, unsigned long *end)
5101{
5102}
5103
5104bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5105{
5106 return false;
5107}
5108#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5109
5110#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5111pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
5112 unsigned long addr, unsigned long sz)
5113{
5114 pgd_t *pgd;
5115 p4d_t *p4d;
5116 pud_t *pud;
5117 pte_t *pte = NULL;
5118
5119 pgd = pgd_offset(mm, addr);
5120 p4d = p4d_alloc(mm, pgd, addr);
5121 if (!p4d)
5122 return NULL;
5123 pud = pud_alloc(mm, p4d, addr);
5124 if (pud) {
5125 if (sz == PUD_SIZE) {
5126 pte = (pte_t *)pud;
5127 } else {
5128 BUG_ON(sz != PMD_SIZE);
5129 if (want_pmd_share(vma, addr) && pud_none(*pud))
5130 pte = huge_pmd_share(mm, vma, addr, pud);
5131 else
5132 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5133 }
5134 }
5135 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5136
5137 return pte;
5138}
5139
5140/*
5141 * huge_pte_offset() - Walk the page table to resolve the hugepage
5142 * entry at address @addr
5143 *
5144 * Return: Pointer to page table or swap entry (PUD or PMD) for
5145 * address @addr, or NULL if a p*d_none() entry is encountered and the
5146 * size @sz doesn't match the hugepage size at this level of the page
5147 * table.
5148 */
5149pte_t *huge_pte_offset(struct mm_struct *mm,
5150 unsigned long addr, unsigned long sz)
5151{
5152 pgd_t *pgd;
5153 p4d_t *p4d;
5154 pud_t *pud, pud_entry;
5155 pmd_t *pmd, pmd_entry;
5156
5157 pgd = pgd_offset(mm, addr);
5158 if (!pgd_present(*pgd))
5159 return NULL;
5160 p4d = p4d_offset(pgd, addr);
5161 if (!p4d_present(*p4d))
5162 return NULL;
5163
5164 pud = pud_offset(p4d, addr);
5165 pud_entry = READ_ONCE(*pud);
5166 if (sz != PUD_SIZE && pud_none(pud_entry))
5167 return NULL;
5168 /* hugepage or swap? */
5169 if (pud_huge(pud_entry) || !pud_present(pud_entry))
5170 return (pte_t *)pud;
5171
5172 pmd = pmd_offset(pud, addr);
5173 pmd_entry = READ_ONCE(*pmd);
5174 if (sz != PMD_SIZE && pmd_none(pmd_entry))
5175 return NULL;
5176 /* hugepage or swap? */
5177 if (pmd_huge(pmd_entry) || !pmd_present(pmd_entry))
5178 return (pte_t *)pmd;
5179
5180 return NULL;
5181}
5182
5183#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5184
5185/*
5186 * These functions are overwritable if your architecture needs its own
5187 * behavior.
5188 */
5189struct page * __weak
5190follow_huge_addr(struct mm_struct *mm, unsigned long address,
5191 int write)
5192{
5193 return ERR_PTR(-EINVAL);
5194}
5195
5196struct page * __weak
5197follow_huge_pd(struct vm_area_struct *vma,
5198 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5199{
5200 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5201 return NULL;
5202}
5203
5204struct page * __weak
5205follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags)
5206{
5207 struct hstate *h = hstate_vma(vma);
5208 struct mm_struct *mm = vma->vm_mm;
5209 struct page *page = NULL;
5210 spinlock_t *ptl;
5211 pte_t *ptep, pte;
5212
5213retry:
5214 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5215 if (!ptep)
5216 return NULL;
5217
5218 ptl = huge_pte_lock(h, mm, ptep);
5219 pte = huge_ptep_get(ptep);
5220 if (pte_present(pte)) {
5221 page = pte_page(pte) +
5222 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
5223 if (flags & FOLL_GET)
5224 get_page(page);
5225 } else {
5226 if (is_hugetlb_entry_migration(pte)) {
5227 spin_unlock(ptl);
5228 __migration_entry_wait(mm, ptep, ptl);
5229 goto retry;
5230 }
5231 /*
5232 * hwpoisoned entry is treated as no_page_table in
5233 * follow_page_mask().
