blob: fd00a511644ed21df70f85c9e8445e309f65e625 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * mm/page-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7 *
8 * Contains functions related to writing back dirty pages at the
9 * address_space level.
10 *
11 * 10Apr2002 Andrew Morton
12 * Initial version
13 */
14
15#include <linux/kernel.h>
16#include <linux/export.h>
17#include <linux/spinlock.h>
18#include <linux/fs.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/slab.h>
22#include <linux/pagemap.h>
23#include <linux/writeback.h>
24#include <linux/init.h>
25#include <linux/backing-dev.h>
26#include <linux/task_io_accounting_ops.h>
27#include <linux/blkdev.h>
28#include <linux/mpage.h>
29#include <linux/rmap.h>
30#include <linux/percpu.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36#include <linux/pagevec.h>
37#include <linux/timer.h>
38#include <linux/sched/rt.h>
39#include <linux/sched/signal.h>
40#include <linux/mm_inline.h>
41#include <trace/events/writeback.h>
42
43#include "internal.h"
44
45/*
46 * Sleep at most 200ms at a time in balance_dirty_pages().
47 */
48#define MAX_PAUSE max(HZ/5, 1)
49
50/*
51 * Try to keep balance_dirty_pages() call intervals higher than this many pages
52 * by raising pause time to max_pause when falls below it.
53 */
54#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
55
56/*
57 * Estimate write bandwidth at 200ms intervals.
58 */
59#define BANDWIDTH_INTERVAL max(HZ/5, 1)
60
61#define RATELIMIT_CALC_SHIFT 10
62
63/*
64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65 * will look to see if it needs to force writeback or throttling.
66 */
67static long ratelimit_pages = 32;
68
69/* The following parameters are exported via /proc/sys/vm */
70
71/*
72 * Start background writeback (via writeback threads) at this percentage
73 */
74int dirty_background_ratio = 10;
75
76/*
77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78 * dirty_background_ratio * the amount of dirtyable memory
79 */
80unsigned long dirty_background_bytes;
81
82/*
83 * free highmem will not be subtracted from the total free memory
84 * for calculating free ratios if vm_highmem_is_dirtyable is true
85 */
86int vm_highmem_is_dirtyable;
87
88/*
89 * The generator of dirty data starts writeback at this percentage
90 */
91int vm_dirty_ratio = 20;
92
93/*
94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95 * vm_dirty_ratio * the amount of dirtyable memory
96 */
97unsigned long vm_dirty_bytes;
98
99/*
100 * The interval between `kupdate'-style writebacks
101 */
102unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103
104EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105
106/*
107 * The longest time for which data is allowed to remain dirty
108 */
109unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110
111/*
112 * Flag that makes the machine dump writes/reads and block dirtyings.
113 */
114int block_dump;
115
116/*
117 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
118 * a full sync is triggered after this time elapses without any disk activity.
119 */
120int laptop_mode;
121
122EXPORT_SYMBOL(laptop_mode);
123
124/* End of sysctl-exported parameters */
125
126struct wb_domain global_wb_domain;
127
128/* consolidated parameters for balance_dirty_pages() and its subroutines */
129struct dirty_throttle_control {
130#ifdef CONFIG_CGROUP_WRITEBACK
131 struct wb_domain *dom;
132 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
133#endif
134 struct bdi_writeback *wb;
135 struct fprop_local_percpu *wb_completions;
136
137 unsigned long avail; /* dirtyable */
138 unsigned long dirty; /* file_dirty + write + nfs */
139 unsigned long thresh; /* dirty threshold */
140 unsigned long bg_thresh; /* dirty background threshold */
141
142 unsigned long wb_dirty; /* per-wb counterparts */
143 unsigned long wb_thresh;
144 unsigned long wb_bg_thresh;
145
146 unsigned long pos_ratio;
147};
148
149/*
150 * Length of period for aging writeout fractions of bdis. This is an
151 * arbitrarily chosen number. The longer the period, the slower fractions will
152 * reflect changes in current writeout rate.
153 */
154#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
155
156#ifdef CONFIG_CGROUP_WRITEBACK
157
158#define GDTC_INIT(__wb) .wb = (__wb), \
159 .dom = &global_wb_domain, \
160 .wb_completions = &(__wb)->completions
161
162#define GDTC_INIT_NO_WB .dom = &global_wb_domain
163
164#define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
165 .dom = mem_cgroup_wb_domain(__wb), \
166 .wb_completions = &(__wb)->memcg_completions, \
167 .gdtc = __gdtc
168
169static bool mdtc_valid(struct dirty_throttle_control *dtc)
170{
171 return dtc->dom;
172}
173
174static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
175{
176 return dtc->dom;
177}
178
179static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
180{
181 return mdtc->gdtc;
182}
183
184static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
185{
186 return &wb->memcg_completions;
187}
188
189static void wb_min_max_ratio(struct bdi_writeback *wb,
190 unsigned long *minp, unsigned long *maxp)
191{
192 unsigned long this_bw = wb->avg_write_bandwidth;
193 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
194 unsigned long long min = wb->bdi->min_ratio;
195 unsigned long long max = wb->bdi->max_ratio;
196
197 /*
198 * @wb may already be clean by the time control reaches here and
199 * the total may not include its bw.
200 */
201 if (this_bw < tot_bw) {
202 if (min) {
203 min *= this_bw;
204 min = div64_ul(min, tot_bw);
205 }
206 if (max < 100) {
207 max *= this_bw;
208 max = div64_ul(max, tot_bw);
209 }
210 }
211
212 *minp = min;
213 *maxp = max;
214}
215
216#else /* CONFIG_CGROUP_WRITEBACK */
217
218#define GDTC_INIT(__wb) .wb = (__wb), \
219 .wb_completions = &(__wb)->completions
220#define GDTC_INIT_NO_WB
221#define MDTC_INIT(__wb, __gdtc)
222
223static bool mdtc_valid(struct dirty_throttle_control *dtc)
224{
225 return false;
226}
227
228static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
229{
230 return &global_wb_domain;
231}
232
233static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
234{
235 return NULL;
236}
237
238static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
239{
240 return NULL;
241}
242
243static void wb_min_max_ratio(struct bdi_writeback *wb,
244 unsigned long *minp, unsigned long *maxp)
245{
246 *minp = wb->bdi->min_ratio;
247 *maxp = wb->bdi->max_ratio;
248}
249
250#endif /* CONFIG_CGROUP_WRITEBACK */
251
252/*
253 * In a memory zone, there is a certain amount of pages we consider
254 * available for the page cache, which is essentially the number of
255 * free and reclaimable pages, minus some zone reserves to protect
256 * lowmem and the ability to uphold the zone's watermarks without
257 * requiring writeback.
258 *
259 * This number of dirtyable pages is the base value of which the
260 * user-configurable dirty ratio is the effictive number of pages that
261 * are allowed to be actually dirtied. Per individual zone, or
262 * globally by using the sum of dirtyable pages over all zones.
263 *
264 * Because the user is allowed to specify the dirty limit globally as
265 * absolute number of bytes, calculating the per-zone dirty limit can
266 * require translating the configured limit into a percentage of
267 * global dirtyable memory first.
268 */
269
270/**
271 * node_dirtyable_memory - number of dirtyable pages in a node
272 * @pgdat: the node
273 *
274 * Return: the node's number of pages potentially available for dirty
275 * page cache. This is the base value for the per-node dirty limits.
276 */
277static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
278{
279 unsigned long nr_pages = 0;
280 int z;
281
282 for (z = 0; z < MAX_NR_ZONES; z++) {
283 struct zone *zone = pgdat->node_zones + z;
284
285 if (!populated_zone(zone))
286 continue;
287
288 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
289 }
290
291 /*
292 * Pages reserved for the kernel should not be considered
293 * dirtyable, to prevent a situation where reclaim has to
294 * clean pages in order to balance the zones.
295 */
296 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
297
298 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
299 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
300
301 return nr_pages;
302}
303
304static unsigned long highmem_dirtyable_memory(unsigned long total)
305{
306#ifdef CONFIG_HIGHMEM
307 int node;
308 unsigned long x = 0;
309 int i;
310
311 for_each_node_state(node, N_HIGH_MEMORY) {
312 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
313 struct zone *z;
314 unsigned long nr_pages;
315
316 if (!is_highmem_idx(i))
317 continue;
318
319 z = &NODE_DATA(node)->node_zones[i];
320 if (!populated_zone(z))
321 continue;
322
323 nr_pages = zone_page_state(z, NR_FREE_PAGES);
324 /* watch for underflows */
325 nr_pages -= min(nr_pages, high_wmark_pages(z));
326 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
327 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
328 x += nr_pages;
329 }
330 }
331
332 /*
333 * Unreclaimable memory (kernel memory or anonymous memory
334 * without swap) can bring down the dirtyable pages below
335 * the zone's dirty balance reserve and the above calculation
336 * will underflow. However we still want to add in nodes
337 * which are below threshold (negative values) to get a more
338 * accurate calculation but make sure that the total never
339 * underflows.
340 */
341 if ((long)x < 0)
342 x = 0;
343
344 /*
345 * Make sure that the number of highmem pages is never larger
346 * than the number of the total dirtyable memory. This can only
347 * occur in very strange VM situations but we want to make sure
348 * that this does not occur.
349 */
350 return min(x, total);
351#else
352 return 0;
353#endif
354}
355
356/**
357 * global_dirtyable_memory - number of globally dirtyable pages
358 *
359 * Return: the global number of pages potentially available for dirty
360 * page cache. This is the base value for the global dirty limits.
361 */
362static unsigned long global_dirtyable_memory(void)
363{
364 unsigned long x;
365
366 x = global_zone_page_state(NR_FREE_PAGES);
367 /*
368 * Pages reserved for the kernel should not be considered
369 * dirtyable, to prevent a situation where reclaim has to
370 * clean pages in order to balance the zones.
371 */
372 x -= min(x, totalreserve_pages);
373
374 x += global_node_page_state(NR_INACTIVE_FILE);
375 x += global_node_page_state(NR_ACTIVE_FILE);
376
377 if (!vm_highmem_is_dirtyable)
378 x -= highmem_dirtyable_memory(x);
379
380 return x + 1; /* Ensure that we never return 0 */
381}
382
383/**
384 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
385 * @dtc: dirty_throttle_control of interest
386 *
387 * Calculate @dtc->thresh and ->bg_thresh considering
388 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
389 * must ensure that @dtc->avail is set before calling this function. The
390 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
391 * real-time tasks.
392 */
393static void domain_dirty_limits(struct dirty_throttle_control *dtc)
394{
395 const unsigned long available_memory = dtc->avail;
396 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
397 unsigned long bytes = vm_dirty_bytes;
398 unsigned long bg_bytes = dirty_background_bytes;
399 /* convert ratios to per-PAGE_SIZE for higher precision */
400 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
401 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
402 unsigned long thresh;
403 unsigned long bg_thresh;
404 struct task_struct *tsk;
405
406 /* gdtc is !NULL iff @dtc is for memcg domain */
407 if (gdtc) {
408 unsigned long global_avail = gdtc->avail;
409
410 /*
411 * The byte settings can't be applied directly to memcg
412 * domains. Convert them to ratios by scaling against
413 * globally available memory. As the ratios are in
414 * per-PAGE_SIZE, they can be obtained by dividing bytes by
415 * number of pages.
