blob: e8e3f52aea4ea288a3b5fadf422576bd7ec3ba6e [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/vmalloc.c
4 *
5 * Copyright (C) 1993 Linus Torvalds
6 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
9 * Numa awareness, Christoph Lameter, SGI, June 2005
10 */
11
12#include <linux/vmalloc.h>
13#include <linux/mm.h>
14#include <linux/module.h>
15#include <linux/highmem.h>
16#include <linux/sched/signal.h>
17#include <linux/slab.h>
18#include <linux/spinlock.h>
19#include <linux/interrupt.h>
20#include <linux/proc_fs.h>
21#include <linux/seq_file.h>
22#include <linux/set_memory.h>
23#include <linux/debugobjects.h>
24#include <linux/kallsyms.h>
25#include <linux/list.h>
26#include <linux/notifier.h>
27#include <linux/rbtree.h>
28#include <linux/radix-tree.h>
29#include <linux/rcupdate.h>
30#include <linux/pfn.h>
31#include <linux/kmemleak.h>
32#include <linux/atomic.h>
33#include <linux/compiler.h>
34#include <linux/llist.h>
35#include <linux/bitops.h>
36#include <linux/rbtree_augmented.h>
37#include <linux/overflow.h>
38
39#include <linux/uaccess.h>
40#include <asm/tlbflush.h>
41#include <asm/shmparam.h>
42
43#include "internal.h"
44
45struct vfree_deferred {
46 struct llist_head list;
47 struct work_struct wq;
48};
49static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
50
51static void __vunmap(const void *, int);
52
53static void free_work(struct work_struct *w)
54{
55 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
56 struct llist_node *t, *llnode;
57
58 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
59 __vunmap((void *)llnode, 1);
60}
61
62/*** Page table manipulation functions ***/
63
64static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
65{
66 pte_t *pte;
67
68 pte = pte_offset_kernel(pmd, addr);
69 do {
70 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
71 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
72 } while (pte++, addr += PAGE_SIZE, addr != end);
73}
74
75static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
76{
77 pmd_t *pmd;
78 unsigned long next;
79
80 pmd = pmd_offset(pud, addr);
81 do {
82 next = pmd_addr_end(addr, end);
83 if (pmd_clear_huge(pmd))
84 continue;
85 if (pmd_none_or_clear_bad(pmd))
86 continue;
87 vunmap_pte_range(pmd, addr, next);
88
89 cond_resched();
90 } while (pmd++, addr = next, addr != end);
91}
92
93static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
94{
95 pud_t *pud;
96 unsigned long next;
97
98 pud = pud_offset(p4d, addr);
99 do {
100 next = pud_addr_end(addr, end);
101 if (pud_clear_huge(pud))
102 continue;
103 if (pud_none_or_clear_bad(pud))
104 continue;
105 vunmap_pmd_range(pud, addr, next);
106 } while (pud++, addr = next, addr != end);
107}
108
109static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
110{
111 p4d_t *p4d;
112 unsigned long next;
113
114 p4d = p4d_offset(pgd, addr);
115 do {
116 next = p4d_addr_end(addr, end);
117 if (p4d_clear_huge(p4d))
118 continue;
119 if (p4d_none_or_clear_bad(p4d))
120 continue;
121 vunmap_pud_range(p4d, addr, next);
122 } while (p4d++, addr = next, addr != end);
123}
124
125static void vunmap_page_range(unsigned long addr, unsigned long end)
126{
127 pgd_t *pgd;
128 unsigned long next;
129
130 BUG_ON(addr >= end);
131 pgd = pgd_offset_k(addr);
132 do {
133 next = pgd_addr_end(addr, end);
134 if (pgd_none_or_clear_bad(pgd))
135 continue;
136 vunmap_p4d_range(pgd, addr, next);
137 } while (pgd++, addr = next, addr != end);
138}
139
140static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
141 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
142{
143 pte_t *pte;
144
145 /*
146 * nr is a running index into the array which helps higher level
147 * callers keep track of where we're up to.
148 */
149
150 pte = pte_alloc_kernel(pmd, addr);
151 if (!pte)
152 return -ENOMEM;
153 do {
154 struct page *page = pages[*nr];
155
156 if (WARN_ON(!pte_none(*pte)))
157 return -EBUSY;
158 if (WARN_ON(!page))
159 return -ENOMEM;
160 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
161 (*nr)++;
162 } while (pte++, addr += PAGE_SIZE, addr != end);
163 return 0;
164}
165
166static int vmap_pmd_range(pud_t *pud, unsigned long addr,
167 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
168{
169 pmd_t *pmd;
170 unsigned long next;
171
172 pmd = pmd_alloc(&init_mm, pud, addr);
173 if (!pmd)
174 return -ENOMEM;
175 do {
176 next = pmd_addr_end(addr, end);
177 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
178 return -ENOMEM;
179 } while (pmd++, addr = next, addr != end);
180 return 0;
181}
182
183static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
184 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
185{
186 pud_t *pud;
187 unsigned long next;
188
189 pud = pud_alloc(&init_mm, p4d, addr);
190 if (!pud)
191 return -ENOMEM;
192 do {
193 next = pud_addr_end(addr, end);
194 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
195 return -ENOMEM;
196 } while (pud++, addr = next, addr != end);
197 return 0;
198}
199
200static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
201 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
202{
203 p4d_t *p4d;
204 unsigned long next;
205
206 p4d = p4d_alloc(&init_mm, pgd, addr);
207 if (!p4d)
208 return -ENOMEM;
209 do {
210 next = p4d_addr_end(addr, end);
211 if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
212 return -ENOMEM;
213 } while (p4d++, addr = next, addr != end);
214 return 0;
215}
216
217/*
218 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
219 * will have pfns corresponding to the "pages" array.
220 *
221 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
222 */
223static int vmap_page_range_noflush(unsigned long start, unsigned long end,
224 pgprot_t prot, struct page **pages)
225{
226 pgd_t *pgd;
227 unsigned long next;
228 unsigned long addr = start;
229 int err = 0;
230 int nr = 0;
231
232 BUG_ON(addr >= end);
233 pgd = pgd_offset_k(addr);
234 do {
235 next = pgd_addr_end(addr, end);
236 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
237 if (err)
238 return err;
239 } while (pgd++, addr = next, addr != end);
240
241 return nr;
242}
243
244static int vmap_page_range(unsigned long start, unsigned long end,
245 pgprot_t prot, struct page **pages)
246{
247 int ret;
248
249 ret = vmap_page_range_noflush(start, end, prot, pages);
250 flush_cache_vmap(start, end);
251 return ret;
252}
253
254int is_vmalloc_or_module_addr(const void *x)
255{
256 /*
257 * ARM, x86-64 and sparc64 put modules in a special place,
258 * and fall back on vmalloc() if that fails. Others
259 * just put it in the vmalloc space.
260 */
261#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
262 unsigned long addr = (unsigned long)x;
263 if (addr >= MODULES_VADDR && addr < MODULES_END)
264 return 1;
265#endif
266 return is_vmalloc_addr(x);
267}
268
269/*
270 * Walk a vmap address to the struct page it maps.
271 */
272struct page *vmalloc_to_page(const void *vmalloc_addr)
273{
274 unsigned long addr = (unsigned long) vmalloc_addr;
275 struct page *page = NULL;
276 pgd_t *pgd = pgd_offset_k(addr);
277 p4d_t *p4d;
278 pud_t *pud;
279 pmd_t *pmd;
280 pte_t *ptep, pte;
281
282 /*
283 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
284 * architectures that do not vmalloc module space
285 */
286 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
287
288 if (pgd_none(*pgd))
289 return NULL;
290 p4d = p4d_offset(pgd, addr);
291 if (p4d_none(*p4d))
292 return NULL;
293 pud = pud_offset(p4d, addr);
294
295 /*
296 * Don't dereference bad PUD or PMD (below) entries. This will also
297 * identify huge mappings, which we may encounter on architectures
298 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
299 * identified as vmalloc addresses by is_vmalloc_addr(), but are
300 * not [unambiguously] associated with a struct page, so there is
301 * no correct value to return for them.
302 */
303 WARN_ON_ONCE(pud_bad(*pud));
304 if (pud_none(*pud) || pud_bad(*pud))
305 return NULL;
306 pmd = pmd_offset(pud, addr);
307 WARN_ON_ONCE(pmd_bad(*pmd));
308 if (pmd_none(*pmd) || pmd_bad(*pmd))
309 return NULL;
310
311 ptep = pte_offset_map(pmd, addr);
312 pte = *ptep;
313 if (pte_present(pte))
314 page = pte_page(pte);
315 pte_unmap(ptep);
316 return page;
317}
318EXPORT_SYMBOL(vmalloc_to_page);
319
320/*
321 * Map a vmalloc()-space virtual address to the physical page frame number.
322 */
323unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
324{
325 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
326}
327EXPORT_SYMBOL(vmalloc_to_pfn);
328
329
330/*** Global kva allocator ***/
331
332#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
333#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
334
335
336static DEFINE_SPINLOCK(vmap_area_lock);
337/* Export for kexec only */
338LIST_HEAD(vmap_area_list);
339static LLIST_HEAD(vmap_purge_list);
340static struct rb_root vmap_area_root = RB_ROOT;
341static bool vmap_initialized __read_mostly;
342
343/*
344 * This kmem_cache is used for vmap_area objects. Instead of
345 * allocating from slab we reuse an object from this cache to
346 * make things faster. Especially in "no edge" splitting of
347 * free block.
348 */
349static struct kmem_cache *vmap_area_cachep;
350
351/*
352 * This linked list is used in pair with free_vmap_area_root.
353 * It gives O(1) access to prev/next to perform fast coalescing.
354 */
355static LIST_HEAD(free_vmap_area_list);
356
357/*
358 * This augment red-black tree represents the free vmap space.
359 * All vmap_area objects in this tree are sorted by va->va_start
360 * address. It is used for allocation and merging when a vmap
361 * object is released.
362 *
363 * Each vmap_area node contains a maximum available free block
364 * of its sub-tree, right or left. Therefore it is possible to
365 * find a lowest match of free area.
366 */
367static struct rb_root free_vmap_area_root = RB_ROOT;
368
369/*
370 * Preload a CPU with one object for "no edge" split case. The
371 * aim is to get rid of allocations from the atomic context, thus
372 * to use more permissive allocation masks.
373 */
374static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
375
376static __always_inline unsigned long
377va_size(struct vmap_area *va)
378{
379 return (va->va_end - va->va_start);
380}
381
382static __always_inline unsigned long
383get_subtree_max_size(struct rb_node *node)
384{
385 struct vmap_area *va;
386
387 va = rb_entry_safe(node, struct vmap_area, rb_node);
388 return va ? va->subtree_max_size : 0;
389}
390
391/*
392 * Gets called when remove the node and rotate.
393 */
394static __always_inline unsigned long
395compute_subtree_max_size(struct vmap_area *va)
396{
397 return max3(va_size(va),
398 get_subtree_max_size(va->rb_node.rb_left),
399 get_subtree_max_size(va->rb_node.rb_right));
400}
401
402RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
403 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
404
405static void purge_vmap_area_lazy(void);
406static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
407static unsigned long lazy_max_pages(void);
408
409static atomic_long_t nr_vmalloc_pages;
410
411unsigned long vmalloc_nr_pages(void)
412{
413 return atomic_long_read(&nr_vmalloc_pages);
414}
415
416static struct vmap_area *__find_vmap_area(unsigned long addr)
417{
418 struct rb_node *n = vmap_area_root.rb_node;
419
420 while (n) {
421 struct vmap_area *va;
422
423 va = rb_entry(n, struct vmap_area, rb_node);
424 if (addr < va->va_start)
425 n = n->rb_left;
426 else if (addr >= va->va_end)
427 n = n->rb_right;
428 else
429 return va;
430 }
431
432 return NULL;
433}
434
435/*
436 * This function returns back addresses of parent node
437 * and its left or right link for further processing.
438 */
439static __always_inline struct rb_node **
440find_va_links(struct vmap_area *va,
441 struct rb_root *root, struct rb_node *from,
442 struct rb_node **parent)
443{
444 struct vmap_area *tmp_va;
445 struct rb_node **link;
446
447 if (root) {
448 link = &root->rb_node;
449 if (unlikely(!*link)) {
450 *parent = NULL;
451 return link;
452 }
453 } else {
454 link = &from;
455 }
456
457 /*
458 * Go to the bottom of the tree. When we hit the last point
459 * we end up with parent rb_node and correct direction, i name
460 * it link, where the new va->rb_node will be attached to.
461 */
462 do {
463 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
464
465 /*
466 * During the traversal we also do some sanity check.
467 * Trigger the BUG() if there are sides(left/right)
468 * or full overlaps.
