blob: 5ac119509335db708740d187bb30fb01b7921486 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25#include <linux/page_counter.h>
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
28#include <linux/pagewalk.h>
29#include <linux/sched/mm.h>
30#include <linux/shmem_fs.h>
31#include <linux/hugetlb.h>
32#include <linux/pagemap.h>
33#include <linux/vm_event_item.h>
34#include <linux/smp.h>
35#include <linux/page-flags.h>
36#include <linux/backing-dev.h>
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
39#include <linux/limits.h>
40#include <linux/export.h>
41#include <linux/mutex.h>
42#include <linux/rbtree.h>
43#include <linux/slab.h>
44#include <linux/swap.h>
45#include <linux/swapops.h>
46#include <linux/spinlock.h>
47#include <linux/eventfd.h>
48#include <linux/poll.h>
49#include <linux/sort.h>
50#include <linux/fs.h>
51#include <linux/seq_file.h>
52#include <linux/vmpressure.h>
53#include <linux/mm_inline.h>
54#include <linux/swap_cgroup.h>
55#include <linux/cpu.h>
56#include <linux/oom.h>
57#include <linux/lockdep.h>
58#include <linux/file.h>
59#include <linux/tracehook.h>
60#include <linux/psi.h>
61#include <linux/seq_buf.h>
62#include "internal.h"
63#include <net/sock.h>
64#include <net/ip.h>
65#include "slab.h"
66
67#include <linux/uaccess.h>
68
69#include <trace/events/vmscan.h>
70
71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72EXPORT_SYMBOL(memory_cgrp_subsys);
73
74struct mem_cgroup *root_mem_cgroup __read_mostly;
75
76#define MEM_CGROUP_RECLAIM_RETRIES 5
77
78/* Socket memory accounting disabled? */
79static bool cgroup_memory_nosocket;
80
81/* Kernel memory accounting disabled? */
82static bool cgroup_memory_nokmem;
83
84/* Whether the swap controller is active */
85#ifdef CONFIG_MEMCG_SWAP
86int do_swap_account __read_mostly;
87#else
88#define do_swap_account 0
89#endif
90
91#ifdef CONFIG_CGROUP_WRITEBACK
92static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93#endif
94
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
101static const char *const mem_cgroup_lru_names[] = {
102 "inactive_anon",
103 "active_anon",
104 "inactive_file",
105 "active_file",
106 "unevictable",
107};
108
109#define THRESHOLDS_EVENTS_TARGET 128
110#define SOFTLIMIT_EVENTS_TARGET 1024
111#define NUMAINFO_EVENTS_TARGET 1024
112
113/*
114 * Cgroups above their limits are maintained in a RB-Tree, independent of
115 * their hierarchy representation
116 */
117
118struct mem_cgroup_tree_per_node {
119 struct rb_root rb_root;
120 struct rb_node *rb_rightmost;
121 spinlock_t lock;
122};
123
124struct mem_cgroup_tree {
125 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
126};
127
128static struct mem_cgroup_tree soft_limit_tree __read_mostly;
129
130/* for OOM */
131struct mem_cgroup_eventfd_list {
132 struct list_head list;
133 struct eventfd_ctx *eventfd;
134};
135
136/*
137 * cgroup_event represents events which userspace want to receive.
138 */
139struct mem_cgroup_event {
140 /*
141 * memcg which the event belongs to.
142 */
143 struct mem_cgroup *memcg;
144 /*
145 * eventfd to signal userspace about the event.
146 */
147 struct eventfd_ctx *eventfd;
148 /*
149 * Each of these stored in a list by the cgroup.
150 */
151 struct list_head list;
152 /*
153 * register_event() callback will be used to add new userspace
154 * waiter for changes related to this event. Use eventfd_signal()
155 * on eventfd to send notification to userspace.
156 */
157 int (*register_event)(struct mem_cgroup *memcg,
158 struct eventfd_ctx *eventfd, const char *args);
159 /*
160 * unregister_event() callback will be called when userspace closes
161 * the eventfd or on cgroup removing. This callback must be set,
162 * if you want provide notification functionality.
163 */
164 void (*unregister_event)(struct mem_cgroup *memcg,
165 struct eventfd_ctx *eventfd);
166 /*
167 * All fields below needed to unregister event when
168 * userspace closes eventfd.
169 */
170 poll_table pt;
171 wait_queue_head_t *wqh;
172 wait_queue_entry_t wait;
173 struct work_struct remove;
174};
175
176static void mem_cgroup_threshold(struct mem_cgroup *memcg);
177static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
178
179/* Stuffs for move charges at task migration. */
180/*
181 * Types of charges to be moved.
182 */
183#define MOVE_ANON 0x1U
184#define MOVE_FILE 0x2U
185#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
186
187/* "mc" and its members are protected by cgroup_mutex */
188static struct move_charge_struct {
189 spinlock_t lock; /* for from, to */
190 struct mm_struct *mm;
191 struct mem_cgroup *from;
192 struct mem_cgroup *to;
193 unsigned long flags;
194 unsigned long precharge;
195 unsigned long moved_charge;
196 unsigned long moved_swap;
197 struct task_struct *moving_task; /* a task moving charges */
198 wait_queue_head_t waitq; /* a waitq for other context */
199} mc = {
200 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
201 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
202};
203
204/*
205 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
206 * limit reclaim to prevent infinite loops, if they ever occur.
207 */
208#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
209#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
210
211enum charge_type {
212 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
213 MEM_CGROUP_CHARGE_TYPE_ANON,
214 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
215 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
216 NR_CHARGE_TYPE,
217};
218
219/* for encoding cft->private value on file */
220enum res_type {
221 _MEM,
222 _MEMSWAP,
223 _OOM_TYPE,
224 _KMEM,
225 _TCP,
226};
227
228#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
229#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
230#define MEMFILE_ATTR(val) ((val) & 0xffff)
231/* Used for OOM nofiier */
232#define OOM_CONTROL (0)
233
234/*
235 * Iteration constructs for visiting all cgroups (under a tree). If
236 * loops are exited prematurely (break), mem_cgroup_iter_break() must
237 * be used for reference counting.
238 */
239#define for_each_mem_cgroup_tree(iter, root) \
240 for (iter = mem_cgroup_iter(root, NULL, NULL); \
241 iter != NULL; \
242 iter = mem_cgroup_iter(root, iter, NULL))
243
244#define for_each_mem_cgroup(iter) \
245 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
246 iter != NULL; \
247 iter = mem_cgroup_iter(NULL, iter, NULL))
248
249static inline bool should_force_charge(void)
250{
251 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
252 (current->flags & PF_EXITING);
253}
254
255/* Some nice accessors for the vmpressure. */
256struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
257{
258 if (!memcg)
259 memcg = root_mem_cgroup;
260 return &memcg->vmpressure;
261}
262
263struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
264{
265 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
266}
267
268#ifdef CONFIG_MEMCG_KMEM
269/*
270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
276 *
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
279 */
280static DEFINE_IDA(memcg_cache_ida);
281int memcg_nr_cache_ids;
282
283/* Protects memcg_nr_cache_ids */
284static DECLARE_RWSEM(memcg_cache_ids_sem);
285
286void memcg_get_cache_ids(void)
287{
288 down_read(&memcg_cache_ids_sem);
289}
290
291void memcg_put_cache_ids(void)
292{
293 up_read(&memcg_cache_ids_sem);
294}
295
296/*
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
301 *
302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
306 * increase ours as well if it increases.
307 */
308#define MEMCG_CACHES_MIN_SIZE 4
309#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310
311/*
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
316 */
317DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318EXPORT_SYMBOL(memcg_kmem_enabled_key);
319
320struct workqueue_struct *memcg_kmem_cache_wq;
321#endif
322
323static int memcg_shrinker_map_size;
324static DEFINE_MUTEX(memcg_shrinker_map_mutex);
325
326static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
327{
328 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
329}
330
331static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
332 int size, int old_size)
333{
334 struct memcg_shrinker_map *new, *old;
335 int nid;
336
337 lockdep_assert_held(&memcg_shrinker_map_mutex);
338
339 for_each_node(nid) {
340 old = rcu_dereference_protected(
341 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
342 /* Not yet online memcg */
343 if (!old)
344 return 0;
345
346 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
347 if (!new)
348 return -ENOMEM;
349
350 /* Set all old bits, clear all new bits */
351 memset(new->map, (int)0xff, old_size);
352 memset((void *)new->map + old_size, 0, size - old_size);
353
354 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
355 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
356 }
357
358 return 0;
359}
360
361static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
362{
363 struct mem_cgroup_per_node *pn;
364 struct memcg_shrinker_map *map;
365 int nid;
366
367 if (mem_cgroup_is_root(memcg))
368 return;
369
370 for_each_node(nid) {
371 pn = mem_cgroup_nodeinfo(memcg, nid);
372 map = rcu_dereference_protected(pn->shrinker_map, true);
373 if (map)
374 kvfree(map);
375 rcu_assign_pointer(pn->shrinker_map, NULL);
376 }
377}
378
379static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
380{
381 struct memcg_shrinker_map *map;
382 int nid, size, ret = 0;
383
384 if (mem_cgroup_is_root(memcg))
385 return 0;
386
387 mutex_lock(&memcg_shrinker_map_mutex);
388 size = memcg_shrinker_map_size;
389 for_each_node(nid) {
390 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
391 if (!map) {
392 memcg_free_shrinker_maps(memcg);
393 ret = -ENOMEM;
394 break;
395 }
396 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
397 }
398 mutex_unlock(&memcg_shrinker_map_mutex);
399
400 return ret;
401}
402
403int memcg_expand_shrinker_maps(int new_id)
404{
405 int size, old_size, ret = 0;
406 struct mem_cgroup *memcg;
407
408 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
409 old_size = memcg_shrinker_map_size;
410 if (size <= old_size)
411 return 0;
412
413 mutex_lock(&memcg_shrinker_map_mutex);
414 if (!root_mem_cgroup)
415 goto unlock;
416
417 for_each_mem_cgroup(memcg) {
418 if (mem_cgroup_is_root(memcg))
419 continue;
420 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
421 if (ret) {
422 mem_cgroup_iter_break(NULL, memcg);
423 goto unlock;
424 }
425 }
426unlock:
427 if (!ret)
428 memcg_shrinker_map_size = size;
429 mutex_unlock(&memcg_shrinker_map_mutex);
430 return ret;
431}
432
433void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
434{
435 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
436 struct memcg_shrinker_map *map;
437
438 rcu_read_lock();
439 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
440 /* Pairs with smp mb in shrink_slab() */
441 smp_mb__before_atomic();
442 set_bit(shrinker_id, map->map);
443 rcu_read_unlock();
444 }
445}
446
447/**
448 * mem_cgroup_css_from_page - css of the memcg associated with a page
449 * @page: page of interest
450 *
451 * If memcg is bound to the default hierarchy, css of the memcg associated
452 * with @page is returned. The returned css remains associated with @page
453 * until it is released.
454 *
455 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
456 * is returned.
457 */
458struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
459{
460 struct mem_cgroup *memcg;
461
462 memcg = page->mem_cgroup;
463
464 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
465 memcg = root_mem_cgroup;
466
467 return &memcg->css;
468}
469
470/**
471 * page_cgroup_ino - return inode number of the memcg a page is charged to
472 * @page: the page
473 *
474 * Look up the closest online ancestor of the memory cgroup @page is charged to
475 * and return its inode number or 0 if @page is not charged to any cgroup. It
476 * is safe to call this function without holding a reference to @page.
477 *
478 * Note, this function is inherently racy, because there is nothing to prevent
479 * the cgroup inode from getting torn down and potentially reallocated a moment
480 * after page_cgroup_ino() returns, so it only should be used by callers that
481 * do not care (such as procfs interfaces).
482 */
483ino_t page_cgroup_ino(struct page *page)
484{
485 struct mem_cgroup *memcg;
486 unsigned long ino = 0;
487
488 rcu_read_lock();
489 if (PageSlab(page) && !PageTail(page))
490 memcg = memcg_from_slab_page(page);
491 else
492 memcg = READ_ONCE(page->mem_cgroup);
493 while (memcg && !(memcg->css.flags & CSS_ONLINE))
494 memcg = parent_mem_cgroup(memcg);
495 if (memcg)
496 ino = cgroup_ino(memcg->css.cgroup);
497 rcu_read_unlock();
498 return ino;
499}
500
501static struct mem_cgroup_per_node *
502mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
503{
504 int nid = page_to_nid(page);
505
506 return memcg->nodeinfo[nid];
507}
508
509static struct mem_cgroup_tree_per_node *
510soft_limit_tree_node(int nid)
511{
512 return soft_limit_tree.rb_tree_per_node[nid];
513}
514
515static struct mem_cgroup_tree_per_node *
516soft_limit_tree_from_page(struct page *page)
517{
518 int nid = page_to_nid(page);
519
520 return soft_limit_tree.rb_tree_per_node[nid];
521}
522
523static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
524 struct mem_cgroup_tree_per_node *mctz,
525 unsigned long new_usage_in_excess)
526{
527 struct rb_node **p = &mctz->rb_root.rb_node;
528 struct rb_node *parent = NULL;
529 struct mem_cgroup_per_node *mz_node;
530 bool rightmost = true;
531
532 if (mz->on_tree)
533 return;
534
535 mz->usage_in_excess = new_usage_in_excess;
536 if (!mz->usage_in_excess)
537 return;
538 while (*p) {
539 parent = *p;
540 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
541 tree_node);
542 if (mz->usage_in_excess < mz_node->usage_in_excess) {
543 p = &(*p)->rb_left;
544 rightmost = false;
545 }
546
547 /*
548 * We can't avoid mem cgroups that are over their soft
549 * limit by the same amount
550 */
551 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
552 p = &(*p)->rb_right;
553 }
554
555 if (rightmost)
556 mctz->rb_rightmost = &mz->tree_node;
557
558 rb_link_node(&mz->tree_node, parent, p);
559 rb_insert_color(&mz->tree_node, &mctz->rb_root);
560 mz->on_tree = true;
561}
562
563static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
564 struct mem_cgroup_tree_per_node *mctz)
565{
566 if (!mz->on_tree)
567 return;
568
569 if (&mz->tree_node == mctz->rb_rightmost)
570 mctz->rb_rightmost = rb_prev(&mz->tree_node);
571
572 rb_erase(&mz->tree_node, &mctz->rb_root);
573 mz->on_tree = false;
574}
575
576static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
577 struct mem_cgroup_tree_per_node *mctz)
578{
579 unsigned long flags;
580
581 spin_lock_irqsave(&mctz->lock, flags);
582 __mem_cgroup_remove_exceeded(mz, mctz);
583 spin_unlock_irqrestore(&mctz->lock, flags);
584}
585
586static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
587{
588 unsigned long nr_pages = page_counter_read(&memcg->memory);
589 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
590 unsigned long excess = 0;
591
592 if (nr_pages > soft_limit)
593 excess = nr_pages - soft_limit;
594
595 return excess;
596}
597
598static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
599{
600 unsigned long excess;
601 struct mem_cgroup_per_node *mz;
602 struct mem_cgroup_tree_per_node *mctz;
603
604 mctz = soft_limit_tree_from_page(page);
605 if (!mctz)
606 return;
607 /*
608 * Necessary to update all ancestors when hierarchy is used.
609 * because their event counter is not touched.
610 */
611 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
612 mz = mem_cgroup_page_nodeinfo(memcg, page);
613 excess = soft_limit_excess(memcg);
614 /*
615 * We have to update the tree if mz is on RB-tree or
616 * mem is over its softlimit.
617 */
618 if (excess || mz->on_tree) {
619 unsigned long flags;
620
621 spin_lock_irqsave(&mctz->lock, flags);
622 /* if on-tree, remove it */
623 if (mz->on_tree)
624 __mem_cgroup_remove_exceeded(mz, mctz);
625 /*
626 * Insert again. mz->usage_in_excess will be updated.
627 * If excess is 0, no tree ops.
628 */
629 __mem_cgroup_insert_exceeded(mz, mctz, excess);
630 spin_unlock_irqrestore(&mctz->lock, flags);
631 }
632 }
633}
634
635static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
636{
637 struct mem_cgroup_tree_per_node *mctz;
638 struct mem_cgroup_per_node *mz;
639 int nid;
640
641 for_each_node(nid) {
642 mz = mem_cgroup_nodeinfo(memcg, nid);
643 mctz = soft_limit_tree_node(nid);
644 if (mctz)
645 mem_cgroup_remove_exceeded(mz, mctz);
646 }
647}
648
649static struct mem_cgroup_per_node *
650__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
651{
652 struct mem_cgroup_per_node *mz;
653
654retry:
655 mz = NULL;
656 if (!mctz->rb_rightmost)
657 goto done; /* Nothing to reclaim from */
658
659 mz = rb_entry(mctz->rb_rightmost,
660 struct mem_cgroup_per_node, tree_node);
661 /*
662 * Remove the node now but someone else can add it back,
663 * we will to add it back at the end of reclaim to its correct
664 * position in the tree.
665 */
666 __mem_cgroup_remove_exceeded(mz, mctz);
667 if (!soft_limit_excess(mz->memcg) ||
668 !css_tryget_online(&mz->memcg->css))
669 goto retry;
670done:
671 return mz;
672}
673
674static struct mem_cgroup_per_node *
675mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
676{
677 struct mem_cgroup_per_node *mz;
678
679 spin_lock_irq(&mctz->lock);
680 mz = __mem_cgroup_largest_soft_limit_node(mctz);
681 spin_unlock_irq(&mctz->lock);
682 return mz;
683}
684
685/**
686 * __mod_memcg_state - update cgroup memory statistics
687 * @memcg: the memory cgroup
688 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
689 * @val: delta to add to the counter, can be negative
690 */
691void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
692{
693 long x;
694
695 if (mem_cgroup_disabled())
696 return;
697
698 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
699 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
700 struct mem_cgroup *mi;
701
702 /*
703 * Batch local counters to keep them in sync with
704 * the hierarchical ones.
705 */
706 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
707 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
708 atomic_long_add(x, &mi->vmstats[idx]);
709 x = 0;
710 }
711 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
712}
713
714static struct mem_cgroup_per_node *
715parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
716{
717 struct mem_cgroup *parent;
718
719 parent = parent_mem_cgroup(pn->memcg);
720 if (!parent)
721 return NULL;
722 return mem_cgroup_nodeinfo(parent, nid);
723}
724
725/**
726 * __mod_lruvec_state - update lruvec memory statistics
727 * @lruvec: the lruvec
728 * @idx: the stat item
729 * @val: delta to add to the counter, can be negative
730 *
731 * The lruvec is the intersection of the NUMA node and a cgroup. This
732 * function updates the all three counters that are affected by a
733 * change of state at this level: per-node, per-cgroup, per-lruvec.
734 */
735void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
736 int val)
737{
738 pg_data_t *pgdat = lruvec_pgdat(lruvec);
739 struct mem_cgroup_per_node *pn;
740 struct mem_cgroup *memcg;
741 long x;
742
743 /* Update node */
744 __mod_node_page_state(pgdat, idx, val);
745
746 if (mem_cgroup_disabled())
747 return;
748
749 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
750 memcg = pn->memcg;
751
752 /* Update memcg */
753 __mod_memcg_state(memcg, idx, val);
754
755 /* Update lruvec */
756 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
757
758 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
759 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
760 struct mem_cgroup_per_node *pi;
761
762 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
763 atomic_long_add(x, &pi->lruvec_stat[idx]);
764 x = 0;
765 }
766 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
767}
768
769void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
770{
771 struct page *page = virt_to_head_page(p);
772 pg_data_t *pgdat = page_pgdat(page);
773 struct mem_cgroup *memcg;
774 struct lruvec *lruvec;
775
776 rcu_read_lock();
777 memcg = memcg_from_slab_page(page);
778
779 /*
780 * Untracked pages have no memcg, no lruvec. Update only the
781 * node. If we reparent the slab objects to the root memcg,
782 * when we free the slab object, we need to update the per-memcg
783 * vmstats to keep it correct for the root memcg.
784 */
785 if (!memcg) {
786 __mod_node_page_state(pgdat, idx, val);
787 } else {
788 lruvec = mem_cgroup_lruvec(pgdat, memcg);
789 __mod_lruvec_state(lruvec, idx, val);
790 }
791 rcu_read_unlock();
792}
793
794void mod_memcg_obj_state(void *p, int idx, int val)
795{
796 struct mem_cgroup *memcg;
797
798 rcu_read_lock();
799 memcg = mem_cgroup_from_obj(p);
800 if (memcg)
801 mod_memcg_state(memcg, idx, val);
802 rcu_read_unlock();
803}
804
805/**
806 * __count_memcg_events - account VM events in a cgroup
807 * @memcg: the memory cgroup
808 * @idx: the event item
809 * @count: the number of events that occured
810 */
811void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
812 unsigned long count)
813{
814 unsigned long x;
815
816 if (mem_cgroup_disabled())
817 return;
818
819 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
820 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
821 struct mem_cgroup *mi;
822
823 /*
824 * Batch local counters to keep them in sync with
825 * the hierarchical ones.
826 */
827 __this_cpu_add(memcg->vmstats_local->events[idx], x);
828 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
829 atomic_long_add(x, &mi->vmevents[idx]);
830 x = 0;
831 }
832 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
833}
834
835static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
836{
837 return atomic_long_read(&memcg->vmevents[event]);
838}
839
840static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
841{
842 long x = 0;
843 int cpu;
844
845 for_each_possible_cpu(cpu)
846 x += per_cpu(memcg->vmstats_local->events[event], cpu);
847 return x;
848}
849
850static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
851 struct page *page,
852 bool compound, int nr_pages)
853{
854 /*
855 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
856 * counted as CACHE even if it's on ANON LRU.
857 */
858 if (PageAnon(page))
859 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
860 else {
861 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
862 if (PageSwapBacked(page))
863 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
864 }
865
866 if (compound) {
867 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
868 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
869 }
870
871 /* pagein of a big page is an event. So, ignore page size */
872 if (nr_pages > 0)
873 __count_memcg_events(memcg, PGPGIN, 1);
874 else {
875 __count_memcg_events(memcg, PGPGOUT, 1);
876 nr_pages = -nr_pages; /* for event */
877 }
878
879 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
880}
881
882static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
883 enum mem_cgroup_events_target target)
884{
885 unsigned long val, next;
886
887 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
888 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
889 /* from time_after() in jiffies.h */
890 if ((long)(next - val) < 0) {
891 switch (target) {
892 case MEM_CGROUP_TARGET_THRESH:
893 next = val + THRESHOLDS_EVENTS_TARGET;
894 break;
895 case MEM_CGROUP_TARGET_SOFTLIMIT:
896 next = val + SOFTLIMIT_EVENTS_TARGET;
897 break;
898 case MEM_CGROUP_TARGET_NUMAINFO:
899 next = val + NUMAINFO_EVENTS_TARGET;
900 break;
901 default:
902 break;
903 }
904 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
905 return true;
906 }
907 return false;
908}
909
910/*
911 * Check events in order.
912 *
913 */
914static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
915{
916 /* threshold event is triggered in finer grain than soft limit */
917 if (unlikely(mem_cgroup_event_ratelimit(memcg,
918 MEM_CGROUP_TARGET_THRESH))) {
919 bool do_softlimit;
920 bool do_numainfo __maybe_unused;
921
922 do_softlimit = mem_cgroup_event_ratelimit(memcg,
923 MEM_CGROUP_TARGET_SOFTLIMIT);
924#if MAX_NUMNODES > 1
925 do_numainfo = mem_cgroup_event_ratelimit(memcg,
926 MEM_CGROUP_TARGET_NUMAINFO);
927#endif
928 mem_cgroup_threshold(memcg);
929 if (unlikely(do_softlimit))
930 mem_cgroup_update_tree(memcg, page);
931#if MAX_NUMNODES > 1
932 if (unlikely(do_numainfo))
933 atomic_inc(&memcg->numainfo_events);
934#endif
935 }
936}
937
938struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
939{
940 /*
941 * mm_update_next_owner() may clear mm->owner to NULL
942 * if it races with swapoff, page migration, etc.
943 * So this can be called with p == NULL.
944 */
945 if (unlikely(!p))
946 return NULL;
947
948 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
949}
950EXPORT_SYMBOL(mem_cgroup_from_task);
951
952/**
953 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
954 * @mm: mm from which memcg should be extracted. It can be NULL.
955 *
956 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
957 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
958 * returned.
959 */
960struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
961{
962 struct mem_cgroup *memcg;
963
964 if (mem_cgroup_disabled())
965 return NULL;
966
967 rcu_read_lock();
968 do {
969 /*
970 * Page cache insertions can happen withou an
971 * actual mm context, e.g. during disk probing
972 * on boot, loopback IO, acct() writes etc.
973 */
974 if (unlikely(!mm))
975 memcg = root_mem_cgroup;
976 else {
977 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
978 if (unlikely(!memcg))
979 memcg = root_mem_cgroup;
980 }
981 } while (!css_tryget(&memcg->css));
982 rcu_read_unlock();
983 return memcg;
984}
985EXPORT_SYMBOL(get_mem_cgroup_from_mm);
986
987/**
988 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
989 * @page: page from which memcg should be extracted.
990 *
991 * Obtain a reference on page->memcg and returns it if successful. Otherwise
992 * root_mem_cgroup is returned.
993 */
994struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
995{
996 struct mem_cgroup *memcg = page->mem_cgroup;
997
998 if (mem_cgroup_disabled())
999 return NULL;
1000
1001 rcu_read_lock();
1002 if (!memcg || !css_tryget_online(&memcg->css))
1003 memcg = root_mem_cgroup;
1004 rcu_read_unlock();
1005 return memcg;
1006}
1007EXPORT_SYMBOL(get_mem_cgroup_from_page);
1008
1009/**
1010 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
1011 */
1012static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1013{
1014 if (unlikely(current->active_memcg)) {
1015 struct mem_cgroup *memcg = root_mem_cgroup;
1016
1017 rcu_read_lock();
1018 if (css_tryget_online(&current->active_memcg->css))
1019 memcg = current->active_memcg;
1020 rcu_read_unlock();
1021 return memcg;
1022 }
1023 return get_mem_cgroup_from_mm(current->mm);
1024}
1025
1026/**
1027 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1028 * @root: hierarchy root
1029 * @prev: previously returned memcg, NULL on first invocation
1030 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1031 *
1032 * Returns references to children of the hierarchy below @root, or
1033 * @root itself, or %NULL after a full round-trip.