416 */
417 if (bytes)
418 ratio = min(DIV_ROUND_UP(bytes, global_avail),
419 PAGE_SIZE);
420 if (bg_bytes)
421 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
422 PAGE_SIZE);
423 bytes = bg_bytes = 0;
424 }
425
426 if (bytes)
427 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
428 else
429 thresh = (ratio * available_memory) / PAGE_SIZE;
430
431 if (bg_bytes)
432 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
433 else
434 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
435
436 tsk = current;
437 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
438 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
439 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
440 }
441 /*
442 * Dirty throttling logic assumes the limits in page units fit into
443 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
444 */
445 if (thresh > UINT_MAX)
446 thresh = UINT_MAX;
447 /* This makes sure bg_thresh is within 32-bits as well */
448 if (bg_thresh >= thresh)
449 bg_thresh = thresh / 2;
450 dtc->thresh = thresh;
451 dtc->bg_thresh = bg_thresh;
452
453 /* we should eventually report the domain in the TP */
454 if (!gdtc)
455 trace_global_dirty_state(bg_thresh, thresh);
456}
457
458/**
459 * global_dirty_limits - background-writeback and dirty-throttling thresholds
460 * @pbackground: out parameter for bg_thresh
461 * @pdirty: out parameter for thresh
462 *
463 * Calculate bg_thresh and thresh for global_wb_domain. See
464 * domain_dirty_limits() for details.
465 */
466void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
467{
468 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
469
470 gdtc.avail = global_dirtyable_memory();
471 domain_dirty_limits(&gdtc);
472
473 *pbackground = gdtc.bg_thresh;
474 *pdirty = gdtc.thresh;
475}
476
477/**
478 * node_dirty_limit - maximum number of dirty pages allowed in a node
479 * @pgdat: the node
480 *
481 * Return: the maximum number of dirty pages allowed in a node, based
482 * on the node's dirtyable memory.
483 */
484static unsigned long node_dirty_limit(struct pglist_data *pgdat)
485{
486 unsigned long node_memory = node_dirtyable_memory(pgdat);
487 struct task_struct *tsk = current;
488 unsigned long dirty;
489
490 if (vm_dirty_bytes)
491 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
492 node_memory / global_dirtyable_memory();
493 else
494 dirty = vm_dirty_ratio * node_memory / 100;
495
496 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
497 dirty += dirty / 4;
498
499 /*
500 * Dirty throttling logic assumes the limits in page units fit into
501 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
502 */
503 return min_t(unsigned long, dirty, UINT_MAX);
504}
505
506/**
507 * node_dirty_ok - tells whether a node is within its dirty limits
508 * @pgdat: the node to check
509 *
510 * Return: %true when the dirty pages in @pgdat are within the node's
511 * dirty limit, %false if the limit is exceeded.
512 */
513bool node_dirty_ok(struct pglist_data *pgdat)
514{
515 unsigned long limit = node_dirty_limit(pgdat);
516 unsigned long nr_pages = 0;
517
518 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
519 nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS);
520 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
521
522 return nr_pages <= limit;
523}
524
525int dirty_background_ratio_handler(struct ctl_table *table, int write,
526 void __user *buffer, size_t *lenp,
527 loff_t *ppos)
528{
529 int ret;
530
531 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
532 if (ret == 0 && write)
533 dirty_background_bytes = 0;
534 return ret;
535}
536
537int dirty_background_bytes_handler(struct ctl_table *table, int write,
538 void __user *buffer, size_t *lenp,
539 loff_t *ppos)
540{
541 int ret;
542 unsigned long old_bytes = dirty_background_bytes;
543
544 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
545 if (ret == 0 && write) {
546 if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) >
547 UINT_MAX) {
548 dirty_background_bytes = old_bytes;
549 return -ERANGE;
550 }
551 dirty_background_ratio = 0;
552 }
553 return ret;
554}
555
556int dirty_ratio_handler(struct ctl_table *table, int write,
557 void __user *buffer, size_t *lenp,
558 loff_t *ppos)
559{
560 int old_ratio = vm_dirty_ratio;
561 int ret;
562
563 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
564 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
565 writeback_set_ratelimit();
566 vm_dirty_bytes = 0;
567 }
568 return ret;
569}
570
571int dirty_bytes_handler(struct ctl_table *table, int write,
572 void __user *buffer, size_t *lenp,
573 loff_t *ppos)
574{
575 unsigned long old_bytes = vm_dirty_bytes;
576 int ret;
577
578 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
579 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
580 if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) {
581 vm_dirty_bytes = old_bytes;
582 return -ERANGE;
583 }
584 writeback_set_ratelimit();
585 vm_dirty_ratio = 0;
586 }
587 return ret;
588}
589
590static unsigned long wp_next_time(unsigned long cur_time)
591{
592 cur_time += VM_COMPLETIONS_PERIOD_LEN;
593 /* 0 has a special meaning... */
594 if (!cur_time)
595 return 1;
596 return cur_time;
597}
598
599static void wb_domain_writeout_inc(struct wb_domain *dom,
600 struct fprop_local_percpu *completions,
601 unsigned int max_prop_frac)
602{
603 __fprop_inc_percpu_max(&dom->completions, completions,
604 max_prop_frac);
605 /* First event after period switching was turned off? */
606 if (unlikely(!dom->period_time)) {
607 /*
608 * We can race with other __bdi_writeout_inc calls here but
609 * it does not cause any harm since the resulting time when
610 * timer will fire and what is in writeout_period_time will be
611 * roughly the same.
612 */
613 dom->period_time = wp_next_time(jiffies);
614 mod_timer(&dom->period_timer, dom->period_time);
615 }
616}
617
618/*
619 * Increment @wb's writeout completion count and the global writeout
620 * completion count. Called from test_clear_page_writeback().
621 */
622static inline void __wb_writeout_inc(struct bdi_writeback *wb)
623{
624 struct wb_domain *cgdom;
625
626 inc_wb_stat(wb, WB_WRITTEN);
627 wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
628 wb->bdi->max_prop_frac);
629
630 cgdom = mem_cgroup_wb_domain(wb);
631 if (cgdom)
632 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
633 wb->bdi->max_prop_frac);
634}
635
636void wb_writeout_inc(struct bdi_writeback *wb)
637{
638 unsigned long flags;
639
640 local_irq_save(flags);
641 __wb_writeout_inc(wb);
642 local_irq_restore(flags);
643}
644EXPORT_SYMBOL_GPL(wb_writeout_inc);
645
646/*
647 * On idle system, we can be called long after we scheduled because we use
648 * deferred timers so count with missed periods.
649 */
650static void writeout_period(struct timer_list *t)
651{
652 struct wb_domain *dom = from_timer(dom, t, period_timer);
653 int miss_periods = (jiffies - dom->period_time) /
654 VM_COMPLETIONS_PERIOD_LEN;
655
656 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
657 dom->period_time = wp_next_time(dom->period_time +
658 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
659 mod_timer(&dom->period_timer, dom->period_time);
660 } else {
661 /*
662 * Aging has zeroed all fractions. Stop wasting CPU on period
663 * updates.
664 */
665 dom->period_time = 0;
666 }
667}
668
669int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
670{
671 memset(dom, 0, sizeof(*dom));
672
673 spin_lock_init(&dom->lock);
674
675 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
676
677 dom->dirty_limit_tstamp = jiffies;
678
679 return fprop_global_init(&dom->completions, gfp);
680}
681
682#ifdef CONFIG_CGROUP_WRITEBACK
683void wb_domain_exit(struct wb_domain *dom)
684{
685 del_timer_sync(&dom->period_timer);
686 fprop_global_destroy(&dom->completions);
687}
688#endif
689
690/*
691 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
692 * registered backing devices, which, for obvious reasons, can not
693 * exceed 100%.
694 */
695static unsigned int bdi_min_ratio;
696
697int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
698{
699 int ret = 0;
700
701 spin_lock_bh(&bdi_lock);
702 if (min_ratio > bdi->max_ratio) {
703 ret = -EINVAL;
704 } else {
705 min_ratio -= bdi->min_ratio;
706 if (bdi_min_ratio + min_ratio < 100) {
707 bdi_min_ratio += min_ratio;
708 bdi->min_ratio += min_ratio;
709 } else {
710 ret = -EINVAL;
711 }
712 }
713 spin_unlock_bh(&bdi_lock);
714
715 return ret;
716}
717
718int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
719{
720 int ret = 0;
721
722 if (max_ratio > 100)
723 return -EINVAL;
724
725 spin_lock_bh(&bdi_lock);
726 if (bdi->min_ratio > max_ratio) {
727 ret = -EINVAL;
728 } else {
729 bdi->max_ratio = max_ratio;
730 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
731 }
732 spin_unlock_bh(&bdi_lock);
733
734 return ret;
735}
736EXPORT_SYMBOL(bdi_set_max_ratio);
737
738static unsigned long dirty_freerun_ceiling(unsigned long thresh,
739 unsigned long bg_thresh)
740{
741 return (thresh + bg_thresh) / 2;
742}
743
744static unsigned long hard_dirty_limit(struct wb_domain *dom,
745 unsigned long thresh)
746{
747 return max(thresh, dom->dirty_limit);
748}
749
750/*
751 * Memory which can be further allocated to a memcg domain is capped by
752 * system-wide clean memory excluding the amount being used in the domain.
753 */
754static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
755 unsigned long filepages, unsigned long headroom)
756{
757 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
758 unsigned long clean = filepages - min(filepages, mdtc->dirty);
759 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
760 unsigned long other_clean = global_clean - min(global_clean, clean);
761
762 mdtc->avail = filepages + min(headroom, other_clean);
763}
764
765/**
766 * __wb_calc_thresh - @wb's share of dirty throttling threshold
767 * @dtc: dirty_throttle_context of interest
768 *
769 * Note that balance_dirty_pages() will only seriously take it as a hard limit
770 * when sleeping max_pause per page is not enough to keep the dirty pages under
771 * control. For example, when the device is completely stalled due to some error
772 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
773 * In the other normal situations, it acts more gently by throttling the tasks
774 * more (rather than completely block them) when the wb dirty pages go high.
775 *
776 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
777 * - starving fast devices
778 * - piling up dirty pages (that will take long time to sync) on slow devices
779 *
780 * The wb's share of dirty limit will be adapting to its throughput and
781 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
782 *
783 * Return: @wb's dirty limit in pages. The term "dirty" in the context of
784 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
785 */
786static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
787{
788 struct wb_domain *dom = dtc_dom(dtc);
789 unsigned long thresh = dtc->thresh;
790 u64 wb_thresh;
791 long numerator, denominator;
792 unsigned long wb_min_ratio, wb_max_ratio;
793
794 /*
795 * Calculate this BDI's share of the thresh ratio.
