b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * Procedures for maintaining information about logical memory blocks. |
| 4 | * |
| 5 | * Peter Bergner, IBM Corp. June 2001. |
| 6 | * Copyright (C) 2001 Peter Bergner. |
| 7 | */ |
| 8 | |
| 9 | #include <linux/kernel.h> |
| 10 | #include <linux/slab.h> |
| 11 | #include <linux/init.h> |
| 12 | #include <linux/bitops.h> |
| 13 | #include <linux/poison.h> |
| 14 | #include <linux/pfn.h> |
| 15 | #include <linux/debugfs.h> |
| 16 | #include <linux/kmemleak.h> |
| 17 | #include <linux/seq_file.h> |
| 18 | #include <linux/memblock.h> |
| 19 | |
| 20 | #include <asm/sections.h> |
| 21 | #include <linux/io.h> |
| 22 | |
| 23 | #include "internal.h" |
| 24 | |
| 25 | #define INIT_MEMBLOCK_REGIONS 128 |
| 26 | #define INIT_PHYSMEM_REGIONS 4 |
| 27 | |
| 28 | #ifndef INIT_MEMBLOCK_RESERVED_REGIONS |
| 29 | # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS |
| 30 | #endif |
| 31 | |
| 32 | /** |
| 33 | * DOC: memblock overview |
| 34 | * |
| 35 | * Memblock is a method of managing memory regions during the early |
| 36 | * boot period when the usual kernel memory allocators are not up and |
| 37 | * running. |
| 38 | * |
| 39 | * Memblock views the system memory as collections of contiguous |
| 40 | * regions. There are several types of these collections: |
| 41 | * |
| 42 | * * ``memory`` - describes the physical memory available to the |
| 43 | * kernel; this may differ from the actual physical memory installed |
| 44 | * in the system, for instance when the memory is restricted with |
| 45 | * ``mem=`` command line parameter |
| 46 | * * ``reserved`` - describes the regions that were allocated |
| 47 | * * ``physmap`` - describes the actual physical memory regardless of |
| 48 | * the possible restrictions; the ``physmap`` type is only available |
| 49 | * on some architectures. |
| 50 | * |
| 51 | * Each region is represented by :c:type:`struct memblock_region` that |
| 52 | * defines the region extents, its attributes and NUMA node id on NUMA |
| 53 | * systems. Every memory type is described by the :c:type:`struct |
| 54 | * memblock_type` which contains an array of memory regions along with |
| 55 | * the allocator metadata. The memory types are nicely wrapped with |
| 56 | * :c:type:`struct memblock`. This structure is statically initialzed |
| 57 | * at build time. The region arrays for the "memory" and "reserved" |
| 58 | * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the |
| 59 | * "physmap" type to %INIT_PHYSMEM_REGIONS. |
| 60 | * The :c:func:`memblock_allow_resize` enables automatic resizing of |
| 61 | * the region arrays during addition of new regions. This feature |
| 62 | * should be used with care so that memory allocated for the region |
| 63 | * array will not overlap with areas that should be reserved, for |
| 64 | * example initrd. |
| 65 | * |
| 66 | * The early architecture setup should tell memblock what the physical |
| 67 | * memory layout is by using :c:func:`memblock_add` or |
| 68 | * :c:func:`memblock_add_node` functions. The first function does not |
| 69 | * assign the region to a NUMA node and it is appropriate for UMA |
| 70 | * systems. Yet, it is possible to use it on NUMA systems as well and |
| 71 | * assign the region to a NUMA node later in the setup process using |
| 72 | * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node` |
| 73 | * performs such an assignment directly. |
| 74 | * |
| 75 | * Once memblock is setup the memory can be allocated using one of the |
| 76 | * API variants: |
| 77 | * |
| 78 | * * :c:func:`memblock_phys_alloc*` - these functions return the |
| 79 | * **physical** address of the allocated memory |
| 80 | * * :c:func:`memblock_alloc*` - these functions return the **virtual** |
| 81 | * address of the allocated memory. |
| 82 | * |
| 83 | * Note, that both API variants use implict assumptions about allowed |
| 84 | * memory ranges and the fallback methods. Consult the documentation |
| 85 | * of :c:func:`memblock_alloc_internal` and |
| 86 | * :c:func:`memblock_alloc_range_nid` functions for more elaboarte |
| 87 | * description. |
| 88 | * |
| 89 | * As the system boot progresses, the architecture specific |
| 90 | * :c:func:`mem_init` function frees all the memory to the buddy page |
| 91 | * allocator. |
| 92 | * |
| 93 | * Unless an architecure enables %CONFIG_ARCH_KEEP_MEMBLOCK, the |
| 94 | * memblock data structures will be discarded after the system |
| 95 | * initialization compltes. |
| 96 | */ |
| 97 | |
| 98 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
| 99 | struct pglist_data __refdata contig_page_data; |
| 100 | EXPORT_SYMBOL(contig_page_data); |
| 101 | #endif |
| 102 | |
| 103 | unsigned long max_low_pfn; |
| 104 | unsigned long min_low_pfn; |
| 105 | unsigned long max_pfn; |
| 106 | unsigned long long max_possible_pfn; |
| 107 | |
| 108 | static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; |
| 109 | static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock; |
| 110 | #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP |
| 111 | static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock; |
| 112 | #endif |
| 113 | |
| 114 | struct memblock memblock __initdata_memblock = { |
| 115 | .memory.regions = memblock_memory_init_regions, |
| 116 | .memory.cnt = 1, /* empty dummy entry */ |
| 117 | .memory.max = INIT_MEMBLOCK_REGIONS, |
| 118 | .memory.name = "memory", |
| 119 | |
| 120 | .reserved.regions = memblock_reserved_init_regions, |
| 121 | .reserved.cnt = 1, /* empty dummy entry */ |
| 122 | .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS, |
| 123 | .reserved.name = "reserved", |
| 124 | |
| 125 | #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP |
| 126 | .physmem.regions = memblock_physmem_init_regions, |
| 127 | .physmem.cnt = 1, /* empty dummy entry */ |
| 128 | .physmem.max = INIT_PHYSMEM_REGIONS, |
| 129 | .physmem.name = "physmem", |
| 130 | #endif |
| 131 | |
| 132 | .bottom_up = false, |
| 133 | .current_limit = MEMBLOCK_ALLOC_ANYWHERE, |
| 134 | }; |
| 135 | |
| 136 | int memblock_debug __initdata_memblock; |
| 137 | static bool system_has_some_mirror __initdata_memblock = false; |
| 138 | static int memblock_can_resize __initdata_memblock; |
| 139 | static int memblock_memory_in_slab __initdata_memblock = 0; |
| 140 | static int memblock_reserved_in_slab __initdata_memblock = 0; |
| 141 | |
| 142 | static enum memblock_flags __init_memblock choose_memblock_flags(void) |
| 143 | { |
| 144 | return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; |
| 145 | } |
| 146 | |
| 147 | /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ |
| 148 | static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) |
| 149 | { |
| 150 | return *size = min(*size, PHYS_ADDR_MAX - base); |
| 151 | } |
| 152 | |
| 153 | /* |
| 154 | * Address comparison utilities |
| 155 | */ |
| 156 | static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, |
| 157 | phys_addr_t base2, phys_addr_t size2) |
| 158 | { |
| 159 | return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); |
| 160 | } |
| 161 | |
| 162 | bool __init_memblock memblock_overlaps_region(struct memblock_type *type, |
| 163 | phys_addr_t base, phys_addr_t size) |
| 164 | { |
| 165 | unsigned long i; |
| 166 | |
| 167 | memblock_cap_size(base, &size); |
| 168 | |
| 169 | for (i = 0; i < type->cnt; i++) |
| 170 | if (memblock_addrs_overlap(base, size, type->regions[i].base, |
| 171 | type->regions[i].size)) |
| 172 | break; |
| 173 | return i < type->cnt; |
| 174 | } |
| 175 | |
| 176 | /** |
| 177 | * __memblock_find_range_bottom_up - find free area utility in bottom-up |
| 178 | * @start: start of candidate range |
| 179 | * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or |
| 180 | * %MEMBLOCK_ALLOC_ACCESSIBLE |
| 181 | * @size: size of free area to find |
| 182 | * @align: alignment of free area to find |
| 183 | * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| 184 | * @flags: pick from blocks based on memory attributes |
| 185 | * |
| 186 | * Utility called from memblock_find_in_range_node(), find free area bottom-up. |
| 187 | * |
| 188 | * Return: |
| 189 | * Found address on success, 0 on failure. |
| 190 | */ |
| 191 | static phys_addr_t __init_memblock |
| 192 | __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, |
| 193 | phys_addr_t size, phys_addr_t align, int nid, |
| 194 | enum memblock_flags flags) |
| 195 | { |
| 196 | phys_addr_t this_start, this_end, cand; |
| 197 | u64 i; |
| 198 | |
| 199 | for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { |
| 200 | this_start = clamp(this_start, start, end); |
| 201 | this_end = clamp(this_end, start, end); |
| 202 | |
| 203 | cand = round_up(this_start, align); |
| 204 | if (cand < this_end && this_end - cand >= size) |
| 205 | return cand; |
| 206 | } |
| 207 | |
| 208 | return 0; |
| 209 | } |
| 210 | |
| 211 | /** |
| 212 | * __memblock_find_range_top_down - find free area utility, in top-down |
| 213 | * @start: start of candidate range |
| 214 | * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or |
| 215 | * %MEMBLOCK_ALLOC_ACCESSIBLE |
