blob: cb60fe1ed30b4d17a228a2ad58d23d32ed14a86e [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/oom_kill.c
4 *
5 * Copyright (C) 1998,2000 Rik van Riel
6 * Thanks go out to Claus Fischer for some serious inspiration and
7 * for goading me into coding this file...
8 * Copyright (C) 2010 Google, Inc.
9 * Rewritten by David Rientjes
10 *
11 * The routines in this file are used to kill a process when
12 * we're seriously out of memory. This gets called from __alloc_pages()
13 * in mm/page_alloc.c when we really run out of memory.
14 *
15 * Since we won't call these routines often (on a well-configured
16 * machine) this file will double as a 'coding guide' and a signpost
17 * for newbie kernel hackers. It features several pointers to major
18 * kernel subsystems and hints as to where to find out what things do.
19 */
20
21#include <linux/oom.h>
22#include <linux/mm.h>
23#include <linux/err.h>
24#include <linux/gfp.h>
25#include <linux/sched.h>
26#include <linux/sched/mm.h>
27#include <linux/sched/coredump.h>
28#include <linux/sched/task.h>
29#include <linux/swap.h>
30#include <linux/timex.h>
31#include <linux/jiffies.h>
32#include <linux/cpuset.h>
33#include <linux/export.h>
34#include <linux/notifier.h>
35#include <linux/memcontrol.h>
36#include <linux/mempolicy.h>
37#include <linux/security.h>
38#include <linux/ptrace.h>
39#include <linux/freezer.h>
40#include <linux/ftrace.h>
41#include <linux/ratelimit.h>
42#include <linux/kthread.h>
43#include <linux/init.h>
44#include <linux/mmu_notifier.h>
45
46#include <asm/tlb.h>
47#include "internal.h"
48#include "slab.h"
49
50#define CREATE_TRACE_POINTS
51#include <trace/events/oom.h>
52
53int sysctl_panic_on_oom;
54int sysctl_oom_kill_allocating_task;
55int sysctl_oom_dump_tasks = 1;
56
57/*
58 * Serializes oom killer invocations (out_of_memory()) from all contexts to
59 * prevent from over eager oom killing (e.g. when the oom killer is invoked
60 * from different domains).
61 *
62 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
63 * and mark_oom_victim
64 */
65DEFINE_MUTEX(oom_lock);
66/* Serializes oom_score_adj and oom_score_adj_min updates */
67DEFINE_MUTEX(oom_adj_mutex);
68
69static inline bool is_memcg_oom(struct oom_control *oc)
70{
71 return oc->memcg != NULL;
72}
73
74#ifdef CONFIG_NUMA
75/**
76 * oom_cpuset_eligible() - check task eligiblity for kill
77 * @start: task struct of which task to consider
78 * @oc: pointer to struct oom_control
79 *
80 * Task eligibility is determined by whether or not a candidate task, @tsk,
81 * shares the same mempolicy nodes as current if it is bound by such a policy
82 * and whether or not it has the same set of allowed cpuset nodes.
83 *
84 * This function is assuming oom-killer context and 'current' has triggered
85 * the oom-killer.
86 */
87static bool oom_cpuset_eligible(struct task_struct *start,
88 struct oom_control *oc)
89{
90 struct task_struct *tsk;
91 bool ret = false;
92 const nodemask_t *mask = oc->nodemask;
93
94 if (is_memcg_oom(oc))
95 return true;
96
97 rcu_read_lock();
98 for_each_thread(start, tsk) {
99 if (mask) {
100 /*
101 * If this is a mempolicy constrained oom, tsk's
102 * cpuset is irrelevant. Only return true if its
103 * mempolicy intersects current, otherwise it may be
104 * needlessly killed.
105 */
106 ret = mempolicy_nodemask_intersects(tsk, mask);
107 } else {
108 /*
109 * This is not a mempolicy constrained oom, so only
110 * check the mems of tsk's cpuset.
111 */
112 ret = cpuset_mems_allowed_intersects(current, tsk);
113 }
114 if (ret)
115 break;
116 }
117 rcu_read_unlock();
118
119 return ret;
120}
121#else
122static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
123{
124 return true;
125}
126#endif /* CONFIG_NUMA */
127
128/*
129 * The process p may have detached its own ->mm while exiting or through
130 * use_mm(), but one or more of its subthreads may still have a valid
131 * pointer. Return p, or any of its subthreads with a valid ->mm, with
132 * task_lock() held.