1034 *
1035 * Caller must pass the return value in @prev on subsequent
1036 * invocations for reference counting, or use mem_cgroup_iter_break()
1037 * to cancel a hierarchy walk before the round-trip is complete.
1038 *
1039 * Reclaimers can specify a node and a priority level in @reclaim to
1040 * divide up the memcgs in the hierarchy among all concurrent
1041 * reclaimers operating on the same node and priority.
1042 */
1043struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1044 struct mem_cgroup *prev,
1045 struct mem_cgroup_reclaim_cookie *reclaim)
1046{
1047 struct mem_cgroup_reclaim_iter *iter;
1048 struct cgroup_subsys_state *css = NULL;
1049 struct mem_cgroup *memcg = NULL;
1050 struct mem_cgroup *pos = NULL;
1051
1052 if (mem_cgroup_disabled())
1053 return NULL;
1054
1055 if (!root)
1056 root = root_mem_cgroup;
1057
1058 if (prev && !reclaim)
1059 pos = prev;
1060
1061 if (!root->use_hierarchy && root != root_mem_cgroup) {
1062 if (prev)
1063 goto out;
1064 return root;
1065 }
1066
1067 rcu_read_lock();
1068
1069 if (reclaim) {
1070 struct mem_cgroup_per_node *mz;
1071
1072 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1073 iter = &mz->iter[reclaim->priority];
1074
1075 if (prev && reclaim->generation != iter->generation)
1076 goto out_unlock;
1077
1078 while (1) {
1079 pos = READ_ONCE(iter->position);
1080 if (!pos || css_tryget(&pos->css))
1081 break;
1082 /*
1083 * css reference reached zero, so iter->position will
1084 * be cleared by ->css_released. However, we should not
1085 * rely on this happening soon, because ->css_released
1086 * is called from a work queue, and by busy-waiting we
1087 * might block it. So we clear iter->position right
1088 * away.
1089 */
1090 (void)cmpxchg(&iter->position, pos, NULL);
1091 }
1092 }
1093
1094 if (pos)
1095 css = &pos->css;
1096
1097 for (;;) {
1098 css = css_next_descendant_pre(css, &root->css);
1099 if (!css) {
1100 /*
1101 * Reclaimers share the hierarchy walk, and a
1102 * new one might jump in right at the end of
1103 * the hierarchy - make sure they see at least
1104 * one group and restart from the beginning.
1105 */
1106 if (!prev)
1107 continue;
1108 break;
1109 }
1110
1111 /*
1112 * Verify the css and acquire a reference. The root
1113 * is provided by the caller, so we know it's alive
1114 * and kicking, and don't take an extra reference.
1115 */
1116 memcg = mem_cgroup_from_css(css);
1117
1118 if (css == &root->css)
1119 break;
1120
1121 if (css_tryget(css))
1122 break;
1123
1124 memcg = NULL;
1125 }
1126
1127 if (reclaim) {
1128 /*
1129 * The position could have already been updated by a competing
1130 * thread, so check that the value hasn't changed since we read
1131 * it to avoid reclaiming from the same cgroup twice.
1132 */
1133 (void)cmpxchg(&iter->position, pos, memcg);
1134
1135 if (pos)
1136 css_put(&pos->css);
1137
1138 if (!memcg)
1139 iter->generation++;
1140 else if (!prev)
1141 reclaim->generation = iter->generation;
1142 }
1143
1144out_unlock:
1145 rcu_read_unlock();
1146out:
1147 if (prev && prev != root)
1148 css_put(&prev->css);
1149
1150 return memcg;
1151}
1152
1153/**
1154 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1155 * @root: hierarchy root
1156 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1157 */
1158void mem_cgroup_iter_break(struct mem_cgroup *root,
1159 struct mem_cgroup *prev)
1160{
1161 if (!root)
1162 root = root_mem_cgroup;
1163 if (prev && prev != root)
1164 css_put(&prev->css);
1165}
1166
1167static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1168 struct mem_cgroup *dead_memcg)
1169{
1170 struct mem_cgroup_reclaim_iter *iter;
1171 struct mem_cgroup_per_node *mz;
1172 int nid;
1173 int i;
1174
1175 for_each_node(nid) {
1176 mz = mem_cgroup_nodeinfo(from, nid);
1177 for (i = 0; i <= DEF_PRIORITY; i++) {
1178 iter = &mz->iter[i];
1179 cmpxchg(&iter->position,
1180 dead_memcg, NULL);
1181 }
1182 }
1183}
1184
1185static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1186{
1187 struct mem_cgroup *memcg = dead_memcg;
1188 struct mem_cgroup *last;
1189
1190 do {
1191 __invalidate_reclaim_iterators(memcg, dead_memcg);
1192 last = memcg;
1193 } while ((memcg = parent_mem_cgroup(memcg)));
1194
1195 /*
1196 * When cgruop1 non-hierarchy mode is used,
1197 * parent_mem_cgroup() does not walk all the way up to the
1198 * cgroup root (root_mem_cgroup). So we have to handle
1199 * dead_memcg from cgroup root separately.
1200 */
1201 if (last != root_mem_cgroup)
1202 __invalidate_reclaim_iterators(root_mem_cgroup,
1203 dead_memcg);
1204}
1205
1206/**
1207 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1208 * @memcg: hierarchy root
1209 * @fn: function to call for each task
1210 * @arg: argument passed to @fn
1211 *
1212 * This function iterates over tasks attached to @memcg or to any of its
1213 * descendants and calls @fn for each task. If @fn returns a non-zero
1214 * value, the function breaks the iteration loop and returns the value.
1215 * Otherwise, it will iterate over all tasks and return 0.
1216 *
1217 * This function must not be called for the root memory cgroup.
1218 */
1219int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1220 int (*fn)(struct task_struct *, void *), void *arg)
1221{
1222 struct mem_cgroup *iter;
1223 int ret = 0;
1224
1225 BUG_ON(memcg == root_mem_cgroup);
1226
1227 for_each_mem_cgroup_tree(iter, memcg) {
1228 struct css_task_iter it;
1229 struct task_struct *task;
1230
1231 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1232 while (!ret && (task = css_task_iter_next(&it)))
1233 ret = fn(task, arg);
1234 css_task_iter_end(&it);
1235 if (ret) {
1236 mem_cgroup_iter_break(memcg, iter);
1237 break;
1238 }
1239 }
1240 return ret;
1241}
1242
1243/**
1244 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1245 * @page: the page
1246 * @pgdat: pgdat of the page
1247 *
1248 * This function is only safe when following the LRU page isolation
1249 * and putback protocol: the LRU lock must be held, and the page must
1250 * either be PageLRU() or the caller must have isolated/allocated it.
1251 */
1252struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1253{
1254 struct mem_cgroup_per_node *mz;
1255 struct mem_cgroup *memcg;
1256 struct lruvec *lruvec;
1257
1258 if (mem_cgroup_disabled()) {
1259 lruvec = &pgdat->lruvec;
1260 goto out;
1261 }
1262
1263 memcg = page->mem_cgroup;
1264 /*
1265 * Swapcache readahead pages are added to the LRU - and
1266 * possibly migrated - before they are charged.
1267 */
1268 if (!memcg)
1269 memcg = root_mem_cgroup;
1270
1271 mz = mem_cgroup_page_nodeinfo(memcg, page);
1272 lruvec = &mz->lruvec;
1273out:
1274 /*
1275 * Since a node can be onlined after the mem_cgroup was created,
1276 * we have to be prepared to initialize lruvec->zone here;
1277 * and if offlined then reonlined, we need to reinitialize it.
1278 */
1279 if (unlikely(lruvec->pgdat != pgdat))
1280 lruvec->pgdat = pgdat;
1281 return lruvec;
1282}
1283
1284/**
1285 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1286 * @lruvec: mem_cgroup per zone lru vector
1287 * @lru: index of lru list the page is sitting on
1288 * @zid: zone id of the accounted pages
1289 * @nr_pages: positive when adding or negative when removing
1290 *
1291 * This function must be called under lru_lock, just before a page is added
1292 * to or just after a page is removed from an lru list (that ordering being
1293 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1294 */
1295void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1296 int zid, int nr_pages)
1297{
1298 struct mem_cgroup_per_node *mz;
1299 unsigned long *lru_size;
1300 long size;
1301
1302 if (mem_cgroup_disabled())
1303 return;
1304
1305 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1306 lru_size = &mz->lru_zone_size[zid][lru];
1307
1308 if (nr_pages < 0)
1309 *lru_size += nr_pages;
1310
1311 size = *lru_size;
1312 if (WARN_ONCE(size < 0,
1313 "%s(%p, %d, %d): lru_size %ld\n",
1314 __func__, lruvec, lru, nr_pages, size)) {
1315 VM_BUG_ON(1);
1316 *lru_size = 0;
1317 }
1318
1319 if (nr_pages > 0)
1320 *lru_size += nr_pages;
1321}
1322
1323/**
1324 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1325 * @memcg: the memory cgroup
1326 *
1327 * Returns the maximum amount of memory @mem can be charged with, in
1328 * pages.
1329 */
1330static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1331{
1332 unsigned long margin = 0;
1333 unsigned long count;
1334 unsigned long limit;
1335
1336 count = page_counter_read(&memcg->memory);
1337 limit = READ_ONCE(memcg->memory.max);
1338 if (count < limit)
1339 margin = limit - count;
1340
1341 if (do_memsw_account()) {
1342 count = page_counter_read(&memcg->memsw);
1343 limit = READ_ONCE(memcg->memsw.max);
1344 if (count <= limit)
1345 margin = min(margin, limit - count);
1346 else
1347 margin = 0;
1348 }
1349
1350 return margin;
1351}
1352
1353/*
1354 * A routine for checking "mem" is under move_account() or not.
1355 *
1356 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1357 * moving cgroups. This is for waiting at high-memory pressure
1358 * caused by "move".
1359 */
1360static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1361{
1362 struct mem_cgroup *from;
1363 struct mem_cgroup *to;
1364 bool ret = false;
1365 /*
1366 * Unlike task_move routines, we access mc.to, mc.from not under
1367 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1368 */
1369 spin_lock(&mc.lock);
1370 from = mc.from;
1371 to = mc.to;
1372 if (!from)
1373 goto unlock;
1374
1375 ret = mem_cgroup_is_descendant(from, memcg) ||
1376 mem_cgroup_is_descendant(to, memcg);
1377unlock:
1378 spin_unlock(&mc.lock);
1379 return ret;
1380}
1381
1382static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1383{
1384 if (mc.moving_task && current != mc.moving_task) {
1385 if (mem_cgroup_under_move(memcg)) {
1386 DEFINE_WAIT(wait);
1387 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1388 /* moving charge context might have finished. */
1389 if (mc.moving_task)
1390 schedule();
1391 finish_wait(&mc.waitq, &wait);
1392 return true;
1393 }
1394 }
1395 return false;
1396}
1397
1398static char *memory_stat_format(struct mem_cgroup *memcg)
1399{
1400 struct seq_buf s;
1401 int i;
1402
1403 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1404 if (!s.buffer)
1405 return NULL;
1406
1407 /*
1408 * Provide statistics on the state of the memory subsystem as
1409 * well as cumulative event counters that show past behavior.
1410 *
1411 * This list is ordered following a combination of these gradients:
1412 * 1) generic big picture -> specifics and details
1413 * 2) reflecting userspace activity -> reflecting kernel heuristics
1414 *
1415 * Current memory state:
1416 */
1417
1418 seq_buf_printf(&s, "anon %llu\n",
1419 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1420 PAGE_SIZE);
1421 seq_buf_printf(&s, "file %llu\n",
1422 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1423 PAGE_SIZE);
1424 seq_buf_printf(&s, "kernel_stack %llu\n",
1425 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1426 1024);
1427 seq_buf_printf(&s, "slab %llu\n",
1428 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1429 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1430 PAGE_SIZE);
1431 seq_buf_printf(&s, "sock %llu\n",
1432 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1433 PAGE_SIZE);
1434
1435 seq_buf_printf(&s, "shmem %llu\n",
1436 (u64)memcg_page_state(memcg, NR_SHMEM) *
1437 PAGE_SIZE);
1438 seq_buf_printf(&s, "file_mapped %llu\n",
1439 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1440 PAGE_SIZE);
1441 seq_buf_printf(&s, "file_dirty %llu\n",
1442 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1443 PAGE_SIZE);
1444 seq_buf_printf(&s, "file_writeback %llu\n",
1445 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1446 PAGE_SIZE);
1447
1448 /*
1449 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1450 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1451 * arse because it requires migrating the work out of rmap to a place
1452 * where the page->mem_cgroup is set up and stable.
1453 */
1454 seq_buf_printf(&s, "anon_thp %llu\n",
1455 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1456 PAGE_SIZE);
1457
1458 for (i = 0; i < NR_LRU_LISTS; i++)
1459 seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1460 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1461 PAGE_SIZE);
1462
1463 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1464 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1465 PAGE_SIZE);
1466 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1467 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1468 PAGE_SIZE);
1469
1470 /* Accumulated memory events */
1471
1472 seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1473 seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1474
1475 seq_buf_printf(&s, "workingset_refault %lu\n",
1476 memcg_page_state(memcg, WORKINGSET_REFAULT));
1477 seq_buf_printf(&s, "workingset_activate %lu\n",
1478 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1479 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1480 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1481
1482 seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1483 seq_buf_printf(&s, "pgscan %lu\n",
1484 memcg_events(memcg, PGSCAN_KSWAPD) +
1485 memcg_events(memcg, PGSCAN_DIRECT));
1486 seq_buf_printf(&s, "pgsteal %lu\n",
1487 memcg_events(memcg, PGSTEAL_KSWAPD) +
1488 memcg_events(memcg, PGSTEAL_DIRECT));
1489 seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1490 seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1491 seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1492 seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1493
1494#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1495 seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1496 memcg_events(memcg, THP_FAULT_ALLOC));
1497 seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1498 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1499#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1500
1501 /* The above should easily fit into one page */
1502 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1503
1504 return s.buffer;
1505}
1506
1507#define K(x) ((x) << (PAGE_SHIFT-10))
1508/**
1509 * mem_cgroup_print_oom_context: Print OOM information relevant to
1510 * memory controller.
1511 * @memcg: The memory cgroup that went over limit
1512 * @p: Task that is going to be killed
1513 *
1514 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1515 * enabled
1516 */
1517void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1518{
1519 rcu_read_lock();
1520
1521 if (memcg) {
1522 pr_cont(",oom_memcg=");
1523 pr_cont_cgroup_path(memcg->css.cgroup);
1524 } else
1525 pr_cont(",global_oom");
1526 if (p) {
1527 pr_cont(",task_memcg=");
1528 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1529 }
1530 rcu_read_unlock();
1531}
1532
1533/**
1534 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1535 * memory controller.
1536 * @memcg: The memory cgroup that went over limit
1537 */
1538void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1539{
1540 char *buf;
1541
1542 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1543 K((u64)page_counter_read(&memcg->memory)),
1544 K((u64)memcg->memory.max), memcg->memory.failcnt);
1545 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1546 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1547 K((u64)page_counter_read(&memcg->swap)),
1548 K((u64)memcg->swap.max), memcg->swap.failcnt);
1549 else {
1550 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1551 K((u64)page_counter_read(&memcg->memsw)),
1552 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1553 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1554 K((u64)page_counter_read(&memcg->kmem)),
1555 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1556 }
1557
1558 pr_info("Memory cgroup stats for ");
1559 pr_cont_cgroup_path(memcg->css.cgroup);
1560 pr_cont(":");
1561 buf = memory_stat_format(memcg);
1562 if (!buf)
1563 return;
1564 pr_info("%s", buf);
1565 kfree(buf);
1566}
1567
1568/*
1569 * Return the memory (and swap, if configured) limit for a memcg.
1570 */
1571unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1572{
1573 unsigned long max;
1574
1575 max = memcg->memory.max;
1576 if (mem_cgroup_swappiness(memcg)) {
1577 unsigned long memsw_max;
1578 unsigned long swap_max;
1579
1580 memsw_max = memcg->memsw.max;
1581 swap_max = memcg->swap.max;
1582 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1583 max = min(max + swap_max, memsw_max);
1584 }
1585 return max;
1586}
1587
1588unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1589{
1590 return page_counter_read(&memcg->memory);
1591}
1592
1593static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1594 int order)
1595{
1596 struct oom_control oc = {
1597 .zonelist = NULL,
1598 .nodemask = NULL,
1599 .memcg = memcg,
1600 .gfp_mask = gfp_mask,
1601 .order = order,
1602 };
1603 bool ret;
1604
1605 if (mutex_lock_killable(&oom_lock))
1606 return true;
1607 /*
1608 * A few threads which were not waiting at mutex_lock_killable() can
1609 * fail to bail out. Therefore, check again after holding oom_lock.
1610 */
1611 ret = should_force_charge() || out_of_memory(&oc);
1612 mutex_unlock(&oom_lock);
1613 return ret;
1614}
1615
1616#if MAX_NUMNODES > 1
1617
1618/**
1619 * test_mem_cgroup_node_reclaimable
1620 * @memcg: the target memcg
1621 * @nid: the node ID to be checked.
1622 * @noswap : specify true here if the user wants flle only information.
1623 *
1624 * This function returns whether the specified memcg contains any
1625 * reclaimable pages on a node. Returns true if there are any reclaimable
1626 * pages in the node.
1627 */
1628static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1629 int nid, bool noswap)
1630{
1631 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1632
1633 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1634 lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1635 return true;
1636 if (noswap || !total_swap_pages)
1637 return false;
1638 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1639 lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1640 return true;
1641 return false;
1642
1643}
1644
1645/*
1646 * Always updating the nodemask is not very good - even if we have an empty
1647 * list or the wrong list here, we can start from some node and traverse all
1648 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1649 *
1650 */
1651static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1652{
1653 int nid;
1654 /*
1655 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1656 * pagein/pageout changes since the last update.
1657 */
1658 if (!atomic_read(&memcg->numainfo_events))
1659 return;
1660 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1661 return;
1662
1663 /* make a nodemask where this memcg uses memory from */
1664 memcg->scan_nodes = node_states[N_MEMORY];
1665
1666 for_each_node_mask(nid, node_states[N_MEMORY]) {
1667
1668 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1669 node_clear(nid, memcg->scan_nodes);
1670 }
1671
1672 atomic_set(&memcg->numainfo_events, 0);
1673 atomic_set(&memcg->numainfo_updating, 0);
1674}
1675
1676/*
1677 * Selecting a node where we start reclaim from. Because what we need is just
1678 * reducing usage counter, start from anywhere is O,K. Considering
1679 * memory reclaim from current node, there are pros. and cons.
1680 *
1681 * Freeing memory from current node means freeing memory from a node which
1682 * we'll use or we've used. So, it may make LRU bad. And if several threads
1683 * hit limits, it will see a contention on a node. But freeing from remote
1684 * node means more costs for memory reclaim because of memory latency.
1685 *
1686 * Now, we use round-robin. Better algorithm is welcomed.
1687 */
1688int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1689{
1690 int node;
1691
1692 mem_cgroup_may_update_nodemask(memcg);
1693 node = memcg->last_scanned_node;
1694
1695 node = next_node_in(node, memcg->scan_nodes);
1696 /*
1697 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1698 * last time it really checked all the LRUs due to rate limiting.
1699 * Fallback to the current node in that case for simplicity.
1700 */
1701 if (unlikely(node == MAX_NUMNODES))
1702 node = numa_node_id();
1703
1704 memcg->last_scanned_node = node;
1705 return node;
1706}
1707#else
1708int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1709{
1710 return 0;
1711}
1712#endif
1713
1714static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1715 pg_data_t *pgdat,
1716 gfp_t gfp_mask,
1717 unsigned long *total_scanned)
1718{
1719 struct mem_cgroup *victim = NULL;
1720 int total = 0;
1721 int loop = 0;
1722 unsigned long excess;
1723 unsigned long nr_scanned;
1724 struct mem_cgroup_reclaim_cookie reclaim = {
1725 .pgdat = pgdat,
1726 .priority = 0,
1727 };
1728
1729 excess = soft_limit_excess(root_memcg);
1730
1731 while (1) {
1732 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1733 if (!victim) {
1734 loop++;
1735 if (loop >= 2) {
1736 /*
1737 * If we have not been able to reclaim
1738 * anything, it might because there are
1739 * no reclaimable pages under this hierarchy
1740 */
1741 if (!total)
1742 break;
1743 /*
1744 * We want to do more targeted reclaim.
1745 * excess >> 2 is not to excessive so as to
1746 * reclaim too much, nor too less that we keep
1747 * coming back to reclaim from this cgroup
1748 */
1749 if (total >= (excess >> 2) ||
1750 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1751 break;
1752 }
1753 continue;
1754 }
1755 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1756 pgdat, &nr_scanned);
1757 *total_scanned += nr_scanned;
1758 if (!soft_limit_excess(root_memcg))
1759 break;
1760 }
1761 mem_cgroup_iter_break(root_memcg, victim);
1762 return total;
1763}
1764
1765#ifdef CONFIG_LOCKDEP
1766static struct lockdep_map memcg_oom_lock_dep_map = {
1767 .name = "memcg_oom_lock",
1768};
1769#endif
1770
1771static DEFINE_SPINLOCK(memcg_oom_lock);
1772
1773/*
1774 * Check OOM-Killer is already running under our hierarchy.
1775 * If someone is running, return false.
1776 */
1777static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1778{
1779 struct mem_cgroup *iter, *failed = NULL;
1780
1781 spin_lock(&memcg_oom_lock);
1782
1783 for_each_mem_cgroup_tree(iter, memcg) {
1784 if (iter->oom_lock) {
1785 /*
1786 * this subtree of our hierarchy is already locked
1787 * so we cannot give a lock.
1788 */
1789 failed = iter;
1790 mem_cgroup_iter_break(memcg, iter);
1791 break;
1792 } else
1793 iter->oom_lock = true;
1794 }
1795
1796 if (failed) {
1797 /*
1798 * OK, we failed to lock the whole subtree so we have
1799 * to clean up what we set up to the failing subtree
1800 */
1801 for_each_mem_cgroup_tree(iter, memcg) {
1802 if (iter == failed) {
1803 mem_cgroup_iter_break(memcg, iter);
1804 break;
1805 }
1806 iter->oom_lock = false;
1807 }
1808 } else
1809 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1810
1811 spin_unlock(&memcg_oom_lock);
1812
1813 return !failed;
1814}
1815
1816static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1817{
1818 struct mem_cgroup *iter;
1819
1820 spin_lock(&memcg_oom_lock);
1821 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1822 for_each_mem_cgroup_tree(iter, memcg)
1823 iter->oom_lock = false;
1824 spin_unlock(&memcg_oom_lock);
1825}
1826
1827static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1828{
1829 struct mem_cgroup *iter;
1830
1831 spin_lock(&memcg_oom_lock);
1832 for_each_mem_cgroup_tree(iter, memcg)
1833 iter->under_oom++;
1834 spin_unlock(&memcg_oom_lock);
1835}
1836
1837static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1838{
1839 struct mem_cgroup *iter;
1840
1841 /*
1842 * When a new child is created while the hierarchy is under oom,
1843 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1844 */
1845 spin_lock(&memcg_oom_lock);
1846 for_each_mem_cgroup_tree(iter, memcg)
1847 if (iter->under_oom > 0)
1848 iter->under_oom--;
1849 spin_unlock(&memcg_oom_lock);
1850}
1851
1852static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1853
1854struct oom_wait_info {
1855 struct mem_cgroup *memcg;
1856 wait_queue_entry_t wait;
1857};
1858
1859static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1860 unsigned mode, int sync, void *arg)
1861{
1862 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1863 struct mem_cgroup *oom_wait_memcg;
1864 struct oom_wait_info *oom_wait_info;
1865
1866 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1867 oom_wait_memcg = oom_wait_info->memcg;
1868
1869 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1870 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1871 return 0;
1872 return autoremove_wake_function(wait, mode, sync, arg);
1873}
1874
1875static void memcg_oom_recover(struct mem_cgroup *memcg)
1876{
1877 /*
1878 * For the following lockless ->under_oom test, the only required
1879 * guarantee is that it must see the state asserted by an OOM when
1880 * this function is called as a result of userland actions
1881 * triggered by the notification of the OOM. This is trivially
1882 * achieved by invoking mem_cgroup_mark_under_oom() before
1883 * triggering notification.
1884 */
1885 if (memcg && memcg->under_oom)
1886 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1887}
1888
1889enum oom_status {
1890 OOM_SUCCESS,
1891 OOM_FAILED,
1892 OOM_ASYNC,
1893 OOM_SKIPPED
1894};
1895
1896static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1897{
1898 enum oom_status ret;
1899 bool locked;
1900
1901 if (order > PAGE_ALLOC_COSTLY_ORDER)
1902 return OOM_SKIPPED;
1903
1904 memcg_memory_event(memcg, MEMCG_OOM);
1905
1906 /*
1907 * We are in the middle of the charge context here, so we
1908 * don't want to block when potentially sitting on a callstack
1909 * that holds all kinds of filesystem and mm locks.
1910 *
1911 * cgroup1 allows disabling the OOM killer and waiting for outside
1912 * handling until the charge can succeed; remember the context and put
1913 * the task to sleep at the end of the page fault when all locks are
1914 * released.
1915 *
1916 * On the other hand, in-kernel OOM killer allows for an async victim
1917 * memory reclaim (oom_reaper) and that means that we are not solely
1918 * relying on the oom victim to make a forward progress and we can
1919 * invoke the oom killer here.
1920 *
1921 * Please note that mem_cgroup_out_of_memory might fail to find a
1922 * victim and then we have to bail out from the charge path.
1923 */
1924 if (memcg->oom_kill_disable) {
1925 if (!current->in_user_fault)
1926 return OOM_SKIPPED;
1927 css_get(&memcg->css);
1928 current->memcg_in_oom = memcg;
1929 current->memcg_oom_gfp_mask = mask;
1930 current->memcg_oom_order = order;
1931
1932 return OOM_ASYNC;
1933 }
1934
1935 mem_cgroup_mark_under_oom(memcg);
1936
1937 locked = mem_cgroup_oom_trylock(memcg);
1938
1939 if (locked)
1940 mem_cgroup_oom_notify(memcg);
1941
1942 mem_cgroup_unmark_under_oom(memcg);
1943 if (mem_cgroup_out_of_memory(memcg, mask, order))
1944 ret = OOM_SUCCESS;
1945 else
1946 ret = OOM_FAILED;
1947
1948 if (locked)
1949 mem_cgroup_oom_unlock(memcg);
1950
1951 return ret;
1952}
1953
1954/**
1955 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1956 * @handle: actually kill/wait or just clean up the OOM state
1957 *
1958 * This has to be called at the end of a page fault if the memcg OOM
1959 * handler was enabled.
