blob: e2f72b22098876fed0d4d7fa6594d86478726b3f [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/ramfs.h>
29#include <linux/pagemap.h>
30#include <linux/file.h>
31#include <linux/mm.h>
32#include <linux/random.h>
33#include <linux/sched/signal.h>
34#include <linux/export.h>
35#include <linux/swap.h>
36#include <linux/uio.h>
37#include <linux/khugepaged.h>
38#include <linux/hugetlb.h>
39#include <linux/frontswap.h>
40#include <linux/fs_parser.h>
41
42#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44static struct vfsmount *shm_mnt;
45
46#ifdef CONFIG_SHMEM
47/*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
53#include <linux/xattr.h>
54#include <linux/exportfs.h>
55#include <linux/posix_acl.h>
56#include <linux/posix_acl_xattr.h>
57#include <linux/mman.h>
58#include <linux/string.h>
59#include <linux/slab.h>
60#include <linux/backing-dev.h>
61#include <linux/shmem_fs.h>
62#include <linux/writeback.h>
63#include <linux/blkdev.h>
64#include <linux/pagevec.h>
65#include <linux/percpu_counter.h>
66#include <linux/falloc.h>
67#include <linux/splice.h>
68#include <linux/security.h>
69#include <linux/swapops.h>
70#include <linux/mempolicy.h>
71#include <linux/namei.h>
72#include <linux/ctype.h>
73#include <linux/migrate.h>
74#include <linux/highmem.h>
75#include <linux/seq_file.h>
76#include <linux/magic.h>
77#include <linux/syscalls.h>
78#include <linux/fcntl.h>
79#include <uapi/linux/memfd.h>
80#include <linux/userfaultfd_k.h>
81#include <linux/rmap.h>
82#include <linux/uuid.h>
83
84#include <linux/uaccess.h>
85#include <asm/pgtable.h>
86
87#include "internal.h"
88
89#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
90#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
91
92/* Pretend that each entry is of this size in directory's i_size */
93#define BOGO_DIRENT_SIZE 20
94
95/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
96#define SHORT_SYMLINK_LEN 128
97
98/*
99 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
100 * inode->i_private (with i_mutex making sure that it has only one user at
101 * a time): we would prefer not to enlarge the shmem inode just for that.
102 */
103struct shmem_falloc {
104 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
105 pgoff_t start; /* start of range currently being fallocated */
106 pgoff_t next; /* the next page offset to be fallocated */
107 pgoff_t nr_falloced; /* how many new pages have been fallocated */
108 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
109};
110
111struct shmem_options {
112 unsigned long long blocks;
113 unsigned long long inodes;
114 struct mempolicy *mpol;
115 kuid_t uid;
116 kgid_t gid;
117 umode_t mode;
118 int huge;
119 int seen;
120#define SHMEM_SEEN_BLOCKS 1
121#define SHMEM_SEEN_INODES 2
122#define SHMEM_SEEN_HUGE 4
123};
124
125#ifdef CONFIG_TMPFS
126static unsigned long shmem_default_max_blocks(void)
127{
128 return totalram_pages() / 2;
129}
130
131static unsigned long shmem_default_max_inodes(void)
132{
133 unsigned long nr_pages = totalram_pages();
134
135 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136}
137#endif
138
139static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
140static int shmem_replace_page(struct page **pagep, gfp_t gfp,
141 struct shmem_inode_info *info, pgoff_t index);
142static int shmem_swapin_page(struct inode *inode, pgoff_t index,
143 struct page **pagep, enum sgp_type sgp,
144 gfp_t gfp, struct vm_area_struct *vma,
145 vm_fault_t *fault_type);
146static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
147 struct page **pagep, enum sgp_type sgp,
148 gfp_t gfp, struct vm_area_struct *vma,
149 struct vm_fault *vmf, vm_fault_t *fault_type);
150
151int shmem_getpage(struct inode *inode, pgoff_t index,
152 struct page **pagep, enum sgp_type sgp)
153{
154 return shmem_getpage_gfp(inode, index, pagep, sgp,
155 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
156}
157
158static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
159{
160 return sb->s_fs_info;
161}
162
163/*
164 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
165 * for shared memory and for shared anonymous (/dev/zero) mappings
166 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
167 * consistent with the pre-accounting of private mappings ...
168 */
169static inline int shmem_acct_size(unsigned long flags, loff_t size)
170{
171 return (flags & VM_NORESERVE) ?
172 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
173}
174
175static inline void shmem_unacct_size(unsigned long flags, loff_t size)
176{
177 if (!(flags & VM_NORESERVE))
178 vm_unacct_memory(VM_ACCT(size));
179}
180
181static inline int shmem_reacct_size(unsigned long flags,
182 loff_t oldsize, loff_t newsize)
183{
184 if (!(flags & VM_NORESERVE)) {
185 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
186 return security_vm_enough_memory_mm(current->mm,
187 VM_ACCT(newsize) - VM_ACCT(oldsize));
188 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
189 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
190 }
191 return 0;
192}
193
194/*
195 * ... whereas tmpfs objects are accounted incrementally as
196 * pages are allocated, in order to allow large sparse files.
197 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
198 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
199 */
200static inline int shmem_acct_block(unsigned long flags, long pages)
201{
202 if (!(flags & VM_NORESERVE))
203 return 0;
204
205 return security_vm_enough_memory_mm(current->mm,
206 pages * VM_ACCT(PAGE_SIZE));
207}
208
209static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210{
211 if (flags & VM_NORESERVE)
212 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
213}
214
215static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
216{
217 struct shmem_inode_info *info = SHMEM_I(inode);
218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219
220 if (shmem_acct_block(info->flags, pages))
221 return false;
222
223 if (sbinfo->max_blocks) {
224 if (percpu_counter_compare(&sbinfo->used_blocks,
225 sbinfo->max_blocks - pages) > 0)
226 goto unacct;
227 percpu_counter_add(&sbinfo->used_blocks, pages);
228 }
229
230 return true;
231
232unacct:
233 shmem_unacct_blocks(info->flags, pages);
234 return false;
235}
236
237static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
238{
239 struct shmem_inode_info *info = SHMEM_I(inode);
240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241
242 if (sbinfo->max_blocks)
243 percpu_counter_sub(&sbinfo->used_blocks, pages);
244 shmem_unacct_blocks(info->flags, pages);
245}
246
247static const struct super_operations shmem_ops;
248static const struct address_space_operations shmem_aops;
249static const struct file_operations shmem_file_operations;
250static const struct inode_operations shmem_inode_operations;
251static const struct inode_operations shmem_dir_inode_operations;
252static const struct inode_operations shmem_special_inode_operations;
253static const struct vm_operations_struct shmem_vm_ops;
254static struct file_system_type shmem_fs_type;
255
256bool vma_is_shmem(struct vm_area_struct *vma)
257{
258 return vma->vm_ops == &shmem_vm_ops;
259}
260
261static LIST_HEAD(shmem_swaplist);
262static DEFINE_MUTEX(shmem_swaplist_mutex);
263
264static int shmem_reserve_inode(struct super_block *sb)
265{
266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267 if (sbinfo->max_inodes) {
268 spin_lock(&sbinfo->stat_lock);
269 if (!sbinfo->free_inodes) {
270 spin_unlock(&sbinfo->stat_lock);
271 return -ENOSPC;
272 }
273 sbinfo->free_inodes--;
274 spin_unlock(&sbinfo->stat_lock);
275 }
276 return 0;
277}
278
279static void shmem_free_inode(struct super_block *sb)
280{
281 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
282 if (sbinfo->max_inodes) {
283 spin_lock(&sbinfo->stat_lock);
284 sbinfo->free_inodes++;
285 spin_unlock(&sbinfo->stat_lock);
286 }
287}
288
289/**
290 * shmem_recalc_inode - recalculate the block usage of an inode
291 * @inode: inode to recalc
292 *
293 * We have to calculate the free blocks since the mm can drop
294 * undirtied hole pages behind our back.
295 *
296 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
297 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
298 *
299 * It has to be called with the spinlock held.
300 */
301static void shmem_recalc_inode(struct inode *inode)
302{
303 struct shmem_inode_info *info = SHMEM_I(inode);
304 long freed;
305
306 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
307 if (freed > 0) {
308 info->alloced -= freed;
309 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
310 shmem_inode_unacct_blocks(inode, freed);
311 }
312}
313
314bool shmem_charge(struct inode *inode, long pages)
315{
316 struct shmem_inode_info *info = SHMEM_I(inode);
317 unsigned long flags;
318
319 if (!shmem_inode_acct_block(inode, pages))
320 return false;
321
322 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
323 inode->i_mapping->nrpages += pages;
324
325 spin_lock_irqsave(&info->lock, flags);
326 info->alloced += pages;
327 inode->i_blocks += pages * BLOCKS_PER_PAGE;
328 shmem_recalc_inode(inode);
329 spin_unlock_irqrestore(&info->lock, flags);
330
331 return true;
332}
333
334void shmem_uncharge(struct inode *inode, long pages)
335{
336 struct shmem_inode_info *info = SHMEM_I(inode);
337 unsigned long flags;
338
339 /* nrpages adjustment done by __delete_from_page_cache() or caller */
340
341 spin_lock_irqsave(&info->lock, flags);
342 info->alloced -= pages;
343 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
344 shmem_recalc_inode(inode);
345 spin_unlock_irqrestore(&info->lock, flags);
346
347 shmem_inode_unacct_blocks(inode, pages);
348}
349
350/*
351 * Replace item expected in xarray by a new item, while holding xa_lock.
352 */
353static int shmem_replace_entry(struct address_space *mapping,
354 pgoff_t index, void *expected, void *replacement)
355{
356 XA_STATE(xas, &mapping->i_pages, index);
357 void *item;
358
359 VM_BUG_ON(!expected);
360 VM_BUG_ON(!replacement);
361 item = xas_load(&xas);
362 if (item != expected)
363 return -ENOENT;
364 xas_store(&xas, replacement);
365 return 0;
366}
367
368/*
369 * Sometimes, before we decide whether to proceed or to fail, we must check
370 * that an entry was not already brought back from swap by a racing thread.
371 *
372 * Checking page is not enough: by the time a SwapCache page is locked, it
373 * might be reused, and again be SwapCache, using the same swap as before.
374 */
375static bool shmem_confirm_swap(struct address_space *mapping,
376 pgoff_t index, swp_entry_t swap)
377{
378 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
379}
380
381/*
382 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
383 *
384 * SHMEM_HUGE_NEVER:
385 * disables huge pages for the mount;
386 * SHMEM_HUGE_ALWAYS:
387 * enables huge pages for the mount;
388 * SHMEM_HUGE_WITHIN_SIZE:
389 * only allocate huge pages if the page will be fully within i_size,
390 * also respect fadvise()/madvise() hints;
391 * SHMEM_HUGE_ADVISE:
392 * only allocate huge pages if requested with fadvise()/madvise();
393 */
394
395#define SHMEM_HUGE_NEVER 0
396#define SHMEM_HUGE_ALWAYS 1
397#define SHMEM_HUGE_WITHIN_SIZE 2
398#define SHMEM_HUGE_ADVISE 3
399
400/*
401 * Special values.
402 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
403 *
404 * SHMEM_HUGE_DENY:
405 * disables huge on shm_mnt and all mounts, for emergency use;
406 * SHMEM_HUGE_FORCE:
407 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
408 *
409 */
410#define SHMEM_HUGE_DENY (-1)
411#define SHMEM_HUGE_FORCE (-2)
412
413#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
414/* ifdef here to avoid bloating shmem.o when not necessary */
415
416static int shmem_huge __read_mostly;
417
418#if defined(CONFIG_SYSFS)
419static int shmem_parse_huge(const char *str)
420{
421 if (!strcmp(str, "never"))
422 return SHMEM_HUGE_NEVER;
423 if (!strcmp(str, "always"))
424 return SHMEM_HUGE_ALWAYS;
425 if (!strcmp(str, "within_size"))
426 return SHMEM_HUGE_WITHIN_SIZE;
427 if (!strcmp(str, "advise"))
428 return SHMEM_HUGE_ADVISE;
429 if (!strcmp(str, "deny"))
430 return SHMEM_HUGE_DENY;
431 if (!strcmp(str, "force"))
432 return SHMEM_HUGE_FORCE;
433 return -EINVAL;
434}
435#endif
436
437#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
438static const char *shmem_format_huge(int huge)
439{
440 switch (huge) {
441 case SHMEM_HUGE_NEVER:
442 return "never";
443 case SHMEM_HUGE_ALWAYS:
444 return "always";
445 case SHMEM_HUGE_WITHIN_SIZE:
446 return "within_size";
447 case SHMEM_HUGE_ADVISE:
448 return "advise";
449 case SHMEM_HUGE_DENY:
450 return "deny";
451 case SHMEM_HUGE_FORCE:
452 return "force";
453 default:
454 VM_BUG_ON(1);
455 return "bad_val";
456 }
457}
458#endif
459
460static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
461 struct shrink_control *sc, unsigned long nr_to_split)
462{
463 LIST_HEAD(list), *pos, *next;
464 LIST_HEAD(to_remove);
465 struct inode *inode;
466 struct shmem_inode_info *info;
467 struct page *page;
468 unsigned long batch = sc ? sc->nr_to_scan : 128;
469 int split = 0;
470
471 if (list_empty(&sbinfo->shrinklist))
472 return SHRINK_STOP;
473
474 spin_lock(&sbinfo->shrinklist_lock);
475 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
476 info = list_entry(pos, struct shmem_inode_info, shrinklist);
477
478 /* pin the inode */
479 inode = igrab(&info->vfs_inode);
480
481 /* inode is about to be evicted */
482 if (!inode) {
483 list_del_init(&info->shrinklist);
484 goto next;
485 }
486
487 /* Check if there's anything to gain */
488 if (round_up(inode->i_size, PAGE_SIZE) ==
489 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
490 list_move(&info->shrinklist, &to_remove);
491 goto next;
492 }
493
494 list_move(&info->shrinklist, &list);
495next:
496 sbinfo->shrinklist_len--;
497 if (!--batch)
498 break;
499 }
500 spin_unlock(&sbinfo->shrinklist_lock);
501
502 list_for_each_safe(pos, next, &to_remove) {
503 info = list_entry(pos, struct shmem_inode_info, shrinklist);
504 inode = &info->vfs_inode;
505 list_del_init(&info->shrinklist);
506 iput(inode);
507 }
508
509 list_for_each_safe(pos, next, &list) {
510 int ret;
511
512 info = list_entry(pos, struct shmem_inode_info, shrinklist);
513 inode = &info->vfs_inode;
514
515 if (nr_to_split && split >= nr_to_split)
516 goto move_back;
517
518 page = find_get_page(inode->i_mapping,
519 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
520 if (!page)
521 goto drop;
522
523 /* No huge page at the end of the file: nothing to split */
524 if (!PageTransHuge(page)) {
525 put_page(page);
526 goto drop;
527 }
528
529 /*
530 * Move the inode on the list back to shrinklist if we failed
531 * to lock the page at this time.
532 *
533 * Waiting for the lock may lead to deadlock in the
534 * reclaim path.
535 */
536 if (!trylock_page(page)) {
537 put_page(page);
538 goto move_back;
539 }
540
541 ret = split_huge_page(page);
542 unlock_page(page);
543 put_page(page);
544
545 /* If split failed move the inode on the list back to shrinklist */
546 if (ret)
547 goto move_back;
548
549 split++;
550drop:
551 list_del_init(&info->shrinklist);
552 goto put;
553move_back:
554 /*
555 * Make sure the inode is either on the global list or deleted
556 * from any local list before iput() since it could be deleted
557 * in another thread once we put the inode (then the local list
558 * is corrupted).
