blob: a989f29dc8da27245bf80db41501d6b3fec7c533 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
8 * For more information on the algorithm and kmemleak usage, please see
9 * Documentation/dev-tools/kmemleak.rst.
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
16 * - kmemleak_lock (rwlock): protects the object_list modifications and
17 * accesses to the object_tree_root. The object_list is the main list
18 * holding the metadata (struct kmemleak_object) for the allocated memory
19 * blocks. The object_tree_root is a red black tree used to look-up
20 * metadata based on a pointer to the corresponding memory block. The
21 * kmemleak_object structures are added to the object_list and
22 * object_tree_root in the create_object() function called from the
23 * kmemleak_alloc() callback and removed in delete_object() called from the
24 * kmemleak_free() callback
25 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
26 * the metadata (e.g. count) are protected by this lock. Note that some
27 * members of this structure may be protected by other means (atomic or
28 * kmemleak_lock). This lock is also held when scanning the corresponding
29 * memory block to avoid the kernel freeing it via the kmemleak_free()
30 * callback. This is less heavyweight than holding a global lock like
31 * kmemleak_lock during scanning
32 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
33 * unreferenced objects at a time. The gray_list contains the objects which
34 * are already referenced or marked as false positives and need to be
35 * scanned. This list is only modified during a scanning episode when the
36 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
37 * Note that the kmemleak_object.use_count is incremented when an object is
38 * added to the gray_list and therefore cannot be freed. This mutex also
39 * prevents multiple users of the "kmemleak" debugfs file together with
40 * modifications to the memory scanning parameters including the scan_thread
41 * pointer
42 *
43 * Locks and mutexes are acquired/nested in the following order:
44 *
45 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
46 *
47 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
48 * regions.
49 *
50 * The kmemleak_object structures have a use_count incremented or decremented
51 * using the get_object()/put_object() functions. When the use_count becomes
52 * 0, this count can no longer be incremented and put_object() schedules the
53 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
54 * function must be protected by rcu_read_lock() to avoid accessing a freed
55 * structure.
56 */
57
58#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59
60#include <linux/init.h>
61#include <linux/kernel.h>
62#include <linux/list.h>
63#include <linux/sched/signal.h>
64#include <linux/sched/task.h>
65#include <linux/sched/task_stack.h>
66#include <linux/jiffies.h>
67#include <linux/delay.h>
68#include <linux/export.h>
69#include <linux/kthread.h>
70#include <linux/rbtree.h>
71#include <linux/fs.h>
72#include <linux/debugfs.h>
73#include <linux/seq_file.h>
74#include <linux/cpumask.h>
75#include <linux/spinlock.h>
76#include <linux/module.h>
77#include <linux/mutex.h>
78#include <linux/rcupdate.h>
79#include <linux/stacktrace.h>
80#include <linux/cache.h>
81#include <linux/percpu.h>
82#include <linux/memblock.h>
83#include <linux/pfn.h>
84#include <linux/mmzone.h>
85#include <linux/slab.h>
86#include <linux/thread_info.h>
87#include <linux/err.h>
88#include <linux/uaccess.h>
89#include <linux/string.h>
90#include <linux/nodemask.h>
91#include <linux/mm.h>
92#include <linux/workqueue.h>
93#include <linux/crc32.h>
94
95#include <asm/sections.h>
96#include <asm/processor.h>
97#include <linux/atomic.h>
98
99#include <linux/kasan.h>
100#include <linux/kfence.h>
101#include <linux/kmemleak.h>
102#include <linux/memory_hotplug.h>
103
104/*
105 * Kmemleak configuration and common defines.
106 */
107#define MAX_TRACE 16 /* stack trace length */
108#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
109#define SECS_FIRST_SCAN 60 /* delay before the first scan */
110#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
111#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
112
113#define BYTES_PER_POINTER sizeof(void *)
114
115/* GFP bitmask for kmemleak internal allocations */
116#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
117 __GFP_NORETRY | __GFP_NOMEMALLOC | \
118 __GFP_NOWARN)
119
120/* scanning area inside a memory block */
121struct kmemleak_scan_area {
122 struct hlist_node node;
123 unsigned long start;
124 size_t size;
125};
126
127#define KMEMLEAK_GREY 0
128#define KMEMLEAK_BLACK -1
129
130/*
131 * Structure holding the metadata for each allocated memory block.
132 * Modifications to such objects should be made while holding the
133 * object->lock. Insertions or deletions from object_list, gray_list or
134 * rb_node are already protected by the corresponding locks or mutex (see
135 * the notes on locking above). These objects are reference-counted
136 * (use_count) and freed using the RCU mechanism.
137 */
138struct kmemleak_object {
139 spinlock_t lock;
140 unsigned int flags; /* object status flags */
141 struct list_head object_list;
142 struct list_head gray_list;
143 struct rb_node rb_node;
144 struct rcu_head rcu; /* object_list lockless traversal */
145 /* object usage count; object freed when use_count == 0 */
146 atomic_t use_count;
147 unsigned long pointer;
148 size_t size;
149 /* pass surplus references to this pointer */
150 unsigned long excess_ref;
151 /* minimum number of a pointers found before it is considered leak */
152 int min_count;
153 /* the total number of pointers found pointing to this object */
154 int count;
155 /* checksum for detecting modified objects */
156 u32 checksum;
157 /* memory ranges to be scanned inside an object (empty for all) */
158 struct hlist_head area_list;
159 unsigned long trace[MAX_TRACE];
160 unsigned int trace_len;
161 unsigned long jiffies; /* creation timestamp */
162 pid_t pid; /* pid of the current task */
163 char comm[TASK_COMM_LEN]; /* executable name */
164};
165
166/* flag representing the memory block allocation status */
167#define OBJECT_ALLOCATED (1 << 0)
168/* flag set after the first reporting of an unreference object */
169#define OBJECT_REPORTED (1 << 1)
170/* flag set to not scan the object */
171#define OBJECT_NO_SCAN (1 << 2)
172/* flag set to fully scan the object when scan_area allocation failed */
173#define OBJECT_FULL_SCAN (1 << 3)
174
175#define HEX_PREFIX " "
176/* number of bytes to print per line; must be 16 or 32 */
177#define HEX_ROW_SIZE 16
178/* number of bytes to print at a time (1, 2, 4, 8) */
179#define HEX_GROUP_SIZE 1
180/* include ASCII after the hex output */
181#define HEX_ASCII 1
182/* max number of lines to be printed */
183#define HEX_MAX_LINES 2
184
185/* the list of all allocated objects */
186static LIST_HEAD(object_list);
187/* the list of gray-colored objects (see color_gray comment below) */
188static LIST_HEAD(gray_list);
189/* memory pool allocation */
190static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
191static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
192static LIST_HEAD(mem_pool_free_list);
193/* search tree for object boundaries */
194static struct rb_root object_tree_root = RB_ROOT;
195/* rw_lock protecting the access to object_list and object_tree_root */
196static DEFINE_RWLOCK(kmemleak_lock);
197
198/* allocation caches for kmemleak internal data */
199static struct kmem_cache *object_cache;
200static struct kmem_cache *scan_area_cache;
201
202/* set if tracing memory operations is enabled */
203static int kmemleak_enabled = 1;
204/* same as above but only for the kmemleak_free() callback */
205static int kmemleak_free_enabled = 1;
206/* set in the late_initcall if there were no errors */
207static int kmemleak_initialized;
208/* set if a kmemleak warning was issued */
209static int kmemleak_warning;
210/* set if a fatal kmemleak error has occurred */
211static int kmemleak_error;
212
213/* minimum and maximum address that may be valid pointers */
214static unsigned long min_addr = ULONG_MAX;
215static unsigned long max_addr;
216
217static struct task_struct *scan_thread;
218/* used to avoid reporting of recently allocated objects */
219static unsigned long jiffies_min_age;
220static unsigned long jiffies_last_scan;
221/* delay between automatic memory scannings */
222static signed long jiffies_scan_wait;
223/* enables or disables the task stacks scanning */
224static int kmemleak_stack_scan = 1;
225/* protects the memory scanning, parameters and debug/kmemleak file access */
226static DEFINE_MUTEX(scan_mutex);
227/* setting kmemleak=on, will set this var, skipping the disable */
228static int kmemleak_skip_disable;
229/* If there are leaks that can be reported */
230static bool kmemleak_found_leaks;
231
232static bool kmemleak_verbose;
233module_param_named(verbose, kmemleak_verbose, bool, 0600);
234
235static void kmemleak_disable(void);
236
237/*
238 * Print a warning and dump the stack trace.