| 216 | * @size: size of free area to find |
| 217 | * @align: alignment of free area to find |
| 218 | * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| 219 | * @flags: pick from blocks based on memory attributes |
| 220 | * |
| 221 | * Utility called from memblock_find_in_range_node(), find free area top-down. |
| 222 | * |
| 223 | * Return: |
| 224 | * Found address on success, 0 on failure. |
| 225 | */ |
| 226 | static phys_addr_t __init_memblock |
| 227 | __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, |
| 228 | phys_addr_t size, phys_addr_t align, int nid, |
| 229 | enum memblock_flags flags) |
| 230 | { |
| 231 | phys_addr_t this_start, this_end, cand; |
| 232 | u64 i; |
| 233 | |
| 234 | for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, |
| 235 | NULL) { |
| 236 | this_start = clamp(this_start, start, end); |
| 237 | this_end = clamp(this_end, start, end); |
| 238 | |
| 239 | if (this_end < size) |
| 240 | continue; |
| 241 | |
| 242 | cand = round_down(this_end - size, align); |
| 243 | if (cand >= this_start) |
| 244 | return cand; |
| 245 | } |
| 246 | |
| 247 | return 0; |
| 248 | } |
| 249 | |
| 250 | /** |
| 251 | * memblock_find_in_range_node - find free area in given range and node |
| 252 | * @size: size of free area to find |
| 253 | * @align: alignment of free area to find |
| 254 | * @start: start of candidate range |
| 255 | * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or |
| 256 | * %MEMBLOCK_ALLOC_ACCESSIBLE |
| 257 | * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| 258 | * @flags: pick from blocks based on memory attributes |
| 259 | * |
| 260 | * Find @size free area aligned to @align in the specified range and node. |
| 261 | * |
| 262 | * Return: |
| 263 | * Found address on success, 0 on failure. |
| 264 | */ |
| 265 | static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, |
| 266 | phys_addr_t align, phys_addr_t start, |
| 267 | phys_addr_t end, int nid, |
| 268 | enum memblock_flags flags) |
| 269 | { |
| 270 | /* pump up @end */ |
| 271 | if (end == MEMBLOCK_ALLOC_ACCESSIBLE || |
| 272 | end == MEMBLOCK_ALLOC_KASAN) |
| 273 | end = memblock.current_limit; |
| 274 | |
| 275 | /* avoid allocating the first page */ |
| 276 | start = max_t(phys_addr_t, start, PAGE_SIZE); |
| 277 | end = max(start, end); |
| 278 | |
| 279 | if (memblock_bottom_up()) |
| 280 | return __memblock_find_range_bottom_up(start, end, size, align, |
| 281 | nid, flags); |
| 282 | else |
| 283 | return __memblock_find_range_top_down(start, end, size, align, |
| 284 | nid, flags); |
| 285 | } |
| 286 | |
| 287 | /** |
| 288 | * memblock_find_in_range - find free area in given range |
| 289 | * @start: start of candidate range |
| 290 | * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or |
| 291 | * %MEMBLOCK_ALLOC_ACCESSIBLE |
| 292 | * @size: size of free area to find |
| 293 | * @align: alignment of free area to find |
| 294 | * |
| 295 | * Find @size free area aligned to @align in the specified range. |
| 296 | * |
| 297 | * Return: |
| 298 | * Found address on success, 0 on failure. |
| 299 | */ |
| 300 | phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, |
| 301 | phys_addr_t end, phys_addr_t size, |
| 302 | phys_addr_t align) |
| 303 | { |
| 304 | phys_addr_t ret; |
| 305 | enum memblock_flags flags = choose_memblock_flags(); |
| 306 | |
| 307 | again: |
| 308 | ret = memblock_find_in_range_node(size, align, start, end, |
| 309 | NUMA_NO_NODE, flags); |
| 310 | |
| 311 | if (!ret && (flags & MEMBLOCK_MIRROR)) { |
| 312 | pr_warn("Could not allocate %pap bytes of mirrored memory\n", |
| 313 | &size); |
| 314 | flags &= ~MEMBLOCK_MIRROR; |
| 315 | goto again; |
| 316 | } |
| 317 | |
| 318 | return ret; |
| 319 | } |
| 320 | |
| 321 | static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) |
| 322 | { |
| 323 | type->total_size -= type->regions[r].size; |
| 324 | memmove(&type->regions[r], &type->regions[r + 1], |
| 325 | (type->cnt - (r + 1)) * sizeof(type->regions[r])); |
| 326 | type->cnt--; |
| 327 | |
| 328 | /* Special case for empty arrays */ |
| 329 | if (type->cnt == 0) { |
| 330 | WARN_ON(type->total_size != 0); |
| 331 | type->cnt = 1; |
| 332 | type->regions[0].base = 0; |
| 333 | type->regions[0].size = 0; |
| 334 | type->regions[0].flags = 0; |
| 335 | memblock_set_region_node(&type->regions[0], MAX_NUMNODES); |
| 336 | } |
| 337 | } |
| 338 | |
| 339 | #ifndef CONFIG_ARCH_KEEP_MEMBLOCK |
| 340 | /** |
| 341 | * memblock_discard - discard memory and reserved arrays if they were allocated |
| 342 | */ |
| 343 | void __init memblock_discard(void) |
| 344 | { |
| 345 | phys_addr_t addr, size; |
| 346 | |
| 347 | if (memblock.reserved.regions != memblock_reserved_init_regions) { |
| 348 | addr = __pa(memblock.reserved.regions); |
| 349 | size = PAGE_ALIGN(sizeof(struct memblock_region) * |
| 350 | memblock.reserved.max); |
| 351 | if (memblock_reserved_in_slab) |
| 352 | kfree(memblock.reserved.regions); |
| 353 | else |
| 354 | __memblock_free_late(addr, size); |
| 355 | } |
| 356 | |
| 357 | if (memblock.memory.regions != memblock_memory_init_regions) { |
| 358 | addr = __pa(memblock.memory.regions); |
| 359 | size = PAGE_ALIGN(sizeof(struct memblock_region) * |
| 360 | memblock.memory.max); |
| 361 | if (memblock_memory_in_slab) |
| 362 | kfree(memblock.memory.regions); |
| 363 | else |
| 364 | __memblock_free_late(addr, size); |
| 365 | } |
| 366 | } |
| 367 | #endif |
| 368 | |
| 369 | /** |
| 370 | * memblock_double_array - double the size of the memblock regions array |
| 371 | * @type: memblock type of the regions array being doubled |
| 372 | * @new_area_start: starting address of memory range to avoid overlap with |
| 373 | * @new_area_size: size of memory range to avoid overlap with |
| 374 | * |
| 375 | * Double the size of the @type regions array. If memblock is being used to |
| 376 | * allocate memory for a new reserved regions array and there is a previously |
| 377 | * allocated memory range [@new_area_start, @new_area_start + @new_area_size] |
| 378 | * waiting to be reserved, ensure the memory used by the new array does |
| 379 | * not overlap. |
| 380 | * |
| 381 | * Return: |
| 382 | * 0 on success, -1 on failure. |
| 383 | */ |
| 384 | static int __init_memblock memblock_double_array(struct memblock_type *type, |
| 385 | phys_addr_t new_area_start, |
| 386 | phys_addr_t new_area_size) |
| 387 | { |
| 388 | struct memblock_region *new_array, *old_array; |
| 389 | phys_addr_t old_alloc_size, new_alloc_size; |
| 390 | phys_addr_t old_size, new_size, addr, new_end; |
| 391 | int use_slab = slab_is_available(); |
| 392 | int *in_slab; |
| 393 | |
| 394 | /* We don't allow resizing until we know about the reserved regions |
| 395 | * of memory that aren't suitable for allocation |
| 396 | */ |
| 397 | if (!memblock_can_resize) |
| 398 | return -1; |
| 399 | |
| 400 | /* Calculate new doubled size */ |
| 401 | old_size = type->max * sizeof(struct memblock_region); |
| 402 | new_size = old_size << 1; |
| 403 | /* |
| 404 | * We need to allocated new one align to PAGE_SIZE, |
| 405 | * so we can free them completely later. |
| 406 | */ |
| 407 | old_alloc_size = PAGE_ALIGN(old_size); |
| 408 | new_alloc_size = PAGE_ALIGN(new_size); |
| 409 | |
| 410 | /* Retrieve the slab flag */ |
| 411 | if (type == &memblock.memory) |
| 412 | in_slab = &memblock_memory_in_slab; |
| 413 | else |
| 414 | in_slab = &memblock_reserved_in_slab; |
| 415 | |
| 416 | /* Try to find some space for it */ |
| 417 | if (use_slab) { |
| 418 | new_array = kmalloc(new_size, GFP_KERNEL); |
| 419 | addr = new_array ? __pa(new_array) : 0; |
| 420 | } else { |
| 421 | /* only exclude range when trying to double reserved.regions */ |
| 422 | if (type != &memblock.reserved) |
| 423 | new_area_start = new_area_size = 0; |
| 424 | |
| 425 | addr = memblock_find_in_range(new_area_start + new_area_size, |
| 426 | memblock.current_limit, |
| 427 | new_alloc_size, PAGE_SIZE); |
| 428 | if (!addr && new_area_size) |
| 429 | addr = memblock_find_in_range(0, |
| 430 | min(new_area_start, memblock.current_limit), |
| 431 | new_alloc_size, PAGE_SIZE); |
| 432 | |
| 433 | new_array = addr ? __va(addr) : NULL; |
| 434 | } |
| 435 | if (!addr) { |
| 436 | pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", |
| 437 | type->name, type->max, type->max * 2); |
| 438 | return -1; |
| 439 | } |
| 440 | |
| 441 | new_end = addr + new_size - 1; |
| 442 | memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", |
| 443 | type->name, type->max * 2, &addr, &new_end); |
| 444 | |
| 445 | /* |
| 446 | * Found space, we now need to move the array over before we add the |
| 447 | * reserved region since it may be our reserved array itself that is |
| 448 | * full. |
| 449 | */ |
| 450 | memcpy(new_array, type->regions, old_size); |
| 451 | memset(new_array + type->max, 0, old_size); |
| 452 | old_array = type->regions; |
| 453 | type->regions = new_array; |
| 454 | type->max <<= 1; |
| 455 | |
| 456 | /* Free old array. We needn't free it if the array is the static one */ |
| 457 | if (*in_slab) |
| 458 | kfree(old_array); |
| 459 | else if (old_array != memblock_memory_init_regions && |
