blob: bc06016a4fe901d6f534d2f5f09e0de7187b69fa [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2/* af_can.c - Protocol family CAN core module
3 * (used by different CAN protocol modules)
4 *
5 * Copyright (c) 2002-2017 Volkswagen Group Electronic Research
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of Volkswagen nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * Alternatively, provided that this notice is retained in full, this
21 * software may be distributed under the terms of the GNU General
22 * Public License ("GPL") version 2, in which case the provisions of the
23 * GPL apply INSTEAD OF those given above.
24 *
25 * The provided data structures and external interfaces from this code
26 * are not restricted to be used by modules with a GPL compatible license.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 *
41 */
42
43#include <linux/module.h>
44#include <linux/stddef.h>
45#include <linux/init.h>
46#include <linux/kmod.h>
47#include <linux/slab.h>
48#include <linux/list.h>
49#include <linux/spinlock.h>
50#include <linux/rcupdate.h>
51#include <linux/uaccess.h>
52#include <linux/net.h>
53#include <linux/netdevice.h>
54#include <linux/socket.h>
55#include <linux/if_ether.h>
56#include <linux/if_arp.h>
57#include <linux/skbuff.h>
58#include <linux/can.h>
59#include <linux/can/core.h>
60#include <linux/can/skb.h>
61#include <linux/can/can-ml.h>
62#include <linux/ratelimit.h>
63#include <net/net_namespace.h>
64#include <net/sock.h>
65
66#include "af_can.h"
67
68MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
69MODULE_LICENSE("Dual BSD/GPL");
70MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
71 "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
72
73MODULE_ALIAS_NETPROTO(PF_CAN);
74
75static int stats_timer __read_mostly = 1;
76module_param(stats_timer, int, 0444);
77MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
78
79static struct kmem_cache *rcv_cache __read_mostly;
80
81/* table of registered CAN protocols */
82static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly;
83static DEFINE_MUTEX(proto_tab_lock);
84
85static atomic_t skbcounter = ATOMIC_INIT(0);
86
87/* af_can socket functions */
88
89void can_sock_destruct(struct sock *sk)
90{
91 skb_queue_purge(&sk->sk_receive_queue);
92 skb_queue_purge(&sk->sk_error_queue);
93}
94EXPORT_SYMBOL(can_sock_destruct);
95
96static const struct can_proto *can_get_proto(int protocol)
97{
98 const struct can_proto *cp;
99
100 rcu_read_lock();
101 cp = rcu_dereference(proto_tab[protocol]);
102 if (cp && !try_module_get(cp->prot->owner))
103 cp = NULL;
104 rcu_read_unlock();
105
106 return cp;
107}
108
109static inline void can_put_proto(const struct can_proto *cp)
110{
111 module_put(cp->prot->owner);
112}
113
114static int can_create(struct net *net, struct socket *sock, int protocol,
115 int kern)
116{
117 struct sock *sk;
118 const struct can_proto *cp;
119 int err = 0;
120
121 sock->state = SS_UNCONNECTED;
122
123 if (protocol < 0 || protocol >= CAN_NPROTO)
124 return -EINVAL;
125
126 cp = can_get_proto(protocol);
127
128#ifdef CONFIG_MODULES
129 if (!cp) {
130 /* try to load protocol module if kernel is modular */
131
132 err = request_module("can-proto-%d", protocol);
133
134 /* In case of error we only print a message but don't
135 * return the error code immediately. Below we will
136 * return -EPROTONOSUPPORT
137 */
138 if (err)
139 pr_err_ratelimited("can: request_module (can-proto-%d) failed.\n",
140 protocol);
141
142 cp = can_get_proto(protocol);
143 }
144#endif
145
146 /* check for available protocol and correct usage */
147
148 if (!cp)
149 return -EPROTONOSUPPORT;
150
151 if (cp->type != sock->type) {
152 err = -EPROTOTYPE;
153 goto errout;
154 }
155
156 sock->ops = cp->ops;
157
158 sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern);
159 if (!sk) {
160 err = -ENOMEM;
161 goto errout;
162 }
163
164 sock_init_data(sock, sk);
165 sk->sk_destruct = can_sock_destruct;
166
167 if (sk->sk_prot->init)
168 err = sk->sk_prot->init(sk);
169
170 if (err) {
171 /* release sk on errors */
172 sock_orphan(sk);
173 sock_put(sk);
174 sock->sk = NULL;
175 }
176
177 errout:
178 can_put_proto(cp);
179 return err;
180}
181
182/* af_can tx path */
183
184/**
185 * can_send - transmit a CAN frame (optional with local loopback)
186 * @skb: pointer to socket buffer with CAN frame in data section
187 * @loop: loopback for listeners on local CAN sockets (recommended default!)