239 */
240#define kmemleak_warn(x...) do { \
241 pr_warn(x); \
242 dump_stack(); \
243 kmemleak_warning = 1; \
244} while (0)
245
246/*
247 * Macro invoked when a serious kmemleak condition occurred and cannot be
248 * recovered from. Kmemleak will be disabled and further allocation/freeing
249 * tracing no longer available.
250 */
251#define kmemleak_stop(x...) do { \
252 kmemleak_warn(x); \
253 kmemleak_disable(); \
254} while (0)
255
256#define warn_or_seq_printf(seq, fmt, ...) do { \
257 if (seq) \
258 seq_printf(seq, fmt, ##__VA_ARGS__); \
259 else \
260 pr_warn(fmt, ##__VA_ARGS__); \
261} while (0)
262
263static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
264 int rowsize, int groupsize, const void *buf,
265 size_t len, bool ascii)
266{
267 if (seq)
268 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
269 buf, len, ascii);
270 else
271 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
272 rowsize, groupsize, buf, len, ascii);
273}
274
275/*
276 * Printing of the objects hex dump to the seq file. The number of lines to be
277 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
278 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
279 * with the object->lock held.
280 */
281static void hex_dump_object(struct seq_file *seq,
282 struct kmemleak_object *object)
283{
284 const u8 *ptr = (const u8 *)object->pointer;
285 size_t len;
286
287 /* limit the number of lines to HEX_MAX_LINES */
288 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
289
290 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
291 kasan_disable_current();
292 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
293 HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
294 kasan_enable_current();
295}
296
297/*
298 * Object colors, encoded with count and min_count:
299 * - white - orphan object, not enough references to it (count < min_count)
300 * - gray - not orphan, not marked as false positive (min_count == 0) or
301 * sufficient references to it (count >= min_count)
302 * - black - ignore, it doesn't contain references (e.g. text section)
303 * (min_count == -1). No function defined for this color.
304 * Newly created objects don't have any color assigned (object->count == -1)
305 * before the next memory scan when they become white.
306 */
307static bool color_white(const struct kmemleak_object *object)
308{
309 return object->count != KMEMLEAK_BLACK &&
310 object->count < object->min_count;
311}
312
313static bool color_gray(const struct kmemleak_object *object)
314{
315 return object->min_count != KMEMLEAK_BLACK &&
316 object->count >= object->min_count;
317}
318
319/*
320 * Objects are considered unreferenced only if their color is white, they have
321 * not be deleted and have a minimum age to avoid false positives caused by
322 * pointers temporarily stored in CPU registers.
323 */
324static bool unreferenced_object(struct kmemleak_object *object)
325{
326 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
327 time_before_eq(object->jiffies + jiffies_min_age,
328 jiffies_last_scan);
329}
330
331/*
332 * Printing of the unreferenced objects information to the seq file. The
333 * print_unreferenced function must be called with the object->lock held.
334 */
335static void print_unreferenced(struct seq_file *seq,
336 struct kmemleak_object *object)
337{
338 int i;
339 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
340
341 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
342 object->pointer, object->size);
343 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
344 object->comm, object->pid, object->jiffies,
345 msecs_age / 1000, msecs_age % 1000);
346 hex_dump_object(seq, object);
347 warn_or_seq_printf(seq, " backtrace:\n");
348
349 for (i = 0; i < object->trace_len; i++) {
350 void *ptr = (void *)object->trace[i];
351 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
352 }
353}
354
355/*
356 * Print the kmemleak_object information. This function is used mainly for
357 * debugging special cases when kmemleak operations. It must be called with
358 * the object->lock held.
359 */
360static void dump_object_info(struct kmemleak_object *object)
361{
362 pr_notice("Object 0x%08lx (size %zu):\n",
363 object->pointer, object->size);
364 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
365 object->comm, object->pid, object->jiffies);
366 pr_notice(" min_count = %d\n", object->min_count);
367 pr_notice(" count = %d\n", object->count);
368 pr_notice(" flags = 0x%x\n", object->flags);
369 pr_notice(" checksum = %u\n", object->checksum);
370 pr_notice(" backtrace:\n");
371 stack_trace_print(object->trace, object->trace_len, 4);
372}
373
374/*
375 * Look-up a memory block metadata (kmemleak_object) in the object search
376 * tree based on a pointer value. If alias is 0, only values pointing to the
377 * beginning of the memory block are allowed. The kmemleak_lock must be held
378 * when calling this function.
379 */
380static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
381{
382 struct rb_node *rb = object_tree_root.rb_node;
383
384 while (rb) {
385 struct kmemleak_object *object =
386 rb_entry(rb, struct kmemleak_object, rb_node);
387 if (ptr < object->pointer)
388 rb = object->rb_node.rb_left;
389 else if (object->pointer + object->size <= ptr)
390 rb = object->rb_node.rb_right;
391 else if (object->pointer == ptr || alias)
392 return object;
393 else {
394 kmemleak_warn("Found object by alias at 0x%08lx\n",
395 ptr);
396 dump_object_info(object);
397 break;
398 }
399 }
400 return NULL;
401}
402
403/*
404 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
405 * that once an object's use_count reached 0, the RCU freeing was already
406 * registered and the object should no longer be used. This function must be
407 * called under the protection of rcu_read_lock().
408 */
409static int get_object(struct kmemleak_object *object)
410{
411 return atomic_inc_not_zero(&object->use_count);
412}
413
414/*
415 * Memory pool allocation and freeing. kmemleak_lock must not be held.
416 */
417static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
418{
419 unsigned long flags;
420 struct kmemleak_object *object;
421
422 /* try the slab allocator first */
423 if (object_cache) {
424 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
425 if (object)
426 return object;
427 }
428
429 /* slab allocation failed, try the memory pool */
430 write_lock_irqsave(&kmemleak_lock, flags);
431 object = list_first_entry_or_null(&mem_pool_free_list,
432 typeof(*object), object_list);
433 if (object)
434 list_del(&object->object_list);
435 else if (mem_pool_free_count)
436 object = &mem_pool[--mem_pool_free_count];
437 else
438 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
439 write_unlock_irqrestore(&kmemleak_lock, flags);
440
441 return object;
442}
443
444/*
445 * Return the object to either the slab allocator or the memory pool.
446 */
447static void mem_pool_free(struct kmemleak_object *object)
448{
449 unsigned long flags;
450
451 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
452 kmem_cache_free(object_cache, object);
453 return;
454 }
455
456 /* add the object to the memory pool free list */
457 write_lock_irqsave(&kmemleak_lock, flags);
458 list_add(&object->object_list, &mem_pool_free_list);
459 write_unlock_irqrestore(&kmemleak_lock, flags);
460}
461
462/*
463 * RCU callback to free a kmemleak_object.