| 460 | old_array != memblock_reserved_init_regions) |
| 461 | memblock_free(__pa(old_array), old_alloc_size); |
| 462 | |
| 463 | /* |
| 464 | * Reserve the new array if that comes from the memblock. Otherwise, we |
| 465 | * needn't do it |
| 466 | */ |
| 467 | if (!use_slab) |
| 468 | BUG_ON(memblock_reserve(addr, new_alloc_size)); |
| 469 | |
| 470 | /* Update slab flag */ |
| 471 | *in_slab = use_slab; |
| 472 | |
| 473 | return 0; |
| 474 | } |
| 475 | |
| 476 | /** |
| 477 | * memblock_merge_regions - merge neighboring compatible regions |
| 478 | * @type: memblock type to scan |
| 479 | * |
| 480 | * Scan @type and merge neighboring compatible regions. |
| 481 | */ |
| 482 | static void __init_memblock memblock_merge_regions(struct memblock_type *type) |
| 483 | { |
| 484 | int i = 0; |
| 485 | |
| 486 | /* cnt never goes below 1 */ |
| 487 | while (i < type->cnt - 1) { |
| 488 | struct memblock_region *this = &type->regions[i]; |
| 489 | struct memblock_region *next = &type->regions[i + 1]; |
| 490 | |
| 491 | if (this->base + this->size != next->base || |
| 492 | memblock_get_region_node(this) != |
| 493 | memblock_get_region_node(next) || |
| 494 | this->flags != next->flags) { |
| 495 | BUG_ON(this->base + this->size > next->base); |
| 496 | i++; |
| 497 | continue; |
| 498 | } |
| 499 | |
| 500 | this->size += next->size; |
| 501 | /* move forward from next + 1, index of which is i + 2 */ |
| 502 | memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); |
| 503 | type->cnt--; |
| 504 | } |
| 505 | } |
| 506 | |
| 507 | /** |
| 508 | * memblock_insert_region - insert new memblock region |
| 509 | * @type: memblock type to insert into |
| 510 | * @idx: index for the insertion point |
| 511 | * @base: base address of the new region |
| 512 | * @size: size of the new region |
| 513 | * @nid: node id of the new region |
| 514 | * @flags: flags of the new region |
| 515 | * |
| 516 | * Insert new memblock region [@base, @base + @size) into @type at @idx. |
| 517 | * @type must already have extra room to accommodate the new region. |
| 518 | */ |
| 519 | static void __init_memblock memblock_insert_region(struct memblock_type *type, |
| 520 | int idx, phys_addr_t base, |
| 521 | phys_addr_t size, |
| 522 | int nid, |
| 523 | enum memblock_flags flags) |
| 524 | { |
| 525 | struct memblock_region *rgn = &type->regions[idx]; |
| 526 | |
| 527 | BUG_ON(type->cnt >= type->max); |
| 528 | memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); |
| 529 | rgn->base = base; |
| 530 | rgn->size = size; |
| 531 | rgn->flags = flags; |
| 532 | memblock_set_region_node(rgn, nid); |
| 533 | type->cnt++; |
| 534 | type->total_size += size; |
| 535 | } |
| 536 | |
| 537 | /** |
| 538 | * memblock_add_range - add new memblock region |
| 539 | * @type: memblock type to add new region into |
| 540 | * @base: base address of the new region |
| 541 | * @size: size of the new region |
| 542 | * @nid: nid of the new region |
| 543 | * @flags: flags of the new region |
| 544 | * |
| 545 | * Add new memblock region [@base, @base + @size) into @type. The new region |
| 546 | * is allowed to overlap with existing ones - overlaps don't affect already |
| 547 | * existing regions. @type is guaranteed to be minimal (all neighbouring |
| 548 | * compatible regions are merged) after the addition. |
| 549 | * |
| 550 | * Return: |
| 551 | * 0 on success, -errno on failure. |
| 552 | */ |
| 553 | int __init_memblock memblock_add_range(struct memblock_type *type, |
| 554 | phys_addr_t base, phys_addr_t size, |
| 555 | int nid, enum memblock_flags flags) |
| 556 | { |
| 557 | bool insert = false; |
| 558 | phys_addr_t obase = base; |
| 559 | phys_addr_t end = base + memblock_cap_size(base, &size); |
| 560 | int idx, nr_new; |
| 561 | struct memblock_region *rgn; |
| 562 | |
| 563 | if (!size) |
| 564 | return 0; |
| 565 | |
| 566 | /* special case for empty array */ |
| 567 | if (type->regions[0].size == 0) { |
| 568 | WARN_ON(type->cnt != 1 || type->total_size); |
| 569 | type->regions[0].base = base; |
| 570 | type->regions[0].size = size; |
| 571 | type->regions[0].flags = flags; |
| 572 | memblock_set_region_node(&type->regions[0], nid); |
| 573 | type->total_size = size; |
| 574 | return 0; |
| 575 | } |
| 576 | repeat: |
| 577 | /* |
| 578 | * The following is executed twice. Once with %false @insert and |
| 579 | * then with %true. The first counts the number of regions needed |
| 580 | * to accommodate the new area. The second actually inserts them. |
| 581 | */ |
| 582 | base = obase; |
| 583 | nr_new = 0; |
| 584 | |
| 585 | for_each_memblock_type(idx, type, rgn) { |
| 586 | phys_addr_t rbase = rgn->base; |
| 587 | phys_addr_t rend = rbase + rgn->size; |
| 588 | |
| 589 | if (rbase >= end) |
| 590 | break; |
| 591 | if (rend <= base) |
| 592 | continue; |
| 593 | /* |
| 594 | * @rgn overlaps. If it separates the lower part of new |
| 595 | * area, insert that portion. |
| 596 | */ |
| 597 | if (rbase > base) { |
| 598 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
| 599 | WARN_ON(nid != memblock_get_region_node(rgn)); |
| 600 | #endif |
| 601 | WARN_ON(flags != rgn->flags); |
| 602 | nr_new++; |
| 603 | if (insert) |
| 604 | memblock_insert_region(type, idx++, base, |
| 605 | rbase - base, nid, |
| 606 | flags); |
| 607 | } |
| 608 | /* area below @rend is dealt with, forget about it */ |
| 609 | base = min(rend, end); |
| 610 | } |
| 611 | |
| 612 | /* insert the remaining portion */ |
| 613 | if (base < end) { |
| 614 | nr_new++; |
| 615 | if (insert) |
| 616 | memblock_insert_region(type, idx, base, end - base, |
| 617 | nid, flags); |
| 618 | } |
| 619 | |
| 620 | if (!nr_new) |
| 621 | return 0; |
| 622 | |
| 623 | /* |
| 624 | * If this was the first round, resize array and repeat for actual |
| 625 | * insertions; otherwise, merge and return. |
| 626 | */ |
| 627 | if (!insert) { |
| 628 | while (type->cnt + nr_new > type->max) |
| 629 | if (memblock_double_array(type, obase, size) < 0) |
| 630 | return -ENOMEM; |
| 631 | insert = true; |
| 632 | goto repeat; |
| 633 | } else { |
| 634 | memblock_merge_regions(type); |
| 635 | return 0; |
| 636 | } |
| 637 | } |
| 638 | |
| 639 | /** |
| 640 | * memblock_add_node - add new memblock region within a NUMA node |
| 641 | * @base: base address of the new region |
| 642 | * @size: size of the new region |
| 643 | * @nid: nid of the new region |
| 644 | * |
| 645 | * Add new memblock region [@base, @base + @size) to the "memory" |
| 646 | * type. See memblock_add_range() description for mode details |
| 647 | * |
| 648 | * Return: |
| 649 | * 0 on success, -errno on failure. |
| 650 | */ |
| 651 | int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, |
| 652 | int nid) |
| 653 | { |
| 654 | return memblock_add_range(&memblock.memory, base, size, nid, 0); |
| 655 | } |
| 656 | |
| 657 | /** |
| 658 | * memblock_add - add new memblock region |
| 659 | * @base: base address of the new region |
| 660 | * @size: size of the new region |
| 661 | * |
| 662 | * Add new memblock region [@base, @base + @size) to the "memory" |
| 663 | * type. See memblock_add_range() description for mode details |
| 664 | * |
| 665 | * Return: |
| 666 | * 0 on success, -errno on failure. |
| 667 | */ |
| 668 | int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) |
| 669 | { |
| 670 | phys_addr_t end = base + size - 1; |
| 671 | |
| 672 | memblock_dbg("memblock_add: [%pa-%pa] %pS\n", |
| 673 | &base, &end, (void *)_RET_IP_); |
| 674 | |
| 675 | return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); |
| 676 | } |
| 677 | |
| 678 | /** |
| 679 | * memblock_isolate_range - isolate given range into disjoint memblocks |
| 680 | * @type: memblock type to isolate range for |
| 681 | * @base: base of range to isolate |
| 682 | * @size: size of range to isolate |
| 683 | * @start_rgn: out parameter for the start of isolated region |
| 684 | * @end_rgn: out parameter for the end of isolated region |
| 685 | * |
| 686 | * Walk @type and ensure that regions don't cross the boundaries defined by |
| 687 | * [@base, @base + @size). Crossing regions are split at the boundaries, |
| 688 | * which may create at most two more regions. The index of the first |
| 689 | * region inside the range is returned in *@start_rgn and end in *@end_rgn. |
| 690 | * |
| 691 | * Return: |
| 692 | * 0 on success, -errno on failure. |
| 693 | */ |
| 694 | static int __init_memblock memblock_isolate_range(struct memblock_type *type, |
| 695 | phys_addr_t base, phys_addr_t size, |
| 696 | int *start_rgn, int *end_rgn) |
| 697 | { |
| 698 | phys_addr_t end = base + memblock_cap_size(base, &size); |
| 699 | int idx; |
| 700 | struct memblock_region *rgn; |
| 701 | |
| 702 | *start_rgn = *end_rgn = 0; |
| 703 | |
| 704 | if (!size) |
| 705 | return 0; |
| 706 | |
| 707 | /* we'll create at most two more regions */ |
| 708 | while (type->cnt + 2 > type->max) |
| 709 | if (memblock_double_array(type, base, size) < 0) |
| 710 | return -ENOMEM; |
| 711 | |
| 712 | for_each_memblock_type(idx, type, rgn) { |
| 713 | phys_addr_t rbase = rgn->base; |
| 714 | phys_addr_t rend = rbase + rgn->size; |