796 */
797 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
798 &numerator, &denominator);
799
800 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
801 wb_thresh *= numerator;
802 do_div(wb_thresh, denominator);
803
804 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
805
806 wb_thresh += (thresh * wb_min_ratio) / 100;
807 if (wb_thresh > (thresh * wb_max_ratio) / 100)
808 wb_thresh = thresh * wb_max_ratio / 100;
809
810 return wb_thresh;
811}
812
813unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
814{
815 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
816 .thresh = thresh };
817 return __wb_calc_thresh(&gdtc);
818}
819
820/*
821 * setpoint - dirty 3
822 * f(dirty) := 1.0 + (----------------)
823 * limit - setpoint
824 *
825 * it's a 3rd order polynomial that subjects to
826 *
827 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
828 * (2) f(setpoint) = 1.0 => the balance point
829 * (3) f(limit) = 0 => the hard limit
830 * (4) df/dx <= 0 => negative feedback control
831 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
832 * => fast response on large errors; small oscillation near setpoint
833 */
834static long long pos_ratio_polynom(unsigned long setpoint,
835 unsigned long dirty,
836 unsigned long limit)
837{
838 long long pos_ratio;
839 long x;
840
841 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
842 (limit - setpoint) | 1);
843 pos_ratio = x;
844 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
845 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
846 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
847
848 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
849}
850
851/*
852 * Dirty position control.
853 *
854 * (o) global/bdi setpoints
855 *
856 * We want the dirty pages be balanced around the global/wb setpoints.
857 * When the number of dirty pages is higher/lower than the setpoint, the
858 * dirty position control ratio (and hence task dirty ratelimit) will be
859 * decreased/increased to bring the dirty pages back to the setpoint.
860 *
861 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
862 *
863 * if (dirty < setpoint) scale up pos_ratio
864 * if (dirty > setpoint) scale down pos_ratio
865 *
866 * if (wb_dirty < wb_setpoint) scale up pos_ratio
867 * if (wb_dirty > wb_setpoint) scale down pos_ratio
868 *
869 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
870 *
871 * (o) global control line
872 *
873 * ^ pos_ratio
874 * |
875 * | |<===== global dirty control scope ======>|
876 * 2.0 .............*
877 * | .*
878 * | . *
879 * | . *
880 * | . *
881 * | . *
882 * | . *
883 * 1.0 ................................*
884 * | . . *
885 * | . . *
886 * | . . *
887 * | . . *
888 * | . . *
889 * 0 +------------.------------------.----------------------*------------->
890 * freerun^ setpoint^ limit^ dirty pages
891 *
892 * (o) wb control line
893 *
894 * ^ pos_ratio
895 * |
896 * | *
897 * | *
898 * | *
899 * | *
900 * | * |<=========== span ============>|
901 * 1.0 .......................*
902 * | . *
903 * | . *
904 * | . *
905 * | . *
906 * | . *
907 * | . *
908 * | . *
909 * | . *
910 * | . *
911 * | . *
912 * | . *
913 * 1/4 ...............................................* * * * * * * * * * * *
914 * | . .
915 * | . .
916 * | . .
917 * 0 +----------------------.-------------------------------.------------->
918 * wb_setpoint^ x_intercept^
919 *
920 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
921 * be smoothly throttled down to normal if it starts high in situations like
922 * - start writing to a slow SD card and a fast disk at the same time. The SD
923 * card's wb_dirty may rush to many times higher than wb_setpoint.
924 * - the wb dirty thresh drops quickly due to change of JBOD workload
925 */
926static void wb_position_ratio(struct dirty_throttle_control *dtc)
927{
928 struct bdi_writeback *wb = dtc->wb;
929 unsigned long write_bw = wb->avg_write_bandwidth;
930 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
931 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
932 unsigned long wb_thresh = dtc->wb_thresh;
933 unsigned long x_intercept;
934 unsigned long setpoint; /* dirty pages' target balance point */
935 unsigned long wb_setpoint;
936 unsigned long span;
937 long long pos_ratio; /* for scaling up/down the rate limit */
938 long x;
939
940 dtc->pos_ratio = 0;
941
942 if (unlikely(dtc->dirty >= limit))
943 return;
944
945 /*
946 * global setpoint
947 *
948 * See comment for pos_ratio_polynom().
949 */
950 setpoint = (freerun + limit) / 2;
951 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
952
953 /*
954 * The strictlimit feature is a tool preventing mistrusted filesystems
955 * from growing a large number of dirty pages before throttling. For
956 * such filesystems balance_dirty_pages always checks wb counters
957 * against wb limits. Even if global "nr_dirty" is under "freerun".
958 * This is especially important for fuse which sets bdi->max_ratio to
959 * 1% by default. Without strictlimit feature, fuse writeback may
960 * consume arbitrary amount of RAM because it is accounted in
961 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
962 *
963 * Here, in wb_position_ratio(), we calculate pos_ratio based on
964 * two values: wb_dirty and wb_thresh. Let's consider an example:
965 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
966 * limits are set by default to 10% and 20% (background and throttle).
967 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
968 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
969 * about ~6K pages (as the average of background and throttle wb
970 * limits). The 3rd order polynomial will provide positive feedback if
971 * wb_dirty is under wb_setpoint and vice versa.
972 *
973 * Note, that we cannot use global counters in these calculations
974 * because we want to throttle process writing to a strictlimit wb
975 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
976 * in the example above).
977 */
978 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
979 long long wb_pos_ratio;
980
981 if (dtc->wb_dirty < 8) {
982 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
983 2 << RATELIMIT_CALC_SHIFT);
984 return;
985 }
986
987 if (dtc->wb_dirty >= wb_thresh)
988 return;
989
990 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
991 dtc->wb_bg_thresh);
992
993 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
994 return;
995
996 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
997 wb_thresh);
998
999 /*
1000 * Typically, for strictlimit case, wb_setpoint << setpoint
1001 * and pos_ratio >> wb_pos_ratio. In the other words global
1002 * state ("dirty") is not limiting factor and we have to
1003 * make decision based on wb counters. But there is an
1004 * important case when global pos_ratio should get precedence:
1005 * global limits are exceeded (e.g. due to activities on other
1006 * wb's) while given strictlimit wb is below limit.
1007 *
1008 * "pos_ratio * wb_pos_ratio" would work for the case above,
1009 * but it would look too non-natural for the case of all
1010 * activity in the system coming from a single strictlimit wb
1011 * with bdi->max_ratio == 100%.
1012 *
1013 * Note that min() below somewhat changes the dynamics of the
1014 * control system. Normally, pos_ratio value can be well over 3
1015 * (when globally we are at freerun and wb is well below wb
1016 * setpoint). Now the maximum pos_ratio in the same situation
1017 * is 2. We might want to tweak this if we observe the control
1018 * system is too slow to adapt.
1019 */
1020 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1021 return;
1022 }
1023
1024 /*
1025 * We have computed basic pos_ratio above based on global situation. If
1026 * the wb is over/under its share of dirty pages, we want to scale
1027 * pos_ratio further down/up. That is done by the following mechanism.
1028 */
1029
1030 /*
1031 * wb setpoint
1032 *
1033 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1034 *
1035 * x_intercept - wb_dirty
1036 * := --------------------------
1037 * x_intercept - wb_setpoint
1038 *
1039 * The main wb control line is a linear function that subjects to
1040 *
1041 * (1) f(wb_setpoint) = 1.0
1042 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1043 * or equally: x_intercept = wb_setpoint + 8 * write_bw
1044 *
1045 * For single wb case, the dirty pages are observed to fluctuate
1046 * regularly within range
1047 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1048 * for various filesystems, where (2) can yield in a reasonable 12.5%
1049 * fluctuation range for pos_ratio.
1050 *
1051 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1052 * own size, so move the slope over accordingly and choose a slope that
1053 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1054 */
1055 if (unlikely(wb_thresh > dtc->thresh))
1056 wb_thresh = dtc->thresh;
1057 /*
1058 * It's very possible that wb_thresh is close to 0 not because the
1059 * device is slow, but that it has remained inactive for long time.
1060 * Honour such devices a reasonable good (hopefully IO efficient)
1061 * threshold, so that the occasional writes won't be blocked and active
1062 * writes can rampup the threshold quickly.
1063 */
1064 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1065 /*
1066 * scale global setpoint to wb's:
1067 * wb_setpoint = setpoint * wb_thresh / thresh
1068 */
1069 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1070 wb_setpoint = setpoint * (u64)x >> 16;
1071 /*
1072 * Use span=(8*write_bw) in single wb case as indicated by
1073 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1074 *
1075 * wb_thresh thresh - wb_thresh
1076 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1077 * thresh thresh
1078 */
1079 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1080 x_intercept = wb_setpoint + span;
1081
1082 if (dtc->wb_dirty < x_intercept - span / 4) {
1083 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1084 (x_intercept - wb_setpoint) | 1);
1085 } else
1086 pos_ratio /= 4;
1087
1088 /*
1089 * wb reserve area, safeguard against dirty pool underrun and disk idle
1090 * It may push the desired control point of global dirty pages higher
1091 * than setpoint.
1092 */
1093 x_intercept = wb_thresh / 2;
1094 if (dtc->wb_dirty < x_intercept) {
1095 if (dtc->wb_dirty > x_intercept / 8)
1096 pos_ratio = div_u64(pos_ratio * x_intercept,
1097 dtc->wb_dirty);
1098 else
1099 pos_ratio *= 8;
1100 }
1101
1102 dtc->pos_ratio = pos_ratio;
1103}
1104
1105static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1106 unsigned long elapsed,
1107 unsigned long written)
1108{
1109 const unsigned long period = roundup_pow_of_two(3 * HZ);
1110 unsigned long avg = wb->avg_write_bandwidth;
1111 unsigned long old = wb->write_bandwidth;
1112 u64 bw;
1113
1114 /*
1115 * bw = written * HZ / elapsed
1116 *
1117 * bw * elapsed + write_bandwidth * (period - elapsed)
1118 * write_bandwidth = ---------------------------------------------------
1119 * period
1120 *
1121 * @written may have decreased due to account_page_redirty().
1122 * Avoid underflowing @bw calculation.
1123 */
1124 bw = written - min(written, wb->written_stamp);
1125 bw *= HZ;
1126 if (unlikely(elapsed > period)) {
1127 do_div(bw, elapsed);
1128 avg = bw;
1129 goto out;
1130 }
1131 bw += (u64)wb->write_bandwidth * (period - elapsed);
1132 bw >>= ilog2(period);
1133
1134 /*
1135 * one more level of smoothing, for filtering out sudden spikes
1136 */
1137 if (avg > old && old >= (unsigned long)bw)
1138 avg -= (avg - old) >> 3;
1139
1140 if (avg < old && old <= (unsigned long)bw)
1141 avg += (old - avg) >> 3;
1142
1143out:
1144 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1145 avg = max(avg, 1LU);
1146 if (wb_has_dirty_io(wb)) {
1147 long delta = avg - wb->avg_write_bandwidth;
1148 WARN_ON_ONCE(atomic_long_add_return(delta,
1149 &wb->bdi->tot_write_bandwidth) <= 0);
1150 }
1151 wb->write_bandwidth = bw;
1152 wb->avg_write_bandwidth = avg;
1153}
1154
1155static void update_dirty_limit(struct dirty_throttle_control *dtc)
1156{
1157 struct wb_domain *dom = dtc_dom(dtc);
1158 unsigned long thresh = dtc->thresh;
1159 unsigned long limit = dom->dirty_limit;
1160
1161 /*
1162 * Follow up in one step.