464 */
465static void free_object_rcu(struct rcu_head *rcu)
466{
467 struct hlist_node *tmp;
468 struct kmemleak_scan_area *area;
469 struct kmemleak_object *object =
470 container_of(rcu, struct kmemleak_object, rcu);
471
472 /*
473 * Once use_count is 0 (guaranteed by put_object), there is no other
474 * code accessing this object, hence no need for locking.
475 */
476 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
477 hlist_del(&area->node);
478 kmem_cache_free(scan_area_cache, area);
479 }
480 mem_pool_free(object);
481}
482
483/*
484 * Decrement the object use_count. Once the count is 0, free the object using
485 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
486 * delete_object() path, the delayed RCU freeing ensures that there is no
487 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
488 * is also possible.
489 */
490static void put_object(struct kmemleak_object *object)
491{
492 if (!atomic_dec_and_test(&object->use_count))
493 return;
494
495 /* should only get here after delete_object was called */
496 WARN_ON(object->flags & OBJECT_ALLOCATED);
497
498 /*
499 * It may be too early for the RCU callbacks, however, there is no
500 * concurrent object_list traversal when !object_cache and all objects
501 * came from the memory pool. Free the object directly.
502 */
503 if (object_cache)
504 call_rcu(&object->rcu, free_object_rcu);
505 else
506 free_object_rcu(&object->rcu);
507}
508
509/*
510 * Look up an object in the object search tree and increase its use_count.
511 */
512static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
513{
514 unsigned long flags;
515 struct kmemleak_object *object;
516
517 rcu_read_lock();
518 read_lock_irqsave(&kmemleak_lock, flags);
519 object = lookup_object(ptr, alias);
520 read_unlock_irqrestore(&kmemleak_lock, flags);
521
522 /* check whether the object is still available */
523 if (object && !get_object(object))
524 object = NULL;
525 rcu_read_unlock();
526
527 return object;
528}
529
530/*
531 * Remove an object from the object_tree_root and object_list. Must be called
532 * with the kmemleak_lock held _if_ kmemleak is still enabled.
533 */
534static void __remove_object(struct kmemleak_object *object)
535{
536 rb_erase(&object->rb_node, &object_tree_root);
537 list_del_rcu(&object->object_list);
538}
539
540/*
541 * Look up an object in the object search tree and remove it from both
542 * object_tree_root and object_list. The returned object's use_count should be
543 * at least 1, as initially set by create_object().
544 */
545static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
546{
547 unsigned long flags;
548 struct kmemleak_object *object;
549
550 write_lock_irqsave(&kmemleak_lock, flags);
551 object = lookup_object(ptr, alias);
552 if (object)
553 __remove_object(object);
554 write_unlock_irqrestore(&kmemleak_lock, flags);
555
556 return object;
557}
558
559/*
560 * Save stack trace to the given array of MAX_TRACE size.
561 */
562static int __save_stack_trace(unsigned long *trace)
563{
564 return stack_trace_save(trace, MAX_TRACE, 2);
565}
566
567/*
568 * Create the metadata (struct kmemleak_object) corresponding to an allocated
569 * memory block and add it to the object_list and object_tree_root.
570 */
571static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
572 int min_count, gfp_t gfp)
573{
574 unsigned long flags;
575 struct kmemleak_object *object, *parent;
576 struct rb_node **link, *rb_parent;
577 unsigned long untagged_ptr;
578
579 object = mem_pool_alloc(gfp);
580 if (!object) {
581 pr_warn("Cannot allocate a kmemleak_object structure\n");
582 kmemleak_disable();
583 return NULL;
584 }
585
586 INIT_LIST_HEAD(&object->object_list);
587 INIT_LIST_HEAD(&object->gray_list);
588 INIT_HLIST_HEAD(&object->area_list);
589 spin_lock_init(&object->lock);
590 atomic_set(&object->use_count, 1);
591 object->flags = OBJECT_ALLOCATED;
592 object->pointer = ptr;
593 object->size = kfence_ksize((void *)ptr) ?: size;
594 object->excess_ref = 0;
595 object->min_count = min_count;
596 object->count = 0; /* white color initially */
597 object->jiffies = jiffies;
598 object->checksum = 0;
599
600 /* task information */
601 if (in_irq()) {
602 object->pid = 0;
603 strncpy(object->comm, "hardirq", sizeof(object->comm));
604 } else if (in_serving_softirq()) {
605 object->pid = 0;
606 strncpy(object->comm, "softirq", sizeof(object->comm));
607 } else {
608 object->pid = current->pid;
609 /*
610 * There is a small chance of a race with set_task_comm(),
611 * however using get_task_comm() here may cause locking
612 * dependency issues with current->alloc_lock. In the worst
613 * case, the command line is not correct.
614 */
615 strncpy(object->comm, current->comm, sizeof(object->comm));
616 }
617
618 /* kernel backtrace */
619 object->trace_len = __save_stack_trace(object->trace);
620
621 write_lock_irqsave(&kmemleak_lock, flags);
622
623 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
624 min_addr = min(min_addr, untagged_ptr);
625 max_addr = max(max_addr, untagged_ptr + size);
626 link = &object_tree_root.rb_node;
627 rb_parent = NULL;
628 while (*link) {
629 rb_parent = *link;
630 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
631 if (ptr + size <= parent->pointer)
632 link = &parent->rb_node.rb_left;
633 else if (parent->pointer + parent->size <= ptr)
634 link = &parent->rb_node.rb_right;
635 else {
636 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
637 ptr);
638 /*
639 * No need for parent->lock here since "parent" cannot
640 * be freed while the kmemleak_lock is held.
641 */
642 dump_object_info(parent);
643 kmem_cache_free(object_cache, object);
644 object = NULL;
645 goto out;
646 }
647 }
648 rb_link_node(&object->rb_node, rb_parent, link);
649 rb_insert_color(&object->rb_node, &object_tree_root);
650
651 list_add_tail_rcu(&object->object_list, &object_list);
652out:
653 write_unlock_irqrestore(&kmemleak_lock, flags);
654 return object;
655}
656
657/*
658 * Mark the object as not allocated and schedule RCU freeing via put_object().
659 */
660static void __delete_object(struct kmemleak_object *object)
661{
662 unsigned long flags;
663
664 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
665 WARN_ON(atomic_read(&object->use_count) < 1);
666
667 /*
668 * Locking here also ensures that the corresponding memory block
669 * cannot be freed when it is being scanned.
670 */
671 spin_lock_irqsave(&object->lock, flags);
672 object->flags &= ~OBJECT_ALLOCATED;
673 spin_unlock_irqrestore(&object->lock, flags);
674 put_object(object);
675}
676
677/*
678 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
679 * delete it.
680 */
681static void delete_object_full(unsigned long ptr)
682{
683 struct kmemleak_object *object;
684
685 object = find_and_remove_object(ptr, 0);
686 if (!object) {
687#ifdef DEBUG
688 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
689 ptr);
690#endif
691 return;
692 }
693 __delete_object(object);
694}
695
696/*
697 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
698 * delete it. If the memory block is partially freed, the function may create
699 * additional metadata for the remaining parts of the block.
700 */
701static void delete_object_part(unsigned long ptr, size_t size)
702{
703 struct kmemleak_object *object;
704 unsigned long start, end;
705
706 object = find_and_remove_object(ptr, 1);
707 if (!object) {
708#ifdef DEBUG
709 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
710 ptr, size);
711#endif
712 return;
713 }
714
715 /*
716 * Create one or two objects that may result from the memory block
717 * split. Note that partial freeing is only done by free_bootmem() and
718 * this happens before kmemleak_init() is called.