469 */
470 if (va->va_start < tmp_va->va_end &&
471 va->va_end <= tmp_va->va_start)
472 link = &(*link)->rb_left;
473 else if (va->va_end > tmp_va->va_start &&
474 va->va_start >= tmp_va->va_end)
475 link = &(*link)->rb_right;
476 else
477 BUG();
478 } while (*link);
479
480 *parent = &tmp_va->rb_node;
481 return link;
482}
483
484static __always_inline struct list_head *
485get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
486{
487 struct list_head *list;
488
489 if (unlikely(!parent))
490 /*
491 * The red-black tree where we try to find VA neighbors
492 * before merging or inserting is empty, i.e. it means
493 * there is no free vmap space. Normally it does not
494 * happen but we handle this case anyway.
495 */
496 return NULL;
497
498 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
499 return (&parent->rb_right == link ? list->next : list);
500}
501
502static __always_inline void
503link_va(struct vmap_area *va, struct rb_root *root,
504 struct rb_node *parent, struct rb_node **link, struct list_head *head)
505{
506 /*
507 * VA is still not in the list, but we can
508 * identify its future previous list_head node.
509 */
510 if (likely(parent)) {
511 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
512 if (&parent->rb_right != link)
513 head = head->prev;
514 }
515
516 /* Insert to the rb-tree */
517 rb_link_node(&va->rb_node, parent, link);
518 if (root == &free_vmap_area_root) {
519 /*
520 * Some explanation here. Just perform simple insertion
521 * to the tree. We do not set va->subtree_max_size to
522 * its current size before calling rb_insert_augmented().
523 * It is because of we populate the tree from the bottom
524 * to parent levels when the node _is_ in the tree.
525 *
526 * Therefore we set subtree_max_size to zero after insertion,
527 * to let __augment_tree_propagate_from() puts everything to
528 * the correct order later on.
529 */
530 rb_insert_augmented(&va->rb_node,
531 root, &free_vmap_area_rb_augment_cb);
532 va->subtree_max_size = 0;
533 } else {
534 rb_insert_color(&va->rb_node, root);
535 }
536
537 /* Address-sort this list */
538 list_add(&va->list, head);
539}
540
541static __always_inline void
542unlink_va(struct vmap_area *va, struct rb_root *root)
543{
544 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
545 return;
546
547 if (root == &free_vmap_area_root)
548 rb_erase_augmented(&va->rb_node,
549 root, &free_vmap_area_rb_augment_cb);
550 else
551 rb_erase(&va->rb_node, root);
552
553 list_del(&va->list);
554 RB_CLEAR_NODE(&va->rb_node);
555}
556
557#if DEBUG_AUGMENT_PROPAGATE_CHECK
558static void
559augment_tree_propagate_check(struct rb_node *n)
560{
561 struct vmap_area *va;
562 struct rb_node *node;
563 unsigned long size;
564 bool found = false;
565
566 if (n == NULL)
567 return;
568
569 va = rb_entry(n, struct vmap_area, rb_node);
570 size = va->subtree_max_size;
571 node = n;
572
573 while (node) {
574 va = rb_entry(node, struct vmap_area, rb_node);
575
576 if (get_subtree_max_size(node->rb_left) == size) {
577 node = node->rb_left;
578 } else {
579 if (va_size(va) == size) {
580 found = true;
581 break;
582 }
583
584 node = node->rb_right;
585 }
586 }
587
588 if (!found) {
589 va = rb_entry(n, struct vmap_area, rb_node);
590 pr_emerg("tree is corrupted: %lu, %lu\n",
591 va_size(va), va->subtree_max_size);
592 }
593
594 augment_tree_propagate_check(n->rb_left);
595 augment_tree_propagate_check(n->rb_right);
596}
597#endif
598
599/*
600 * This function populates subtree_max_size from bottom to upper
601 * levels starting from VA point. The propagation must be done
602 * when VA size is modified by changing its va_start/va_end. Or
603 * in case of newly inserting of VA to the tree.
604 *
605 * It means that __augment_tree_propagate_from() must be called:
606 * - After VA has been inserted to the tree(free path);
607 * - After VA has been shrunk(allocation path);
608 * - After VA has been increased(merging path).
609 *
610 * Please note that, it does not mean that upper parent nodes
611 * and their subtree_max_size are recalculated all the time up
612 * to the root node.
613 *
614 * 4--8
615 * /\
616 * / \
617 * / \
618 * 2--2 8--8
619 *
620 * For example if we modify the node 4, shrinking it to 2, then
621 * no any modification is required. If we shrink the node 2 to 1
622 * its subtree_max_size is updated only, and set to 1. If we shrink
623 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
624 * node becomes 4--6.
625 */
626static __always_inline void
627augment_tree_propagate_from(struct vmap_area *va)
628{
629 struct rb_node *node = &va->rb_node;
630 unsigned long new_va_sub_max_size;
631
632 while (node) {
633 va = rb_entry(node, struct vmap_area, rb_node);
634 new_va_sub_max_size = compute_subtree_max_size(va);
635
636 /*
637 * If the newly calculated maximum available size of the
638 * subtree is equal to the current one, then it means that
639 * the tree is propagated correctly. So we have to stop at
640 * this point to save cycles.
641 */
642 if (va->subtree_max_size == new_va_sub_max_size)
643 break;
644
645 va->subtree_max_size = new_va_sub_max_size;
646 node = rb_parent(&va->rb_node);
647 }
648
649#if DEBUG_AUGMENT_PROPAGATE_CHECK
650 augment_tree_propagate_check(free_vmap_area_root.rb_node);
651#endif
652}
653
654static void
655insert_vmap_area(struct vmap_area *va,
656 struct rb_root *root, struct list_head *head)
657{
658 struct rb_node **link;
659 struct rb_node *parent;
660
661 link = find_va_links(va, root, NULL, &parent);
662 link_va(va, root, parent, link, head);
663}
664
665static void
666insert_vmap_area_augment(struct vmap_area *va,
667 struct rb_node *from, struct rb_root *root,
668 struct list_head *head)
669{
670 struct rb_node **link;
671 struct rb_node *parent;
672
673 if (from)
674 link = find_va_links(va, NULL, from, &parent);
675 else
676 link = find_va_links(va, root, NULL, &parent);
677
678 link_va(va, root, parent, link, head);
679 augment_tree_propagate_from(va);
680}
681
682/*
683 * Merge de-allocated chunk of VA memory with previous
684 * and next free blocks. If coalesce is not done a new
685 * free area is inserted. If VA has been merged, it is
686 * freed.
687 */
688static __always_inline void
689merge_or_add_vmap_area(struct vmap_area *va,
690 struct rb_root *root, struct list_head *head)
691{
692 struct vmap_area *sibling;
693 struct list_head *next;
694 struct rb_node **link;
695 struct rb_node *parent;
696 bool merged = false;
697
698 /*
699 * Find a place in the tree where VA potentially will be
700 * inserted, unless it is merged with its sibling/siblings.
701 */
702 link = find_va_links(va, root, NULL, &parent);
703
704 /*
705 * Get next node of VA to check if merging can be done.
706 */
707 next = get_va_next_sibling(parent, link);
708 if (unlikely(next == NULL))
709 goto insert;
710
711 /*
712 * start end
713 * | |
714 * |<------VA------>|<-----Next----->|
715 * | |
716 * start end
717 */
718 if (next != head) {
719 sibling = list_entry(next, struct vmap_area, list);
720 if (sibling->va_start == va->va_end) {
721 sibling->va_start = va->va_start;
722
723 /* Check and update the tree if needed. */
724 augment_tree_propagate_from(sibling);
725
726 /* Free vmap_area object. */
727 kmem_cache_free(vmap_area_cachep, va);
728
729 /* Point to the new merged area. */
730 va = sibling;
731 merged = true;
732 }
733 }
734
735 /*
736 * start end
737 * | |
738 * |<-----Prev----->|<------VA------>|
739 * | |
740 * start end
741 */
742 if (next->prev != head) {
743 sibling = list_entry(next->prev, struct vmap_area, list);
744 if (sibling->va_end == va->va_start) {
745 sibling->va_end = va->va_end;
746
747 /* Check and update the tree if needed. */
748 augment_tree_propagate_from(sibling);
749
750 if (merged)
751 unlink_va(va, root);
752
753 /* Free vmap_area object. */
754 kmem_cache_free(vmap_area_cachep, va);
755 return;
756 }
757 }
758
759insert:
760 if (!merged) {
761 link_va(va, root, parent, link, head);
762 augment_tree_propagate_from(va);
763 }
764}
765
766static __always_inline bool
767is_within_this_va(struct vmap_area *va, unsigned long size,
768 unsigned long align, unsigned long vstart)
769{
770 unsigned long nva_start_addr;
771
772 if (va->va_start > vstart)
773 nva_start_addr = ALIGN(va->va_start, align);
774 else
775 nva_start_addr = ALIGN(vstart, align);
776
777 /* Can be overflowed due to big size or alignment. */
778 if (nva_start_addr + size < nva_start_addr ||
779 nva_start_addr < vstart)
780 return false;
781
782 return (nva_start_addr + size <= va->va_end);
783}
784
785/*
786 * Find the first free block(lowest start address) in the tree,
787 * that will accomplish the request corresponding to passing
788 * parameters.
789 */
790static __always_inline struct vmap_area *
791find_vmap_lowest_match(unsigned long size,
792 unsigned long align, unsigned long vstart)
793{
794 struct vmap_area *va;
795 struct rb_node *node;
796 unsigned long length;
797
798 /* Start from the root. */
799 node = free_vmap_area_root.rb_node;
800
801 /* Adjust the search size for alignment overhead. */
802 length = size + align - 1;
803
804 while (node) {
805 va = rb_entry(node, struct vmap_area, rb_node);
806
807 if (get_subtree_max_size(node->rb_left) >= length &&
808 vstart < va->va_start) {
809 node = node->rb_left;
810 } else {
811 if (is_within_this_va(va, size, align, vstart))
812 return va;
813
814 /*
815 * Does not make sense to go deeper towards the right
816 * sub-tree if it does not have a free block that is
817 * equal or bigger to the requested search length.
818 */
819 if (get_subtree_max_size(node->rb_right) >= length) {
820 node = node->rb_right;
821 continue;
822 }
823
824 /*
825 * OK. We roll back and find the first right sub-tree,
826 * that will satisfy the search criteria. It can happen
827 * only once due to "vstart" restriction.
828 */
829 while ((node = rb_parent(node))) {
830 va = rb_entry(node, struct vmap_area, rb_node);
831 if (is_within_this_va(va, size, align, vstart))
832 return va;
833
834 if (get_subtree_max_size(node->rb_right) >= length &&
835 vstart <= va->va_start) {
836 node = node->rb_right;
837 break;
838 }
839 }
840 }
841 }
842
843 return NULL;
844}
845
846#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
847#include <linux/random.h>
848
849static struct vmap_area *
850find_vmap_lowest_linear_match(unsigned long size,
851 unsigned long align, unsigned long vstart)
852{
853 struct vmap_area *va;
854
855 list_for_each_entry(va, &free_vmap_area_list, list) {
856 if (!is_within_this_va(va, size, align, vstart))
857 continue;
858
859 return va;
860 }
861
862 return NULL;
863}
864
865static void
866find_vmap_lowest_match_check(unsigned long size)
867{
868 struct vmap_area *va_1, *va_2;
869 unsigned long vstart;
870 unsigned int rnd;
871
872 get_random_bytes(&rnd, sizeof(rnd));
873 vstart = VMALLOC_START + rnd;
874
875 va_1 = find_vmap_lowest_match(size, 1, vstart);
876 va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
877
878 if (va_1 != va_2)
879 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
880 va_1, va_2, vstart);
881}
882#endif
883
884enum fit_type {
885 NOTHING_FIT = 0,
886 FL_FIT_TYPE = 1, /* full fit */
887 LE_FIT_TYPE = 2, /* left edge fit */
888 RE_FIT_TYPE = 3, /* right edge fit */
889 NE_FIT_TYPE = 4 /* no edge fit */
890};
891
892static __always_inline enum fit_type
893classify_va_fit_type(struct vmap_area *va,
894 unsigned long nva_start_addr, unsigned long size)
895{
896 enum fit_type type;
897
898 /* Check if it is within VA. */
899 if (nva_start_addr < va->va_start ||
900 nva_start_addr + size > va->va_end)
901 return NOTHING_FIT;
902
903 /* Now classify. */
904 if (va->va_start == nva_start_addr) {
905 if (va->va_end == nva_start_addr + size)
906 type = FL_FIT_TYPE;
907 else
908 type = LE_FIT_TYPE;
909 } else if (va->va_end == nva_start_addr + size) {
910 type = RE_FIT_TYPE;
911 } else {
912 type = NE_FIT_TYPE;
913 }
914
915 return type;
916}
917
918static __always_inline int
919adjust_va_to_fit_type(struct vmap_area *va,
920 unsigned long nva_start_addr, unsigned long size,
921 enum fit_type type)
922{
923 struct vmap_area *lva = NULL;
924
925 if (type == FL_FIT_TYPE) {
926 /*
927 * No need to split VA, it fully fits.
928 *
929 * | |
930 * V NVA V
931 * |---------------|
932 */
933 unlink_va(va, &free_vmap_area_root);
934 kmem_cache_free(vmap_area_cachep, va);
935 } else if (type == LE_FIT_TYPE) {
936 /*
937 * Split left edge of fit VA.