133 */
134struct task_struct *find_lock_task_mm(struct task_struct *p)
135{
136 struct task_struct *t;
137
138 rcu_read_lock();
139
140 for_each_thread(p, t) {
141 task_lock(t);
142 if (likely(t->mm))
143 goto found;
144 task_unlock(t);
145 }
146 t = NULL;
147found:
148 rcu_read_unlock();
149
150 return t;
151}
152
153/*
154 * order == -1 means the oom kill is required by sysrq, otherwise only
155 * for display purposes.
156 */
157static inline bool is_sysrq_oom(struct oom_control *oc)
158{
159 return oc->order == -1;
160}
161
162/* return true if the task is not adequate as candidate victim task. */
163static bool oom_unkillable_task(struct task_struct *p)
164{
165 if (is_global_init(p))
166 return true;
167 if (p->flags & PF_KTHREAD)
168 return true;
169 return false;
170}
171
172/*
173 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
174 * than all user memory (LRU pages)
175 */
176static bool is_dump_unreclaim_slabs(void)
177{
178 unsigned long nr_lru;
179
180 nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
181 global_node_page_state(NR_INACTIVE_ANON) +
182 global_node_page_state(NR_ACTIVE_FILE) +
183 global_node_page_state(NR_INACTIVE_FILE) +
184 global_node_page_state(NR_ISOLATED_ANON) +
185 global_node_page_state(NR_ISOLATED_FILE) +
186 global_node_page_state(NR_UNEVICTABLE);
187
188 return (global_node_page_state(NR_SLAB_UNRECLAIMABLE) > nr_lru);
189}
190
191/**
192 * oom_badness - heuristic function to determine which candidate task to kill
193 * @p: task struct of which task we should calculate
194 * @totalpages: total present RAM allowed for page allocation
195 *
196 * The heuristic for determining which task to kill is made to be as simple and
197 * predictable as possible. The goal is to return the highest value for the
198 * task consuming the most memory to avoid subsequent oom failures.
199 */
200long oom_badness(struct task_struct *p, unsigned long totalpages)
201{
202 long points;
203 long adj;
204
205 if (oom_unkillable_task(p))
206 return LONG_MIN;
207
208 p = find_lock_task_mm(p);
209 if (!p)
210 return LONG_MIN;
211
212 /*
213 * Do not even consider tasks which are explicitly marked oom
214 * unkillable or have been already oom reaped or the are in
215 * the middle of vfork
216 */
217 adj = (long)p->signal->oom_score_adj;
218 if (adj == OOM_SCORE_ADJ_MIN ||
219 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
220 in_vfork(p)) {
221 task_unlock(p);
222 return LONG_MIN;
223 }
224
225 /*
226 * The baseline for the badness score is the proportion of RAM that each
227 * task's rss, pagetable and swap space use.
228 */
229 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
230 mm_pgtables_bytes(p->mm) / PAGE_SIZE;
231 task_unlock(p);
232
233 /* Normalize to oom_score_adj units */
234 adj *= totalpages / 1000;
235 points += adj;
236
237 return points;
238}
239
240static const char * const oom_constraint_text[] = {
241 [CONSTRAINT_NONE] = "CONSTRAINT_NONE",
242 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
243 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
244 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
245};
246
247/*
248 * Determine the type of allocation constraint.
249 */
250static enum oom_constraint constrained_alloc(struct oom_control *oc)
251{
252 struct zone *zone;
253 struct zoneref *z;
254 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
255 bool cpuset_limited = false;
256 int nid;
257
258 if (is_memcg_oom(oc)) {
259 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
260 return CONSTRAINT_MEMCG;
261 }
262
263 /* Default to all available memory */
264 oc->totalpages = totalram_pages() + total_swap_pages;
265
266 if (!IS_ENABLED(CONFIG_NUMA))
267 return CONSTRAINT_NONE;
268
269 if (!oc->zonelist)
270 return CONSTRAINT_NONE;
271 /*
272 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
273 * to kill current.We have to random task kill in this case.
274 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
275 */
276 if (oc->gfp_mask & __GFP_THISNODE)
277 return CONSTRAINT_NONE;
278
279 /*
280 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
281 * the page allocator means a mempolicy is in effect. Cpuset policy
282 * is enforced in get_page_from_freelist().