719 */
720 start = object->pointer;
721 end = object->pointer + object->size;
722 if (ptr > start)
723 create_object(start, ptr - start, object->min_count,
724 GFP_KERNEL);
725 if (ptr + size < end)
726 create_object(ptr + size, end - ptr - size, object->min_count,
727 GFP_KERNEL);
728
729 __delete_object(object);
730}
731
732static void __paint_it(struct kmemleak_object *object, int color)
733{
734 object->min_count = color;
735 if (color == KMEMLEAK_BLACK)
736 object->flags |= OBJECT_NO_SCAN;
737}
738
739static void paint_it(struct kmemleak_object *object, int color)
740{
741 unsigned long flags;
742
743 spin_lock_irqsave(&object->lock, flags);
744 __paint_it(object, color);
745 spin_unlock_irqrestore(&object->lock, flags);
746}
747
748static void paint_ptr(unsigned long ptr, int color)
749{
750 struct kmemleak_object *object;
751
752 object = find_and_get_object(ptr, 0);
753 if (!object) {
754 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
755 ptr,
756 (color == KMEMLEAK_GREY) ? "Grey" :
757 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
758 return;
759 }
760 paint_it(object, color);
761 put_object(object);
762}
763
764/*
765 * Mark an object permanently as gray-colored so that it can no longer be
766 * reported as a leak. This is used in general to mark a false positive.
767 */
768static void make_gray_object(unsigned long ptr)
769{
770 paint_ptr(ptr, KMEMLEAK_GREY);
771}
772
773/*
774 * Mark the object as black-colored so that it is ignored from scans and
775 * reporting.
776 */
777static void make_black_object(unsigned long ptr)
778{
779 paint_ptr(ptr, KMEMLEAK_BLACK);
780}
781
782/*
783 * Add a scanning area to the object. If at least one such area is added,
784 * kmemleak will only scan these ranges rather than the whole memory block.
785 */
786static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
787{
788 unsigned long flags;
789 struct kmemleak_object *object;
790 struct kmemleak_scan_area *area = NULL;
791 unsigned long untagged_ptr;
792 unsigned long untagged_objp;
793
794 object = find_and_get_object(ptr, 1);
795 if (!object) {
796 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
797 ptr);
798 return;
799 }
800
801 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
802 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
803
804 if (scan_area_cache)
805 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
806
807 spin_lock_irqsave(&object->lock, flags);
808 if (!area) {
809 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
810 /* mark the object for full scan to avoid false positives */
811 object->flags |= OBJECT_FULL_SCAN;
812 goto out_unlock;
813 }
814 if (size == SIZE_MAX) {
815 size = untagged_objp + object->size - untagged_ptr;
816 } else if (untagged_ptr + size > untagged_objp + object->size) {
817 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
818 dump_object_info(object);
819 kmem_cache_free(scan_area_cache, area);
820 goto out_unlock;
821 }
822
823 INIT_HLIST_NODE(&area->node);
824 area->start = ptr;
825 area->size = size;
826
827 hlist_add_head(&area->node, &object->area_list);
828out_unlock:
829 spin_unlock_irqrestore(&object->lock, flags);
830 put_object(object);
831}
832
833/*
834 * Any surplus references (object already gray) to 'ptr' are passed to
835 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
836 * vm_struct may be used as an alternative reference to the vmalloc'ed object
837 * (see free_thread_stack()).
838 */
839static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
840{
841 unsigned long flags;
842 struct kmemleak_object *object;
843
844 object = find_and_get_object(ptr, 0);
845 if (!object) {
846 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
847 ptr);
848 return;
849 }
850
851 spin_lock_irqsave(&object->lock, flags);
852 object->excess_ref = excess_ref;
853 spin_unlock_irqrestore(&object->lock, flags);
854 put_object(object);
855}
856
857/*
858 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
859 * pointer. Such object will not be scanned by kmemleak but references to it
860 * are searched.
861 */
862static void object_no_scan(unsigned long ptr)
863{
864 unsigned long flags;
865 struct kmemleak_object *object;
866
867 object = find_and_get_object(ptr, 0);
868 if (!object) {
869 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
870 return;
871 }
872
873 spin_lock_irqsave(&object->lock, flags);
874 object->flags |= OBJECT_NO_SCAN;
875 spin_unlock_irqrestore(&object->lock, flags);
876 put_object(object);
877}
878
879/**
880 * kmemleak_alloc - register a newly allocated object
881 * @ptr: pointer to beginning of the object
882 * @size: size of the object
883 * @min_count: minimum number of references to this object. If during memory
884 * scanning a number of references less than @min_count is found,
885 * the object is reported as a memory leak. If @min_count is 0,
886 * the object is never reported as a leak. If @min_count is -1,
887 * the object is ignored (not scanned and not reported as a leak)
888 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
889 *
890 * This function is called from the kernel allocators when a new object
891 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
892 */
893void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
894 gfp_t gfp)
895{
896 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
897
898 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
899 create_object((unsigned long)ptr, size, min_count, gfp);
900}
901EXPORT_SYMBOL_GPL(kmemleak_alloc);
902
903/**
904 * kmemleak_alloc_percpu - register a newly allocated __percpu object
905 * @ptr: __percpu pointer to beginning of the object
906 * @size: size of the object
907 * @gfp: flags used for kmemleak internal memory allocations
908 *
909 * This function is called from the kernel percpu allocator when a new object
910 * (memory block) is allocated (alloc_percpu).
911 */
912void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
913 gfp_t gfp)
914{
915 unsigned int cpu;
916
917 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
918
919 /*
920 * Percpu allocations are only scanned and not reported as leaks
921 * (min_count is set to 0).
922 */
923 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
924 for_each_possible_cpu(cpu)
925 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
926 size, 0, gfp);
927}
928EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
929
930/**
931 * kmemleak_vmalloc - register a newly vmalloc'ed object
932 * @area: pointer to vm_struct
933 * @size: size of the object
934 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
935 *
936 * This function is called from the vmalloc() kernel allocator when a new
937 * object (memory block) is allocated.
938 */
939void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
940{
941 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
942
943 /*
944 * A min_count = 2 is needed because vm_struct contains a reference to
945 * the virtual address of the vmalloc'ed block.
946 */
947 if (kmemleak_enabled) {
948 create_object((unsigned long)area->addr, size, 2, gfp);
949 object_set_excess_ref((unsigned long)area,
950 (unsigned long)area->addr);
951 }
952}
953EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
954
955/**
956 * kmemleak_free - unregister a previously registered object
957 * @ptr: pointer to beginning of the object
958 *
959 * This function is called from the kernel allocators when an object (memory
960 * block) is freed (kmem_cache_free, kfree, vfree etc.).
961 */
962void __ref kmemleak_free(const void *ptr)
963{
964 pr_debug("%s(0x%p)\n", __func__, ptr);
965
966 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
967 delete_object_full((unsigned long)ptr);
968}
969EXPORT_SYMBOL_GPL(kmemleak_free);
970
971/**
972 * kmemleak_free_part - partially unregister a previously registered object
973 * @ptr: pointer to the beginning or inside the object. This also
974 * represents the start of the range to be freed
975 * @size: size to be unregistered
976 *
977 * This function is called when only a part of a memory block is freed
978 * (usually from the bootmem allocator).
979 */
980void __ref kmemleak_free_part(const void *ptr, size_t size)
981{
982 pr_debug("%s(0x%p)\n", __func__, ptr);
983
984 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
985 delete_object_part((unsigned long)ptr, size);
986}
987EXPORT_SYMBOL_GPL(kmemleak_free_part);
988
989/**
990 * kmemleak_free_percpu - unregister a previously registered __percpu object
991 * @ptr: __percpu pointer to beginning of the object
992 *
993 * This function is called from the kernel percpu allocator when an object
994 * (memory block) is freed (free_percpu).