1163 */
1164 if (limit < thresh) {
1165 limit = thresh;
1166 goto update;
1167 }
1168
1169 /*
1170 * Follow down slowly. Use the higher one as the target, because thresh
1171 * may drop below dirty. This is exactly the reason to introduce
1172 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1173 */
1174 thresh = max(thresh, dtc->dirty);
1175 if (limit > thresh) {
1176 limit -= (limit - thresh) >> 5;
1177 goto update;
1178 }
1179 return;
1180update:
1181 dom->dirty_limit = limit;
1182}
1183
1184static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1185 unsigned long now)
1186{
1187 struct wb_domain *dom = dtc_dom(dtc);
1188
1189 /*
1190 * check locklessly first to optimize away locking for the most time
1191 */
1192 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1193 return;
1194
1195 spin_lock(&dom->lock);
1196 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1197 update_dirty_limit(dtc);
1198 dom->dirty_limit_tstamp = now;
1199 }
1200 spin_unlock(&dom->lock);
1201}
1202
1203/*
1204 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1205 *
1206 * Normal wb tasks will be curbed at or below it in long term.
1207 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1208 */
1209static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1210 unsigned long dirtied,
1211 unsigned long elapsed)
1212{
1213 struct bdi_writeback *wb = dtc->wb;
1214 unsigned long dirty = dtc->dirty;
1215 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1216 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1217 unsigned long setpoint = (freerun + limit) / 2;
1218 unsigned long write_bw = wb->avg_write_bandwidth;
1219 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1220 unsigned long dirty_rate;
1221 unsigned long task_ratelimit;
1222 unsigned long balanced_dirty_ratelimit;
1223 unsigned long step;
1224 unsigned long x;
1225 unsigned long shift;
1226
1227 /*
1228 * The dirty rate will match the writeout rate in long term, except
1229 * when dirty pages are truncated by userspace or re-dirtied by FS.
1230 */
1231 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1232
1233 /*
1234 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1235 */
1236 task_ratelimit = (u64)dirty_ratelimit *
1237 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1238 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1239
1240 /*
1241 * A linear estimation of the "balanced" throttle rate. The theory is,
1242 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1243 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1244 * formula will yield the balanced rate limit (write_bw / N).
1245 *
1246 * Note that the expanded form is not a pure rate feedback:
1247 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1248 * but also takes pos_ratio into account:
1249 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1250 *
1251 * (1) is not realistic because pos_ratio also takes part in balancing
1252 * the dirty rate. Consider the state
1253 * pos_ratio = 0.5 (3)
1254 * rate = 2 * (write_bw / N) (4)
1255 * If (1) is used, it will stuck in that state! Because each dd will
1256 * be throttled at
1257 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1258 * yielding
1259 * dirty_rate = N * task_ratelimit = write_bw (6)
1260 * put (6) into (1) we get
1261 * rate_(i+1) = rate_(i) (7)
1262 *
1263 * So we end up using (2) to always keep
1264 * rate_(i+1) ~= (write_bw / N) (8)
1265 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1266 * pos_ratio is able to drive itself to 1.0, which is not only where
1267 * the dirty count meet the setpoint, but also where the slope of
1268 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1269 */
1270 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1271 dirty_rate | 1);
1272 /*
1273 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1274 */
1275 if (unlikely(balanced_dirty_ratelimit > write_bw))
1276 balanced_dirty_ratelimit = write_bw;
1277
1278 /*
1279 * We could safely do this and return immediately:
1280 *
1281 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1282 *
1283 * However to get a more stable dirty_ratelimit, the below elaborated
1284 * code makes use of task_ratelimit to filter out singular points and
1285 * limit the step size.
1286 *
1287 * The below code essentially only uses the relative value of
1288 *
1289 * task_ratelimit - dirty_ratelimit
1290 * = (pos_ratio - 1) * dirty_ratelimit
1291 *
1292 * which reflects the direction and size of dirty position error.
1293 */
1294
1295 /*
1296 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1297 * task_ratelimit is on the same side of dirty_ratelimit, too.
1298 * For example, when
1299 * - dirty_ratelimit > balanced_dirty_ratelimit
1300 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1301 * lowering dirty_ratelimit will help meet both the position and rate
1302 * control targets. Otherwise, don't update dirty_ratelimit if it will
1303 * only help meet the rate target. After all, what the users ultimately
1304 * feel and care are stable dirty rate and small position error.
1305 *
1306 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1307 * and filter out the singular points of balanced_dirty_ratelimit. Which
1308 * keeps jumping around randomly and can even leap far away at times
1309 * due to the small 200ms estimation period of dirty_rate (we want to
1310 * keep that period small to reduce time lags).
1311 */
1312 step = 0;
1313
1314 /*
1315 * For strictlimit case, calculations above were based on wb counters
1316 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1317 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1318 * Hence, to calculate "step" properly, we have to use wb_dirty as
1319 * "dirty" and wb_setpoint as "setpoint".
1320 *
1321 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1322 * it's possible that wb_thresh is close to zero due to inactivity
1323 * of backing device.
1324 */
1325 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1326 dirty = dtc->wb_dirty;
1327 if (dtc->wb_dirty < 8)
1328 setpoint = dtc->wb_dirty + 1;
1329 else
1330 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1331 }
1332
1333 if (dirty < setpoint) {
1334 x = min3(wb->balanced_dirty_ratelimit,
1335 balanced_dirty_ratelimit, task_ratelimit);
1336 if (dirty_ratelimit < x)
1337 step = x - dirty_ratelimit;
1338 } else {
1339 x = max3(wb->balanced_dirty_ratelimit,
1340 balanced_dirty_ratelimit, task_ratelimit);
1341 if (dirty_ratelimit > x)
1342 step = dirty_ratelimit - x;
1343 }
1344
1345 /*
1346 * Don't pursue 100% rate matching. It's impossible since the balanced
1347 * rate itself is constantly fluctuating. So decrease the track speed
1348 * when it gets close to the target. Helps eliminate pointless tremors.
1349 */
1350 shift = dirty_ratelimit / (2 * step + 1);
1351 if (shift < BITS_PER_LONG)
1352 step = DIV_ROUND_UP(step >> shift, 8);
1353 else
1354 step = 0;
1355
1356 if (dirty_ratelimit < balanced_dirty_ratelimit)
1357 dirty_ratelimit += step;
1358 else
1359 dirty_ratelimit -= step;
1360
1361 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1362 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1363
1364 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1365}
1366
1367static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1368 struct dirty_throttle_control *mdtc,
1369 unsigned long start_time,
1370 bool update_ratelimit)
1371{
1372 struct bdi_writeback *wb = gdtc->wb;
1373 unsigned long now = jiffies;
1374 unsigned long elapsed = now - wb->bw_time_stamp;
1375 unsigned long dirtied;
1376 unsigned long written;
1377
1378 lockdep_assert_held(&wb->list_lock);
1379
1380 /*
1381 * rate-limit, only update once every 200ms.
1382 */
1383 if (elapsed < BANDWIDTH_INTERVAL)
1384 return;
1385
1386 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1387 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1388
1389 /*
1390 * Skip quiet periods when disk bandwidth is under-utilized.
1391 * (at least 1s idle time between two flusher runs)
1392 */
1393 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1394 goto snapshot;
1395
1396 if (update_ratelimit) {
1397 domain_update_bandwidth(gdtc, now);
1398 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1399
1400 /*
1401 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1402 * compiler has no way to figure that out. Help it.
1403 */
1404 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1405 domain_update_bandwidth(mdtc, now);
1406 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1407 }
1408 }
1409 wb_update_write_bandwidth(wb, elapsed, written);
1410
1411snapshot:
1412 wb->dirtied_stamp = dirtied;
1413 wb->written_stamp = written;
1414 wb->bw_time_stamp = now;
1415}
1416
1417void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1418{
1419 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1420
1421 __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1422}
1423
1424/*
1425 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1426 * will look to see if it needs to start dirty throttling.
1427 *
1428 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1429 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1430 * (the number of pages we may dirty without exceeding the dirty limits).
1431 */
1432static unsigned long dirty_poll_interval(unsigned long dirty,
1433 unsigned long thresh)
1434{
1435 if (thresh > dirty)
1436 return 1UL << (ilog2(thresh - dirty) >> 1);
1437
1438 return 1;
1439}
1440
1441static unsigned long wb_max_pause(struct bdi_writeback *wb,
1442 unsigned long wb_dirty)
1443{
1444 unsigned long bw = wb->avg_write_bandwidth;
1445 unsigned long t;
1446
1447 /*
1448 * Limit pause time for small memory systems. If sleeping for too long
1449 * time, a small pool of dirty/writeback pages may go empty and disk go
1450 * idle.
1451 *
1452 * 8 serves as the safety ratio.
1453 */
1454 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1455 t++;
1456
1457 return min_t(unsigned long, t, MAX_PAUSE);
1458}
1459
1460static long wb_min_pause(struct bdi_writeback *wb,
1461 long max_pause,
1462 unsigned long task_ratelimit,
1463 unsigned long dirty_ratelimit,
1464 int *nr_dirtied_pause)
1465{
1466 long hi = ilog2(wb->avg_write_bandwidth);
1467 long lo = ilog2(wb->dirty_ratelimit);
1468 long t; /* target pause */
1469 long pause; /* estimated next pause */
1470 int pages; /* target nr_dirtied_pause */
1471
1472 /* target for 10ms pause on 1-dd case */
1473 t = max(1, HZ / 100);
1474
1475 /*
1476 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1477 * overheads.
1478 *
1479 * (N * 10ms) on 2^N concurrent tasks.
1480 */
1481 if (hi > lo)
1482 t += (hi - lo) * (10 * HZ) / 1024;
1483
1484 /*
1485 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1486 * on the much more stable dirty_ratelimit. However the next pause time
1487 * will be computed based on task_ratelimit and the two rate limits may
1488 * depart considerably at some time. Especially if task_ratelimit goes
1489 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1490 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1491 * result task_ratelimit won't be executed faithfully, which could
1492 * eventually bring down dirty_ratelimit.
1493 *
1494 * We apply two rules to fix it up:
1495 * 1) try to estimate the next pause time and if necessary, use a lower
1496 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1497 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1498 * 2) limit the target pause time to max_pause/2, so that the normal
1499 * small fluctuations of task_ratelimit won't trigger rule (1) and
1500 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1501 */
1502 t = min(t, 1 + max_pause / 2);
1503 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1504
1505 /*
1506 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1507 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1508 * When the 16 consecutive reads are often interrupted by some dirty
1509 * throttling pause during the async writes, cfq will go into idles
1510 * (deadline is fine). So push nr_dirtied_pause as high as possible
1511 * until reaches DIRTY_POLL_THRESH=32 pages.