283 */
284 if (oc->nodemask &&
285 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
286 oc->totalpages = total_swap_pages;
287 for_each_node_mask(nid, *oc->nodemask)
288 oc->totalpages += node_present_pages(nid);
289 return CONSTRAINT_MEMORY_POLICY;
290 }
291
292 /* Check this allocation failure is caused by cpuset's wall function */
293 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
294 high_zoneidx, oc->nodemask)
295 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
296 cpuset_limited = true;
297
298 if (cpuset_limited) {
299 oc->totalpages = total_swap_pages;
300 for_each_node_mask(nid, cpuset_current_mems_allowed)
301 oc->totalpages += node_present_pages(nid);
302 return CONSTRAINT_CPUSET;
303 }
304 return CONSTRAINT_NONE;
305}
306
307static int oom_evaluate_task(struct task_struct *task, void *arg)
308{
309 struct oom_control *oc = arg;
310 long points;
311
312 if (oom_unkillable_task(task))
313 goto next;
314
315 /* p may not have freeable memory in nodemask */
316 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
317 goto next;
318
319 /*
320 * This task already has access to memory reserves and is being killed.
321 * Don't allow any other task to have access to the reserves unless
322 * the task has MMF_OOM_SKIP because chances that it would release
323 * any memory is quite low.
324 */
325 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
326 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
327 goto next;
328 goto abort;
329 }
330
331 /*
332 * If task is allocating a lot of memory and has been marked to be
333 * killed first if it triggers an oom, then select it.
334 */
335 if (oom_task_origin(task)) {
336 points = LONG_MAX;
337 goto select;
338 }
339
340 points = oom_badness(task, oc->totalpages);
341 if (points == LONG_MIN || points < oc->chosen_points)
342 goto next;
343
344select:
345 if (oc->chosen)
346 put_task_struct(oc->chosen);
347 get_task_struct(task);
348 oc->chosen = task;
349 oc->chosen_points = points;
350next:
351 return 0;
352abort:
353 if (oc->chosen)
354 put_task_struct(oc->chosen);
355 oc->chosen = (void *)-1UL;
356 return 1;
357}
358
359/*
360 * Simple selection loop. We choose the process with the highest number of
361 * 'points'. In case scan was aborted, oc->chosen is set to -1.
362 */
363static void select_bad_process(struct oom_control *oc)
364{
365 oc->chosen_points = LONG_MIN;
366
367 if (is_memcg_oom(oc))
368 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
369 else {
370 struct task_struct *p;
371
372 rcu_read_lock();
373 for_each_process(p)
374 if (oom_evaluate_task(p, oc))
375 break;
376 rcu_read_unlock();
377 }
378}
379
380static int dump_task(struct task_struct *p, void *arg)
381{
382 struct oom_control *oc = arg;
383 struct task_struct *task;
384
385 if (oom_unkillable_task(p))
386 return 0;
387
388 /* p may not have freeable memory in nodemask */
389 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
390 return 0;
391
392 task = find_lock_task_mm(p);
393 if (!task) {
394 /*
395 * This is a kthread or all of p's threads have already
396 * detached their mm's. There's no need to report
397 * them; they can't be oom killed anyway.
398 */
399 return 0;
400 }
401
402 pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n",
403 task->pid, from_kuid(&init_user_ns, task_uid(task)),
404 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
405 mm_pgtables_bytes(task->mm),
406 get_mm_counter(task->mm, MM_SWAPENTS),
407 task->signal->oom_score_adj, task->comm);
408 task_unlock(task);
409
410 return 0;
411}
412
413/**
414 * dump_tasks - dump current memory state of all system tasks
415 * @oc: pointer to struct oom_control
416 *
417 * Dumps the current memory state of all eligible tasks. Tasks not in the same
418 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
419 * are not shown.
420 * State information includes task's pid, uid, tgid, vm size, rss,
421 * pgtables_bytes, swapents, oom_score_adj value, and name.