188 *
189 * Due to the loopback this routine must not be called from hardirq context.
190 *
191 * Return:
192 * 0 on success
193 * -ENETDOWN when the selected interface is down
194 * -ENOBUFS on full driver queue (see net_xmit_errno())
195 * -ENOMEM when local loopback failed at calling skb_clone()
196 * -EPERM when trying to send on a non-CAN interface
197 * -EMSGSIZE CAN frame size is bigger than CAN interface MTU
198 * -EINVAL when the skb->data does not contain a valid CAN frame
199 */
200int can_send(struct sk_buff *skb, int loop)
201{
202 struct sk_buff *newskb = NULL;
203 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
204 struct can_pkg_stats *pkg_stats = dev_net(skb->dev)->can.pkg_stats;
205 int err = -EINVAL;
206
207 if (skb->len == CAN_MTU) {
208 skb->protocol = htons(ETH_P_CAN);
209 if (unlikely(cfd->len > CAN_MAX_DLEN))
210 goto inval_skb;
211 } else if (skb->len == CANFD_MTU) {
212 skb->protocol = htons(ETH_P_CANFD);
213 if (unlikely(cfd->len > CANFD_MAX_DLEN))
214 goto inval_skb;
215 } else {
216 goto inval_skb;
217 }
218
219 /* Make sure the CAN frame can pass the selected CAN netdevice.
220 * As structs can_frame and canfd_frame are similar, we can provide
221 * CAN FD frames to legacy CAN drivers as long as the length is <= 8
222 */
223 if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
224 err = -EMSGSIZE;
225 goto inval_skb;
226 }
227
228 if (unlikely(skb->dev->type != ARPHRD_CAN)) {
229 err = -EPERM;
230 goto inval_skb;
231 }
232
233 if (unlikely(!(skb->dev->flags & IFF_UP))) {
234 err = -ENETDOWN;
235 goto inval_skb;
236 }
237
238 skb->ip_summed = CHECKSUM_UNNECESSARY;
239
240 skb_reset_mac_header(skb);
241 skb_reset_network_header(skb);
242 skb_reset_transport_header(skb);
243
244 if (loop) {
245 /* local loopback of sent CAN frames */
246
247 /* indication for the CAN driver: do loopback */
248 skb->pkt_type = PACKET_LOOPBACK;
249
250 /* The reference to the originating sock may be required
251 * by the receiving socket to check whether the frame is
252 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
253 * Therefore we have to ensure that skb->sk remains the
254 * reference to the originating sock by restoring skb->sk
255 * after each skb_clone() or skb_orphan() usage.
256 */
257
258 if (!(skb->dev->flags & IFF_ECHO)) {
259 /* If the interface is not capable to do loopback
260 * itself, we do it here.