938 *
939 * | |
940 * V NVA V R
941 * |-------|-------|
942 */
943 va->va_start += size;
944 } else if (type == RE_FIT_TYPE) {
945 /*
946 * Split right edge of fit VA.
947 *
948 * | |
949 * L V NVA V
950 * |-------|-------|
951 */
952 va->va_end = nva_start_addr;
953 } else if (type == NE_FIT_TYPE) {
954 /*
955 * Split no edge of fit VA.
956 *
957 * | |
958 * L V NVA V R
959 * |---|-------|---|
960 */
961 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
962 if (unlikely(!lva)) {
963 /*
964 * For percpu allocator we do not do any pre-allocation
965 * and leave it as it is. The reason is it most likely
966 * never ends up with NE_FIT_TYPE splitting. In case of
967 * percpu allocations offsets and sizes are aligned to
968 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
969 * are its main fitting cases.
970 *
971 * There are a few exceptions though, as an example it is
972 * a first allocation (early boot up) when we have "one"
973 * big free space that has to be split.
974 */
975 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
976 if (!lva)
977 return -1;
978 }
979
980 /*
981 * Build the remainder.
982 */
983 lva->va_start = va->va_start;
984 lva->va_end = nva_start_addr;
985
986 /*
987 * Shrink this VA to remaining size.
988 */
989 va->va_start = nva_start_addr + size;
990 } else {
991 return -1;
992 }
993
994 if (type != FL_FIT_TYPE) {
995 augment_tree_propagate_from(va);
996
997 if (lva) /* type == NE_FIT_TYPE */
998 insert_vmap_area_augment(lva, &va->rb_node,
999 &free_vmap_area_root, &free_vmap_area_list);
1000 }
1001
1002 return 0;
1003}
1004
1005/*
1006 * Returns a start address of the newly allocated area, if success.
1007 * Otherwise a vend is returned that indicates failure.
1008 */
1009static __always_inline unsigned long
1010__alloc_vmap_area(unsigned long size, unsigned long align,
1011 unsigned long vstart, unsigned long vend)
1012{
1013 unsigned long nva_start_addr;
1014 struct vmap_area *va;
1015 enum fit_type type;
1016 int ret;
1017
1018 va = find_vmap_lowest_match(size, align, vstart);
1019 if (unlikely(!va))
1020 return vend;
1021
1022 if (va->va_start > vstart)
1023 nva_start_addr = ALIGN(va->va_start, align);
1024 else
1025 nva_start_addr = ALIGN(vstart, align);
1026
1027 /* Check the "vend" restriction. */
1028 if (nva_start_addr + size > vend)
1029 return vend;
1030
1031 /* Classify what we have found. */
1032 type = classify_va_fit_type(va, nva_start_addr, size);
1033 if (WARN_ON_ONCE(type == NOTHING_FIT))
1034 return vend;
1035
1036 /* Update the free vmap_area. */
1037 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1038 if (ret)
1039 return vend;
1040
1041#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1042 find_vmap_lowest_match_check(size);
1043#endif
1044
1045 return nva_start_addr;
1046}
1047
1048/*
1049 * Allocate a region of KVA of the specified size and alignment, within the
1050 * vstart and vend.
1051 */
1052static struct vmap_area *alloc_vmap_area(unsigned long size,
1053 unsigned long align,
1054 unsigned long vstart, unsigned long vend,
1055 int node, gfp_t gfp_mask)
1056{
1057 struct vmap_area *va, *pva;
1058 unsigned long addr;
1059 int purged = 0;
1060
1061 BUG_ON(!size);
1062 BUG_ON(offset_in_page(size));
1063 BUG_ON(!is_power_of_2(align));
1064
1065 if (unlikely(!vmap_initialized))
1066 return ERR_PTR(-EBUSY);
1067
1068 might_sleep();
1069
1070 va = kmem_cache_alloc_node(vmap_area_cachep,
1071 gfp_mask & GFP_RECLAIM_MASK, node);
1072 if (unlikely(!va))
1073 return ERR_PTR(-ENOMEM);
1074
1075 /*
1076 * Only scan the relevant parts containing pointers to other objects
1077 * to avoid false negatives.
1078 */
1079 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
1080
1081retry:
1082 /*
1083 * Preload this CPU with one extra vmap_area object to ensure
1084 * that we have it available when fit type of free area is
1085 * NE_FIT_TYPE.
1086 *
1087 * The preload is done in non-atomic context, thus it allows us
1088 * to use more permissive allocation masks to be more stable under
1089 * low memory condition and high memory pressure.
1090 *
1091 * Even if it fails we do not really care about that. Just proceed
1092 * as it is. "overflow" path will refill the cache we allocate from.
1093 */
1094 preempt_disable();
1095 if (!__this_cpu_read(ne_fit_preload_node)) {
1096 preempt_enable();
1097 pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node);
1098 preempt_disable();
1099
1100 if (__this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) {
1101 if (pva)
1102 kmem_cache_free(vmap_area_cachep, pva);
1103 }
1104 }
1105
1106 spin_lock(&vmap_area_lock);
1107 preempt_enable();
1108
1109 /*
1110 * If an allocation fails, the "vend" address is
1111 * returned. Therefore trigger the overflow path.
1112 */
1113 addr = __alloc_vmap_area(size, align, vstart, vend);
1114 if (unlikely(addr == vend))
1115 goto overflow;
1116
1117 va->va_start = addr;
1118 va->va_end = addr + size;
1119 va->vm = NULL;
1120 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1121
1122 spin_unlock(&vmap_area_lock);
1123
1124 BUG_ON(!IS_ALIGNED(va->va_start, align));
1125 BUG_ON(va->va_start < vstart);
1126 BUG_ON(va->va_end > vend);
1127
1128 return va;
1129
1130overflow:
1131 spin_unlock(&vmap_area_lock);
1132 if (!purged) {
1133 purge_vmap_area_lazy();
1134 purged = 1;
1135 goto retry;
1136 }
1137
1138 if (gfpflags_allow_blocking(gfp_mask)) {
1139 unsigned long freed = 0;
1140 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1141 if (freed > 0) {
1142 purged = 0;
1143 goto retry;
1144 }
1145 }
1146
1147 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1148 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1149 size);
1150
1151 kmem_cache_free(vmap_area_cachep, va);
1152 return ERR_PTR(-EBUSY);
1153}
1154
1155int register_vmap_purge_notifier(struct notifier_block *nb)
1156{
1157 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1158}
1159EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1160
1161int unregister_vmap_purge_notifier(struct notifier_block *nb)
1162{
1163 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1164}
1165EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1166
1167static void __free_vmap_area(struct vmap_area *va)
1168{
1169 /*
1170 * Remove from the busy tree/list.
1171 */
1172 unlink_va(va, &vmap_area_root);
1173
1174 /*
1175 * Merge VA with its neighbors, otherwise just add it.
1176 */
1177 merge_or_add_vmap_area(va,
1178 &free_vmap_area_root, &free_vmap_area_list);
1179}
1180
1181/*
1182 * Free a region of KVA allocated by alloc_vmap_area
1183 */
1184static void free_vmap_area(struct vmap_area *va)
1185{
1186 spin_lock(&vmap_area_lock);
1187 __free_vmap_area(va);
1188 spin_unlock(&vmap_area_lock);
1189}
1190
1191/*
1192 * Clear the pagetable entries of a given vmap_area
1193 */
1194static void unmap_vmap_area(struct vmap_area *va)
1195{
1196 vunmap_page_range(va->va_start, va->va_end);
1197}
1198
1199/*
1200 * lazy_max_pages is the maximum amount of virtual address space we gather up
1201 * before attempting to purge with a TLB flush.
1202 *
1203 * There is a tradeoff here: a larger number will cover more kernel page tables
1204 * and take slightly longer to purge, but it will linearly reduce the number of
1205 * global TLB flushes that must be performed. It would seem natural to scale
1206 * this number up linearly with the number of CPUs (because vmapping activity
1207 * could also scale linearly with the number of CPUs), however it is likely
1208 * that in practice, workloads might be constrained in other ways that mean
1209 * vmap activity will not scale linearly with CPUs. Also, I want to be
1210 * conservative and not introduce a big latency on huge systems, so go with
1211 * a less aggressive log scale. It will still be an improvement over the old
1212 * code, and it will be simple to change the scale factor if we find that it
1213 * becomes a problem on bigger systems.
1214 */
1215static unsigned long lazy_max_pages(void)
1216{
1217 unsigned int log;
1218
1219 log = fls(num_online_cpus());
1220
1221 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1222}
1223
1224static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1225
1226/*
1227 * Serialize vmap purging. There is no actual criticial section protected
1228 * by this look, but we want to avoid concurrent calls for performance
1229 * reasons and to make the pcpu_get_vm_areas more deterministic.
1230 */
1231static DEFINE_MUTEX(vmap_purge_lock);
1232
1233/* for per-CPU blocks */
1234static void purge_fragmented_blocks_allcpus(void);
1235
1236/*
1237 * called before a call to iounmap() if the caller wants vm_area_struct's
1238 * immediately freed.
1239 */
1240void set_iounmap_nonlazy(void)
1241{
1242 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1243}
1244
1245/*
1246 * Purges all lazily-freed vmap areas.
1247 */
1248static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1249{
1250 unsigned long resched_threshold;
1251 struct llist_node *valist;
1252 struct vmap_area *va;
1253 struct vmap_area *n_va;
1254
1255 lockdep_assert_held(&vmap_purge_lock);
1256
1257 valist = llist_del_all(&vmap_purge_list);
1258 if (unlikely(valist == NULL))
1259 return false;
1260
1261 /* assert on wrong valist */
1262 if (unlikely((ulong)valist < PAGE_OFFSET)) {
1263 pr_err("%s: valist %lx\n", __func__, (unsigned long)valist);
1264 BUG();
1265 }
1266
1267 /*
1268 * First make sure the mappings are removed from all page-tables
1269 * before they are freed.
1270 */
1271 vmalloc_sync_unmappings();
1272
1273 /*
1274 * TODO: to calculate a flush range without looping.
1275 * The list can be up to lazy_max_pages() elements.
1276 */
1277 llist_for_each_entry(va, valist, purge_list) {
1278 if (va->va_start < start)
1279 start = va->va_start;
1280 if (va->va_end > end)
1281 end = va->va_end;
1282 }
1283
1284 flush_tlb_kernel_range(start, end);
1285 resched_threshold = lazy_max_pages() << 1;
1286
1287 spin_lock(&vmap_area_lock);
1288 llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1289 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1290
1291 /*
1292 * Finally insert or merge lazily-freed area. It is
1293 * detached and there is no need to "unlink" it from
1294 * anything.
1295 */
1296 merge_or_add_vmap_area(va,
1297 &free_vmap_area_root, &free_vmap_area_list);
1298
1299 atomic_long_sub(nr, &vmap_lazy_nr);
1300
1301 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1302 cond_resched_lock(&vmap_area_lock);
1303 }
1304 spin_unlock(&vmap_area_lock);
1305 return true;
1306}
1307
1308/*
1309 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1310 * is already purging.
1311 */
1312static void try_purge_vmap_area_lazy(void)
1313{
1314 if (mutex_trylock(&vmap_purge_lock)) {
1315 __purge_vmap_area_lazy(ULONG_MAX, 0);
1316 mutex_unlock(&vmap_purge_lock);
1317 }
1318}
1319
1320/*
1321 * Kick off a purge of the outstanding lazy areas.
1322 */
1323static void purge_vmap_area_lazy(void)
1324{
1325 mutex_lock(&vmap_purge_lock);
1326 purge_fragmented_blocks_allcpus();
1327 __purge_vmap_area_lazy(ULONG_MAX, 0);
1328 mutex_unlock(&vmap_purge_lock);
1329}
1330
1331/*
1332 * Free a vmap area, caller ensuring that the area has been unmapped
1333 * and flush_cache_vunmap had been called for the correct range
1334 * previously.
1335 */
1336static void free_vmap_area_noflush(struct vmap_area *va)
1337{
1338 unsigned long nr_lazy;
1339
1340 spin_lock(&vmap_area_lock);
1341 unlink_va(va, &vmap_area_root);
1342 spin_unlock(&vmap_area_lock);
1343
1344 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1345 PAGE_SHIFT, &vmap_lazy_nr);
1346
1347 /* After this point, we may free va at any time */
1348 llist_add(&va->purge_list, &vmap_purge_list);
1349
1350 if (unlikely(nr_lazy > lazy_max_pages()))
1351 try_purge_vmap_area_lazy();
1352}
1353
1354/*
1355 * Free and unmap a vmap area
1356 */
1357static void free_unmap_vmap_area(struct vmap_area *va)
1358{
1359 flush_cache_vunmap(va->va_start, va->va_end);
1360 unmap_vmap_area(va);
1361 if (debug_pagealloc_enabled_static())
1362 flush_tlb_kernel_range(va->va_start, va->va_end);
1363
1364 free_vmap_area_noflush(va);
1365}
1366
1367static struct vmap_area *find_vmap_area(unsigned long addr)
1368{
1369 struct vmap_area *va;
1370
1371 spin_lock(&vmap_area_lock);
1372 va = __find_vmap_area(addr);
1373 spin_unlock(&vmap_area_lock);
1374
1375 return va;
1376}
1377
1378/*** Per cpu kva allocator ***/
1379
1380/*
1381 * vmap space is limited especially on 32 bit architectures. Ensure there is
1382 * room for at least 16 percpu vmap blocks per CPU.