559 */
560 spin_lock(&sbinfo->shrinklist_lock);
561 list_move(&info->shrinklist, &sbinfo->shrinklist);
562 sbinfo->shrinklist_len++;
563 spin_unlock(&sbinfo->shrinklist_lock);
564put:
565 iput(inode);
566 }
567
568 return split;
569}
570
571static long shmem_unused_huge_scan(struct super_block *sb,
572 struct shrink_control *sc)
573{
574 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
575
576 if (!READ_ONCE(sbinfo->shrinklist_len))
577 return SHRINK_STOP;
578
579 return shmem_unused_huge_shrink(sbinfo, sc, 0);
580}
581
582static long shmem_unused_huge_count(struct super_block *sb,
583 struct shrink_control *sc)
584{
585 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
586 return READ_ONCE(sbinfo->shrinklist_len);
587}
588#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
589
590#define shmem_huge SHMEM_HUGE_DENY
591
592static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
593 struct shrink_control *sc, unsigned long nr_to_split)
594{
595 return 0;
596}
597#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
598
599static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
600{
601 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
602 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
603 shmem_huge != SHMEM_HUGE_DENY)
604 return true;
605 return false;
606}
607
608/*
609 * Like add_to_page_cache_locked, but error if expected item has gone.
610 */
611static int shmem_add_to_page_cache(struct page *page,
612 struct address_space *mapping,
613 pgoff_t index, void *expected, gfp_t gfp)
614{
615 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
616 unsigned long i = 0;
617 unsigned long nr = compound_nr(page);
618
619 VM_BUG_ON_PAGE(PageTail(page), page);
620 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
621 VM_BUG_ON_PAGE(!PageLocked(page), page);
622 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
623 VM_BUG_ON(expected && PageTransHuge(page));
624
625 page_ref_add(page, nr);
626 page->mapping = mapping;
627 page->index = index;
628
629 do {
630 void *entry;
631 xas_lock_irq(&xas);
632 entry = xas_find_conflict(&xas);
633 if (entry != expected)
634 xas_set_err(&xas, -EEXIST);
635 xas_create_range(&xas);
636 if (xas_error(&xas))
637 goto unlock;
638next:
639 xas_store(&xas, page);
640 if (++i < nr) {
641 xas_next(&xas);
642 goto next;
643 }
644 if (PageTransHuge(page)) {
645 count_vm_event(THP_FILE_ALLOC);
646 __inc_node_page_state(page, NR_SHMEM_THPS);
647 }
648 mapping->nrpages += nr;
649 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
650 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
651unlock:
652 xas_unlock_irq(&xas);
653 } while (xas_nomem(&xas, gfp));
654
655 if (xas_error(&xas)) {
656 page->mapping = NULL;
657 page_ref_sub(page, nr);
658 return xas_error(&xas);
659 }
660
661 return 0;
662}
663
664/*
665 * Like delete_from_page_cache, but substitutes swap for page.
666 */
667static void shmem_delete_from_page_cache(struct page *page, void *radswap)
668{
669 struct address_space *mapping = page->mapping;
670 int error;
671
672 VM_BUG_ON_PAGE(PageCompound(page), page);
673
674 xa_lock_irq(&mapping->i_pages);
675 error = shmem_replace_entry(mapping, page->index, page, radswap);
676 page->mapping = NULL;
677 mapping->nrpages--;
678 __dec_node_page_state(page, NR_FILE_PAGES);
679 __dec_node_page_state(page, NR_SHMEM);
680 xa_unlock_irq(&mapping->i_pages);
681 put_page(page);
682 BUG_ON(error);
683}
684
685/*
686 * Remove swap entry from page cache, free the swap and its page cache.
687 */
688static int shmem_free_swap(struct address_space *mapping,
689 pgoff_t index, void *radswap)
690{
691 void *old;
692
693 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
694 if (old != radswap)
695 return -ENOENT;
696 free_swap_and_cache(radix_to_swp_entry(radswap));
697 return 0;
698}
699
700/*
701 * Determine (in bytes) how many of the shmem object's pages mapped by the
702 * given offsets are swapped out.
703 *
704 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
705 * as long as the inode doesn't go away and racy results are not a problem.
706 */
707unsigned long shmem_partial_swap_usage(struct address_space *mapping,
708 pgoff_t start, pgoff_t end)
709{
710 XA_STATE(xas, &mapping->i_pages, start);
711 struct page *page;
712 unsigned long swapped = 0;
713
714 rcu_read_lock();
715 xas_for_each(&xas, page, end - 1) {
716 if (xas_retry(&xas, page))
717 continue;
718 if (xa_is_value(page))
719 swapped++;
720
721 if (need_resched()) {
722 xas_pause(&xas);
723 cond_resched_rcu();
724 }
725 }
726
727 rcu_read_unlock();
728
729 return swapped << PAGE_SHIFT;
730}
731
732/*
733 * Determine (in bytes) how many of the shmem object's pages mapped by the
734 * given vma is swapped out.
735 *
736 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
737 * as long as the inode doesn't go away and racy results are not a problem.
738 */
739unsigned long shmem_swap_usage(struct vm_area_struct *vma)
740{
741 struct inode *inode = file_inode(vma->vm_file);
742 struct shmem_inode_info *info = SHMEM_I(inode);
743 struct address_space *mapping = inode->i_mapping;
744 unsigned long swapped;
745
746 /* Be careful as we don't hold info->lock */
747 swapped = READ_ONCE(info->swapped);
748
749 /*
750 * The easier cases are when the shmem object has nothing in swap, or
751 * the vma maps it whole. Then we can simply use the stats that we
752 * already track.
753 */
754 if (!swapped)
755 return 0;
756
757 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
758 return swapped << PAGE_SHIFT;
759
760 /* Here comes the more involved part */
761 return shmem_partial_swap_usage(mapping,
762 linear_page_index(vma, vma->vm_start),
763 linear_page_index(vma, vma->vm_end));
764}
765
766/*
767 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
768 */
769void shmem_unlock_mapping(struct address_space *mapping)
770{
771 struct pagevec pvec;
772 pgoff_t indices[PAGEVEC_SIZE];
773 pgoff_t index = 0;
774
775 pagevec_init(&pvec);
776 /*
777 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
778 */
779 while (!mapping_unevictable(mapping)) {
780 /*
781 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
782 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
783 */
784 pvec.nr = find_get_entries(mapping, index,
785 PAGEVEC_SIZE, pvec.pages, indices);
786 if (!pvec.nr)
787 break;
788 index = indices[pvec.nr - 1] + 1;
789 pagevec_remove_exceptionals(&pvec);
790 check_move_unevictable_pages(&pvec);
791 pagevec_release(&pvec);
792 cond_resched();
793 }
794}
795
796/*
797 * Remove range of pages and swap entries from page cache, and free them.
798 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
799 */
800static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
801 bool unfalloc)
802{
803 struct address_space *mapping = inode->i_mapping;
804 struct shmem_inode_info *info = SHMEM_I(inode);
805 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
806 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
807 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
808 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
809 struct pagevec pvec;
810 pgoff_t indices[PAGEVEC_SIZE];
811 long nr_swaps_freed = 0;
812 pgoff_t index;
813 int i;
814
815 if (lend == -1)
816 end = -1; /* unsigned, so actually very big */
817
818 pagevec_init(&pvec);
819 index = start;
820 while (index < end) {
821 pvec.nr = find_get_entries(mapping, index,
822 min(end - index, (pgoff_t)PAGEVEC_SIZE),
823 pvec.pages, indices);
824 if (!pvec.nr)
825 break;
826 for (i = 0; i < pagevec_count(&pvec); i++) {
827 struct page *page = pvec.pages[i];
828
829 index = indices[i];
830 if (index >= end)
831 break;
832
833 if (xa_is_value(page)) {
834 if (unfalloc)
835 continue;
836 nr_swaps_freed += !shmem_free_swap(mapping,
837 index, page);
838 continue;
839 }
840
841 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
842
843 if (!trylock_page(page))
844 continue;
845
846 if (PageTransTail(page)) {
847 /* Middle of THP: zero out the page */
848 clear_highpage(page);
849 unlock_page(page);
850 continue;
851 } else if (PageTransHuge(page)) {
852 if (index == round_down(end, HPAGE_PMD_NR)) {
853 /*
854 * Range ends in the middle of THP:
855 * zero out the page
856 */
857 clear_highpage(page);
858 unlock_page(page);
859 continue;
860 }
861 index += HPAGE_PMD_NR - 1;
862 i += HPAGE_PMD_NR - 1;
863 }
864
865 if (!unfalloc || !PageUptodate(page)) {
866 VM_BUG_ON_PAGE(PageTail(page), page);
867 if (page_mapping(page) == mapping) {
868 VM_BUG_ON_PAGE(PageWriteback(page), page);
869 truncate_inode_page(mapping, page);
870 }
871 }
872 unlock_page(page);
873 }
874 pagevec_remove_exceptionals(&pvec);
875 pagevec_release(&pvec);
876 cond_resched();
877 index++;
878 }
879
880 if (partial_start) {
881 struct page *page = NULL;
882 shmem_getpage(inode, start - 1, &page, SGP_READ);
883 if (page) {
884 unsigned int top = PAGE_SIZE;
885 if (start > end) {
886 top = partial_end;
887 partial_end = 0;
888 }
889 zero_user_segment(page, partial_start, top);
890 set_page_dirty(page);
891 unlock_page(page);
892 put_page(page);
893 }
894 }
895 if (partial_end) {
896 struct page *page = NULL;
897 shmem_getpage(inode, end, &page, SGP_READ);
898 if (page) {
899 zero_user_segment(page, 0, partial_end);
900 set_page_dirty(page);
901 unlock_page(page);
902 put_page(page);
903 }
904 }
905 if (start >= end)
906 return;
907
908 index = start;
909 while (index < end) {
910 cond_resched();
911
912 pvec.nr = find_get_entries(mapping, index,
913 min(end - index, (pgoff_t)PAGEVEC_SIZE),
914 pvec.pages, indices);
915 if (!pvec.nr) {
916 /* If all gone or hole-punch or unfalloc, we're done */
917 if (index == start || end != -1)
918 break;
919 /* But if truncating, restart to make sure all gone */
920 index = start;
921 continue;
922 }
923 for (i = 0; i < pagevec_count(&pvec); i++) {
924 struct page *page = pvec.pages[i];
925
926 index = indices[i];
927 if (index >= end)
928 break;
929
930 if (xa_is_value(page)) {
931 if (unfalloc)
932 continue;
933 if (shmem_free_swap(mapping, index, page)) {
934 /* Swap was replaced by page: retry */
935 index--;
936 break;
937 }
938 nr_swaps_freed++;
939 continue;
940 }
941
942 lock_page(page);
943
944 if (PageTransTail(page)) {
945 /* Middle of THP: zero out the page */
946 clear_highpage(page);
947 unlock_page(page);
948 /*
949 * Partial thp truncate due 'start' in middle
950 * of THP: don't need to look on these pages
951 * again on !pvec.nr restart.
952 */
953 if (index != round_down(end, HPAGE_PMD_NR))
954 start++;
955 continue;
956 } else if (PageTransHuge(page)) {
957 if (index == round_down(end, HPAGE_PMD_NR)) {
958 /*
959 * Range ends in the middle of THP:
960 * zero out the page
961 */
962 clear_highpage(page);
963 unlock_page(page);
964 continue;
965 }
966 index += HPAGE_PMD_NR - 1;
967 i += HPAGE_PMD_NR - 1;
968 }
969
970 if (!unfalloc || !PageUptodate(page)) {
971 VM_BUG_ON_PAGE(PageTail(page), page);
972 if (page_mapping(page) == mapping) {
973 VM_BUG_ON_PAGE(PageWriteback(page), page);
974 truncate_inode_page(mapping, page);
975 } else {
976 /* Page was replaced by swap: retry */
977 unlock_page(page);
978 index--;
979 break;
980 }
981 }
982 unlock_page(page);
983 }
984 pagevec_remove_exceptionals(&pvec);
985 pagevec_release(&pvec);
986 index++;
987 }
988
989 spin_lock_irq(&info->lock);
990 info->swapped -= nr_swaps_freed;
991 shmem_recalc_inode(inode);
992 spin_unlock_irq(&info->lock);
993}
994
995void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
996{
997 shmem_undo_range(inode, lstart, lend, false);
998 inode->i_ctime = inode->i_mtime = current_time(inode);
999}
1000EXPORT_SYMBOL_GPL(shmem_truncate_range);
1001
1002static int shmem_getattr(const struct path *path, struct kstat *stat,
1003 u32 request_mask, unsigned int query_flags)
1004{
1005 struct inode *inode = path->dentry->d_inode;
1006 struct shmem_inode_info *info = SHMEM_I(inode);
1007 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1008
1009 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1010 spin_lock_irq(&info->lock);
1011 shmem_recalc_inode(inode);
1012 spin_unlock_irq(&info->lock);
1013 }
1014 generic_fillattr(inode, stat);
1015
1016 if (is_huge_enabled(sb_info))
1017 stat->blksize = HPAGE_PMD_SIZE;
1018
1019 return 0;
1020}
1021
1022static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1023{
1024 struct inode *inode = d_inode(dentry);
1025 struct shmem_inode_info *info = SHMEM_I(inode);
1026 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1027 int error;
1028
1029 error = setattr_prepare(dentry, attr);
1030 if (error)
1031 return error;
1032
1033 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1034 loff_t oldsize = inode->i_size;
1035 loff_t newsize = attr->ia_size;
1036
1037 /* protected by i_mutex */
1038 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1039 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1040 return -EPERM;
1041
1042 if (newsize != oldsize) {
1043 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1044 oldsize, newsize);
1045 if (error)
1046 return error;
1047 i_size_write(inode, newsize);
1048 inode->i_ctime = inode->i_mtime = current_time(inode);
1049 }
1050 if (newsize <= oldsize) {
1051 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1052 if (oldsize > holebegin)
1053 unmap_mapping_range(inode->i_mapping,
1054 holebegin, 0, 1);
1055 if (info->alloced)
1056 shmem_truncate_range(inode,
1057 newsize, (loff_t)-1);
1058 /* unmap again to remove racily COWed private pages */
1059 if (oldsize > holebegin)
1060 unmap_mapping_range(inode->i_mapping,
1061 holebegin, 0, 1);
1062
1063 /*
1064 * Part of the huge page can be beyond i_size: subject
1065 * to shrink under memory pressure.
1066 */
1067 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1068 spin_lock(&sbinfo->shrinklist_lock);
1069 /*
1070 * _careful to defend against unlocked access to
1071 * ->shrink_list in shmem_unused_huge_shrink()
1072 */
1073 if (list_empty_careful(&info->shrinklist)) {
1074 list_add_tail(&info->shrinklist,
1075 &sbinfo->shrinklist);
1076 sbinfo->shrinklist_len++;
1077 }
1078 spin_unlock(&sbinfo->shrinklist_lock);
1079 }
1080 }
1081 }
1082
1083 setattr_copy(inode, attr);
1084 if (attr->ia_valid & ATTR_MODE)
1085 error = posix_acl_chmod(inode, inode->i_mode);
1086 return error;
1087}
1088
1089static void shmem_evict_inode(struct inode *inode)
1090{
1091 struct shmem_inode_info *info = SHMEM_I(inode);
1092 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1093
1094 if (inode->i_mapping->a_ops == &shmem_aops) {
1095 shmem_unacct_size(info->flags, inode->i_size);
1096 inode->i_size = 0;
1097 shmem_truncate_range(inode, 0, (loff_t)-1);
1098 if (!list_empty(&info->shrinklist)) {
1099 spin_lock(&sbinfo->shrinklist_lock);
1100 if (!list_empty(&info->shrinklist)) {
1101 list_del_init(&info->shrinklist);
1102 sbinfo->shrinklist_len--;
1103 }
1104 spin_unlock(&sbinfo->shrinklist_lock);
1105 }
1106 while (!list_empty(&info->swaplist)) {
1107 /* Wait while shmem_unuse() is scanning this inode... */
1108 wait_var_event(&info->stop_eviction,
1109 !atomic_read(&info->stop_eviction));
1110 mutex_lock(&shmem_swaplist_mutex);
1111 /* ...but beware of the race if we peeked too early */
1112 if (!atomic_read(&info->stop_eviction))
1113 list_del_init(&info->swaplist);
1114 mutex_unlock(&shmem_swaplist_mutex);
1115 }
1116 }
1117
1118 simple_xattrs_free(&info->xattrs);
1119 WARN_ON(inode->i_blocks);
1120 shmem_free_inode(inode->i_sb);
1121 clear_inode(inode);
1122}
1123
1124extern struct swap_info_struct *swap_info[];
1125
1126static int shmem_find_swap_entries(struct address_space *mapping,
1127 pgoff_t start, unsigned int nr_entries,
1128 struct page **entries, pgoff_t *indices,
1129 unsigned int type, bool frontswap)
1130{
1131 XA_STATE(xas, &mapping->i_pages, start);
1132 struct page *page;
1133 swp_entry_t entry;
1134 unsigned int ret = 0;
1135
1136 if (!nr_entries)
1137 return 0;
1138
1139 rcu_read_lock();
1140 xas_for_each(&xas, page, ULONG_MAX) {
1141 if (xas_retry(&xas, page))
1142 continue;
1143
1144 if (!xa_is_value(page))
1145 continue;
1146
1147 entry = radix_to_swp_entry(page);
1148 if (swp_type(entry) != type)
1149 continue;
1150 if (frontswap &&
1151 !frontswap_test(swap_info[type], swp_offset(entry)))
1152 continue;
1153
1154 indices[ret] = xas.xa_index;
1155 entries[ret] = page;
1156
1157 if (need_resched()) {
1158 xas_pause(&xas);
1159 cond_resched_rcu();
1160 }
1161 if (++ret == nr_entries)
1162 break;
1163 }
1164 rcu_read_unlock();
1165
1166 return ret;
1167}
1168
1169/*
1170 * Move the swapped pages for an inode to page cache. Returns the count
1171 * of pages swapped in, or the error in case of failure.