261 */
262 newskb = skb_clone(skb, GFP_ATOMIC);
263 if (!newskb) {
264 kfree_skb(skb);
265 return -ENOMEM;
266 }
267
268 can_skb_set_owner(newskb, skb->sk);
269 newskb->ip_summed = CHECKSUM_UNNECESSARY;
270 newskb->pkt_type = PACKET_BROADCAST;
271 }
272 } else {
273 /* indication for the CAN driver: no loopback required */
274 skb->pkt_type = PACKET_HOST;
275 }
276
277 /* send to netdevice */
278 err = dev_queue_xmit(skb);
279 if (err > 0)
280 err = net_xmit_errno(err);
281
282 if (err) {
283 kfree_skb(newskb);
284 return err;
285 }
286
287 if (newskb)
288 netif_rx_ni(newskb);
289
290 /* update statistics */
291 pkg_stats->tx_frames++;
292 pkg_stats->tx_frames_delta++;
293
294 return 0;
295
296inval_skb:
297 kfree_skb(skb);
298 return err;
299}
300EXPORT_SYMBOL(can_send);
301
302/* af_can rx path */
303
304static struct can_dev_rcv_lists *can_dev_rcv_lists_find(struct net *net,
305 struct net_device *dev)
306{
307 if (dev) {
308 struct can_ml_priv *can_ml = can_get_ml_priv(dev);
309 return &can_ml->dev_rcv_lists;
310 } else {
311 return net->can.rx_alldev_list;
312 }
313}
314
315/**
316 * effhash - hash function for 29 bit CAN identifier reduction
317 * @can_id: 29 bit CAN identifier
318 *
319 * Description:
320 * To reduce the linear traversal in one linked list of _single_ EFF CAN
321 * frame subscriptions the 29 bit identifier is mapped to 10 bits.
322 * (see CAN_EFF_RCV_HASH_BITS definition)
323 *
324 * Return:
325 * Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
326 */
327static unsigned int effhash(canid_t can_id)
328{
329 unsigned int hash;
330
331 hash = can_id;
332 hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
333 hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);
334
335 return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
336}
337
338/**
339 * can_rcv_list_find - determine optimal filterlist inside device filter struct
340 * @can_id: pointer to CAN identifier of a given can_filter
341 * @mask: pointer to CAN mask of a given can_filter
342 * @d: pointer to the device filter struct
343 *
344 * Description:
345 * Returns the optimal filterlist to reduce the filter handling in the
346 * receive path. This function is called by service functions that need
347 * to register or unregister a can_filter in the filter lists.
348 *
349 * A filter matches in general, when
350 *
351 * <received_can_id> & mask == can_id & mask
352 *
353 * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
354 * relevant bits for the filter.
355 *
356 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
357 * filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
358 * frames there is a special filterlist and a special rx path filter handling.
359 *
360 * Return:
361 * Pointer to optimal filterlist for the given can_id/mask pair.
362 * Constistency checked mask.
363 * Reduced can_id to have a preprocessed filter compare value.
364 */
365static struct hlist_head *can_rcv_list_find(canid_t *can_id, canid_t *mask,
366 struct can_dev_rcv_lists *dev_rcv_lists)
367{
368 canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
369
370 /* filter for error message frames in extra filterlist */
371 if (*mask & CAN_ERR_FLAG) {
372 /* clear CAN_ERR_FLAG in filter entry */
373 *mask &= CAN_ERR_MASK;
374 return &dev_rcv_lists->rx[RX_ERR];
375 }
376
377 /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
378
379#define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
380
381 /* ensure valid values in can_mask for 'SFF only' frame filtering */
382 if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
383 *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
384
385 /* reduce condition testing at receive time */
386 *can_id &= *mask;
387
388 /* inverse can_id/can_mask filter */
389 if (inv)
390 return &dev_rcv_lists->rx[RX_INV];
391
392 /* mask == 0 => no condition testing at receive time */
393 if (!(*mask))
394 return &dev_rcv_lists->rx[RX_ALL];
395
396 /* extra filterlists for the subscription of a single non-RTR can_id */
397 if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
398 !(*can_id & CAN_RTR_FLAG)) {
399 if (*can_id & CAN_EFF_FLAG) {
400 if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
401 return &dev_rcv_lists->rx_eff[effhash(*can_id)];
402 } else {
403 if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
404 return &dev_rcv_lists->rx_sff[*can_id];
405 }
406 }
407
408 /* default: filter via can_id/can_mask */
409 return &dev_rcv_lists->rx[RX_FIL];
410}
411
412/**
413 * can_rx_register - subscribe CAN frames from a specific interface
414 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
415 * @can_id: CAN identifier (see description)
416 * @mask: CAN mask (see description)
417 * @func: callback function on filter match
418 * @data: returned parameter for callback function
419 * @ident: string for calling module identification
420 * @sk: socket pointer (might be NULL)
421 *
422 * Description:
423 * Invokes the callback function with the received sk_buff and the given
424 * parameter 'data' on a matching receive filter. A filter matches, when
425 *
426 * <received_can_id> & mask == can_id & mask
427 *
428 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
429 * filter for error message frames (CAN_ERR_FLAG bit set in mask).