1512 */
1513 if (pages < DIRTY_POLL_THRESH) {
1514 t = max_pause;
1515 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1516 if (pages > DIRTY_POLL_THRESH) {
1517 pages = DIRTY_POLL_THRESH;
1518 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1519 }
1520 }
1521
1522 pause = HZ * pages / (task_ratelimit + 1);
1523 if (pause > max_pause) {
1524 t = max_pause;
1525 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1526 }
1527
1528 *nr_dirtied_pause = pages;
1529 /*
1530 * The minimal pause time will normally be half the target pause time.
1531 */
1532 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1533}
1534
1535static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1536{
1537 struct bdi_writeback *wb = dtc->wb;
1538 unsigned long wb_reclaimable;
1539
1540 /*
1541 * wb_thresh is not treated as some limiting factor as
1542 * dirty_thresh, due to reasons
1543 * - in JBOD setup, wb_thresh can fluctuate a lot
1544 * - in a system with HDD and USB key, the USB key may somehow
1545 * go into state (wb_dirty >> wb_thresh) either because
1546 * wb_dirty starts high, or because wb_thresh drops low.
1547 * In this case we don't want to hard throttle the USB key
1548 * dirtiers for 100 seconds until wb_dirty drops under
1549 * wb_thresh. Instead the auxiliary wb control line in
1550 * wb_position_ratio() will let the dirtier task progress
1551 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1552 */
1553 dtc->wb_thresh = __wb_calc_thresh(dtc);
1554 dtc->wb_bg_thresh = dtc->thresh ?
1555 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1556
1557 /*
1558 * In order to avoid the stacked BDI deadlock we need
1559 * to ensure we accurately count the 'dirty' pages when
1560 * the threshold is low.
1561 *
1562 * Otherwise it would be possible to get thresh+n pages
1563 * reported dirty, even though there are thresh-m pages
1564 * actually dirty; with m+n sitting in the percpu
1565 * deltas.
1566 */
1567 if (dtc->wb_thresh < 2 * wb_stat_error()) {
1568 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1569 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1570 } else {
1571 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1572 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1573 }
1574}
1575
1576/*
1577 * balance_dirty_pages() must be called by processes which are generating dirty
1578 * data. It looks at the number of dirty pages in the machine and will force
1579 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1580 * If we're over `background_thresh' then the writeback threads are woken to
1581 * perform some writeout.
1582 */
1583static void balance_dirty_pages(struct bdi_writeback *wb,
1584 unsigned long pages_dirtied)
1585{
1586 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1587 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1588 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1589 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1590 &mdtc_stor : NULL;
1591 struct dirty_throttle_control *sdtc;
1592 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1593 long period;
1594 long pause;
1595 long max_pause;
1596 long min_pause;
1597 int nr_dirtied_pause;
1598 bool dirty_exceeded = false;
1599 unsigned long task_ratelimit;
1600 unsigned long dirty_ratelimit;
1601 struct backing_dev_info *bdi = wb->bdi;
1602 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1603 unsigned long start_time = jiffies;
1604
1605 for (;;) {
1606 unsigned long now = jiffies;
1607 unsigned long dirty, thresh, bg_thresh;
1608 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1609 unsigned long m_thresh = 0;
1610 unsigned long m_bg_thresh = 0;
1611
1612 /*
1613 * Unstable writes are a feature of certain networked
1614 * filesystems (i.e. NFS) in which data may have been
1615 * written to the server's write cache, but has not yet
1616 * been flushed to permanent storage.
1617 */
1618 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) +
1619 global_node_page_state(NR_UNSTABLE_NFS);
1620 gdtc->avail = global_dirtyable_memory();
1621 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1622
1623 domain_dirty_limits(gdtc);
1624
1625 if (unlikely(strictlimit)) {
1626 wb_dirty_limits(gdtc);
1627
1628 dirty = gdtc->wb_dirty;
1629 thresh = gdtc->wb_thresh;
1630 bg_thresh = gdtc->wb_bg_thresh;
1631 } else {
1632 dirty = gdtc->dirty;
1633 thresh = gdtc->thresh;
1634 bg_thresh = gdtc->bg_thresh;
1635 }
1636
1637 if (mdtc) {
1638 unsigned long filepages, headroom, writeback;
1639
1640 /*
1641 * If @wb belongs to !root memcg, repeat the same
1642 * basic calculations for the memcg domain.
1643 */
1644 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1645 &mdtc->dirty, &writeback);
1646 mdtc->dirty += writeback;
1647 mdtc_calc_avail(mdtc, filepages, headroom);
1648
1649 domain_dirty_limits(mdtc);
1650
1651 if (unlikely(strictlimit)) {
1652 wb_dirty_limits(mdtc);
1653 m_dirty = mdtc->wb_dirty;
1654 m_thresh = mdtc->wb_thresh;
1655 m_bg_thresh = mdtc->wb_bg_thresh;
1656 } else {
1657 m_dirty = mdtc->dirty;
1658 m_thresh = mdtc->thresh;
1659 m_bg_thresh = mdtc->bg_thresh;
1660 }
1661 }
1662
1663 /*
1664 * Throttle it only when the background writeback cannot
1665 * catch-up. This avoids (excessively) small writeouts
1666 * when the wb limits are ramping up in case of !strictlimit.
1667 *
1668 * In strictlimit case make decision based on the wb counters
1669 * and limits. Small writeouts when the wb limits are ramping
1670 * up are the price we consciously pay for strictlimit-ing.
1671 *
1672 * If memcg domain is in effect, @dirty should be under
1673 * both global and memcg freerun ceilings.
1674 */
1675 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1676 (!mdtc ||
1677 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1678 unsigned long intv = dirty_poll_interval(dirty, thresh);
1679 unsigned long m_intv = ULONG_MAX;
1680
1681 current->dirty_paused_when = now;
1682 current->nr_dirtied = 0;
1683 if (mdtc)
1684 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1685 current->nr_dirtied_pause = min(intv, m_intv);
1686 break;
1687 }
1688
1689 if (unlikely(!writeback_in_progress(wb)))
1690 wb_start_background_writeback(wb);
1691
1692 mem_cgroup_flush_foreign(wb);
1693
1694 /*
1695 * Calculate global domain's pos_ratio and select the
1696 * global dtc by default.
1697 */
1698 if (!strictlimit)
1699 wb_dirty_limits(gdtc);
1700
1701 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1702 ((gdtc->dirty > gdtc->thresh) || strictlimit);
1703
1704 wb_position_ratio(gdtc);
1705 sdtc = gdtc;
1706
1707 if (mdtc) {
1708 /*
1709 * If memcg domain is in effect, calculate its
1710 * pos_ratio. @wb should satisfy constraints from
1711 * both global and memcg domains. Choose the one
1712 * w/ lower pos_ratio.
1713 */
1714 if (!strictlimit)
1715 wb_dirty_limits(mdtc);
1716
1717 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1718 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1719
1720 wb_position_ratio(mdtc);
1721 if (mdtc->pos_ratio < gdtc->pos_ratio)
1722 sdtc = mdtc;
1723 }
1724
1725 if (dirty_exceeded && !wb->dirty_exceeded)
1726 wb->dirty_exceeded = 1;
1727
1728 if (time_is_before_jiffies(wb->bw_time_stamp +
1729 BANDWIDTH_INTERVAL)) {
1730 spin_lock(&wb->list_lock);
1731 __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1732 spin_unlock(&wb->list_lock);
1733 }
1734
1735 /* throttle according to the chosen dtc */
1736 dirty_ratelimit = wb->dirty_ratelimit;
1737 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1738 RATELIMIT_CALC_SHIFT;
1739 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1740 min_pause = wb_min_pause(wb, max_pause,
1741 task_ratelimit, dirty_ratelimit,
1742 &nr_dirtied_pause);
1743
1744 if (unlikely(task_ratelimit == 0)) {
1745 period = max_pause;
1746 pause = max_pause;
1747 goto pause;
1748 }
1749 period = HZ * pages_dirtied / task_ratelimit;
1750 pause = period;
1751 if (current->dirty_paused_when)
1752 pause -= now - current->dirty_paused_when;
1753 /*
1754 * For less than 1s think time (ext3/4 may block the dirtier
1755 * for up to 800ms from time to time on 1-HDD; so does xfs,
1756 * however at much less frequency), try to compensate it in
1757 * future periods by updating the virtual time; otherwise just
1758 * do a reset, as it may be a light dirtier.
1759 */
1760 if (pause < min_pause) {
1761 trace_balance_dirty_pages(wb,
1762 sdtc->thresh,
1763 sdtc->bg_thresh,
1764 sdtc->dirty,
1765 sdtc->wb_thresh,
1766 sdtc->wb_dirty,
1767 dirty_ratelimit,
1768 task_ratelimit,
1769 pages_dirtied,
1770 period,
1771 min(pause, 0L),
1772 start_time);
1773 if (pause < -HZ) {
1774 current->dirty_paused_when = now;
1775 current->nr_dirtied = 0;
1776 } else if (period) {
1777 current->dirty_paused_when += period;
1778 current->nr_dirtied = 0;
1779 } else if (current->nr_dirtied_pause <= pages_dirtied)
1780 current->nr_dirtied_pause += pages_dirtied;
1781 break;
1782 }
1783 if (unlikely(pause > max_pause)) {
1784 /* for occasional dropped task_ratelimit */
1785 now += min(pause - max_pause, max_pause);
1786 pause = max_pause;
1787 }
1788
1789pause:
1790 trace_balance_dirty_pages(wb,
1791 sdtc->thresh,
1792 sdtc->bg_thresh,
1793 sdtc->dirty,
1794 sdtc->wb_thresh,
1795 sdtc->wb_dirty,
1796 dirty_ratelimit,
1797 task_ratelimit,
1798 pages_dirtied,
1799 period,
1800 pause,
1801 start_time);
1802 __set_current_state(TASK_KILLABLE);
1803 wb->dirty_sleep = now;
1804 io_schedule_timeout(pause);
1805
1806 current->dirty_paused_when = now + pause;
1807 current->nr_dirtied = 0;
1808 current->nr_dirtied_pause = nr_dirtied_pause;
1809
1810 /*
1811 * This is typically equal to (dirty < thresh) and can also
1812 * keep "1000+ dd on a slow USB stick" under control.
1813 */
1814 if (task_ratelimit)
1815 break;
1816
1817 /*
1818 * In the case of an unresponding NFS server and the NFS dirty
1819 * pages exceeds dirty_thresh, give the other good wb's a pipe
1820 * to go through, so that tasks on them still remain responsive.
1821 *
1822 * In theory 1 page is enough to keep the consumer-producer
1823 * pipe going: the flusher cleans 1 page => the task dirties 1
1824 * more page. However wb_dirty has accounting errors. So use
1825 * the larger and more IO friendly wb_stat_error.
1826 */
1827 if (sdtc->wb_dirty <= wb_stat_error())
1828 break;
1829
1830 if (fatal_signal_pending(current))
1831 break;
1832 }
1833
1834 if (!dirty_exceeded && wb->dirty_exceeded)
1835 wb->dirty_exceeded = 0;
1836
1837 if (writeback_in_progress(wb))
1838 return;
1839
1840 /*
1841 * In laptop mode, we wait until hitting the higher threshold before
1842 * starting background writeout, and then write out all the way down
1843 * to the lower threshold. So slow writers cause minimal disk activity.