1960 *
1961 * Memcg supports userspace OOM handling where failed allocations must
1962 * sleep on a waitqueue until the userspace task resolves the
1963 * situation. Sleeping directly in the charge context with all kinds
1964 * of locks held is not a good idea, instead we remember an OOM state
1965 * in the task and mem_cgroup_oom_synchronize() has to be called at
1966 * the end of the page fault to complete the OOM handling.
1967 *
1968 * Returns %true if an ongoing memcg OOM situation was detected and
1969 * completed, %false otherwise.
1970 */
1971bool mem_cgroup_oom_synchronize(bool handle)
1972{
1973 struct mem_cgroup *memcg = current->memcg_in_oom;
1974 struct oom_wait_info owait;
1975 bool locked;
1976
1977 /* OOM is global, do not handle */
1978 if (!memcg)
1979 return false;
1980
1981 if (!handle)
1982 goto cleanup;
1983
1984 owait.memcg = memcg;
1985 owait.wait.flags = 0;
1986 owait.wait.func = memcg_oom_wake_function;
1987 owait.wait.private = current;
1988 INIT_LIST_HEAD(&owait.wait.entry);
1989
1990 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1991 mem_cgroup_mark_under_oom(memcg);
1992
1993 locked = mem_cgroup_oom_trylock(memcg);
1994
1995 if (locked)
1996 mem_cgroup_oom_notify(memcg);
1997
1998 if (locked && !memcg->oom_kill_disable) {
1999 mem_cgroup_unmark_under_oom(memcg);
2000 finish_wait(&memcg_oom_waitq, &owait.wait);
2001 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2002 current->memcg_oom_order);
2003 } else {
2004 schedule();
2005 mem_cgroup_unmark_under_oom(memcg);
2006 finish_wait(&memcg_oom_waitq, &owait.wait);
2007 }
2008
2009 if (locked) {
2010 mem_cgroup_oom_unlock(memcg);
2011 /*
2012 * There is no guarantee that an OOM-lock contender
2013 * sees the wakeups triggered by the OOM kill
2014 * uncharges. Wake any sleepers explicitely.
2015 */
2016 memcg_oom_recover(memcg);
2017 }
2018cleanup:
2019 current->memcg_in_oom = NULL;
2020 css_put(&memcg->css);
2021 return true;
2022}
2023
2024/**
2025 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2026 * @victim: task to be killed by the OOM killer
2027 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2028 *
2029 * Returns a pointer to a memory cgroup, which has to be cleaned up
2030 * by killing all belonging OOM-killable tasks.
2031 *
2032 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2033 */
2034struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2035 struct mem_cgroup *oom_domain)
2036{
2037 struct mem_cgroup *oom_group = NULL;
2038 struct mem_cgroup *memcg;
2039
2040 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2041 return NULL;
2042
2043 if (!oom_domain)
2044 oom_domain = root_mem_cgroup;
2045
2046 rcu_read_lock();
2047
2048 memcg = mem_cgroup_from_task(victim);
2049 if (memcg == root_mem_cgroup)
2050 goto out;
2051
2052 /*
2053 * Traverse the memory cgroup hierarchy from the victim task's
2054 * cgroup up to the OOMing cgroup (or root) to find the
2055 * highest-level memory cgroup with oom.group set.
2056 */
2057 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2058 if (memcg->oom_group)
2059 oom_group = memcg;
2060
2061 if (memcg == oom_domain)
2062 break;
2063 }
2064
2065 if (oom_group)
2066 css_get(&oom_group->css);
2067out:
2068 rcu_read_unlock();
2069
2070 return oom_group;
2071}
2072
2073void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2074{
2075 pr_info("Tasks in ");
2076 pr_cont_cgroup_path(memcg->css.cgroup);
2077 pr_cont(" are going to be killed due to memory.oom.group set\n");
2078}
2079
2080/**
2081 * lock_page_memcg - lock a page->mem_cgroup binding
2082 * @page: the page
2083 *
2084 * This function protects unlocked LRU pages from being moved to
2085 * another cgroup.
2086 *
2087 * It ensures lifetime of the returned memcg. Caller is responsible
2088 * for the lifetime of the page; __unlock_page_memcg() is available
2089 * when @page might get freed inside the locked section.
2090 */
2091struct mem_cgroup *lock_page_memcg(struct page *page)
2092{
2093 struct mem_cgroup *memcg;
2094 unsigned long flags;
2095
2096 /*
2097 * The RCU lock is held throughout the transaction. The fast
2098 * path can get away without acquiring the memcg->move_lock
2099 * because page moving starts with an RCU grace period.
2100 *
2101 * The RCU lock also protects the memcg from being freed when
2102 * the page state that is going to change is the only thing
2103 * preventing the page itself from being freed. E.g. writeback
2104 * doesn't hold a page reference and relies on PG_writeback to
2105 * keep off truncation, migration and so forth.
2106 */
2107 rcu_read_lock();
2108
2109 if (mem_cgroup_disabled())
2110 return NULL;
2111again:
2112 memcg = page->mem_cgroup;
2113 if (unlikely(!memcg))
2114 return NULL;
2115
2116 if (atomic_read(&memcg->moving_account) <= 0)
2117 return memcg;
2118
2119 spin_lock_irqsave(&memcg->move_lock, flags);
2120 if (memcg != page->mem_cgroup) {
2121 spin_unlock_irqrestore(&memcg->move_lock, flags);
2122 goto again;
2123 }
2124
2125 /*
2126 * When charge migration first begins, we can have locked and
2127 * unlocked page stat updates happening concurrently. Track
2128 * the task who has the lock for unlock_page_memcg().
2129 */
2130 memcg->move_lock_task = current;
2131 memcg->move_lock_flags = flags;
2132
2133 return memcg;
2134}
2135EXPORT_SYMBOL(lock_page_memcg);
2136
2137/**
2138 * __unlock_page_memcg - unlock and unpin a memcg
2139 * @memcg: the memcg
2140 *
2141 * Unlock and unpin a memcg returned by lock_page_memcg().
2142 */
2143void __unlock_page_memcg(struct mem_cgroup *memcg)
2144{
2145 if (memcg && memcg->move_lock_task == current) {
2146 unsigned long flags = memcg->move_lock_flags;
2147
2148 memcg->move_lock_task = NULL;
2149 memcg->move_lock_flags = 0;
2150
2151 spin_unlock_irqrestore(&memcg->move_lock, flags);
2152 }
2153
2154 rcu_read_unlock();
2155}
2156
2157/**
2158 * unlock_page_memcg - unlock a page->mem_cgroup binding
2159 * @page: the page
2160 */
2161void unlock_page_memcg(struct page *page)
2162{
2163 __unlock_page_memcg(page->mem_cgroup);
2164}
2165EXPORT_SYMBOL(unlock_page_memcg);
2166
2167struct memcg_stock_pcp {
2168 struct mem_cgroup *cached; /* this never be root cgroup */
2169 unsigned int nr_pages;
2170 struct work_struct work;
2171 unsigned long flags;
2172#define FLUSHING_CACHED_CHARGE 0
2173};
2174static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2175static DEFINE_MUTEX(percpu_charge_mutex);
2176
2177/**
2178 * consume_stock: Try to consume stocked charge on this cpu.
2179 * @memcg: memcg to consume from.
2180 * @nr_pages: how many pages to charge.
2181 *
2182 * The charges will only happen if @memcg matches the current cpu's memcg
2183 * stock, and at least @nr_pages are available in that stock. Failure to
2184 * service an allocation will refill the stock.
2185 *
2186 * returns true if successful, false otherwise.
2187 */
2188static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2189{
2190 struct memcg_stock_pcp *stock;
2191 unsigned long flags;
2192 bool ret = false;
2193
2194 if (nr_pages > MEMCG_CHARGE_BATCH)
2195 return ret;
2196
2197 local_irq_save(flags);
2198
2199 stock = this_cpu_ptr(&memcg_stock);
2200 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2201 stock->nr_pages -= nr_pages;
2202 ret = true;
2203 }
2204
2205 local_irq_restore(flags);
2206
2207 return ret;
2208}
2209
2210/*
2211 * Returns stocks cached in percpu and reset cached information.
2212 */
2213static void drain_stock(struct memcg_stock_pcp *stock)
2214{
2215 struct mem_cgroup *old = stock->cached;
2216
2217 if (!old)
2218 return;
2219
2220 if (stock->nr_pages) {
2221 page_counter_uncharge(&old->memory, stock->nr_pages);
2222 if (do_memsw_account())
2223 page_counter_uncharge(&old->memsw, stock->nr_pages);
2224 css_put_many(&old->css, stock->nr_pages);
2225 stock->nr_pages = 0;
2226 }
2227
2228 css_put(&old->css);
2229 stock->cached = NULL;
2230}
2231
2232static void drain_local_stock(struct work_struct *dummy)
2233{
2234 struct memcg_stock_pcp *stock;
2235 unsigned long flags;
2236
2237 /*
2238 * The only protection from memory hotplug vs. drain_stock races is
2239 * that we always operate on local CPU stock here with IRQ disabled
2240 */
2241 local_irq_save(flags);
2242
2243 stock = this_cpu_ptr(&memcg_stock);
2244 drain_stock(stock);
2245 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2246
2247 local_irq_restore(flags);
2248}
2249
2250/*
2251 * Cache charges(val) to local per_cpu area.
2252 * This will be consumed by consume_stock() function, later.
2253 */
2254static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2255{
2256 struct memcg_stock_pcp *stock;
2257 unsigned long flags;
2258
2259 local_irq_save(flags);
2260
2261 stock = this_cpu_ptr(&memcg_stock);
2262 if (stock->cached != memcg) { /* reset if necessary */
2263 drain_stock(stock);
2264 css_get(&memcg->css);
2265 stock->cached = memcg;
2266 }
2267 stock->nr_pages += nr_pages;
2268
2269 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2270 drain_stock(stock);
2271
2272 local_irq_restore(flags);
2273}
2274
2275/*
2276 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2277 * of the hierarchy under it.
2278 */
2279static void drain_all_stock(struct mem_cgroup *root_memcg)
2280{
2281 int cpu, curcpu;
2282
2283 /* If someone's already draining, avoid adding running more workers. */
2284 if (!mutex_trylock(&percpu_charge_mutex))
2285 return;
2286 /*
2287 * Notify other cpus that system-wide "drain" is running
2288 * We do not care about races with the cpu hotplug because cpu down
2289 * as well as workers from this path always operate on the local
2290 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2291 */
2292 curcpu = get_cpu();
2293 for_each_online_cpu(cpu) {
2294 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2295 struct mem_cgroup *memcg;
2296 bool flush = false;
2297
2298 rcu_read_lock();
2299 memcg = stock->cached;
2300 if (memcg && stock->nr_pages &&
2301 mem_cgroup_is_descendant(memcg, root_memcg))
2302 flush = true;
2303 rcu_read_unlock();
2304
2305 if (flush &&
2306 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2307 if (cpu == curcpu)
2308 drain_local_stock(&stock->work);
2309 else
2310 schedule_work_on(cpu, &stock->work);
2311 }
2312 }
2313 put_cpu();
2314 mutex_unlock(&percpu_charge_mutex);
2315}
2316
2317static int memcg_hotplug_cpu_dead(unsigned int cpu)
2318{
2319 struct memcg_stock_pcp *stock;
2320 struct mem_cgroup *memcg, *mi;
2321
2322 stock = &per_cpu(memcg_stock, cpu);
2323 drain_stock(stock);
2324
2325 for_each_mem_cgroup(memcg) {
2326 int i;
2327
2328 for (i = 0; i < MEMCG_NR_STAT; i++) {
2329 int nid;
2330 long x;
2331
2332 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2333 if (x)
2334 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2335 atomic_long_add(x, &memcg->vmstats[i]);
2336
2337 if (i >= NR_VM_NODE_STAT_ITEMS)
2338 continue;
2339
2340 for_each_node(nid) {
2341 struct mem_cgroup_per_node *pn;
2342
2343 pn = mem_cgroup_nodeinfo(memcg, nid);
2344 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2345 if (x)
2346 do {
2347 atomic_long_add(x, &pn->lruvec_stat[i]);
2348 } while ((pn = parent_nodeinfo(pn, nid)));
2349 }
2350 }
2351
2352 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2353 long x;
2354
2355 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2356 if (x)
2357 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2358 atomic_long_add(x, &memcg->vmevents[i]);
2359 }
2360 }
2361
2362 return 0;
2363}
2364
2365static void reclaim_high(struct mem_cgroup *memcg,
2366 unsigned int nr_pages,
2367 gfp_t gfp_mask)
2368{
2369 do {
2370 if (page_counter_read(&memcg->memory) <= memcg->high)
2371 continue;
2372 memcg_memory_event(memcg, MEMCG_HIGH);
2373 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2374 } while ((memcg = parent_mem_cgroup(memcg)));
2375}
2376
2377static void high_work_func(struct work_struct *work)
2378{
2379 struct mem_cgroup *memcg;
2380
2381 memcg = container_of(work, struct mem_cgroup, high_work);
2382 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2383}
2384
2385/*
2386 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2387 * enough to still cause a significant slowdown in most cases, while still
2388 * allowing diagnostics and tracing to proceed without becoming stuck.
2389 */
2390#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2391
2392/*
2393 * When calculating the delay, we use these either side of the exponentiation to
2394 * maintain precision and scale to a reasonable number of jiffies (see the table
2395 * below.
2396 *
2397 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2398 * overage ratio to a delay.
2399 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2400 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2401 * to produce a reasonable delay curve.
2402 *
2403 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2404 * reasonable delay curve compared to precision-adjusted overage, not
2405 * penalising heavily at first, but still making sure that growth beyond the
2406 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2407 * example, with a high of 100 megabytes:
2408 *
2409 * +-------+------------------------+
2410 * | usage | time to allocate in ms |
2411 * +-------+------------------------+
2412 * | 100M | 0 |
2413 * | 101M | 6 |
2414 * | 102M | 25 |
2415 * | 103M | 57 |
2416 * | 104M | 102 |
2417 * | 105M | 159 |
2418 * | 106M | 230 |
2419 * | 107M | 313 |
2420 * | 108M | 409 |
2421 * | 109M | 518 |
2422 * | 110M | 639 |
2423 * | 111M | 774 |
2424 * | 112M | 921 |
2425 * | 113M | 1081 |
2426 * | 114M | 1254 |
2427 * | 115M | 1439 |
2428 * | 116M | 1638 |
2429 * | 117M | 1849 |
2430 * | 118M | 2000 |
2431 * | 119M | 2000 |
2432 * | 120M | 2000 |
2433 * +-------+------------------------+
2434 */
2435 #define MEMCG_DELAY_PRECISION_SHIFT 20
2436 #define MEMCG_DELAY_SCALING_SHIFT 14
2437
2438/*
2439 * Get the number of jiffies that we should penalise a mischievous cgroup which
2440 * is exceeding its memory.high by checking both it and its ancestors.
2441 */
2442static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2443 unsigned int nr_pages)
2444{
2445 unsigned long penalty_jiffies;
2446 u64 max_overage = 0;
2447
2448 do {
2449 unsigned long usage, high;
2450 u64 overage;
2451
2452 usage = page_counter_read(&memcg->memory);
2453 high = READ_ONCE(memcg->high);
2454
2455 if (usage <= high)
2456 continue;
2457
2458 /*
2459 * Prevent division by 0 in overage calculation by acting as if
2460 * it was a threshold of 1 page
2461 */
2462 high = max(high, 1UL);
2463
2464 overage = usage - high;
2465 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2466 overage = div64_u64(overage, high);
2467
2468 if (overage > max_overage)
2469 max_overage = overage;
2470 } while ((memcg = parent_mem_cgroup(memcg)) &&
2471 !mem_cgroup_is_root(memcg));
2472
2473 if (!max_overage)
2474 return 0;
2475
2476 /*
2477 * We use overage compared to memory.high to calculate the number of
2478 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2479 * fairly lenient on small overages, and increasingly harsh when the
2480 * memcg in question makes it clear that it has no intention of stopping
2481 * its crazy behaviour, so we exponentially increase the delay based on
2482 * overage amount.
2483 */
2484 penalty_jiffies = max_overage * max_overage * HZ;
2485 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2486 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2487
2488 /*
2489 * Factor in the task's own contribution to the overage, such that four
2490 * N-sized allocations are throttled approximately the same as one
2491 * 4N-sized allocation.
2492 *
2493 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2494 * larger the current charge patch is than that.
2495 */
2496 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2497
2498 /*
2499 * Clamp the max delay per usermode return so as to still keep the
2500 * application moving forwards and also permit diagnostics, albeit
2501 * extremely slowly.
2502 */
2503 return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2504}
2505
2506/*
2507 * Scheduled by try_charge() to be executed from the userland return path
2508 * and reclaims memory over the high limit.
2509 */
2510void mem_cgroup_handle_over_high(void)
2511{
2512 unsigned long penalty_jiffies;
2513 unsigned long pflags;
2514 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2515 struct mem_cgroup *memcg;
2516
2517 if (likely(!nr_pages))
2518 return;
2519
2520 memcg = get_mem_cgroup_from_mm(current->mm);
2521 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2522 current->memcg_nr_pages_over_high = 0;
2523
2524 /*
2525 * memory.high is breached and reclaim is unable to keep up. Throttle
2526 * allocators proactively to slow down excessive growth.
2527 */
2528 penalty_jiffies = calculate_high_delay(memcg, nr_pages);
2529
2530 /*
2531 * Don't sleep if the amount of jiffies this memcg owes us is so low
2532 * that it's not even worth doing, in an attempt to be nice to those who
2533 * go only a small amount over their memory.high value and maybe haven't
2534 * been aggressively reclaimed enough yet.
2535 */
2536 if (penalty_jiffies <= HZ / 100)
2537 goto out;
2538
2539 /*
2540 * If we exit early, we're guaranteed to die (since
2541 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2542 * need to account for any ill-begotten jiffies to pay them off later.
2543 */
2544 psi_memstall_enter(&pflags);
2545 schedule_timeout_killable(penalty_jiffies);
2546 psi_memstall_leave(&pflags);
2547
2548out:
2549 css_put(&memcg->css);
2550}
2551
2552static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2553 unsigned int nr_pages)
2554{
2555 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2556 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2557 struct mem_cgroup *mem_over_limit;
2558 struct page_counter *counter;
2559 unsigned long nr_reclaimed;
2560 bool may_swap = true;
2561 bool drained = false;
2562 enum oom_status oom_status;
2563
2564 if (mem_cgroup_is_root(memcg))
2565 return 0;
2566retry:
2567 if (consume_stock(memcg, nr_pages))
2568 return 0;
2569
2570 if (!do_memsw_account() ||
2571 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2572 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2573 goto done_restock;
2574 if (do_memsw_account())
2575 page_counter_uncharge(&memcg->memsw, batch);
2576 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2577 } else {
2578 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2579 may_swap = false;
2580 }
2581
2582 if (batch > nr_pages) {
2583 batch = nr_pages;
2584 goto retry;
2585 }
2586
2587 /*
2588 * Memcg doesn't have a dedicated reserve for atomic
2589 * allocations. But like the global atomic pool, we need to
2590 * put the burden of reclaim on regular allocation requests
2591 * and let these go through as privileged allocations.
2592 */
2593 if (gfp_mask & __GFP_ATOMIC)
2594 goto force;
2595
2596 /*
2597 * Unlike in global OOM situations, memcg is not in a physical
2598 * memory shortage. Allow dying and OOM-killed tasks to
2599 * bypass the last charges so that they can exit quickly and
2600 * free their memory.
2601 */
2602 if (unlikely(should_force_charge()))
2603 goto force;
2604
2605 /*
2606 * Prevent unbounded recursion when reclaim operations need to
2607 * allocate memory. This might exceed the limits temporarily,
2608 * but we prefer facilitating memory reclaim and getting back
2609 * under the limit over triggering OOM kills in these cases.
2610 */
2611 if (unlikely(current->flags & PF_MEMALLOC))
2612 goto force;
2613
2614 if (unlikely(task_in_memcg_oom(current)))
2615 goto nomem;
2616
2617 if (!gfpflags_allow_blocking(gfp_mask))
2618 goto nomem;
2619
2620 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2621
2622 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2623 gfp_mask, may_swap);
2624
2625 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2626 goto retry;
2627
2628 if (!drained) {
2629 drain_all_stock(mem_over_limit);
2630 drained = true;
2631 goto retry;
2632 }
2633
2634 if (gfp_mask & __GFP_NORETRY)
2635 goto nomem;
2636 /*
2637 * Even though the limit is exceeded at this point, reclaim
2638 * may have been able to free some pages. Retry the charge
2639 * before killing the task.
2640 *
2641 * Only for regular pages, though: huge pages are rather
2642 * unlikely to succeed so close to the limit, and we fall back
2643 * to regular pages anyway in case of failure.
2644 */
2645 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2646 goto retry;
2647 /*
2648 * At task move, charge accounts can be doubly counted. So, it's
2649 * better to wait until the end of task_move if something is going on.
2650 */
2651 if (mem_cgroup_wait_acct_move(mem_over_limit))
2652 goto retry;
2653
2654 if (nr_retries--)
2655 goto retry;
2656
2657 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2658 goto nomem;
2659
2660 if (gfp_mask & __GFP_NOFAIL)
2661 goto force;
2662
2663 if (fatal_signal_pending(current))
2664 goto force;
2665
2666 /*
2667 * keep retrying as long as the memcg oom killer is able to make
2668 * a forward progress or bypass the charge if the oom killer
2669 * couldn't make any progress.
2670 */
2671 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2672 get_order(nr_pages * PAGE_SIZE));
2673 switch (oom_status) {
2674 case OOM_SUCCESS:
2675 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2676 goto retry;
2677 case OOM_FAILED:
2678 goto force;
2679 default:
2680 goto nomem;
2681 }
2682nomem:
2683 if (!(gfp_mask & __GFP_NOFAIL))
2684 return -ENOMEM;
2685force:
2686 /*
2687 * The allocation either can't fail or will lead to more memory
2688 * being freed very soon. Allow memory usage go over the limit
2689 * temporarily by force charging it.
2690 */
2691 page_counter_charge(&memcg->memory, nr_pages);
2692 if (do_memsw_account())
2693 page_counter_charge(&memcg->memsw, nr_pages);
2694 css_get_many(&memcg->css, nr_pages);
2695
2696 return 0;
2697
2698done_restock:
2699 css_get_many(&memcg->css, batch);
2700 if (batch > nr_pages)
2701 refill_stock(memcg, batch - nr_pages);
2702
2703 /*
2704 * If the hierarchy is above the normal consumption range, schedule
2705 * reclaim on returning to userland. We can perform reclaim here
2706 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2707 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2708 * not recorded as it most likely matches current's and won't
2709 * change in the meantime. As high limit is checked again before
2710 * reclaim, the cost of mismatch is negligible.
2711 */
2712 do {
2713 if (page_counter_read(&memcg->memory) > memcg->high) {
2714 /* Don't bother a random interrupted task */
2715 if (in_interrupt()) {
2716 schedule_work(&memcg->high_work);
2717 break;
2718 }
2719 current->memcg_nr_pages_over_high += batch;
2720 set_notify_resume(current);
2721 break;
2722 }
2723 } while ((memcg = parent_mem_cgroup(memcg)));
2724
2725 return 0;
2726}
2727
2728static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2729{
2730 if (mem_cgroup_is_root(memcg))
2731 return;
2732
2733 page_counter_uncharge(&memcg->memory, nr_pages);
2734 if (do_memsw_account())
2735 page_counter_uncharge(&memcg->memsw, nr_pages);
2736
2737 css_put_many(&memcg->css, nr_pages);
2738}
2739
2740static void lock_page_lru(struct page *page, int *isolated)
2741{
2742 pg_data_t *pgdat = page_pgdat(page);
2743
2744 spin_lock_irq(&pgdat->lru_lock);
2745 if (PageLRU(page)) {
2746 struct lruvec *lruvec;
2747
2748 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2749 ClearPageLRU(page);
2750 del_page_from_lru_list(page, lruvec, page_lru(page));
2751 *isolated = 1;
2752 } else
2753 *isolated = 0;
2754}
2755
2756static void unlock_page_lru(struct page *page, int isolated)
2757{
2758 pg_data_t *pgdat = page_pgdat(page);
2759
2760 if (isolated) {
2761 struct lruvec *lruvec;
2762
2763 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2764 VM_BUG_ON_PAGE(PageLRU(page), page);
2765 SetPageLRU(page);
2766 add_page_to_lru_list(page, lruvec, page_lru(page));
2767 }
2768 spin_unlock_irq(&pgdat->lru_lock);
2769}
2770
2771static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2772 bool lrucare)
2773{
2774 int isolated;
2775
2776 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2777
2778 /*
2779 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2780 * may already be on some other mem_cgroup's LRU. Take care of it.
2781 */
2782 if (lrucare)
2783 lock_page_lru(page, &isolated);
2784
2785 /*
2786 * Nobody should be changing or seriously looking at
2787 * page->mem_cgroup at this point:
2788 *
2789 * - the page is uncharged
2790 *
2791 * - the page is off-LRU
2792 *
2793 * - an anonymous fault has exclusive page access, except for
2794 * a locked page table
2795 *
2796 * - a page cache insertion, a swapin fault, or a migration
2797 * have the page locked
2798 */
2799 page->mem_cgroup = memcg;
2800
2801 if (lrucare)
2802 unlock_page_lru(page, isolated);
2803}
2804
2805#ifdef CONFIG_MEMCG_KMEM
2806/*
2807 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2808 *
2809 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2810 * cgroup_mutex, etc.
2811 */
2812struct mem_cgroup *mem_cgroup_from_obj(void *p)
2813{
2814 struct page *page;
2815
2816 if (mem_cgroup_disabled())
2817 return NULL;
2818
2819 page = virt_to_head_page(p);
2820
2821 /*
2822 * Slab pages don't have page->mem_cgroup set because corresponding
2823 * kmem caches can be reparented during the lifetime. That's why
2824 * memcg_from_slab_page() should be used instead.