430 *
431 * The provided pointer to the sk_buff is guaranteed to be valid as long as
432 * the callback function is running. The callback function must *not* free
433 * the given sk_buff while processing it's task. When the given sk_buff is
434 * needed after the end of the callback function it must be cloned inside
435 * the callback function with skb_clone().
436 *
437 * Return:
438 * 0 on success
439 * -ENOMEM on missing cache mem to create subscription entry
440 * -ENODEV unknown device
441 */
442int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id,
443 canid_t mask, void (*func)(struct sk_buff *, void *),
444 void *data, char *ident, struct sock *sk)
445{
446 struct receiver *rcv;
447 struct hlist_head *rcv_list;
448 struct can_dev_rcv_lists *dev_rcv_lists;
449 struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats;
450 int err = 0;
451
452 /* insert new receiver (dev,canid,mask) -> (func,data) */
453
454 if (dev && (dev->type != ARPHRD_CAN || !can_get_ml_priv(dev)))
455 return -ENODEV;
456
457 if (dev && !net_eq(net, dev_net(dev)))
458 return -ENODEV;
459
460 rcv = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
461 if (!rcv)
462 return -ENOMEM;
463
464 spin_lock_bh(&net->can.rcvlists_lock);
465
466 dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
467 rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists);
468
469 rcv->can_id = can_id;
470 rcv->mask = mask;
471 rcv->matches = 0;
472 rcv->func = func;
473 rcv->data = data;
474 rcv->ident = ident;
475 rcv->sk = sk;
476
477 hlist_add_head_rcu(&rcv->list, rcv_list);
478 dev_rcv_lists->entries++;
479
480 rcv_lists_stats->rcv_entries++;
481 rcv_lists_stats->rcv_entries_max = max(rcv_lists_stats->rcv_entries_max,
482 rcv_lists_stats->rcv_entries);
483 spin_unlock_bh(&net->can.rcvlists_lock);
484
485 return err;
486}
487EXPORT_SYMBOL(can_rx_register);
488
489/* can_rx_delete_receiver - rcu callback for single receiver entry removal */
490static void can_rx_delete_receiver(struct rcu_head *rp)
491{
492 struct receiver *rcv = container_of(rp, struct receiver, rcu);
493 struct sock *sk = rcv->sk;
494
495 kmem_cache_free(rcv_cache, rcv);
496 if (sk)
497 sock_put(sk);
498}
499
500/**
501 * can_rx_unregister - unsubscribe CAN frames from a specific interface
502 * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
503 * @can_id: CAN identifier
504 * @mask: CAN mask
505 * @func: callback function on filter match
506 * @data: returned parameter for callback function
507 *
508 * Description:
509 * Removes subscription entry depending on given (subscription) values.
510 */
511void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id,
512 canid_t mask, void (*func)(struct sk_buff *, void *),
513 void *data)
514{
515 struct receiver *rcv = NULL;
516 struct hlist_head *rcv_list;
517 struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats;
518 struct can_dev_rcv_lists *dev_rcv_lists;
519
520 if (dev && dev->type != ARPHRD_CAN)
521 return;
522
523 if (dev && !net_eq(net, dev_net(dev)))
524 return;
525
526 spin_lock_bh(&net->can.rcvlists_lock);
527
528 dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
529 rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists);
530
531 /* Search the receiver list for the item to delete. This should
532 * exist, since no receiver may be unregistered that hasn't
533 * been registered before.