1844 *
1845 * In normal mode, we start background writeout at the lower
1846 * background_thresh, to keep the amount of dirty memory low.
1847 */
1848 if (laptop_mode)
1849 return;
1850
1851 if (nr_reclaimable > gdtc->bg_thresh)
1852 wb_start_background_writeback(wb);
1853}
1854
1855static DEFINE_PER_CPU(int, bdp_ratelimits);
1856
1857/*
1858 * Normal tasks are throttled by
1859 * loop {
1860 * dirty tsk->nr_dirtied_pause pages;
1861 * take a snap in balance_dirty_pages();
1862 * }
1863 * However there is a worst case. If every task exit immediately when dirtied
1864 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1865 * called to throttle the page dirties. The solution is to save the not yet
1866 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1867 * randomly into the running tasks. This works well for the above worst case,
1868 * as the new task will pick up and accumulate the old task's leaked dirty
1869 * count and eventually get throttled.
1870 */
1871DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1872
1873/**
1874 * balance_dirty_pages_ratelimited - balance dirty memory state
1875 * @mapping: address_space which was dirtied
1876 *
1877 * Processes which are dirtying memory should call in here once for each page
1878 * which was newly dirtied. The function will periodically check the system's
1879 * dirty state and will initiate writeback if needed.
1880 *
1881 * On really big machines, get_writeback_state is expensive, so try to avoid
1882 * calling it too often (ratelimiting). But once we're over the dirty memory
1883 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1884 * from overshooting the limit by (ratelimit_pages) each.
1885 */
1886void balance_dirty_pages_ratelimited(struct address_space *mapping)
1887{
1888 struct inode *inode = mapping->host;
1889 struct backing_dev_info *bdi = inode_to_bdi(inode);
1890 struct bdi_writeback *wb = NULL;
1891 int ratelimit;
1892 int *p;
1893
1894 if (!bdi_cap_account_dirty(bdi))
1895 return;
1896
1897 if (inode_cgwb_enabled(inode))
1898 wb = wb_get_create_current(bdi, GFP_KERNEL);
1899 if (!wb)
1900 wb = &bdi->wb;
1901
1902 ratelimit = current->nr_dirtied_pause;
1903 if (wb->dirty_exceeded)
1904 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1905
1906 preempt_disable();
1907 /*
1908 * This prevents one CPU to accumulate too many dirtied pages without
1909 * calling into balance_dirty_pages(), which can happen when there are
1910 * 1000+ tasks, all of them start dirtying pages at exactly the same
1911 * time, hence all honoured too large initial task->nr_dirtied_pause.
1912 */
1913 p = this_cpu_ptr(&bdp_ratelimits);
1914 if (unlikely(current->nr_dirtied >= ratelimit))
1915 *p = 0;
1916 else if (unlikely(*p >= ratelimit_pages)) {
1917 *p = 0;
1918 ratelimit = 0;
1919 }
1920 /*
1921 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1922 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1923 * the dirty throttling and livelock other long-run dirtiers.
1924 */
1925 p = this_cpu_ptr(&dirty_throttle_leaks);
1926 if (*p > 0 && current->nr_dirtied < ratelimit) {
1927 unsigned long nr_pages_dirtied;
1928 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1929 *p -= nr_pages_dirtied;
1930 current->nr_dirtied += nr_pages_dirtied;
1931 }
1932 preempt_enable();
1933
1934 if (unlikely(current->nr_dirtied >= ratelimit))
1935 balance_dirty_pages(wb, current->nr_dirtied);
1936
1937 wb_put(wb);
1938}
1939EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1940
1941/**
1942 * wb_over_bg_thresh - does @wb need to be written back?
1943 * @wb: bdi_writeback of interest
1944 *
1945 * Determines whether background writeback should keep writing @wb or it's
1946 * clean enough.
1947 *
1948 * Return: %true if writeback should continue.
1949 */
1950bool wb_over_bg_thresh(struct bdi_writeback *wb)
1951{
1952 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1953 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1954 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1955 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1956 &mdtc_stor : NULL;
1957
1958 /*
1959 * Similar to balance_dirty_pages() but ignores pages being written
1960 * as we're trying to decide whether to put more under writeback.
1961 */
1962 gdtc->avail = global_dirtyable_memory();
1963 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) +
1964 global_node_page_state(NR_UNSTABLE_NFS);
1965 domain_dirty_limits(gdtc);
1966
1967 if (gdtc->dirty > gdtc->bg_thresh)
1968 return true;
1969
1970 if (wb_stat(wb, WB_RECLAIMABLE) >
1971 wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1972 return true;
1973
1974 if (mdtc) {
1975 unsigned long filepages, headroom, writeback;
1976
1977 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1978 &writeback);
1979 mdtc_calc_avail(mdtc, filepages, headroom);
1980 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
1981
1982 if (mdtc->dirty > mdtc->bg_thresh)
1983 return true;
1984
1985 if (wb_stat(wb, WB_RECLAIMABLE) >
1986 wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1987 return true;
1988 }
1989
1990 return false;
1991}
1992
1993/*
1994 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1995 */
1996int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1997 void __user *buffer, size_t *length, loff_t *ppos)
1998{
1999 unsigned int old_interval = dirty_writeback_interval;
2000 int ret;
2001
2002 ret = proc_dointvec(table, write, buffer, length, ppos);
2003
2004 /*
2005 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2006 * and a different non-zero value will wakeup the writeback threads.
2007 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2008 * iterate over all bdis and wbs.
2009 * The reason we do this is to make the change take effect immediately.
2010 */
2011 if (!ret && write && dirty_writeback_interval &&
2012 dirty_writeback_interval != old_interval)
2013 wakeup_flusher_threads(WB_REASON_PERIODIC);
2014
2015 return ret;
2016}
2017
2018#ifdef CONFIG_BLOCK
2019void laptop_mode_timer_fn(struct timer_list *t)
2020{
2021 struct backing_dev_info *backing_dev_info =
2022 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2023
2024 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2025}
2026
2027/*
2028 * We've spun up the disk and we're in laptop mode: schedule writeback
2029 * of all dirty data a few seconds from now. If the flush is already scheduled
2030 * then push it back - the user is still using the disk.
2031 */
2032void laptop_io_completion(struct backing_dev_info *info)
2033{
2034 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2035}
2036
2037/*
2038 * We're in laptop mode and we've just synced. The sync's writes will have
2039 * caused another writeback to be scheduled by laptop_io_completion.
2040 * Nothing needs to be written back anymore, so we unschedule the writeback.
2041 */
2042void laptop_sync_completion(void)
2043{
2044 struct backing_dev_info *bdi;
2045
2046 rcu_read_lock();
2047
2048 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2049 del_timer(&bdi->laptop_mode_wb_timer);
2050
2051 rcu_read_unlock();
2052}
2053#endif
2054
2055/*
2056 * If ratelimit_pages is too high then we can get into dirty-data overload
2057 * if a large number of processes all perform writes at the same time.
2058 * If it is too low then SMP machines will call the (expensive)
2059 * get_writeback_state too often.
2060 *
2061 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2062 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2063 * thresholds.
2064 */
2065
2066void writeback_set_ratelimit(void)
2067{
2068 struct wb_domain *dom = &global_wb_domain;
2069 unsigned long background_thresh;
2070 unsigned long dirty_thresh;
2071
2072 global_dirty_limits(&background_thresh, &dirty_thresh);
2073 dom->dirty_limit = dirty_thresh;
2074 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2075 if (ratelimit_pages < 16)
2076 ratelimit_pages = 16;
2077}
2078
2079static int page_writeback_cpu_online(unsigned int cpu)
2080{
2081 writeback_set_ratelimit();
2082 return 0;
2083}
2084
2085/*
2086 * Called early on to tune the page writeback dirty limits.
2087 *
2088 * We used to scale dirty pages according to how total memory
2089 * related to pages that could be allocated for buffers (by
2090 * comparing nr_free_buffer_pages() to vm_total_pages.
2091 *
2092 * However, that was when we used "dirty_ratio" to scale with
2093 * all memory, and we don't do that any more. "dirty_ratio"
2094 * is now applied to total non-HIGHPAGE memory (by subtracting
2095 * totalhigh_pages from vm_total_pages), and as such we can't
2096 * get into the old insane situation any more where we had
2097 * large amounts of dirty pages compared to a small amount of
2098 * non-HIGHMEM memory.
2099 *
2100 * But we might still want to scale the dirty_ratio by how
2101 * much memory the box has..
2102 */
2103void __init page_writeback_init(void)
2104{
2105 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2106
2107 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2108 page_writeback_cpu_online, NULL);
2109 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2110 page_writeback_cpu_online);
2111}
2112
2113/**
2114 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2115 * @mapping: address space structure to write
2116 * @start: starting page index
2117 * @end: ending page index (inclusive)
2118 *
2119 * This function scans the page range from @start to @end (inclusive) and tags
2120 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2121 * that write_cache_pages (or whoever calls this function) will then use
2122 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2123 * used to avoid livelocking of writeback by a process steadily creating new
2124 * dirty pages in the file (thus it is important for this function to be quick
2125 * so that it can tag pages faster than a dirtying process can create them).
2126 */
2127void tag_pages_for_writeback(struct address_space *mapping,
2128 pgoff_t start, pgoff_t end)
2129{
2130 XA_STATE(xas, &mapping->i_pages, start);
2131 unsigned int tagged = 0;
2132 void *page;
2133
2134 xas_lock_irq(&xas);
2135 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2136 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2137 if (++tagged % XA_CHECK_SCHED)
2138 continue;
2139
2140 xas_pause(&xas);
2141 xas_unlock_irq(&xas);
2142 cond_resched();
2143 xas_lock_irq(&xas);
2144 }
2145 xas_unlock_irq(&xas);
2146}
2147EXPORT_SYMBOL(tag_pages_for_writeback);
2148
2149/**
2150 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2151 * @mapping: address space structure to write
2152 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2153 * @writepage: function called for each page
2154 * @data: data passed to writepage function
2155 *
2156 * If a page is already under I/O, write_cache_pages() skips it, even
2157 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2158 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2159 * and msync() need to guarantee that all the data which was dirty at the time
2160 * the call was made get new I/O started against them. If wbc->sync_mode is
2161 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2162 * existing IO to complete.
2163 *
2164 * To avoid livelocks (when other process dirties new pages), we first tag
2165 * pages which should be written back with TOWRITE tag and only then start
2166 * writing them. For data-integrity sync we have to be careful so that we do
2167 * not miss some pages (e.g., because some other process has cleared TOWRITE
2168 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2169 * by the process clearing the DIRTY tag (and submitting the page for IO).
2170 *
2171 * To avoid deadlocks between range_cyclic writeback and callers that hold
2172 * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2173 * we do not loop back to the start of the file. Doing so causes a page
2174 * lock/page writeback access order inversion - we should only ever lock
2175 * multiple pages in ascending page->index order, and looping back to the start
2176 * of the file violates that rule and causes deadlocks.