2825 */
2826 if (PageSlab(page))
2827 return memcg_from_slab_page(page);
2828
2829 /* All other pages use page->mem_cgroup */
2830 return page->mem_cgroup;
2831}
2832
2833static int memcg_alloc_cache_id(void)
2834{
2835 int id, size;
2836 int err;
2837
2838 id = ida_simple_get(&memcg_cache_ida,
2839 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2840 if (id < 0)
2841 return id;
2842
2843 if (id < memcg_nr_cache_ids)
2844 return id;
2845
2846 /*
2847 * There's no space for the new id in memcg_caches arrays,
2848 * so we have to grow them.
2849 */
2850 down_write(&memcg_cache_ids_sem);
2851
2852 size = 2 * (id + 1);
2853 if (size < MEMCG_CACHES_MIN_SIZE)
2854 size = MEMCG_CACHES_MIN_SIZE;
2855 else if (size > MEMCG_CACHES_MAX_SIZE)
2856 size = MEMCG_CACHES_MAX_SIZE;
2857
2858 err = memcg_update_all_caches(size);
2859 if (!err)
2860 err = memcg_update_all_list_lrus(size);
2861 if (!err)
2862 memcg_nr_cache_ids = size;
2863
2864 up_write(&memcg_cache_ids_sem);
2865
2866 if (err) {
2867 ida_simple_remove(&memcg_cache_ida, id);
2868 return err;
2869 }
2870 return id;
2871}
2872
2873static void memcg_free_cache_id(int id)
2874{
2875 ida_simple_remove(&memcg_cache_ida, id);
2876}
2877
2878struct memcg_kmem_cache_create_work {
2879 struct mem_cgroup *memcg;
2880 struct kmem_cache *cachep;
2881 struct work_struct work;
2882};
2883
2884static void memcg_kmem_cache_create_func(struct work_struct *w)
2885{
2886 struct memcg_kmem_cache_create_work *cw =
2887 container_of(w, struct memcg_kmem_cache_create_work, work);
2888 struct mem_cgroup *memcg = cw->memcg;
2889 struct kmem_cache *cachep = cw->cachep;
2890
2891 memcg_create_kmem_cache(memcg, cachep);
2892
2893 css_put(&memcg->css);
2894 kfree(cw);
2895}
2896
2897/*
2898 * Enqueue the creation of a per-memcg kmem_cache.
2899 */
2900static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2901 struct kmem_cache *cachep)
2902{
2903 struct memcg_kmem_cache_create_work *cw;
2904
2905 if (!css_tryget_online(&memcg->css))
2906 return;
2907
2908 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2909 if (!cw) {
2910 css_put(&memcg->css);
2911 return;
2912 }
2913
2914 cw->memcg = memcg;
2915 cw->cachep = cachep;
2916 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2917
2918 queue_work(memcg_kmem_cache_wq, &cw->work);
2919}
2920
2921static inline bool memcg_kmem_bypass(void)
2922{
2923 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2924 return true;
2925 return false;
2926}
2927
2928/**
2929 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2930 * @cachep: the original global kmem cache
2931 *
2932 * Return the kmem_cache we're supposed to use for a slab allocation.
2933 * We try to use the current memcg's version of the cache.
2934 *
2935 * If the cache does not exist yet, if we are the first user of it, we
2936 * create it asynchronously in a workqueue and let the current allocation
2937 * go through with the original cache.
2938 *
2939 * This function takes a reference to the cache it returns to assure it
2940 * won't get destroyed while we are working with it. Once the caller is
2941 * done with it, memcg_kmem_put_cache() must be called to release the
2942 * reference.
2943 */
2944struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2945{
2946 struct mem_cgroup *memcg;
2947 struct kmem_cache *memcg_cachep;
2948 struct memcg_cache_array *arr;
2949 int kmemcg_id;
2950
2951 VM_BUG_ON(!is_root_cache(cachep));
2952
2953 if (memcg_kmem_bypass())
2954 return cachep;
2955
2956 rcu_read_lock();
2957
2958 if (unlikely(current->active_memcg))
2959 memcg = current->active_memcg;
2960 else
2961 memcg = mem_cgroup_from_task(current);
2962
2963 if (!memcg || memcg == root_mem_cgroup)
2964 goto out_unlock;
2965
2966 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2967 if (kmemcg_id < 0)
2968 goto out_unlock;
2969
2970 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2971
2972 /*
2973 * Make sure we will access the up-to-date value. The code updating
2974 * memcg_caches issues a write barrier to match the data dependency
2975 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2976 */
2977 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2978
2979 /*
2980 * If we are in a safe context (can wait, and not in interrupt
2981 * context), we could be be predictable and return right away.
2982 * This would guarantee that the allocation being performed
2983 * already belongs in the new cache.
2984 *
2985 * However, there are some clashes that can arrive from locking.
2986 * For instance, because we acquire the slab_mutex while doing
2987 * memcg_create_kmem_cache, this means no further allocation
2988 * could happen with the slab_mutex held. So it's better to
2989 * defer everything.
2990 *
2991 * If the memcg is dying or memcg_cache is about to be released,
2992 * don't bother creating new kmem_caches. Because memcg_cachep
2993 * is ZEROed as the fist step of kmem offlining, we don't need
2994 * percpu_ref_tryget_live() here. css_tryget_online() check in
2995 * memcg_schedule_kmem_cache_create() will prevent us from
2996 * creation of a new kmem_cache.
2997 */
2998 if (unlikely(!memcg_cachep))
2999 memcg_schedule_kmem_cache_create(memcg, cachep);
3000 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
3001 cachep = memcg_cachep;
3002out_unlock:
3003 rcu_read_unlock();
3004 return cachep;
3005}
3006
3007/**
3008 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
3009 * @cachep: the cache returned by memcg_kmem_get_cache
3010 */
3011void memcg_kmem_put_cache(struct kmem_cache *cachep)
3012{
3013 if (!is_root_cache(cachep))
3014 percpu_ref_put(&cachep->memcg_params.refcnt);
3015}
3016
3017/**
3018 * __memcg_kmem_charge_memcg: charge a kmem page
3019 * @page: page to charge
3020 * @gfp: reclaim mode
3021 * @order: allocation order
3022 * @memcg: memory cgroup to charge
3023 *
3024 * Returns 0 on success, an error code on failure.
3025 */
3026int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
3027 struct mem_cgroup *memcg)
3028{
3029 unsigned int nr_pages = 1 << order;
3030 struct page_counter *counter;
3031 int ret;
3032
3033 ret = try_charge(memcg, gfp, nr_pages);
3034 if (ret)
3035 return ret;
3036
3037 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3038 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3039
3040 /*
3041 * Enforce __GFP_NOFAIL allocation because callers are not
3042 * prepared to see failures and likely do not have any failure
3043 * handling code.
3044 */
3045 if (gfp & __GFP_NOFAIL) {
3046 page_counter_charge(&memcg->kmem, nr_pages);
3047 return 0;
3048 }
3049 cancel_charge(memcg, nr_pages);
3050 return -ENOMEM;
3051 }
3052 return 0;
3053}
3054
3055/**
3056 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
3057 * @page: page to charge
3058 * @gfp: reclaim mode
3059 * @order: allocation order
3060 *
3061 * Returns 0 on success, an error code on failure.
3062 */
3063int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
3064{
3065 struct mem_cgroup *memcg;
3066 int ret = 0;
3067
3068 if (memcg_kmem_bypass())
3069 return 0;
3070
3071 memcg = get_mem_cgroup_from_current();
3072 if (!mem_cgroup_is_root(memcg)) {
3073 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
3074 if (!ret) {
3075 page->mem_cgroup = memcg;
3076 __SetPageKmemcg(page);
3077 }
3078 }
3079 css_put(&memcg->css);
3080 return ret;
3081}
3082
3083/**
3084 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
3085 * @memcg: memcg to uncharge
3086 * @nr_pages: number of pages to uncharge
3087 */
3088void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
3089 unsigned int nr_pages)
3090{
3091 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3092 page_counter_uncharge(&memcg->kmem, nr_pages);
3093
3094 page_counter_uncharge(&memcg->memory, nr_pages);
3095 if (do_memsw_account())
3096 page_counter_uncharge(&memcg->memsw, nr_pages);
3097}
3098/**
3099 * __memcg_kmem_uncharge: uncharge a kmem page
3100 * @page: page to uncharge
3101 * @order: allocation order
3102 */
3103void __memcg_kmem_uncharge(struct page *page, int order)
3104{
3105 struct mem_cgroup *memcg = page->mem_cgroup;
3106 unsigned int nr_pages = 1 << order;
3107
3108 if (!memcg)
3109 return;
3110
3111 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3112 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
3113 page->mem_cgroup = NULL;
3114
3115 /* slab pages do not have PageKmemcg flag set */
3116 if (PageKmemcg(page))
3117 __ClearPageKmemcg(page);
3118
3119 css_put_many(&memcg->css, nr_pages);
3120}
3121#endif /* CONFIG_MEMCG_KMEM */
3122
3123#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3124
3125/*
3126 * Because tail pages are not marked as "used", set it. We're under
3127 * pgdat->lru_lock and migration entries setup in all page mappings.
3128 */
3129void mem_cgroup_split_huge_fixup(struct page *head)
3130{
3131 int i;
3132
3133 if (mem_cgroup_disabled())
3134 return;
3135
3136 for (i = 1; i < HPAGE_PMD_NR; i++)
3137 head[i].mem_cgroup = head->mem_cgroup;
3138
3139 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
3140}
3141#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3142
3143#ifdef CONFIG_MEMCG_SWAP
3144/**
3145 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3146 * @entry: swap entry to be moved
3147 * @from: mem_cgroup which the entry is moved from
3148 * @to: mem_cgroup which the entry is moved to
3149 *
3150 * It succeeds only when the swap_cgroup's record for this entry is the same
3151 * as the mem_cgroup's id of @from.
3152 *
3153 * Returns 0 on success, -EINVAL on failure.
3154 *
3155 * The caller must have charged to @to, IOW, called page_counter_charge() about
3156 * both res and memsw, and called css_get().
3157 */
3158static int mem_cgroup_move_swap_account(swp_entry_t entry,
3159 struct mem_cgroup *from, struct mem_cgroup *to)
3160{
3161 unsigned short old_id, new_id;
3162
3163 old_id = mem_cgroup_id(from);
3164 new_id = mem_cgroup_id(to);
3165
3166 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3167 mod_memcg_state(from, MEMCG_SWAP, -1);
3168 mod_memcg_state(to, MEMCG_SWAP, 1);
3169 return 0;
3170 }
3171 return -EINVAL;
3172}
3173#else
3174static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3175 struct mem_cgroup *from, struct mem_cgroup *to)
3176{
3177 return -EINVAL;
3178}
3179#endif
3180
3181static DEFINE_MUTEX(memcg_max_mutex);
3182
3183static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3184 unsigned long max, bool memsw)
3185{
3186 bool enlarge = false;
3187 bool drained = false;
3188 int ret;
3189 bool limits_invariant;
3190 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3191
3192 do {
3193 if (signal_pending(current)) {
3194 ret = -EINTR;
3195 break;
3196 }
3197
3198 mutex_lock(&memcg_max_mutex);
3199 /*
3200 * Make sure that the new limit (memsw or memory limit) doesn't
3201 * break our basic invariant rule memory.max <= memsw.max.
3202 */
3203 limits_invariant = memsw ? max >= memcg->memory.max :
3204 max <= memcg->memsw.max;
3205 if (!limits_invariant) {
3206 mutex_unlock(&memcg_max_mutex);
3207 ret = -EINVAL;
3208 break;
3209 }
3210 if (max > counter->max)
3211 enlarge = true;
3212 ret = page_counter_set_max(counter, max);
3213 mutex_unlock(&memcg_max_mutex);
3214
3215 if (!ret)
3216 break;
3217
3218 if (!drained) {
3219 drain_all_stock(memcg);
3220 drained = true;
3221 continue;
3222 }
3223
3224 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3225 GFP_KERNEL, !memsw)) {
3226 ret = -EBUSY;
3227 break;
3228 }
3229 } while (true);
3230
3231 if (!ret && enlarge)
3232 memcg_oom_recover(memcg);
3233
3234 return ret;
3235}
3236
3237unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3238 gfp_t gfp_mask,
3239 unsigned long *total_scanned)
3240{
3241 unsigned long nr_reclaimed = 0;
3242 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3243 unsigned long reclaimed;
3244 int loop = 0;
3245 struct mem_cgroup_tree_per_node *mctz;
3246 unsigned long excess;
3247 unsigned long nr_scanned;
3248
3249 if (order > 0)
3250 return 0;
3251
3252 mctz = soft_limit_tree_node(pgdat->node_id);
3253
3254 /*
3255 * Do not even bother to check the largest node if the root
3256 * is empty. Do it lockless to prevent lock bouncing. Races
3257 * are acceptable as soft limit is best effort anyway.
3258 */
3259 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3260 return 0;
3261
3262 /*
3263 * This loop can run a while, specially if mem_cgroup's continuously
3264 * keep exceeding their soft limit and putting the system under
3265 * pressure
3266 */
3267 do {
3268 if (next_mz)
3269 mz = next_mz;
3270 else
3271 mz = mem_cgroup_largest_soft_limit_node(mctz);
3272 if (!mz)
3273 break;
3274
3275 nr_scanned = 0;
3276 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3277 gfp_mask, &nr_scanned);
3278 nr_reclaimed += reclaimed;
3279 *total_scanned += nr_scanned;
3280 spin_lock_irq(&mctz->lock);
3281 __mem_cgroup_remove_exceeded(mz, mctz);
3282
3283 /*
3284 * If we failed to reclaim anything from this memory cgroup
3285 * it is time to move on to the next cgroup
3286 */
3287 next_mz = NULL;
3288 if (!reclaimed)
3289 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3290
3291 excess = soft_limit_excess(mz->memcg);
3292 /*
3293 * One school of thought says that we should not add
3294 * back the node to the tree if reclaim returns 0.
3295 * But our reclaim could return 0, simply because due
3296 * to priority we are exposing a smaller subset of
3297 * memory to reclaim from. Consider this as a longer
3298 * term TODO.
3299 */
3300 /* If excess == 0, no tree ops */
3301 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3302 spin_unlock_irq(&mctz->lock);
3303 css_put(&mz->memcg->css);
3304 loop++;
3305 /*
3306 * Could not reclaim anything and there are no more
3307 * mem cgroups to try or we seem to be looping without
3308 * reclaiming anything.
3309 */
3310 if (!nr_reclaimed &&
3311 (next_mz == NULL ||
3312 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3313 break;
3314 } while (!nr_reclaimed);
3315 if (next_mz)
3316 css_put(&next_mz->memcg->css);
3317 return nr_reclaimed;
3318}
3319
3320/*
3321 * Test whether @memcg has children, dead or alive. Note that this
3322 * function doesn't care whether @memcg has use_hierarchy enabled and
3323 * returns %true if there are child csses according to the cgroup
3324 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3325 */
3326static inline bool memcg_has_children(struct mem_cgroup *memcg)
3327{
3328 bool ret;
3329
3330 rcu_read_lock();
3331 ret = css_next_child(NULL, &memcg->css);
3332 rcu_read_unlock();
3333 return ret;
3334}
3335
3336/*
3337 * Reclaims as many pages from the given memcg as possible.
3338 *
3339 * Caller is responsible for holding css reference for memcg.
3340 */
3341static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3342{
3343 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3344
3345 /* we call try-to-free pages for make this cgroup empty */
3346 lru_add_drain_all();
3347
3348 drain_all_stock(memcg);
3349
3350 /* try to free all pages in this cgroup */
3351 while (nr_retries && page_counter_read(&memcg->memory)) {
3352 int progress;
3353
3354 if (signal_pending(current))
3355 return -EINTR;
3356
3357 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3358 GFP_KERNEL, true);
3359 if (!progress) {
3360 nr_retries--;
3361 /* maybe some writeback is necessary */
3362 congestion_wait(BLK_RW_ASYNC, HZ/10);
3363 }
3364
3365 }
3366
3367 return 0;
3368}
3369
3370static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3371 char *buf, size_t nbytes,
3372 loff_t off)
3373{
3374 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3375
3376 if (mem_cgroup_is_root(memcg))
3377 return -EINVAL;
3378 return mem_cgroup_force_empty(memcg) ?: nbytes;
3379}
3380
3381static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3382 struct cftype *cft)
3383{
3384 return mem_cgroup_from_css(css)->use_hierarchy;
3385}
3386
3387static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3388 struct cftype *cft, u64 val)
3389{
3390 int retval = 0;
3391 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3392 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3393
3394 if (memcg->use_hierarchy == val)
3395 return 0;
3396
3397 /*
3398 * If parent's use_hierarchy is set, we can't make any modifications
3399 * in the child subtrees. If it is unset, then the change can
3400 * occur, provided the current cgroup has no children.
3401 *
3402 * For the root cgroup, parent_mem is NULL, we allow value to be
3403 * set if there are no children.
3404 */
3405 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3406 (val == 1 || val == 0)) {
3407 if (!memcg_has_children(memcg))
3408 memcg->use_hierarchy = val;
3409 else
3410 retval = -EBUSY;
3411 } else
3412 retval = -EINVAL;
3413
3414 return retval;
3415}
3416
3417static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3418{
3419 unsigned long val;
3420
3421 if (mem_cgroup_is_root(memcg)) {
3422 val = memcg_page_state(memcg, MEMCG_CACHE) +
3423 memcg_page_state(memcg, MEMCG_RSS);
3424 if (swap)
3425 val += memcg_page_state(memcg, MEMCG_SWAP);
3426 } else {
3427 if (!swap)
3428 val = page_counter_read(&memcg->memory);
3429 else
3430 val = page_counter_read(&memcg->memsw);
3431 }
3432 return val;
3433}
3434
3435enum {
3436 RES_USAGE,
3437 RES_LIMIT,
3438 RES_MAX_USAGE,
3439 RES_FAILCNT,
3440 RES_SOFT_LIMIT,
3441};
3442
3443static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3444 struct cftype *cft)
3445{
3446 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3447 struct page_counter *counter;
3448
3449 switch (MEMFILE_TYPE(cft->private)) {
3450 case _MEM:
3451 counter = &memcg->memory;
3452 break;
3453 case _MEMSWAP:
3454 counter = &memcg->memsw;
3455 break;
3456 case _KMEM:
3457 counter = &memcg->kmem;
3458 break;
3459 case _TCP:
3460 counter = &memcg->tcpmem;
3461 break;
3462 default:
3463 BUG();
3464 }
3465
3466 switch (MEMFILE_ATTR(cft->private)) {
3467 case RES_USAGE:
3468 if (counter == &memcg->memory)
3469 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3470 if (counter == &memcg->memsw)
3471 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3472 return (u64)page_counter_read(counter) * PAGE_SIZE;
3473 case RES_LIMIT:
3474 return (u64)counter->max * PAGE_SIZE;
3475 case RES_MAX_USAGE:
3476 return (u64)counter->watermark * PAGE_SIZE;
3477 case RES_FAILCNT:
3478 return counter->failcnt;
3479 case RES_SOFT_LIMIT:
3480 return (u64)memcg->soft_limit * PAGE_SIZE;
3481 default:
3482 BUG();
3483 }
3484}
3485
3486static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3487{
3488 unsigned long stat[MEMCG_NR_STAT] = {0};
3489 struct mem_cgroup *mi;
3490 int node, cpu, i;
3491
3492 for_each_online_cpu(cpu)
3493 for (i = 0; i < MEMCG_NR_STAT; i++)
3494 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3495
3496 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3497 for (i = 0; i < MEMCG_NR_STAT; i++)
3498 atomic_long_add(stat[i], &mi->vmstats[i]);
3499
3500 for_each_node(node) {
3501 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3502 struct mem_cgroup_per_node *pi;
3503
3504 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3505 stat[i] = 0;
3506
3507 for_each_online_cpu(cpu)
3508 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3509 stat[i] += per_cpu(
3510 pn->lruvec_stat_cpu->count[i], cpu);
3511
3512 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3513 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3514 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3515 }
3516}
3517
3518static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3519{
3520 unsigned long events[NR_VM_EVENT_ITEMS];
3521 struct mem_cgroup *mi;
3522 int cpu, i;
3523
3524 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3525 events[i] = 0;
3526
3527 for_each_online_cpu(cpu)
3528 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3529 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3530 cpu);
3531
3532 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3533 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3534 atomic_long_add(events[i], &mi->vmevents[i]);
3535}
3536
3537#ifdef CONFIG_MEMCG_KMEM
3538static int memcg_online_kmem(struct mem_cgroup *memcg)
3539{
3540 int memcg_id;
3541
3542 if (cgroup_memory_nokmem)
3543 return 0;
3544
3545 BUG_ON(memcg->kmemcg_id >= 0);
3546 BUG_ON(memcg->kmem_state);
3547
3548 memcg_id = memcg_alloc_cache_id();
3549 if (memcg_id < 0)
3550 return memcg_id;
3551
3552 static_branch_inc(&memcg_kmem_enabled_key);
3553 /*
3554 * A memory cgroup is considered kmem-online as soon as it gets
3555 * kmemcg_id. Setting the id after enabling static branching will
3556 * guarantee no one starts accounting before all call sites are
3557 * patched.
3558 */
3559 memcg->kmemcg_id = memcg_id;
3560 memcg->kmem_state = KMEM_ONLINE;
3561 INIT_LIST_HEAD(&memcg->kmem_caches);
3562
3563 return 0;
3564}
3565
3566static void memcg_offline_kmem(struct mem_cgroup *memcg)
3567{
3568 struct cgroup_subsys_state *css;
3569 struct mem_cgroup *parent, *child;
3570 int kmemcg_id;
3571
3572 if (memcg->kmem_state != KMEM_ONLINE)
3573 return;
3574 /*
3575 * Clear the online state before clearing memcg_caches array
3576 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3577 * guarantees that no cache will be created for this cgroup
3578 * after we are done (see memcg_create_kmem_cache()).
3579 */
3580 memcg->kmem_state = KMEM_ALLOCATED;
3581
3582 parent = parent_mem_cgroup(memcg);
3583 if (!parent)
3584 parent = root_mem_cgroup;
3585
3586 /*
3587 * Deactivate and reparent kmem_caches.
3588 */
3589 memcg_deactivate_kmem_caches(memcg, parent);
3590
3591 kmemcg_id = memcg->kmemcg_id;
3592 BUG_ON(kmemcg_id < 0);
3593
3594 /*
3595 * Change kmemcg_id of this cgroup and all its descendants to the
3596 * parent's id, and then move all entries from this cgroup's list_lrus
3597 * to ones of the parent. After we have finished, all list_lrus
3598 * corresponding to this cgroup are guaranteed to remain empty. The
3599 * ordering is imposed by list_lru_node->lock taken by
3600 * memcg_drain_all_list_lrus().
3601 */
3602 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3603 css_for_each_descendant_pre(css, &memcg->css) {
3604 child = mem_cgroup_from_css(css);
3605 BUG_ON(child->kmemcg_id != kmemcg_id);
3606 child->kmemcg_id = parent->kmemcg_id;
3607 if (!memcg->use_hierarchy)
3608 break;
3609 }
3610 rcu_read_unlock();
3611
3612 memcg_drain_all_list_lrus(kmemcg_id, parent);
3613
3614 memcg_free_cache_id(kmemcg_id);
3615}
3616
3617static void memcg_free_kmem(struct mem_cgroup *memcg)
3618{
3619 /* css_alloc() failed, offlining didn't happen */
3620 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3621 memcg_offline_kmem(memcg);
3622
3623 if (memcg->kmem_state == KMEM_ALLOCATED) {
3624 WARN_ON(!list_empty(&memcg->kmem_caches));
3625 static_branch_dec(&memcg_kmem_enabled_key);
3626 }
3627}
3628#else
3629static int memcg_online_kmem(struct mem_cgroup *memcg)
3630{
3631 return 0;
3632}
3633static void memcg_offline_kmem(struct mem_cgroup *memcg)
3634{
3635}
3636static void memcg_free_kmem(struct mem_cgroup *memcg)
3637{
3638}
3639#endif /* CONFIG_MEMCG_KMEM */
3640
3641static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3642 unsigned long max)
3643{
3644 int ret;
3645
3646 mutex_lock(&memcg_max_mutex);
3647 ret = page_counter_set_max(&memcg->kmem, max);
3648 mutex_unlock(&memcg_max_mutex);
3649 return ret;
3650}
3651
3652static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3653{
3654 int ret;
3655
3656 mutex_lock(&memcg_max_mutex);
3657
3658 ret = page_counter_set_max(&memcg->tcpmem, max);
3659 if (ret)
3660 goto out;
3661
3662 if (!memcg->tcpmem_active) {
3663 /*
3664 * The active flag needs to be written after the static_key
3665 * update. This is what guarantees that the socket activation
3666 * function is the last one to run. See mem_cgroup_sk_alloc()
3667 * for details, and note that we don't mark any socket as
3668 * belonging to this memcg until that flag is up.
3669 *
3670 * We need to do this, because static_keys will span multiple
3671 * sites, but we can't control their order. If we mark a socket
3672 * as accounted, but the accounting functions are not patched in
3673 * yet, we'll lose accounting.
3674 *
3675 * We never race with the readers in mem_cgroup_sk_alloc(),
3676 * because when this value change, the code to process it is not
3677 * patched in yet.
3678 */
3679 static_branch_inc(&memcg_sockets_enabled_key);
3680 memcg->tcpmem_active = true;
3681 }
3682out:
3683 mutex_unlock(&memcg_max_mutex);
3684 return ret;
3685}
3686
3687/*
3688 * The user of this function is...
3689 * RES_LIMIT.