422 */
423static void dump_tasks(struct oom_control *oc)
424{
425 pr_info("Tasks state (memory values in pages):\n");
426 pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n");
427
428 if (is_memcg_oom(oc))
429 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
430 else {
431 struct task_struct *p;
432
433 rcu_read_lock();
434 for_each_process(p)
435 dump_task(p, oc);
436 rcu_read_unlock();
437 }
438}
439
440static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
441{
442 /* one line summary of the oom killer context. */
443 pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
444 oom_constraint_text[oc->constraint],
445 nodemask_pr_args(oc->nodemask));
446 cpuset_print_current_mems_allowed();
447 mem_cgroup_print_oom_context(oc->memcg, victim);
448 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
449 from_kuid(&init_user_ns, task_uid(victim)));
450}
451
452static void dump_header(struct oom_control *oc, struct task_struct *p)
453{
454 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
455 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
456 current->signal->oom_score_adj);
457 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
458 pr_warn("COMPACTION is disabled!!!\n");
459
460 dump_stack();
461 if (is_memcg_oom(oc))
462 mem_cgroup_print_oom_meminfo(oc->memcg);
463 else {
464 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
465 if (is_dump_unreclaim_slabs())
466 dump_unreclaimable_slab();
467 }
468 if (sysctl_oom_dump_tasks)
469 dump_tasks(oc);
470 if (p)
471 dump_oom_summary(oc, p);
472}
473
474/*
475 * Number of OOM victims in flight
476 */
477static atomic_t oom_victims = ATOMIC_INIT(0);
478static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
479
480static bool oom_killer_disabled __read_mostly;
481
482#define K(x) ((x) << (PAGE_SHIFT-10))
483
484/*
485 * task->mm can be NULL if the task is the exited group leader. So to
486 * determine whether the task is using a particular mm, we examine all the
487 * task's threads: if one of those is using this mm then this task was also
488 * using it.
489 */
490bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
491{
492 struct task_struct *t;
493
494 for_each_thread(p, t) {
495 struct mm_struct *t_mm = READ_ONCE(t->mm);
496 if (t_mm)
497 return t_mm == mm;
498 }
499 return false;
500}
501
502#ifdef CONFIG_MMU
503/*
504 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
505 * victim (if that is possible) to help the OOM killer to move on.
506 */
507static struct task_struct *oom_reaper_th;
508static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
509static struct task_struct *oom_reaper_list;
510static DEFINE_SPINLOCK(oom_reaper_lock);
511
512bool __oom_reap_task_mm(struct mm_struct *mm)
513{
514 struct vm_area_struct *vma;
515 bool ret = true;
516
517 /*
518 * Tell all users of get_user/copy_from_user etc... that the content
519 * is no longer stable. No barriers really needed because unmapping
520 * should imply barriers already and the reader would hit a page fault
521 * if it stumbled over a reaped memory.
522 */
523 set_bit(MMF_UNSTABLE, &mm->flags);
524
525 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
526 if (!can_madv_lru_vma(vma))
527 continue;
528
529 /*
530 * Only anonymous pages have a good chance to be dropped
531 * without additional steps which we cannot afford as we
532 * are OOM already.
533 *
534 * We do not even care about fs backed pages because all
535 * which are reclaimable have already been reclaimed and
536 * we do not want to block exit_mmap by keeping mm ref
537 * count elevated without a good reason.
538 */
539 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
540 struct mmu_notifier_range range;
541 struct mmu_gather tlb;
542
543 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
544 vma, mm, vma->vm_start,
545 vma->vm_end);
546 tlb_gather_mmu(&tlb, mm, range.start, range.end);
547 if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
548 tlb_finish_mmu(&tlb, range.start, range.end);
549 ret = false;
550 continue;
551 }
552 unmap_page_range(&tlb, vma, range.start, range.end, NULL);
553 mmu_notifier_invalidate_range_end(&range);
554 tlb_finish_mmu(&tlb, range.start, range.end);
555 }
556 }
557
558 return ret;
559}
560
561/*
562 * Reaps the address space of the give task.
563 *
564 * Returns true on success and false if none or part of the address space
565 * has been reclaimed and the caller should retry later.
566 */
567static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
568{
569 bool ret = true;
570
571 if (!down_read_trylock(&mm->mmap_sem)) {
572 trace_skip_task_reaping(tsk->pid);
573 return false;
574 }
575
576 /*
577 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
578 * work on the mm anymore. The check for MMF_OOM_SKIP must run
579 * under mmap_sem for reading because it serializes against the
580 * down_write();up_write() cycle in exit_mmap().