1383 */
1384/*
1385 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1386 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1387 * instead (we just need a rough idea)
1388 */
1389#if BITS_PER_LONG == 32
1390#define VMALLOC_SPACE (128UL*1024*1024)
1391#else
1392#define VMALLOC_SPACE (128UL*1024*1024*1024)
1393#endif
1394
1395#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1396#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1397#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1398#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1399#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1400#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1401#define VMAP_BBMAP_BITS \
1402 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1403 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1404 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1405
1406#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1407
1408struct vmap_block_queue {
1409 spinlock_t lock;
1410 struct list_head free;
1411};
1412
1413struct vmap_block {
1414 spinlock_t lock;
1415 struct vmap_area *va;
1416 unsigned long free, dirty;
1417 unsigned long dirty_min, dirty_max; /*< dirty range */
1418 struct list_head free_list;
1419 struct rcu_head rcu_head;
1420 struct list_head purge;
1421};
1422
1423/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1424static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1425
1426/*
1427 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1428 * in the free path. Could get rid of this if we change the API to return a
1429 * "cookie" from alloc, to be passed to free. But no big deal yet.
1430 */
1431static DEFINE_SPINLOCK(vmap_block_tree_lock);
1432static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1433
1434/*
1435 * We should probably have a fallback mechanism to allocate virtual memory
1436 * out of partially filled vmap blocks. However vmap block sizing should be
1437 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1438 * big problem.
1439 */
1440
1441static unsigned long addr_to_vb_idx(unsigned long addr)
1442{
1443 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1444 addr /= VMAP_BLOCK_SIZE;
1445 return addr;
1446}
1447
1448static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1449{
1450 unsigned long addr;
1451
1452 addr = va_start + (pages_off << PAGE_SHIFT);
1453 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1454 return (void *)addr;
1455}
1456
1457/**
1458 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1459 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1460 * @order: how many 2^order pages should be occupied in newly allocated block
1461 * @gfp_mask: flags for the page level allocator
1462 *
1463 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1464 */
1465static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1466{
1467 struct vmap_block_queue *vbq;
1468 struct vmap_block *vb;
1469 struct vmap_area *va;
1470 unsigned long vb_idx;
1471 int node, err;
1472 void *vaddr;
1473
1474 node = numa_node_id();
1475
1476 vb = kmalloc_node(sizeof(struct vmap_block),
1477 gfp_mask & GFP_RECLAIM_MASK, node);
1478 if (unlikely(!vb))
1479 return ERR_PTR(-ENOMEM);
1480
1481 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1482 VMALLOC_START, VMALLOC_END,
1483 node, gfp_mask);
1484 if (IS_ERR(va)) {
1485 kfree(vb);
1486 return ERR_CAST(va);
1487 }
1488
1489 err = radix_tree_preload(gfp_mask);
1490 if (unlikely(err)) {
1491 kfree(vb);
1492 free_vmap_area(va);
1493 return ERR_PTR(err);
1494 }
1495
1496 vaddr = vmap_block_vaddr(va->va_start, 0);
1497 spin_lock_init(&vb->lock);
1498 vb->va = va;
1499 /* At least something should be left free */
1500 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1501 vb->free = VMAP_BBMAP_BITS - (1UL << order);
1502 vb->dirty = 0;
1503 vb->dirty_min = VMAP_BBMAP_BITS;
1504 vb->dirty_max = 0;
1505 INIT_LIST_HEAD(&vb->free_list);
1506
1507 vb_idx = addr_to_vb_idx(va->va_start);
1508 spin_lock(&vmap_block_tree_lock);
1509 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1510 spin_unlock(&vmap_block_tree_lock);
1511 BUG_ON(err);
1512 radix_tree_preload_end();
1513
1514 vbq = &get_cpu_var(vmap_block_queue);
1515 spin_lock(&vbq->lock);
1516 list_add_tail_rcu(&vb->free_list, &vbq->free);
1517 spin_unlock(&vbq->lock);
1518 put_cpu_var(vmap_block_queue);
1519
1520 return vaddr;
1521}
1522
1523static void free_vmap_block(struct vmap_block *vb)
1524{
1525 struct vmap_block *tmp;
1526 unsigned long vb_idx;
1527
1528 vb_idx = addr_to_vb_idx(vb->va->va_start);
1529 spin_lock(&vmap_block_tree_lock);
1530 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1531 spin_unlock(&vmap_block_tree_lock);
1532 BUG_ON(tmp != vb);
1533
1534 free_vmap_area_noflush(vb->va);
1535 kfree_rcu(vb, rcu_head);
1536}
1537
1538static void purge_fragmented_blocks(int cpu)
1539{
1540 LIST_HEAD(purge);
1541 struct vmap_block *vb;
1542 struct vmap_block *n_vb;
1543 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1544
1545 rcu_read_lock();
1546 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1547
1548 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1549 continue;
1550
1551 spin_lock(&vb->lock);
1552 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1553 vb->free = 0; /* prevent further allocs after releasing lock */
1554 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1555 vb->dirty_min = 0;
1556 vb->dirty_max = VMAP_BBMAP_BITS;
1557 spin_lock(&vbq->lock);
1558 list_del_rcu(&vb->free_list);
1559 spin_unlock(&vbq->lock);
1560 spin_unlock(&vb->lock);
1561 list_add_tail(&vb->purge, &purge);
1562 } else
1563 spin_unlock(&vb->lock);
1564 }
1565 rcu_read_unlock();
1566
1567 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1568 list_del(&vb->purge);
1569 free_vmap_block(vb);
1570 }
1571}
1572
1573static void purge_fragmented_blocks_allcpus(void)
1574{
1575 int cpu;
1576
1577 for_each_possible_cpu(cpu)
1578 purge_fragmented_blocks(cpu);
1579}
1580
1581static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1582{
1583 struct vmap_block_queue *vbq;
1584 struct vmap_block *vb;
1585 void *vaddr = NULL;
1586 unsigned int order;
1587
1588 BUG_ON(offset_in_page(size));
1589 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1590 if (WARN_ON(size == 0)) {
1591 /*
1592 * Allocating 0 bytes isn't what caller wants since
1593 * get_order(0) returns funny result. Just warn and terminate
1594 * early.
1595 */
1596 return NULL;
1597 }
1598 order = get_order(size);
1599
1600 rcu_read_lock();
1601 vbq = &get_cpu_var(vmap_block_queue);
1602 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1603 unsigned long pages_off;
1604
1605 spin_lock(&vb->lock);
1606 if (vb->free < (1UL << order)) {
1607 spin_unlock(&vb->lock);
1608 continue;
1609 }
1610
1611 pages_off = VMAP_BBMAP_BITS - vb->free;
1612 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1613 vb->free -= 1UL << order;
1614 if (vb->free == 0) {
1615 spin_lock(&vbq->lock);
1616 list_del_rcu(&vb->free_list);
1617 spin_unlock(&vbq->lock);
1618 }
1619
1620 spin_unlock(&vb->lock);
1621 break;
1622 }
1623
1624 put_cpu_var(vmap_block_queue);
1625 rcu_read_unlock();
1626
1627 /* Allocate new block if nothing was found */
1628 if (!vaddr)
1629 vaddr = new_vmap_block(order, gfp_mask);
1630
1631 return vaddr;
1632}
1633
1634static void vb_free(const void *addr, unsigned long size)
1635{
1636 unsigned long offset;
1637 unsigned long vb_idx;
1638 unsigned int order;
1639 struct vmap_block *vb;
1640
1641 BUG_ON(offset_in_page(size));
1642 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1643
1644 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1645
1646 order = get_order(size);
1647
1648 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1649 offset >>= PAGE_SHIFT;
1650
1651 vb_idx = addr_to_vb_idx((unsigned long)addr);
1652 rcu_read_lock();
1653 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1654 rcu_read_unlock();
1655 BUG_ON(!vb);
1656
1657 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1658
1659 if (debug_pagealloc_enabled_static())
1660 flush_tlb_kernel_range((unsigned long)addr,
1661 (unsigned long)addr + size);
1662
1663 spin_lock(&vb->lock);
1664
1665 /* Expand dirty range */
1666 vb->dirty_min = min(vb->dirty_min, offset);
1667 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1668
1669 vb->dirty += 1UL << order;
1670 if (vb->dirty == VMAP_BBMAP_BITS) {
1671 BUG_ON(vb->free);
1672 spin_unlock(&vb->lock);
1673 free_vmap_block(vb);
1674 } else
1675 spin_unlock(&vb->lock);
1676}
1677
1678static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1679{
1680 int cpu;
1681
1682 if (unlikely(!vmap_initialized))
1683 return;
1684
1685 might_sleep();
1686
1687 for_each_possible_cpu(cpu) {
1688 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1689 struct vmap_block *vb;
1690
1691 rcu_read_lock();
1692 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1693 spin_lock(&vb->lock);
1694 if (vb->dirty) {
1695 unsigned long va_start = vb->va->va_start;
1696 unsigned long s, e;
1697
1698 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1699 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1700
1701 start = min(s, start);
1702 end = max(e, end);
1703
1704 flush = 1;
1705 }
1706 spin_unlock(&vb->lock);
1707 }
1708 rcu_read_unlock();
1709 }
1710
1711 mutex_lock(&vmap_purge_lock);
1712 purge_fragmented_blocks_allcpus();
1713 if (!__purge_vmap_area_lazy(start, end) && flush)
1714 flush_tlb_kernel_range(start, end);
1715 mutex_unlock(&vmap_purge_lock);
1716}
1717
1718/**
1719 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1720 *
1721 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1722 * to amortize TLB flushing overheads. What this means is that any page you
1723 * have now, may, in a former life, have been mapped into kernel virtual
1724 * address by the vmap layer and so there might be some CPUs with TLB entries
1725 * still referencing that page (additional to the regular 1:1 kernel mapping).
1726 *
1727 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1728 * be sure that none of the pages we have control over will have any aliases
1729 * from the vmap layer.
1730 */
1731void vm_unmap_aliases(void)
1732{
1733 unsigned long start = ULONG_MAX, end = 0;
1734 int flush = 0;
1735
1736 _vm_unmap_aliases(start, end, flush);
1737}
1738EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1739
1740/**
1741 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1742 * @mem: the pointer returned by vm_map_ram
1743 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1744 */
1745void vm_unmap_ram(const void *mem, unsigned int count)
1746{
1747 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1748 unsigned long addr = (unsigned long)mem;
1749 struct vmap_area *va;
1750
1751 might_sleep();
1752 BUG_ON(!addr);
1753 BUG_ON(addr < VMALLOC_START);
1754 BUG_ON(addr > VMALLOC_END);
1755 BUG_ON(!PAGE_ALIGNED(addr));
1756
1757 if (likely(count <= VMAP_MAX_ALLOC)) {
1758 debug_check_no_locks_freed(mem, size);
1759 vb_free(mem, size);
1760 return;
1761 }
1762
1763 va = find_vmap_area(addr);
1764 BUG_ON(!va);
1765 debug_check_no_locks_freed((void *)va->va_start,
1766 (va->va_end - va->va_start));
1767 free_unmap_vmap_area(va);
1768}
1769EXPORT_SYMBOL(vm_unmap_ram);
1770
1771/**
1772 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1773 * @pages: an array of pointers to the pages to be mapped
1774 * @count: number of pages
1775 * @node: prefer to allocate data structures on this node
1776 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1777 *
1778 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1779 * faster than vmap so it's good. But if you mix long-life and short-life
1780 * objects with vm_map_ram(), it could consume lots of address space through
1781 * fragmentation (especially on a 32bit machine). You could see failures in
1782 * the end. Please use this function for short-lived objects.
1783 *
1784 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1785 */
1786void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1787{
1788 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1789 unsigned long addr;
1790 void *mem;
1791
1792 if (likely(count <= VMAP_MAX_ALLOC)) {
1793 mem = vb_alloc(size, GFP_KERNEL);
1794 if (IS_ERR(mem))
1795 return NULL;
1796 addr = (unsigned long)mem;
1797 } else {
1798 struct vmap_area *va;
1799 va = alloc_vmap_area(size, PAGE_SIZE,
1800 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1801 if (IS_ERR(va))
1802 return NULL;
1803
1804 addr = va->va_start;
1805 mem = (void *)addr;
1806 }
1807 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1808 vm_unmap_ram(mem, count);
1809 return NULL;
1810 }
1811 return mem;
1812}
1813EXPORT_SYMBOL(vm_map_ram);
1814
1815static struct vm_struct *vmlist __initdata;
1816
1817/**
1818 * vm_area_add_early - add vmap area early during boot
1819 * @vm: vm_struct to add
1820 *
1821 * This function is used to add fixed kernel vm area to vmlist before
1822 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1823 * should contain proper values and the other fields should be zero.