995 */
996void __ref kmemleak_free_percpu(const void __percpu *ptr)
997{
998 unsigned int cpu;
999
1000 pr_debug("%s(0x%p)\n", __func__, ptr);
1001
1002 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1003 for_each_possible_cpu(cpu)
1004 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1005 cpu));
1006}
1007EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1008
1009/**
1010 * kmemleak_update_trace - update object allocation stack trace
1011 * @ptr: pointer to beginning of the object
1012 *
1013 * Override the object allocation stack trace for cases where the actual
1014 * allocation place is not always useful.
1015 */
1016void __ref kmemleak_update_trace(const void *ptr)
1017{
1018 struct kmemleak_object *object;
1019 unsigned long flags;
1020
1021 pr_debug("%s(0x%p)\n", __func__, ptr);
1022
1023 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1024 return;
1025
1026 object = find_and_get_object((unsigned long)ptr, 1);
1027 if (!object) {
1028#ifdef DEBUG
1029 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1030 ptr);
1031#endif
1032 return;
1033 }
1034
1035 spin_lock_irqsave(&object->lock, flags);
1036 object->trace_len = __save_stack_trace(object->trace);
1037 spin_unlock_irqrestore(&object->lock, flags);
1038
1039 put_object(object);
1040}
1041EXPORT_SYMBOL(kmemleak_update_trace);
1042
1043/**
1044 * kmemleak_not_leak - mark an allocated object as false positive
1045 * @ptr: pointer to beginning of the object
1046 *
1047 * Calling this function on an object will cause the memory block to no longer
1048 * be reported as leak and always be scanned.
1049 */
1050void __ref kmemleak_not_leak(const void *ptr)
1051{
1052 pr_debug("%s(0x%p)\n", __func__, ptr);
1053
1054 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1055 make_gray_object((unsigned long)ptr);
1056}
1057EXPORT_SYMBOL(kmemleak_not_leak);
1058
1059/**
1060 * kmemleak_ignore - ignore an allocated object
1061 * @ptr: pointer to beginning of the object
1062 *
1063 * Calling this function on an object will cause the memory block to be
1064 * ignored (not scanned and not reported as a leak). This is usually done when
1065 * it is known that the corresponding block is not a leak and does not contain
1066 * any references to other allocated memory blocks.
1067 */
1068void __ref kmemleak_ignore(const void *ptr)
1069{
1070 pr_debug("%s(0x%p)\n", __func__, ptr);
1071
1072 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1073 make_black_object((unsigned long)ptr);
1074}
1075EXPORT_SYMBOL(kmemleak_ignore);
1076
1077/**
1078 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1079 * @ptr: pointer to beginning or inside the object. This also
1080 * represents the start of the scan area
1081 * @size: size of the scan area
1082 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1083 *
1084 * This function is used when it is known that only certain parts of an object
1085 * contain references to other objects. Kmemleak will only scan these areas
1086 * reducing the number false negatives.
1087 */
1088void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1089{
1090 pr_debug("%s(0x%p)\n", __func__, ptr);
1091
1092 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1093 add_scan_area((unsigned long)ptr, size, gfp);
1094}
1095EXPORT_SYMBOL(kmemleak_scan_area);
1096
1097/**
1098 * kmemleak_no_scan - do not scan an allocated object
1099 * @ptr: pointer to beginning of the object
1100 *
1101 * This function notifies kmemleak not to scan the given memory block. Useful
1102 * in situations where it is known that the given object does not contain any
1103 * references to other objects. Kmemleak will not scan such objects reducing
1104 * the number of false negatives.
1105 */
1106void __ref kmemleak_no_scan(const void *ptr)
1107{
1108 pr_debug("%s(0x%p)\n", __func__, ptr);
1109
1110 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1111 object_no_scan((unsigned long)ptr);
1112}
1113EXPORT_SYMBOL(kmemleak_no_scan);
1114
1115/**
1116 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1117 * address argument
1118 * @phys: physical address of the object
1119 * @size: size of the object
1120 * @min_count: minimum number of references to this object.
1121 * See kmemleak_alloc()
1122 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1123 */
1124void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1125 gfp_t gfp)
1126{
1127 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1128 kmemleak_alloc(__va(phys), size, min_count, gfp);
1129}
1130EXPORT_SYMBOL(kmemleak_alloc_phys);
1131
1132/**
1133 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1134 * physical address argument
1135 * @phys: physical address if the beginning or inside an object. This
1136 * also represents the start of the range to be freed
1137 * @size: size to be unregistered
1138 */
1139void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1140{
1141 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1142 kmemleak_free_part(__va(phys), size);
1143}
1144EXPORT_SYMBOL(kmemleak_free_part_phys);
1145
1146/**
1147 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1148 * address argument
1149 * @phys: physical address of the object
1150 */
1151void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1152{
1153 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1154 kmemleak_not_leak(__va(phys));
1155}
1156EXPORT_SYMBOL(kmemleak_not_leak_phys);
1157
1158/**
1159 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1160 * address argument
1161 * @phys: physical address of the object
1162 */
1163void __ref kmemleak_ignore_phys(phys_addr_t phys)
1164{
1165 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1166 kmemleak_ignore(__va(phys));
1167}
1168EXPORT_SYMBOL(kmemleak_ignore_phys);
1169
1170/*
1171 * Update an object's checksum and return true if it was modified.
1172 */
1173static bool update_checksum(struct kmemleak_object *object)
1174{
1175 u32 old_csum = object->checksum;
1176
1177 kasan_disable_current();
1178 object->checksum = crc32(0, (void *)object->pointer, object->size);
1179 kasan_enable_current();
1180
1181 return object->checksum != old_csum;
1182}
1183
1184/*
1185 * Update an object's references. object->lock must be held by the caller.
1186 */
1187static void update_refs(struct kmemleak_object *object)
1188{
1189 if (!color_white(object)) {
1190 /* non-orphan, ignored or new */
1191 return;
1192 }
1193
1194 /*
1195 * Increase the object's reference count (number of pointers to the
1196 * memory block). If this count reaches the required minimum, the
1197 * object's color will become gray and it will be added to the
1198 * gray_list.
1199 */
1200 object->count++;
1201 if (color_gray(object)) {
1202 /* put_object() called when removing from gray_list */
1203 WARN_ON(!get_object(object));
1204 list_add_tail(&object->gray_list, &gray_list);
1205 }
1206}
1207
1208/*
1209 * Memory scanning is a long process and it needs to be interruptable. This
1210 * function checks whether such interrupt condition occurred.
1211 */
1212static int scan_should_stop(void)
1213{
1214 if (!kmemleak_enabled)
1215 return 1;
1216
1217 /*
1218 * This function may be called from either process or kthread context,
1219 * hence the need to check for both stop conditions.
1220 */
1221 if (current->mm)
1222 return signal_pending(current);
1223 else
1224 return kthread_should_stop();
1225
1226 return 0;
1227}
1228
1229/*
1230 * Scan a memory block (exclusive range) for valid pointers and add those
1231 * found to the gray list.
1232 */
1233static void scan_block(void *_start, void *_end,
1234 struct kmemleak_object *scanned)
1235{
1236 unsigned long *ptr;
1237 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1238 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1239 unsigned long flags;
1240 unsigned long untagged_ptr;
1241
1242 read_lock_irqsave(&kmemleak_lock, flags);
1243 for (ptr = start; ptr < end; ptr++) {
1244 struct kmemleak_object *object;
1245 unsigned long pointer;
1246 unsigned long excess_ref;
1247
1248 if (scan_should_stop())
1249 break;
1250
1251 kasan_disable_current();
1252 pointer = *ptr;
1253 kasan_enable_current();
1254
1255 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1256 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1257 continue;
1258
1259 /*
1260 * No need for get_object() here since we hold kmemleak_lock.