534 */
535 hlist_for_each_entry_rcu(rcv, rcv_list, list) {
536 if (rcv->can_id == can_id && rcv->mask == mask &&
537 rcv->func == func && rcv->data == data)
538 break;
539 }
540
541 /* Check for bugs in CAN protocol implementations using af_can.c:
542 * 'rcv' will be NULL if no matching list item was found for removal.
543 * As this case may potentially happen when closing a socket while
544 * the notifier for removing the CAN netdev is running we just print
545 * a warning here.
546 */
547 if (!rcv) {
548 pr_warn("can: receive list entry not found for dev %s, id %03X, mask %03X\n",
549 DNAME(dev), can_id, mask);
550 goto out;
551 }
552
553 hlist_del_rcu(&rcv->list);
554 dev_rcv_lists->entries--;
555
556 if (rcv_lists_stats->rcv_entries > 0)
557 rcv_lists_stats->rcv_entries--;
558
559 out:
560 spin_unlock_bh(&net->can.rcvlists_lock);
561
562 /* schedule the receiver item for deletion */
563 if (rcv) {
564 if (rcv->sk)
565 sock_hold(rcv->sk);
566 call_rcu(&rcv->rcu, can_rx_delete_receiver);
567 }
568}
569EXPORT_SYMBOL(can_rx_unregister);
570
571static inline void deliver(struct sk_buff *skb, struct receiver *rcv)
572{
573 rcv->func(skb, rcv->data);
574 rcv->matches++;
575}
576
577static int can_rcv_filter(struct can_dev_rcv_lists *dev_rcv_lists, struct sk_buff *skb)
578{
579 struct receiver *rcv;
580 int matches = 0;
581 struct can_frame *cf = (struct can_frame *)skb->data;
582 canid_t can_id = cf->can_id;
583
584 if (dev_rcv_lists->entries == 0)
585 return 0;
586
587 if (can_id & CAN_ERR_FLAG) {
588 /* check for error message frame entries only */
589 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ERR], list) {
590 if (can_id & rcv->mask) {
591 deliver(skb, rcv);
592 matches++;
593 }
594 }
595 return matches;
596 }
597
598 /* check for unfiltered entries */
599 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ALL], list) {
600 deliver(skb, rcv);
601 matches++;
602 }
603
604 /* check for can_id/mask entries */
605 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_FIL], list) {
606 if ((can_id & rcv->mask) == rcv->can_id) {
607 deliver(skb, rcv);
608 matches++;
609 }
610 }
611
612 /* check for inverted can_id/mask entries */
613 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_INV], list) {
614 if ((can_id & rcv->mask) != rcv->can_id) {
615 deliver(skb, rcv);
616 matches++;
617 }
618 }
619
620 /* check filterlists for single non-RTR can_ids */
621 if (can_id & CAN_RTR_FLAG)
622 return matches;
623
624 if (can_id & CAN_EFF_FLAG) {
625 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_eff[effhash(can_id)], list) {
626 if (rcv->can_id == can_id) {
627 deliver(skb, rcv);
628 matches++;
629 }
630 }
631 } else {
632 can_id &= CAN_SFF_MASK;
633 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_sff[can_id], list) {
634 deliver(skb, rcv);
635 matches++;
636 }
637 }
638
639 return matches;
640}
641
642static void can_receive(struct sk_buff *skb, struct net_device *dev)
643{
644 struct can_dev_rcv_lists *dev_rcv_lists;
645 struct net *net = dev_net(dev);
646 struct can_pkg_stats *pkg_stats = net->can.pkg_stats;
647 int matches;
648
649 /* update statistics */
650 pkg_stats->rx_frames++;
651 pkg_stats->rx_frames_delta++;
652
653 /* create non-zero unique skb identifier together with *skb */
654 while (!(can_skb_prv(skb)->skbcnt))
655 can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter);
656
657 rcu_read_lock();
658
659 /* deliver the packet to sockets listening on all devices */