1824 *
1825 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1826 */
1827void __init vm_area_add_early(struct vm_struct *vm)
1828{
1829 struct vm_struct *tmp, **p;
1830
1831 BUG_ON(vmap_initialized);
1832 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1833 if (tmp->addr >= vm->addr) {
1834 BUG_ON(tmp->addr < vm->addr + vm->size);
1835 break;
1836 } else
1837 BUG_ON(tmp->addr + tmp->size > vm->addr);
1838 }
1839 vm->next = *p;
1840 *p = vm;
1841}
1842
1843/**
1844 * vm_area_register_early - register vmap area early during boot
1845 * @vm: vm_struct to register
1846 * @align: requested alignment
1847 *
1848 * This function is used to register kernel vm area before
1849 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1850 * proper values on entry and other fields should be zero. On return,
1851 * vm->addr contains the allocated address.
1852 *
1853 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1854 */
1855void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1856{
1857 static size_t vm_init_off __initdata;
1858 unsigned long addr;
1859
1860 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1861 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1862
1863 vm->addr = (void *)addr;
1864
1865 vm_area_add_early(vm);
1866}
1867
1868static void vmap_init_free_space(void)
1869{
1870 unsigned long vmap_start = 1;
1871 const unsigned long vmap_end = ULONG_MAX;
1872 struct vmap_area *busy, *free;
1873
1874 /*
1875 * B F B B B F
1876 * -|-----|.....|-----|-----|-----|.....|-
1877 * | The KVA space |
1878 * |<--------------------------------->|
1879 */
1880 list_for_each_entry(busy, &vmap_area_list, list) {
1881 if (busy->va_start - vmap_start > 0) {
1882 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1883 if (!WARN_ON_ONCE(!free)) {
1884 free->va_start = vmap_start;
1885 free->va_end = busy->va_start;
1886
1887 insert_vmap_area_augment(free, NULL,
1888 &free_vmap_area_root,
1889 &free_vmap_area_list);
1890 }
1891 }
1892
1893 vmap_start = busy->va_end;
1894 }
1895
1896 if (vmap_end - vmap_start > 0) {
1897 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1898 if (!WARN_ON_ONCE(!free)) {
1899 free->va_start = vmap_start;
1900 free->va_end = vmap_end;
1901
1902 insert_vmap_area_augment(free, NULL,
1903 &free_vmap_area_root,
1904 &free_vmap_area_list);
1905 }
1906 }
1907}
1908
1909void __init vmalloc_init(void)
1910{
1911 struct vmap_area *va;
1912 struct vm_struct *tmp;
1913 int i;
1914
1915 /*
1916 * Create the cache for vmap_area objects.
1917 */
1918 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1919
1920 for_each_possible_cpu(i) {
1921 struct vmap_block_queue *vbq;
1922 struct vfree_deferred *p;
1923
1924 vbq = &per_cpu(vmap_block_queue, i);
1925 spin_lock_init(&vbq->lock);
1926 INIT_LIST_HEAD(&vbq->free);
1927 p = &per_cpu(vfree_deferred, i);
1928 init_llist_head(&p->list);
1929 INIT_WORK(&p->wq, free_work);
1930 }
1931
1932 /* Import existing vmlist entries. */
1933 for (tmp = vmlist; tmp; tmp = tmp->next) {
1934 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1935 if (WARN_ON_ONCE(!va))
1936 continue;
1937
1938 va->va_start = (unsigned long)tmp->addr;
1939 va->va_end = va->va_start + tmp->size;
1940 va->vm = tmp;
1941 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1942 }
1943
1944 /*
1945 * Now we can initialize a free vmap space.
1946 */
1947 vmap_init_free_space();
1948 vmap_initialized = true;
1949}
1950
1951/**
1952 * map_kernel_range_noflush - map kernel VM area with the specified pages
1953 * @addr: start of the VM area to map
1954 * @size: size of the VM area to map
1955 * @prot: page protection flags to use
1956 * @pages: pages to map
1957 *
1958 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1959 * specify should have been allocated using get_vm_area() and its
1960 * friends.
1961 *
1962 * NOTE:
1963 * This function does NOT do any cache flushing. The caller is
1964 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1965 * before calling this function.
1966 *
1967 * RETURNS:
1968 * The number of pages mapped on success, -errno on failure.
1969 */
1970int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1971 pgprot_t prot, struct page **pages)
1972{
1973 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1974}
1975
1976/**
1977 * unmap_kernel_range_noflush - unmap kernel VM area
1978 * @addr: start of the VM area to unmap
1979 * @size: size of the VM area to unmap
1980 *
1981 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1982 * specify should have been allocated using get_vm_area() and its
1983 * friends.
1984 *
1985 * NOTE:
1986 * This function does NOT do any cache flushing. The caller is
1987 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1988 * before calling this function and flush_tlb_kernel_range() after.
1989 */
1990void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1991{
1992 vunmap_page_range(addr, addr + size);
1993}
1994EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1995
1996/**
1997 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1998 * @addr: start of the VM area to unmap
1999 * @size: size of the VM area to unmap
2000 *
2001 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2002 * the unmapping and tlb after.
2003 */
2004void unmap_kernel_range(unsigned long addr, unsigned long size)
2005{
2006 unsigned long end = addr + size;
2007
2008 flush_cache_vunmap(addr, end);
2009 vunmap_page_range(addr, end);
2010 flush_tlb_kernel_range(addr, end);
2011}
2012EXPORT_SYMBOL_GPL(unmap_kernel_range);
2013
2014int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
2015{
2016 unsigned long addr = (unsigned long)area->addr;
2017 unsigned long end = addr + get_vm_area_size(area);
2018 int err;
2019
2020 err = vmap_page_range(addr, end, prot, pages);
2021
2022 return err > 0 ? 0 : err;
2023}
2024EXPORT_SYMBOL_GPL(map_vm_area);
2025
2026static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2027 unsigned long flags, const void *caller)
2028{
2029 spin_lock(&vmap_area_lock);
2030 vm->flags = flags;
2031 vm->addr = (void *)va->va_start;
2032 vm->size = va->va_end - va->va_start;
2033 vm->caller = caller;
2034 va->vm = vm;
2035 spin_unlock(&vmap_area_lock);
2036}
2037
2038static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2039{
2040 /*
2041 * Before removing VM_UNINITIALIZED,
2042 * we should make sure that vm has proper values.
2043 * Pair with smp_rmb() in show_numa_info().
2044 */
2045 smp_wmb();
2046 vm->flags &= ~VM_UNINITIALIZED;
2047}
2048
2049static struct vm_struct *__get_vm_area_node(unsigned long size,
2050 unsigned long align, unsigned long flags, unsigned long start,
2051 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2052{
2053 struct vmap_area *va;
2054 struct vm_struct *area;
2055
2056 BUG_ON(in_interrupt());
2057 size = PAGE_ALIGN(size);
2058 if (unlikely(!size))
2059 return NULL;
2060
2061 if (flags & VM_IOREMAP)
2062 align = 1ul << clamp_t(int, get_count_order_long(size),
2063 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2064
2065 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2066 if (unlikely(!area))
2067 return NULL;
2068
2069 if (!(flags & VM_NO_GUARD))
2070 size += PAGE_SIZE;
2071
2072 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2073 if (IS_ERR(va)) {
2074 kfree(area);
2075 return NULL;
2076 }
2077
2078 setup_vmalloc_vm(area, va, flags, caller);
2079
2080 return area;
2081}
2082
2083struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2084 unsigned long start, unsigned long end)
2085{
2086 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2087 GFP_KERNEL, __builtin_return_address(0));
2088}
2089EXPORT_SYMBOL_GPL(__get_vm_area);
2090
2091struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2092 unsigned long start, unsigned long end,
2093 const void *caller)
2094{
2095 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2096 GFP_KERNEL, caller);
2097}
2098
2099/**
2100 * get_vm_area - reserve a contiguous kernel virtual area
2101 * @size: size of the area
2102 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2103 *
2104 * Search an area of @size in the kernel virtual mapping area,
2105 * and reserved it for out purposes. Returns the area descriptor
2106 * on success or %NULL on failure.
2107 *
2108 * Return: the area descriptor on success or %NULL on failure.
2109 */
2110struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2111{
2112 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2113 NUMA_NO_NODE, GFP_KERNEL,
2114 __builtin_return_address(0));
2115}
2116
2117struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2118 const void *caller)
2119{
2120 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2121 NUMA_NO_NODE, GFP_KERNEL, caller);
2122}
2123
2124/**
2125 * find_vm_area - find a continuous kernel virtual area
2126 * @addr: base address
2127 *
2128 * Search for the kernel VM area starting at @addr, and return it.
2129 * It is up to the caller to do all required locking to keep the returned
2130 * pointer valid.
2131 *
2132 * Return: pointer to the found area or %NULL on faulure
2133 */
2134struct vm_struct *find_vm_area(const void *addr)
2135{
2136 struct vmap_area *va;
2137
2138 va = find_vmap_area((unsigned long)addr);
2139 if (!va)
2140 return NULL;
2141
2142 return va->vm;
2143}
2144
2145/**
2146 * remove_vm_area - find and remove a continuous kernel virtual area
2147 * @addr: base address
2148 *
2149 * Search for the kernel VM area starting at @addr, and remove it.
2150 * This function returns the found VM area, but using it is NOT safe
2151 * on SMP machines, except for its size or flags.
2152 *
2153 * Return: pointer to the found area or %NULL on faulure
2154 */
2155struct vm_struct *remove_vm_area(const void *addr)
2156{
2157 struct vmap_area *va;
2158
2159 might_sleep();
2160
2161 spin_lock(&vmap_area_lock);
2162 va = __find_vmap_area((unsigned long)addr);
2163 if (va && va->vm) {
2164 struct vm_struct *vm = va->vm;
2165
2166 va->vm = NULL;
2167 spin_unlock(&vmap_area_lock);
2168
2169 kasan_free_shadow(vm);
2170 free_unmap_vmap_area(va);
2171
2172 return vm;
2173 }
2174
2175 spin_unlock(&vmap_area_lock);
2176 return NULL;
2177}
2178
2179static inline void set_area_direct_map(const struct vm_struct *area,
2180 int (*set_direct_map)(struct page *page))
2181{
2182 int i;
2183
2184 for (i = 0; i < area->nr_pages; i++)
2185 if (page_address(area->pages[i]))
2186 set_direct_map(area->pages[i]);
2187}
2188
2189/* Handle removing and resetting vm mappings related to the vm_struct. */
2190static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2191{
2192 unsigned long start = ULONG_MAX, end = 0;
2193 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2194 int flush_dmap = 0;
2195 int i;
2196
2197 remove_vm_area(area->addr);
2198
2199 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2200 if (!flush_reset)
2201 return;
2202
2203 /*
2204 * If not deallocating pages, just do the flush of the VM area and
2205 * return.
2206 */
2207 if (!deallocate_pages) {
2208 vm_unmap_aliases();
2209 return;
2210 }
2211
2212 /*
2213 * If execution gets here, flush the vm mapping and reset the direct
2214 * map. Find the start and end range of the direct mappings to make sure
2215 * the vm_unmap_aliases() flush includes the direct map.
2216 */
2217 for (i = 0; i < area->nr_pages; i++) {
2218 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2219 if (addr) {
2220 start = min(addr, start);
2221 end = max(addr + PAGE_SIZE, end);
2222 flush_dmap = 1;
2223 }
2224 }
2225
2226 /*
2227 * Set direct map to something invalid so that it won't be cached if
2228 * there are any accesses after the TLB flush, then flush the TLB and
2229 * reset the direct map permissions to the default.
2230 */
2231 set_area_direct_map(area, set_direct_map_invalid_noflush);
2232 _vm_unmap_aliases(start, end, flush_dmap);
2233 set_area_direct_map(area, set_direct_map_default_noflush);
2234}
2235
2236static void __vunmap(const void *addr, int deallocate_pages)
2237{
2238 struct vm_struct *area;
2239
2240 if (!addr)
2241 return;
2242
2243 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2244 addr))
2245 return;
2246
2247 area = find_vm_area(addr);
2248 if (unlikely(!area)) {
2249 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2250 addr);
2251 return;
2252 }
2253
2254 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2255 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2256
2257 vm_remove_mappings(area, deallocate_pages);
2258
2259 if (deallocate_pages) {
2260 int i;
2261
2262 for (i = 0; i < area->nr_pages; i++) {
2263 struct page *page = area->pages[i];
2264
2265 BUG_ON(!page);
2266 __free_pages(page, 0);
2267 }
2268 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2269
2270 kvfree(area->pages);
2271 }
2272
2273 kfree(area);
2274 return;
2275}
2276
2277static inline void __vfree_deferred(const void *addr)
2278{
2279 /*
2280 * Use raw_cpu_ptr() because this can be called from preemptible
2281 * context. Preemption is absolutely fine here, because the llist_add()
2282 * implementation is lockless, so it works even if we are adding to
2283 * nother cpu's list. schedule_work() should be fine with this too.