2177 *
2178 * Return: %0 on success, negative error code otherwise
2179 */
2180int write_cache_pages(struct address_space *mapping,
2181 struct writeback_control *wbc, writepage_t writepage,
2182 void *data)
2183{
2184 int ret = 0;
2185 int done = 0;
2186 int error;
2187 struct pagevec pvec;
2188 int nr_pages;
2189 pgoff_t uninitialized_var(writeback_index);
2190 pgoff_t index;
2191 pgoff_t end; /* Inclusive */
2192 pgoff_t done_index;
2193 int range_whole = 0;
2194 xa_mark_t tag;
2195
2196 pagevec_init(&pvec);
2197 if (wbc->range_cyclic) {
2198 writeback_index = mapping->writeback_index; /* prev offset */
2199 index = writeback_index;
2200 end = -1;
2201 } else {
2202 index = wbc->range_start >> PAGE_SHIFT;
2203 end = wbc->range_end >> PAGE_SHIFT;
2204 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2205 range_whole = 1;
2206 }
2207 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2208 tag = PAGECACHE_TAG_TOWRITE;
2209 else
2210 tag = PAGECACHE_TAG_DIRTY;
2211 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2212 tag_pages_for_writeback(mapping, index, end);
2213 done_index = index;
2214 while (!done && (index <= end)) {
2215 int i;
2216
2217 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2218 tag);
2219 if (nr_pages == 0)
2220 break;
2221
2222 for (i = 0; i < nr_pages; i++) {
2223 struct page *page = pvec.pages[i];
2224
2225 done_index = page->index;
2226
2227 lock_page(page);
2228
2229 /*
2230 * Page truncated or invalidated. We can freely skip it
2231 * then, even for data integrity operations: the page
2232 * has disappeared concurrently, so there could be no
2233 * real expectation of this data interity operation
2234 * even if there is now a new, dirty page at the same
2235 * pagecache address.
2236 */
2237 if (unlikely(page->mapping != mapping)) {
2238continue_unlock:
2239 unlock_page(page);
2240 continue;
2241 }
2242
2243 if (!PageDirty(page)) {
2244 /* someone wrote it for us */
2245 goto continue_unlock;
2246 }
2247
2248 if (PageWriteback(page)) {
2249 if (wbc->sync_mode != WB_SYNC_NONE)
2250 wait_on_page_writeback(page);
2251 else
2252 goto continue_unlock;
2253 }
2254
2255 BUG_ON(PageWriteback(page));
2256 if (!clear_page_dirty_for_io(page))
2257 goto continue_unlock;
2258
2259 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2260 error = (*writepage)(page, wbc, data);
2261 if (unlikely(error)) {
2262 /*
2263 * Handle errors according to the type of
2264 * writeback. There's no need to continue for
2265 * background writeback. Just push done_index
2266 * past this page so media errors won't choke
2267 * writeout for the entire file. For integrity
2268 * writeback, we must process the entire dirty
2269 * set regardless of errors because the fs may
2270 * still have state to clear for each page. In
2271 * that case we continue processing and return
2272 * the first error.
2273 */
2274 if (error == AOP_WRITEPAGE_ACTIVATE) {
2275 unlock_page(page);
2276 error = 0;
2277 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2278 ret = error;
2279 done_index = page->index + 1;
2280 done = 1;
2281 break;
2282 }
2283 if (!ret)
2284 ret = error;
2285 }
2286
2287 /*
2288 * We stop writing back only if we are not doing
2289 * integrity sync. In case of integrity sync we have to
2290 * keep going until we have written all the pages
2291 * we tagged for writeback prior to entering this loop.
2292 */
2293 if (--wbc->nr_to_write <= 0 &&
2294 wbc->sync_mode == WB_SYNC_NONE) {
2295 done = 1;
2296 break;
2297 }
2298 }
2299 pagevec_release(&pvec);
2300 cond_resched();
2301 }
2302
2303 /*
2304 * If we hit the last page and there is more work to be done: wrap
2305 * back the index back to the start of the file for the next
2306 * time we are called.
2307 */
2308 if (wbc->range_cyclic && !done)
2309 done_index = 0;
2310 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2311 mapping->writeback_index = done_index;
2312
2313 return ret;
2314}
2315EXPORT_SYMBOL(write_cache_pages);
2316
2317/*
2318 * Function used by generic_writepages to call the real writepage
2319 * function and set the mapping flags on error
2320 */
2321static int __writepage(struct page *page, struct writeback_control *wbc,
2322 void *data)
2323{
2324 struct address_space *mapping = data;
2325 int ret = mapping->a_ops->writepage(page, wbc);
2326 mapping_set_error(mapping, ret);
2327 return ret;
2328}
2329
2330/**
2331 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2332 * @mapping: address space structure to write
2333 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2334 *
2335 * This is a library function, which implements the writepages()
2336 * address_space_operation.
2337 *
2338 * Return: %0 on success, negative error code otherwise
2339 */
2340int generic_writepages(struct address_space *mapping,
2341 struct writeback_control *wbc)
2342{
2343 struct blk_plug plug;
2344 int ret;
2345
2346 /* deal with chardevs and other special file */
2347 if (!mapping->a_ops->writepage)
2348 return 0;
2349
2350 blk_start_plug(&plug);
2351 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2352 blk_finish_plug(&plug);
2353 return ret;
2354}
2355
2356EXPORT_SYMBOL(generic_writepages);
2357
2358int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2359{
2360 int ret;
2361
2362 if (wbc->nr_to_write <= 0)
2363 return 0;
2364 while (1) {
2365 if (mapping->a_ops->writepages)
2366 ret = mapping->a_ops->writepages(mapping, wbc);
2367 else
2368 ret = generic_writepages(mapping, wbc);
2369 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2370 break;
2371 cond_resched();
2372 congestion_wait(BLK_RW_ASYNC, HZ/50);
2373 }
2374 return ret;
2375}
2376
2377/**
2378 * write_one_page - write out a single page and wait on I/O
2379 * @page: the page to write
2380 *
2381 * The page must be locked by the caller and will be unlocked upon return.
2382 *
2383 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2384 * function returns.
2385 *
2386 * Return: %0 on success, negative error code otherwise
2387 */
2388int write_one_page(struct page *page)
2389{
2390 struct address_space *mapping = page->mapping;
2391 int ret = 0;
2392 struct writeback_control wbc = {
2393 .sync_mode = WB_SYNC_ALL,
2394 .nr_to_write = 1,
2395 };
2396
2397 BUG_ON(!PageLocked(page));
2398
2399 wait_on_page_writeback(page);
2400
2401 if (clear_page_dirty_for_io(page)) {
2402 get_page(page);
2403 ret = mapping->a_ops->writepage(page, &wbc);
2404 if (ret == 0)
2405 wait_on_page_writeback(page);
2406 put_page(page);
2407 } else {
2408 unlock_page(page);
2409 }
2410
2411 if (!ret)
2412 ret = filemap_check_errors(mapping);
2413 return ret;
2414}
2415EXPORT_SYMBOL(write_one_page);
2416
2417/*
2418 * For address_spaces which do not use buffers nor write back.
2419 */
2420int __set_page_dirty_no_writeback(struct page *page)
2421{
2422 if (!PageDirty(page))
2423 return !TestSetPageDirty(page);
2424 return 0;
2425}
2426
2427/*
2428 * Helper function for set_page_dirty family.
2429 *
2430 * Caller must hold lock_page_memcg().
2431 *
2432 * NOTE: This relies on being atomic wrt interrupts.
2433 */
2434void account_page_dirtied(struct page *page, struct address_space *mapping)
2435{
2436 struct inode *inode = mapping->host;
2437
2438 trace_writeback_dirty_page(page, mapping);
2439
2440 if (mapping_cap_account_dirty(mapping)) {
2441 struct bdi_writeback *wb;
2442
2443 inode_attach_wb(inode, page);
2444 wb = inode_to_wb(inode);
2445
2446 __inc_lruvec_page_state(page, NR_FILE_DIRTY);
2447 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2448 __inc_node_page_state(page, NR_DIRTIED);
2449 inc_wb_stat(wb, WB_RECLAIMABLE);
2450 inc_wb_stat(wb, WB_DIRTIED);
2451 task_io_account_write(PAGE_SIZE);
2452 current->nr_dirtied++;
2453 this_cpu_inc(bdp_ratelimits);
2454
2455 mem_cgroup_track_foreign_dirty(page, wb);
2456 }
2457}
2458
2459/*
2460 * Helper function for deaccounting dirty page without writeback.
2461 *
2462 * Caller must hold lock_page_memcg().
2463 */
2464void account_page_cleaned(struct page *page, struct address_space *mapping,
2465 struct bdi_writeback *wb)
2466{
2467 if (mapping_cap_account_dirty(mapping)) {
2468 dec_lruvec_page_state(page, NR_FILE_DIRTY);
2469 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2470 dec_wb_stat(wb, WB_RECLAIMABLE);
2471 task_io_account_cancelled_write(PAGE_SIZE);
2472 }
2473}
2474
2475/*
2476 * For address_spaces which do not use buffers. Just tag the page as dirty in
2477 * the xarray.
2478 *
2479 * This is also used when a single buffer is being dirtied: we want to set the
2480 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2481 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2482 *
2483 * The caller must ensure this doesn't race with truncation. Most will simply
2484 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2485 * the pte lock held, which also locks out truncation.
2486 */
2487int __set_page_dirty_nobuffers(struct page *page)
2488{
2489 lock_page_memcg(page);
2490 if (!TestSetPageDirty(page)) {
2491 struct address_space *mapping = page_mapping(page);
2492 unsigned long flags;
2493
2494 if (!mapping) {
2495 unlock_page_memcg(page);
2496 return 1;
2497 }
2498
2499 xa_lock_irqsave(&mapping->i_pages, flags);
2500 BUG_ON(page_mapping(page) != mapping);
2501 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2502 account_page_dirtied(page, mapping);
2503 __xa_set_mark(&mapping->i_pages, page_index(page),
2504 PAGECACHE_TAG_DIRTY);
2505 xa_unlock_irqrestore(&mapping->i_pages, flags);
2506 unlock_page_memcg(page);
2507
2508 if (mapping->host) {
2509 /* !PageAnon && !swapper_space */
2510 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2511 }
2512 return 1;
2513 }
2514 unlock_page_memcg(page);
2515 return 0;
2516}
2517EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2518
2519/*
2520 * Call this whenever redirtying a page, to de-account the dirty counters
2521 * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
2522 * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
2523 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2524 * control.