| 715 | |
| 716 | if (rbase >= end) |
| 717 | break; |
| 718 | if (rend <= base) |
| 719 | continue; |
| 720 | |
| 721 | if (rbase < base) { |
| 722 | /* |
| 723 | * @rgn intersects from below. Split and continue |
| 724 | * to process the next region - the new top half. |
| 725 | */ |
| 726 | rgn->base = base; |
| 727 | rgn->size -= base - rbase; |
| 728 | type->total_size -= base - rbase; |
| 729 | memblock_insert_region(type, idx, rbase, base - rbase, |
| 730 | memblock_get_region_node(rgn), |
| 731 | rgn->flags); |
| 732 | } else if (rend > end) { |
| 733 | /* |
| 734 | * @rgn intersects from above. Split and redo the |
| 735 | * current region - the new bottom half. |
| 736 | */ |
| 737 | rgn->base = end; |
| 738 | rgn->size -= end - rbase; |
| 739 | type->total_size -= end - rbase; |
| 740 | memblock_insert_region(type, idx--, rbase, end - rbase, |
| 741 | memblock_get_region_node(rgn), |
| 742 | rgn->flags); |
| 743 | } else { |
| 744 | /* @rgn is fully contained, record it */ |
| 745 | if (!*end_rgn) |
| 746 | *start_rgn = idx; |
| 747 | *end_rgn = idx + 1; |
| 748 | } |
| 749 | } |
| 750 | |
| 751 | return 0; |
| 752 | } |
| 753 | |
| 754 | static int __init_memblock memblock_remove_range(struct memblock_type *type, |
| 755 | phys_addr_t base, phys_addr_t size) |
| 756 | { |
| 757 | int start_rgn, end_rgn; |
| 758 | int i, ret; |
| 759 | |
| 760 | ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); |
| 761 | if (ret) |
| 762 | return ret; |
| 763 | |
| 764 | for (i = end_rgn - 1; i >= start_rgn; i--) |
| 765 | memblock_remove_region(type, i); |
| 766 | return 0; |
| 767 | } |
| 768 | |
| 769 | int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) |
| 770 | { |
| 771 | phys_addr_t end = base + size - 1; |
| 772 | |
| 773 | memblock_dbg("memblock_remove: [%pa-%pa] %pS\n", |
| 774 | &base, &end, (void *)_RET_IP_); |
| 775 | |
| 776 | return memblock_remove_range(&memblock.memory, base, size); |
| 777 | } |
| 778 | |
| 779 | /** |
| 780 | * memblock_free - free boot memory block |
| 781 | * @base: phys starting address of the boot memory block |
| 782 | * @size: size of the boot memory block in bytes |
| 783 | * |
| 784 | * Free boot memory block previously allocated by memblock_alloc_xx() API. |
| 785 | * The freeing memory will not be released to the buddy allocator. |
| 786 | */ |
| 787 | int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) |
| 788 | { |
| 789 | phys_addr_t end = base + size - 1; |
| 790 | |
| 791 | memblock_dbg(" memblock_free: [%pa-%pa] %pS\n", |
| 792 | &base, &end, (void *)_RET_IP_); |
| 793 | |
| 794 | kmemleak_free_part_phys(base, size); |
| 795 | return memblock_remove_range(&memblock.reserved, base, size); |
| 796 | } |
| 797 | #ifdef CONFIG_ARCH_KEEP_MEMBLOCK |
| 798 | EXPORT_SYMBOL_GPL(memblock_free); |
| 799 | #endif |
| 800 | |
| 801 | int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) |
| 802 | { |
| 803 | phys_addr_t end = base + size - 1; |
| 804 | |
| 805 | memblock_dbg("memblock_reserve: [%pa-%pa] %pS\n", |
| 806 | &base, &end, (void *)_RET_IP_); |
| 807 | |
| 808 | return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); |
| 809 | } |
| 810 | |
| 811 | /** |
| 812 | * memblock_setclr_flag - set or clear flag for a memory region |
| 813 | * @base: base address of the region |
| 814 | * @size: size of the region |
| 815 | * @set: set or clear the flag |
| 816 | * @flag: the flag to udpate |
| 817 | * |
| 818 | * This function isolates region [@base, @base + @size), and sets/clears flag |
| 819 | * |
| 820 | * Return: 0 on success, -errno on failure. |
| 821 | */ |
| 822 | static int __init_memblock memblock_setclr_flag(phys_addr_t base, |
| 823 | phys_addr_t size, int set, int flag) |
| 824 | { |
| 825 | struct memblock_type *type = &memblock.memory; |
| 826 | int i, ret, start_rgn, end_rgn; |
| 827 | |
| 828 | ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); |
| 829 | if (ret) |
| 830 | return ret; |
| 831 | |
| 832 | for (i = start_rgn; i < end_rgn; i++) { |
| 833 | struct memblock_region *r = &type->regions[i]; |
| 834 | |
| 835 | if (set) |
| 836 | r->flags |= flag; |
| 837 | else |
| 838 | r->flags &= ~flag; |
| 839 | } |
| 840 | |
| 841 | memblock_merge_regions(type); |
| 842 | return 0; |
| 843 | } |
| 844 | |
| 845 | /** |
| 846 | * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. |
| 847 | * @base: the base phys addr of the region |
| 848 | * @size: the size of the region |
| 849 | * |
| 850 | * Return: 0 on success, -errno on failure. |
| 851 | */ |
| 852 | int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) |
| 853 | { |
| 854 | return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); |
| 855 | } |
| 856 | |
| 857 | /** |
| 858 | * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. |
| 859 | * @base: the base phys addr of the region |
| 860 | * @size: the size of the region |
| 861 | * |
| 862 | * Return: 0 on success, -errno on failure. |
| 863 | */ |
| 864 | int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) |
| 865 | { |
| 866 | return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); |
| 867 | } |
| 868 | |
| 869 | /** |
| 870 | * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. |
| 871 | * @base: the base phys addr of the region |
| 872 | * @size: the size of the region |
| 873 | * |
| 874 | * Return: 0 on success, -errno on failure. |
| 875 | */ |
| 876 | int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) |
| 877 | { |
| 878 | system_has_some_mirror = true; |
| 879 | |
| 880 | return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); |
| 881 | } |
| 882 | |
| 883 | /** |
| 884 | * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. |
| 885 | * @base: the base phys addr of the region |
| 886 | * @size: the size of the region |
| 887 | * |
| 888 | * Return: 0 on success, -errno on failure. |
| 889 | */ |
| 890 | int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) |
| 891 | { |
| 892 | return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); |
| 893 | } |
| 894 | |
| 895 | /** |
| 896 | * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. |
| 897 | * @base: the base phys addr of the region |
| 898 | * @size: the size of the region |
| 899 | * |
| 900 | * Return: 0 on success, -errno on failure. |
| 901 | */ |
| 902 | int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) |
| 903 | { |
| 904 | return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP); |
| 905 | } |
| 906 | |
| 907 | /** |
| 908 | * __next_reserved_mem_region - next function for for_each_reserved_region() |
| 909 | * @idx: pointer to u64 loop variable |
| 910 | * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL |
| 911 | * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL |
| 912 | * |
| 913 | * Iterate over all reserved memory regions. |
| 914 | */ |
| 915 | void __init_memblock __next_reserved_mem_region(u64 *idx, |
| 916 | phys_addr_t *out_start, |
| 917 | phys_addr_t *out_end) |
| 918 | { |
| 919 | struct memblock_type *type = &memblock.reserved; |
| 920 | |
| 921 | if (*idx < type->cnt) { |
| 922 | struct memblock_region *r = &type->regions[*idx]; |
| 923 | phys_addr_t base = r->base; |
| 924 | phys_addr_t size = r->size; |
| 925 | |
| 926 | if (out_start) |
| 927 | *out_start = base; |
| 928 | if (out_end) |
| 929 | *out_end = base + size - 1; |
| 930 | |
| 931 | *idx += 1; |
| 932 | return; |
| 933 | } |
| 934 | |
| 935 | /* signal end of iteration */ |
| 936 | *idx = ULLONG_MAX; |
| 937 | } |
| 938 | |
| 939 | static bool should_skip_region(struct memblock_region *m, int nid, int flags) |
| 940 | { |
| 941 | int m_nid = memblock_get_region_node(m); |
| 942 | |
| 943 | /* only memory regions are associated with nodes, check it */ |
| 944 | if (nid != NUMA_NO_NODE && nid != m_nid) |
| 945 | return true; |
| 946 | |
| 947 | /* skip hotpluggable memory regions if needed */ |
| 948 | if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) |
| 949 | return true; |
| 950 | |
| 951 | /* if we want mirror memory skip non-mirror memory regions */ |
| 952 | if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) |
| 953 | return true; |
| 954 | |
| 955 | /* skip nomap memory unless we were asked for it explicitly */ |
| 956 | if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) |
| 957 | return true; |
| 958 | |
| 959 | return false; |
| 960 | } |
| 961 | |
| 962 | /** |
| 963 | * __next_mem_range - next function for for_each_free_mem_range() etc. |
| 964 | * @idx: pointer to u64 loop variable |
| 965 | * @nid: node selector, %NUMA_NO_NODE for all nodes |
| 966 | * @flags: pick from blocks based on memory attributes |
| 967 | * @type_a: pointer to memblock_type from where the range is taken |
| 968 | * @type_b: pointer to memblock_type which excludes memory from being taken |
| 969 | * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL |
| 970 | * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL |
| 971 | * @out_nid: ptr to int for nid of the range, can be %NULL |
| 972 | * |
| 973 | * Find the first area from *@idx which matches @nid, fill the out |
| 974 | * parameters, and update *@idx for the next iteration. The lower 32bit of |