2284 */
2285 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2286
2287 if (llist_add((struct llist_node *)addr, &p->list))
2288 schedule_work(&p->wq);
2289}
2290
2291/**
2292 * vfree_atomic - release memory allocated by vmalloc()
2293 * @addr: memory base address
2294 *
2295 * This one is just like vfree() but can be called in any atomic context
2296 * except NMIs.
2297 */
2298void vfree_atomic(const void *addr)
2299{
2300 BUG_ON(in_nmi());
2301
2302 kmemleak_free(addr);
2303
2304 if (!addr)
2305 return;
2306 __vfree_deferred(addr);
2307}
2308
2309static void __vfree(const void *addr)
2310{
2311 if (unlikely(in_interrupt()))
2312 __vfree_deferred(addr);
2313 else
2314 __vunmap(addr, 1);
2315}
2316
2317/**
2318 * vfree - release memory allocated by vmalloc()
2319 * @addr: memory base address
2320 *
2321 * Free the virtually continuous memory area starting at @addr, as
2322 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2323 * NULL, no operation is performed.
2324 *
2325 * Must not be called in NMI context (strictly speaking, only if we don't
2326 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2327 * conventions for vfree() arch-depenedent would be a really bad idea)
2328 *
2329 * May sleep if called *not* from interrupt context.
2330 *
2331 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2332 */
2333void vfree(const void *addr)
2334{
2335 BUG_ON(in_nmi());
2336
2337 kmemleak_free(addr);
2338
2339 might_sleep_if(!in_interrupt());
2340
2341 if (!addr)
2342 return;
2343
2344 __vfree(addr);
2345}
2346EXPORT_SYMBOL(vfree);
2347
2348/**
2349 * vunmap - release virtual mapping obtained by vmap()
2350 * @addr: memory base address
2351 *
2352 * Free the virtually contiguous memory area starting at @addr,
2353 * which was created from the page array passed to vmap().
2354 *
2355 * Must not be called in interrupt context.
2356 */
2357void vunmap(const void *addr)
2358{
2359 BUG_ON(in_interrupt());
2360 might_sleep();
2361 if (addr)
2362 __vunmap(addr, 0);
2363}
2364EXPORT_SYMBOL(vunmap);
2365
2366/**
2367 * vmap - map an array of pages into virtually contiguous space
2368 * @pages: array of page pointers
2369 * @count: number of pages to map
2370 * @flags: vm_area->flags
2371 * @prot: page protection for the mapping
2372 *
2373 * Maps @count pages from @pages into contiguous kernel virtual
2374 * space.
2375 *
2376 * Return: the address of the area or %NULL on failure
2377 */
2378void *vmap(struct page **pages, unsigned int count,
2379 unsigned long flags, pgprot_t prot)
2380{
2381 struct vm_struct *area;
2382 unsigned long size; /* In bytes */
2383
2384 might_sleep();
2385
2386 if (count > totalram_pages())
2387 return NULL;
2388
2389 size = (unsigned long)count << PAGE_SHIFT;
2390 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2391 if (!area)
2392 return NULL;
2393
2394 if (map_vm_area(area, prot, pages)) {
2395 vunmap(area->addr);
2396 return NULL;
2397 }
2398
2399 return area->addr;
2400}
2401EXPORT_SYMBOL(vmap);
2402
2403static void *__vmalloc_node(unsigned long size, unsigned long align,
2404 gfp_t gfp_mask, pgprot_t prot,
2405 int node, const void *caller);
2406static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2407 pgprot_t prot, int node)
2408{
2409 struct page **pages;
2410 unsigned int nr_pages, array_size, i;
2411 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2412 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2413 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2414 0 :
2415 __GFP_HIGHMEM;
2416
2417 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2418 array_size = (nr_pages * sizeof(struct page *));
2419
2420 /* Please note that the recursion is strictly bounded. */
2421 if (array_size > PAGE_SIZE) {
2422 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2423 PAGE_KERNEL, node, area->caller);
2424 } else {
2425 pages = kmalloc_node(array_size, nested_gfp, node);
2426 }
2427
2428 if (!pages) {
2429 remove_vm_area(area->addr);
2430 kfree(area);
2431 return NULL;
2432 }
2433
2434 area->pages = pages;
2435 area->nr_pages = nr_pages;
2436
2437 for (i = 0; i < area->nr_pages; i++) {
2438 struct page *page;
2439
2440 if (node == NUMA_NO_NODE)
2441 page = alloc_page(alloc_mask|highmem_mask);
2442 else
2443 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2444
2445 if (unlikely(!page)) {
2446 /* Successfully allocated i pages, free them in __vunmap() */
2447 area->nr_pages = i;
2448 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2449 goto fail;
2450 }
2451 area->pages[i] = page;
2452 if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
2453 cond_resched();
2454 }
2455 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2456
2457 if (map_vm_area(area, prot, pages))
2458 goto fail;
2459 return area->addr;
2460
2461fail:
2462 warn_alloc(gfp_mask, NULL,
2463 "vmalloc: allocation failure, allocated %ld of %ld bytes",
2464 (area->nr_pages*PAGE_SIZE), area->size);
2465 __vfree(area->addr);
2466 return NULL;
2467}
2468
2469/**
2470 * __vmalloc_node_range - allocate virtually contiguous memory
2471 * @size: allocation size
2472 * @align: desired alignment
2473 * @start: vm area range start
2474 * @end: vm area range end
2475 * @gfp_mask: flags for the page level allocator
2476 * @prot: protection mask for the allocated pages
2477 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2478 * @node: node to use for allocation or NUMA_NO_NODE
2479 * @caller: caller's return address
2480 *
2481 * Allocate enough pages to cover @size from the page level
2482 * allocator with @gfp_mask flags. Map them into contiguous
2483 * kernel virtual space, using a pagetable protection of @prot.
2484 *
2485 * Return: the address of the area or %NULL on failure
2486 */
2487void *__vmalloc_node_range(unsigned long size, unsigned long align,
2488 unsigned long start, unsigned long end, gfp_t gfp_mask,
2489 pgprot_t prot, unsigned long vm_flags, int node,
2490 const void *caller)
2491{
2492 struct vm_struct *area;
2493 void *addr;
2494 unsigned long real_size = size;
2495
2496 size = PAGE_ALIGN(size);
2497 if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2498 goto fail;
2499
2500 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2501 vm_flags, start, end, node, gfp_mask, caller);
2502 if (!area)
2503 goto fail;
2504
2505 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2506 if (!addr)
2507 return NULL;
2508
2509 /*
2510 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2511 * flag. It means that vm_struct is not fully initialized.
2512 * Now, it is fully initialized, so remove this flag here.
2513 */
2514 clear_vm_uninitialized_flag(area);
2515
2516 kmemleak_vmalloc(area, size, gfp_mask);
2517
2518 return addr;
2519
2520fail:
2521 warn_alloc(gfp_mask, NULL,
2522 "vmalloc: allocation failure: %lu bytes", real_size);
2523 return NULL;
2524}
2525
2526/*
2527 * This is only for performance analysis of vmalloc and stress purpose.
2528 * It is required by vmalloc test module, therefore do not use it other
2529 * than that.
2530 */
2531#ifdef CONFIG_TEST_VMALLOC_MODULE
2532EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2533#endif
2534
2535/**
2536 * __vmalloc_node - allocate virtually contiguous memory
2537 * @size: allocation size
2538 * @align: desired alignment
2539 * @gfp_mask: flags for the page level allocator
2540 * @prot: protection mask for the allocated pages
2541 * @node: node to use for allocation or NUMA_NO_NODE
2542 * @caller: caller's return address
2543 *
2544 * Allocate enough pages to cover @size from the page level
2545 * allocator with @gfp_mask flags. Map them into contiguous
2546 * kernel virtual space, using a pagetable protection of @prot.
2547 *
2548 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2549 * and __GFP_NOFAIL are not supported
2550 *
2551 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2552 * with mm people.
2553 *
2554 * Return: pointer to the allocated memory or %NULL on error
2555 */
2556static void *__vmalloc_node(unsigned long size, unsigned long align,
2557 gfp_t gfp_mask, pgprot_t prot,
2558 int node, const void *caller)
2559{
2560 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2561 gfp_mask, prot, 0, node, caller);
2562}
2563
2564void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2565{
2566 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2567 __builtin_return_address(0));
2568}
2569EXPORT_SYMBOL(__vmalloc);
2570
2571static inline void *__vmalloc_node_flags(unsigned long size,
2572 int node, gfp_t flags)
2573{
2574 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2575 node, __builtin_return_address(0));
2576}
2577
2578
2579void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2580 void *caller)
2581{
2582 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2583}
2584
2585/**
2586 * vmalloc - allocate virtually contiguous memory
2587 * @size: allocation size
2588 *
2589 * Allocate enough pages to cover @size from the page level
2590 * allocator and map them into contiguous kernel virtual space.
2591 *
2592 * For tight control over page level allocator and protection flags
2593 * use __vmalloc() instead.
2594 *
2595 * Return: pointer to the allocated memory or %NULL on error
2596 */
2597void *vmalloc(unsigned long size)
2598{
2599 return __vmalloc_node_flags(size, NUMA_NO_NODE,
2600 GFP_KERNEL);
2601}
2602EXPORT_SYMBOL(vmalloc);
2603
2604/**
2605 * vzalloc - allocate virtually contiguous memory with zero fill
2606 * @size: allocation size
2607 *
2608 * Allocate enough pages to cover @size from the page level
2609 * allocator and map them into contiguous kernel virtual space.
2610 * The memory allocated is set to zero.
2611 *
2612 * For tight control over page level allocator and protection flags
2613 * use __vmalloc() instead.
2614 *
2615 * Return: pointer to the allocated memory or %NULL on error
2616 */
2617void *vzalloc(unsigned long size)
2618{
2619 return __vmalloc_node_flags(size, NUMA_NO_NODE,
2620 GFP_KERNEL | __GFP_ZERO);
2621}
2622EXPORT_SYMBOL(vzalloc);
2623
2624/**
2625 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2626 * @size: allocation size
2627 *
2628 * The resulting memory area is zeroed so it can be mapped to userspace
2629 * without leaking data.
2630 *
2631 * Return: pointer to the allocated memory or %NULL on error
2632 */
2633void *vmalloc_user(unsigned long size)
2634{
2635 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2636 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2637 VM_USERMAP, NUMA_NO_NODE,
2638 __builtin_return_address(0));
2639}
2640EXPORT_SYMBOL(vmalloc_user);
2641
2642/**
2643 * vmalloc_node - allocate memory on a specific node
2644 * @size: allocation size
2645 * @node: numa node
2646 *
2647 * Allocate enough pages to cover @size from the page level
2648 * allocator and map them into contiguous kernel virtual space.
2649 *
2650 * For tight control over page level allocator and protection flags
2651 * use __vmalloc() instead.
2652 *
2653 * Return: pointer to the allocated memory or %NULL on error
2654 */
2655void *vmalloc_node(unsigned long size, int node)
2656{
2657 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2658 node, __builtin_return_address(0));
2659}
2660EXPORT_SYMBOL(vmalloc_node);
2661
2662/**
2663 * vzalloc_node - allocate memory on a specific node with zero fill
2664 * @size: allocation size
2665 * @node: numa node
2666 *
2667 * Allocate enough pages to cover @size from the page level
2668 * allocator and map them into contiguous kernel virtual space.
2669 * The memory allocated is set to zero.
2670 *
2671 * For tight control over page level allocator and protection flags
2672 * use __vmalloc_node() instead.
2673 *
2674 * Return: pointer to the allocated memory or %NULL on error
2675 */
2676void *vzalloc_node(unsigned long size, int node)
2677{
2678 return __vmalloc_node_flags(size, node,
2679 GFP_KERNEL | __GFP_ZERO);
2680}
2681EXPORT_SYMBOL(vzalloc_node);
2682
2683/**
2684 * vmalloc_exec - allocate virtually contiguous, executable memory
2685 * @size: allocation size
2686 *
2687 * Kernel-internal function to allocate enough pages to cover @size
2688 * the page level allocator and map them into contiguous and
2689 * executable kernel virtual space.
2690 *
2691 * For tight control over page level allocator and protection flags
2692 * use __vmalloc() instead.
2693 *
2694 * Return: pointer to the allocated memory or %NULL on error
2695 */
2696void *vmalloc_exec(unsigned long size)
2697{
2698 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2699 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2700 NUMA_NO_NODE, __builtin_return_address(0));
2701}
2702
2703#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2704#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2705#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2706#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2707#else
2708/*
2709 * 64b systems should always have either DMA or DMA32 zones. For others
2710 * GFP_DMA32 should do the right thing and use the normal zone.
2711 */
2712#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2713#endif
2714
2715/**
2716 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2717 * @size: allocation size
2718 *
2719 * Allocate enough 32bit PA addressable pages to cover @size from the
2720 * page level allocator and map them into contiguous kernel virtual space.