1172 */
1173static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1174 pgoff_t *indices)
1175{
1176 int i = 0;
1177 int ret = 0;
1178 int error = 0;
1179 struct address_space *mapping = inode->i_mapping;
1180
1181 for (i = 0; i < pvec.nr; i++) {
1182 struct page *page = pvec.pages[i];
1183
1184 if (!xa_is_value(page))
1185 continue;
1186 error = shmem_swapin_page(inode, indices[i],
1187 &page, SGP_CACHE,
1188 mapping_gfp_mask(mapping),
1189 NULL, NULL);
1190 if (error == 0) {
1191 unlock_page(page);
1192 put_page(page);
1193 ret++;
1194 }
1195 if (error == -ENOMEM)
1196 break;
1197 error = 0;
1198 }
1199 return error ? error : ret;
1200}
1201
1202/*
1203 * If swap found in inode, free it and move page from swapcache to filecache.
1204 */
1205static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1206 bool frontswap, unsigned long *fs_pages_to_unuse)
1207{
1208 struct address_space *mapping = inode->i_mapping;
1209 pgoff_t start = 0;
1210 struct pagevec pvec;
1211 pgoff_t indices[PAGEVEC_SIZE];
1212 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1213 int ret = 0;
1214
1215 pagevec_init(&pvec);
1216 do {
1217 unsigned int nr_entries = PAGEVEC_SIZE;
1218
1219 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1220 nr_entries = *fs_pages_to_unuse;
1221
1222 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1223 pvec.pages, indices,
1224 type, frontswap);
1225 if (pvec.nr == 0) {
1226 ret = 0;
1227 break;
1228 }
1229
1230 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1231 if (ret < 0)
1232 break;
1233
1234 if (frontswap_partial) {
1235 *fs_pages_to_unuse -= ret;
1236 if (*fs_pages_to_unuse == 0) {
1237 ret = FRONTSWAP_PAGES_UNUSED;
1238 break;
1239 }
1240 }
1241
1242 start = indices[pvec.nr - 1];
1243 } while (true);
1244
1245 return ret;
1246}
1247
1248/*
1249 * Read all the shared memory data that resides in the swap
1250 * device 'type' back into memory, so the swap device can be
1251 * unused.
1252 */
1253int shmem_unuse(unsigned int type, bool frontswap,
1254 unsigned long *fs_pages_to_unuse)
1255{
1256 struct shmem_inode_info *info, *next;
1257 int error = 0;
1258
1259 if (list_empty(&shmem_swaplist))
1260 return 0;
1261
1262 mutex_lock(&shmem_swaplist_mutex);
1263 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1264 if (!info->swapped) {
1265 list_del_init(&info->swaplist);
1266 continue;
1267 }
1268 /*
1269 * Drop the swaplist mutex while searching the inode for swap;
1270 * but before doing so, make sure shmem_evict_inode() will not
1271 * remove placeholder inode from swaplist, nor let it be freed
1272 * (igrab() would protect from unlink, but not from unmount).
1273 */
1274 atomic_inc(&info->stop_eviction);
1275 mutex_unlock(&shmem_swaplist_mutex);
1276
1277 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1278 fs_pages_to_unuse);
1279 cond_resched();
1280
1281 mutex_lock(&shmem_swaplist_mutex);
1282 next = list_next_entry(info, swaplist);
1283 if (!info->swapped)
1284 list_del_init(&info->swaplist);
1285 if (atomic_dec_and_test(&info->stop_eviction))
1286 wake_up_var(&info->stop_eviction);
1287 if (error)
1288 break;
1289 }
1290 mutex_unlock(&shmem_swaplist_mutex);
1291
1292 return error;
1293}
1294
1295/*
1296 * Move the page from the page cache to the swap cache.
1297 */
1298static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1299{
1300 struct shmem_inode_info *info;
1301 struct address_space *mapping;
1302 struct inode *inode;
1303 swp_entry_t swap;
1304 pgoff_t index;
1305
1306 VM_BUG_ON_PAGE(PageCompound(page), page);
1307 BUG_ON(!PageLocked(page));
1308 mapping = page->mapping;
1309 index = page->index;
1310 inode = mapping->host;
1311 info = SHMEM_I(inode);
1312 if (info->flags & VM_LOCKED)
1313 goto redirty;
1314 if (!total_swap_pages)
1315 goto redirty;
1316
1317 /*
1318 * Our capabilities prevent regular writeback or sync from ever calling
1319 * shmem_writepage; but a stacking filesystem might use ->writepage of
1320 * its underlying filesystem, in which case tmpfs should write out to
1321 * swap only in response to memory pressure, and not for the writeback
1322 * threads or sync.
1323 */
1324 if (!wbc->for_reclaim) {
1325 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1326 goto redirty;
1327 }
1328
1329 /*
1330 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1331 * value into swapfile.c, the only way we can correctly account for a
1332 * fallocated page arriving here is now to initialize it and write it.
1333 *
1334 * That's okay for a page already fallocated earlier, but if we have
1335 * not yet completed the fallocation, then (a) we want to keep track
1336 * of this page in case we have to undo it, and (b) it may not be a
1337 * good idea to continue anyway, once we're pushing into swap. So
1338 * reactivate the page, and let shmem_fallocate() quit when too many.
1339 */
1340 if (!PageUptodate(page)) {
1341 if (inode->i_private) {
1342 struct shmem_falloc *shmem_falloc;
1343 spin_lock(&inode->i_lock);
1344 shmem_falloc = inode->i_private;
1345 if (shmem_falloc &&
1346 !shmem_falloc->waitq &&
1347 index >= shmem_falloc->start &&
1348 index < shmem_falloc->next)
1349 shmem_falloc->nr_unswapped++;
1350 else
1351 shmem_falloc = NULL;
1352 spin_unlock(&inode->i_lock);
1353 if (shmem_falloc)
1354 goto redirty;
1355 }
1356 clear_highpage(page);
1357 flush_dcache_page(page);
1358 SetPageUptodate(page);
1359 }
1360
1361 swap = get_swap_page(page);
1362 if (!swap.val)
1363 goto redirty;
1364
1365 /*
1366 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1367 * if it's not already there. Do it now before the page is
1368 * moved to swap cache, when its pagelock no longer protects
1369 * the inode from eviction. But don't unlock the mutex until
1370 * we've incremented swapped, because shmem_unuse_inode() will
1371 * prune a !swapped inode from the swaplist under this mutex.
1372 */
1373 mutex_lock(&shmem_swaplist_mutex);
1374 if (list_empty(&info->swaplist))
1375 list_add(&info->swaplist, &shmem_swaplist);
1376
1377 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1378 spin_lock_irq(&info->lock);
1379 shmem_recalc_inode(inode);
1380 info->swapped++;
1381 spin_unlock_irq(&info->lock);
1382
1383 swap_shmem_alloc(swap);
1384 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1385
1386 mutex_unlock(&shmem_swaplist_mutex);
1387 BUG_ON(page_mapped(page));
1388 swap_writepage(page, wbc);
1389 return 0;
1390 }
1391
1392 mutex_unlock(&shmem_swaplist_mutex);
1393 put_swap_page(page, swap);
1394redirty:
1395 set_page_dirty(page);
1396 if (wbc->for_reclaim)
1397 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1398 unlock_page(page);
1399 return 0;
1400}
1401
1402#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1403static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1404{
1405 char buffer[64];
1406
1407 if (!mpol || mpol->mode == MPOL_DEFAULT)
1408 return; /* show nothing */
1409
1410 mpol_to_str(buffer, sizeof(buffer), mpol);
1411
1412 seq_printf(seq, ",mpol=%s", buffer);
1413}
1414
1415static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1416{
1417 struct mempolicy *mpol = NULL;
1418 if (sbinfo->mpol) {
1419 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1420 mpol = sbinfo->mpol;
1421 mpol_get(mpol);
1422 spin_unlock(&sbinfo->stat_lock);
1423 }
1424 return mpol;
1425}
1426#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1427static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1428{
1429}
1430static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1431{
1432 return NULL;
1433}
1434#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1435#ifndef CONFIG_NUMA
1436#define vm_policy vm_private_data
1437#endif
1438
1439static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1440 struct shmem_inode_info *info, pgoff_t index)
1441{
1442 /* Create a pseudo vma that just contains the policy */
1443 vma_init(vma, NULL);
1444 /* Bias interleave by inode number to distribute better across nodes */
1445 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1446 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1447}
1448
1449static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1450{
1451 /* Drop reference taken by mpol_shared_policy_lookup() */
1452 mpol_cond_put(vma->vm_policy);
1453}
1454
1455static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1456 struct shmem_inode_info *info, pgoff_t index)
1457{
1458 struct vm_area_struct pvma;
1459 struct page *page;
1460 struct vm_fault vmf;
1461
1462 shmem_pseudo_vma_init(&pvma, info, index);
1463 vmf.vma = &pvma;
1464 vmf.address = 0;
1465 page = swap_cluster_readahead(swap, gfp, &vmf);
1466 shmem_pseudo_vma_destroy(&pvma);
1467
1468 return page;
1469}
1470
1471static struct page *shmem_alloc_hugepage(gfp_t gfp,
1472 struct shmem_inode_info *info, pgoff_t index)
1473{
1474 struct vm_area_struct pvma;
1475 struct address_space *mapping = info->vfs_inode.i_mapping;
1476 pgoff_t hindex;
1477 struct page *page;
1478
1479 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1480 return NULL;
1481
1482 hindex = round_down(index, HPAGE_PMD_NR);
1483 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1484 XA_PRESENT))
1485 return NULL;
1486
1487 shmem_pseudo_vma_init(&pvma, info, hindex);
1488 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1489 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1490 shmem_pseudo_vma_destroy(&pvma);
1491 if (page)
1492 prep_transhuge_page(page);
1493 return page;
1494}
1495
1496static struct page *shmem_alloc_page(gfp_t gfp,
1497 struct shmem_inode_info *info, pgoff_t index)
1498{
1499 struct vm_area_struct pvma;
1500 struct page *page;
1501
1502 shmem_pseudo_vma_init(&pvma, info, index);
1503 page = alloc_page_vma(gfp, &pvma, 0);
1504 shmem_pseudo_vma_destroy(&pvma);
1505
1506 return page;
1507}
1508
1509static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1510 struct inode *inode,
1511 pgoff_t index, bool huge)
1512{
1513 struct shmem_inode_info *info = SHMEM_I(inode);
1514 struct page *page;
1515 int nr;
1516 int err = -ENOSPC;
1517
1518 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1519 huge = false;
1520 nr = huge ? HPAGE_PMD_NR : 1;
1521
1522 if (!shmem_inode_acct_block(inode, nr))
1523 goto failed;
1524
1525 if (huge)
1526 page = shmem_alloc_hugepage(gfp, info, index);
1527 else
1528 page = shmem_alloc_page(gfp, info, index);
1529 if (page) {
1530 __SetPageLocked(page);
1531 __SetPageSwapBacked(page);
1532 return page;
1533 }
1534
1535 err = -ENOMEM;
1536 shmem_inode_unacct_blocks(inode, nr);
1537failed:
1538 return ERR_PTR(err);
1539}
1540
1541/*
1542 * When a page is moved from swapcache to shmem filecache (either by the
1543 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1544 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1545 * ignorance of the mapping it belongs to. If that mapping has special
1546 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1547 * we may need to copy to a suitable page before moving to filecache.
1548 *
1549 * In a future release, this may well be extended to respect cpuset and
1550 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1551 * but for now it is a simple matter of zone.
1552 */
1553static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1554{
1555 return page_zonenum(page) > gfp_zone(gfp);
1556}
1557
1558static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1559 struct shmem_inode_info *info, pgoff_t index)
1560{
1561 struct page *oldpage, *newpage;
1562 struct address_space *swap_mapping;
1563 swp_entry_t entry;
1564 pgoff_t swap_index;
1565 int error;
1566
1567 oldpage = *pagep;
1568 entry.val = page_private(oldpage);
1569 swap_index = swp_offset(entry);
1570 swap_mapping = page_mapping(oldpage);
1571
1572 /*
1573 * We have arrived here because our zones are constrained, so don't
1574 * limit chance of success by further cpuset and node constraints.
1575 */
1576 gfp &= ~GFP_CONSTRAINT_MASK;
1577 newpage = shmem_alloc_page(gfp, info, index);
1578 if (!newpage)
1579 return -ENOMEM;
1580
1581 get_page(newpage);
1582 copy_highpage(newpage, oldpage);
1583 flush_dcache_page(newpage);
1584
1585 __SetPageLocked(newpage);
1586 __SetPageSwapBacked(newpage);
1587 SetPageUptodate(newpage);
1588 set_page_private(newpage, entry.val);
1589 SetPageSwapCache(newpage);
1590
1591 /*
1592 * Our caller will very soon move newpage out of swapcache, but it's
1593 * a nice clean interface for us to replace oldpage by newpage there.
1594 */
1595 xa_lock_irq(&swap_mapping->i_pages);
1596 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1597 if (!error) {
1598 __inc_node_page_state(newpage, NR_FILE_PAGES);
1599 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1600 }
1601 xa_unlock_irq(&swap_mapping->i_pages);
1602
1603 if (unlikely(error)) {
1604 /*
1605 * Is this possible? I think not, now that our callers check
1606 * both PageSwapCache and page_private after getting page lock;
1607 * but be defensive. Reverse old to newpage for clear and free.
1608 */
1609 oldpage = newpage;
1610 } else {
1611 mem_cgroup_migrate(oldpage, newpage);
1612 lru_cache_add_anon(newpage);
1613 *pagep = newpage;
1614 }
1615
1616 ClearPageSwapCache(oldpage);
1617 set_page_private(oldpage, 0);
1618
1619 unlock_page(oldpage);
1620 put_page(oldpage);
1621 put_page(oldpage);
1622 return error;
1623}
1624
1625/*
1626 * Swap in the page pointed to by *pagep.
1627 * Caller has to make sure that *pagep contains a valid swapped page.
1628 * Returns 0 and the page in pagep if success. On failure, returns the
1629 * the error code and NULL in *pagep.