| 975 | * *@idx contains index into type_a and the upper 32bit indexes the |
| 976 | * areas before each region in type_b. For example, if type_b regions |
| 977 | * look like the following, |
| 978 | * |
| 979 | * 0:[0-16), 1:[32-48), 2:[128-130) |
| 980 | * |
| 981 | * The upper 32bit indexes the following regions. |
| 982 | * |
| 983 | * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) |
| 984 | * |
| 985 | * As both region arrays are sorted, the function advances the two indices |
| 986 | * in lockstep and returns each intersection. |
| 987 | */ |
| 988 | void __init_memblock __next_mem_range(u64 *idx, int nid, |
| 989 | enum memblock_flags flags, |
| 990 | struct memblock_type *type_a, |
| 991 | struct memblock_type *type_b, |
| 992 | phys_addr_t *out_start, |
| 993 | phys_addr_t *out_end, int *out_nid) |
| 994 | { |
| 995 | int idx_a = *idx & 0xffffffff; |
| 996 | int idx_b = *idx >> 32; |
| 997 | |
| 998 | if (WARN_ONCE(nid == MAX_NUMNODES, |
| 999 | "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) |
| 1000 | nid = NUMA_NO_NODE; |
| 1001 | |
| 1002 | for (; idx_a < type_a->cnt; idx_a++) { |
| 1003 | struct memblock_region *m = &type_a->regions[idx_a]; |
| 1004 | |
| 1005 | phys_addr_t m_start = m->base; |
| 1006 | phys_addr_t m_end = m->base + m->size; |
| 1007 | int m_nid = memblock_get_region_node(m); |
| 1008 | |
| 1009 | if (should_skip_region(m, nid, flags)) |
| 1010 | continue; |
| 1011 | |
| 1012 | if (!type_b) { |
| 1013 | if (out_start) |
| 1014 | *out_start = m_start; |
| 1015 | if (out_end) |
| 1016 | *out_end = m_end; |
| 1017 | if (out_nid) |
| 1018 | *out_nid = m_nid; |
| 1019 | idx_a++; |
| 1020 | *idx = (u32)idx_a | (u64)idx_b << 32; |
| 1021 | return; |
| 1022 | } |
| 1023 | |
| 1024 | /* scan areas before each reservation */ |
| 1025 | for (; idx_b < type_b->cnt + 1; idx_b++) { |
| 1026 | struct memblock_region *r; |
| 1027 | phys_addr_t r_start; |
| 1028 | phys_addr_t r_end; |
| 1029 | |
| 1030 | r = &type_b->regions[idx_b]; |
| 1031 | r_start = idx_b ? r[-1].base + r[-1].size : 0; |
| 1032 | r_end = idx_b < type_b->cnt ? |
| 1033 | r->base : PHYS_ADDR_MAX; |
| 1034 | |
| 1035 | /* |
| 1036 | * if idx_b advanced past idx_a, |
| 1037 | * break out to advance idx_a |
| 1038 | */ |
| 1039 | if (r_start >= m_end) |
| 1040 | break; |
| 1041 | /* if the two regions intersect, we're done */ |
| 1042 | if (m_start < r_end) { |
| 1043 | if (out_start) |
| 1044 | *out_start = |
| 1045 | max(m_start, r_start); |
| 1046 | if (out_end) |
| 1047 | *out_end = min(m_end, r_end); |
| 1048 | if (out_nid) |
| 1049 | *out_nid = m_nid; |
| 1050 | /* |
| 1051 | * The region which ends first is |
| 1052 | * advanced for the next iteration. |
| 1053 | */ |
| 1054 | if (m_end <= r_end) |
| 1055 | idx_a++; |
| 1056 | else |
| 1057 | idx_b++; |
| 1058 | *idx = (u32)idx_a | (u64)idx_b << 32; |
| 1059 | return; |
| 1060 | } |
| 1061 | } |
| 1062 | } |
| 1063 | |
| 1064 | /* signal end of iteration */ |
| 1065 | *idx = ULLONG_MAX; |
| 1066 | } |
| 1067 | |
| 1068 | /** |
| 1069 | * __next_mem_range_rev - generic next function for for_each_*_range_rev() |
| 1070 | * |
| 1071 | * @idx: pointer to u64 loop variable |
| 1072 | * @nid: node selector, %NUMA_NO_NODE for all nodes |
| 1073 | * @flags: pick from blocks based on memory attributes |
| 1074 | * @type_a: pointer to memblock_type from where the range is taken |
| 1075 | * @type_b: pointer to memblock_type which excludes memory from being taken |
| 1076 | * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL |
| 1077 | * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL |
| 1078 | * @out_nid: ptr to int for nid of the range, can be %NULL |
| 1079 | * |
| 1080 | * Finds the next range from type_a which is not marked as unsuitable |
| 1081 | * in type_b. |
| 1082 | * |
| 1083 | * Reverse of __next_mem_range(). |
| 1084 | */ |
| 1085 | void __init_memblock __next_mem_range_rev(u64 *idx, int nid, |
| 1086 | enum memblock_flags flags, |
| 1087 | struct memblock_type *type_a, |
| 1088 | struct memblock_type *type_b, |
| 1089 | phys_addr_t *out_start, |
| 1090 | phys_addr_t *out_end, int *out_nid) |
| 1091 | { |
| 1092 | int idx_a = *idx & 0xffffffff; |
| 1093 | int idx_b = *idx >> 32; |
| 1094 | |
| 1095 | if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) |
| 1096 | nid = NUMA_NO_NODE; |
| 1097 | |
| 1098 | if (*idx == (u64)ULLONG_MAX) { |
| 1099 | idx_a = type_a->cnt - 1; |
| 1100 | if (type_b != NULL) |
| 1101 | idx_b = type_b->cnt; |
| 1102 | else |
| 1103 | idx_b = 0; |
| 1104 | } |
| 1105 | |
| 1106 | for (; idx_a >= 0; idx_a--) { |
| 1107 | struct memblock_region *m = &type_a->regions[idx_a]; |
| 1108 | |
| 1109 | phys_addr_t m_start = m->base; |
| 1110 | phys_addr_t m_end = m->base + m->size; |
| 1111 | int m_nid = memblock_get_region_node(m); |
| 1112 | |
| 1113 | if (should_skip_region(m, nid, flags)) |
| 1114 | continue; |
| 1115 | |
| 1116 | if (!type_b) { |
| 1117 | if (out_start) |
| 1118 | *out_start = m_start; |
| 1119 | if (out_end) |
| 1120 | *out_end = m_end; |
| 1121 | if (out_nid) |
| 1122 | *out_nid = m_nid; |
| 1123 | idx_a--; |
| 1124 | *idx = (u32)idx_a | (u64)idx_b << 32; |
| 1125 | return; |
| 1126 | } |
| 1127 | |
| 1128 | /* scan areas before each reservation */ |
| 1129 | for (; idx_b >= 0; idx_b--) { |
| 1130 | struct memblock_region *r; |
| 1131 | phys_addr_t r_start; |
| 1132 | phys_addr_t r_end; |
| 1133 | |
| 1134 | r = &type_b->regions[idx_b]; |
| 1135 | r_start = idx_b ? r[-1].base + r[-1].size : 0; |
| 1136 | r_end = idx_b < type_b->cnt ? |
| 1137 | r->base : PHYS_ADDR_MAX; |
| 1138 | /* |
| 1139 | * if idx_b advanced past idx_a, |
| 1140 | * break out to advance idx_a |
| 1141 | */ |
| 1142 | |
| 1143 | if (r_end <= m_start) |
| 1144 | break; |
| 1145 | /* if the two regions intersect, we're done */ |
| 1146 | if (m_end > r_start) { |
| 1147 | if (out_start) |
| 1148 | *out_start = max(m_start, r_start); |
| 1149 | if (out_end) |
| 1150 | *out_end = min(m_end, r_end); |
| 1151 | if (out_nid) |
| 1152 | *out_nid = m_nid; |
| 1153 | if (m_start >= r_start) |
| 1154 | idx_a--; |
| 1155 | else |
| 1156 | idx_b--; |
| 1157 | *idx = (u32)idx_a | (u64)idx_b << 32; |
| 1158 | return; |
| 1159 | } |
| 1160 | } |
| 1161 | } |
| 1162 | /* signal end of iteration */ |
| 1163 | *idx = ULLONG_MAX; |
| 1164 | } |
| 1165 | |
| 1166 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
| 1167 | /* |
| 1168 | * Common iterator interface used to define for_each_mem_pfn_range(). |
| 1169 | */ |
| 1170 | void __init_memblock __next_mem_pfn_range(int *idx, int nid, |
| 1171 | unsigned long *out_start_pfn, |
| 1172 | unsigned long *out_end_pfn, int *out_nid) |
| 1173 | { |
| 1174 | struct memblock_type *type = &memblock.memory; |
| 1175 | struct memblock_region *r; |
| 1176 | |
| 1177 | while (++*idx < type->cnt) { |
| 1178 | r = &type->regions[*idx]; |
| 1179 | |
| 1180 | if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) |
| 1181 | continue; |
| 1182 | if (nid == MAX_NUMNODES || nid == r->nid) |
| 1183 | break; |
| 1184 | } |
| 1185 | if (*idx >= type->cnt) { |
| 1186 | *idx = -1; |
| 1187 | return; |
| 1188 | } |
| 1189 | |
| 1190 | if (out_start_pfn) |
| 1191 | *out_start_pfn = PFN_UP(r->base); |
| 1192 | if (out_end_pfn) |
| 1193 | *out_end_pfn = PFN_DOWN(r->base + r->size); |
| 1194 | if (out_nid) |
| 1195 | *out_nid = r->nid; |
| 1196 | } |
| 1197 | |
| 1198 | /** |
| 1199 | * memblock_set_node - set node ID on memblock regions |
| 1200 | * @base: base of area to set node ID for |
| 1201 | * @size: size of area to set node ID for |
| 1202 | * @type: memblock type to set node ID for |
| 1203 | * @nid: node ID to set |
| 1204 | * |
| 1205 | * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. |
| 1206 | * Regions which cross the area boundaries are split as necessary. |
| 1207 | * |
| 1208 | * Return: |
| 1209 | * 0 on success, -errno on failure. |
| 1210 | */ |
| 1211 | int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, |
| 1212 | struct memblock_type *type, int nid) |
| 1213 | { |
| 1214 | int start_rgn, end_rgn; |
| 1215 | int i, ret; |
| 1216 | |
| 1217 | ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); |
| 1218 | if (ret) |
| 1219 | return ret; |
| 1220 | |
| 1221 | for (i = start_rgn; i < end_rgn; i++) |
| 1222 | memblock_set_region_node(&type->regions[i], nid); |
| 1223 | |
| 1224 | memblock_merge_regions(type); |
| 1225 | return 0; |
| 1226 | } |
| 1227 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
| 1228 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
| 1229 | /** |
| 1230 | * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone() |
| 1231 | * |
| 1232 | * @idx: pointer to u64 loop variable |
| 1233 | * @zone: zone in which all of the memory blocks reside |
| 1234 | * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL |
| 1235 | * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL |
| 1236 | * |
| 1237 | * This function is meant to be a zone/pfn specific wrapper for the |
| 1238 | * for_each_mem_range type iterators. Specifically they are used in the |
| 1239 | * deferred memory init routines and as such we were duplicating much of |