2525 */
2526void account_page_redirty(struct page *page)
2527{
2528 struct address_space *mapping = page->mapping;
2529
2530 if (mapping && mapping_cap_account_dirty(mapping)) {
2531 struct inode *inode = mapping->host;
2532 struct bdi_writeback *wb;
2533 struct wb_lock_cookie cookie = {};
2534
2535 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2536 current->nr_dirtied--;
2537 dec_node_page_state(page, NR_DIRTIED);
2538 dec_wb_stat(wb, WB_DIRTIED);
2539 unlocked_inode_to_wb_end(inode, &cookie);
2540 }
2541}
2542EXPORT_SYMBOL(account_page_redirty);
2543
2544/*
2545 * When a writepage implementation decides that it doesn't want to write this
2546 * page for some reason, it should redirty the locked page via
2547 * redirty_page_for_writepage() and it should then unlock the page and return 0
2548 */
2549int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2550{
2551 int ret;
2552
2553 wbc->pages_skipped++;
2554 ret = __set_page_dirty_nobuffers(page);
2555 account_page_redirty(page);
2556 return ret;
2557}
2558EXPORT_SYMBOL(redirty_page_for_writepage);
2559
2560/*
2561 * Dirty a page.
2562 *
2563 * For pages with a mapping this should be done under the page lock
2564 * for the benefit of asynchronous memory errors who prefer a consistent
2565 * dirty state. This rule can be broken in some special cases,
2566 * but should be better not to.
2567 *
2568 * If the mapping doesn't provide a set_page_dirty a_op, then
2569 * just fall through and assume that it wants buffer_heads.
2570 */
2571int set_page_dirty(struct page *page)
2572{
2573 struct address_space *mapping = page_mapping(page);
2574
2575 page = compound_head(page);
2576 if (likely(mapping)) {
2577 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2578 /*
2579 * readahead/lru_deactivate_page could remain
2580 * PG_readahead/PG_reclaim due to race with end_page_writeback
2581 * About readahead, if the page is written, the flags would be
2582 * reset. So no problem.
2583 * About lru_deactivate_page, if the page is redirty, the flag
2584 * will be reset. So no problem. but if the page is used by readahead
2585 * it will confuse readahead and make it restart the size rampup
2586 * process. But it's a trivial problem.
2587 */
2588 if (PageReclaim(page))
2589 ClearPageReclaim(page);
2590#ifdef CONFIG_BLOCK
2591 if (!spd)
2592 spd = __set_page_dirty_buffers;
2593#endif
2594 return (*spd)(page);
2595 }
2596 if (!PageDirty(page)) {
2597 if (!TestSetPageDirty(page))
2598 return 1;
2599 }
2600 return 0;
2601}
2602EXPORT_SYMBOL(set_page_dirty);
2603
2604/*
2605 * set_page_dirty() is racy if the caller has no reference against
2606 * page->mapping->host, and if the page is unlocked. This is because another
2607 * CPU could truncate the page off the mapping and then free the mapping.
2608 *
2609 * Usually, the page _is_ locked, or the caller is a user-space process which
2610 * holds a reference on the inode by having an open file.
2611 *
2612 * In other cases, the page should be locked before running set_page_dirty().
2613 */
2614int set_page_dirty_lock(struct page *page)
2615{
2616 int ret;
2617
2618 lock_page(page);
2619 ret = set_page_dirty(page);
2620 unlock_page(page);
2621 return ret;
2622}
2623EXPORT_SYMBOL(set_page_dirty_lock);
2624
2625/*
2626 * This cancels just the dirty bit on the kernel page itself, it does NOT
2627 * actually remove dirty bits on any mmap's that may be around. It also
2628 * leaves the page tagged dirty, so any sync activity will still find it on
2629 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2630 * look at the dirty bits in the VM.
2631 *
2632 * Doing this should *normally* only ever be done when a page is truncated,
2633 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2634 * this when it notices that somebody has cleaned out all the buffers on a
2635 * page without actually doing it through the VM. Can you say "ext3 is
2636 * horribly ugly"? Thought you could.
2637 */
2638void __cancel_dirty_page(struct page *page)
2639{
2640 struct address_space *mapping = page_mapping(page);
2641
2642 if (mapping_cap_account_dirty(mapping)) {
2643 struct inode *inode = mapping->host;
2644 struct bdi_writeback *wb;
2645 struct wb_lock_cookie cookie = {};
2646
2647 lock_page_memcg(page);
2648 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2649
2650 if (TestClearPageDirty(page))
2651 account_page_cleaned(page, mapping, wb);
2652
2653 unlocked_inode_to_wb_end(inode, &cookie);
2654 unlock_page_memcg(page);
2655 } else {
2656 ClearPageDirty(page);
2657 }
2658}
2659EXPORT_SYMBOL(__cancel_dirty_page);
2660
2661/*
2662 * Clear a page's dirty flag, while caring for dirty memory accounting.
2663 * Returns true if the page was previously dirty.
2664 *
2665 * This is for preparing to put the page under writeout. We leave the page
2666 * tagged as dirty in the xarray so that a concurrent write-for-sync
2667 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2668 * implementation will run either set_page_writeback() or set_page_dirty(),
2669 * at which stage we bring the page's dirty flag and xarray dirty tag
2670 * back into sync.
2671 *
2672 * This incoherency between the page's dirty flag and xarray tag is
2673 * unfortunate, but it only exists while the page is locked.
2674 */
2675int clear_page_dirty_for_io(struct page *page)
2676{
2677 struct address_space *mapping = page_mapping(page);
2678 int ret = 0;
2679
2680 BUG_ON(!PageLocked(page));
2681
2682 if (mapping && mapping_cap_account_dirty(mapping)) {
2683 struct inode *inode = mapping->host;
2684 struct bdi_writeback *wb;
2685 struct wb_lock_cookie cookie = {};
2686
2687 /*
2688 * Yes, Virginia, this is indeed insane.
2689 *
2690 * We use this sequence to make sure that
2691 * (a) we account for dirty stats properly
2692 * (b) we tell the low-level filesystem to
2693 * mark the whole page dirty if it was
2694 * dirty in a pagetable. Only to then
2695 * (c) clean the page again and return 1 to
2696 * cause the writeback.
2697 *
2698 * This way we avoid all nasty races with the
2699 * dirty bit in multiple places and clearing
2700 * them concurrently from different threads.
2701 *
2702 * Note! Normally the "set_page_dirty(page)"
2703 * has no effect on the actual dirty bit - since
2704 * that will already usually be set. But we
2705 * need the side effects, and it can help us
2706 * avoid races.
2707 *
2708 * We basically use the page "master dirty bit"
2709 * as a serialization point for all the different
2710 * threads doing their things.
2711 */
2712 if (page_mkclean(page))
2713 set_page_dirty(page);
2714 /*
2715 * We carefully synchronise fault handlers against
2716 * installing a dirty pte and marking the page dirty
2717 * at this point. We do this by having them hold the
2718 * page lock while dirtying the page, and pages are
2719 * always locked coming in here, so we get the desired
2720 * exclusion.
2721 */
2722 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2723 if (TestClearPageDirty(page)) {
2724 dec_lruvec_page_state(page, NR_FILE_DIRTY);
2725 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2726 dec_wb_stat(wb, WB_RECLAIMABLE);
2727 ret = 1;
2728 }
2729 unlocked_inode_to_wb_end(inode, &cookie);
2730 return ret;
2731 }
2732 return TestClearPageDirty(page);
2733}
2734EXPORT_SYMBOL(clear_page_dirty_for_io);
2735
2736int test_clear_page_writeback(struct page *page)
2737{
2738 struct address_space *mapping = page_mapping(page);
2739 struct mem_cgroup *memcg;
2740 struct lruvec *lruvec;
2741 int ret;
2742
2743 memcg = lock_page_memcg(page);
2744 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
2745 if (mapping && mapping_use_writeback_tags(mapping)) {
2746 struct inode *inode = mapping->host;
2747 struct backing_dev_info *bdi = inode_to_bdi(inode);
2748 unsigned long flags;
2749
2750 xa_lock_irqsave(&mapping->i_pages, flags);
2751 ret = TestClearPageWriteback(page);
2752 if (ret) {
2753 __xa_clear_mark(&mapping->i_pages, page_index(page),
2754 PAGECACHE_TAG_WRITEBACK);
2755 if (bdi_cap_account_writeback(bdi)) {
2756 struct bdi_writeback *wb = inode_to_wb(inode);
2757
2758 dec_wb_stat(wb, WB_WRITEBACK);
2759 __wb_writeout_inc(wb);
2760 }
2761 }
2762
2763 if (mapping->host && !mapping_tagged(mapping,
2764 PAGECACHE_TAG_WRITEBACK))
2765 sb_clear_inode_writeback(mapping->host);
2766
2767 xa_unlock_irqrestore(&mapping->i_pages, flags);
2768 } else {
2769 ret = TestClearPageWriteback(page);
2770 }
2771 if (ret) {
2772 dec_lruvec_state(lruvec, NR_WRITEBACK);
2773 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2774 inc_node_page_state(page, NR_WRITTEN);
2775 }
2776 __unlock_page_memcg(memcg);
2777 return ret;
2778}
2779
2780int __test_set_page_writeback(struct page *page, bool keep_write)
2781{
2782 struct address_space *mapping = page_mapping(page);
2783 int ret;
2784
2785 lock_page_memcg(page);
2786 if (mapping && mapping_use_writeback_tags(mapping)) {
2787 XA_STATE(xas, &mapping->i_pages, page_index(page));
2788 struct inode *inode = mapping->host;
2789 struct backing_dev_info *bdi = inode_to_bdi(inode);
2790 unsigned long flags;
2791
2792 xas_lock_irqsave(&xas, flags);
2793 xas_load(&xas);
2794 ret = TestSetPageWriteback(page);
2795 if (!ret) {
2796 bool on_wblist;
2797
2798 on_wblist = mapping_tagged(mapping,
2799 PAGECACHE_TAG_WRITEBACK);
2800
2801 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2802 if (bdi_cap_account_writeback(bdi))
2803 inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2804
2805 /*
2806 * We can come through here when swapping anonymous
2807 * pages, so we don't necessarily have an inode to track
2808 * for sync.
2809 */
2810 if (mapping->host && !on_wblist)
2811 sb_mark_inode_writeback(mapping->host);
2812 }
2813 if (!PageDirty(page))
2814 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2815 if (!keep_write)
2816 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2817 xas_unlock_irqrestore(&xas, flags);
2818 } else {
2819 ret = TestSetPageWriteback(page);
2820 }
2821 if (!ret) {
2822 inc_lruvec_page_state(page, NR_WRITEBACK);
2823 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2824 }
2825 unlock_page_memcg(page);
2826 return ret;
2827
2828}
2829EXPORT_SYMBOL(__test_set_page_writeback);
2830
2831/*
2832 * Wait for a page to complete writeback
2833 */
2834void wait_on_page_writeback(struct page *page)
2835{
2836 while (PageWriteback(page)) {
2837 trace_wait_on_page_writeback(page, page_mapping(page));
2838 wait_on_page_bit(page, PG_writeback);
2839 }
2840}
2841EXPORT_SYMBOL_GPL(wait_on_page_writeback);
2842
2843/**
2844 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2845 * @page: The page to wait on.
2846 *
2847 * This function determines if the given page is related to a backing device
2848 * that requires page contents to be held stable during writeback. If so, then
2849 * it will wait for any pending writeback to complete.
2850 */
2851void wait_for_stable_page(struct page *page)
2852{
2853 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2854 wait_on_page_writeback(page);
2855}
2856EXPORT_SYMBOL_GPL(wait_for_stable_page);