1630 */
1631static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1632 struct page **pagep, enum sgp_type sgp,
1633 gfp_t gfp, struct vm_area_struct *vma,
1634 vm_fault_t *fault_type)
1635{
1636 struct address_space *mapping = inode->i_mapping;
1637 struct shmem_inode_info *info = SHMEM_I(inode);
1638 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1639 struct mem_cgroup *memcg;
1640 struct page *page;
1641 swp_entry_t swap;
1642 int error;
1643
1644 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1645 swap = radix_to_swp_entry(*pagep);
1646 *pagep = NULL;
1647
1648 /* Look it up and read it in.. */
1649 page = lookup_swap_cache(swap, NULL, 0);
1650 if (!page) {
1651 /* Or update major stats only when swapin succeeds?? */
1652 if (fault_type) {
1653 *fault_type |= VM_FAULT_MAJOR;
1654 count_vm_event(PGMAJFAULT);
1655 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1656 }
1657 /* Here we actually start the io */
1658 page = shmem_swapin(swap, gfp, info, index);
1659 if (!page) {
1660 error = -ENOMEM;
1661 goto failed;
1662 }
1663 }
1664
1665 /* We have to do this with page locked to prevent races */
1666 lock_page(page);
1667 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1668 !shmem_confirm_swap(mapping, index, swap)) {
1669 error = -EEXIST;
1670 goto unlock;
1671 }
1672 if (!PageUptodate(page)) {
1673 error = -EIO;
1674 goto failed;
1675 }
1676 wait_on_page_writeback(page);
1677
1678 if (shmem_should_replace_page(page, gfp)) {
1679 error = shmem_replace_page(&page, gfp, info, index);
1680 if (error)
1681 goto failed;
1682 }
1683
1684 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1685 false);
1686 if (!error) {
1687 error = shmem_add_to_page_cache(page, mapping, index,
1688 swp_to_radix_entry(swap), gfp);
1689 /*
1690 * We already confirmed swap under page lock, and make
1691 * no memory allocation here, so usually no possibility
1692 * of error; but free_swap_and_cache() only trylocks a
1693 * page, so it is just possible that the entry has been
1694 * truncated or holepunched since swap was confirmed.
1695 * shmem_undo_range() will have done some of the
1696 * unaccounting, now delete_from_swap_cache() will do
1697 * the rest.
1698 */
1699 if (error) {
1700 mem_cgroup_cancel_charge(page, memcg, false);
1701 delete_from_swap_cache(page);
1702 }
1703 }
1704 if (error)
1705 goto failed;
1706
1707 mem_cgroup_commit_charge(page, memcg, true, false);
1708
1709 spin_lock_irq(&info->lock);
1710 info->swapped--;
1711 shmem_recalc_inode(inode);
1712 spin_unlock_irq(&info->lock);
1713
1714 if (sgp == SGP_WRITE)
1715 mark_page_accessed(page);
1716
1717 delete_from_swap_cache(page);
1718 set_page_dirty(page);
1719 swap_free(swap);
1720
1721 *pagep = page;
1722 return 0;
1723failed:
1724 if (!shmem_confirm_swap(mapping, index, swap))
1725 error = -EEXIST;
1726unlock:
1727 if (page) {
1728 unlock_page(page);
1729 put_page(page);
1730 }
1731
1732 return error;
1733}
1734
1735/*
1736 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1737 *
1738 * If we allocate a new one we do not mark it dirty. That's up to the
1739 * vm. If we swap it in we mark it dirty since we also free the swap
1740 * entry since a page cannot live in both the swap and page cache.
1741 *
1742 * vma, vmf, and fault_type are only supplied by shmem_fault:
1743 * otherwise they are NULL.
1744 */
1745static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1746 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1747 struct vm_area_struct *vma, struct vm_fault *vmf,
1748 vm_fault_t *fault_type)
1749{
1750 struct address_space *mapping = inode->i_mapping;
1751 struct shmem_inode_info *info = SHMEM_I(inode);
1752 struct shmem_sb_info *sbinfo;
1753 struct mm_struct *charge_mm;
1754 struct mem_cgroup *memcg;
1755 struct page *page;
1756 enum sgp_type sgp_huge = sgp;
1757 pgoff_t hindex = index;
1758 int error;
1759 int once = 0;
1760 int alloced = 0;
1761
1762 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1763 return -EFBIG;
1764 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1765 sgp = SGP_CACHE;
1766repeat:
1767 if (sgp <= SGP_CACHE &&
1768 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1769 return -EINVAL;
1770 }
1771
1772 sbinfo = SHMEM_SB(inode->i_sb);
1773 charge_mm = vma ? vma->vm_mm : current->mm;
1774
1775 page = find_lock_entry(mapping, index);
1776
1777 if (page && vma && userfaultfd_minor(vma)) {
1778 if (!xa_is_value(page)) {
1779 unlock_page(page);
1780 put_page(page);
1781 }
1782 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1783 return 0;
1784 }
1785
1786 if (xa_is_value(page)) {
1787 error = shmem_swapin_page(inode, index, &page,
1788 sgp, gfp, vma, fault_type);
1789 if (error == -EEXIST)
1790 goto repeat;
1791
1792 *pagep = page;
1793 return error;
1794 }
1795
1796 if (page && sgp == SGP_WRITE)
1797 mark_page_accessed(page);
1798
1799 /* fallocated page? */
1800 if (page && !PageUptodate(page)) {
1801 if (sgp != SGP_READ)
1802 goto clear;
1803 unlock_page(page);
1804 put_page(page);
1805 page = NULL;
1806 }
1807 if (page || sgp == SGP_READ) {
1808 *pagep = page;
1809 return 0;
1810 }
1811
1812 /*
1813 * Fast cache lookup did not find it:
1814 * bring it back from swap or allocate.
1815 */
1816
1817 if (vma && userfaultfd_missing(vma)) {
1818 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1819 return 0;
1820 }
1821
1822 /* shmem_symlink() */
1823 if (mapping->a_ops != &shmem_aops)
1824 goto alloc_nohuge;
1825 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1826 goto alloc_nohuge;
1827 if (shmem_huge == SHMEM_HUGE_FORCE)
1828 goto alloc_huge;
1829 switch (sbinfo->huge) {
1830 loff_t i_size;
1831 pgoff_t off;
1832 case SHMEM_HUGE_NEVER:
1833 goto alloc_nohuge;
1834 case SHMEM_HUGE_WITHIN_SIZE:
1835 off = round_up(index, HPAGE_PMD_NR);
1836 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1837 if (i_size >= HPAGE_PMD_SIZE &&
1838 i_size >> PAGE_SHIFT >= off)
1839 goto alloc_huge;
1840 /* fallthrough */
1841 case SHMEM_HUGE_ADVISE:
1842 if (sgp_huge == SGP_HUGE)
1843 goto alloc_huge;
1844 /* TODO: implement fadvise() hints */
1845 goto alloc_nohuge;
1846 }
1847
1848alloc_huge:
1849 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1850 if (IS_ERR(page)) {
1851alloc_nohuge:
1852 page = shmem_alloc_and_acct_page(gfp, inode,
1853 index, false);
1854 }
1855 if (IS_ERR(page)) {
1856 int retry = 5;
1857
1858 error = PTR_ERR(page);
1859 page = NULL;
1860 if (error != -ENOSPC)
1861 goto unlock;
1862 /*
1863 * Try to reclaim some space by splitting a huge page
1864 * beyond i_size on the filesystem.
1865 */
1866 while (retry--) {
1867 int ret;
1868
1869 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1870 if (ret == SHRINK_STOP)
1871 break;
1872 if (ret)
1873 goto alloc_nohuge;
1874 }
1875 goto unlock;
1876 }
1877
1878 if (PageTransHuge(page))
1879 hindex = round_down(index, HPAGE_PMD_NR);
1880 else
1881 hindex = index;
1882
1883 if (sgp == SGP_WRITE)
1884 __SetPageReferenced(page);
1885
1886 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1887 PageTransHuge(page));
1888 if (error)
1889 goto unacct;
1890 error = shmem_add_to_page_cache(page, mapping, hindex,
1891 NULL, gfp & GFP_RECLAIM_MASK);
1892 if (error) {
1893 mem_cgroup_cancel_charge(page, memcg,
1894 PageTransHuge(page));
1895 goto unacct;
1896 }
1897 mem_cgroup_commit_charge(page, memcg, false,
1898 PageTransHuge(page));
1899 lru_cache_add_anon(page);
1900
1901 spin_lock_irq(&info->lock);
1902 info->alloced += compound_nr(page);
1903 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1904 shmem_recalc_inode(inode);
1905 spin_unlock_irq(&info->lock);
1906 alloced = true;
1907
1908 if (PageTransHuge(page) &&
1909 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1910 hindex + HPAGE_PMD_NR - 1) {
1911 /*
1912 * Part of the huge page is beyond i_size: subject
1913 * to shrink under memory pressure.
1914 */
1915 spin_lock(&sbinfo->shrinklist_lock);
1916 /*
1917 * _careful to defend against unlocked access to
1918 * ->shrink_list in shmem_unused_huge_shrink()
1919 */
1920 if (list_empty_careful(&info->shrinklist)) {
1921 list_add_tail(&info->shrinklist,
1922 &sbinfo->shrinklist);
1923 sbinfo->shrinklist_len++;
1924 }
1925 spin_unlock(&sbinfo->shrinklist_lock);
1926 }
1927
1928 /*
1929 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1930 */
1931 if (sgp == SGP_FALLOC)
1932 sgp = SGP_WRITE;
1933clear:
1934 /*
1935 * Let SGP_WRITE caller clear ends if write does not fill page;
1936 * but SGP_FALLOC on a page fallocated earlier must initialize
1937 * it now, lest undo on failure cancel our earlier guarantee.
1938 */
1939 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1940 struct page *head = compound_head(page);
1941 int i;
1942
1943 for (i = 0; i < compound_nr(head); i++) {
1944 clear_highpage(head + i);
1945 flush_dcache_page(head + i);
1946 }
1947 SetPageUptodate(head);
1948 }
1949
1950 /* Perhaps the file has been truncated since we checked */
1951 if (sgp <= SGP_CACHE &&
1952 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1953 if (alloced) {
1954 ClearPageDirty(page);
1955 delete_from_page_cache(page);
1956 spin_lock_irq(&info->lock);
1957 shmem_recalc_inode(inode);
1958 spin_unlock_irq(&info->lock);
1959 }
1960 error = -EINVAL;
1961 goto unlock;
1962 }
1963 *pagep = page + index - hindex;
1964 return 0;
1965
1966 /*
1967 * Error recovery.
1968 */
1969unacct:
1970 shmem_inode_unacct_blocks(inode, compound_nr(page));
1971
1972 if (PageTransHuge(page)) {
1973 unlock_page(page);
1974 put_page(page);
1975 goto alloc_nohuge;
1976 }
1977unlock:
1978 if (page) {
1979 unlock_page(page);
1980 put_page(page);
1981 }
1982 if (error == -ENOSPC && !once++) {
1983 spin_lock_irq(&info->lock);
1984 shmem_recalc_inode(inode);
1985 spin_unlock_irq(&info->lock);
1986 goto repeat;
1987 }
1988 if (error == -EEXIST)
1989 goto repeat;
1990 return error;
1991}
1992
1993/*
1994 * This is like autoremove_wake_function, but it removes the wait queue
1995 * entry unconditionally - even if something else had already woken the
1996 * target.
1997 */
1998static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1999{
2000 int ret = default_wake_function(wait, mode, sync, key);
2001 list_del_init(&wait->entry);
2002 return ret;
2003}
2004
2005static vm_fault_t shmem_fault(struct vm_fault *vmf)
2006{
2007 struct vm_area_struct *vma = vmf->vma;
2008 struct inode *inode = file_inode(vma->vm_file);
2009 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2010 enum sgp_type sgp;
2011 int err;
2012 vm_fault_t ret = VM_FAULT_LOCKED;
2013
2014 /*
2015 * Trinity finds that probing a hole which tmpfs is punching can
2016 * prevent the hole-punch from ever completing: which in turn
2017 * locks writers out with its hold on i_mutex. So refrain from
2018 * faulting pages into the hole while it's being punched. Although
2019 * shmem_undo_range() does remove the additions, it may be unable to
2020 * keep up, as each new page needs its own unmap_mapping_range() call,
2021 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2022 *
2023 * It does not matter if we sometimes reach this check just before the
2024 * hole-punch begins, so that one fault then races with the punch:
2025 * we just need to make racing faults a rare case.
2026 *
2027 * The implementation below would be much simpler if we just used a
2028 * standard mutex or completion: but we cannot take i_mutex in fault,
2029 * and bloating every shmem inode for this unlikely case would be sad.
2030 */
2031 if (unlikely(inode->i_private)) {
2032 struct shmem_falloc *shmem_falloc;
2033
2034 spin_lock(&inode->i_lock);
2035 shmem_falloc = inode->i_private;
2036 if (shmem_falloc &&
2037 shmem_falloc->waitq &&
2038 vmf->pgoff >= shmem_falloc->start &&
2039 vmf->pgoff < shmem_falloc->next) {
2040 struct file *fpin;
2041 wait_queue_head_t *shmem_falloc_waitq;
2042 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2043
2044 ret = VM_FAULT_NOPAGE;
2045 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2046 if (fpin)
2047 ret = VM_FAULT_RETRY;
2048
2049 shmem_falloc_waitq = shmem_falloc->waitq;
2050 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2051 TASK_UNINTERRUPTIBLE);
2052 spin_unlock(&inode->i_lock);
2053 schedule();
2054
2055 /*
2056 * shmem_falloc_waitq points into the shmem_fallocate()
2057 * stack of the hole-punching task: shmem_falloc_waitq
2058 * is usually invalid by the time we reach here, but
2059 * finish_wait() does not dereference it in that case;
2060 * though i_lock needed lest racing with wake_up_all().
2061 */
2062 spin_lock(&inode->i_lock);
2063 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2064 spin_unlock(&inode->i_lock);
2065
2066 if (fpin)
2067 fput(fpin);
2068 return ret;
2069 }
2070 spin_unlock(&inode->i_lock);
2071 }
2072
2073 sgp = SGP_CACHE;
2074
2075 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2076 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2077 sgp = SGP_NOHUGE;
2078 else if (vma->vm_flags & VM_HUGEPAGE)
2079 sgp = SGP_HUGE;
2080
2081 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2082 gfp, vma, vmf, &ret);
2083 if (err)
2084 return vmf_error(err);
2085 return ret;
2086}
2087
2088unsigned long shmem_get_unmapped_area(struct file *file,
2089 unsigned long uaddr, unsigned long len,
2090 unsigned long pgoff, unsigned long flags)
2091{
2092 unsigned long (*get_area)(struct file *,
2093 unsigned long, unsigned long, unsigned long, unsigned long);
2094 unsigned long addr;
2095 unsigned long offset;
2096 unsigned long inflated_len;
2097 unsigned long inflated_addr;
2098 unsigned long inflated_offset;
2099
2100 if (len > TASK_SIZE)
2101 return -ENOMEM;
2102
2103 get_area = current->mm->get_unmapped_area;
2104 addr = get_area(file, uaddr, len, pgoff, flags);
2105
2106 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2107 return addr;
2108 if (IS_ERR_VALUE(addr))
2109 return addr;
2110 if (addr & ~PAGE_MASK)
2111 return addr;
2112 if (addr > TASK_SIZE - len)
2113 return addr;
2114
2115 if (shmem_huge == SHMEM_HUGE_DENY)
2116 return addr;
2117 if (len < HPAGE_PMD_SIZE)
2118 return addr;
2119 if (flags & MAP_FIXED)
2120 return addr;
2121 /*
2122 * Our priority is to support MAP_SHARED mapped hugely;
2123 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2124 * But if caller specified an address hint and we allocated area there
2125 * successfully, respect that as before.