3690 */
3691static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3692 char *buf, size_t nbytes, loff_t off)
3693{
3694 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3695 unsigned long nr_pages;
3696 int ret;
3697
3698 buf = strstrip(buf);
3699 ret = page_counter_memparse(buf, "-1", &nr_pages);
3700 if (ret)
3701 return ret;
3702
3703 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3704 case RES_LIMIT:
3705 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3706 ret = -EINVAL;
3707 break;
3708 }
3709 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3710 case _MEM:
3711 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3712 break;
3713 case _MEMSWAP:
3714 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3715 break;
3716 case _KMEM:
3717 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3718 "Please report your usecase to linux-mm@kvack.org if you "
3719 "depend on this functionality.\n");
3720 ret = memcg_update_kmem_max(memcg, nr_pages);
3721 break;
3722 case _TCP:
3723 ret = memcg_update_tcp_max(memcg, nr_pages);
3724 break;
3725 }
3726 break;
3727 case RES_SOFT_LIMIT:
3728 memcg->soft_limit = nr_pages;
3729 ret = 0;
3730 break;
3731 }
3732 return ret ?: nbytes;
3733}
3734
3735static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3736 size_t nbytes, loff_t off)
3737{
3738 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3739 struct page_counter *counter;
3740
3741 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3742 case _MEM:
3743 counter = &memcg->memory;
3744 break;
3745 case _MEMSWAP:
3746 counter = &memcg->memsw;
3747 break;
3748 case _KMEM:
3749 counter = &memcg->kmem;
3750 break;
3751 case _TCP:
3752 counter = &memcg->tcpmem;
3753 break;
3754 default:
3755 BUG();
3756 }
3757
3758 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3759 case RES_MAX_USAGE:
3760 page_counter_reset_watermark(counter);
3761 break;
3762 case RES_FAILCNT:
3763 counter->failcnt = 0;
3764 break;
3765 default:
3766 BUG();
3767 }
3768
3769 return nbytes;
3770}
3771
3772static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3773 struct cftype *cft)
3774{
3775 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3776}
3777
3778#ifdef CONFIG_MMU
3779static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3780 struct cftype *cft, u64 val)
3781{
3782 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3783
3784 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3785 "Please report your usecase to linux-mm@kvack.org if you "
3786 "depend on this functionality.\n");
3787
3788 if (val & ~MOVE_MASK)
3789 return -EINVAL;
3790
3791 /*
3792 * No kind of locking is needed in here, because ->can_attach() will
3793 * check this value once in the beginning of the process, and then carry
3794 * on with stale data. This means that changes to this value will only
3795 * affect task migrations starting after the change.
3796 */
3797 memcg->move_charge_at_immigrate = val;
3798 return 0;
3799}
3800#else
3801static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3802 struct cftype *cft, u64 val)
3803{
3804 return -ENOSYS;
3805}
3806#endif
3807
3808#ifdef CONFIG_NUMA
3809
3810#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3811#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3812#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3813
3814static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3815 int nid, unsigned int lru_mask)
3816{
3817 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3818 unsigned long nr = 0;
3819 enum lru_list lru;
3820
3821 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3822
3823 for_each_lru(lru) {
3824 if (!(BIT(lru) & lru_mask))
3825 continue;
3826 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3827 }
3828 return nr;
3829}
3830
3831static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3832 unsigned int lru_mask)
3833{
3834 unsigned long nr = 0;
3835 enum lru_list lru;
3836
3837 for_each_lru(lru) {
3838 if (!(BIT(lru) & lru_mask))
3839 continue;
3840 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3841 }
3842 return nr;
3843}
3844
3845static int memcg_numa_stat_show(struct seq_file *m, void *v)
3846{
3847 struct numa_stat {
3848 const char *name;
3849 unsigned int lru_mask;
3850 };
3851
3852 static const struct numa_stat stats[] = {
3853 { "total", LRU_ALL },
3854 { "file", LRU_ALL_FILE },
3855 { "anon", LRU_ALL_ANON },
3856 { "unevictable", BIT(LRU_UNEVICTABLE) },
3857 };
3858 const struct numa_stat *stat;
3859 int nid;
3860 unsigned long nr;
3861 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3862
3863 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3864 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3865 seq_printf(m, "%s=%lu", stat->name, nr);
3866 for_each_node_state(nid, N_MEMORY) {
3867 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3868 stat->lru_mask);
3869 seq_printf(m, " N%d=%lu", nid, nr);
3870 }
3871 seq_putc(m, '\n');
3872 }
3873
3874 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3875 struct mem_cgroup *iter;
3876
3877 nr = 0;
3878 for_each_mem_cgroup_tree(iter, memcg)
3879 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3880 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3881 for_each_node_state(nid, N_MEMORY) {
3882 nr = 0;
3883 for_each_mem_cgroup_tree(iter, memcg)
3884 nr += mem_cgroup_node_nr_lru_pages(
3885 iter, nid, stat->lru_mask);
3886 seq_printf(m, " N%d=%lu", nid, nr);
3887 }
3888 seq_putc(m, '\n');
3889 }
3890
3891 return 0;
3892}
3893#endif /* CONFIG_NUMA */
3894
3895static const unsigned int memcg1_stats[] = {
3896 MEMCG_CACHE,
3897 MEMCG_RSS,
3898 MEMCG_RSS_HUGE,
3899 NR_SHMEM,
3900 NR_FILE_MAPPED,
3901 NR_FILE_DIRTY,
3902 NR_WRITEBACK,
3903 MEMCG_SWAP,
3904};
3905
3906static const char *const memcg1_stat_names[] = {
3907 "cache",
3908 "rss",
3909 "rss_huge",
3910 "shmem",
3911 "mapped_file",
3912 "dirty",
3913 "writeback",
3914 "swap",
3915};
3916
3917/* Universal VM events cgroup1 shows, original sort order */
3918static const unsigned int memcg1_events[] = {
3919 PGPGIN,
3920 PGPGOUT,
3921 PGFAULT,
3922 PGMAJFAULT,
3923};
3924
3925static const char *const memcg1_event_names[] = {
3926 "pgpgin",
3927 "pgpgout",
3928 "pgfault",
3929 "pgmajfault",
3930};
3931
3932static int memcg_stat_show(struct seq_file *m, void *v)
3933{
3934 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3935 unsigned long memory, memsw;
3936 struct mem_cgroup *mi;
3937 unsigned int i;
3938
3939 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3940 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3941
3942 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3943 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3944 continue;
3945 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3946 memcg_page_state_local(memcg, memcg1_stats[i]) *
3947 PAGE_SIZE);
3948 }
3949
3950 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3951 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3952 memcg_events_local(memcg, memcg1_events[i]));
3953
3954 for (i = 0; i < NR_LRU_LISTS; i++)
3955 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3956 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3957 PAGE_SIZE);
3958
3959 /* Hierarchical information */
3960 memory = memsw = PAGE_COUNTER_MAX;
3961 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3962 memory = min(memory, mi->memory.max);
3963 memsw = min(memsw, mi->memsw.max);
3964 }
3965 seq_printf(m, "hierarchical_memory_limit %llu\n",
3966 (u64)memory * PAGE_SIZE);
3967 if (do_memsw_account())
3968 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3969 (u64)memsw * PAGE_SIZE);
3970
3971 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3972 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3973 continue;
3974 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3975 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3976 PAGE_SIZE);
3977 }
3978
3979 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3980 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3981 (u64)memcg_events(memcg, memcg1_events[i]));
3982
3983 for (i = 0; i < NR_LRU_LISTS; i++)
3984 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3985 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3986 PAGE_SIZE);
3987
3988#ifdef CONFIG_DEBUG_VM
3989 {
3990 pg_data_t *pgdat;
3991 struct mem_cgroup_per_node *mz;
3992 struct zone_reclaim_stat *rstat;
3993 unsigned long recent_rotated[2] = {0, 0};
3994 unsigned long recent_scanned[2] = {0, 0};
3995
3996 for_each_online_pgdat(pgdat) {
3997 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3998 rstat = &mz->lruvec.reclaim_stat;
3999
4000 recent_rotated[0] += rstat->recent_rotated[0];
4001 recent_rotated[1] += rstat->recent_rotated[1];
4002 recent_scanned[0] += rstat->recent_scanned[0];
4003 recent_scanned[1] += rstat->recent_scanned[1];
4004 }
4005 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4006 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4007 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4008 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4009 }
4010#endif
4011
4012 return 0;
4013}
4014
4015static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4016 struct cftype *cft)
4017{
4018 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4019
4020 return mem_cgroup_swappiness(memcg);
4021}
4022
4023static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4024 struct cftype *cft, u64 val)
4025{
4026 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4027
4028 if (val > 100)
4029 return -EINVAL;
4030
4031 if (css->parent)
4032 memcg->swappiness = val;
4033 else
4034 vm_swappiness = val;
4035
4036 return 0;
4037}
4038
4039static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4040{
4041 struct mem_cgroup_threshold_ary *t;
4042 unsigned long usage;
4043 int i;
4044
4045 rcu_read_lock();
4046 if (!swap)
4047 t = rcu_dereference(memcg->thresholds.primary);
4048 else
4049 t = rcu_dereference(memcg->memsw_thresholds.primary);
4050
4051 if (!t)
4052 goto unlock;
4053
4054 usage = mem_cgroup_usage(memcg, swap);
4055
4056 /*
4057 * current_threshold points to threshold just below or equal to usage.
4058 * If it's not true, a threshold was crossed after last
4059 * call of __mem_cgroup_threshold().
4060 */
4061 i = t->current_threshold;
4062
4063 /*
4064 * Iterate backward over array of thresholds starting from
4065 * current_threshold and check if a threshold is crossed.
4066 * If none of thresholds below usage is crossed, we read
4067 * only one element of the array here.
4068 */
4069 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4070 eventfd_signal(t->entries[i].eventfd, 1);
4071
4072 /* i = current_threshold + 1 */
4073 i++;
4074
4075 /*
4076 * Iterate forward over array of thresholds starting from
4077 * current_threshold+1 and check if a threshold is crossed.
4078 * If none of thresholds above usage is crossed, we read
4079 * only one element of the array here.
4080 */
4081 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4082 eventfd_signal(t->entries[i].eventfd, 1);
4083
4084 /* Update current_threshold */
4085 t->current_threshold = i - 1;
4086unlock:
4087 rcu_read_unlock();
4088}
4089
4090static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4091{
4092 while (memcg) {
4093 __mem_cgroup_threshold(memcg, false);
4094 if (do_memsw_account())
4095 __mem_cgroup_threshold(memcg, true);
4096
4097 memcg = parent_mem_cgroup(memcg);
4098 }
4099}
4100
4101static int compare_thresholds(const void *a, const void *b)
4102{
4103 const struct mem_cgroup_threshold *_a = a;
4104 const struct mem_cgroup_threshold *_b = b;
4105
4106 if (_a->threshold > _b->threshold)
4107 return 1;
4108
4109 if (_a->threshold < _b->threshold)
4110 return -1;
4111
4112 return 0;
4113}
4114
4115static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4116{
4117 struct mem_cgroup_eventfd_list *ev;
4118
4119 spin_lock(&memcg_oom_lock);
4120
4121 list_for_each_entry(ev, &memcg->oom_notify, list)
4122 eventfd_signal(ev->eventfd, 1);
4123
4124 spin_unlock(&memcg_oom_lock);
4125 return 0;
4126}
4127
4128static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4129{
4130 struct mem_cgroup *iter;
4131
4132 for_each_mem_cgroup_tree(iter, memcg)
4133 mem_cgroup_oom_notify_cb(iter);
4134}
4135
4136static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4137 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4138{
4139 struct mem_cgroup_thresholds *thresholds;
4140 struct mem_cgroup_threshold_ary *new;
4141 unsigned long threshold;
4142 unsigned long usage;
4143 int i, size, ret;
4144
4145 ret = page_counter_memparse(args, "-1", &threshold);
4146 if (ret)
4147 return ret;
4148
4149 mutex_lock(&memcg->thresholds_lock);
4150
4151 if (type == _MEM) {
4152 thresholds = &memcg->thresholds;
4153 usage = mem_cgroup_usage(memcg, false);
4154 } else if (type == _MEMSWAP) {
4155 thresholds = &memcg->memsw_thresholds;
4156 usage = mem_cgroup_usage(memcg, true);
4157 } else
4158 BUG();
4159
4160 /* Check if a threshold crossed before adding a new one */
4161 if (thresholds->primary)
4162 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4163
4164 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4165
4166 /* Allocate memory for new array of thresholds */
4167 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4168 if (!new) {
4169 ret = -ENOMEM;
4170 goto unlock;
4171 }
4172 new->size = size;
4173
4174 /* Copy thresholds (if any) to new array */
4175 if (thresholds->primary) {
4176 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4177 sizeof(struct mem_cgroup_threshold));
4178 }
4179
4180 /* Add new threshold */
4181 new->entries[size - 1].eventfd = eventfd;
4182 new->entries[size - 1].threshold = threshold;
4183
4184 /* Sort thresholds. Registering of new threshold isn't time-critical */
4185 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4186 compare_thresholds, NULL);
4187
4188 /* Find current threshold */
4189 new->current_threshold = -1;
4190 for (i = 0; i < size; i++) {
4191 if (new->entries[i].threshold <= usage) {
4192 /*
4193 * new->current_threshold will not be used until
4194 * rcu_assign_pointer(), so it's safe to increment
4195 * it here.
4196 */
4197 ++new->current_threshold;
4198 } else
4199 break;
4200 }
4201
4202 /* Free old spare buffer and save old primary buffer as spare */
4203 kfree(thresholds->spare);
4204 thresholds->spare = thresholds->primary;
4205
4206 rcu_assign_pointer(thresholds->primary, new);
4207
4208 /* To be sure that nobody uses thresholds */
4209 synchronize_rcu();
4210
4211unlock:
4212 mutex_unlock(&memcg->thresholds_lock);
4213
4214 return ret;
4215}
4216
4217static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4218 struct eventfd_ctx *eventfd, const char *args)
4219{
4220 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4221}
4222
4223static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4224 struct eventfd_ctx *eventfd, const char *args)
4225{
4226 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4227}
4228
4229static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4230 struct eventfd_ctx *eventfd, enum res_type type)
4231{
4232 struct mem_cgroup_thresholds *thresholds;
4233 struct mem_cgroup_threshold_ary *new;
4234 unsigned long usage;
4235 int i, j, size, entries;
4236
4237 mutex_lock(&memcg->thresholds_lock);
4238
4239 if (type == _MEM) {
4240 thresholds = &memcg->thresholds;
4241 usage = mem_cgroup_usage(memcg, false);
4242 } else if (type == _MEMSWAP) {
4243 thresholds = &memcg->memsw_thresholds;
4244 usage = mem_cgroup_usage(memcg, true);
4245 } else
4246 BUG();
4247
4248 if (!thresholds->primary)
4249 goto unlock;
4250
4251 /* Check if a threshold crossed before removing */
4252 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4253
4254 /* Calculate new number of threshold */
4255 size = entries = 0;
4256 for (i = 0; i < thresholds->primary->size; i++) {
4257 if (thresholds->primary->entries[i].eventfd != eventfd)
4258 size++;
4259 else
4260 entries++;
4261 }
4262
4263 new = thresholds->spare;
4264
4265 /* If no items related to eventfd have been cleared, nothing to do */
4266 if (!entries)
4267 goto unlock;
4268
4269 /* Set thresholds array to NULL if we don't have thresholds */
4270 if (!size) {
4271 kfree(new);
4272 new = NULL;
4273 goto swap_buffers;
4274 }
4275
4276 new->size = size;
4277
4278 /* Copy thresholds and find current threshold */
4279 new->current_threshold = -1;
4280 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4281 if (thresholds->primary->entries[i].eventfd == eventfd)
4282 continue;
4283
4284 new->entries[j] = thresholds->primary->entries[i];
4285 if (new->entries[j].threshold <= usage) {
4286 /*
4287 * new->current_threshold will not be used
4288 * until rcu_assign_pointer(), so it's safe to increment
4289 * it here.
4290 */
4291 ++new->current_threshold;
4292 }
4293 j++;
4294 }
4295
4296swap_buffers:
4297 /* Swap primary and spare array */
4298 thresholds->spare = thresholds->primary;
4299
4300 rcu_assign_pointer(thresholds->primary, new);
4301
4302 /* To be sure that nobody uses thresholds */
4303 synchronize_rcu();
4304
4305 /* If all events are unregistered, free the spare array */
4306 if (!new) {
4307 kfree(thresholds->spare);
4308 thresholds->spare = NULL;
4309 }
4310unlock:
4311 mutex_unlock(&memcg->thresholds_lock);
4312}
4313
4314static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4315 struct eventfd_ctx *eventfd)
4316{
4317 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4318}
4319
4320static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4321 struct eventfd_ctx *eventfd)
4322{
4323 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4324}
4325
4326static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4327 struct eventfd_ctx *eventfd, const char *args)
4328{
4329 struct mem_cgroup_eventfd_list *event;
4330
4331 event = kmalloc(sizeof(*event), GFP_KERNEL);
4332 if (!event)
4333 return -ENOMEM;
4334
4335 spin_lock(&memcg_oom_lock);
4336
4337 event->eventfd = eventfd;
4338 list_add(&event->list, &memcg->oom_notify);
4339
4340 /* already in OOM ? */
4341 if (memcg->under_oom)
4342 eventfd_signal(eventfd, 1);
4343 spin_unlock(&memcg_oom_lock);
4344
4345 return 0;
4346}
4347
4348static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4349 struct eventfd_ctx *eventfd)
4350{
4351 struct mem_cgroup_eventfd_list *ev, *tmp;
4352
4353 spin_lock(&memcg_oom_lock);
4354
4355 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4356 if (ev->eventfd == eventfd) {
4357 list_del(&ev->list);
4358 kfree(ev);
4359 }
4360 }
4361
4362 spin_unlock(&memcg_oom_lock);
4363}
4364
4365static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4366{
4367 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4368
4369 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4370 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4371 seq_printf(sf, "oom_kill %lu\n",
4372 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4373 return 0;
4374}
4375
4376static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4377 struct cftype *cft, u64 val)
4378{
4379 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4380
4381 /* cannot set to root cgroup and only 0 and 1 are allowed */
4382 if (!css->parent || !((val == 0) || (val == 1)))
4383 return -EINVAL;
4384
4385 memcg->oom_kill_disable = val;
4386 if (!val)
4387 memcg_oom_recover(memcg);
4388
4389 return 0;
4390}
4391
4392#ifdef CONFIG_CGROUP_WRITEBACK
4393
4394#include <trace/events/writeback.h>
4395
4396static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4397{
4398 return wb_domain_init(&memcg->cgwb_domain, gfp);
4399}
4400
4401static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4402{
4403 wb_domain_exit(&memcg->cgwb_domain);
4404}
4405
4406static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4407{
4408 wb_domain_size_changed(&memcg->cgwb_domain);
4409}
4410
4411struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4412{
4413 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4414
4415 if (!memcg->css.parent)
4416 return NULL;
4417
4418 return &memcg->cgwb_domain;
4419}
4420
4421/*
4422 * idx can be of type enum memcg_stat_item or node_stat_item.
4423 * Keep in sync with memcg_exact_page().
4424 */
4425static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4426{
4427 long x = atomic_long_read(&memcg->vmstats[idx]);
4428 int cpu;
4429
4430 for_each_online_cpu(cpu)
4431 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4432 if (x < 0)
4433 x = 0;
4434 return x;
4435}
4436
4437/**
4438 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4439 * @wb: bdi_writeback in question
4440 * @pfilepages: out parameter for number of file pages
4441 * @pheadroom: out parameter for number of allocatable pages according to memcg
4442 * @pdirty: out parameter for number of dirty pages
4443 * @pwriteback: out parameter for number of pages under writeback
4444 *
4445 * Determine the numbers of file, headroom, dirty, and writeback pages in
4446 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4447 * is a bit more involved.
4448 *
4449 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4450 * headroom is calculated as the lowest headroom of itself and the
4451 * ancestors. Note that this doesn't consider the actual amount of
4452 * available memory in the system. The caller should further cap
4453 * *@pheadroom accordingly.
4454 */
4455void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4456 unsigned long *pheadroom, unsigned long *pdirty,
4457 unsigned long *pwriteback)
4458{
4459 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4460 struct mem_cgroup *parent;
4461
4462 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4463
4464 /* this should eventually include NR_UNSTABLE_NFS */
4465 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4466 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4467 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4468 *pheadroom = PAGE_COUNTER_MAX;
4469
4470 while ((parent = parent_mem_cgroup(memcg))) {
4471 unsigned long ceiling = min(memcg->memory.max, memcg->high);
4472 unsigned long used = page_counter_read(&memcg->memory);
4473
4474 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4475 memcg = parent;
4476 }
4477}
4478
4479/*
4480 * Foreign dirty flushing
4481 *
4482 * There's an inherent mismatch between memcg and writeback. The former
4483 * trackes ownership per-page while the latter per-inode. This was a
4484 * deliberate design decision because honoring per-page ownership in the
4485 * writeback path is complicated, may lead to higher CPU and IO overheads
4486 * and deemed unnecessary given that write-sharing an inode across
4487 * different cgroups isn't a common use-case.
4488 *
4489 * Combined with inode majority-writer ownership switching, this works well
4490 * enough in most cases but there are some pathological cases. For
4491 * example, let's say there are two cgroups A and B which keep writing to
4492 * different but confined parts of the same inode. B owns the inode and
4493 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4494 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4495 * triggering background writeback. A will be slowed down without a way to
4496 * make writeback of the dirty pages happen.
4497 *
4498 * Conditions like the above can lead to a cgroup getting repatedly and
4499 * severely throttled after making some progress after each
4500 * dirty_expire_interval while the underyling IO device is almost
4501 * completely idle.
4502 *
4503 * Solving this problem completely requires matching the ownership tracking
4504 * granularities between memcg and writeback in either direction. However,
4505 * the more egregious behaviors can be avoided by simply remembering the
4506 * most recent foreign dirtying events and initiating remote flushes on
4507 * them when local writeback isn't enough to keep the memory clean enough.
4508 *
4509 * The following two functions implement such mechanism. When a foreign
4510 * page - a page whose memcg and writeback ownerships don't match - is
4511 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4512 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4513 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4514 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4515 * foreign bdi_writebacks which haven't expired. Both the numbers of
4516 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4517 * limited to MEMCG_CGWB_FRN_CNT.
4518 *
4519 * The mechanism only remembers IDs and doesn't hold any object references.
4520 * As being wrong occasionally doesn't matter, updates and accesses to the
4521 * records are lockless and racy.
4522 */
4523void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4524 struct bdi_writeback *wb)
4525{
4526 struct mem_cgroup *memcg = page->mem_cgroup;
4527 struct memcg_cgwb_frn *frn;
4528 u64 now = get_jiffies_64();
4529 u64 oldest_at = now;
4530 int oldest = -1;
4531 int i;
4532
4533 trace_track_foreign_dirty(page, wb);
4534
4535 /*
4536 * Pick the slot to use. If there is already a slot for @wb, keep
4537 * using it. If not replace the oldest one which isn't being
4538 * written out.
4539 */
4540 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4541 frn = &memcg->cgwb_frn[i];
4542 if (frn->bdi_id == wb->bdi->id &&
4543 frn->memcg_id == wb->memcg_css->id)
4544 break;
4545 if (time_before64(frn->at, oldest_at) &&
4546 atomic_read(&frn->done.cnt) == 1) {
4547 oldest = i;
4548 oldest_at = frn->at;
4549 }
4550 }
4551
4552 if (i < MEMCG_CGWB_FRN_CNT) {
4553 /*
4554 * Re-using an existing one. Update timestamp lazily to
4555 * avoid making the cacheline hot. We want them to be
4556 * reasonably up-to-date and significantly shorter than
4557 * dirty_expire_interval as that's what expires the record.
4558 * Use the shorter of 1s and dirty_expire_interval / 8.
4559 */
4560 unsigned long update_intv =
4561 min_t(unsigned long, HZ,
4562 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4563
4564 if (time_before64(frn->at, now - update_intv))
4565 frn->at = now;
4566 } else if (oldest >= 0) {
4567 /* replace the oldest free one */
4568 frn = &memcg->cgwb_frn[oldest];
4569 frn->bdi_id = wb->bdi->id;
4570 frn->memcg_id = wb->memcg_css->id;
4571 frn->at = now;
4572 }
4573}
4574
4575/* issue foreign writeback flushes for recorded foreign dirtying events */
4576void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4577{
4578 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4579 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4580 u64 now = jiffies_64;
4581 int i;
4582
4583 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4584 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4585
4586 /*
4587 * If the record is older than dirty_expire_interval,
4588 * writeback on it has already started. No need to kick it
4589 * off again. Also, don't start a new one if there's
4590 * already one in flight.
4591 */
4592 if (time_after64(frn->at, now - intv) &&
4593 atomic_read(&frn->done.cnt) == 1) {
4594 frn->at = 0;
4595 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4596 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4597 WB_REASON_FOREIGN_FLUSH,
4598 &frn->done);
4599 }
4600 }
4601}
4602
4603#else /* CONFIG_CGROUP_WRITEBACK */
4604
4605static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4606{
4607 return 0;
4608}
4609
4610static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4611{
4612}
4613
4614static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4615{
4616}
4617
4618#endif /* CONFIG_CGROUP_WRITEBACK */
4619
4620/*
4621 * DO NOT USE IN NEW FILES.
4622 *
4623 * "cgroup.event_control" implementation.
4624 *
4625 * This is way over-engineered. It tries to support fully configurable
4626 * events for each user. Such level of flexibility is completely
4627 * unnecessary especially in the light of the planned unified hierarchy.
4628 *
4629 * Please deprecate this and replace with something simpler if at all
4630 * possible.
4631 */
4632
4633/*
4634 * Unregister event and free resources.
4635 *
4636 * Gets called from workqueue.
4637 */
4638static void memcg_event_remove(struct work_struct *work)
4639{
4640 struct mem_cgroup_event *event =
4641 container_of(work, struct mem_cgroup_event, remove);
4642 struct mem_cgroup *memcg = event->memcg;
4643
4644 remove_wait_queue(event->wqh, &event->wait);
4645
4646 event->unregister_event(memcg, event->eventfd);
4647
4648 /* Notify userspace the event is going away. */
4649 eventfd_signal(event->eventfd, 1);
4650
4651 eventfd_ctx_put(event->eventfd);
4652 kfree(event);
4653 css_put(&memcg->css);
4654}
4655
4656/*
4657 * Gets called on EPOLLHUP on eventfd when user closes it.
4658 *
4659 * Called with wqh->lock held and interrupts disabled.
4660 */
4661static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4662 int sync, void *key)
4663{
4664 struct mem_cgroup_event *event =
4665 container_of(wait, struct mem_cgroup_event, wait);
4666 struct mem_cgroup *memcg = event->memcg;
4667 __poll_t flags = key_to_poll(key);
4668
4669 if (flags & EPOLLHUP) {
4670 /*
4671 * If the event has been detached at cgroup removal, we
4672 * can simply return knowing the other side will cleanup
4673 * for us.