2721 *
2722 * Return: pointer to the allocated memory or %NULL on error
2723 */
2724void *vmalloc_32(unsigned long size)
2725{
2726 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
2727 NUMA_NO_NODE, __builtin_return_address(0));
2728}
2729EXPORT_SYMBOL(vmalloc_32);
2730
2731/**
2732 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2733 * @size: allocation size
2734 *
2735 * The resulting memory area is 32bit addressable and zeroed so it can be
2736 * mapped to userspace without leaking data.
2737 *
2738 * Return: pointer to the allocated memory or %NULL on error
2739 */
2740void *vmalloc_32_user(unsigned long size)
2741{
2742 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
2743 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2744 VM_USERMAP, NUMA_NO_NODE,
2745 __builtin_return_address(0));
2746}
2747EXPORT_SYMBOL(vmalloc_32_user);
2748
2749/*
2750 * small helper routine , copy contents to buf from addr.
2751 * If the page is not present, fill zero.
2752 */
2753
2754static int aligned_vread(char *buf, char *addr, unsigned long count)
2755{
2756 struct page *p;
2757 int copied = 0;
2758
2759 while (count) {
2760 unsigned long offset, length;
2761
2762 offset = offset_in_page(addr);
2763 length = PAGE_SIZE - offset;
2764 if (length > count)
2765 length = count;
2766 p = vmalloc_to_page(addr);
2767 /*
2768 * To do safe access to this _mapped_ area, we need
2769 * lock. But adding lock here means that we need to add
2770 * overhead of vmalloc()/vfree() calles for this _debug_
2771 * interface, rarely used. Instead of that, we'll use
2772 * kmap() and get small overhead in this access function.
2773 */
2774 if (p) {
2775 /*
2776 * we can expect USER0 is not used (see vread/vwrite's
2777 * function description)
2778 */
2779 void *map = kmap_atomic(p);
2780 memcpy(buf, map + offset, length);
2781 kunmap_atomic(map);
2782 } else
2783 memset(buf, 0, length);
2784
2785 addr += length;
2786 buf += length;
2787 copied += length;
2788 count -= length;
2789 }
2790 return copied;
2791}
2792
2793static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2794{
2795 struct page *p;
2796 int copied = 0;
2797
2798 while (count) {
2799 unsigned long offset, length;
2800
2801 offset = offset_in_page(addr);
2802 length = PAGE_SIZE - offset;
2803 if (length > count)
2804 length = count;
2805 p = vmalloc_to_page(addr);
2806 /*
2807 * To do safe access to this _mapped_ area, we need
2808 * lock. But adding lock here means that we need to add
2809 * overhead of vmalloc()/vfree() calles for this _debug_
2810 * interface, rarely used. Instead of that, we'll use
2811 * kmap() and get small overhead in this access function.
2812 */
2813 if (p) {
2814 /*
2815 * we can expect USER0 is not used (see vread/vwrite's
2816 * function description)
2817 */
2818 void *map = kmap_atomic(p);
2819 memcpy(map + offset, buf, length);
2820 kunmap_atomic(map);
2821 }
2822 addr += length;
2823 buf += length;
2824 copied += length;
2825 count -= length;
2826 }
2827 return copied;
2828}
2829
2830/**
2831 * vread() - read vmalloc area in a safe way.
2832 * @buf: buffer for reading data
2833 * @addr: vm address.
2834 * @count: number of bytes to be read.
2835 *
2836 * This function checks that addr is a valid vmalloc'ed area, and
2837 * copy data from that area to a given buffer. If the given memory range
2838 * of [addr...addr+count) includes some valid address, data is copied to
2839 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2840 * IOREMAP area is treated as memory hole and no copy is done.
2841 *
2842 * If [addr...addr+count) doesn't includes any intersects with alive
2843 * vm_struct area, returns 0. @buf should be kernel's buffer.
2844 *
2845 * Note: In usual ops, vread() is never necessary because the caller
2846 * should know vmalloc() area is valid and can use memcpy().
2847 * This is for routines which have to access vmalloc area without
2848 * any information, as /dev/kmem.
2849 *
2850 * Return: number of bytes for which addr and buf should be increased
2851 * (same number as @count) or %0 if [addr...addr+count) doesn't
2852 * include any intersection with valid vmalloc area
2853 */
2854long vread(char *buf, char *addr, unsigned long count)
2855{
2856 struct vmap_area *va;
2857 struct vm_struct *vm;
2858 char *vaddr, *buf_start = buf;
2859 unsigned long buflen = count;
2860 unsigned long n;
2861
2862 /* Don't allow overflow */
2863 if ((unsigned long) addr + count < count)
2864 count = -(unsigned long) addr;
2865
2866 spin_lock(&vmap_area_lock);
2867 list_for_each_entry(va, &vmap_area_list, list) {
2868 if (!count)
2869 break;
2870
2871 if (!va->vm)
2872 continue;
2873
2874 vm = va->vm;
2875 vaddr = (char *) vm->addr;
2876 if (addr >= vaddr + get_vm_area_size(vm))
2877 continue;
2878 while (addr < vaddr) {
2879 if (count == 0)
2880 goto finished;
2881 *buf = '\0';
2882 buf++;
2883 addr++;
2884 count--;
2885 }
2886 n = vaddr + get_vm_area_size(vm) - addr;
2887 if (n > count)
2888 n = count;
2889 if (!(vm->flags & VM_IOREMAP))
2890 aligned_vread(buf, addr, n);
2891 else /* IOREMAP area is treated as memory hole */
2892 memset(buf, 0, n);
2893 buf += n;
2894 addr += n;
2895 count -= n;
2896 }
2897finished:
2898 spin_unlock(&vmap_area_lock);
2899
2900 if (buf == buf_start)
2901 return 0;
2902 /* zero-fill memory holes */
2903 if (buf != buf_start + buflen)
2904 memset(buf, 0, buflen - (buf - buf_start));
2905
2906 return buflen;
2907}
2908
2909/**
2910 * vwrite() - write vmalloc area in a safe way.
2911 * @buf: buffer for source data
2912 * @addr: vm address.
2913 * @count: number of bytes to be read.
2914 *
2915 * This function checks that addr is a valid vmalloc'ed area, and
2916 * copy data from a buffer to the given addr. If specified range of
2917 * [addr...addr+count) includes some valid address, data is copied from
2918 * proper area of @buf. If there are memory holes, no copy to hole.
2919 * IOREMAP area is treated as memory hole and no copy is done.
2920 *
2921 * If [addr...addr+count) doesn't includes any intersects with alive
2922 * vm_struct area, returns 0. @buf should be kernel's buffer.
2923 *
2924 * Note: In usual ops, vwrite() is never necessary because the caller
2925 * should know vmalloc() area is valid and can use memcpy().
2926 * This is for routines which have to access vmalloc area without
2927 * any information, as /dev/kmem.
2928 *
2929 * Return: number of bytes for which addr and buf should be
2930 * increased (same number as @count) or %0 if [addr...addr+count)
2931 * doesn't include any intersection with valid vmalloc area
2932 */
2933long vwrite(char *buf, char *addr, unsigned long count)
2934{
2935 struct vmap_area *va;
2936 struct vm_struct *vm;
2937 char *vaddr;
2938 unsigned long n, buflen;
2939 int copied = 0;
2940
2941 /* Don't allow overflow */
2942 if ((unsigned long) addr + count < count)
2943 count = -(unsigned long) addr;
2944 buflen = count;
2945
2946 spin_lock(&vmap_area_lock);
2947 list_for_each_entry(va, &vmap_area_list, list) {
2948 if (!count)
2949 break;
2950
2951 if (!va->vm)
2952 continue;
2953
2954 vm = va->vm;
2955 vaddr = (char *) vm->addr;
2956 if (addr >= vaddr + get_vm_area_size(vm))
2957 continue;
2958 while (addr < vaddr) {
2959 if (count == 0)
2960 goto finished;
2961 buf++;
2962 addr++;
2963 count--;
2964 }
2965 n = vaddr + get_vm_area_size(vm) - addr;
2966 if (n > count)
2967 n = count;
2968 if (!(vm->flags & VM_IOREMAP)) {
2969 aligned_vwrite(buf, addr, n);
2970 copied++;
2971 }
2972 buf += n;
2973 addr += n;
2974 count -= n;
2975 }
2976finished:
2977 spin_unlock(&vmap_area_lock);
2978 if (!copied)
2979 return 0;
2980 return buflen;
2981}
2982
2983/**
2984 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2985 * @vma: vma to cover
2986 * @uaddr: target user address to start at
2987 * @kaddr: virtual address of vmalloc kernel memory
2988 * @pgoff: offset from @kaddr to start at
2989 * @size: size of map area
2990 *
2991 * Returns: 0 for success, -Exxx on failure
2992 *
2993 * This function checks that @kaddr is a valid vmalloc'ed area,
2994 * and that it is big enough to cover the range starting at
2995 * @uaddr in @vma. Will return failure if that criteria isn't
2996 * met.
2997 *
2998 * Similar to remap_pfn_range() (see mm/memory.c)
2999 */
3000int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3001 void *kaddr, unsigned long pgoff,
3002 unsigned long size)
3003{
3004 struct vm_struct *area;
3005 unsigned long off;
3006 unsigned long end_index;
3007
3008 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3009 return -EINVAL;
3010
3011 size = PAGE_ALIGN(size);
3012
3013 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3014 return -EINVAL;
3015
3016 area = find_vm_area(kaddr);
3017 if (!area)
3018 return -EINVAL;
3019
3020 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3021 return -EINVAL;
3022
3023 if (check_add_overflow(size, off, &end_index) ||
3024 end_index > get_vm_area_size(area))
3025 return -EINVAL;
3026 kaddr += off;
3027
3028 do {
3029 struct page *page = vmalloc_to_page(kaddr);
3030 int ret;
3031
3032 ret = vm_insert_page(vma, uaddr, page);
3033 if (ret)
3034 return ret;
3035
3036 uaddr += PAGE_SIZE;
3037 kaddr += PAGE_SIZE;
3038 size -= PAGE_SIZE;
3039 } while (size > 0);
3040
3041 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3042
3043 return 0;
3044}
3045EXPORT_SYMBOL(remap_vmalloc_range_partial);
3046
3047/**
3048 * remap_vmalloc_range - map vmalloc pages to userspace
3049 * @vma: vma to cover (map full range of vma)
3050 * @addr: vmalloc memory
3051 * @pgoff: number of pages into addr before first page to map
3052 *
3053 * Returns: 0 for success, -Exxx on failure
3054 *
3055 * This function checks that addr is a valid vmalloc'ed area, and
3056 * that it is big enough to cover the vma. Will return failure if
3057 * that criteria isn't met.
3058 *
3059 * Similar to remap_pfn_range() (see mm/memory.c)
3060 */
3061int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3062 unsigned long pgoff)
3063{
3064 return remap_vmalloc_range_partial(vma, vma->vm_start,
3065 addr, pgoff,
3066 vma->vm_end - vma->vm_start);
3067}
3068EXPORT_SYMBOL(remap_vmalloc_range);
3069
3070/*
3071 * Implement stubs for vmalloc_sync_[un]mappings () if the architecture chose
3072 * not to have one.
3073 *
3074 * The purpose of this function is to make sure the vmalloc area
3075 * mappings are identical in all page-tables in the system.
3076 */
3077void __weak vmalloc_sync_mappings(void)
3078{
3079}
3080
3081void __weak vmalloc_sync_unmappings(void)
3082{
3083}
3084
3085static int f(pte_t *pte, unsigned long addr, void *data)
3086{
3087 pte_t ***p = data;
3088
3089 if (p) {
3090 *(*p) = pte;
3091 (*p)++;
3092 }
3093 return 0;
3094}
3095
3096/**
3097 * alloc_vm_area - allocate a range of kernel address space
3098 * @size: size of the area
3099 * @ptes: returns the PTEs for the address space
3100 *
3101 * Returns: NULL on failure, vm_struct on success
3102 *
3103 * This function reserves a range of kernel address space, and
3104 * allocates pagetables to map that range. No actual mappings
3105 * are created.
3106 *
3107 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3108 * allocated for the VM area are returned.
3109 */
3110struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3111{
3112 struct vm_struct *area;
3113
3114 area = get_vm_area_caller(size, VM_IOREMAP,
3115 __builtin_return_address(0));
3116 if (area == NULL)
3117 return NULL;
3118
3119 /*
3120 * This ensures that page tables are constructed for this region
3121 * of kernel virtual address space and mapped into init_mm.
3122 */
3123 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3124 size, f, ptes ? &ptes : NULL)) {
3125 free_vm_area(area);
3126 return NULL;
3127 }
3128
3129 return area;
3130}
3131EXPORT_SYMBOL_GPL(alloc_vm_area);
3132
3133void free_vm_area(struct vm_struct *area)
3134{
3135 struct vm_struct *ret;
3136 ret = remove_vm_area(area->addr);
3137 BUG_ON(ret != area);
3138 kfree(area);
3139}
3140EXPORT_SYMBOL_GPL(free_vm_area);
3141
3142#ifdef CONFIG_SMP
3143static struct vmap_area *node_to_va(struct rb_node *n)
3144{
3145 return rb_entry_safe(n, struct vmap_area, rb_node);
3146}
3147
3148/**
3149 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3150 * @addr: target address
3151 *
3152 * Returns: vmap_area if it is found. If there is no such area
3153 * the first highest(reverse order) vmap_area is returned
3154 * i.e. va->va_start < addr && va->va_end < addr or NULL
3155 * if there are no any areas before @addr.