2126 */
2127 if (uaddr == addr)
2128 return addr;
2129
2130 if (shmem_huge != SHMEM_HUGE_FORCE) {
2131 struct super_block *sb;
2132
2133 if (file) {
2134 VM_BUG_ON(file->f_op != &shmem_file_operations);
2135 sb = file_inode(file)->i_sb;
2136 } else {
2137 /*
2138 * Called directly from mm/mmap.c, or drivers/char/mem.c
2139 * for "/dev/zero", to create a shared anonymous object.
2140 */
2141 if (IS_ERR(shm_mnt))
2142 return addr;
2143 sb = shm_mnt->mnt_sb;
2144 }
2145 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2146 return addr;
2147 }
2148
2149 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2150 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2151 return addr;
2152 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2153 return addr;
2154
2155 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2156 if (inflated_len > TASK_SIZE)
2157 return addr;
2158 if (inflated_len < len)
2159 return addr;
2160
2161 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2162 if (IS_ERR_VALUE(inflated_addr))
2163 return addr;
2164 if (inflated_addr & ~PAGE_MASK)
2165 return addr;
2166
2167 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2168 inflated_addr += offset - inflated_offset;
2169 if (inflated_offset > offset)
2170 inflated_addr += HPAGE_PMD_SIZE;
2171
2172 if (inflated_addr > TASK_SIZE - len)
2173 return addr;
2174 return inflated_addr;
2175}
2176
2177#ifdef CONFIG_NUMA
2178static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2179{
2180 struct inode *inode = file_inode(vma->vm_file);
2181 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2182}
2183
2184static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2185 unsigned long addr)
2186{
2187 struct inode *inode = file_inode(vma->vm_file);
2188 pgoff_t index;
2189
2190 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2191 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2192}
2193#endif
2194
2195int shmem_lock(struct file *file, int lock, struct user_struct *user)
2196{
2197 struct inode *inode = file_inode(file);
2198 struct shmem_inode_info *info = SHMEM_I(inode);
2199 int retval = -ENOMEM;
2200
2201 /*
2202 * What serializes the accesses to info->flags?
2203 * ipc_lock_object() when called from shmctl_do_lock(),
2204 * no serialization needed when called from shm_destroy().
2205 */
2206 if (lock && !(info->flags & VM_LOCKED)) {
2207 if (!user_shm_lock(inode->i_size, user))
2208 goto out_nomem;
2209 info->flags |= VM_LOCKED;
2210 mapping_set_unevictable(file->f_mapping);
2211 }
2212 if (!lock && (info->flags & VM_LOCKED) && user) {
2213 user_shm_unlock(inode->i_size, user);
2214 info->flags &= ~VM_LOCKED;
2215 mapping_clear_unevictable(file->f_mapping);
2216 }
2217 retval = 0;
2218
2219out_nomem:
2220 return retval;
2221}
2222
2223static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2224{
2225 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2226 int ret;
2227
2228 ret = seal_check_future_write(info->seals, vma);
2229 if (ret)
2230 return ret;
2231
2232 file_accessed(file);
2233 vma->vm_ops = &shmem_vm_ops;
2234 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2235 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2236 (vma->vm_end & HPAGE_PMD_MASK)) {
2237 khugepaged_enter(vma, vma->vm_flags);
2238 }
2239 return 0;
2240}
2241
2242static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2243 umode_t mode, dev_t dev, unsigned long flags)
2244{
2245 struct inode *inode;
2246 struct shmem_inode_info *info;
2247 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2248
2249 if (shmem_reserve_inode(sb))
2250 return NULL;
2251
2252 inode = new_inode(sb);
2253 if (inode) {
2254 inode->i_ino = get_next_ino();
2255 inode_init_owner(inode, dir, mode);
2256 inode->i_blocks = 0;
2257 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2258 inode->i_generation = prandom_u32();
2259 info = SHMEM_I(inode);
2260 memset(info, 0, (char *)inode - (char *)info);
2261 spin_lock_init(&info->lock);
2262 atomic_set(&info->stop_eviction, 0);
2263 info->seals = F_SEAL_SEAL;
2264 info->flags = flags & VM_NORESERVE;
2265 INIT_LIST_HEAD(&info->shrinklist);
2266 INIT_LIST_HEAD(&info->swaplist);
2267 simple_xattrs_init(&info->xattrs);
2268 cache_no_acl(inode);
2269
2270 switch (mode & S_IFMT) {
2271 default:
2272 inode->i_op = &shmem_special_inode_operations;
2273 init_special_inode(inode, mode, dev);
2274 break;
2275 case S_IFREG:
2276 inode->i_mapping->a_ops = &shmem_aops;
2277 inode->i_op = &shmem_inode_operations;
2278 inode->i_fop = &shmem_file_operations;
2279 mpol_shared_policy_init(&info->policy,
2280 shmem_get_sbmpol(sbinfo));
2281 break;
2282 case S_IFDIR:
2283 inc_nlink(inode);
2284 /* Some things misbehave if size == 0 on a directory */
2285 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2286 inode->i_op = &shmem_dir_inode_operations;
2287 inode->i_fop = &simple_dir_operations;
2288 break;
2289 case S_IFLNK:
2290 /*
2291 * Must not load anything in the rbtree,
2292 * mpol_free_shared_policy will not be called.
2293 */
2294 mpol_shared_policy_init(&info->policy, NULL);
2295 break;
2296 }
2297
2298 lockdep_annotate_inode_mutex_key(inode);
2299 } else
2300 shmem_free_inode(sb);
2301 return inode;
2302}
2303
2304bool shmem_mapping(struct address_space *mapping)
2305{
2306 return mapping->a_ops == &shmem_aops;
2307}
2308
2309#ifdef CONFIG_USERFAULTFD
2310int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2311 pmd_t *dst_pmd,
2312 struct vm_area_struct *dst_vma,
2313 unsigned long dst_addr,
2314 unsigned long src_addr,
2315 bool zeropage,
2316 struct page **pagep)
2317{
2318 struct inode *inode = file_inode(dst_vma->vm_file);
2319 struct shmem_inode_info *info = SHMEM_I(inode);
2320 struct address_space *mapping = inode->i_mapping;
2321 gfp_t gfp = mapping_gfp_mask(mapping);
2322 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2323 struct mem_cgroup *memcg;
2324 void *page_kaddr;
2325 struct page *page;
2326 int ret;
2327 pgoff_t max_off;
2328
2329 if (!shmem_inode_acct_block(inode, 1)) {
2330 /*
2331 * We may have got a page, returned -ENOENT triggering a retry,
2332 * and now we find ourselves with -ENOMEM. Release the page, to
2333 * avoid a BUG_ON in our caller.
2334 */
2335 if (unlikely(*pagep)) {
2336 put_page(*pagep);
2337 *pagep = NULL;
2338 }
2339 return -ENOMEM;
2340 }
2341
2342 if (!*pagep) {
2343 ret = -ENOMEM;
2344 page = shmem_alloc_page(gfp, info, pgoff);
2345 if (!page)
2346 goto out_unacct_blocks;
2347
2348 if (!zeropage) { /* COPY */
2349 page_kaddr = kmap_atomic(page);
2350 ret = copy_from_user(page_kaddr,
2351 (const void __user *)src_addr,
2352 PAGE_SIZE);
2353 kunmap_atomic(page_kaddr);
2354
2355 /* fallback to copy_from_user outside mmap_sem */
2356 if (unlikely(ret)) {
2357 *pagep = page;
2358 ret = -ENOENT;
2359 /* don't free the page */
2360 goto out_unacct_blocks;
2361 }
2362 } else { /* ZEROPAGE */
2363 clear_highpage(page);
2364 }
2365 } else {
2366 page = *pagep;
2367 *pagep = NULL;
2368 }
2369
2370 VM_BUG_ON(PageLocked(page));
2371 VM_BUG_ON(PageSwapBacked(page));
2372 __SetPageLocked(page);
2373 __SetPageSwapBacked(page);
2374 __SetPageUptodate(page);
2375
2376 ret = -EFAULT;
2377 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2378 if (unlikely(pgoff >= max_off))
2379 goto out_release;
2380
2381 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2382 if (ret)
2383 goto out_release;
2384
2385 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2386 gfp & GFP_RECLAIM_MASK);
2387 if (ret)
2388 goto out_release_uncharge;
2389
2390 mem_cgroup_commit_charge(page, memcg, false, false);
2391
2392 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2393 page, true);
2394 if (ret)
2395 goto out_delete_from_cache;
2396
2397 spin_lock_irq(&info->lock);
2398 info->alloced++;
2399 inode->i_blocks += BLOCKS_PER_PAGE;
2400 shmem_recalc_inode(inode);
2401 spin_unlock_irq(&info->lock);
2402
2403 SetPageDirty(page);
2404 unlock_page(page);
2405 return 0;
2406out_delete_from_cache:
2407 delete_from_page_cache(page);
2408out_release_uncharge:
2409 mem_cgroup_cancel_charge(page, memcg, false);
2410out_release:
2411 unlock_page(page);
2412 put_page(page);
2413out_unacct_blocks:
2414 shmem_inode_unacct_blocks(inode, 1);
2415 return ret;
2416}
2417#endif /* CONFIG_USERFAULTFD */
2418
2419#ifdef CONFIG_TMPFS
2420static const struct inode_operations shmem_symlink_inode_operations;
2421static const struct inode_operations shmem_short_symlink_operations;
2422
2423#ifdef CONFIG_TMPFS_XATTR
2424static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2425#else
2426#define shmem_initxattrs NULL
2427#endif
2428
2429static int
2430shmem_write_begin(struct file *file, struct address_space *mapping,
2431 loff_t pos, unsigned len, unsigned flags,
2432 struct page **pagep, void **fsdata)
2433{
2434 struct inode *inode = mapping->host;
2435 struct shmem_inode_info *info = SHMEM_I(inode);
2436 pgoff_t index = pos >> PAGE_SHIFT;
2437
2438 /* i_mutex is held by caller */
2439 if (unlikely(info->seals & (F_SEAL_GROW |
2440 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2441 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2442 return -EPERM;
2443 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2444 return -EPERM;
2445 }
2446
2447 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2448}
2449
2450static int
2451shmem_write_end(struct file *file, struct address_space *mapping,
2452 loff_t pos, unsigned len, unsigned copied,
2453 struct page *page, void *fsdata)
2454{
2455 struct inode *inode = mapping->host;
2456
2457 if (pos + copied > inode->i_size)
2458 i_size_write(inode, pos + copied);
2459
2460 if (!PageUptodate(page)) {
2461 struct page *head = compound_head(page);
2462 if (PageTransCompound(page)) {
2463 int i;
2464
2465 for (i = 0; i < HPAGE_PMD_NR; i++) {
2466 if (head + i == page)
2467 continue;
2468 clear_highpage(head + i);
2469 flush_dcache_page(head + i);
2470 }
2471 }
2472 if (copied < PAGE_SIZE) {
2473 unsigned from = pos & (PAGE_SIZE - 1);
2474 zero_user_segments(page, 0, from,
2475 from + copied, PAGE_SIZE);
2476 }
2477 SetPageUptodate(head);
2478 }
2479 set_page_dirty(page);
2480 unlock_page(page);
2481 put_page(page);
2482
2483 return copied;
2484}
2485
2486static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2487{
2488 struct file *file = iocb->ki_filp;
2489 struct inode *inode = file_inode(file);
2490 struct address_space *mapping = inode->i_mapping;
2491 pgoff_t index;
2492 unsigned long offset;
2493 enum sgp_type sgp = SGP_READ;
2494 int error = 0;
2495 ssize_t retval = 0;
2496 loff_t *ppos = &iocb->ki_pos;
2497
2498 /*
2499 * Might this read be for a stacking filesystem? Then when reading
2500 * holes of a sparse file, we actually need to allocate those pages,
2501 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2502 */
2503 if (!iter_is_iovec(to))
2504 sgp = SGP_CACHE;
2505
2506 index = *ppos >> PAGE_SHIFT;
2507 offset = *ppos & ~PAGE_MASK;
2508
2509 for (;;) {
2510 struct page *page = NULL;
2511 pgoff_t end_index;
2512 unsigned long nr, ret;
2513 loff_t i_size = i_size_read(inode);
2514
2515 end_index = i_size >> PAGE_SHIFT;
2516 if (index > end_index)
2517 break;
2518 if (index == end_index) {
2519 nr = i_size & ~PAGE_MASK;
2520 if (nr <= offset)
2521 break;
2522 }
2523
2524 error = shmem_getpage(inode, index, &page, sgp);
2525 if (error) {
2526 if (error == -EINVAL)
2527 error = 0;
2528 break;
2529 }
2530 if (page) {
2531 if (sgp == SGP_CACHE)
2532 set_page_dirty(page);
2533 unlock_page(page);
2534 }
2535
2536 /*
2537 * We must evaluate after, since reads (unlike writes)
2538 * are called without i_mutex protection against truncate
2539 */
2540 nr = PAGE_SIZE;
2541 i_size = i_size_read(inode);
2542 end_index = i_size >> PAGE_SHIFT;
2543 if (index == end_index) {
2544 nr = i_size & ~PAGE_MASK;
2545 if (nr <= offset) {
2546 if (page)
2547 put_page(page);
2548 break;
2549 }
2550 }
2551 nr -= offset;
2552
2553 if (page) {
2554 /*
2555 * If users can be writing to this page using arbitrary
2556 * virtual addresses, take care about potential aliasing
2557 * before reading the page on the kernel side.
2558 */
2559 if (mapping_writably_mapped(mapping))
2560 flush_dcache_page(page);
2561 /*
2562 * Mark the page accessed if we read the beginning.
2563 */
2564 if (!offset)
2565 mark_page_accessed(page);
2566 } else {
2567 page = ZERO_PAGE(0);
2568 get_page(page);
2569 }
2570
2571 /*
2572 * Ok, we have the page, and it's up-to-date, so
2573 * now we can copy it to user space...