4674 *
4675 * We can't race against event freeing since the other
4676 * side will require wqh->lock via remove_wait_queue(),
4677 * which we hold.
4678 */
4679 spin_lock(&memcg->event_list_lock);
4680 if (!list_empty(&event->list)) {
4681 list_del_init(&event->list);
4682 /*
4683 * We are in atomic context, but cgroup_event_remove()
4684 * may sleep, so we have to call it in workqueue.
4685 */
4686 schedule_work(&event->remove);
4687 }
4688 spin_unlock(&memcg->event_list_lock);
4689 }
4690
4691 return 0;
4692}
4693
4694static void memcg_event_ptable_queue_proc(struct file *file,
4695 wait_queue_head_t *wqh, poll_table *pt)
4696{
4697 struct mem_cgroup_event *event =
4698 container_of(pt, struct mem_cgroup_event, pt);
4699
4700 event->wqh = wqh;
4701 add_wait_queue(wqh, &event->wait);
4702}
4703
4704/*
4705 * DO NOT USE IN NEW FILES.
4706 *
4707 * Parse input and register new cgroup event handler.
4708 *
4709 * Input must be in format '<event_fd> <control_fd> <args>'.
4710 * Interpretation of args is defined by control file implementation.
4711 */
4712static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4713 char *buf, size_t nbytes, loff_t off)
4714{
4715 struct cgroup_subsys_state *css = of_css(of);
4716 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4717 struct mem_cgroup_event *event;
4718 struct cgroup_subsys_state *cfile_css;
4719 unsigned int efd, cfd;
4720 struct fd efile;
4721 struct fd cfile;
4722 struct dentry *cdentry;
4723 const char *name;
4724 char *endp;
4725 int ret;
4726
4727 buf = strstrip(buf);
4728
4729 efd = simple_strtoul(buf, &endp, 10);
4730 if (*endp != ' ')
4731 return -EINVAL;
4732 buf = endp + 1;
4733
4734 cfd = simple_strtoul(buf, &endp, 10);
4735 if (*endp == '\0')
4736 buf = endp;
4737 else if (*endp == ' ')
4738 buf = endp + 1;
4739 else
4740 return -EINVAL;
4741
4742 event = kzalloc(sizeof(*event), GFP_KERNEL);
4743 if (!event)
4744 return -ENOMEM;
4745
4746 event->memcg = memcg;
4747 INIT_LIST_HEAD(&event->list);
4748 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4749 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4750 INIT_WORK(&event->remove, memcg_event_remove);
4751
4752 efile = fdget(efd);
4753 if (!efile.file) {
4754 ret = -EBADF;
4755 goto out_kfree;
4756 }
4757
4758 event->eventfd = eventfd_ctx_fileget(efile.file);
4759 if (IS_ERR(event->eventfd)) {
4760 ret = PTR_ERR(event->eventfd);
4761 goto out_put_efile;
4762 }
4763
4764 cfile = fdget(cfd);
4765 if (!cfile.file) {
4766 ret = -EBADF;
4767 goto out_put_eventfd;
4768 }
4769
4770 /* the process need read permission on control file */
4771 /* AV: shouldn't we check that it's been opened for read instead? */
4772 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4773 if (ret < 0)
4774 goto out_put_cfile;
4775
4776 /*
4777 * The control file must be a regular cgroup1 file. As a regular cgroup
4778 * file can't be renamed, it's safe to access its name afterwards.
4779 */
4780 cdentry = cfile.file->f_path.dentry;
4781 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4782 ret = -EINVAL;
4783 goto out_put_cfile;
4784 }
4785
4786 /*
4787 * Determine the event callbacks and set them in @event. This used
4788 * to be done via struct cftype but cgroup core no longer knows
4789 * about these events. The following is crude but the whole thing
4790 * is for compatibility anyway.
4791 *
4792 * DO NOT ADD NEW FILES.
4793 */
4794 name = cdentry->d_name.name;
4795
4796 if (!strcmp(name, "memory.usage_in_bytes")) {
4797 event->register_event = mem_cgroup_usage_register_event;
4798 event->unregister_event = mem_cgroup_usage_unregister_event;
4799 } else if (!strcmp(name, "memory.oom_control")) {
4800 event->register_event = mem_cgroup_oom_register_event;
4801 event->unregister_event = mem_cgroup_oom_unregister_event;
4802 } else if (!strcmp(name, "memory.pressure_level")) {
4803 event->register_event = vmpressure_register_event;
4804 event->unregister_event = vmpressure_unregister_event;
4805 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4806 event->register_event = memsw_cgroup_usage_register_event;
4807 event->unregister_event = memsw_cgroup_usage_unregister_event;
4808 } else {
4809 ret = -EINVAL;
4810 goto out_put_cfile;
4811 }
4812
4813 /*
4814 * Verify @cfile should belong to @css. Also, remaining events are
4815 * automatically removed on cgroup destruction but the removal is
4816 * asynchronous, so take an extra ref on @css.
4817 */
4818 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4819 &memory_cgrp_subsys);
4820 ret = -EINVAL;
4821 if (IS_ERR(cfile_css))
4822 goto out_put_cfile;
4823 if (cfile_css != css) {
4824 css_put(cfile_css);
4825 goto out_put_cfile;
4826 }
4827
4828 ret = event->register_event(memcg, event->eventfd, buf);
4829 if (ret)
4830 goto out_put_css;
4831
4832 vfs_poll(efile.file, &event->pt);
4833
4834 spin_lock(&memcg->event_list_lock);
4835 list_add(&event->list, &memcg->event_list);
4836 spin_unlock(&memcg->event_list_lock);
4837
4838 fdput(cfile);
4839 fdput(efile);
4840
4841 return nbytes;
4842
4843out_put_css:
4844 css_put(css);
4845out_put_cfile:
4846 fdput(cfile);
4847out_put_eventfd:
4848 eventfd_ctx_put(event->eventfd);
4849out_put_efile:
4850 fdput(efile);
4851out_kfree:
4852 kfree(event);
4853
4854 return ret;
4855}
4856
4857static struct cftype mem_cgroup_legacy_files[] = {
4858 {
4859 .name = "usage_in_bytes",
4860 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4861 .read_u64 = mem_cgroup_read_u64,
4862 },
4863 {
4864 .name = "max_usage_in_bytes",
4865 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4866 .write = mem_cgroup_reset,
4867 .read_u64 = mem_cgroup_read_u64,
4868 },
4869 {
4870 .name = "limit_in_bytes",
4871 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4872 .write = mem_cgroup_write,
4873 .read_u64 = mem_cgroup_read_u64,
4874 },
4875 {
4876 .name = "soft_limit_in_bytes",
4877 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4878 .write = mem_cgroup_write,
4879 .read_u64 = mem_cgroup_read_u64,
4880 },
4881 {
4882 .name = "failcnt",
4883 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4884 .write = mem_cgroup_reset,
4885 .read_u64 = mem_cgroup_read_u64,
4886 },
4887 {
4888 .name = "stat",
4889 .seq_show = memcg_stat_show,
4890 },
4891 {
4892 .name = "force_empty",
4893 .write = mem_cgroup_force_empty_write,
4894 },
4895 {
4896 .name = "use_hierarchy",
4897 .write_u64 = mem_cgroup_hierarchy_write,
4898 .read_u64 = mem_cgroup_hierarchy_read,
4899 },
4900 {
4901 .name = "cgroup.event_control", /* XXX: for compat */
4902 .write = memcg_write_event_control,
4903 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4904 },
4905 {
4906 .name = "swappiness",
4907 .read_u64 = mem_cgroup_swappiness_read,
4908 .write_u64 = mem_cgroup_swappiness_write,
4909 },
4910 {
4911 .name = "move_charge_at_immigrate",
4912 .read_u64 = mem_cgroup_move_charge_read,
4913 .write_u64 = mem_cgroup_move_charge_write,
4914 },
4915 {
4916 .name = "oom_control",
4917 .seq_show = mem_cgroup_oom_control_read,
4918 .write_u64 = mem_cgroup_oom_control_write,
4919 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4920 },
4921 {
4922 .name = "pressure_level",
4923 },
4924#ifdef CONFIG_NUMA
4925 {
4926 .name = "numa_stat",
4927 .seq_show = memcg_numa_stat_show,
4928 },
4929#endif
4930 {
4931 .name = "kmem.limit_in_bytes",
4932 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4933 .write = mem_cgroup_write,
4934 .read_u64 = mem_cgroup_read_u64,
4935 },
4936 {
4937 .name = "kmem.usage_in_bytes",
4938 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4939 .read_u64 = mem_cgroup_read_u64,
4940 },
4941 {
4942 .name = "kmem.failcnt",
4943 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4944 .write = mem_cgroup_reset,
4945 .read_u64 = mem_cgroup_read_u64,
4946 },
4947 {
4948 .name = "kmem.max_usage_in_bytes",
4949 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4950 .write = mem_cgroup_reset,
4951 .read_u64 = mem_cgroup_read_u64,
4952 },
4953#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4954 {
4955 .name = "kmem.slabinfo",
4956 .seq_start = memcg_slab_start,
4957 .seq_next = memcg_slab_next,
4958 .seq_stop = memcg_slab_stop,
4959 .seq_show = memcg_slab_show,
4960 },
4961#endif
4962 {
4963 .name = "kmem.tcp.limit_in_bytes",
4964 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4965 .write = mem_cgroup_write,
4966 .read_u64 = mem_cgroup_read_u64,
4967 },
4968 {
4969 .name = "kmem.tcp.usage_in_bytes",
4970 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4971 .read_u64 = mem_cgroup_read_u64,
4972 },
4973 {
4974 .name = "kmem.tcp.failcnt",
4975 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4976 .write = mem_cgroup_reset,
4977 .read_u64 = mem_cgroup_read_u64,
4978 },
4979 {
4980 .name = "kmem.tcp.max_usage_in_bytes",
4981 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4982 .write = mem_cgroup_reset,
4983 .read_u64 = mem_cgroup_read_u64,
4984 },
4985 { }, /* terminate */
4986};
4987
4988/*
4989 * Private memory cgroup IDR
4990 *
4991 * Swap-out records and page cache shadow entries need to store memcg
4992 * references in constrained space, so we maintain an ID space that is
4993 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4994 * memory-controlled cgroups to 64k.
4995 *
4996 * However, there usually are many references to the oflline CSS after
4997 * the cgroup has been destroyed, such as page cache or reclaimable
4998 * slab objects, that don't need to hang on to the ID. We want to keep
4999 * those dead CSS from occupying IDs, or we might quickly exhaust the
5000 * relatively small ID space and prevent the creation of new cgroups
5001 * even when there are much fewer than 64k cgroups - possibly none.
5002 *
5003 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5004 * be freed and recycled when it's no longer needed, which is usually
5005 * when the CSS is offlined.
5006 *
5007 * The only exception to that are records of swapped out tmpfs/shmem
5008 * pages that need to be attributed to live ancestors on swapin. But
5009 * those references are manageable from userspace.
5010 */
5011
5012static DEFINE_IDR(mem_cgroup_idr);
5013
5014static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5015{
5016 if (memcg->id.id > 0) {
5017 idr_remove(&mem_cgroup_idr, memcg->id.id);
5018 memcg->id.id = 0;
5019 }
5020}
5021
5022static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
5023{
5024 refcount_add(n, &memcg->id.ref);
5025}
5026
5027static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5028{
5029 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5030 mem_cgroup_id_remove(memcg);
5031
5032 /* Memcg ID pins CSS */
5033 css_put(&memcg->css);
5034 }
5035}
5036
5037static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5038{
5039 mem_cgroup_id_put_many(memcg, 1);
5040}
5041
5042/**
5043 * mem_cgroup_from_id - look up a memcg from a memcg id
5044 * @id: the memcg id to look up
5045 *
5046 * Caller must hold rcu_read_lock().
5047 */
5048struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5049{
5050 WARN_ON_ONCE(!rcu_read_lock_held());
5051 return idr_find(&mem_cgroup_idr, id);
5052}
5053
5054static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5055{
5056 struct mem_cgroup_per_node *pn;
5057 int tmp = node;
5058 /*
5059 * This routine is called against possible nodes.
5060 * But it's BUG to call kmalloc() against offline node.
5061 *
5062 * TODO: this routine can waste much memory for nodes which will
5063 * never be onlined. It's better to use memory hotplug callback
5064 * function.
5065 */
5066 if (!node_state(node, N_NORMAL_MEMORY))
5067 tmp = -1;
5068 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5069 if (!pn)
5070 return 1;
5071
5072 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
5073 if (!pn->lruvec_stat_local) {
5074 kfree(pn);
5075 return 1;
5076 }
5077
5078 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
5079 if (!pn->lruvec_stat_cpu) {
5080 free_percpu(pn->lruvec_stat_local);
5081 kfree(pn);
5082 return 1;
5083 }
5084
5085 lruvec_init(&pn->lruvec);
5086 pn->usage_in_excess = 0;
5087 pn->on_tree = false;
5088 pn->memcg = memcg;
5089
5090 memcg->nodeinfo[node] = pn;
5091 return 0;
5092}
5093
5094static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5095{
5096 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5097
5098 if (!pn)
5099 return;
5100
5101 free_percpu(pn->lruvec_stat_cpu);
5102 free_percpu(pn->lruvec_stat_local);
5103 kfree(pn);
5104}
5105
5106static void __mem_cgroup_free(struct mem_cgroup *memcg)
5107{
5108 int node;
5109
5110 for_each_node(node)
5111 free_mem_cgroup_per_node_info(memcg, node);
5112 free_percpu(memcg->vmstats_percpu);
5113 free_percpu(memcg->vmstats_local);
5114 kfree(memcg);
5115}
5116
5117static void mem_cgroup_free(struct mem_cgroup *memcg)
5118{
5119 memcg_wb_domain_exit(memcg);
5120 /*
5121 * Flush percpu vmstats and vmevents to guarantee the value correctness
5122 * on parent's and all ancestor levels.
5123 */
5124 memcg_flush_percpu_vmstats(memcg);
5125 memcg_flush_percpu_vmevents(memcg);
5126 __mem_cgroup_free(memcg);
5127}
5128
5129static struct mem_cgroup *mem_cgroup_alloc(void)
5130{
5131 struct mem_cgroup *memcg;
5132 unsigned int size;
5133 int node;
5134 int __maybe_unused i;
5135 long error = -ENOMEM;
5136
5137 size = sizeof(struct mem_cgroup);
5138 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5139
5140 memcg = kzalloc(size, GFP_KERNEL);
5141 if (!memcg)
5142 return ERR_PTR(error);
5143
5144 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5145 1, MEM_CGROUP_ID_MAX,
5146 GFP_KERNEL);
5147 if (memcg->id.id < 0) {
5148 error = memcg->id.id;
5149 goto fail;
5150 }
5151
5152 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5153 if (!memcg->vmstats_local)
5154 goto fail;
5155
5156 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5157 if (!memcg->vmstats_percpu)
5158 goto fail;
5159
5160 for_each_node(node)
5161 if (alloc_mem_cgroup_per_node_info(memcg, node))
5162 goto fail;
5163
5164 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5165 goto fail;
5166
5167 INIT_WORK(&memcg->high_work, high_work_func);
5168 memcg->last_scanned_node = MAX_NUMNODES;
5169 INIT_LIST_HEAD(&memcg->oom_notify);
5170 mutex_init(&memcg->thresholds_lock);
5171 spin_lock_init(&memcg->move_lock);
5172 vmpressure_init(&memcg->vmpressure);
5173 INIT_LIST_HEAD(&memcg->event_list);
5174 spin_lock_init(&memcg->event_list_lock);
5175 memcg->socket_pressure = jiffies;
5176#ifdef CONFIG_MEMCG_KMEM
5177 memcg->kmemcg_id = -1;
5178#endif
5179#ifdef CONFIG_CGROUP_WRITEBACK
5180 INIT_LIST_HEAD(&memcg->cgwb_list);
5181 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5182 memcg->cgwb_frn[i].done =
5183 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5184#endif
5185#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5186 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5187 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5188 memcg->deferred_split_queue.split_queue_len = 0;
5189#endif
5190 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5191 return memcg;
5192fail:
5193 mem_cgroup_id_remove(memcg);
5194 __mem_cgroup_free(memcg);
5195 return ERR_PTR(error);
5196}
5197
5198static struct cgroup_subsys_state * __ref
5199mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5200{
5201 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5202 struct mem_cgroup *memcg;
5203 long error = -ENOMEM;
5204
5205 memcg = mem_cgroup_alloc();
5206 if (IS_ERR(memcg))
5207 return ERR_CAST(memcg);
5208
5209 memcg->high = PAGE_COUNTER_MAX;
5210 memcg->soft_limit = PAGE_COUNTER_MAX;
5211 if (parent) {
5212 memcg->swappiness = mem_cgroup_swappiness(parent);
5213 memcg->oom_kill_disable = parent->oom_kill_disable;
5214 }
5215 if (parent && parent->use_hierarchy) {
5216 memcg->use_hierarchy = true;
5217 page_counter_init(&memcg->memory, &parent->memory);
5218 page_counter_init(&memcg->swap, &parent->swap);
5219 page_counter_init(&memcg->memsw, &parent->memsw);
5220 page_counter_init(&memcg->kmem, &parent->kmem);
5221 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5222 } else {
5223 page_counter_init(&memcg->memory, NULL);
5224 page_counter_init(&memcg->swap, NULL);
5225 page_counter_init(&memcg->memsw, NULL);
5226 page_counter_init(&memcg->kmem, NULL);
5227 page_counter_init(&memcg->tcpmem, NULL);
5228 /*
5229 * Deeper hierachy with use_hierarchy == false doesn't make
5230 * much sense so let cgroup subsystem know about this
5231 * unfortunate state in our controller.
5232 */
5233 if (parent != root_mem_cgroup)
5234 memory_cgrp_subsys.broken_hierarchy = true;
5235 }
5236
5237 /* The following stuff does not apply to the root */
5238 if (!parent) {
5239#ifdef CONFIG_MEMCG_KMEM
5240 INIT_LIST_HEAD(&memcg->kmem_caches);
5241#endif
5242 root_mem_cgroup = memcg;
5243 return &memcg->css;
5244 }
5245
5246 error = memcg_online_kmem(memcg);
5247 if (error)
5248 goto fail;
5249
5250 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5251 static_branch_inc(&memcg_sockets_enabled_key);
5252
5253 return &memcg->css;
5254fail:
5255 mem_cgroup_id_remove(memcg);
5256 mem_cgroup_free(memcg);
5257 return ERR_PTR(error);
5258}
5259
5260static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5261{
5262 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5263
5264 /*
5265 * A memcg must be visible for memcg_expand_shrinker_maps()
5266 * by the time the maps are allocated. So, we allocate maps
5267 * here, when for_each_mem_cgroup() can't skip it.
5268 */
5269 if (memcg_alloc_shrinker_maps(memcg)) {
5270 mem_cgroup_id_remove(memcg);
5271 return -ENOMEM;
5272 }
5273
5274 /* Online state pins memcg ID, memcg ID pins CSS */
5275 refcount_set(&memcg->id.ref, 1);
5276 css_get(css);
5277 return 0;
5278}
5279
5280static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5281{
5282 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5283 struct mem_cgroup_event *event, *tmp;
5284
5285 /*
5286 * Unregister events and notify userspace.
5287 * Notify userspace about cgroup removing only after rmdir of cgroup
5288 * directory to avoid race between userspace and kernelspace.
5289 */
5290 spin_lock(&memcg->event_list_lock);
5291 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5292 list_del_init(&event->list);
5293 schedule_work(&event->remove);
5294 }
5295 spin_unlock(&memcg->event_list_lock);
5296
5297 page_counter_set_min(&memcg->memory, 0);
5298 page_counter_set_low(&memcg->memory, 0);
5299
5300 memcg_offline_kmem(memcg);
5301 wb_memcg_offline(memcg);
5302
5303 drain_all_stock(memcg);
5304
5305 mem_cgroup_id_put(memcg);
5306}
5307
5308static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5309{
5310 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5311
5312 invalidate_reclaim_iterators(memcg);
5313}
5314
5315static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5316{
5317 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5318 int __maybe_unused i;
5319
5320#ifdef CONFIG_CGROUP_WRITEBACK
5321 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5322 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5323#endif
5324 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5325 static_branch_dec(&memcg_sockets_enabled_key);
5326
5327 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5328 static_branch_dec(&memcg_sockets_enabled_key);
5329
5330 vmpressure_cleanup(&memcg->vmpressure);
5331 cancel_work_sync(&memcg->high_work);
5332 mem_cgroup_remove_from_trees(memcg);
5333 memcg_free_shrinker_maps(memcg);
5334 memcg_free_kmem(memcg);
5335 mem_cgroup_free(memcg);
5336}
5337
5338/**
5339 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5340 * @css: the target css
5341 *
5342 * Reset the states of the mem_cgroup associated with @css. This is
5343 * invoked when the userland requests disabling on the default hierarchy
5344 * but the memcg is pinned through dependency. The memcg should stop
5345 * applying policies and should revert to the vanilla state as it may be
5346 * made visible again.
5347 *
5348 * The current implementation only resets the essential configurations.
5349 * This needs to be expanded to cover all the visible parts.
5350 */
5351static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5352{
5353 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5354
5355 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5356 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5357 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5358 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5359 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5360 page_counter_set_min(&memcg->memory, 0);
5361 page_counter_set_low(&memcg->memory, 0);
5362 memcg->high = PAGE_COUNTER_MAX;
5363 memcg->soft_limit = PAGE_COUNTER_MAX;
5364 memcg_wb_domain_size_changed(memcg);
5365}
5366
5367#ifdef CONFIG_MMU
5368/* Handlers for move charge at task migration. */
5369static int mem_cgroup_do_precharge(unsigned long count)
5370{
5371 int ret;
5372
5373 /* Try a single bulk charge without reclaim first, kswapd may wake */
5374 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5375 if (!ret) {
5376 mc.precharge += count;
5377 return ret;
5378 }
5379
5380 /* Try charges one by one with reclaim, but do not retry */
5381 while (count--) {
5382 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5383 if (ret)
5384 return ret;
5385 mc.precharge++;
5386 cond_resched();
5387 }
5388 return 0;
5389}
5390
5391union mc_target {
5392 struct page *page;
5393 swp_entry_t ent;
5394};
5395
5396enum mc_target_type {
5397 MC_TARGET_NONE = 0,
5398 MC_TARGET_PAGE,
5399 MC_TARGET_SWAP,
5400 MC_TARGET_DEVICE,
5401};
5402
5403static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5404 unsigned long addr, pte_t ptent)
5405{
5406 struct page *page = vm_normal_page(vma, addr, ptent);
5407
5408 if (!page || !page_mapped(page))
5409 return NULL;
5410 if (PageAnon(page)) {
5411 if (!(mc.flags & MOVE_ANON))
5412 return NULL;
5413 } else {
5414 if (!(mc.flags & MOVE_FILE))
5415 return NULL;
5416 }
5417 if (!get_page_unless_zero(page))
5418 return NULL;
5419
5420 return page;
5421}
5422
5423#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5424static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5425 pte_t ptent, swp_entry_t *entry)
5426{
5427 struct page *page = NULL;
5428 swp_entry_t ent = pte_to_swp_entry(ptent);
5429
5430 if (!(mc.flags & MOVE_ANON))
5431 return NULL;
5432
5433 /*
5434 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5435 * a device and because they are not accessible by CPU they are store
5436 * as special swap entry in the CPU page table.
5437 */
5438 if (is_device_private_entry(ent)) {
5439 page = device_private_entry_to_page(ent);
5440 /*
5441 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5442 * a refcount of 1 when free (unlike normal page)
5443 */
5444 if (!page_ref_add_unless(page, 1, 1))
5445 return NULL;
5446 return page;
5447 }
5448
5449 if (non_swap_entry(ent))
5450 return NULL;
5451
5452 /*
5453 * Because lookup_swap_cache() updates some statistics counter,
5454 * we call find_get_page() with swapper_space directly.
5455 */
5456 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5457 if (do_memsw_account())
5458 entry->val = ent.val;
5459
5460 return page;
5461}
5462#else
5463static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5464 pte_t ptent, swp_entry_t *entry)
5465{
5466 return NULL;
5467}
5468#endif
5469
5470static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5471 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5472{
5473 struct page *page = NULL;
5474 struct address_space *mapping;
5475 pgoff_t pgoff;
5476
5477 if (!vma->vm_file) /* anonymous vma */
5478 return NULL;
5479 if (!(mc.flags & MOVE_FILE))
5480 return NULL;
5481
5482 mapping = vma->vm_file->f_mapping;
5483 pgoff = linear_page_index(vma, addr);
5484
5485 /* page is moved even if it's not RSS of this task(page-faulted). */
5486#ifdef CONFIG_SWAP
5487 /* shmem/tmpfs may report page out on swap: account for that too. */
5488 if (shmem_mapping(mapping)) {
5489 page = find_get_entry(mapping, pgoff);
5490 if (xa_is_value(page)) {
5491 swp_entry_t swp = radix_to_swp_entry(page);
5492 if (do_memsw_account())
5493 *entry = swp;
5494 page = find_get_page(swap_address_space(swp),
5495 swp_offset(swp));
5496 }
5497 } else
5498 page = find_get_page(mapping, pgoff);
5499#else
5500 page = find_get_page(mapping, pgoff);
5501#endif
5502 return page;
5503}
5504
5505/**
5506 * mem_cgroup_move_account - move account of the page
5507 * @page: the page
5508 * @compound: charge the page as compound or small page
5509 * @from: mem_cgroup which the page is moved from.
5510 * @to: mem_cgroup which the page is moved to. @from != @to.
5511 *
5512 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5513 *
5514 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5515 * from old cgroup.
5516 */
5517static int mem_cgroup_move_account(struct page *page,
5518 bool compound,
5519 struct mem_cgroup *from,
5520 struct mem_cgroup *to)
5521{
5522 struct lruvec *from_vec, *to_vec;
5523 struct pglist_data *pgdat;
5524 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5525 int ret;
5526 bool anon;
5527
5528 VM_BUG_ON(from == to);
5529 VM_BUG_ON_PAGE(PageLRU(page), page);
5530 VM_BUG_ON(compound && !PageTransHuge(page));
5531
5532 /*
5533 * Prevent mem_cgroup_migrate() from looking at
5534 * page->mem_cgroup of its source page while we change it.