5234 */
5235 }
5236
5237 spin_unlock(ptl);
5238 return page;
5239}
5240
5241struct page * __weak
5242follow_huge_pud(struct mm_struct *mm, unsigned long address,
5243 pud_t *pud, int flags)
5244{
5245 if (flags & FOLL_GET)
5246 return NULL;
5247
5248 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5249}
5250
5251struct page * __weak
5252follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5253{
5254 if (flags & FOLL_GET)
5255 return NULL;
5256
5257 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5258}
5259
5260bool isolate_huge_page(struct page *page, struct list_head *list)
5261{
5262 bool ret = true;
5263
5264 spin_lock(&hugetlb_lock);
5265 if (!PageHeadHuge(page) || !page_huge_active(page) ||
5266 !get_page_unless_zero(page)) {
5267 ret = false;
5268 goto unlock;
5269 }
5270 clear_page_huge_active(page);
5271 list_move_tail(&page->lru, list);
5272unlock:
5273 spin_unlock(&hugetlb_lock);
5274 return ret;
5275}
5276
5277void putback_active_hugepage(struct page *page)
5278{
5279 VM_BUG_ON_PAGE(!PageHead(page), page);
5280 spin_lock(&hugetlb_lock);
5281 set_page_huge_active(page);
5282 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5283 spin_unlock(&hugetlb_lock);
5284 put_page(page);
5285}
5286
5287void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5288{
5289 struct hstate *h = page_hstate(oldpage);
5290
5291 hugetlb_cgroup_migrate(oldpage, newpage);
5292 set_page_owner_migrate_reason(newpage, reason);
5293
5294 /*
5295 * transfer temporary state of the new huge page. This is
5296 * reverse to other transitions because the newpage is going to
5297 * be final while the old one will be freed so it takes over
5298 * the temporary status.
5299 *
5300 * Also note that we have to transfer the per-node surplus state
5301 * here as well otherwise the global surplus count will not match
5302 * the per-node's.
5303 */
5304 if (PageHugeTemporary(newpage)) {
5305 int old_nid = page_to_nid(oldpage);
5306 int new_nid = page_to_nid(newpage);
5307
5308 SetPageHugeTemporary(oldpage);
5309 ClearPageHugeTemporary(newpage);
5310
5311 spin_lock(&hugetlb_lock);
5312 if (h->surplus_huge_pages_node[old_nid]) {
5313 h->surplus_huge_pages_node[old_nid]--;
5314 h->surplus_huge_pages_node[new_nid]++;
5315 }
5316 spin_unlock(&hugetlb_lock);
5317 }
5318}
5319
5320/*
5321 * This function will unconditionally remove all the shared pmd pgtable entries
5322 * within the specific vma for a hugetlbfs memory range.
5323 */
5324void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
5325{
5326 struct hstate *h = hstate_vma(vma);
5327 unsigned long sz = huge_page_size(h);
5328 struct mm_struct *mm = vma->vm_mm;
5329 struct mmu_notifier_range range;
5330 unsigned long address, start, end;
5331 spinlock_t *ptl;
5332 pte_t *ptep;
5333
5334 if (!(vma->vm_flags & VM_MAYSHARE))
5335 return;
5336
5337 start = ALIGN(vma->vm_start, PUD_SIZE);
5338 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5339
5340 if (start >= end)
5341 return;
5342
5343 /*
5344 * No need to call adjust_range_if_pmd_sharing_possible(), because
5345 * we have already done the PUD_SIZE alignment.
5346 */
5347 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
5348 start, end);
5349 mmu_notifier_invalidate_range_start(&range);
5350 i_mmap_lock_write(vma->vm_file->f_mapping);
5351 for (address = start; address < end; address += PUD_SIZE) {
5352 unsigned long tmp = address;
5353
5354 ptep = huge_pte_offset(mm, address, sz);
5355 if (!ptep)
5356 continue;
5357 ptl = huge_pte_lock(h, mm, ptep);
5358 /* We don't want 'address' to be changed */
5359 huge_pmd_unshare(mm, &tmp, ptep);
5360 spin_unlock(ptl);
5361 }
5362 flush_hugetlb_tlb_range(vma, start, end);
5363 i_mmap_unlock_write(vma->vm_file->f_mapping);
5364 /*
5365 * No need to call mmu_notifier_invalidate_range(), see
5366 * Documentation/vm/mmu_notifier.rst.
5367 */
5368 mmu_notifier_invalidate_range_end(&range);
5369}
5370