2574 */
2575 ret = copy_page_to_iter(page, offset, nr, to);
2576 retval += ret;
2577 offset += ret;
2578 index += offset >> PAGE_SHIFT;
2579 offset &= ~PAGE_MASK;
2580
2581 put_page(page);
2582 if (!iov_iter_count(to))
2583 break;
2584 if (ret < nr) {
2585 error = -EFAULT;
2586 break;
2587 }
2588 cond_resched();
2589 }
2590
2591 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2592 file_accessed(file);
2593 return retval ? retval : error;
2594}
2595
2596/*
2597 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2598 */
2599static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2600 pgoff_t index, pgoff_t end, int whence)
2601{
2602 struct page *page;
2603 struct pagevec pvec;
2604 pgoff_t indices[PAGEVEC_SIZE];
2605 bool done = false;
2606 int i;
2607
2608 pagevec_init(&pvec);
2609 pvec.nr = 1; /* start small: we may be there already */
2610 while (!done) {
2611 pvec.nr = find_get_entries(mapping, index,
2612 pvec.nr, pvec.pages, indices);
2613 if (!pvec.nr) {
2614 if (whence == SEEK_DATA)
2615 index = end;
2616 break;
2617 }
2618 for (i = 0; i < pvec.nr; i++, index++) {
2619 if (index < indices[i]) {
2620 if (whence == SEEK_HOLE) {
2621 done = true;
2622 break;
2623 }
2624 index = indices[i];
2625 }
2626 page = pvec.pages[i];
2627 if (page && !xa_is_value(page)) {
2628 if (!PageUptodate(page))
2629 page = NULL;
2630 }
2631 if (index >= end ||
2632 (page && whence == SEEK_DATA) ||
2633 (!page && whence == SEEK_HOLE)) {
2634 done = true;
2635 break;
2636 }
2637 }
2638 pagevec_remove_exceptionals(&pvec);
2639 pagevec_release(&pvec);
2640 pvec.nr = PAGEVEC_SIZE;
2641 cond_resched();
2642 }
2643 return index;
2644}
2645
2646static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2647{
2648 struct address_space *mapping = file->f_mapping;
2649 struct inode *inode = mapping->host;
2650 pgoff_t start, end;
2651 loff_t new_offset;
2652
2653 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2654 return generic_file_llseek_size(file, offset, whence,
2655 MAX_LFS_FILESIZE, i_size_read(inode));
2656 inode_lock(inode);
2657 /* We're holding i_mutex so we can access i_size directly */
2658
2659 if (offset < 0 || offset >= inode->i_size)
2660 offset = -ENXIO;
2661 else {
2662 start = offset >> PAGE_SHIFT;
2663 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2664 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2665 new_offset <<= PAGE_SHIFT;
2666 if (new_offset > offset) {
2667 if (new_offset < inode->i_size)
2668 offset = new_offset;
2669 else if (whence == SEEK_DATA)
2670 offset = -ENXIO;
2671 else
2672 offset = inode->i_size;
2673 }
2674 }
2675
2676 if (offset >= 0)
2677 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2678 inode_unlock(inode);
2679 return offset;
2680}
2681
2682static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2683 loff_t len)
2684{
2685 struct inode *inode = file_inode(file);
2686 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2687 struct shmem_inode_info *info = SHMEM_I(inode);
2688 struct shmem_falloc shmem_falloc;
2689 pgoff_t start, index, end;
2690 int error;
2691
2692 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2693 return -EOPNOTSUPP;
2694
2695 inode_lock(inode);
2696
2697 if (mode & FALLOC_FL_PUNCH_HOLE) {
2698 struct address_space *mapping = file->f_mapping;
2699 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2700 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2701 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2702
2703 /* protected by i_mutex */
2704 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2705 error = -EPERM;
2706 goto out;
2707 }
2708
2709 shmem_falloc.waitq = &shmem_falloc_waitq;
2710 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2711 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2712 spin_lock(&inode->i_lock);
2713 inode->i_private = &shmem_falloc;
2714 spin_unlock(&inode->i_lock);
2715
2716 if ((u64)unmap_end > (u64)unmap_start)
2717 unmap_mapping_range(mapping, unmap_start,
2718 1 + unmap_end - unmap_start, 0);
2719 shmem_truncate_range(inode, offset, offset + len - 1);
2720 /* No need to unmap again: hole-punching leaves COWed pages */
2721
2722 spin_lock(&inode->i_lock);
2723 inode->i_private = NULL;
2724 wake_up_all(&shmem_falloc_waitq);
2725 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2726 spin_unlock(&inode->i_lock);
2727 error = 0;
2728 goto out;
2729 }
2730
2731 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2732 error = inode_newsize_ok(inode, offset + len);
2733 if (error)
2734 goto out;
2735
2736 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2737 error = -EPERM;
2738 goto out;
2739 }
2740
2741 start = offset >> PAGE_SHIFT;
2742 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2743 /* Try to avoid a swapstorm if len is impossible to satisfy */
2744 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2745 error = -ENOSPC;
2746 goto out;
2747 }
2748
2749 shmem_falloc.waitq = NULL;
2750 shmem_falloc.start = start;
2751 shmem_falloc.next = start;
2752 shmem_falloc.nr_falloced = 0;
2753 shmem_falloc.nr_unswapped = 0;
2754 spin_lock(&inode->i_lock);
2755 inode->i_private = &shmem_falloc;
2756 spin_unlock(&inode->i_lock);
2757
2758 for (index = start; index < end; index++) {
2759 struct page *page;
2760
2761 /*
2762 * Good, the fallocate(2) manpage permits EINTR: we may have
2763 * been interrupted because we are using up too much memory.
2764 */
2765 if (signal_pending(current))
2766 error = -EINTR;
2767 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2768 error = -ENOMEM;
2769 else
2770 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2771 if (error) {
2772 /* Remove the !PageUptodate pages we added */
2773 if (index > start) {
2774 shmem_undo_range(inode,
2775 (loff_t)start << PAGE_SHIFT,
2776 ((loff_t)index << PAGE_SHIFT) - 1, true);
2777 }
2778 goto undone;
2779 }
2780
2781 /*
2782 * Inform shmem_writepage() how far we have reached.
2783 * No need for lock or barrier: we have the page lock.
2784 */
2785 shmem_falloc.next++;
2786 if (!PageUptodate(page))
2787 shmem_falloc.nr_falloced++;
2788
2789 /*
2790 * If !PageUptodate, leave it that way so that freeable pages
2791 * can be recognized if we need to rollback on error later.
2792 * But set_page_dirty so that memory pressure will swap rather
2793 * than free the pages we are allocating (and SGP_CACHE pages
2794 * might still be clean: we now need to mark those dirty too).
2795 */
2796 set_page_dirty(page);
2797 unlock_page(page);
2798 put_page(page);
2799 cond_resched();
2800 }
2801
2802 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2803 i_size_write(inode, offset + len);
2804 inode->i_ctime = current_time(inode);
2805undone:
2806 spin_lock(&inode->i_lock);
2807 inode->i_private = NULL;
2808 spin_unlock(&inode->i_lock);
2809out:
2810 inode_unlock(inode);
2811 return error;
2812}
2813
2814static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2815{
2816 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2817
2818 buf->f_type = TMPFS_MAGIC;
2819 buf->f_bsize = PAGE_SIZE;
2820 buf->f_namelen = NAME_MAX;
2821 if (sbinfo->max_blocks) {
2822 buf->f_blocks = sbinfo->max_blocks;
2823 buf->f_bavail =
2824 buf->f_bfree = sbinfo->max_blocks -
2825 percpu_counter_sum(&sbinfo->used_blocks);
2826 }
2827 if (sbinfo->max_inodes) {
2828 buf->f_files = sbinfo->max_inodes;
2829 buf->f_ffree = sbinfo->free_inodes;
2830 }
2831 /* else leave those fields 0 like simple_statfs */
2832 return 0;
2833}
2834
2835/*
2836 * File creation. Allocate an inode, and we're done..
2837 */
2838static int
2839shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2840{
2841 struct inode *inode;
2842 int error = -ENOSPC;
2843
2844 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2845 if (inode) {
2846 error = simple_acl_create(dir, inode);
2847 if (error)
2848 goto out_iput;
2849 error = security_inode_init_security(inode, dir,
2850 &dentry->d_name,
2851 shmem_initxattrs, NULL);
2852 if (error && error != -EOPNOTSUPP)
2853 goto out_iput;
2854
2855 error = 0;
2856 dir->i_size += BOGO_DIRENT_SIZE;
2857 dir->i_ctime = dir->i_mtime = current_time(dir);
2858 d_instantiate(dentry, inode);
2859 dget(dentry); /* Extra count - pin the dentry in core */
2860 }
2861 return error;
2862out_iput:
2863 iput(inode);
2864 return error;
2865}
2866
2867static int
2868shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2869{
2870 struct inode *inode;
2871 int error = -ENOSPC;
2872
2873 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2874 if (inode) {
2875 error = security_inode_init_security(inode, dir,
2876 NULL,
2877 shmem_initxattrs, NULL);
2878 if (error && error != -EOPNOTSUPP)
2879 goto out_iput;
2880 error = simple_acl_create(dir, inode);
2881 if (error)
2882 goto out_iput;
2883 d_tmpfile(dentry, inode);
2884 }
2885 return error;
2886out_iput:
2887 iput(inode);
2888 return error;
2889}
2890
2891static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2892{
2893 int error;
2894
2895 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2896 return error;
2897 inc_nlink(dir);
2898 return 0;
2899}
2900
2901static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2902 bool excl)
2903{
2904 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2905}
2906
2907/*
2908 * Link a file..
2909 */
2910static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2911{
2912 struct inode *inode = d_inode(old_dentry);
2913 int ret = 0;
2914
2915 /*
2916 * No ordinary (disk based) filesystem counts links as inodes;
2917 * but each new link needs a new dentry, pinning lowmem, and
2918 * tmpfs dentries cannot be pruned until they are unlinked.
2919 * But if an O_TMPFILE file is linked into the tmpfs, the
2920 * first link must skip that, to get the accounting right.
2921 */
2922 if (inode->i_nlink) {
2923 ret = shmem_reserve_inode(inode->i_sb);
2924 if (ret)
2925 goto out;
2926 }
2927
2928 dir->i_size += BOGO_DIRENT_SIZE;
2929 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2930 inc_nlink(inode);
2931 ihold(inode); /* New dentry reference */
2932 dget(dentry); /* Extra pinning count for the created dentry */
2933 d_instantiate(dentry, inode);
2934out:
2935 return ret;
2936}
2937
2938static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2939{
2940 struct inode *inode = d_inode(dentry);
2941
2942 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2943 shmem_free_inode(inode->i_sb);
2944
2945 dir->i_size -= BOGO_DIRENT_SIZE;
2946 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2947 drop_nlink(inode);
2948 dput(dentry); /* Undo the count from "create" - this does all the work */
2949 return 0;
2950}
2951
2952static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2953{
2954 if (!simple_empty(dentry))
2955 return -ENOTEMPTY;
2956
2957 drop_nlink(d_inode(dentry));
2958 drop_nlink(dir);
2959 return shmem_unlink(dir, dentry);
2960}
2961
2962static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2963{
2964 bool old_is_dir = d_is_dir(old_dentry);
2965 bool new_is_dir = d_is_dir(new_dentry);
2966
2967 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2968 if (old_is_dir) {
2969 drop_nlink(old_dir);
2970 inc_nlink(new_dir);
2971 } else {
2972 drop_nlink(new_dir);
2973 inc_nlink(old_dir);
2974 }
2975 }
2976 old_dir->i_ctime = old_dir->i_mtime =
2977 new_dir->i_ctime = new_dir->i_mtime =
2978 d_inode(old_dentry)->i_ctime =
2979 d_inode(new_dentry)->i_ctime = current_time(old_dir);
2980
2981 return 0;
2982}
2983
2984static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2985{
2986 struct dentry *whiteout;
2987 int error;
2988
2989 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2990 if (!whiteout)
2991 return -ENOMEM;
2992
2993 error = shmem_mknod(old_dir, whiteout,
2994 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2995 dput(whiteout);
2996 if (error)
2997 return error;
2998
2999 /*
3000 * Cheat and hash the whiteout while the old dentry is still in
3001 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3002 *
3003 * d_lookup() will consistently find one of them at this point,
3004 * not sure which one, but that isn't even important.
3005 */
3006 d_rehash(whiteout);
3007 return 0;
3008}
3009
3010/*
3011 * The VFS layer already does all the dentry stuff for rename,
3012 * we just have to decrement the usage count for the target if
3013 * it exists so that the VFS layer correctly free's it when it
3014 * gets overwritten.
3015 */
3016static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3017{
3018 struct inode *inode = d_inode(old_dentry);
3019 int they_are_dirs = S_ISDIR(inode->i_mode);
3020
3021 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3022 return -EINVAL;
3023
3024 if (flags & RENAME_EXCHANGE)
3025 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3026
3027 if (!simple_empty(new_dentry))
3028 return -ENOTEMPTY;
3029
3030 if (flags & RENAME_WHITEOUT) {
3031 int error;
3032
3033 error = shmem_whiteout(old_dir, old_dentry);
3034 if (error)
3035 return error;
3036 }
3037
3038 if (d_really_is_positive(new_dentry)) {
3039 (void) shmem_unlink(new_dir, new_dentry);
3040 if (they_are_dirs) {
3041 drop_nlink(d_inode(new_dentry));
3042 drop_nlink(old_dir);
3043 }
3044 } else if (they_are_dirs) {
3045 drop_nlink(old_dir);
3046 inc_nlink(new_dir);
3047 }
3048
3049 old_dir->i_size -= BOGO_DIRENT_SIZE;
3050 new_dir->i_size += BOGO_DIRENT_SIZE;
3051 old_dir->i_ctime = old_dir->i_mtime =
3052 new_dir->i_ctime = new_dir->i_mtime =
3053 inode->i_ctime = current_time(old_dir);
3054 return 0;
3055}
3056
3057static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3058{
3059 int error;
3060 int len;
3061 struct inode *inode;
3062 struct page *page;
3063
3064 len = strlen(symname) + 1;
3065 if (len > PAGE_SIZE)
3066 return -ENAMETOOLONG;
3067
3068 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3069 VM_NORESERVE);
3070 if (!inode)
3071 return -ENOSPC;
3072
3073 error = security_inode_init_security(inode, dir, &dentry->d_name,
3074 shmem_initxattrs, NULL);
3075 if (error) {
3076 if (error != -EOPNOTSUPP) {
3077 iput(inode);
3078 return error;
3079 }
3080 error = 0;
3081 }
3082
3083 inode->i_size = len-1;
3084 if (len <= SHORT_SYMLINK_LEN) {
3085 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3086 if (!inode->i_link) {
3087 iput(inode);
3088 return -ENOMEM;
3089 }
3090 inode->i_op = &shmem_short_symlink_operations;
3091 } else {
3092 inode_nohighmem(inode);
3093 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3094 if (error) {
3095 iput(inode);
3096 return error;
3097 }
3098 inode->i_mapping->a_ops = &shmem_aops;
3099 inode->i_op = &shmem_symlink_inode_operations;
3100 memcpy(page_address(page), symname, len);
3101 SetPageUptodate(page);
3102 set_page_dirty(page);
3103 unlock_page(page);
3104 put_page(page);
3105 }
3106 dir->i_size += BOGO_DIRENT_SIZE;
3107 dir->i_ctime = dir->i_mtime = current_time(dir);
3108 d_instantiate(dentry, inode);
3109 dget(dentry);
3110 return 0;
3111}
3112
3113static void shmem_put_link(void *arg)
3114{
3115 mark_page_accessed(arg);
3116 put_page(arg);
3117}
3118
3119static const char *shmem_get_link(struct dentry *dentry,
3120 struct inode *inode,
3121 struct delayed_call *done)
3122{
3123 struct page *page = NULL;
3124 int error;
3125 if (!dentry) {
3126 page = find_get_page(inode->i_mapping, 0);
3127 if (!page)
3128 return ERR_PTR(-ECHILD);
3129 if (!PageUptodate(page)) {
3130 put_page(page);
3131 return ERR_PTR(-ECHILD);
3132 }
3133 } else {
3134 error = shmem_getpage(inode, 0, &page, SGP_READ);
3135 if (error)
3136 return ERR_PTR(error);
3137 unlock_page(page);
3138 }
3139 set_delayed_call(done, shmem_put_link, page);
3140 return page_address(page);
3141}
3142
3143#ifdef CONFIG_TMPFS_XATTR
3144/*
3145 * Superblocks without xattr inode operations may get some security.* xattr
3146 * support from the LSM "for free". As soon as we have any other xattrs
3147 * like ACLs, we also need to implement the security.* handlers at
3148 * filesystem level, though.
3149 */
3150
3151/*
3152 * Callback for security_inode_init_security() for acquiring xattrs.