581 */
582 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
583 trace_skip_task_reaping(tsk->pid);
584 goto out_unlock;
585 }
586
587 trace_start_task_reaping(tsk->pid);
588
589 /* failed to reap part of the address space. Try again later */
590 ret = __oom_reap_task_mm(mm);
591 if (!ret)
592 goto out_finish;
593
594 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
595 task_pid_nr(tsk), tsk->comm,
596 K(get_mm_counter(mm, MM_ANONPAGES)),
597 K(get_mm_counter(mm, MM_FILEPAGES)),
598 K(get_mm_counter(mm, MM_SHMEMPAGES)));
599out_finish:
600 trace_finish_task_reaping(tsk->pid);
601out_unlock:
602 up_read(&mm->mmap_sem);
603
604 return ret;
605}
606
607#define MAX_OOM_REAP_RETRIES 10
608static void oom_reap_task(struct task_struct *tsk)
609{
610 int attempts = 0;
611 struct mm_struct *mm = tsk->signal->oom_mm;
612
613 /* Retry the down_read_trylock(mmap_sem) a few times */
614 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
615 schedule_timeout_idle(HZ/10);
616
617 if (attempts <= MAX_OOM_REAP_RETRIES ||
618 test_bit(MMF_OOM_SKIP, &mm->flags))
619 goto done;
620
621 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
622 task_pid_nr(tsk), tsk->comm);
623 debug_show_all_locks();
624
625done:
626 tsk->oom_reaper_list = NULL;
627
628 /*
629 * Hide this mm from OOM killer because it has been either reaped or
630 * somebody can't call up_write(mmap_sem).
631 */
632 set_bit(MMF_OOM_SKIP, &mm->flags);
633
634 /* Drop a reference taken by queue_oom_reaper */
635 put_task_struct(tsk);
636}
637
638static int oom_reaper(void *unused)
639{
640 while (true) {
641 struct task_struct *tsk = NULL;
642
643 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
644 spin_lock_irq(&oom_reaper_lock);
645 if (oom_reaper_list != NULL) {
646 tsk = oom_reaper_list;
647 oom_reaper_list = tsk->oom_reaper_list;
648 }
649 spin_unlock_irq(&oom_reaper_lock);
650
651 if (tsk)
652 oom_reap_task(tsk);
653 }
654
655 return 0;
656}
657
658static void wake_oom_reaper(struct timer_list *timer)
659{
660 struct task_struct *tsk = container_of(timer, struct task_struct,
661 oom_reaper_timer);
662 struct mm_struct *mm = tsk->signal->oom_mm;
663 unsigned long flags;
664
665 /* The victim managed to terminate on its own - see exit_mmap */
666 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
667 put_task_struct(tsk);
668 return;
669 }
670
671 spin_lock_irqsave(&oom_reaper_lock, flags);
672 tsk->oom_reaper_list = oom_reaper_list;
673 oom_reaper_list = tsk;
674 spin_unlock_irqrestore(&oom_reaper_lock, flags);
675 trace_wake_reaper(tsk->pid);
676 wake_up(&oom_reaper_wait);
677}
678
679/*
680 * Give the OOM victim time to exit naturally before invoking the oom_reaping.
681 * The timers timeout is arbitrary... the longer it is, the longer the worst
682 * case scenario for the OOM can take. If it is too small, the oom_reaper can
683 * get in the way and release resources needed by the process exit path.
684 * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
685 * before the exit path is able to wake the futex waiters.
686 */
687#define OOM_REAPER_DELAY (2*HZ)
688static void queue_oom_reaper(struct task_struct *tsk)
689{
690 /* mm is already queued? */
691 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
692 return;
693
694 get_task_struct(tsk);
695 timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0);
696 tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY;
697 add_timer(&tsk->oom_reaper_timer);
698}
699
700static int __init oom_init(void)
701{
702 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
703 return 0;
704}
705subsys_initcall(oom_init)
706#else
707static inline void queue_oom_reaper(struct task_struct *tsk)
708{
709}
710#endif /* CONFIG_MMU */
711
712/**
713 * mark_oom_victim - mark the given task as OOM victim
714 * @tsk: task to mark
715 *
716 * Has to be called with oom_lock held and never after
717 * oom has been disabled already.
718 *
719 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
720 * under task_lock or operate on the current).