660 matches = can_rcv_filter(net->can.rx_alldev_list, skb);
661
662 /* find receive list for this device */
663 dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
664 matches += can_rcv_filter(dev_rcv_lists, skb);
665
666 rcu_read_unlock();
667
668 /* consume the skbuff allocated by the netdevice driver */
669 consume_skb(skb);
670
671 if (matches > 0) {
672 pkg_stats->matches++;
673 pkg_stats->matches_delta++;
674 }
675}
676
677static int can_rcv(struct sk_buff *skb, struct net_device *dev,
678 struct packet_type *pt, struct net_device *orig_dev)
679{
680 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
681
682 if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || skb->len != CAN_MTU)) {
683 pr_warn_once("PF_CAN: dropped non conform CAN skbuff: dev type %d, len %d\n",
684 dev->type, skb->len);
685 goto free_skb;
686 }
687
688 /* This check is made separately since cfd->len would be uninitialized if skb->len = 0. */
689 if (unlikely(cfd->len > CAN_MAX_DLEN)) {
690 pr_warn_once("PF_CAN: dropped non conform CAN skbuff: dev type %d, len %d, datalen %d\n",
691 dev->type, skb->len, cfd->len);
692 goto free_skb;
693 }
694
695 can_receive(skb, dev);
696 return NET_RX_SUCCESS;
697
698free_skb:
699 kfree_skb(skb);
700 return NET_RX_DROP;
701}
702
703static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
704 struct packet_type *pt, struct net_device *orig_dev)
705{
706 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
707
708 if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || skb->len != CANFD_MTU)) {
709 pr_warn_once("PF_CAN: dropped non conform CAN FD skbuff: dev type %d, len %d\n",
710 dev->type, skb->len);
711 goto free_skb;
712 }
713
714 /* This check is made separately since cfd->len would be uninitialized if skb->len = 0. */
715 if (unlikely(cfd->len > CANFD_MAX_DLEN)) {
716 pr_warn_once("PF_CAN: dropped non conform CAN FD skbuff: dev type %d, len %d, datalen %d\n",
717 dev->type, skb->len, cfd->len);
718 goto free_skb;
719 }
720
721 can_receive(skb, dev);
722 return NET_RX_SUCCESS;
723
724free_skb:
725 kfree_skb(skb);
726 return NET_RX_DROP;
727}
728
729/* af_can protocol functions */
730
731/**
732 * can_proto_register - register CAN transport protocol
733 * @cp: pointer to CAN protocol structure
734 *
735 * Return:
736 * 0 on success
737 * -EINVAL invalid (out of range) protocol number
738 * -EBUSY protocol already in use
739 * -ENOBUF if proto_register() fails
740 */
741int can_proto_register(const struct can_proto *cp)
742{
743 int proto = cp->protocol;
744 int err = 0;
745
746 if (proto < 0 || proto >= CAN_NPROTO) {
747 pr_err("can: protocol number %d out of range\n", proto);
748 return -EINVAL;
749 }
750
751 err = proto_register(cp->prot, 0);
752 if (err < 0)
753 return err;
754
755 mutex_lock(&proto_tab_lock);
756
757 if (rcu_access_pointer(proto_tab[proto])) {
758 pr_err("can: protocol %d already registered\n", proto);
759 err = -EBUSY;
760 } else {
761 RCU_INIT_POINTER(proto_tab[proto], cp);
762 }
763
764 mutex_unlock(&proto_tab_lock);
765
766 if (err < 0)
767 proto_unregister(cp->prot);
768
769 return err;
770}
771EXPORT_SYMBOL(can_proto_register);
772
773/**
774 * can_proto_unregister - unregister CAN transport protocol
775 * @cp: pointer to CAN protocol structure
776 */
777void can_proto_unregister(const struct can_proto *cp)
778{
779 int proto = cp->protocol;
780
781 mutex_lock(&proto_tab_lock);
782 BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp);