3153 */
3154static int shmem_initxattrs(struct inode *inode,
3155 const struct xattr *xattr_array,
3156 void *fs_info)
3157{
3158 struct shmem_inode_info *info = SHMEM_I(inode);
3159 const struct xattr *xattr;
3160 struct simple_xattr *new_xattr;
3161 size_t len;
3162
3163 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3164 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3165 if (!new_xattr)
3166 return -ENOMEM;
3167
3168 len = strlen(xattr->name) + 1;
3169 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3170 GFP_KERNEL);
3171 if (!new_xattr->name) {
3172 kfree(new_xattr);
3173 return -ENOMEM;
3174 }
3175
3176 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3177 XATTR_SECURITY_PREFIX_LEN);
3178 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3179 xattr->name, len);
3180
3181 simple_xattr_list_add(&info->xattrs, new_xattr);
3182 }
3183
3184 return 0;
3185}
3186
3187static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3188 struct dentry *unused, struct inode *inode,
3189 const char *name, void *buffer, size_t size,
3190 int flags)
3191{
3192 struct shmem_inode_info *info = SHMEM_I(inode);
3193
3194 name = xattr_full_name(handler, name);
3195 return simple_xattr_get(&info->xattrs, name, buffer, size);
3196}
3197
3198static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3199 struct dentry *unused, struct inode *inode,
3200 const char *name, const void *value,
3201 size_t size, int flags)
3202{
3203 struct shmem_inode_info *info = SHMEM_I(inode);
3204
3205 name = xattr_full_name(handler, name);
3206 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3207}
3208
3209static const struct xattr_handler shmem_security_xattr_handler = {
3210 .prefix = XATTR_SECURITY_PREFIX,
3211 .get = shmem_xattr_handler_get,
3212 .set = shmem_xattr_handler_set,
3213};
3214
3215static const struct xattr_handler shmem_trusted_xattr_handler = {
3216 .prefix = XATTR_TRUSTED_PREFIX,
3217 .get = shmem_xattr_handler_get,
3218 .set = shmem_xattr_handler_set,
3219};
3220
3221static const struct xattr_handler *shmem_xattr_handlers[] = {
3222#ifdef CONFIG_TMPFS_POSIX_ACL
3223 &posix_acl_access_xattr_handler,
3224 &posix_acl_default_xattr_handler,
3225#endif
3226 &shmem_security_xattr_handler,
3227 &shmem_trusted_xattr_handler,
3228 NULL
3229};
3230
3231static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3232{
3233 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3234 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3235}
3236#endif /* CONFIG_TMPFS_XATTR */
3237
3238static const struct inode_operations shmem_short_symlink_operations = {
3239 .get_link = simple_get_link,
3240#ifdef CONFIG_TMPFS_XATTR
3241 .listxattr = shmem_listxattr,
3242#endif
3243};
3244
3245static const struct inode_operations shmem_symlink_inode_operations = {
3246 .get_link = shmem_get_link,
3247#ifdef CONFIG_TMPFS_XATTR
3248 .listxattr = shmem_listxattr,
3249#endif
3250};
3251
3252static struct dentry *shmem_get_parent(struct dentry *child)
3253{
3254 return ERR_PTR(-ESTALE);
3255}
3256
3257static int shmem_match(struct inode *ino, void *vfh)
3258{
3259 __u32 *fh = vfh;
3260 __u64 inum = fh[2];
3261 inum = (inum << 32) | fh[1];
3262 return ino->i_ino == inum && fh[0] == ino->i_generation;
3263}
3264
3265/* Find any alias of inode, but prefer a hashed alias */
3266static struct dentry *shmem_find_alias(struct inode *inode)
3267{
3268 struct dentry *alias = d_find_alias(inode);
3269
3270 return alias ?: d_find_any_alias(inode);
3271}
3272
3273
3274static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3275 struct fid *fid, int fh_len, int fh_type)
3276{
3277 struct inode *inode;
3278 struct dentry *dentry = NULL;
3279 u64 inum;
3280
3281 if (fh_len < 3)
3282 return NULL;
3283
3284 inum = fid->raw[2];
3285 inum = (inum << 32) | fid->raw[1];
3286
3287 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3288 shmem_match, fid->raw);
3289 if (inode) {
3290 dentry = shmem_find_alias(inode);
3291 iput(inode);
3292 }
3293
3294 return dentry;
3295}
3296
3297static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3298 struct inode *parent)
3299{
3300 if (*len < 3) {
3301 *len = 3;
3302 return FILEID_INVALID;
3303 }
3304
3305 if (inode_unhashed(inode)) {
3306 /* Unfortunately insert_inode_hash is not idempotent,
3307 * so as we hash inodes here rather than at creation
3308 * time, we need a lock to ensure we only try
3309 * to do it once
3310 */
3311 static DEFINE_SPINLOCK(lock);
3312 spin_lock(&lock);
3313 if (inode_unhashed(inode))
3314 __insert_inode_hash(inode,
3315 inode->i_ino + inode->i_generation);
3316 spin_unlock(&lock);
3317 }
3318
3319 fh[0] = inode->i_generation;
3320 fh[1] = inode->i_ino;
3321 fh[2] = ((__u64)inode->i_ino) >> 32;
3322
3323 *len = 3;
3324 return 1;
3325}
3326
3327static const struct export_operations shmem_export_ops = {
3328 .get_parent = shmem_get_parent,
3329 .encode_fh = shmem_encode_fh,
3330 .fh_to_dentry = shmem_fh_to_dentry,
3331};
3332
3333enum shmem_param {
3334 Opt_gid,
3335 Opt_huge,
3336 Opt_mode,
3337 Opt_mpol,
3338 Opt_nr_blocks,
3339 Opt_nr_inodes,
3340 Opt_size,
3341 Opt_uid,
3342};
3343
3344static const struct fs_parameter_spec shmem_param_specs[] = {
3345 fsparam_u32 ("gid", Opt_gid),
3346 fsparam_enum ("huge", Opt_huge),
3347 fsparam_u32oct("mode", Opt_mode),
3348 fsparam_string("mpol", Opt_mpol),
3349 fsparam_string("nr_blocks", Opt_nr_blocks),
3350 fsparam_string("nr_inodes", Opt_nr_inodes),
3351 fsparam_string("size", Opt_size),
3352 fsparam_u32 ("uid", Opt_uid),
3353 {}
3354};
3355
3356static const struct fs_parameter_enum shmem_param_enums[] = {
3357 { Opt_huge, "never", SHMEM_HUGE_NEVER },
3358 { Opt_huge, "always", SHMEM_HUGE_ALWAYS },
3359 { Opt_huge, "within_size", SHMEM_HUGE_WITHIN_SIZE },
3360 { Opt_huge, "advise", SHMEM_HUGE_ADVISE },
3361 {}
3362};
3363
3364const struct fs_parameter_description shmem_fs_parameters = {
3365 .name = "tmpfs",
3366 .specs = shmem_param_specs,
3367 .enums = shmem_param_enums,
3368};
3369
3370static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3371{
3372 struct shmem_options *ctx = fc->fs_private;
3373 struct fs_parse_result result;
3374 unsigned long long size;
3375 char *rest;
3376 int opt;
3377 kuid_t kuid;
3378 kgid_t kgid;
3379
3380 opt = fs_parse(fc, &shmem_fs_parameters, param, &result);
3381 if (opt < 0)
3382 return opt;
3383
3384 switch (opt) {
3385 case Opt_size:
3386 size = memparse(param->string, &rest);
3387 if (*rest == '%') {
3388 size <<= PAGE_SHIFT;
3389 size *= totalram_pages();
3390 do_div(size, 100);
3391 rest++;
3392 }
3393 if (*rest)
3394 goto bad_value;
3395 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3396 ctx->seen |= SHMEM_SEEN_BLOCKS;
3397 break;
3398 case Opt_nr_blocks:
3399 ctx->blocks = memparse(param->string, &rest);
3400 if (*rest)
3401 goto bad_value;
3402 ctx->seen |= SHMEM_SEEN_BLOCKS;
3403 break;
3404 case Opt_nr_inodes:
3405 ctx->inodes = memparse(param->string, &rest);
3406 if (*rest)
3407 goto bad_value;
3408 ctx->seen |= SHMEM_SEEN_INODES;
3409 break;
3410 case Opt_mode:
3411 ctx->mode = result.uint_32 & 07777;
3412 break;
3413 case Opt_uid:
3414 kuid = make_kuid(current_user_ns(), result.uint_32);
3415 if (!uid_valid(kuid))
3416 goto bad_value;
3417
3418 /*
3419 * The requested uid must be representable in the
3420 * filesystem's idmapping.
3421 */
3422 if (!kuid_has_mapping(fc->user_ns, kuid))
3423 goto bad_value;
3424
3425 ctx->uid = kuid;
3426 break;
3427 case Opt_gid:
3428 kgid = make_kgid(current_user_ns(), result.uint_32);
3429 if (!gid_valid(kgid))
3430 goto bad_value;
3431
3432 /*
3433 * The requested gid must be representable in the
3434 * filesystem's idmapping.
3435 */
3436 if (!kgid_has_mapping(fc->user_ns, kgid))
3437 goto bad_value;
3438
3439 ctx->gid = kgid;
3440 break;
3441 case Opt_huge:
3442 ctx->huge = result.uint_32;
3443 if (ctx->huge != SHMEM_HUGE_NEVER &&
3444 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
3445 has_transparent_hugepage()))
3446 goto unsupported_parameter;
3447 ctx->seen |= SHMEM_SEEN_HUGE;
3448 break;
3449 case Opt_mpol:
3450 if (IS_ENABLED(CONFIG_NUMA)) {
3451 mpol_put(ctx->mpol);
3452 ctx->mpol = NULL;
3453 if (mpol_parse_str(param->string, &ctx->mpol))
3454 goto bad_value;
3455 break;
3456 }
3457 goto unsupported_parameter;
3458 }
3459 return 0;
3460
3461unsupported_parameter:
3462 return invalf(fc, "tmpfs: Unsupported parameter '%s'", param->key);
3463bad_value:
3464 return invalf(fc, "tmpfs: Bad value for '%s'", param->key);
3465}
3466
3467static int shmem_parse_options(struct fs_context *fc, void *data)
3468{
3469 char *options = data;
3470
3471 if (options) {
3472 int err = security_sb_eat_lsm_opts(options, &fc->security);
3473 if (err)
3474 return err;
3475 }
3476
3477 while (options != NULL) {
3478 char *this_char = options;
3479 for (;;) {
3480 /*
3481 * NUL-terminate this option: unfortunately,
3482 * mount options form a comma-separated list,
3483 * but mpol's nodelist may also contain commas.
3484 */
3485 options = strchr(options, ',');
3486 if (options == NULL)
3487 break;
3488 options++;
3489 if (!isdigit(*options)) {
3490 options[-1] = '\0';
3491 break;
3492 }
3493 }
3494 if (*this_char) {
3495 char *value = strchr(this_char,'=');
3496 size_t len = 0;
3497 int err;
3498
3499 if (value) {
3500 *value++ = '\0';
3501 len = strlen(value);
3502 }
3503 err = vfs_parse_fs_string(fc, this_char, value, len);
3504 if (err < 0)
3505 return err;
3506 }
3507 }
3508 return 0;
3509}
3510
3511/*
3512 * Reconfigure a shmem filesystem.
3513 *
3514 * Note that we disallow change from limited->unlimited blocks/inodes while any
3515 * are in use; but we must separately disallow unlimited->limited, because in
3516 * that case we have no record of how much is already in use.
3517 */
3518static int shmem_reconfigure(struct fs_context *fc)
3519{
3520 struct shmem_options *ctx = fc->fs_private;
3521 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3522 unsigned long inodes;
3523 const char *err;
3524
3525 spin_lock(&sbinfo->stat_lock);
3526 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3527 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3528 if (!sbinfo->max_blocks) {
3529 err = "Cannot retroactively limit size";
3530 goto out;
3531 }
3532 if (percpu_counter_compare(&sbinfo->used_blocks,
3533 ctx->blocks) > 0) {
3534 err = "Too small a size for current use";
3535 goto out;
3536 }
3537 }
3538 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3539 if (!sbinfo->max_inodes) {
3540 err = "Cannot retroactively limit inodes";
3541 goto out;
3542 }
3543 if (ctx->inodes < inodes) {
3544 err = "Too few inodes for current use";
3545 goto out;
3546 }
3547 }
3548
3549 if (ctx->seen & SHMEM_SEEN_HUGE)
3550 sbinfo->huge = ctx->huge;
3551 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3552 sbinfo->max_blocks = ctx->blocks;
3553 if (ctx->seen & SHMEM_SEEN_INODES) {
3554 sbinfo->max_inodes = ctx->inodes;
3555 sbinfo->free_inodes = ctx->inodes - inodes;
3556 }
3557
3558 /*
3559 * Preserve previous mempolicy unless mpol remount option was specified.
3560 */
3561 if (ctx->mpol) {
3562 mpol_put(sbinfo->mpol);
3563 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3564 ctx->mpol = NULL;
3565 }
3566 spin_unlock(&sbinfo->stat_lock);
3567 return 0;
3568out:
3569 spin_unlock(&sbinfo->stat_lock);
3570 return invalf(fc, "tmpfs: %s", err);
3571}
3572
3573static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3574{
3575 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3576
3577 if (sbinfo->max_blocks != shmem_default_max_blocks())
3578 seq_printf(seq, ",size=%luk",
3579 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3580 if (sbinfo->max_inodes != shmem_default_max_inodes())
3581 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3582 if (sbinfo->mode != (0777 | S_ISVTX))
3583 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3584 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3585 seq_printf(seq, ",uid=%u",
3586 from_kuid_munged(&init_user_ns, sbinfo->uid));
3587 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3588 seq_printf(seq, ",gid=%u",
3589 from_kgid_munged(&init_user_ns, sbinfo->gid));
3590#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3591 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3592 if (sbinfo->huge)
3593 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3594#endif
3595 shmem_show_mpol(seq, sbinfo->mpol);
3596 return 0;
3597}
3598
3599#endif /* CONFIG_TMPFS */
3600
3601static void shmem_put_super(struct super_block *sb)
3602{
3603 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3604
3605 percpu_counter_destroy(&sbinfo->used_blocks);
3606 mpol_put(sbinfo->mpol);
3607 kfree(sbinfo);
3608 sb->s_fs_info = NULL;
3609}
3610
3611static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3612{
3613 struct shmem_options *ctx = fc->fs_private;
3614 struct inode *inode;
3615 struct shmem_sb_info *sbinfo;
3616 int err = -ENOMEM;
3617
3618 /* Round up to L1_CACHE_BYTES to resist false sharing */
3619 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3620 L1_CACHE_BYTES), GFP_KERNEL);
3621 if (!sbinfo)
3622 return -ENOMEM;
3623
3624 sb->s_fs_info = sbinfo;
3625
3626#ifdef CONFIG_TMPFS
3627 /*
3628 * Per default we only allow half of the physical ram per
3629 * tmpfs instance, limiting inodes to one per page of lowmem;
3630 * but the internal instance is left unlimited.