| 1240 | * this logic throughout the code. So instead of having it in multiple |
| 1241 | * locations it seemed like it would make more sense to centralize this to |
| 1242 | * one new iterator that does everything they need. |
| 1243 | */ |
| 1244 | void __init_memblock |
| 1245 | __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone, |
| 1246 | unsigned long *out_spfn, unsigned long *out_epfn) |
| 1247 | { |
| 1248 | int zone_nid = zone_to_nid(zone); |
| 1249 | phys_addr_t spa, epa; |
| 1250 | int nid; |
| 1251 | |
| 1252 | __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, |
| 1253 | &memblock.memory, &memblock.reserved, |
| 1254 | &spa, &epa, &nid); |
| 1255 | |
| 1256 | while (*idx != U64_MAX) { |
| 1257 | unsigned long epfn = PFN_DOWN(epa); |
| 1258 | unsigned long spfn = PFN_UP(spa); |
| 1259 | |
| 1260 | /* |
| 1261 | * Verify the end is at least past the start of the zone and |
| 1262 | * that we have at least one PFN to initialize. |
| 1263 | */ |
| 1264 | if (zone->zone_start_pfn < epfn && spfn < epfn) { |
| 1265 | /* if we went too far just stop searching */ |
| 1266 | if (zone_end_pfn(zone) <= spfn) { |
| 1267 | *idx = U64_MAX; |
| 1268 | break; |
| 1269 | } |
| 1270 | |
| 1271 | if (out_spfn) |
| 1272 | *out_spfn = max(zone->zone_start_pfn, spfn); |
| 1273 | if (out_epfn) |
| 1274 | *out_epfn = min(zone_end_pfn(zone), epfn); |
| 1275 | |
| 1276 | return; |
| 1277 | } |
| 1278 | |
| 1279 | __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, |
| 1280 | &memblock.memory, &memblock.reserved, |
| 1281 | &spa, &epa, &nid); |
| 1282 | } |
| 1283 | |
| 1284 | /* signal end of iteration */ |
| 1285 | if (out_spfn) |
| 1286 | *out_spfn = ULONG_MAX; |
| 1287 | if (out_epfn) |
| 1288 | *out_epfn = 0; |
| 1289 | } |
| 1290 | |
| 1291 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ |
| 1292 | |
| 1293 | /** |
| 1294 | * memblock_alloc_range_nid - allocate boot memory block |
| 1295 | * @size: size of memory block to be allocated in bytes |
| 1296 | * @align: alignment of the region and block's size |
| 1297 | * @start: the lower bound of the memory region to allocate (phys address) |
| 1298 | * @end: the upper bound of the memory region to allocate (phys address) |
| 1299 | * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| 1300 | * |
| 1301 | * The allocation is performed from memory region limited by |
| 1302 | * memblock.current_limit if @max_addr == %MEMBLOCK_ALLOC_ACCESSIBLE. |
| 1303 | * |
| 1304 | * If the specified node can not hold the requested memory the |
| 1305 | * allocation falls back to any node in the system |
| 1306 | * |
| 1307 | * For systems with memory mirroring, the allocation is attempted first |
| 1308 | * from the regions with mirroring enabled and then retried from any |
| 1309 | * memory region. |
| 1310 | * |
| 1311 | * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for |
| 1312 | * allocated boot memory block, so that it is never reported as leaks. |
| 1313 | * |
| 1314 | * Return: |
| 1315 | * Physical address of allocated memory block on success, %0 on failure. |
| 1316 | */ |
| 1317 | static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, |
| 1318 | phys_addr_t align, phys_addr_t start, |
| 1319 | phys_addr_t end, int nid) |
| 1320 | { |
| 1321 | enum memblock_flags flags = choose_memblock_flags(); |
| 1322 | phys_addr_t found; |
| 1323 | |
| 1324 | if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) |
| 1325 | nid = NUMA_NO_NODE; |
| 1326 | |
| 1327 | if (!align) { |
| 1328 | /* Can't use WARNs this early in boot on powerpc */ |
| 1329 | dump_stack(); |
| 1330 | align = SMP_CACHE_BYTES; |
| 1331 | } |
| 1332 | |
| 1333 | again: |
| 1334 | found = memblock_find_in_range_node(size, align, start, end, nid, |
| 1335 | flags); |
| 1336 | if (found && !memblock_reserve(found, size)) |
| 1337 | goto done; |
| 1338 | |
| 1339 | if (nid != NUMA_NO_NODE) { |
| 1340 | found = memblock_find_in_range_node(size, align, start, |
| 1341 | end, NUMA_NO_NODE, |
| 1342 | flags); |
| 1343 | if (found && !memblock_reserve(found, size)) |
| 1344 | goto done; |
| 1345 | } |
| 1346 | |
| 1347 | if (flags & MEMBLOCK_MIRROR) { |
| 1348 | flags &= ~MEMBLOCK_MIRROR; |
| 1349 | pr_warn("Could not allocate %pap bytes of mirrored memory\n", |
| 1350 | &size); |
| 1351 | goto again; |
| 1352 | } |
| 1353 | |
| 1354 | return 0; |
| 1355 | |
| 1356 | done: |
| 1357 | /* Skip kmemleak for kasan_init() due to high volume. */ |
| 1358 | if (end != MEMBLOCK_ALLOC_KASAN) |
| 1359 | /* |
| 1360 | * The min_count is set to 0 so that memblock allocated |
| 1361 | * blocks are never reported as leaks. This is because many |
| 1362 | * of these blocks are only referred via the physical |
| 1363 | * address which is not looked up by kmemleak. |
| 1364 | */ |
| 1365 | kmemleak_alloc_phys(found, size, 0, 0); |
| 1366 | |
| 1367 | return found; |
| 1368 | } |
| 1369 | |
| 1370 | /** |
| 1371 | * memblock_phys_alloc_range - allocate a memory block inside specified range |
| 1372 | * @size: size of memory block to be allocated in bytes |
| 1373 | * @align: alignment of the region and block's size |
| 1374 | * @start: the lower bound of the memory region to allocate (physical address) |
| 1375 | * @end: the upper bound of the memory region to allocate (physical address) |
| 1376 | * |
| 1377 | * Allocate @size bytes in the between @start and @end. |
| 1378 | * |
| 1379 | * Return: physical address of the allocated memory block on success, |
| 1380 | * %0 on failure. |
| 1381 | */ |
| 1382 | phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size, |
| 1383 | phys_addr_t align, |
| 1384 | phys_addr_t start, |
| 1385 | phys_addr_t end) |
| 1386 | { |
| 1387 | return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE); |
| 1388 | } |
| 1389 | |
| 1390 | /** |
| 1391 | * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node |
| 1392 | * @size: size of memory block to be allocated in bytes |
| 1393 | * @align: alignment of the region and block's size |
| 1394 | * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| 1395 | * |
| 1396 | * Allocates memory block from the specified NUMA node. If the node |
| 1397 | * has no available memory, attempts to allocated from any node in the |
| 1398 | * system. |
| 1399 | * |
| 1400 | * Return: physical address of the allocated memory block on success, |
| 1401 | * %0 on failure. |
| 1402 | */ |
| 1403 | phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) |
| 1404 | { |
| 1405 | return memblock_alloc_range_nid(size, align, 0, |
| 1406 | MEMBLOCK_ALLOC_ACCESSIBLE, nid); |
| 1407 | } |
| 1408 | |
| 1409 | /** |
| 1410 | * memblock_alloc_internal - allocate boot memory block |
| 1411 | * @size: size of memory block to be allocated in bytes |
| 1412 | * @align: alignment of the region and block's size |
| 1413 | * @min_addr: the lower bound of the memory region to allocate (phys address) |
| 1414 | * @max_addr: the upper bound of the memory region to allocate (phys address) |
| 1415 | * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| 1416 | * |
| 1417 | * Allocates memory block using memblock_alloc_range_nid() and |
| 1418 | * converts the returned physical address to virtual. |
| 1419 | * |
| 1420 | * The @min_addr limit is dropped if it can not be satisfied and the allocation |
| 1421 | * will fall back to memory below @min_addr. Other constraints, such |
| 1422 | * as node and mirrored memory will be handled again in |
| 1423 | * memblock_alloc_range_nid(). |
| 1424 | * |
| 1425 | * Return: |
| 1426 | * Virtual address of allocated memory block on success, NULL on failure. |
| 1427 | */ |
| 1428 | static void * __init memblock_alloc_internal( |
| 1429 | phys_addr_t size, phys_addr_t align, |
| 1430 | phys_addr_t min_addr, phys_addr_t max_addr, |
| 1431 | int nid) |
| 1432 | { |
| 1433 | phys_addr_t alloc; |
| 1434 | |
| 1435 | /* |
| 1436 | * Detect any accidental use of these APIs after slab is ready, as at |
| 1437 | * this moment memblock may be deinitialized already and its |
| 1438 | * internal data may be destroyed (after execution of memblock_free_all) |
| 1439 | */ |
| 1440 | if (WARN_ON_ONCE(slab_is_available())) |
| 1441 | return kzalloc_node(size, GFP_NOWAIT, nid); |
| 1442 | |
| 1443 | if (max_addr > memblock.current_limit) |
| 1444 | max_addr = memblock.current_limit; |
| 1445 | |
| 1446 | alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid); |
| 1447 | |
| 1448 | /* retry allocation without lower limit */ |
| 1449 | if (!alloc && min_addr) |
| 1450 | alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid); |
| 1451 | |
| 1452 | if (!alloc) |
| 1453 | return NULL; |
| 1454 | |
| 1455 | return phys_to_virt(alloc); |
| 1456 | } |
| 1457 | |
| 1458 | /** |
| 1459 | * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing |
| 1460 | * memory and without panicking |
| 1461 | * @size: size of memory block to be allocated in bytes |
| 1462 | * @align: alignment of the region and block's size |
| 1463 | * @min_addr: the lower bound of the memory region from where the allocation |
| 1464 | * is preferred (phys address) |
| 1465 | * @max_addr: the upper bound of the memory region from where the allocation |