783 RCU_INIT_POINTER(proto_tab[proto], NULL);
784 mutex_unlock(&proto_tab_lock);
785
786 synchronize_rcu();
787
788 proto_unregister(cp->prot);
789}
790EXPORT_SYMBOL(can_proto_unregister);
791
792static int can_pernet_init(struct net *net)
793{
794 spin_lock_init(&net->can.rcvlists_lock);
795 net->can.rx_alldev_list =
796 kzalloc(sizeof(*net->can.rx_alldev_list), GFP_KERNEL);
797 if (!net->can.rx_alldev_list)
798 goto out;
799 net->can.pkg_stats = kzalloc(sizeof(*net->can.pkg_stats), GFP_KERNEL);
800 if (!net->can.pkg_stats)
801 goto out_free_rx_alldev_list;
802 net->can.rcv_lists_stats = kzalloc(sizeof(*net->can.rcv_lists_stats), GFP_KERNEL);
803 if (!net->can.rcv_lists_stats)
804 goto out_free_pkg_stats;
805
806 if (IS_ENABLED(CONFIG_PROC_FS)) {
807 /* the statistics are updated every second (timer triggered) */
808 if (stats_timer) {
809 timer_setup(&net->can.stattimer, can_stat_update,
810 0);
811 mod_timer(&net->can.stattimer,
812 round_jiffies(jiffies + HZ));
813 }
814 net->can.pkg_stats->jiffies_init = jiffies;
815 can_init_proc(net);
816 }
817
818 return 0;
819
820 out_free_pkg_stats:
821 kfree(net->can.pkg_stats);
822 out_free_rx_alldev_list:
823 kfree(net->can.rx_alldev_list);
824 out:
825 return -ENOMEM;
826}
827
828static void can_pernet_exit(struct net *net)
829{
830 if (IS_ENABLED(CONFIG_PROC_FS)) {
831 can_remove_proc(net);
832 if (stats_timer)
833 del_timer_sync(&net->can.stattimer);
834 }
835
836 kfree(net->can.rx_alldev_list);
837 kfree(net->can.pkg_stats);
838 kfree(net->can.rcv_lists_stats);
839}
840
841/* af_can module init/exit functions */
842
843static struct packet_type can_packet __read_mostly = {
844 .type = cpu_to_be16(ETH_P_CAN),
845 .func = can_rcv,
846};
847
848static struct packet_type canfd_packet __read_mostly = {
849 .type = cpu_to_be16(ETH_P_CANFD),
850 .func = canfd_rcv,
851};
852
853static const struct net_proto_family can_family_ops = {
854 .family = PF_CAN,
855 .create = can_create,
856 .owner = THIS_MODULE,
857};
858
859static struct pernet_operations can_pernet_ops __read_mostly = {
860 .init = can_pernet_init,
861 .exit = can_pernet_exit,
862};
863
864static __init int can_init(void)
865{
866 int err;
867
868 /* check for correct padding to be able to use the structs similarly */
869 BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
870 offsetof(struct canfd_frame, len) ||
871 offsetof(struct can_frame, data) !=
872 offsetof(struct canfd_frame, data));
873
874 pr_info("can: controller area network core (" CAN_VERSION_STRING ")\n");
875
876 rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
877 0, 0, NULL);
878 if (!rcv_cache)
879 return -ENOMEM;
880
881 err = register_pernet_subsys(&can_pernet_ops);
882 if (err)
883 goto out_pernet;
884
885 /* protocol register */
886 err = sock_register(&can_family_ops);
887 if (err)
888 goto out_sock;
889
890 dev_add_pack(&can_packet);
891 dev_add_pack(&canfd_packet);
892
893 return 0;
894
895out_sock:
896 unregister_pernet_subsys(&can_pernet_ops);
897out_pernet:
898 kmem_cache_destroy(rcv_cache);
899
900 return err;
901}
902
903static __exit void can_exit(void)
904{
905 /* protocol unregister */
906 dev_remove_pack(&canfd_packet);
907 dev_remove_pack(&can_packet);
908 sock_unregister(PF_CAN);
909
910 unregister_pernet_subsys(&can_pernet_ops);
911
912 rcu_barrier(); /* Wait for completion of call_rcu()'s */
913
914 kmem_cache_destroy(rcv_cache);
915}
916
917module_init(can_init);
918module_exit(can_exit);