1261 * object->use_count cannot be dropped to 0 while the object
1262 * is still present in object_tree_root and object_list
1263 * (with updates protected by kmemleak_lock).
1264 */
1265 object = lookup_object(pointer, 1);
1266 if (!object)
1267 continue;
1268 if (object == scanned)
1269 /* self referenced, ignore */
1270 continue;
1271
1272 /*
1273 * Avoid the lockdep recursive warning on object->lock being
1274 * previously acquired in scan_object(). These locks are
1275 * enclosed by scan_mutex.
1276 */
1277 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1278 /* only pass surplus references (object already gray) */
1279 if (color_gray(object)) {
1280 excess_ref = object->excess_ref;
1281 /* no need for update_refs() if object already gray */
1282 } else {
1283 excess_ref = 0;
1284 update_refs(object);
1285 }
1286 spin_unlock(&object->lock);
1287
1288 if (excess_ref) {
1289 object = lookup_object(excess_ref, 0);
1290 if (!object)
1291 continue;
1292 if (object == scanned)
1293 /* circular reference, ignore */
1294 continue;
1295 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1296 update_refs(object);
1297 spin_unlock(&object->lock);
1298 }
1299 }
1300 read_unlock_irqrestore(&kmemleak_lock, flags);
1301}
1302
1303/*
1304 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1305 */
1306#ifdef CONFIG_SMP
1307static void scan_large_block(void *start, void *end)
1308{
1309 void *next;
1310
1311 while (start < end) {
1312 next = min(start + MAX_SCAN_SIZE, end);
1313 scan_block(start, next, NULL);
1314 start = next;
1315 cond_resched();
1316 }
1317}
1318#endif
1319
1320/*
1321 * Scan a memory block corresponding to a kmemleak_object. A condition is
1322 * that object->use_count >= 1.
1323 */
1324static void scan_object(struct kmemleak_object *object)
1325{
1326 struct kmemleak_scan_area *area;
1327 unsigned long flags;
1328
1329 /*
1330 * Once the object->lock is acquired, the corresponding memory block
1331 * cannot be freed (the same lock is acquired in delete_object).
1332 */
1333 spin_lock_irqsave(&object->lock, flags);
1334 if (object->flags & OBJECT_NO_SCAN)
1335 goto out;
1336 if (!(object->flags & OBJECT_ALLOCATED))
1337 /* already freed object */
1338 goto out;
1339 if (hlist_empty(&object->area_list) ||
1340 object->flags & OBJECT_FULL_SCAN) {
1341 void *start = (void *)object->pointer;
1342 void *end = (void *)(object->pointer + object->size);
1343 void *next;
1344
1345 do {
1346 next = min(start + MAX_SCAN_SIZE, end);
1347 scan_block(start, next, object);
1348
1349 start = next;
1350 if (start >= end)
1351 break;
1352
1353 spin_unlock_irqrestore(&object->lock, flags);
1354 cond_resched();
1355 spin_lock_irqsave(&object->lock, flags);
1356 } while (object->flags & OBJECT_ALLOCATED);
1357 } else
1358 hlist_for_each_entry(area, &object->area_list, node)
1359 scan_block((void *)area->start,
1360 (void *)(area->start + area->size),
1361 object);
1362out:
1363 spin_unlock_irqrestore(&object->lock, flags);
1364}
1365
1366/*
1367 * Scan the objects already referenced (gray objects). More objects will be
1368 * referenced and, if there are no memory leaks, all the objects are scanned.
1369 */
1370static void scan_gray_list(void)
1371{
1372 struct kmemleak_object *object, *tmp;
1373
1374 /*
1375 * The list traversal is safe for both tail additions and removals
1376 * from inside the loop. The kmemleak objects cannot be freed from
1377 * outside the loop because their use_count was incremented.
1378 */
1379 object = list_entry(gray_list.next, typeof(*object), gray_list);
1380 while (&object->gray_list != &gray_list) {
1381 cond_resched();
1382
1383 /* may add new objects to the list */
1384 if (!scan_should_stop())
1385 scan_object(object);
1386
1387 tmp = list_entry(object->gray_list.next, typeof(*object),
1388 gray_list);
1389
1390 /* remove the object from the list and release it */
1391 list_del(&object->gray_list);
1392 put_object(object);
1393
1394 object = tmp;
1395 }
1396 WARN_ON(!list_empty(&gray_list));
1397}
1398
1399/*
1400 * Scan data sections and all the referenced memory blocks allocated via the
1401 * kernel's standard allocators. This function must be called with the
1402 * scan_mutex held.
1403 */
1404static void kmemleak_scan(void)
1405{
1406 unsigned long flags;
1407 struct kmemleak_object *object;
1408 struct zone *zone;
1409 int __maybe_unused i;
1410 int new_leaks = 0;
1411
1412 jiffies_last_scan = jiffies;
1413
1414 /* prepare the kmemleak_object's */
1415 rcu_read_lock();
1416 list_for_each_entry_rcu(object, &object_list, object_list) {
1417 spin_lock_irqsave(&object->lock, flags);
1418#ifdef DEBUG
1419 /*
1420 * With a few exceptions there should be a maximum of
1421 * 1 reference to any object at this point.
1422 */
1423 if (atomic_read(&object->use_count) > 1) {
1424 pr_debug("object->use_count = %d\n",
1425 atomic_read(&object->use_count));
1426 dump_object_info(object);
1427 }
1428#endif
1429 /* reset the reference count (whiten the object) */
1430 object->count = 0;
1431 if (color_gray(object) && get_object(object))
1432 list_add_tail(&object->gray_list, &gray_list);
1433
1434 spin_unlock_irqrestore(&object->lock, flags);
1435 }
1436 rcu_read_unlock();
1437
1438#ifdef CONFIG_SMP
1439 /* per-cpu sections scanning */
1440 for_each_possible_cpu(i)
1441 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1442 __per_cpu_end + per_cpu_offset(i));
1443#endif
1444
1445 /*
1446 * Struct page scanning for each node.
1447 */
1448 get_online_mems();
1449 for_each_populated_zone(zone) {
1450 unsigned long start_pfn = zone->zone_start_pfn;
1451 unsigned long end_pfn = zone_end_pfn(zone);
1452 unsigned long pfn;
1453
1454 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1455 struct page *page = pfn_to_online_page(pfn);
1456
1457 if (!page)
1458 continue;
1459
1460 /* only scan pages belonging to this zone */
1461 if (page_zone(page) != zone)
1462 continue;
1463 /* only scan if page is in use */
1464 if (page_count(page) == 0)
1465 continue;
1466 scan_block(page, page + 1, NULL);
1467 if (!(pfn & 63))
1468 cond_resched();
1469 }
1470 }
1471 put_online_mems();
1472
1473 /*
1474 * Scanning the task stacks (may introduce false negatives).
1475 */
1476 if (kmemleak_stack_scan) {
1477 struct task_struct *p, *g;
1478
1479 read_lock(&tasklist_lock);
1480 do_each_thread(g, p) {
1481 void *stack = try_get_task_stack(p);
1482 if (stack) {
1483 scan_block(stack, stack + THREAD_SIZE, NULL);
1484 put_task_stack(p);
1485 }
1486 } while_each_thread(g, p);
1487 read_unlock(&tasklist_lock);
1488 }
1489
1490 /*
1491 * Scan the objects already referenced from the sections scanned
1492 * above.