3156 */
3157static struct vmap_area *
3158pvm_find_va_enclose_addr(unsigned long addr)
3159{
3160 struct vmap_area *va, *tmp;
3161 struct rb_node *n;
3162
3163 n = free_vmap_area_root.rb_node;
3164 va = NULL;
3165
3166 while (n) {
3167 tmp = rb_entry(n, struct vmap_area, rb_node);
3168 if (tmp->va_start <= addr) {
3169 va = tmp;
3170 if (tmp->va_end >= addr)
3171 break;
3172
3173 n = n->rb_right;
3174 } else {
3175 n = n->rb_left;
3176 }
3177 }
3178
3179 return va;
3180}
3181
3182/**
3183 * pvm_determine_end_from_reverse - find the highest aligned address
3184 * of free block below VMALLOC_END
3185 * @va:
3186 * in - the VA we start the search(reverse order);
3187 * out - the VA with the highest aligned end address.
3188 *
3189 * Returns: determined end address within vmap_area
3190 */
3191static unsigned long
3192pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3193{
3194 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3195 unsigned long addr;
3196
3197 if (likely(*va)) {
3198 list_for_each_entry_from_reverse((*va),
3199 &free_vmap_area_list, list) {
3200 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3201 if ((*va)->va_start < addr)
3202 return addr;
3203 }
3204 }
3205
3206 return 0;
3207}
3208
3209/**
3210 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3211 * @offsets: array containing offset of each area
3212 * @sizes: array containing size of each area
3213 * @nr_vms: the number of areas to allocate
3214 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3215 *
3216 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3217 * vm_structs on success, %NULL on failure
3218 *
3219 * Percpu allocator wants to use congruent vm areas so that it can
3220 * maintain the offsets among percpu areas. This function allocates
3221 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3222 * be scattered pretty far, distance between two areas easily going up
3223 * to gigabytes. To avoid interacting with regular vmallocs, these
3224 * areas are allocated from top.
3225 *
3226 * Despite its complicated look, this allocator is rather simple. It
3227 * does everything top-down and scans free blocks from the end looking
3228 * for matching base. While scanning, if any of the areas do not fit the
3229 * base address is pulled down to fit the area. Scanning is repeated till
3230 * all the areas fit and then all necessary data structures are inserted
3231 * and the result is returned.
3232 */
3233struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3234 const size_t *sizes, int nr_vms,
3235 size_t align)
3236{
3237 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3238 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3239 struct vmap_area **vas, *va;
3240 struct vm_struct **vms;
3241 int area, area2, last_area, term_area;
3242 unsigned long base, start, size, end, last_end;
3243 bool purged = false;
3244 enum fit_type type;
3245
3246 /* verify parameters and allocate data structures */
3247 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3248 for (last_area = 0, area = 0; area < nr_vms; area++) {
3249 start = offsets[area];
3250 end = start + sizes[area];
3251
3252 /* is everything aligned properly? */
3253 BUG_ON(!IS_ALIGNED(offsets[area], align));
3254 BUG_ON(!IS_ALIGNED(sizes[area], align));
3255
3256 /* detect the area with the highest address */
3257 if (start > offsets[last_area])
3258 last_area = area;
3259
3260 for (area2 = area + 1; area2 < nr_vms; area2++) {
3261 unsigned long start2 = offsets[area2];
3262 unsigned long end2 = start2 + sizes[area2];
3263
3264 BUG_ON(start2 < end && start < end2);
3265 }
3266 }
3267 last_end = offsets[last_area] + sizes[last_area];
3268
3269 if (vmalloc_end - vmalloc_start < last_end) {
3270 WARN_ON(true);
3271 return NULL;
3272 }
3273
3274 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3275 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3276 if (!vas || !vms)
3277 goto err_free2;
3278
3279 for (area = 0; area < nr_vms; area++) {
3280 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3281 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3282 if (!vas[area] || !vms[area])
3283 goto err_free;
3284 }
3285retry:
3286 spin_lock(&vmap_area_lock);
3287
3288 /* start scanning - we scan from the top, begin with the last area */
3289 area = term_area = last_area;
3290 start = offsets[area];
3291 end = start + sizes[area];
3292
3293 va = pvm_find_va_enclose_addr(vmalloc_end);
3294 base = pvm_determine_end_from_reverse(&va, align) - end;
3295
3296 while (true) {
3297 /*
3298 * base might have underflowed, add last_end before
3299 * comparing.
3300 */
3301 if (base + last_end < vmalloc_start + last_end)
3302 goto overflow;
3303
3304 /*
3305 * Fitting base has not been found.
3306 */
3307 if (va == NULL)
3308 goto overflow;
3309
3310 /*
3311 * If required width exeeds current VA block, move
3312 * base downwards and then recheck.
3313 */
3314 if (base + end > va->va_end) {
3315 base = pvm_determine_end_from_reverse(&va, align) - end;
3316 term_area = area;
3317 continue;
3318 }
3319
3320 /*
3321 * If this VA does not fit, move base downwards and recheck.
3322 */
3323 if (base + start < va->va_start) {
3324 va = node_to_va(rb_prev(&va->rb_node));
3325 base = pvm_determine_end_from_reverse(&va, align) - end;
3326 term_area = area;
3327 continue;
3328 }
3329
3330 /*
3331 * This area fits, move on to the previous one. If
3332 * the previous one is the terminal one, we're done.
3333 */
3334 area = (area + nr_vms - 1) % nr_vms;
3335 if (area == term_area)
3336 break;
3337
3338 start = offsets[area];
3339 end = start + sizes[area];
3340 va = pvm_find_va_enclose_addr(base + end);
3341 }
3342
3343 /* we've found a fitting base, insert all va's */
3344 for (area = 0; area < nr_vms; area++) {
3345 int ret;
3346
3347 start = base + offsets[area];
3348 size = sizes[area];
3349
3350 va = pvm_find_va_enclose_addr(start);
3351 if (WARN_ON_ONCE(va == NULL))
3352 /* It is a BUG(), but trigger recovery instead. */
3353 goto recovery;
3354
3355 type = classify_va_fit_type(va, start, size);
3356 if (WARN_ON_ONCE(type == NOTHING_FIT))
3357 /* It is a BUG(), but trigger recovery instead. */
3358 goto recovery;
3359
3360 ret = adjust_va_to_fit_type(va, start, size, type);
3361 if (unlikely(ret))
3362 goto recovery;
3363
3364 /* Allocated area. */
3365 va = vas[area];
3366 va->va_start = start;
3367 va->va_end = start + size;
3368
3369 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
3370 }
3371
3372 spin_unlock(&vmap_area_lock);
3373
3374 /* insert all vm's */
3375 for (area = 0; area < nr_vms; area++)
3376 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
3377 pcpu_get_vm_areas);
3378
3379 kfree(vas);
3380 return vms;
3381
3382recovery:
3383 /* Remove previously inserted areas. */
3384 while (area--) {
3385 __free_vmap_area(vas[area]);
3386 vas[area] = NULL;
3387 }
3388
3389overflow:
3390 spin_unlock(&vmap_area_lock);
3391 if (!purged) {
3392 purge_vmap_area_lazy();
3393 purged = true;
3394
3395 /* Before "retry", check if we recover. */
3396 for (area = 0; area < nr_vms; area++) {
3397 if (vas[area])
3398 continue;
3399
3400 vas[area] = kmem_cache_zalloc(
3401 vmap_area_cachep, GFP_KERNEL);
3402 if (!vas[area])
3403 goto err_free;
3404 }
3405
3406 goto retry;
3407 }
3408
3409err_free:
3410 for (area = 0; area < nr_vms; area++) {
3411 if (vas[area])
3412 kmem_cache_free(vmap_area_cachep, vas[area]);
3413
3414 kfree(vms[area]);
3415 }
3416err_free2:
3417 kfree(vas);
3418 kfree(vms);
3419 return NULL;
3420}
3421
3422/**
3423 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3424 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3425 * @nr_vms: the number of allocated areas
3426 *
3427 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3428 */
3429void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3430{
3431 int i;
3432
3433 for (i = 0; i < nr_vms; i++)
3434 free_vm_area(vms[i]);
3435 kfree(vms);
3436}
3437#endif /* CONFIG_SMP */
3438
3439#ifdef CONFIG_PROC_FS
3440static void *s_start(struct seq_file *m, loff_t *pos)
3441 __acquires(&vmap_area_lock)
3442{
3443 spin_lock(&vmap_area_lock);
3444 return seq_list_start(&vmap_area_list, *pos);
3445}
3446
3447static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3448{
3449 return seq_list_next(p, &vmap_area_list, pos);
3450}
3451
3452static void s_stop(struct seq_file *m, void *p)
3453 __releases(&vmap_area_lock)
3454{
3455 spin_unlock(&vmap_area_lock);
3456}
3457
3458static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3459{
3460 if (IS_ENABLED(CONFIG_NUMA)) {
3461 unsigned int nr, *counters = m->private;
3462
3463 if (!counters)
3464 return;
3465
3466 if (v->flags & VM_UNINITIALIZED)
3467 return;
3468 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3469 smp_rmb();
3470
3471 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3472
3473 for (nr = 0; nr < v->nr_pages; nr++)
3474 counters[page_to_nid(v->pages[nr])]++;
3475
3476 for_each_node_state(nr, N_HIGH_MEMORY)
3477 if (counters[nr])
3478 seq_printf(m, " N%u=%u", nr, counters[nr]);
3479 }
3480}
3481
3482static void show_purge_info(struct seq_file *m)
3483{
3484 struct llist_node *head;
3485 struct vmap_area *va;
3486
3487 head = READ_ONCE(vmap_purge_list.first);
3488 if (head == NULL)
3489 return;
3490
3491 llist_for_each_entry(va, head, purge_list) {
3492 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3493 (void *)va->va_start, (void *)va->va_end,
3494 va->va_end - va->va_start);
3495 }
3496}
3497
3498static int s_show(struct seq_file *m, void *p)
3499{
3500 struct vmap_area *va;
3501 struct vm_struct *v;
3502
3503 va = list_entry(p, struct vmap_area, list);
3504
3505 /*
3506 * s_show can encounter race with remove_vm_area, !vm on behalf
3507 * of vmap area is being tear down or vm_map_ram allocation.
3508 */
3509 if (!va->vm) {
3510 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3511 (void *)va->va_start, (void *)va->va_end,
3512 va->va_end - va->va_start);
3513
3514 return 0;
3515 }
3516
3517 v = va->vm;
3518
3519 seq_printf(m, "0x%pK-0x%pK %7ld",
3520 v->addr, v->addr + v->size, v->size);
3521
3522 if (v->caller)
3523 seq_printf(m, " %pS", v->caller);
3524
3525 if (v->nr_pages)
3526 seq_printf(m, " pages=%d", v->nr_pages);
3527
3528 if (v->phys_addr)
3529 seq_printf(m, " phys=%pa", &v->phys_addr);
3530
3531 if (v->flags & VM_IOREMAP)
3532 seq_puts(m, " ioremap");
3533
3534 if (v->flags & VM_ALLOC)
3535 seq_puts(m, " vmalloc");
3536
3537 if (v->flags & VM_MAP)
3538 seq_puts(m, " vmap");
3539
3540 if (v->flags & VM_USERMAP)
3541 seq_puts(m, " user");
3542
3543 if (v->flags & VM_DMA_COHERENT)
3544 seq_puts(m, " dma-coherent");
3545
3546 if (is_vmalloc_addr(v->pages))
3547 seq_puts(m, " vpages");
3548
3549 show_numa_info(m, v);
3550 seq_putc(m, '\n');
3551
3552 /*
3553 * As a final step, dump "unpurged" areas. Note,
3554 * that entire "/proc/vmallocinfo" output will not
3555 * be address sorted, because the purge list is not
3556 * sorted.
3557 */
3558 if (list_is_last(&va->list, &vmap_area_list))
3559 show_purge_info(m);
3560
3561 return 0;
3562}
3563
3564static const struct seq_operations vmalloc_op = {
3565 .start = s_start,
3566 .next = s_next,
3567 .stop = s_stop,
3568 .show = s_show,
3569};
3570
3571static int __init proc_vmalloc_init(void)
3572{
3573 if (IS_ENABLED(CONFIG_PROC_STRIPPED))
3574 return 0;
3575 if (IS_ENABLED(CONFIG_NUMA))
3576 proc_create_seq_private("vmallocinfo", 0400, NULL,
3577 &vmalloc_op,
3578 nr_node_ids * sizeof(unsigned int), NULL);
3579 else
3580 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3581 return 0;
3582}
3583module_init(proc_vmalloc_init);
3584
3585#endif