3631 */
3632 if (!(sb->s_flags & SB_KERNMOUNT)) {
3633 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3634 ctx->blocks = shmem_default_max_blocks();
3635 if (!(ctx->seen & SHMEM_SEEN_INODES))
3636 ctx->inodes = shmem_default_max_inodes();
3637 } else {
3638 sb->s_flags |= SB_NOUSER;
3639 }
3640 sb->s_export_op = &shmem_export_ops;
3641 sb->s_flags |= SB_NOSEC;
3642#else
3643 sb->s_flags |= SB_NOUSER;
3644#endif
3645 sbinfo->max_blocks = ctx->blocks;
3646 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3647 sbinfo->uid = ctx->uid;
3648 sbinfo->gid = ctx->gid;
3649 sbinfo->mode = ctx->mode;
3650 sbinfo->huge = ctx->huge;
3651 sbinfo->mpol = ctx->mpol;
3652 ctx->mpol = NULL;
3653
3654 spin_lock_init(&sbinfo->stat_lock);
3655 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3656 goto failed;
3657 spin_lock_init(&sbinfo->shrinklist_lock);
3658 INIT_LIST_HEAD(&sbinfo->shrinklist);
3659
3660 sb->s_maxbytes = MAX_LFS_FILESIZE;
3661 sb->s_blocksize = PAGE_SIZE;
3662 sb->s_blocksize_bits = PAGE_SHIFT;
3663 sb->s_magic = TMPFS_MAGIC;
3664 sb->s_op = &shmem_ops;
3665 sb->s_time_gran = 1;
3666#ifdef CONFIG_TMPFS_XATTR
3667 sb->s_xattr = shmem_xattr_handlers;
3668#endif
3669#ifdef CONFIG_TMPFS_POSIX_ACL
3670 sb->s_flags |= SB_POSIXACL;
3671#endif
3672 uuid_gen(&sb->s_uuid);
3673
3674 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3675 if (!inode)
3676 goto failed;
3677 inode->i_uid = sbinfo->uid;
3678 inode->i_gid = sbinfo->gid;
3679 sb->s_root = d_make_root(inode);
3680 if (!sb->s_root)
3681 goto failed;
3682 return 0;
3683
3684failed:
3685 shmem_put_super(sb);
3686 return err;
3687}
3688
3689static int shmem_get_tree(struct fs_context *fc)
3690{
3691 return get_tree_nodev(fc, shmem_fill_super);
3692}
3693
3694static void shmem_free_fc(struct fs_context *fc)
3695{
3696 struct shmem_options *ctx = fc->fs_private;
3697
3698 if (ctx) {
3699 mpol_put(ctx->mpol);
3700 kfree(ctx);
3701 }
3702}
3703
3704static const struct fs_context_operations shmem_fs_context_ops = {
3705 .free = shmem_free_fc,
3706 .get_tree = shmem_get_tree,
3707#ifdef CONFIG_TMPFS
3708 .parse_monolithic = shmem_parse_options,
3709 .parse_param = shmem_parse_one,
3710 .reconfigure = shmem_reconfigure,
3711#endif
3712};
3713
3714static struct kmem_cache *shmem_inode_cachep;
3715
3716static struct inode *shmem_alloc_inode(struct super_block *sb)
3717{
3718 struct shmem_inode_info *info;
3719 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3720 if (!info)
3721 return NULL;
3722 return &info->vfs_inode;
3723}
3724
3725static void shmem_free_in_core_inode(struct inode *inode)
3726{
3727 if (S_ISLNK(inode->i_mode))
3728 kfree(inode->i_link);
3729 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3730}
3731
3732static void shmem_destroy_inode(struct inode *inode)
3733{
3734 if (S_ISREG(inode->i_mode))
3735 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3736}
3737
3738static void shmem_init_inode(void *foo)
3739{
3740 struct shmem_inode_info *info = foo;
3741 inode_init_once(&info->vfs_inode);
3742}
3743
3744static void shmem_init_inodecache(void)
3745{
3746 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3747 sizeof(struct shmem_inode_info),
3748 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3749}
3750
3751static void shmem_destroy_inodecache(void)
3752{
3753 kmem_cache_destroy(shmem_inode_cachep);
3754}
3755
3756static const struct address_space_operations shmem_aops = {
3757 .writepage = shmem_writepage,
3758 .set_page_dirty = __set_page_dirty_no_writeback,
3759#ifdef CONFIG_TMPFS
3760 .write_begin = shmem_write_begin,
3761 .write_end = shmem_write_end,
3762#endif
3763#ifdef CONFIG_MIGRATION
3764 .migratepage = migrate_page,
3765#endif
3766 .error_remove_page = generic_error_remove_page,
3767};
3768
3769static const struct file_operations shmem_file_operations = {
3770 .mmap = shmem_mmap,
3771 .get_unmapped_area = shmem_get_unmapped_area,
3772#ifdef CONFIG_TMPFS
3773 .llseek = shmem_file_llseek,
3774 .read_iter = shmem_file_read_iter,
3775 .write_iter = generic_file_write_iter,
3776 .fsync = noop_fsync,
3777 .splice_read = generic_file_splice_read,
3778 .splice_write = iter_file_splice_write,
3779 .fallocate = shmem_fallocate,
3780#endif
3781};
3782
3783static const struct inode_operations shmem_inode_operations = {
3784 .getattr = shmem_getattr,
3785 .setattr = shmem_setattr,
3786#ifdef CONFIG_TMPFS_XATTR
3787 .listxattr = shmem_listxattr,
3788 .set_acl = simple_set_acl,
3789#endif
3790};
3791
3792static const struct inode_operations shmem_dir_inode_operations = {
3793#ifdef CONFIG_TMPFS
3794 .create = shmem_create,
3795 .lookup = simple_lookup,
3796 .link = shmem_link,
3797 .unlink = shmem_unlink,
3798 .symlink = shmem_symlink,
3799 .mkdir = shmem_mkdir,
3800 .rmdir = shmem_rmdir,
3801 .mknod = shmem_mknod,
3802 .rename = shmem_rename2,
3803 .tmpfile = shmem_tmpfile,
3804#endif
3805#ifdef CONFIG_TMPFS_XATTR
3806 .listxattr = shmem_listxattr,
3807#endif
3808#ifdef CONFIG_TMPFS_POSIX_ACL
3809 .setattr = shmem_setattr,
3810 .set_acl = simple_set_acl,
3811#endif
3812};
3813
3814static const struct inode_operations shmem_special_inode_operations = {
3815#ifdef CONFIG_TMPFS_XATTR
3816 .listxattr = shmem_listxattr,
3817#endif
3818#ifdef CONFIG_TMPFS_POSIX_ACL
3819 .setattr = shmem_setattr,
3820 .set_acl = simple_set_acl,
3821#endif
3822};
3823
3824static const struct super_operations shmem_ops = {
3825 .alloc_inode = shmem_alloc_inode,
3826 .free_inode = shmem_free_in_core_inode,
3827 .destroy_inode = shmem_destroy_inode,
3828#ifdef CONFIG_TMPFS
3829 .statfs = shmem_statfs,
3830 .show_options = shmem_show_options,
3831#endif
3832 .evict_inode = shmem_evict_inode,
3833 .drop_inode = generic_delete_inode,
3834 .put_super = shmem_put_super,
3835#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3836 .nr_cached_objects = shmem_unused_huge_count,
3837 .free_cached_objects = shmem_unused_huge_scan,
3838#endif
3839};
3840
3841static const struct vm_operations_struct shmem_vm_ops = {
3842 .fault = shmem_fault,
3843 .map_pages = filemap_map_pages,
3844#ifdef CONFIG_NUMA
3845 .set_policy = shmem_set_policy,
3846 .get_policy = shmem_get_policy,
3847#endif
3848};
3849
3850int shmem_init_fs_context(struct fs_context *fc)
3851{
3852 struct shmem_options *ctx;
3853
3854 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3855 if (!ctx)
3856 return -ENOMEM;
3857
3858 ctx->mode = 0777 | S_ISVTX;
3859 ctx->uid = current_fsuid();
3860 ctx->gid = current_fsgid();
3861
3862 fc->fs_private = ctx;
3863 fc->ops = &shmem_fs_context_ops;
3864 return 0;
3865}
3866
3867static struct file_system_type shmem_fs_type = {
3868 .owner = THIS_MODULE,
3869 .name = "tmpfs",
3870 .init_fs_context = shmem_init_fs_context,
3871#ifdef CONFIG_TMPFS
3872 .parameters = &shmem_fs_parameters,
3873#endif
3874 .kill_sb = kill_litter_super,
3875 .fs_flags = FS_USERNS_MOUNT,
3876};
3877
3878int __init shmem_init(void)
3879{
3880 int error;
3881
3882 shmem_init_inodecache();
3883
3884 error = register_filesystem(&shmem_fs_type);
3885 if (error) {
3886 pr_err("Could not register tmpfs\n");
3887 goto out2;
3888 }
3889
3890 shm_mnt = kern_mount(&shmem_fs_type);
3891 if (IS_ERR(shm_mnt)) {
3892 error = PTR_ERR(shm_mnt);
3893 pr_err("Could not kern_mount tmpfs\n");
3894 goto out1;
3895 }
3896
3897#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3898 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3899 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3900 else
3901 shmem_huge = 0; /* just in case it was patched */
3902#endif
3903 return 0;
3904
3905out1:
3906 unregister_filesystem(&shmem_fs_type);
3907out2:
3908 shmem_destroy_inodecache();
3909 shm_mnt = ERR_PTR(error);
3910 return error;
3911}
3912
3913#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3914static ssize_t shmem_enabled_show(struct kobject *kobj,
3915 struct kobj_attribute *attr, char *buf)
3916{
3917 int values[] = {
3918 SHMEM_HUGE_ALWAYS,
3919 SHMEM_HUGE_WITHIN_SIZE,
3920 SHMEM_HUGE_ADVISE,
3921 SHMEM_HUGE_NEVER,
3922 SHMEM_HUGE_DENY,
3923 SHMEM_HUGE_FORCE,
3924 };
3925 int i, count;
3926
3927 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3928 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3929
3930 count += sprintf(buf + count, fmt,
3931 shmem_format_huge(values[i]));
3932 }
3933 buf[count - 1] = '\n';
3934 return count;
3935}
3936
3937static ssize_t shmem_enabled_store(struct kobject *kobj,
3938 struct kobj_attribute *attr, const char *buf, size_t count)
3939{
3940 char tmp[16];
3941 int huge;
3942
3943 if (count + 1 > sizeof(tmp))
3944 return -EINVAL;
3945 memcpy(tmp, buf, count);
3946 tmp[count] = '\0';
3947 if (count && tmp[count - 1] == '\n')
3948 tmp[count - 1] = '\0';
3949
3950 huge = shmem_parse_huge(tmp);
3951 if (huge == -EINVAL)
3952 return -EINVAL;
3953 if (!has_transparent_hugepage() &&
3954 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3955 return -EINVAL;
3956
3957 shmem_huge = huge;
3958 if (shmem_huge > SHMEM_HUGE_DENY)
3959 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3960 return count;
3961}
3962
3963struct kobj_attribute shmem_enabled_attr =
3964 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3965#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3966
3967#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3968bool shmem_huge_enabled(struct vm_area_struct *vma)
3969{
3970 struct inode *inode = file_inode(vma->vm_file);
3971 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3972 loff_t i_size;
3973 pgoff_t off;
3974
3975 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3976 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3977 return false;
3978 if (shmem_huge == SHMEM_HUGE_FORCE)
3979 return true;
3980 if (shmem_huge == SHMEM_HUGE_DENY)
3981 return false;
3982 switch (sbinfo->huge) {
3983 case SHMEM_HUGE_NEVER:
3984 return false;
3985 case SHMEM_HUGE_ALWAYS:
3986 return true;
3987 case SHMEM_HUGE_WITHIN_SIZE:
3988 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3989 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3990 if (i_size >= HPAGE_PMD_SIZE &&
3991 i_size >> PAGE_SHIFT >= off)
3992 return true;
3993 /* fall through */
3994 case SHMEM_HUGE_ADVISE:
3995 /* TODO: implement fadvise() hints */
3996 return (vma->vm_flags & VM_HUGEPAGE);
3997 default:
3998 VM_BUG_ON(1);
3999 return false;
4000 }
4001}
4002#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4003
4004#else /* !CONFIG_SHMEM */
4005
4006/*
4007 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4008 *
4009 * This is intended for small system where the benefits of the full
4010 * shmem code (swap-backed and resource-limited) are outweighed by
4011 * their complexity. On systems without swap this code should be
4012 * effectively equivalent, but much lighter weight.
4013 */
4014
4015static struct file_system_type shmem_fs_type = {
4016 .name = "tmpfs",
4017 .init_fs_context = ramfs_init_fs_context,
4018 .parameters = &ramfs_fs_parameters,
4019 .kill_sb = kill_litter_super,
4020 .fs_flags = FS_USERNS_MOUNT,
4021};
4022
4023int __init shmem_init(void)
4024{
4025 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4026
4027 shm_mnt = kern_mount(&shmem_fs_type);
4028 BUG_ON(IS_ERR(shm_mnt));
4029
4030 return 0;
4031}
4032
4033int shmem_unuse(unsigned int type, bool frontswap,
4034 unsigned long *fs_pages_to_unuse)
4035{
4036 return 0;
4037}
4038
4039int shmem_lock(struct file *file, int lock, struct user_struct *user)
4040{
4041 return 0;
4042}
4043
4044void shmem_unlock_mapping(struct address_space *mapping)
4045{
4046}
4047
4048#ifdef CONFIG_MMU
4049unsigned long shmem_get_unmapped_area(struct file *file,
4050 unsigned long addr, unsigned long len,
4051 unsigned long pgoff, unsigned long flags)
4052{
4053 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4054}
4055#endif
4056
4057void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4058{
4059 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4060}
4061EXPORT_SYMBOL_GPL(shmem_truncate_range);
4062
4063#define shmem_vm_ops generic_file_vm_ops
4064#define shmem_file_operations ramfs_file_operations
4065#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4066#define shmem_acct_size(flags, size) 0
4067#define shmem_unacct_size(flags, size) do {} while (0)
4068
4069#endif /* CONFIG_SHMEM */
4070
4071/* common code */
4072
4073static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4074 unsigned long flags, unsigned int i_flags)
4075{
4076 struct inode *inode;
4077 struct file *res;
4078
4079 if (IS_ERR(mnt))
4080 return ERR_CAST(mnt);
4081
4082 if (size < 0 || size > MAX_LFS_FILESIZE)
4083 return ERR_PTR(-EINVAL);
4084
4085 if (shmem_acct_size(flags, size))
4086 return ERR_PTR(-ENOMEM);
4087
4088 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4089 flags);
4090 if (unlikely(!inode)) {
4091 shmem_unacct_size(flags, size);
4092 return ERR_PTR(-ENOSPC);
4093 }
4094 inode->i_flags |= i_flags;
4095 inode->i_size = size;
4096 clear_nlink(inode); /* It is unlinked */
4097 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4098 if (!IS_ERR(res))
4099 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4100 &shmem_file_operations);
4101 if (IS_ERR(res))
4102 iput(inode);
4103 return res;
4104}
4105
4106/**
4107 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4108 * kernel internal. There will be NO LSM permission checks against the
4109 * underlying inode. So users of this interface must do LSM checks at a
4110 * higher layer. The users are the big_key and shm implementations. LSM
4111 * checks are provided at the key or shm level rather than the inode.
4112 * @name: name for dentry (to be seen in /proc/<pid>/maps
4113 * @size: size to be set for the file
4114 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4115 */
4116struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4117{
4118 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4119}
4120
4121/**
4122 * shmem_file_setup - get an unlinked file living in tmpfs
4123 * @name: name for dentry (to be seen in /proc/<pid>/maps
4124 * @size: size to be set for the file
4125 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4126 */
4127struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4128{
4129 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4130}
4131EXPORT_SYMBOL_GPL(shmem_file_setup);
4132
4133/**
4134 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4135 * @mnt: the tmpfs mount where the file will be created
4136 * @name: name for dentry (to be seen in /proc/<pid>/maps
4137 * @size: size to be set for the file
4138 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4139 */
4140struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4141 loff_t size, unsigned long flags)
4142{
4143 return __shmem_file_setup(mnt, name, size, flags, 0);
4144}
4145EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4146
4147/**
4148 * shmem_zero_setup - setup a shared anonymous mapping
4149 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4150 */
4151int shmem_zero_setup(struct vm_area_struct *vma)
4152{
4153 struct file *file;
4154 loff_t size = vma->vm_end - vma->vm_start;
4155
4156 /*
4157 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4158 * between XFS directory reading and selinux: since this file is only
4159 * accessible to the user through its mapping, use S_PRIVATE flag to
4160 * bypass file security, in the same way as shmem_kernel_file_setup().
4161 */
4162 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4163 if (IS_ERR(file))
4164 return PTR_ERR(file);
4165
4166 if (vma->vm_file)
4167 fput(vma->vm_file);
4168 vma->vm_file = file;
4169 vma->vm_ops = &shmem_vm_ops;
4170
4171 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4172 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4173 (vma->vm_end & HPAGE_PMD_MASK)) {
4174 khugepaged_enter(vma, vma->vm_flags);
4175 }
4176
4177 return 0;
4178}
4179
4180/**
4181 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4182 * @mapping: the page's address_space
4183 * @index: the page index
4184 * @gfp: the page allocator flags to use if allocating
4185 *
4186 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4187 * with any new page allocations done using the specified allocation flags.
4188 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4189 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4190 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4191 *
4192 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4193 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4194 */
4195struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4196 pgoff_t index, gfp_t gfp)
4197{
4198#ifdef CONFIG_SHMEM
4199 struct inode *inode = mapping->host;
4200 struct page *page;
4201 int error;
4202
4203 BUG_ON(mapping->a_ops != &shmem_aops);
4204 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4205 gfp, NULL, NULL, NULL);
4206 if (error)
4207 page = ERR_PTR(error);
4208 else
4209 unlock_page(page);
4210 return page;
4211#else
4212 /*
4213 * The tiny !SHMEM case uses ramfs without swap
4214 */
4215 return read_cache_page_gfp(mapping, index, gfp);
4216#endif
4217}
4218EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);