5535 */
5536 ret = -EBUSY;
5537 if (!trylock_page(page))
5538 goto out;
5539
5540 ret = -EINVAL;
5541 if (page->mem_cgroup != from)
5542 goto out_unlock;
5543
5544 anon = PageAnon(page);
5545
5546 pgdat = page_pgdat(page);
5547 from_vec = mem_cgroup_lruvec(pgdat, from);
5548 to_vec = mem_cgroup_lruvec(pgdat, to);
5549
5550 lock_page_memcg(page);
5551
5552 if (!anon && page_mapped(page)) {
5553 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5554 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5555 }
5556
5557 if (!anon && PageDirty(page)) {
5558 struct address_space *mapping = page_mapping(page);
5559
5560 if (mapping_cap_account_dirty(mapping)) {
5561 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5562 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5563 }
5564 }
5565
5566 if (PageWriteback(page)) {
5567 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5568 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5569 }
5570
5571 /*
5572 * All state has been migrated, let's switch to the new memcg.
5573 *
5574 * It is safe to change page->mem_cgroup here because the page
5575 * is referenced, charged, isolated, and locked: we can't race
5576 * with (un)charging, migration, LRU putback, or anything else
5577 * that would rely on a stable page->mem_cgroup.
5578 *
5579 * Note that lock_page_memcg is a memcg lock, not a page lock,
5580 * to save space. As soon as we switch page->mem_cgroup to a
5581 * new memcg that isn't locked, the above state can change
5582 * concurrently again. Make sure we're truly done with it.
5583 */
5584 smp_mb();
5585
5586 page->mem_cgroup = to; /* caller should have done css_get */
5587
5588 __unlock_page_memcg(from);
5589
5590 ret = 0;
5591
5592 local_irq_disable();
5593 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5594 memcg_check_events(to, page);
5595 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5596 memcg_check_events(from, page);
5597 local_irq_enable();
5598out_unlock:
5599 unlock_page(page);
5600out:
5601 return ret;
5602}
5603
5604/**
5605 * get_mctgt_type - get target type of moving charge
5606 * @vma: the vma the pte to be checked belongs
5607 * @addr: the address corresponding to the pte to be checked
5608 * @ptent: the pte to be checked
5609 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5610 *
5611 * Returns
5612 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5613 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5614 * move charge. if @target is not NULL, the page is stored in target->page
5615 * with extra refcnt got(Callers should handle it).
5616 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5617 * target for charge migration. if @target is not NULL, the entry is stored
5618 * in target->ent.
5619 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5620 * (so ZONE_DEVICE page and thus not on the lru).
5621 * For now we such page is charge like a regular page would be as for all
5622 * intent and purposes it is just special memory taking the place of a
5623 * regular page.
5624 *
5625 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5626 *
5627 * Called with pte lock held.
5628 */
5629
5630static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5631 unsigned long addr, pte_t ptent, union mc_target *target)
5632{
5633 struct page *page = NULL;
5634 enum mc_target_type ret = MC_TARGET_NONE;
5635 swp_entry_t ent = { .val = 0 };
5636
5637 if (pte_present(ptent))
5638 page = mc_handle_present_pte(vma, addr, ptent);
5639 else if (is_swap_pte(ptent))
5640 page = mc_handle_swap_pte(vma, ptent, &ent);
5641 else if (pte_none(ptent))
5642 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5643
5644 if (!page && !ent.val)
5645 return ret;
5646 if (page) {
5647 /*
5648 * Do only loose check w/o serialization.
5649 * mem_cgroup_move_account() checks the page is valid or
5650 * not under LRU exclusion.
5651 */
5652 if (page->mem_cgroup == mc.from) {
5653 ret = MC_TARGET_PAGE;
5654 if (is_device_private_page(page))
5655 ret = MC_TARGET_DEVICE;
5656 if (target)
5657 target->page = page;
5658 }
5659 if (!ret || !target)
5660 put_page(page);
5661 }
5662 /*
5663 * There is a swap entry and a page doesn't exist or isn't charged.
5664 * But we cannot move a tail-page in a THP.
5665 */
5666 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5667 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5668 ret = MC_TARGET_SWAP;
5669 if (target)
5670 target->ent = ent;
5671 }
5672 return ret;
5673}
5674
5675#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5676/*
5677 * We don't consider PMD mapped swapping or file mapped pages because THP does
5678 * not support them for now.
5679 * Caller should make sure that pmd_trans_huge(pmd) is true.
5680 */
5681static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5682 unsigned long addr, pmd_t pmd, union mc_target *target)
5683{
5684 struct page *page = NULL;
5685 enum mc_target_type ret = MC_TARGET_NONE;
5686
5687 if (unlikely(is_swap_pmd(pmd))) {
5688 VM_BUG_ON(thp_migration_supported() &&
5689 !is_pmd_migration_entry(pmd));
5690 return ret;
5691 }
5692 page = pmd_page(pmd);
5693 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5694 if (!(mc.flags & MOVE_ANON))
5695 return ret;
5696 if (page->mem_cgroup == mc.from) {
5697 ret = MC_TARGET_PAGE;
5698 if (target) {
5699 get_page(page);
5700 target->page = page;
5701 }
5702 }
5703 return ret;
5704}
5705#else
5706static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5707 unsigned long addr, pmd_t pmd, union mc_target *target)
5708{
5709 return MC_TARGET_NONE;
5710}
5711#endif
5712
5713static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5714 unsigned long addr, unsigned long end,
5715 struct mm_walk *walk)
5716{
5717 struct vm_area_struct *vma = walk->vma;
5718 pte_t *pte;
5719 spinlock_t *ptl;
5720
5721 ptl = pmd_trans_huge_lock(pmd, vma);
5722 if (ptl) {
5723 /*
5724 * Note their can not be MC_TARGET_DEVICE for now as we do not
5725 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5726 * this might change.
5727 */
5728 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5729 mc.precharge += HPAGE_PMD_NR;
5730 spin_unlock(ptl);
5731 return 0;
5732 }
5733
5734 if (pmd_trans_unstable(pmd))
5735 return 0;
5736 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5737 for (; addr != end; pte++, addr += PAGE_SIZE)
5738 if (get_mctgt_type(vma, addr, *pte, NULL))
5739 mc.precharge++; /* increment precharge temporarily */
5740 pte_unmap_unlock(pte - 1, ptl);
5741 cond_resched();
5742
5743 return 0;
5744}
5745
5746static const struct mm_walk_ops precharge_walk_ops = {
5747 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5748};
5749
5750static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5751{
5752 unsigned long precharge;
5753
5754 down_read(&mm->mmap_sem);
5755 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5756 up_read(&mm->mmap_sem);
5757
5758 precharge = mc.precharge;
5759 mc.precharge = 0;
5760
5761 return precharge;
5762}
5763
5764static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5765{
5766 unsigned long precharge = mem_cgroup_count_precharge(mm);
5767
5768 VM_BUG_ON(mc.moving_task);
5769 mc.moving_task = current;
5770 return mem_cgroup_do_precharge(precharge);
5771}
5772
5773/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5774static void __mem_cgroup_clear_mc(void)
5775{
5776 struct mem_cgroup *from = mc.from;
5777 struct mem_cgroup *to = mc.to;
5778
5779 /* we must uncharge all the leftover precharges from mc.to */
5780 if (mc.precharge) {
5781 cancel_charge(mc.to, mc.precharge);
5782 mc.precharge = 0;
5783 }
5784 /*
5785 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5786 * we must uncharge here.
5787 */
5788 if (mc.moved_charge) {
5789 cancel_charge(mc.from, mc.moved_charge);
5790 mc.moved_charge = 0;
5791 }
5792 /* we must fixup refcnts and charges */
5793 if (mc.moved_swap) {
5794 /* uncharge swap account from the old cgroup */
5795 if (!mem_cgroup_is_root(mc.from))
5796 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5797
5798 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5799
5800 /*
5801 * we charged both to->memory and to->memsw, so we
5802 * should uncharge to->memory.
5803 */
5804 if (!mem_cgroup_is_root(mc.to))
5805 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5806
5807 css_put_many(&mc.to->css, mc.moved_swap);
5808
5809 mc.moved_swap = 0;
5810 }
5811 memcg_oom_recover(from);
5812 memcg_oom_recover(to);
5813 wake_up_all(&mc.waitq);
5814}
5815
5816static void mem_cgroup_clear_mc(void)
5817{
5818 struct mm_struct *mm = mc.mm;
5819
5820 /*
5821 * we must clear moving_task before waking up waiters at the end of
5822 * task migration.
5823 */
5824 mc.moving_task = NULL;
5825 __mem_cgroup_clear_mc();
5826 spin_lock(&mc.lock);
5827 mc.from = NULL;
5828 mc.to = NULL;
5829 mc.mm = NULL;
5830 spin_unlock(&mc.lock);
5831
5832 mmput(mm);
5833}
5834
5835static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5836{
5837 struct cgroup_subsys_state *css;
5838 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5839 struct mem_cgroup *from;
5840 struct task_struct *leader, *p;
5841 struct mm_struct *mm;
5842 unsigned long move_flags;
5843 int ret = 0;
5844
5845 /* charge immigration isn't supported on the default hierarchy */
5846 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5847 return 0;
5848
5849 /*
5850 * Multi-process migrations only happen on the default hierarchy
5851 * where charge immigration is not used. Perform charge
5852 * immigration if @tset contains a leader and whine if there are
5853 * multiple.
5854 */
5855 p = NULL;
5856 cgroup_taskset_for_each_leader(leader, css, tset) {
5857 WARN_ON_ONCE(p);
5858 p = leader;
5859 memcg = mem_cgroup_from_css(css);
5860 }
5861 if (!p)
5862 return 0;
5863
5864 /*
5865 * We are now commited to this value whatever it is. Changes in this
5866 * tunable will only affect upcoming migrations, not the current one.
5867 * So we need to save it, and keep it going.
5868 */
5869 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5870 if (!move_flags)
5871 return 0;
5872
5873 from = mem_cgroup_from_task(p);
5874
5875 VM_BUG_ON(from == memcg);
5876
5877 mm = get_task_mm(p);
5878 if (!mm)
5879 return 0;
5880 /* We move charges only when we move a owner of the mm */
5881 if (mm->owner == p) {
5882 VM_BUG_ON(mc.from);
5883 VM_BUG_ON(mc.to);
5884 VM_BUG_ON(mc.precharge);
5885 VM_BUG_ON(mc.moved_charge);
5886 VM_BUG_ON(mc.moved_swap);
5887
5888 spin_lock(&mc.lock);
5889 mc.mm = mm;
5890 mc.from = from;
5891 mc.to = memcg;
5892 mc.flags = move_flags;
5893 spin_unlock(&mc.lock);
5894 /* We set mc.moving_task later */
5895
5896 ret = mem_cgroup_precharge_mc(mm);
5897 if (ret)
5898 mem_cgroup_clear_mc();
5899 } else {
5900 mmput(mm);
5901 }
5902 return ret;
5903}
5904
5905static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5906{
5907 if (mc.to)
5908 mem_cgroup_clear_mc();
5909}
5910
5911static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5912 unsigned long addr, unsigned long end,
5913 struct mm_walk *walk)
5914{
5915 int ret = 0;
5916 struct vm_area_struct *vma = walk->vma;
5917 pte_t *pte;
5918 spinlock_t *ptl;
5919 enum mc_target_type target_type;
5920 union mc_target target;
5921 struct page *page;
5922
5923 ptl = pmd_trans_huge_lock(pmd, vma);
5924 if (ptl) {
5925 if (mc.precharge < HPAGE_PMD_NR) {
5926 spin_unlock(ptl);
5927 return 0;
5928 }
5929 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5930 if (target_type == MC_TARGET_PAGE) {
5931 page = target.page;
5932 if (!isolate_lru_page(page)) {
5933 if (!mem_cgroup_move_account(page, true,
5934 mc.from, mc.to)) {
5935 mc.precharge -= HPAGE_PMD_NR;
5936 mc.moved_charge += HPAGE_PMD_NR;
5937 }
5938 putback_lru_page(page);
5939 }
5940 put_page(page);
5941 } else if (target_type == MC_TARGET_DEVICE) {
5942 page = target.page;
5943 if (!mem_cgroup_move_account(page, true,
5944 mc.from, mc.to)) {
5945 mc.precharge -= HPAGE_PMD_NR;
5946 mc.moved_charge += HPAGE_PMD_NR;
5947 }
5948 put_page(page);
5949 }
5950 spin_unlock(ptl);
5951 return 0;
5952 }
5953
5954 if (pmd_trans_unstable(pmd))
5955 return 0;
5956retry:
5957 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5958 for (; addr != end; addr += PAGE_SIZE) {
5959 pte_t ptent = *(pte++);
5960 bool device = false;
5961 swp_entry_t ent;
5962
5963 if (!mc.precharge)
5964 break;
5965
5966 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5967 case MC_TARGET_DEVICE:
5968 device = true;
5969 /* fall through */
5970 case MC_TARGET_PAGE:
5971 page = target.page;
5972 /*
5973 * We can have a part of the split pmd here. Moving it
5974 * can be done but it would be too convoluted so simply
5975 * ignore such a partial THP and keep it in original
5976 * memcg. There should be somebody mapping the head.
5977 */
5978 if (PageTransCompound(page))
5979 goto put;
5980 if (!device && isolate_lru_page(page))
5981 goto put;
5982 if (!mem_cgroup_move_account(page, false,
5983 mc.from, mc.to)) {
5984 mc.precharge--;
5985 /* we uncharge from mc.from later. */
5986 mc.moved_charge++;
5987 }
5988 if (!device)
5989 putback_lru_page(page);
5990put: /* get_mctgt_type() gets the page */
5991 put_page(page);
5992 break;
5993 case MC_TARGET_SWAP:
5994 ent = target.ent;
5995 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5996 mc.precharge--;
5997 mem_cgroup_id_get_many(mc.to, 1);
5998 /* we fixup other refcnts and charges later. */
5999 mc.moved_swap++;
6000 }
6001 break;
6002 default:
6003 break;
6004 }
6005 }
6006 pte_unmap_unlock(pte - 1, ptl);
6007 cond_resched();
6008
6009 if (addr != end) {
6010 /*
6011 * We have consumed all precharges we got in can_attach().
6012 * We try charge one by one, but don't do any additional
6013 * charges to mc.to if we have failed in charge once in attach()
6014 * phase.
6015 */
6016 ret = mem_cgroup_do_precharge(1);
6017 if (!ret)
6018 goto retry;
6019 }
6020
6021 return ret;
6022}
6023
6024static const struct mm_walk_ops charge_walk_ops = {
6025 .pmd_entry = mem_cgroup_move_charge_pte_range,
6026};
6027
6028static void mem_cgroup_move_charge(void)
6029{
6030 lru_add_drain_all();
6031 /*
6032 * Signal lock_page_memcg() to take the memcg's move_lock
6033 * while we're moving its pages to another memcg. Then wait
6034 * for already started RCU-only updates to finish.
6035 */
6036 atomic_inc(&mc.from->moving_account);
6037 synchronize_rcu();
6038retry:
6039 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
6040 /*
6041 * Someone who are holding the mmap_sem might be waiting in
6042 * waitq. So we cancel all extra charges, wake up all waiters,
6043 * and retry. Because we cancel precharges, we might not be able
6044 * to move enough charges, but moving charge is a best-effort
6045 * feature anyway, so it wouldn't be a big problem.
6046 */
6047 __mem_cgroup_clear_mc();
6048 cond_resched();
6049 goto retry;
6050 }
6051 /*
6052 * When we have consumed all precharges and failed in doing
6053 * additional charge, the page walk just aborts.
6054 */
6055 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6056 NULL);
6057
6058 up_read(&mc.mm->mmap_sem);
6059 atomic_dec(&mc.from->moving_account);
6060}
6061
6062static void mem_cgroup_move_task(void)
6063{
6064 if (mc.to) {
6065 mem_cgroup_move_charge();
6066 mem_cgroup_clear_mc();
6067 }
6068}
6069#else /* !CONFIG_MMU */
6070static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6071{
6072 return 0;
6073}
6074static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6075{
6076}
6077static void mem_cgroup_move_task(void)
6078{
6079}
6080#endif
6081
6082/*
6083 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6084 * to verify whether we're attached to the default hierarchy on each mount
6085 * attempt.
6086 */
6087static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6088{
6089 /*
6090 * use_hierarchy is forced on the default hierarchy. cgroup core
6091 * guarantees that @root doesn't have any children, so turning it
6092 * on for the root memcg is enough.
6093 */
6094 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6095 root_mem_cgroup->use_hierarchy = true;
6096 else
6097 root_mem_cgroup->use_hierarchy = false;
6098}
6099
6100static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6101{
6102 if (value == PAGE_COUNTER_MAX)
6103 seq_puts(m, "max\n");
6104 else
6105 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6106
6107 return 0;
6108}
6109
6110static u64 memory_current_read(struct cgroup_subsys_state *css,
6111 struct cftype *cft)
6112{
6113 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6114
6115 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6116}
6117
6118static int memory_min_show(struct seq_file *m, void *v)
6119{
6120 return seq_puts_memcg_tunable(m,
6121 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6122}
6123
6124static ssize_t memory_min_write(struct kernfs_open_file *of,
6125 char *buf, size_t nbytes, loff_t off)
6126{
6127 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6128 unsigned long min;
6129 int err;
6130
6131 buf = strstrip(buf);
6132 err = page_counter_memparse(buf, "max", &min);
6133 if (err)
6134 return err;
6135
6136 page_counter_set_min(&memcg->memory, min);
6137
6138 return nbytes;
6139}
6140
6141static int memory_low_show(struct seq_file *m, void *v)
6142{
6143 return seq_puts_memcg_tunable(m,
6144 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6145}
6146
6147static ssize_t memory_low_write(struct kernfs_open_file *of,
6148 char *buf, size_t nbytes, loff_t off)
6149{
6150 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6151 unsigned long low;
6152 int err;
6153
6154 buf = strstrip(buf);
6155 err = page_counter_memparse(buf, "max", &low);
6156 if (err)
6157 return err;
6158
6159 page_counter_set_low(&memcg->memory, low);
6160
6161 return nbytes;
6162}
6163
6164static int memory_high_show(struct seq_file *m, void *v)
6165{
6166 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
6167}
6168
6169static ssize_t memory_high_write(struct kernfs_open_file *of,
6170 char *buf, size_t nbytes, loff_t off)
6171{
6172 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6173 unsigned long nr_pages;
6174 unsigned long high;
6175 int err;
6176
6177 buf = strstrip(buf);
6178 err = page_counter_memparse(buf, "max", &high);
6179 if (err)
6180 return err;
6181
6182 memcg->high = high;
6183
6184 nr_pages = page_counter_read(&memcg->memory);
6185 if (nr_pages > high)
6186 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6187 GFP_KERNEL, true);
6188
6189 memcg_wb_domain_size_changed(memcg);
6190 return nbytes;
6191}
6192
6193static int memory_max_show(struct seq_file *m, void *v)
6194{
6195 return seq_puts_memcg_tunable(m,
6196 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6197}
6198
6199static ssize_t memory_max_write(struct kernfs_open_file *of,
6200 char *buf, size_t nbytes, loff_t off)
6201{
6202 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6203 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6204 bool drained = false;
6205 unsigned long max;
6206 int err;
6207
6208 buf = strstrip(buf);
6209 err = page_counter_memparse(buf, "max", &max);
6210 if (err)
6211 return err;
6212
6213 xchg(&memcg->memory.max, max);
6214
6215 for (;;) {
6216 unsigned long nr_pages = page_counter_read(&memcg->memory);
6217
6218 if (nr_pages <= max)
6219 break;
6220
6221 if (signal_pending(current)) {
6222 err = -EINTR;
6223 break;
6224 }
6225
6226 if (!drained) {
6227 drain_all_stock(memcg);
6228 drained = true;
6229 continue;
6230 }
6231
6232 if (nr_reclaims) {
6233 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6234 GFP_KERNEL, true))
6235 nr_reclaims--;
6236 continue;
6237 }
6238
6239 memcg_memory_event(memcg, MEMCG_OOM);
6240 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6241 break;
6242 }
6243
6244 memcg_wb_domain_size_changed(memcg);
6245 return nbytes;
6246}
6247
6248static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6249{
6250 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6251 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6252 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6253 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6254 seq_printf(m, "oom_kill %lu\n",
6255 atomic_long_read(&events[MEMCG_OOM_KILL]));
6256}
6257
6258static int memory_events_show(struct seq_file *m, void *v)
6259{
6260 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6261
6262 __memory_events_show(m, memcg->memory_events);
6263 return 0;
6264}
6265
6266static int memory_events_local_show(struct seq_file *m, void *v)
6267{
6268 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6269
6270 __memory_events_show(m, memcg->memory_events_local);
6271 return 0;
6272}
6273
6274static int memory_stat_show(struct seq_file *m, void *v)
6275{
6276 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6277 char *buf;
6278
6279 buf = memory_stat_format(memcg);
6280 if (!buf)
6281 return -ENOMEM;
6282 seq_puts(m, buf);
6283 kfree(buf);
6284 return 0;
6285}
6286
6287static int memory_oom_group_show(struct seq_file *m, void *v)
6288{
6289 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6290
6291 seq_printf(m, "%d\n", memcg->oom_group);
6292
6293 return 0;
6294}
6295
6296static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6297 char *buf, size_t nbytes, loff_t off)
6298{
6299 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6300 int ret, oom_group;
6301
6302 buf = strstrip(buf);
6303 if (!buf)
6304 return -EINVAL;
6305
6306 ret = kstrtoint(buf, 0, &oom_group);
6307 if (ret)
6308 return ret;
6309
6310 if (oom_group != 0 && oom_group != 1)
6311 return -EINVAL;
6312
6313 memcg->oom_group = oom_group;
6314
6315 return nbytes;
6316}
6317
6318static struct cftype memory_files[] = {
6319 {
6320 .name = "current",
6321 .flags = CFTYPE_NOT_ON_ROOT,
6322 .read_u64 = memory_current_read,
6323 },
6324 {
6325 .name = "min",
6326 .flags = CFTYPE_NOT_ON_ROOT,
6327 .seq_show = memory_min_show,
6328 .write = memory_min_write,
6329 },
6330 {
6331 .name = "low",
6332 .flags = CFTYPE_NOT_ON_ROOT,
6333 .seq_show = memory_low_show,
6334 .write = memory_low_write,
6335 },
6336 {
6337 .name = "high",
6338 .flags = CFTYPE_NOT_ON_ROOT,
6339 .seq_show = memory_high_show,
6340 .write = memory_high_write,
6341 },
6342 {
6343 .name = "max",
6344 .flags = CFTYPE_NOT_ON_ROOT,
6345 .seq_show = memory_max_show,
6346 .write = memory_max_write,
6347 },
6348 {
6349 .name = "events",
6350 .flags = CFTYPE_NOT_ON_ROOT,
6351 .file_offset = offsetof(struct mem_cgroup, events_file),
6352 .seq_show = memory_events_show,
6353 },
6354 {
6355 .name = "events.local",
6356 .flags = CFTYPE_NOT_ON_ROOT,
6357 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6358 .seq_show = memory_events_local_show,
6359 },
6360 {
6361 .name = "stat",
6362 .flags = CFTYPE_NOT_ON_ROOT,
6363 .seq_show = memory_stat_show,
6364 },
6365 {
6366 .name = "oom.group",
6367 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6368 .seq_show = memory_oom_group_show,
6369 .write = memory_oom_group_write,
6370 },
6371 { } /* terminate */
6372};
6373
6374struct cgroup_subsys memory_cgrp_subsys = {
6375 .css_alloc = mem_cgroup_css_alloc,
6376 .css_online = mem_cgroup_css_online,
6377 .css_offline = mem_cgroup_css_offline,
6378 .css_released = mem_cgroup_css_released,
6379 .css_free = mem_cgroup_css_free,
6380 .css_reset = mem_cgroup_css_reset,
6381 .can_attach = mem_cgroup_can_attach,
6382 .cancel_attach = mem_cgroup_cancel_attach,
6383 .post_attach = mem_cgroup_move_task,
6384 .bind = mem_cgroup_bind,
6385 .dfl_cftypes = memory_files,
6386 .legacy_cftypes = mem_cgroup_legacy_files,
6387 .early_init = 0,
6388};
6389
6390/**
6391 * mem_cgroup_protected - check if memory consumption is in the normal range
6392 * @root: the top ancestor of the sub-tree being checked
6393 * @memcg: the memory cgroup to check
6394 *
6395 * WARNING: This function is not stateless! It can only be used as part
6396 * of a top-down tree iteration, not for isolated queries.
6397 *
6398 * Returns one of the following:
6399 * MEMCG_PROT_NONE: cgroup memory is not protected
6400 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6401 * an unprotected supply of reclaimable memory from other cgroups.
6402 * MEMCG_PROT_MIN: cgroup memory is protected
6403 *
6404 * @root is exclusive; it is never protected when looked at directly
6405 *
6406 * To provide a proper hierarchical behavior, effective memory.min/low values
6407 * are used. Below is the description of how effective memory.low is calculated.
6408 * Effective memory.min values is calculated in the same way.
6409 *
6410 * Effective memory.low is always equal or less than the original memory.low.
6411 * If there is no memory.low overcommittment (which is always true for
6412 * top-level memory cgroups), these two values are equal.
6413 * Otherwise, it's a part of parent's effective memory.low,
6414 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6415 * memory.low usages, where memory.low usage is the size of actually
6416 * protected memory.
6417 *
6418 * low_usage
6419 * elow = min( memory.low, parent->elow * ------------------ ),
6420 * siblings_low_usage
6421 *
6422 * | memory.current, if memory.current < memory.low
6423 * low_usage = |
6424 * | 0, otherwise.
6425 *
6426 *
6427 * Such definition of the effective memory.low provides the expected
6428 * hierarchical behavior: parent's memory.low value is limiting
6429 * children, unprotected memory is reclaimed first and cgroups,
6430 * which are not using their guarantee do not affect actual memory
6431 * distribution.