| 1466 | * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to |
| 1467 | * allocate only from memory limited by memblock.current_limit value |
| 1468 | * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| 1469 | * |
| 1470 | * Public function, provides additional debug information (including caller |
| 1471 | * info), if enabled. Does not zero allocated memory, does not panic if request |
| 1472 | * cannot be satisfied. |
| 1473 | * |
| 1474 | * Return: |
| 1475 | * Virtual address of allocated memory block on success, NULL on failure. |
| 1476 | */ |
| 1477 | void * __init memblock_alloc_try_nid_raw( |
| 1478 | phys_addr_t size, phys_addr_t align, |
| 1479 | phys_addr_t min_addr, phys_addr_t max_addr, |
| 1480 | int nid) |
| 1481 | { |
| 1482 | void *ptr; |
| 1483 | |
| 1484 | memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", |
| 1485 | __func__, (u64)size, (u64)align, nid, &min_addr, |
| 1486 | &max_addr, (void *)_RET_IP_); |
| 1487 | |
| 1488 | ptr = memblock_alloc_internal(size, align, |
| 1489 | min_addr, max_addr, nid); |
| 1490 | if (ptr && size > 0) |
| 1491 | page_init_poison(ptr, size); |
| 1492 | |
| 1493 | return ptr; |
| 1494 | } |
| 1495 | |
| 1496 | /** |
| 1497 | * memblock_alloc_try_nid - allocate boot memory block |
| 1498 | * @size: size of memory block to be allocated in bytes |
| 1499 | * @align: alignment of the region and block's size |
| 1500 | * @min_addr: the lower bound of the memory region from where the allocation |
| 1501 | * is preferred (phys address) |
| 1502 | * @max_addr: the upper bound of the memory region from where the allocation |
| 1503 | * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to |
| 1504 | * allocate only from memory limited by memblock.current_limit value |
| 1505 | * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| 1506 | * |
| 1507 | * Public function, provides additional debug information (including caller |
| 1508 | * info), if enabled. This function zeroes the allocated memory. |
| 1509 | * |
| 1510 | * Return: |
| 1511 | * Virtual address of allocated memory block on success, NULL on failure. |
| 1512 | */ |
| 1513 | void * __init memblock_alloc_try_nid( |
| 1514 | phys_addr_t size, phys_addr_t align, |
| 1515 | phys_addr_t min_addr, phys_addr_t max_addr, |
| 1516 | int nid) |
| 1517 | { |
| 1518 | void *ptr; |
| 1519 | |
| 1520 | memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", |
| 1521 | __func__, (u64)size, (u64)align, nid, &min_addr, |
| 1522 | &max_addr, (void *)_RET_IP_); |
| 1523 | ptr = memblock_alloc_internal(size, align, |
| 1524 | min_addr, max_addr, nid); |
| 1525 | if (ptr) |
| 1526 | memset(ptr, 0, size); |
| 1527 | |
| 1528 | return ptr; |
| 1529 | } |
| 1530 | |
| 1531 | /** |
| 1532 | * __memblock_free_late - free pages directly to buddy allocator |
| 1533 | * @base: phys starting address of the boot memory block |
| 1534 | * @size: size of the boot memory block in bytes |
| 1535 | * |
| 1536 | * This is only useful when the memblock allocator has already been torn |
| 1537 | * down, but we are still initializing the system. Pages are released directly |
| 1538 | * to the buddy allocator. |
| 1539 | */ |
| 1540 | void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) |
| 1541 | { |
| 1542 | phys_addr_t cursor, end; |
| 1543 | |
| 1544 | end = base + size - 1; |
| 1545 | memblock_dbg("%s: [%pa-%pa] %pS\n", |
| 1546 | __func__, &base, &end, (void *)_RET_IP_); |
| 1547 | kmemleak_free_part_phys(base, size); |
| 1548 | cursor = PFN_UP(base); |
| 1549 | end = PFN_DOWN(base + size); |
| 1550 | |
| 1551 | for (; cursor < end; cursor++) { |
| 1552 | memblock_free_pages(pfn_to_page(cursor), cursor, 0); |
| 1553 | totalram_pages_inc(); |
| 1554 | } |
| 1555 | } |
| 1556 | |
| 1557 | /* |
| 1558 | * Remaining API functions |
| 1559 | */ |
| 1560 | |
| 1561 | phys_addr_t __init_memblock memblock_phys_mem_size(void) |
| 1562 | { |
| 1563 | return memblock.memory.total_size; |
| 1564 | } |
| 1565 | |
| 1566 | phys_addr_t __init_memblock memblock_reserved_size(void) |
| 1567 | { |
| 1568 | return memblock.reserved.total_size; |
| 1569 | } |
| 1570 | |
| 1571 | phys_addr_t __init memblock_mem_size(unsigned long limit_pfn) |
| 1572 | { |
| 1573 | unsigned long pages = 0; |
| 1574 | struct memblock_region *r; |
| 1575 | unsigned long start_pfn, end_pfn; |
| 1576 | |
| 1577 | for_each_memblock(memory, r) { |
| 1578 | start_pfn = memblock_region_memory_base_pfn(r); |
| 1579 | end_pfn = memblock_region_memory_end_pfn(r); |
| 1580 | start_pfn = min_t(unsigned long, start_pfn, limit_pfn); |
| 1581 | end_pfn = min_t(unsigned long, end_pfn, limit_pfn); |
| 1582 | pages += end_pfn - start_pfn; |
| 1583 | } |
| 1584 | |
| 1585 | return PFN_PHYS(pages); |
| 1586 | } |
| 1587 | |
| 1588 | /* lowest address */ |
| 1589 | phys_addr_t __init_memblock memblock_start_of_DRAM(void) |
| 1590 | { |
| 1591 | return memblock.memory.regions[0].base; |
| 1592 | } |
| 1593 | |
| 1594 | phys_addr_t __init_memblock memblock_end_of_DRAM(void) |
| 1595 | { |
| 1596 | int idx = memblock.memory.cnt - 1; |
| 1597 | |
| 1598 | return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); |
| 1599 | } |
| 1600 | EXPORT_SYMBOL_GPL(memblock_end_of_DRAM); |
| 1601 | |
| 1602 | static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) |
| 1603 | { |
| 1604 | phys_addr_t max_addr = PHYS_ADDR_MAX; |
| 1605 | struct memblock_region *r; |
| 1606 | |
| 1607 | /* |
| 1608 | * translate the memory @limit size into the max address within one of |
| 1609 | * the memory memblock regions, if the @limit exceeds the total size |
| 1610 | * of those regions, max_addr will keep original value PHYS_ADDR_MAX |
| 1611 | */ |
| 1612 | for_each_memblock(memory, r) { |
| 1613 | if (limit <= r->size) { |
| 1614 | max_addr = r->base + limit; |
| 1615 | break; |
| 1616 | } |
| 1617 | limit -= r->size; |
| 1618 | } |
| 1619 | |
| 1620 | return max_addr; |
| 1621 | } |
| 1622 | |
| 1623 | void __init memblock_enforce_memory_limit(phys_addr_t limit) |
| 1624 | { |
| 1625 | phys_addr_t max_addr = PHYS_ADDR_MAX; |
| 1626 | |
| 1627 | if (!limit) |
| 1628 | return; |
| 1629 | |
| 1630 | max_addr = __find_max_addr(limit); |
| 1631 | |
| 1632 | /* @limit exceeds the total size of the memory, do nothing */ |
| 1633 | if (max_addr == PHYS_ADDR_MAX) |
| 1634 | return; |
| 1635 | |
| 1636 | /* truncate both memory and reserved regions */ |
| 1637 | memblock_remove_range(&memblock.memory, max_addr, |
| 1638 | PHYS_ADDR_MAX); |
| 1639 | memblock_remove_range(&memblock.reserved, max_addr, |
| 1640 | PHYS_ADDR_MAX); |
| 1641 | } |
| 1642 | |
| 1643 | void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) |
| 1644 | { |
| 1645 | int start_rgn, end_rgn; |
| 1646 | int i, ret; |
| 1647 | |
| 1648 | if (!size) |
| 1649 | return; |
| 1650 | |
| 1651 | ret = memblock_isolate_range(&memblock.memory, base, size, |
| 1652 | &start_rgn, &end_rgn); |
| 1653 | if (ret) |
| 1654 | return; |
| 1655 | |
| 1656 | /* remove all the MAP regions */ |
| 1657 | for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) |
| 1658 | if (!memblock_is_nomap(&memblock.memory.regions[i])) |
| 1659 | memblock_remove_region(&memblock.memory, i); |
| 1660 | |
| 1661 | for (i = start_rgn - 1; i >= 0; i--) |
| 1662 | if (!memblock_is_nomap(&memblock.memory.regions[i])) |
| 1663 | memblock_remove_region(&memblock.memory, i); |
| 1664 | |
| 1665 | /* truncate the reserved regions */ |
| 1666 | memblock_remove_range(&memblock.reserved, 0, base); |
| 1667 | memblock_remove_range(&memblock.reserved, |
| 1668 | base + size, PHYS_ADDR_MAX); |
| 1669 | } |
| 1670 | |
| 1671 | void __init memblock_mem_limit_remove_map(phys_addr_t limit) |
| 1672 | { |
| 1673 | phys_addr_t max_addr; |
| 1674 | |
| 1675 | if (!limit) |
| 1676 | return; |
| 1677 | |
| 1678 | max_addr = __find_max_addr(limit); |
| 1679 | |
| 1680 | /* @limit exceeds the total size of the memory, do nothing */ |
| 1681 | if (max_addr == PHYS_ADDR_MAX) |
| 1682 | return; |
| 1683 | |
| 1684 | memblock_cap_memory_range(0, max_addr); |
| 1685 | } |
| 1686 | |
| 1687 | static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) |
| 1688 | { |
| 1689 | unsigned int left = 0, right = type->cnt; |
| 1690 | |
| 1691 | do { |
| 1692 | unsigned int mid = (right + left) / 2; |
| 1693 | |
| 1694 | if (addr < type->regions[mid].base) |
| 1695 | right = mid; |
| 1696 | else if (addr >= (type->regions[mid].base + |
| 1697 | type->regions[mid].size)) |
| 1698 | left = mid + 1; |
| 1699 | else |
| 1700 | return mid; |
| 1701 | } while (left < right); |
| 1702 | return -1; |
| 1703 | } |
| 1704 | |
| 1705 | bool __init_memblock memblock_is_reserved(phys_addr_t addr) |
| 1706 | { |
| 1707 | return memblock_search(&memblock.reserved, addr) != -1; |
| 1708 | } |
| 1709 | |
| 1710 | bool __init_memblock memblock_is_memory(phys_addr_t addr) |
| 1711 | { |
| 1712 | return memblock_search(&memblock.memory, addr) != -1; |
| 1713 | } |
| 1714 | |
| 1715 | bool __init_memblock memblock_is_map_memory(phys_addr_t addr) |
| 1716 | { |
| 1717 | int i = memblock_search(&memblock.memory, addr); |
| 1718 | |
| 1719 | if (i == -1) |
| 1720 | return false; |
| 1721 | return !memblock_is_nomap(&memblock.memory.regions[i]); |