1493 */
1494 scan_gray_list();
1495
1496 /*
1497 * Check for new or unreferenced objects modified since the previous
1498 * scan and color them gray until the next scan.
1499 */
1500 rcu_read_lock();
1501 list_for_each_entry_rcu(object, &object_list, object_list) {
1502 spin_lock_irqsave(&object->lock, flags);
1503 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1504 && update_checksum(object) && get_object(object)) {
1505 /* color it gray temporarily */
1506 object->count = object->min_count;
1507 list_add_tail(&object->gray_list, &gray_list);
1508 }
1509 spin_unlock_irqrestore(&object->lock, flags);
1510 }
1511 rcu_read_unlock();
1512
1513 /*
1514 * Re-scan the gray list for modified unreferenced objects.
1515 */
1516 scan_gray_list();
1517
1518 /*
1519 * If scanning was stopped do not report any new unreferenced objects.
1520 */
1521 if (scan_should_stop())
1522 return;
1523
1524 /*
1525 * Scanning result reporting.
1526 */
1527 rcu_read_lock();
1528 list_for_each_entry_rcu(object, &object_list, object_list) {
1529 spin_lock_irqsave(&object->lock, flags);
1530 if (unreferenced_object(object) &&
1531 !(object->flags & OBJECT_REPORTED)) {
1532 object->flags |= OBJECT_REPORTED;
1533
1534 if (kmemleak_verbose)
1535 print_unreferenced(NULL, object);
1536
1537 new_leaks++;
1538 }
1539 spin_unlock_irqrestore(&object->lock, flags);
1540 }
1541 rcu_read_unlock();
1542
1543 if (new_leaks) {
1544 kmemleak_found_leaks = true;
1545
1546 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1547 new_leaks);
1548 }
1549
1550}
1551
1552/*
1553 * Thread function performing automatic memory scanning. Unreferenced objects
1554 * at the end of a memory scan are reported but only the first time.
1555 */
1556static int kmemleak_scan_thread(void *arg)
1557{
1558 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1559
1560 pr_info("Automatic memory scanning thread started\n");
1561 set_user_nice(current, 10);
1562
1563 /*
1564 * Wait before the first scan to allow the system to fully initialize.
1565 */
1566 if (first_run) {
1567 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1568 first_run = 0;
1569 while (timeout && !kthread_should_stop())
1570 timeout = schedule_timeout_interruptible(timeout);
1571 }
1572
1573 while (!kthread_should_stop()) {
1574 signed long timeout = jiffies_scan_wait;
1575
1576 mutex_lock(&scan_mutex);
1577 kmemleak_scan();
1578 mutex_unlock(&scan_mutex);
1579
1580 /* wait before the next scan */
1581 while (timeout && !kthread_should_stop())
1582 timeout = schedule_timeout_interruptible(timeout);
1583 }
1584
1585 pr_info("Automatic memory scanning thread ended\n");
1586
1587 return 0;
1588}
1589
1590/*
1591 * Start the automatic memory scanning thread. This function must be called
1592 * with the scan_mutex held.
1593 */
1594static void start_scan_thread(void)
1595{
1596 if (scan_thread)
1597 return;
1598 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1599 if (IS_ERR(scan_thread)) {
1600 pr_warn("Failed to create the scan thread\n");
1601 scan_thread = NULL;
1602 }
1603}
1604
1605/*
1606 * Stop the automatic memory scanning thread.
1607 */
1608static void stop_scan_thread(void)
1609{
1610 if (scan_thread) {
1611 kthread_stop(scan_thread);
1612 scan_thread = NULL;
1613 }
1614}
1615
1616/*
1617 * Iterate over the object_list and return the first valid object at or after
1618 * the required position with its use_count incremented. The function triggers
1619 * a memory scanning when the pos argument points to the first position.
1620 */
1621static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1622{
1623 struct kmemleak_object *object;
1624 loff_t n = *pos;
1625 int err;
1626
1627 err = mutex_lock_interruptible(&scan_mutex);
1628 if (err < 0)
1629 return ERR_PTR(err);
1630
1631 rcu_read_lock();
1632 list_for_each_entry_rcu(object, &object_list, object_list) {
1633 if (n-- > 0)
1634 continue;
1635 if (get_object(object))
1636 goto out;
1637 }
1638 object = NULL;
1639out:
1640 return object;
1641}
1642
1643/*
1644 * Return the next object in the object_list. The function decrements the
1645 * use_count of the previous object and increases that of the next one.
1646 */
1647static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1648{
1649 struct kmemleak_object *prev_obj = v;
1650 struct kmemleak_object *next_obj = NULL;
1651 struct kmemleak_object *obj = prev_obj;
1652
1653 ++(*pos);
1654
1655 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1656 if (get_object(obj)) {
1657 next_obj = obj;
1658 break;
1659 }
1660 }
1661
1662 put_object(prev_obj);
1663 return next_obj;
1664}
1665
1666/*
1667 * Decrement the use_count of the last object required, if any.
1668 */
1669static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1670{
1671 if (!IS_ERR(v)) {
1672 /*
1673 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1674 * waiting was interrupted, so only release it if !IS_ERR.
1675 */
1676 rcu_read_unlock();
1677 mutex_unlock(&scan_mutex);
1678 if (v)
1679 put_object(v);
1680 }
1681}
1682
1683/*
1684 * Print the information for an unreferenced object to the seq file.
1685 */
1686static int kmemleak_seq_show(struct seq_file *seq, void *v)
1687{
1688 struct kmemleak_object *object = v;
1689 unsigned long flags;
1690
1691 spin_lock_irqsave(&object->lock, flags);
1692 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1693 print_unreferenced(seq, object);
1694 spin_unlock_irqrestore(&object->lock, flags);
1695 return 0;
1696}
1697
1698static const struct seq_operations kmemleak_seq_ops = {
1699 .start = kmemleak_seq_start,
1700 .next = kmemleak_seq_next,
1701 .stop = kmemleak_seq_stop,
1702 .show = kmemleak_seq_show,
1703};
1704
1705static int kmemleak_open(struct inode *inode, struct file *file)
1706{
1707 return seq_open(file, &kmemleak_seq_ops);
1708}
1709
1710static int dump_str_object_info(const char *str)
1711{
1712 unsigned long flags;
1713 struct kmemleak_object *object;
1714 unsigned long addr;
1715
1716 if (kstrtoul(str, 0, &addr))
1717 return -EINVAL;
1718 object = find_and_get_object(addr, 0);
1719 if (!object) {
1720 pr_info("Unknown object at 0x%08lx\n", addr);
1721 return -EINVAL;
1722 }
1723
1724 spin_lock_irqsave(&object->lock, flags);
1725 dump_object_info(object);
1726 spin_unlock_irqrestore(&object->lock, flags);
1727
1728 put_object(object);
1729 return 0;
1730}
1731
1732/*
1733 * We use grey instead of black to ensure we can do future scans on the same
1734 * objects. If we did not do future scans these black objects could
1735 * potentially contain references to newly allocated objects in the future and
1736 * we'd end up with false positives.