6432 *
6433 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6434 *
6435 * A A/memory.low = 2G, A/memory.current = 6G
6436 * //\\
6437 * BC DE B/memory.low = 3G B/memory.current = 2G
6438 * C/memory.low = 1G C/memory.current = 2G
6439 * D/memory.low = 0 D/memory.current = 2G
6440 * E/memory.low = 10G E/memory.current = 0
6441 *
6442 * and the memory pressure is applied, the following memory distribution
6443 * is expected (approximately):
6444 *
6445 * A/memory.current = 2G
6446 *
6447 * B/memory.current = 1.3G
6448 * C/memory.current = 0.6G
6449 * D/memory.current = 0
6450 * E/memory.current = 0
6451 *
6452 * These calculations require constant tracking of the actual low usages
6453 * (see propagate_protected_usage()), as well as recursive calculation of
6454 * effective memory.low values. But as we do call mem_cgroup_protected()
6455 * path for each memory cgroup top-down from the reclaim,
6456 * it's possible to optimize this part, and save calculated elow
6457 * for next usage. This part is intentionally racy, but it's ok,
6458 * as memory.low is a best-effort mechanism.
6459 */
6460enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6461 struct mem_cgroup *memcg)
6462{
6463 struct mem_cgroup *parent;
6464 unsigned long emin, parent_emin;
6465 unsigned long elow, parent_elow;
6466 unsigned long usage;
6467
6468 if (mem_cgroup_disabled())
6469 return MEMCG_PROT_NONE;
6470
6471 if (!root)
6472 root = root_mem_cgroup;
6473
6474 /*
6475 * Effective values of the reclaim targets are ignored so they
6476 * can be stale. Have a look at mem_cgroup_protection for more
6477 * details.
6478 * TODO: calculation should be more robust so that we do not need
6479 * that special casing.
6480 */
6481 if (memcg == root)
6482 return MEMCG_PROT_NONE;
6483
6484 usage = page_counter_read(&memcg->memory);
6485 if (!usage)
6486 return MEMCG_PROT_NONE;
6487
6488 emin = memcg->memory.min;
6489 elow = memcg->memory.low;
6490
6491 parent = parent_mem_cgroup(memcg);
6492 /* No parent means a non-hierarchical mode on v1 memcg */
6493 if (!parent)
6494 return MEMCG_PROT_NONE;
6495
6496 if (parent == root)
6497 goto exit;
6498
6499 parent_emin = READ_ONCE(parent->memory.emin);
6500 emin = min(emin, parent_emin);
6501 if (emin && parent_emin) {
6502 unsigned long min_usage, siblings_min_usage;
6503
6504 min_usage = min(usage, memcg->memory.min);
6505 siblings_min_usage = atomic_long_read(
6506 &parent->memory.children_min_usage);
6507
6508 if (min_usage && siblings_min_usage)
6509 emin = min(emin, parent_emin * min_usage /
6510 siblings_min_usage);
6511 }
6512
6513 parent_elow = READ_ONCE(parent->memory.elow);
6514 elow = min(elow, parent_elow);
6515 if (elow && parent_elow) {
6516 unsigned long low_usage, siblings_low_usage;
6517
6518 low_usage = min(usage, memcg->memory.low);
6519 siblings_low_usage = atomic_long_read(
6520 &parent->memory.children_low_usage);
6521
6522 if (low_usage && siblings_low_usage)
6523 elow = min(elow, parent_elow * low_usage /
6524 siblings_low_usage);
6525 }
6526
6527exit:
6528 memcg->memory.emin = emin;
6529 memcg->memory.elow = elow;
6530
6531 if (usage <= emin)
6532 return MEMCG_PROT_MIN;
6533 else if (usage <= elow)
6534 return MEMCG_PROT_LOW;
6535 else
6536 return MEMCG_PROT_NONE;
6537}
6538
6539/**
6540 * mem_cgroup_try_charge - try charging a page
6541 * @page: page to charge
6542 * @mm: mm context of the victim
6543 * @gfp_mask: reclaim mode
6544 * @memcgp: charged memcg return
6545 * @compound: charge the page as compound or small page
6546 *
6547 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6548 * pages according to @gfp_mask if necessary.
6549 *
6550 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6551 * Otherwise, an error code is returned.
6552 *
6553 * After page->mapping has been set up, the caller must finalize the
6554 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6555 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6556 */
6557int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6558 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6559 bool compound)
6560{
6561 struct mem_cgroup *memcg = NULL;
6562 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6563 int ret = 0;
6564
6565 if (mem_cgroup_disabled())
6566 goto out;
6567
6568 if (PageSwapCache(page)) {
6569 /*
6570 * Every swap fault against a single page tries to charge the
6571 * page, bail as early as possible. shmem_unuse() encounters
6572 * already charged pages, too. The USED bit is protected by
6573 * the page lock, which serializes swap cache removal, which
6574 * in turn serializes uncharging.
6575 */
6576 VM_BUG_ON_PAGE(!PageLocked(page), page);
6577 if (compound_head(page)->mem_cgroup)
6578 goto out;
6579
6580 if (do_swap_account) {
6581 swp_entry_t ent = { .val = page_private(page), };
6582 unsigned short id = lookup_swap_cgroup_id(ent);
6583
6584 rcu_read_lock();
6585 memcg = mem_cgroup_from_id(id);
6586 if (memcg && !css_tryget_online(&memcg->css))
6587 memcg = NULL;
6588 rcu_read_unlock();
6589 }
6590 }
6591
6592 if (!memcg)
6593 memcg = get_mem_cgroup_from_mm(mm);
6594
6595 ret = try_charge(memcg, gfp_mask, nr_pages);
6596
6597 css_put(&memcg->css);
6598out:
6599 *memcgp = memcg;
6600 return ret;
6601}
6602
6603int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6604 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6605 bool compound)
6606{
6607 struct mem_cgroup *memcg;
6608 int ret;
6609
6610 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6611 memcg = *memcgp;
6612 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6613 return ret;
6614}
6615
6616/**
6617 * mem_cgroup_commit_charge - commit a page charge
6618 * @page: page to charge
6619 * @memcg: memcg to charge the page to
6620 * @lrucare: page might be on LRU already
6621 * @compound: charge the page as compound or small page
6622 *
6623 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6624 * after page->mapping has been set up. This must happen atomically
6625 * as part of the page instantiation, i.e. under the page table lock
6626 * for anonymous pages, under the page lock for page and swap cache.
6627 *
6628 * In addition, the page must not be on the LRU during the commit, to
6629 * prevent racing with task migration. If it might be, use @lrucare.
6630 *
6631 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6632 */
6633void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6634 bool lrucare, bool compound)
6635{
6636 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6637
6638 VM_BUG_ON_PAGE(!page->mapping, page);
6639 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6640
6641 if (mem_cgroup_disabled())
6642 return;
6643 /*
6644 * Swap faults will attempt to charge the same page multiple
6645 * times. But reuse_swap_page() might have removed the page
6646 * from swapcache already, so we can't check PageSwapCache().
6647 */
6648 if (!memcg)
6649 return;
6650
6651 commit_charge(page, memcg, lrucare);
6652
6653 local_irq_disable();
6654 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6655 memcg_check_events(memcg, page);
6656 local_irq_enable();
6657
6658 if (do_memsw_account() && PageSwapCache(page)) {
6659 swp_entry_t entry = { .val = page_private(page) };
6660 /*
6661 * The swap entry might not get freed for a long time,
6662 * let's not wait for it. The page already received a
6663 * memory+swap charge, drop the swap entry duplicate.
6664 */
6665 mem_cgroup_uncharge_swap(entry, nr_pages);
6666 }
6667}
6668
6669/**
6670 * mem_cgroup_cancel_charge - cancel a page charge
6671 * @page: page to charge
6672 * @memcg: memcg to charge the page to
6673 * @compound: charge the page as compound or small page
6674 *
6675 * Cancel a charge transaction started by mem_cgroup_try_charge().
6676 */
6677void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6678 bool compound)
6679{
6680 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6681
6682 if (mem_cgroup_disabled())
6683 return;
6684 /*
6685 * Swap faults will attempt to charge the same page multiple
6686 * times. But reuse_swap_page() might have removed the page
6687 * from swapcache already, so we can't check PageSwapCache().
6688 */
6689 if (!memcg)
6690 return;
6691
6692 cancel_charge(memcg, nr_pages);
6693}
6694
6695struct uncharge_gather {
6696 struct mem_cgroup *memcg;
6697 unsigned long pgpgout;
6698 unsigned long nr_anon;
6699 unsigned long nr_file;
6700 unsigned long nr_kmem;
6701 unsigned long nr_huge;
6702 unsigned long nr_shmem;
6703 struct page *dummy_page;
6704};
6705
6706static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6707{
6708 memset(ug, 0, sizeof(*ug));
6709}
6710
6711static void uncharge_batch(const struct uncharge_gather *ug)
6712{
6713 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6714 unsigned long flags;
6715
6716 if (!mem_cgroup_is_root(ug->memcg)) {
6717 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6718 if (do_memsw_account())
6719 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6720 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6721 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6722 memcg_oom_recover(ug->memcg);
6723 }
6724
6725 local_irq_save(flags);
6726 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6727 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6728 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6729 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6730 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6731 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6732 memcg_check_events(ug->memcg, ug->dummy_page);
6733 local_irq_restore(flags);
6734
6735 if (!mem_cgroup_is_root(ug->memcg))
6736 css_put_many(&ug->memcg->css, nr_pages);
6737}
6738
6739static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6740{
6741 VM_BUG_ON_PAGE(PageLRU(page), page);
6742 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6743 !PageHWPoison(page) , page);
6744
6745 if (!page->mem_cgroup)
6746 return;
6747
6748 /*
6749 * Nobody should be changing or seriously looking at
6750 * page->mem_cgroup at this point, we have fully
6751 * exclusive access to the page.
6752 */
6753
6754 if (ug->memcg != page->mem_cgroup) {
6755 if (ug->memcg) {
6756 uncharge_batch(ug);
6757 uncharge_gather_clear(ug);
6758 }
6759 ug->memcg = page->mem_cgroup;
6760 }
6761
6762 if (!PageKmemcg(page)) {
6763 unsigned int nr_pages = 1;
6764
6765 if (PageTransHuge(page)) {
6766 nr_pages = compound_nr(page);
6767 ug->nr_huge += nr_pages;
6768 }
6769 if (PageAnon(page))
6770 ug->nr_anon += nr_pages;
6771 else {
6772 ug->nr_file += nr_pages;
6773 if (PageSwapBacked(page))
6774 ug->nr_shmem += nr_pages;
6775 }
6776 ug->pgpgout++;
6777 } else {
6778 ug->nr_kmem += compound_nr(page);
6779 __ClearPageKmemcg(page);
6780 }
6781
6782 ug->dummy_page = page;
6783 page->mem_cgroup = NULL;
6784}
6785
6786static void uncharge_list(struct list_head *page_list)
6787{
6788 struct uncharge_gather ug;
6789 struct list_head *next;
6790
6791 uncharge_gather_clear(&ug);
6792
6793 /*
6794 * Note that the list can be a single page->lru; hence the
6795 * do-while loop instead of a simple list_for_each_entry().
6796 */
6797 next = page_list->next;
6798 do {
6799 struct page *page;
6800
6801 page = list_entry(next, struct page, lru);
6802 next = page->lru.next;
6803
6804 uncharge_page(page, &ug);
6805 } while (next != page_list);
6806
6807 if (ug.memcg)
6808 uncharge_batch(&ug);
6809}
6810
6811/**
6812 * mem_cgroup_uncharge - uncharge a page
6813 * @page: page to uncharge
6814 *
6815 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6816 * mem_cgroup_commit_charge().
6817 */
6818void mem_cgroup_uncharge(struct page *page)
6819{
6820 struct uncharge_gather ug;
6821
6822 if (mem_cgroup_disabled())
6823 return;
6824
6825 /* Don't touch page->lru of any random page, pre-check: */
6826 if (!page->mem_cgroup)
6827 return;
6828
6829 uncharge_gather_clear(&ug);
6830 uncharge_page(page, &ug);
6831 uncharge_batch(&ug);
6832}
6833
6834/**
6835 * mem_cgroup_uncharge_list - uncharge a list of page
6836 * @page_list: list of pages to uncharge
6837 *
6838 * Uncharge a list of pages previously charged with
6839 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6840 */
6841void mem_cgroup_uncharge_list(struct list_head *page_list)
6842{
6843 if (mem_cgroup_disabled())
6844 return;
6845
6846 if (!list_empty(page_list))
6847 uncharge_list(page_list);
6848}
6849
6850/**
6851 * mem_cgroup_migrate - charge a page's replacement
6852 * @oldpage: currently circulating page
6853 * @newpage: replacement page
6854 *
6855 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6856 * be uncharged upon free.
6857 *
6858 * Both pages must be locked, @newpage->mapping must be set up.
6859 */
6860void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6861{
6862 struct mem_cgroup *memcg;
6863 unsigned int nr_pages;
6864 bool compound;
6865 unsigned long flags;
6866
6867 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6868 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6869 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6870 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6871 newpage);
6872
6873 if (mem_cgroup_disabled())
6874 return;
6875
6876 /* Page cache replacement: new page already charged? */
6877 if (newpage->mem_cgroup)
6878 return;
6879
6880 /* Swapcache readahead pages can get replaced before being charged */
6881 memcg = oldpage->mem_cgroup;
6882 if (!memcg)
6883 return;
6884
6885 /* Force-charge the new page. The old one will be freed soon */
6886 compound = PageTransHuge(newpage);
6887 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6888
6889 page_counter_charge(&memcg->memory, nr_pages);
6890 if (do_memsw_account())
6891 page_counter_charge(&memcg->memsw, nr_pages);
6892 css_get_many(&memcg->css, nr_pages);
6893
6894 commit_charge(newpage, memcg, false);
6895
6896 local_irq_save(flags);
6897 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6898 memcg_check_events(memcg, newpage);
6899 local_irq_restore(flags);
6900}
6901
6902DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6903EXPORT_SYMBOL(memcg_sockets_enabled_key);
6904
6905void mem_cgroup_sk_alloc(struct sock *sk)
6906{
6907 struct mem_cgroup *memcg;
6908
6909 if (!mem_cgroup_sockets_enabled)
6910 return;
6911
6912 /* Do not associate the sock with unrelated interrupted task's memcg. */
6913 if (in_interrupt())
6914 return;
6915
6916 rcu_read_lock();
6917 memcg = mem_cgroup_from_task(current);
6918 if (memcg == root_mem_cgroup)
6919 goto out;
6920 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6921 goto out;
6922 if (css_tryget_online(&memcg->css))
6923 sk->sk_memcg = memcg;
6924out:
6925 rcu_read_unlock();
6926}
6927
6928void mem_cgroup_sk_free(struct sock *sk)
6929{
6930 if (sk->sk_memcg)
6931 css_put(&sk->sk_memcg->css);
6932}
6933
6934/**
6935 * mem_cgroup_charge_skmem - charge socket memory
6936 * @memcg: memcg to charge
6937 * @nr_pages: number of pages to charge
6938 *
6939 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6940 * @memcg's configured limit, %false if the charge had to be forced.
6941 */
6942bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6943{
6944 gfp_t gfp_mask = GFP_KERNEL;
6945
6946 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6947 struct page_counter *fail;
6948
6949 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6950 memcg->tcpmem_pressure = 0;
6951 return true;
6952 }
6953 page_counter_charge(&memcg->tcpmem, nr_pages);
6954 memcg->tcpmem_pressure = 1;
6955 return false;
6956 }
6957
6958 /* Don't block in the packet receive path */
6959 if (in_softirq())
6960 gfp_mask = GFP_NOWAIT;
6961
6962 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6963
6964 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6965 return true;
6966
6967 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6968 return false;
6969}
6970
6971/**
6972 * mem_cgroup_uncharge_skmem - uncharge socket memory
6973 * @memcg: memcg to uncharge
6974 * @nr_pages: number of pages to uncharge
6975 */
6976void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6977{
6978 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6979 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6980 return;
6981 }
6982
6983 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6984
6985 refill_stock(memcg, nr_pages);
6986}
6987
6988static int __init cgroup_memory(char *s)
6989{
6990 char *token;
6991
6992 while ((token = strsep(&s, ",")) != NULL) {
6993 if (!*token)
6994 continue;
6995 if (!strcmp(token, "nosocket"))
6996 cgroup_memory_nosocket = true;
6997 if (!strcmp(token, "nokmem"))
6998 cgroup_memory_nokmem = true;
6999 }
7000 return 1;
7001}
7002__setup("cgroup.memory=", cgroup_memory);
7003
7004/*
7005 * subsys_initcall() for memory controller.
7006 *
7007 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7008 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7009 * basically everything that doesn't depend on a specific mem_cgroup structure
7010 * should be initialized from here.
7011 */
7012static int __init mem_cgroup_init(void)
7013{
7014 int cpu, node;
7015
7016#ifdef CONFIG_MEMCG_KMEM
7017 /*
7018 * Kmem cache creation is mostly done with the slab_mutex held,
7019 * so use a workqueue with limited concurrency to avoid stalling
7020 * all worker threads in case lots of cgroups are created and
7021 * destroyed simultaneously.
7022 */
7023 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
7024 BUG_ON(!memcg_kmem_cache_wq);
7025#endif
7026
7027 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7028 memcg_hotplug_cpu_dead);
7029
7030 for_each_possible_cpu(cpu)
7031 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7032 drain_local_stock);
7033
7034 for_each_node(node) {
7035 struct mem_cgroup_tree_per_node *rtpn;
7036
7037 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7038 node_online(node) ? node : NUMA_NO_NODE);
7039
7040 rtpn->rb_root = RB_ROOT;
7041 rtpn->rb_rightmost = NULL;
7042 spin_lock_init(&rtpn->lock);
7043 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7044 }
7045
7046 return 0;
7047}
7048subsys_initcall(mem_cgroup_init);
7049
7050#ifdef CONFIG_MEMCG_SWAP
7051static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7052{
7053 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7054 /*
7055 * The root cgroup cannot be destroyed, so it's refcount must
7056 * always be >= 1.
7057 */
7058 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7059 VM_BUG_ON(1);
7060 break;
7061 }
7062 memcg = parent_mem_cgroup(memcg);
7063 if (!memcg)
7064 memcg = root_mem_cgroup;
7065 }
7066 return memcg;
7067}
7068
7069/**
7070 * mem_cgroup_swapout - transfer a memsw charge to swap
7071 * @page: page whose memsw charge to transfer
7072 * @entry: swap entry to move the charge to
7073 *
7074 * Transfer the memsw charge of @page to @entry.
7075 */
7076void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7077{
7078 struct mem_cgroup *memcg, *swap_memcg;
7079 unsigned int nr_entries;
7080 unsigned short oldid;
7081
7082 VM_BUG_ON_PAGE(PageLRU(page), page);
7083 VM_BUG_ON_PAGE(page_count(page), page);
7084
7085 if (!do_memsw_account())
7086 return;
7087
7088 memcg = page->mem_cgroup;
7089
7090 /* Readahead page, never charged */
7091 if (!memcg)
7092 return;
7093
7094 /*
7095 * In case the memcg owning these pages has been offlined and doesn't
7096 * have an ID allocated to it anymore, charge the closest online
7097 * ancestor for the swap instead and transfer the memory+swap charge.
7098 */
7099 swap_memcg = mem_cgroup_id_get_online(memcg);
7100 nr_entries = hpage_nr_pages(page);
7101 /* Get references for the tail pages, too */
7102 if (nr_entries > 1)
7103 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7104 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7105 nr_entries);
7106 VM_BUG_ON_PAGE(oldid, page);
7107 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7108
7109 page->mem_cgroup = NULL;
7110
7111 if (!mem_cgroup_is_root(memcg))
7112 page_counter_uncharge(&memcg->memory, nr_entries);
7113
7114 if (memcg != swap_memcg) {
7115 if (!mem_cgroup_is_root(swap_memcg))
7116 page_counter_charge(&swap_memcg->memsw, nr_entries);
7117 page_counter_uncharge(&memcg->memsw, nr_entries);
7118 }
7119
7120 /*
7121 * Interrupts should be disabled here because the caller holds the
7122 * i_pages lock which is taken with interrupts-off. It is
7123 * important here to have the interrupts disabled because it is the
7124 * only synchronisation we have for updating the per-CPU variables.
7125 */
7126 VM_BUG_ON(!irqs_disabled());
7127 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
7128 -nr_entries);
7129 memcg_check_events(memcg, page);
7130
7131 if (!mem_cgroup_is_root(memcg))
7132 css_put_many(&memcg->css, nr_entries);
7133}
7134
7135/**
7136 * mem_cgroup_try_charge_swap - try charging swap space for a page
7137 * @page: page being added to swap
7138 * @entry: swap entry to charge
7139 *
7140 * Try to charge @page's memcg for the swap space at @entry.
7141 *
7142 * Returns 0 on success, -ENOMEM on failure.
7143 */
7144int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7145{
7146 unsigned int nr_pages = hpage_nr_pages(page);
7147 struct page_counter *counter;
7148 struct mem_cgroup *memcg;
7149 unsigned short oldid;
7150
7151 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
7152 return 0;
7153
7154 memcg = page->mem_cgroup;
7155
7156 /* Readahead page, never charged */
7157 if (!memcg)
7158 return 0;
7159
7160 if (!entry.val) {
7161 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7162 return 0;
7163 }
7164
7165 memcg = mem_cgroup_id_get_online(memcg);
7166
7167 if (!mem_cgroup_is_root(memcg) &&
7168 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7169 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7170 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7171 mem_cgroup_id_put(memcg);
7172 return -ENOMEM;
7173 }
7174
7175 /* Get references for the tail pages, too */
7176 if (nr_pages > 1)
7177 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7178 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7179 VM_BUG_ON_PAGE(oldid, page);
7180 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7181
7182 return 0;
7183}
7184
7185/**
7186 * mem_cgroup_uncharge_swap - uncharge swap space
7187 * @entry: swap entry to uncharge
7188 * @nr_pages: the amount of swap space to uncharge
7189 */
7190void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7191{
7192 struct mem_cgroup *memcg;
7193 unsigned short id;
7194
7195 if (!do_swap_account)
7196 return;
7197
7198 id = swap_cgroup_record(entry, 0, nr_pages);
7199 rcu_read_lock();
7200 memcg = mem_cgroup_from_id(id);
7201 if (memcg) {
7202 if (!mem_cgroup_is_root(memcg)) {
7203 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7204 page_counter_uncharge(&memcg->swap, nr_pages);
7205 else
7206 page_counter_uncharge(&memcg->memsw, nr_pages);
7207 }
7208 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7209 mem_cgroup_id_put_many(memcg, nr_pages);
7210 }
7211 rcu_read_unlock();
7212}
7213
7214long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7215{
7216 long nr_swap_pages = get_nr_swap_pages();
7217
7218 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7219 return nr_swap_pages;
7220 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7221 nr_swap_pages = min_t(long, nr_swap_pages,
7222 READ_ONCE(memcg->swap.max) -
7223 page_counter_read(&memcg->swap));
7224 return nr_swap_pages;
7225}
7226
7227bool mem_cgroup_swap_full(struct page *page)
7228{
7229 struct mem_cgroup *memcg;
7230
7231 VM_BUG_ON_PAGE(!PageLocked(page), page);
7232
7233 if (vm_swap_full())
7234 return true;
7235 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7236 return false;
7237
7238 memcg = page->mem_cgroup;
7239 if (!memcg)
7240 return false;
7241
7242 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7243 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
7244 return true;
7245
7246 return false;
7247}
7248
7249/* for remember boot option*/
7250#ifdef CONFIG_MEMCG_SWAP_ENABLED
7251static int really_do_swap_account __initdata = 1;
7252#else
7253static int really_do_swap_account __initdata;
7254#endif
7255
7256static int __init enable_swap_account(char *s)
7257{
7258 if (!strcmp(s, "1"))
7259 really_do_swap_account = 1;
7260 else if (!strcmp(s, "0"))
7261 really_do_swap_account = 0;
7262 return 1;
7263}
7264__setup("swapaccount=", enable_swap_account);
7265
7266static u64 swap_current_read(struct cgroup_subsys_state *css,
7267 struct cftype *cft)
7268{
7269 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7270
7271 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7272}
7273
7274static int swap_max_show(struct seq_file *m, void *v)
7275{
7276 return seq_puts_memcg_tunable(m,
7277 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7278}
7279
7280static ssize_t swap_max_write(struct kernfs_open_file *of,
7281 char *buf, size_t nbytes, loff_t off)
7282{
7283 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7284 unsigned long max;
7285 int err;
7286
7287 buf = strstrip(buf);
7288 err = page_counter_memparse(buf, "max", &max);
7289 if (err)
7290 return err;
7291
7292 xchg(&memcg->swap.max, max);
7293
7294 return nbytes;
7295}
7296
7297static int swap_events_show(struct seq_file *m, void *v)
7298{
7299 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7300
7301 seq_printf(m, "max %lu\n",
7302 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7303 seq_printf(m, "fail %lu\n",
7304 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7305
7306 return 0;
7307}
7308
7309static struct cftype swap_files[] = {
7310 {
7311 .name = "swap.current",
7312 .flags = CFTYPE_NOT_ON_ROOT,
7313 .read_u64 = swap_current_read,
7314 },
7315 {
7316 .name = "swap.max",
7317 .flags = CFTYPE_NOT_ON_ROOT,
7318 .seq_show = swap_max_show,
7319 .write = swap_max_write,
7320 },
7321 {
7322 .name = "swap.events",
7323 .flags = CFTYPE_NOT_ON_ROOT,
7324 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7325 .seq_show = swap_events_show,
7326 },
7327 { } /* terminate */
7328};
7329
7330static struct cftype memsw_cgroup_files[] = {
7331 {
7332 .name = "memsw.usage_in_bytes",
7333 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7334 .read_u64 = mem_cgroup_read_u64,
7335 },
7336 {
7337 .name = "memsw.max_usage_in_bytes",
7338 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7339 .write = mem_cgroup_reset,
7340 .read_u64 = mem_cgroup_read_u64,
7341 },
7342 {
7343 .name = "memsw.limit_in_bytes",
7344 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7345 .write = mem_cgroup_write,
7346 .read_u64 = mem_cgroup_read_u64,
7347 },
7348 {
7349 .name = "memsw.failcnt",
7350 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7351 .write = mem_cgroup_reset,
7352 .read_u64 = mem_cgroup_read_u64,
7353 },
7354 { }, /* terminate */
7355};
7356
7357static int __init mem_cgroup_swap_init(void)
7358{
7359 if (!mem_cgroup_disabled() && really_do_swap_account) {
7360 do_swap_account = 1;
7361 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7362 swap_files));
7363 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7364 memsw_cgroup_files));
7365 }
7366 return 0;
7367}
7368subsys_initcall(mem_cgroup_swap_init);
7369
7370#endif /* CONFIG_MEMCG_SWAP */