721 */
722static void mark_oom_victim(struct task_struct *tsk)
723{
724 struct mm_struct *mm = tsk->mm;
725
726 WARN_ON(oom_killer_disabled);
727 /* OOM killer might race with memcg OOM */
728 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
729 return;
730
731 /* oom_mm is bound to the signal struct life time. */
732 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
733 mmgrab(tsk->signal->oom_mm);
734 set_bit(MMF_OOM_VICTIM, &mm->flags);
735 }
736
737 /*
738 * Make sure that the task is woken up from uninterruptible sleep
739 * if it is frozen because OOM killer wouldn't be able to free
740 * any memory and livelock. freezing_slow_path will tell the freezer
741 * that TIF_MEMDIE tasks should be ignored.
742 */
743 __thaw_task(tsk);
744 atomic_inc(&oom_victims);
745 trace_mark_victim(tsk->pid);
746}
747
748/**
749 * exit_oom_victim - note the exit of an OOM victim
750 */
751void exit_oom_victim(void)
752{
753 clear_thread_flag(TIF_MEMDIE);
754
755 if (!atomic_dec_return(&oom_victims))
756 wake_up_all(&oom_victims_wait);
757}
758
759/**
760 * oom_killer_enable - enable OOM killer
761 */
762void oom_killer_enable(void)
763{
764 oom_killer_disabled = false;
765 pr_pm_debug("OOM killer enabled.\n");
766}
767
768/**
769 * oom_killer_disable - disable OOM killer
770 * @timeout: maximum timeout to wait for oom victims in jiffies
771 *
772 * Forces all page allocations to fail rather than trigger OOM killer.
773 * Will block and wait until all OOM victims are killed or the given
774 * timeout expires.
775 *
776 * The function cannot be called when there are runnable user tasks because
777 * the userspace would see unexpected allocation failures as a result. Any
778 * new usage of this function should be consulted with MM people.
779 *
780 * Returns true if successful and false if the OOM killer cannot be
781 * disabled.
782 */
783bool oom_killer_disable(signed long timeout)
784{
785 signed long ret;
786
787 /*
788 * Make sure to not race with an ongoing OOM killer. Check that the
789 * current is not killed (possibly due to sharing the victim's memory).
790 */
791 if (mutex_lock_killable(&oom_lock))
792 return false;
793 oom_killer_disabled = true;
794 mutex_unlock(&oom_lock);
795
796 ret = wait_event_interruptible_timeout(oom_victims_wait,
797 !atomic_read(&oom_victims), timeout);
798 if (ret <= 0) {
799 oom_killer_enable();
800 return false;
801 }
802 pr_pm_debug("OOM killer disabled.\n");
803
804 return true;
805}
806
807static inline bool __task_will_free_mem(struct task_struct *task)
808{
809 struct signal_struct *sig = task->signal;
810
811 /*
812 * A coredumping process may sleep for an extended period in exit_mm(),
813 * so the oom killer cannot assume that the process will promptly exit
814 * and release memory.
815 */
816 if (sig->flags & SIGNAL_GROUP_COREDUMP)
817 return false;
818
819 if (sig->flags & SIGNAL_GROUP_EXIT)
820 return true;
821
822 if (thread_group_empty(task) && (task->flags & PF_EXITING))
823 return true;
824
825 return false;
826}
827
828/*
829 * Checks whether the given task is dying or exiting and likely to
830 * release its address space. This means that all threads and processes
831 * sharing the same mm have to be killed or exiting.
832 * Caller has to make sure that task->mm is stable (hold task_lock or
833 * it operates on the current).
834 */
835static bool task_will_free_mem(struct task_struct *task)
836{
837 struct mm_struct *mm = task->mm;
838 struct task_struct *p;
839 bool ret = true;
840
841 /*
842 * Skip tasks without mm because it might have passed its exit_mm and
843 * exit_oom_victim. oom_reaper could have rescued that but do not rely
844 * on that for now. We can consider find_lock_task_mm in future.
845 */
846 if (!mm)
847 return false;
848
849 if (!__task_will_free_mem(task))
850 return false;
851
852 /*
853 * This task has already been drained by the oom reaper so there are
854 * only small chances it will free some more
855 */
856 if (test_bit(MMF_OOM_SKIP, &mm->flags))
857 return false;
858
859 if (atomic_read(&mm->mm_users) <= 1)
860 return true;
861
862 /*
863 * Make sure that all tasks which share the mm with the given tasks
864 * are dying as well to make sure that a) nobody pins its mm and
865 * b) the task is also reapable by the oom reaper.