1737 */
1738static void kmemleak_clear(void)
1739{
1740 struct kmemleak_object *object;
1741 unsigned long flags;
1742
1743 rcu_read_lock();
1744 list_for_each_entry_rcu(object, &object_list, object_list) {
1745 spin_lock_irqsave(&object->lock, flags);
1746 if ((object->flags & OBJECT_REPORTED) &&
1747 unreferenced_object(object))
1748 __paint_it(object, KMEMLEAK_GREY);
1749 spin_unlock_irqrestore(&object->lock, flags);
1750 }
1751 rcu_read_unlock();
1752
1753 kmemleak_found_leaks = false;
1754}
1755
1756static void __kmemleak_do_cleanup(void);
1757
1758/*
1759 * File write operation to configure kmemleak at run-time. The following
1760 * commands can be written to the /sys/kernel/debug/kmemleak file:
1761 * off - disable kmemleak (irreversible)
1762 * stack=on - enable the task stacks scanning
1763 * stack=off - disable the tasks stacks scanning
1764 * scan=on - start the automatic memory scanning thread
1765 * scan=off - stop the automatic memory scanning thread
1766 * scan=... - set the automatic memory scanning period in seconds (0 to
1767 * disable it)
1768 * scan - trigger a memory scan
1769 * clear - mark all current reported unreferenced kmemleak objects as
1770 * grey to ignore printing them, or free all kmemleak objects
1771 * if kmemleak has been disabled.
1772 * dump=... - dump information about the object found at the given address
1773 */
1774static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1775 size_t size, loff_t *ppos)
1776{
1777 char buf[64];
1778 int buf_size;
1779 int ret;
1780
1781 buf_size = min(size, (sizeof(buf) - 1));
1782 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1783 return -EFAULT;
1784 buf[buf_size] = 0;
1785
1786 ret = mutex_lock_interruptible(&scan_mutex);
1787 if (ret < 0)
1788 return ret;
1789
1790 if (strncmp(buf, "clear", 5) == 0) {
1791 if (kmemleak_enabled)
1792 kmemleak_clear();
1793 else
1794 __kmemleak_do_cleanup();
1795 goto out;
1796 }
1797
1798 if (!kmemleak_enabled) {
1799 ret = -EPERM;
1800 goto out;
1801 }
1802
1803 if (strncmp(buf, "off", 3) == 0)
1804 kmemleak_disable();
1805 else if (strncmp(buf, "stack=on", 8) == 0)
1806 kmemleak_stack_scan = 1;
1807 else if (strncmp(buf, "stack=off", 9) == 0)
1808 kmemleak_stack_scan = 0;
1809 else if (strncmp(buf, "scan=on", 7) == 0)
1810 start_scan_thread();
1811 else if (strncmp(buf, "scan=off", 8) == 0)
1812 stop_scan_thread();
1813 else if (strncmp(buf, "scan=", 5) == 0) {
1814 unsigned long secs;
1815
1816 ret = kstrtoul(buf + 5, 0, &secs);
1817 if (ret < 0)
1818 goto out;
1819 stop_scan_thread();
1820 if (secs) {
1821 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1822 start_scan_thread();
1823 }
1824 } else if (strncmp(buf, "scan", 4) == 0)
1825 kmemleak_scan();
1826 else if (strncmp(buf, "dump=", 5) == 0)
1827 ret = dump_str_object_info(buf + 5);
1828 else
1829 ret = -EINVAL;
1830
1831out:
1832 mutex_unlock(&scan_mutex);
1833 if (ret < 0)
1834 return ret;
1835
1836 /* ignore the rest of the buffer, only one command at a time */
1837 *ppos += size;
1838 return size;
1839}
1840
1841static const struct file_operations kmemleak_fops = {
1842 .owner = THIS_MODULE,
1843 .open = kmemleak_open,
1844 .read = seq_read,
1845 .write = kmemleak_write,
1846 .llseek = seq_lseek,
1847 .release = seq_release,
1848};
1849
1850static void __kmemleak_do_cleanup(void)
1851{
1852 struct kmemleak_object *object, *tmp;
1853
1854 /*
1855 * Kmemleak has already been disabled, no need for RCU list traversal
1856 * or kmemleak_lock held.
1857 */
1858 list_for_each_entry_safe(object, tmp, &object_list, object_list) {
1859 __remove_object(object);
1860 __delete_object(object);
1861 }
1862}
1863
1864/*
1865 * Stop the memory scanning thread and free the kmemleak internal objects if
1866 * no previous scan thread (otherwise, kmemleak may still have some useful
1867 * information on memory leaks).
1868 */
1869static void kmemleak_do_cleanup(struct work_struct *work)
1870{
1871 stop_scan_thread();
1872
1873 mutex_lock(&scan_mutex);
1874 /*
1875 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1876 * longer track object freeing. Ordering of the scan thread stopping and
1877 * the memory accesses below is guaranteed by the kthread_stop()
1878 * function.
1879 */
1880 kmemleak_free_enabled = 0;
1881 mutex_unlock(&scan_mutex);
1882
1883 if (!kmemleak_found_leaks)
1884 __kmemleak_do_cleanup();
1885 else
1886 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1887}
1888
1889static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1890
1891/*
1892 * Disable kmemleak. No memory allocation/freeing will be traced once this
1893 * function is called. Disabling kmemleak is an irreversible operation.
1894 */
1895static void kmemleak_disable(void)
1896{
1897 /* atomically check whether it was already invoked */
1898 if (cmpxchg(&kmemleak_error, 0, 1))
1899 return;
1900
1901 /* stop any memory operation tracing */
1902 kmemleak_enabled = 0;
1903
1904 /* check whether it is too early for a kernel thread */
1905 if (kmemleak_initialized)
1906 schedule_work(&cleanup_work);
1907 else
1908 kmemleak_free_enabled = 0;
1909
1910 pr_info("Kernel memory leak detector disabled\n");
1911}
1912
1913/*
1914 * Allow boot-time kmemleak disabling (enabled by default).
1915 */
1916static int __init kmemleak_boot_config(char *str)
1917{
1918 if (!str)
1919 return -EINVAL;
1920 if (strcmp(str, "off") == 0)
1921 kmemleak_disable();
1922 else if (strcmp(str, "on") == 0)
1923 kmemleak_skip_disable = 1;
1924 else
1925 return -EINVAL;
1926 return 0;
1927}
1928early_param("kmemleak", kmemleak_boot_config);
1929
1930/*
1931 * Kmemleak initialization.
1932 */
1933void __init kmemleak_init(void)
1934{
1935#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1936 if (!kmemleak_skip_disable) {
1937 kmemleak_disable();
1938 return;
1939 }
1940#endif
1941
1942 if (kmemleak_error)
1943 return;
1944
1945 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1946 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1947
1948 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1949 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1950
1951 /* register the data/bss sections */
1952 create_object((unsigned long)_sdata, _edata - _sdata,
1953 KMEMLEAK_GREY, GFP_ATOMIC);
1954 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
1955 KMEMLEAK_GREY, GFP_ATOMIC);
1956 /* only register .data..ro_after_init if not within .data */
1957 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
1958 create_object((unsigned long)__start_ro_after_init,
1959 __end_ro_after_init - __start_ro_after_init,
1960 KMEMLEAK_GREY, GFP_ATOMIC);
1961}
1962
1963/*
1964 * Late initialization function.
1965 */
1966static int __init kmemleak_late_init(void)
1967{
1968 kmemleak_initialized = 1;
1969
1970 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
1971
1972 if (kmemleak_error) {
1973 /*
1974 * Some error occurred and kmemleak was disabled. There is a
1975 * small chance that kmemleak_disable() was called immediately
1976 * after setting kmemleak_initialized and we may end up with
1977 * two clean-up threads but serialized by scan_mutex.
1978 */
1979 schedule_work(&cleanup_work);
1980 return -ENOMEM;
1981 }
1982
1983 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
1984 mutex_lock(&scan_mutex);
1985 start_scan_thread();
1986 mutex_unlock(&scan_mutex);
1987 }
1988
1989 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
1990 mem_pool_free_count);
1991
1992 return 0;
1993}
1994late_initcall(kmemleak_late_init);