| 1722 | } |
| 1723 | |
| 1724 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
| 1725 | int __init_memblock memblock_search_pfn_nid(unsigned long pfn, |
| 1726 | unsigned long *start_pfn, unsigned long *end_pfn) |
| 1727 | { |
| 1728 | struct memblock_type *type = &memblock.memory; |
| 1729 | int mid = memblock_search(type, PFN_PHYS(pfn)); |
| 1730 | |
| 1731 | if (mid == -1) |
| 1732 | return -1; |
| 1733 | |
| 1734 | *start_pfn = PFN_DOWN(type->regions[mid].base); |
| 1735 | *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); |
| 1736 | |
| 1737 | return type->regions[mid].nid; |
| 1738 | } |
| 1739 | #endif |
| 1740 | |
| 1741 | /** |
| 1742 | * memblock_is_region_memory - check if a region is a subset of memory |
| 1743 | * @base: base of region to check |
| 1744 | * @size: size of region to check |
| 1745 | * |
| 1746 | * Check if the region [@base, @base + @size) is a subset of a memory block. |
| 1747 | * |
| 1748 | * Return: |
| 1749 | * 0 if false, non-zero if true |
| 1750 | */ |
| 1751 | bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) |
| 1752 | { |
| 1753 | int idx = memblock_search(&memblock.memory, base); |
| 1754 | phys_addr_t end = base + memblock_cap_size(base, &size); |
| 1755 | |
| 1756 | if (idx == -1) |
| 1757 | return false; |
| 1758 | return (memblock.memory.regions[idx].base + |
| 1759 | memblock.memory.regions[idx].size) >= end; |
| 1760 | } |
| 1761 | |
| 1762 | /** |
| 1763 | * memblock_is_region_reserved - check if a region intersects reserved memory |
| 1764 | * @base: base of region to check |
| 1765 | * @size: size of region to check |
| 1766 | * |
| 1767 | * Check if the region [@base, @base + @size) intersects a reserved |
| 1768 | * memory block. |
| 1769 | * |
| 1770 | * Return: |
| 1771 | * True if they intersect, false if not. |
| 1772 | */ |
| 1773 | bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) |
| 1774 | { |
| 1775 | return memblock_overlaps_region(&memblock.reserved, base, size); |
| 1776 | } |
| 1777 | |
| 1778 | void __init_memblock memblock_trim_memory(phys_addr_t align) |
| 1779 | { |
| 1780 | phys_addr_t start, end, orig_start, orig_end; |
| 1781 | struct memblock_region *r; |
| 1782 | |
| 1783 | for_each_memblock(memory, r) { |
| 1784 | orig_start = r->base; |
| 1785 | orig_end = r->base + r->size; |
| 1786 | start = round_up(orig_start, align); |
| 1787 | end = round_down(orig_end, align); |
| 1788 | |
| 1789 | if (start == orig_start && end == orig_end) |
| 1790 | continue; |
| 1791 | |
| 1792 | if (start < end) { |
| 1793 | r->base = start; |
| 1794 | r->size = end - start; |
| 1795 | } else { |
| 1796 | memblock_remove_region(&memblock.memory, |
| 1797 | r - memblock.memory.regions); |
| 1798 | r--; |
| 1799 | } |
| 1800 | } |
| 1801 | } |
| 1802 | |
| 1803 | void __init_memblock memblock_set_current_limit(phys_addr_t limit) |
| 1804 | { |
| 1805 | memblock.current_limit = limit; |
| 1806 | } |
| 1807 | |
| 1808 | phys_addr_t __init_memblock memblock_get_current_limit(void) |
| 1809 | { |
| 1810 | return memblock.current_limit; |
| 1811 | } |
| 1812 | |
| 1813 | static void __init_memblock memblock_dump(struct memblock_type *type) |
| 1814 | { |
| 1815 | phys_addr_t base, end, size; |
| 1816 | enum memblock_flags flags; |
| 1817 | int idx; |
| 1818 | struct memblock_region *rgn; |
| 1819 | |
| 1820 | pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); |
| 1821 | |
| 1822 | for_each_memblock_type(idx, type, rgn) { |
| 1823 | char nid_buf[32] = ""; |
| 1824 | |
| 1825 | base = rgn->base; |
| 1826 | size = rgn->size; |
| 1827 | end = base + size - 1; |
| 1828 | flags = rgn->flags; |
| 1829 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
| 1830 | if (memblock_get_region_node(rgn) != MAX_NUMNODES) |
| 1831 | snprintf(nid_buf, sizeof(nid_buf), " on node %d", |
| 1832 | memblock_get_region_node(rgn)); |
| 1833 | #endif |
| 1834 | pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", |
| 1835 | type->name, idx, &base, &end, &size, nid_buf, flags); |
| 1836 | } |
| 1837 | } |
| 1838 | |
| 1839 | void __init_memblock __memblock_dump_all(void) |
| 1840 | { |
| 1841 | pr_info("MEMBLOCK configuration:\n"); |
| 1842 | pr_info(" memory size = %pa reserved size = %pa\n", |
| 1843 | &memblock.memory.total_size, |
| 1844 | &memblock.reserved.total_size); |
| 1845 | |
| 1846 | memblock_dump(&memblock.memory); |
| 1847 | memblock_dump(&memblock.reserved); |
| 1848 | #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP |
| 1849 | memblock_dump(&memblock.physmem); |
| 1850 | #endif |
| 1851 | } |
| 1852 | |
| 1853 | void __init memblock_allow_resize(void) |
| 1854 | { |
| 1855 | memblock_can_resize = 1; |
| 1856 | } |
| 1857 | |
| 1858 | static int __init early_memblock(char *p) |
| 1859 | { |
| 1860 | if (p && strstr(p, "debug")) |
| 1861 | memblock_debug = 1; |
| 1862 | return 0; |
| 1863 | } |
| 1864 | early_param("memblock", early_memblock); |
| 1865 | |
| 1866 | static void __init __free_pages_memory(unsigned long start, unsigned long end) |
| 1867 | { |
| 1868 | int order; |
| 1869 | |
| 1870 | while (start < end) { |
| 1871 | order = min(MAX_ORDER - 1UL, __ffs(start)); |
| 1872 | |
| 1873 | while (start + (1UL << order) > end) |
| 1874 | order--; |
| 1875 | |
| 1876 | memblock_free_pages(pfn_to_page(start), start, order); |
| 1877 | |
| 1878 | start += (1UL << order); |
| 1879 | } |
| 1880 | } |
| 1881 | |
| 1882 | static unsigned long __init __free_memory_core(phys_addr_t start, |
| 1883 | phys_addr_t end) |
| 1884 | { |
| 1885 | unsigned long start_pfn = PFN_UP(start); |
| 1886 | unsigned long end_pfn = min_t(unsigned long, |
| 1887 | PFN_DOWN(end), max_low_pfn); |
| 1888 | |
| 1889 | if (start_pfn >= end_pfn) |
| 1890 | return 0; |
| 1891 | |
| 1892 | __free_pages_memory(start_pfn, end_pfn); |
| 1893 | |
| 1894 | return end_pfn - start_pfn; |
| 1895 | } |
| 1896 | |
| 1897 | static unsigned long __init free_low_memory_core_early(void) |
| 1898 | { |
| 1899 | unsigned long count = 0; |
| 1900 | phys_addr_t start, end; |
| 1901 | u64 i; |
| 1902 | |
| 1903 | memblock_clear_hotplug(0, -1); |
| 1904 | |
| 1905 | for_each_reserved_mem_region(i, &start, &end) |
| 1906 | reserve_bootmem_region(start, end); |
| 1907 | |
| 1908 | /* |
| 1909 | * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id |
| 1910 | * because in some case like Node0 doesn't have RAM installed |
| 1911 | * low ram will be on Node1 |
| 1912 | */ |
| 1913 | for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, |
| 1914 | NULL) |
| 1915 | count += __free_memory_core(start, end); |
| 1916 | |
| 1917 | return count; |
| 1918 | } |
| 1919 | |
| 1920 | static int reset_managed_pages_done __initdata; |
| 1921 | |
| 1922 | void reset_node_managed_pages(pg_data_t *pgdat) |
| 1923 | { |
| 1924 | struct zone *z; |
| 1925 | |
| 1926 | for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) |
| 1927 | atomic_long_set(&z->managed_pages, 0); |
| 1928 | } |
| 1929 | |
| 1930 | void __init reset_all_zones_managed_pages(void) |
| 1931 | { |
| 1932 | struct pglist_data *pgdat; |
| 1933 | |
| 1934 | if (reset_managed_pages_done) |
| 1935 | return; |
| 1936 | |
| 1937 | for_each_online_pgdat(pgdat) |
| 1938 | reset_node_managed_pages(pgdat); |
| 1939 | |
| 1940 | reset_managed_pages_done = 1; |
| 1941 | } |
| 1942 | |
| 1943 | /** |
| 1944 | * memblock_free_all - release free pages to the buddy allocator |
| 1945 | * |
| 1946 | * Return: the number of pages actually released. |
| 1947 | */ |
| 1948 | unsigned long __init memblock_free_all(void) |
| 1949 | { |
| 1950 | unsigned long pages; |
| 1951 | |
| 1952 | reset_all_zones_managed_pages(); |
| 1953 | |
| 1954 | pages = free_low_memory_core_early(); |
| 1955 | totalram_pages_add(pages); |
| 1956 | |
| 1957 | return pages; |
| 1958 | } |
| 1959 | |
| 1960 | #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK) |
| 1961 | |
| 1962 | static int memblock_debug_show(struct seq_file *m, void *private) |
| 1963 | { |
| 1964 | struct memblock_type *type = m->private; |
| 1965 | struct memblock_region *reg; |
| 1966 | int i; |
| 1967 | phys_addr_t end; |
| 1968 | |
| 1969 | for (i = 0; i < type->cnt; i++) { |
| 1970 | reg = &type->regions[i]; |
| 1971 | end = reg->base + reg->size - 1; |
| 1972 | |
| 1973 | seq_printf(m, "%4d: ", i); |
| 1974 | seq_printf(m, "%pa..%pa\n", ®->base, &end); |
| 1975 | } |
| 1976 | return 0; |
| 1977 | } |
| 1978 | DEFINE_SHOW_ATTRIBUTE(memblock_debug); |
| 1979 | |
| 1980 | static int __init memblock_init_debugfs(void) |
| 1981 | { |
| 1982 | struct dentry *root = debugfs_create_dir("memblock", NULL); |
| 1983 | |
| 1984 | debugfs_create_file("memory", 0444, root, |
| 1985 | &memblock.memory, &memblock_debug_fops); |
| 1986 | debugfs_create_file("reserved", 0444, root, |
| 1987 | &memblock.reserved, &memblock_debug_fops); |
| 1988 | #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP |
| 1989 | debugfs_create_file("physmem", 0444, root, |
| 1990 | &memblock.physmem, &memblock_debug_fops); |
| 1991 | #endif |
| 1992 | |
| 1993 | return 0; |
| 1994 | } |
| 1995 | __initcall(memblock_init_debugfs); |
| 1996 | |
| 1997 | #endif /* CONFIG_DEBUG_FS */ |