866 */
867 rcu_read_lock();
868 for_each_process(p) {
869 if (!process_shares_mm(p, mm))
870 continue;
871 if (same_thread_group(task, p))
872 continue;
873 ret = __task_will_free_mem(p);
874 if (!ret)
875 break;
876 }
877 rcu_read_unlock();
878
879 return ret;
880}
881
882static void __oom_kill_process(struct task_struct *victim, const char *message)
883{
884 struct task_struct *p;
885 struct mm_struct *mm;
886 bool can_oom_reap = true;
887
888 p = find_lock_task_mm(victim);
889 if (!p) {
890 put_task_struct(victim);
891 return;
892 } else if (victim != p) {
893 get_task_struct(p);
894 put_task_struct(victim);
895 victim = p;
896 }
897
898 /* Get a reference to safely compare mm after task_unlock(victim) */
899 mm = victim->mm;
900 mmgrab(mm);
901
902 /* Raise event before sending signal: task reaper must see this */
903 count_vm_event(OOM_KILL);
904 memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
905
906 /*
907 * We should send SIGKILL before granting access to memory reserves
908 * in order to prevent the OOM victim from depleting the memory
909 * reserves from the user space under its control.
910 */
911 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
912 mark_oom_victim(victim);
913 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
914 message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
915 K(get_mm_counter(mm, MM_ANONPAGES)),
916 K(get_mm_counter(mm, MM_FILEPAGES)),
917 K(get_mm_counter(mm, MM_SHMEMPAGES)),
918 from_kuid(&init_user_ns, task_uid(victim)),
919 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
920 task_unlock(victim);
921
922 /*
923 * Kill all user processes sharing victim->mm in other thread groups, if
924 * any. They don't get access to memory reserves, though, to avoid
925 * depletion of all memory. This prevents mm->mmap_sem livelock when an
926 * oom killed thread cannot exit because it requires the semaphore and
927 * its contended by another thread trying to allocate memory itself.
928 * That thread will now get access to memory reserves since it has a
929 * pending fatal signal.
930 */
931 rcu_read_lock();
932 for_each_process(p) {
933 if (!process_shares_mm(p, mm))
934 continue;
935 if (same_thread_group(p, victim))
936 continue;
937 if (is_global_init(p)) {
938 can_oom_reap = false;
939 set_bit(MMF_OOM_SKIP, &mm->flags);
940 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
941 task_pid_nr(victim), victim->comm,
942 task_pid_nr(p), p->comm);
943 continue;
944 }
945 /*
946 * No use_mm() user needs to read from the userspace so we are
947 * ok to reap it.
948 */
949 if (unlikely(p->flags & PF_KTHREAD))
950 continue;
951 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
952 }
953 rcu_read_unlock();
954
955 if (can_oom_reap)
956 queue_oom_reaper(victim);
957
958 mmdrop(mm);
959 put_task_struct(victim);
960}
961#undef K
962
963/*
964 * Kill provided task unless it's secured by setting
965 * oom_score_adj to OOM_SCORE_ADJ_MIN.
966 */
967static int oom_kill_memcg_member(struct task_struct *task, void *message)
968{
969 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
970 !is_global_init(task)) {
971 get_task_struct(task);
972 __oom_kill_process(task, message);
973 }
974 return 0;
975}
976
977static void oom_kill_process(struct oom_control *oc, const char *message)
978{
979 struct task_struct *victim = oc->chosen;
980 struct mem_cgroup *oom_group;
981 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
982 DEFAULT_RATELIMIT_BURST);
983
984 /*
985 * If the task is already exiting, don't alarm the sysadmin or kill
986 * its children or threads, just give it access to memory reserves
987 * so it can die quickly
988 */
989 task_lock(victim);
990 if (task_will_free_mem(victim)) {
991 mark_oom_victim(victim);
992 queue_oom_reaper(victim);
993 task_unlock(victim);
994 put_task_struct(victim);
995 return;
996 }
997 task_unlock(victim);
998
999 if (__ratelimit(&oom_rs))
1000 dump_header(oc, victim);
1001
1002 /*
1003 * Do we need to kill the entire memory cgroup?
1004 * Or even one of the ancestor memory cgroups?
1005 * Check this out before killing the victim task.
1006 */
1007 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1008
1009 __oom_kill_process(victim, message);
1010
1011 /*
1012 * If necessary, kill all tasks in the selected memory cgroup.
1013 */
1014 if (oom_group) {
1015 mem_cgroup_print_oom_group(oom_group);
1016 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1017 (void*)message);
1018 mem_cgroup_put(oom_group);
1019 }
1020}
1021
1022/*
1023 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1024 */
1025static void check_panic_on_oom(struct oom_control *oc)
1026{
1027 if (likely(!sysctl_panic_on_oom))
1028 return;
1029 if (sysctl_panic_on_oom != 2) {
1030 /*
1031 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1032 * does not panic for cpuset, mempolicy, or memcg allocation
1033 * failures.
1034 */
1035 if (oc->constraint != CONSTRAINT_NONE)
1036 return;
1037 }
1038 /* Do not panic for oom kills triggered by sysrq */
1039 if (is_sysrq_oom(oc))
1040 return;
1041 dump_header(oc, NULL);
1042 panic("Out of memory: %s panic_on_oom is enabled\n",
1043 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1044}
1045
1046static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1047
1048int register_oom_notifier(struct notifier_block *nb)
1049{
1050 return blocking_notifier_chain_register(&oom_notify_list, nb);
1051}
1052EXPORT_SYMBOL_GPL(register_oom_notifier);
1053
1054int unregister_oom_notifier(struct notifier_block *nb)
1055{
1056 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1057}
1058EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1059
1060/**
1061 * out_of_memory - kill the "best" process when we run out of memory
1062 * @oc: pointer to struct oom_control
1063 *
1064 * If we run out of memory, we have the choice between either
1065 * killing a random task (bad), letting the system crash (worse)
1066 * OR try to be smart about which process to kill. Note that we
1067 * don't have to be perfect here, we just have to be good.
1068 */
1069bool out_of_memory(struct oom_control *oc)
1070{
1071 unsigned long freed = 0;
1072
1073 if (oom_killer_disabled)
1074 return false;
1075
1076 if (!is_memcg_oom(oc)) {
1077 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1078 if (freed > 0)
1079 /* Got some memory back in the last second. */
1080 return true;
1081 }
1082
1083 /*
1084 * If current has a pending SIGKILL or is exiting, then automatically
1085 * select it. The goal is to allow it to allocate so that it may
1086 * quickly exit and free its memory.
1087 */
1088 if (task_will_free_mem(current)) {
1089 mark_oom_victim(current);
1090 queue_oom_reaper(current);
1091 return true;
1092 }
1093
1094 /*
1095 * The OOM killer does not compensate for IO-less reclaim.
1096 * pagefault_out_of_memory lost its gfp context so we have to
1097 * make sure exclude 0 mask - all other users should have at least
1098 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1099 * invoke the OOM killer even if it is a GFP_NOFS allocation.
1100 */
1101 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1102 return true;
1103
1104 /*
1105 * Check if there were limitations on the allocation (only relevant for
1106 * NUMA and memcg) that may require different handling.
1107 */
1108 oc->constraint = constrained_alloc(oc);
1109 if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1110 oc->nodemask = NULL;
1111 check_panic_on_oom(oc);
1112
1113 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1114 current->mm && !oom_unkillable_task(current) &&
1115 oom_cpuset_eligible(current, oc) &&
1116 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1117 get_task_struct(current);
1118 oc->chosen = current;
1119 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1120 return true;
1121 }
1122
1123 select_bad_process(oc);
1124 /* Found nothing?!?! */
1125 if (!oc->chosen) {
1126 dump_header(oc, NULL);
1127 pr_warn("Out of memory and no killable processes...\n");
1128 /*
1129 * If we got here due to an actual allocation at the
1130 * system level, we cannot survive this and will enter
1131 * an endless loop in the allocator. Bail out now.
1132 */
1133 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1134 panic("System is deadlocked on memory\n");
1135 }
1136 if (oc->chosen && oc->chosen != (void *)-1UL)
1137 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1138 "Memory cgroup out of memory");
1139 return !!oc->chosen;
1140}
1141
1142/*
1143 * The pagefault handler calls here because some allocation has failed. We have
1144 * to take care of the memcg OOM here because this is the only safe context without
1145 * any locks held but let the oom killer triggered from the allocation context care
1146 * about the global OOM.
1147 */
1148void pagefault_out_of_memory(void)
1149{
1150 static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1151 DEFAULT_RATELIMIT_BURST);
1152
1153 if (mem_cgroup_oom_synchronize(true))
1154 return;
1155
1156 if (fatal_signal_pending(current))
1157 return;
1158
1159 if (__ratelimit(&pfoom_rs))
1160 pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1161}